aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/e1000e
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/e1000e')
-rw-r--r--drivers/net/e1000e/82571.c1350
-rw-r--r--drivers/net/e1000e/Makefile37
-rw-r--r--drivers/net/e1000e/defines.h741
-rw-r--r--drivers/net/e1000e/e1000.h511
-rw-r--r--drivers/net/e1000e/es2lan.c1232
-rw-r--r--drivers/net/e1000e/ethtool.c1821
-rw-r--r--drivers/net/e1000e/hw.h868
-rw-r--r--drivers/net/e1000e/ich8lan.c2225
-rw-r--r--drivers/net/e1000e/lib.c2504
-rw-r--r--drivers/net/e1000e/netdev.c4156
-rw-r--r--drivers/net/e1000e/param.c376
-rw-r--r--drivers/net/e1000e/phy.c1772
12 files changed, 0 insertions, 17593 deletions
diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c
deleted file mode 100644
index 7fe20310eb5..00000000000
--- a/drivers/net/e1000e/82571.c
+++ /dev/null
@@ -1,1350 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/*
- * 82571EB Gigabit Ethernet Controller
- * 82571EB Gigabit Ethernet Controller (Fiber)
- * 82572EI Gigabit Ethernet Controller (Copper)
- * 82572EI Gigabit Ethernet Controller (Fiber)
- * 82572EI Gigabit Ethernet Controller
- * 82573V Gigabit Ethernet Controller (Copper)
- * 82573E Gigabit Ethernet Controller (Copper)
- * 82573L Gigabit Ethernet Controller
- */
-
-#include <linux/netdevice.h>
-#include <linux/delay.h>
-#include <linux/pci.h>
-
-#include "e1000.h"
-
-#define ID_LED_RESERVED_F746 0xF746
-#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_OFF1_ON2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-
-static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
-static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
-static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
-static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
-static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
-static s32 e1000_setup_link_82571(struct e1000_hw *hw);
-static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
-
-/**
- * e1000_init_phy_params_82571 - Init PHY func ptrs.
- * @hw: pointer to the HW structure
- *
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- if (hw->media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- return 0;
- }
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- phy->type = e1000_phy_igp_2;
- break;
- case e1000_82573:
- phy->type = e1000_phy_m88;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- /* This can only be done after all function pointers are setup. */
- ret_val = e1000_get_phy_id_82571(hw);
-
- /* Verify phy id */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- if (phy->id != IGP01E1000_I_PHY_ID)
- return -E1000_ERR_PHY;
- break;
- case e1000_82573:
- if (phy->id != M88E1111_I_PHY_ID)
- return -E1000_ERR_PHY;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_init_nvm_params_82571 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- *
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u16 size;
-
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- switch (hw->mac.type) {
- case e1000_82573:
- if (((eecd >> 15) & 0x3) == 0x3) {
- nvm->type = e1000_nvm_flash_hw;
- nvm->word_size = 2048;
- /* Autonomous Flash update bit must be cleared due
- * to Flash update issue.
- */
- eecd &= ~E1000_EECD_AUPDEN;
- ew32(EECD, eecd);
- break;
- }
- /* Fall Through */
- default:
- nvm->type = e1000_nvm_eeprom_spi;
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
- /* Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
- nvm->word_size = 1 << size;
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_init_mac_params_82571 - Init MAC func ptrs.
- * @hw: pointer to the HW structure
- *
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_mac_operations *func = &mac->ops;
-
- /* Set media type */
- switch (adapter->pdev->device) {
- case E1000_DEV_ID_82571EB_FIBER:
- case E1000_DEV_ID_82572EI_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- hw->media_type = e1000_media_type_fiber;
- break;
- case E1000_DEV_ID_82571EB_SERDES:
- case E1000_DEV_ID_82572EI_SERDES:
- case E1000_DEV_ID_82571EB_SERDES_DUAL:
- case E1000_DEV_ID_82571EB_SERDES_QUAD:
- hw->media_type = e1000_media_type_internal_serdes;
- break;
- default:
- hw->media_type = e1000_media_type_copper;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
- /* Set if manageability features are enabled. */
- mac->arc_subsystem_valid =
- (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
-
- /* check for link */
- switch (hw->media_type) {
- case e1000_media_type_copper:
- func->setup_physical_interface = e1000_setup_copper_link_82571;
- func->check_for_link = e1000e_check_for_copper_link;
- func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
- break;
- case e1000_media_type_fiber:
- func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
- func->check_for_link = e1000e_check_for_fiber_link;
- func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
- break;
- case e1000_media_type_internal_serdes:
- func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
- func->check_for_link = e1000e_check_for_serdes_link;
- func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
- break;
- default:
- return -E1000_ERR_CONFIG;
- break;
- }
-
- return 0;
-}
-
-static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- static int global_quad_port_a; /* global port a indication */
- struct pci_dev *pdev = adapter->pdev;
- u16 eeprom_data = 0;
- int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
- s32 rc;
-
- rc = e1000_init_mac_params_82571(adapter);
- if (rc)
- return rc;
-
- rc = e1000_init_nvm_params_82571(hw);
- if (rc)
- return rc;
-
- rc = e1000_init_phy_params_82571(hw);
- if (rc)
- return rc;
-
- /* tag quad port adapters first, it's used below */
- switch (pdev->device) {
- case E1000_DEV_ID_82571EB_QUAD_COPPER:
- case E1000_DEV_ID_82571EB_QUAD_FIBER:
- case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
- case E1000_DEV_ID_82571PT_QUAD_COPPER:
- adapter->flags |= FLAG_IS_QUAD_PORT;
- /* mark the first port */
- if (global_quad_port_a == 0)
- adapter->flags |= FLAG_IS_QUAD_PORT_A;
- /* Reset for multiple quad port adapters */
- global_quad_port_a++;
- if (global_quad_port_a == 4)
- global_quad_port_a = 0;
- break;
- default:
- break;
- }
-
- switch (adapter->hw.mac.type) {
- case e1000_82571:
- /* these dual ports don't have WoL on port B at all */
- if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
- (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
- (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
- (is_port_b))
- adapter->flags &= ~FLAG_HAS_WOL;
- /* quad ports only support WoL on port A */
- if (adapter->flags & FLAG_IS_QUAD_PORT &&
- (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
- adapter->flags &= ~FLAG_HAS_WOL;
- /* Does not support WoL on any port */
- if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
- adapter->flags &= ~FLAG_HAS_WOL;
- break;
-
- case e1000_82573:
- if (pdev->device == E1000_DEV_ID_82573L) {
- e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
- &eeprom_data);
- if (eeprom_data & NVM_WORD1A_ASPM_MASK)
- adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
- }
- break;
- default:
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
-
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- /* The 82571 firmware may still be configuring the PHY.
- * In this case, we cannot access the PHY until the
- * configuration is done. So we explicitly set the
- * PHY ID. */
- phy->id = IGP01E1000_I_PHY_ID;
- break;
- case e1000_82573:
- return e1000e_get_phy_id(hw);
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (er32(SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- udelay(50);
- }
-
- if (i == timeout) {
- /* Release semaphores */
- e1000e_put_hw_semaphore(hw);
- hw_dbg(hw, "Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000_put_hw_semaphore_82571 - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
-{
- u32 swsm;
-
- swsm = er32(SWSM);
-
- swsm &= ~E1000_SWSM_SWESMBI;
-
- ew32(SWSM, swsm);
-}
-
-/**
- * e1000_acquire_nvm_82571 - Request for access to the EEPROM
- * @hw: pointer to the HW structure
- *
- * To gain access to the EEPROM, first we must obtain a hardware semaphore.
- * Then for non-82573 hardware, set the EEPROM access request bit and wait
- * for EEPROM access grant bit. If the access grant bit is not set, release
- * hardware semaphore.
- **/
-static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- ret_val = e1000_get_hw_semaphore_82571(hw);
- if (ret_val)
- return ret_val;
-
- if (hw->mac.type != e1000_82573)
- ret_val = e1000e_acquire_nvm(hw);
-
- if (ret_val)
- e1000_put_hw_semaphore_82571(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_82571 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-static void e1000_release_nvm_82571(struct e1000_hw *hw)
-{
- e1000e_release_nvm(hw);
- e1000_put_hw_semaphore_82571(hw);
-}
-
-/**
- * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
- *
- * If e1000e_update_nvm_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- **/
-static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- s32 ret_val;
-
- switch (hw->mac.type) {
- case e1000_82573:
- ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
- break;
- case e1000_82571:
- case e1000_82572:
- ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
- break;
- default:
- ret_val = -E1000_ERR_NVM;
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
-{
- u32 eecd;
- s32 ret_val;
- u16 i;
-
- ret_val = e1000e_update_nvm_checksum_generic(hw);
- if (ret_val)
- return ret_val;
-
- /* If our nvm is an EEPROM, then we're done
- * otherwise, commit the checksum to the flash NVM. */
- if (hw->nvm.type != e1000_nvm_flash_hw)
- return ret_val;
-
- /* Check for pending operations. */
- for (i = 0; i < E1000_FLASH_UPDATES; i++) {
- msleep(1);
- if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
- break;
- }
-
- if (i == E1000_FLASH_UPDATES)
- return -E1000_ERR_NVM;
-
- /* Reset the firmware if using STM opcode. */
- if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
- /* The enabling of and the actual reset must be done
- * in two write cycles.
- */
- ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
- e1e_flush();
- ew32(HICR, E1000_HICR_FW_RESET);
- }
-
- /* Commit the write to flash */
- eecd = er32(EECD) | E1000_EECD_FLUPD;
- ew32(EECD, eecd);
-
- for (i = 0; i < E1000_FLASH_UPDATES; i++) {
- msleep(1);
- if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
- break;
- }
-
- if (i == E1000_FLASH_UPDATES)
- return -E1000_ERR_NVM;
-
- return 0;
-}
-
-/**
- * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
-{
- if (hw->nvm.type == e1000_nvm_flash_hw)
- e1000_fix_nvm_checksum_82571(hw);
-
- return e1000e_validate_nvm_checksum_generic(hw);
-}
-
-/**
- * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * After checking for invalid values, poll the EEPROM to ensure the previous
- * command has completed before trying to write the next word. After write
- * poll for completion.
- *
- * If e1000e_update_nvm_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- **/
-static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i;
- u32 eewr = 0;
- s32 ret_val = 0;
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words. */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- hw_dbg(hw, "nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- for (i = 0; i < words; i++) {
- eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
- ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
- E1000_NVM_RW_REG_START;
-
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
- if (ret_val)
- break;
-
- ew32(EEWR, eewr);
-
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
- if (ret_val)
- break;
- }
-
- return ret_val;
-}
-
-/**
- * e1000_get_cfg_done_82571 - Poll for configuration done
- * @hw: pointer to the HW structure
- *
- * Reads the management control register for the config done bit to be set.
- **/
-static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
-
- while (timeout) {
- if (er32(EEMNGCTL) &
- E1000_NVM_CFG_DONE_PORT_0)
- break;
- msleep(1);
- timeout--;
- }
- if (!timeout) {
- hw_dbg(hw, "MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return 0;
-}
-
-/**
- * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: TRUE to enable LPLU, FALSE to disable
- *
- * Sets the LPLU D0 state according to the active flag. When activating LPLU
- * this function also disables smart speed and vice versa. LPLU will not be
- * activated unless the device autonegotiation advertisement meets standards
- * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
- * pointer entry point only called by PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- return ret_val;
-
- if (active) {
- data |= IGP02E1000_PM_D0_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- if (ret_val)
- return ret_val;
- } else {
- data &= ~IGP02E1000_PM_D0_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained. */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_reset_hw_82571 - Reset hardware
- * @hw: pointer to the HW structure
- *
- * This resets the hardware into a known state. This is a
- * function pointer entry point called by the api module.
- **/
-static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 extcnf_ctrl;
- u32 ctrl_ext;
- u32 icr;
- s32 ret_val;
- u16 i = 0;
-
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000e_disable_pcie_master(hw);
- if (ret_val)
- hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
-
- hw_dbg(hw, "Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- e1e_flush();
-
- msleep(10);
-
- /* Must acquire the MDIO ownership before MAC reset.
- * Ownership defaults to firmware after a reset. */
- if (hw->mac.type == e1000_82573) {
- extcnf_ctrl = er32(EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- do {
- ew32(EXTCNF_CTRL, extcnf_ctrl);
- extcnf_ctrl = er32(EXTCNF_CTRL);
-
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
- break;
-
- extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
- msleep(2);
- i++;
- } while (i < MDIO_OWNERSHIP_TIMEOUT);
- }
-
- ctrl = er32(CTRL);
-
- hw_dbg(hw, "Issuing a global reset to MAC\n");
- ew32(CTRL, ctrl | E1000_CTRL_RST);
-
- if (hw->nvm.type == e1000_nvm_flash_hw) {
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
- }
-
- ret_val = e1000e_get_auto_rd_done(hw);
- if (ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
-
- /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
- * Need to wait for Phy configuration completion before accessing
- * NVM and Phy.
- */
- if (hw->mac.type == e1000_82573)
- msleep(25);
-
- /* Clear any pending interrupt events. */
- ew32(IMC, 0xffffffff);
- icr = er32(ICR);
-
- if (hw->mac.type == e1000_82571 &&
- hw->dev_spec.e82571.alt_mac_addr_is_present)
- e1000e_set_laa_state_82571(hw, true);
-
- return 0;
-}
-
-/**
- * e1000_init_hw_82571 - Initialize hardware
- * @hw: pointer to the HW structure
- *
- * This inits the hardware readying it for operation.
- **/
-static s32 e1000_init_hw_82571(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 reg_data;
- s32 ret_val;
- u16 i;
- u16 rar_count = mac->rar_entry_count;
-
- e1000_initialize_hw_bits_82571(hw);
-
- /* Initialize identification LED */
- ret_val = e1000e_id_led_init(hw);
- if (ret_val) {
- hw_dbg(hw, "Error initializing identification LED\n");
- return ret_val;
- }
-
- /* Disabling VLAN filtering */
- hw_dbg(hw, "Initializing the IEEE VLAN\n");
- e1000e_clear_vfta(hw);
-
- /* Setup the receive address. */
- /* If, however, a locally administered address was assigned to the
- * 82571, we must reserve a RAR for it to work around an issue where
- * resetting one port will reload the MAC on the other port.
- */
- if (e1000e_get_laa_state_82571(hw))
- rar_count--;
- e1000e_init_rx_addrs(hw, rar_count);
-
- /* Zero out the Multicast HASH table */
- hw_dbg(hw, "Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = e1000_setup_link_82571(hw);
-
- /* Set the transmit descriptor write-back policy */
- reg_data = er32(TXDCTL);
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL, reg_data);
-
- /* ...for both queues. */
- if (mac->type != e1000_82573) {
- reg_data = er32(TXDCTL1);
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB |
- E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL1, reg_data);
- } else {
- e1000e_enable_tx_pkt_filtering(hw);
- reg_data = er32(GCR);
- reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
- ew32(GCR, reg_data);
- }
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_82571(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
- * @hw: pointer to the HW structure
- *
- * Initializes required hardware-dependent bits needed for normal operation.
- **/
-static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
-{
- u32 reg;
-
- /* Transmit Descriptor Control 0 */
- reg = er32(TXDCTL);
- reg |= (1 << 22);
- ew32(TXDCTL, reg);
-
- /* Transmit Descriptor Control 1 */
- reg = er32(TXDCTL1);
- reg |= (1 << 22);
- ew32(TXDCTL1, reg);
-
- /* Transmit Arbitration Control 0 */
- reg = er32(TARC0);
- reg &= ~(0xF << 27); /* 30:27 */
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
- break;
- default:
- break;
- }
- ew32(TARC0, reg);
-
- /* Transmit Arbitration Control 1 */
- reg = er32(TARC1);
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- reg &= ~((1 << 29) | (1 << 30));
- reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
- if (er32(TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- ew32(TARC1, reg);
- break;
- default:
- break;
- }
-
- /* Device Control */
- if (hw->mac.type == e1000_82573) {
- reg = er32(CTRL);
- reg &= ~(1 << 29);
- ew32(CTRL, reg);
- }
-
- /* Extended Device Control */
- if (hw->mac.type == e1000_82573) {
- reg = er32(CTRL_EXT);
- reg &= ~(1 << 23);
- reg |= (1 << 22);
- ew32(CTRL_EXT, reg);
- }
-}
-
-/**
- * e1000e_clear_vfta - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-void e1000e_clear_vfta(struct e1000_hw *hw)
-{
- u32 offset;
- u32 vfta_value = 0;
- u32 vfta_offset = 0;
- u32 vfta_bit_in_reg = 0;
-
- if (hw->mac.type == e1000_82573) {
- if (hw->mng_cookie.vlan_id != 0) {
- /* The VFTA is a 4096b bit-field, each identifying
- * a single VLAN ID. The following operations
- * determine which 32b entry (i.e. offset) into the
- * array we want to set the VLAN ID (i.e. bit) of
- * the manageability unit.
- */
- vfta_offset = (hw->mng_cookie.vlan_id >>
- E1000_VFTA_ENTRY_SHIFT) &
- E1000_VFTA_ENTRY_MASK;
- vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
- E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
- }
- }
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of
- * the manageability unit.
- */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
- e1e_flush();
- }
-}
-
-/**
- * e1000_mc_addr_list_update_82571 - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- * @rar_used_count: the first RAR register free to program
- * @rar_count: total number of supported Receive Address Registers
- *
- * Updates the Receive Address Registers and Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- * The parameter rar_count will usually be hw->mac.rar_entry_count
- * unless there are workarounds that change this.
- **/
-static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
- u8 *mc_addr_list,
- u32 mc_addr_count,
- u32 rar_used_count,
- u32 rar_count)
-{
- if (e1000e_get_laa_state_82571(hw))
- rar_count--;
-
- e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
- rar_used_count, rar_count);
-}
-
-/**
- * e1000_setup_link_82571 - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-static s32 e1000_setup_link_82571(struct e1000_hw *hw)
-{
- /* 82573 does not have a word in the NVM to determine
- * the default flow control setting, so we explicitly
- * set it to full.
- */
- if (hw->mac.type == e1000_82573)
- hw->mac.fc = e1000_fc_full;
-
- return e1000e_setup_link(hw);
-}
-
-/**
- * e1000_setup_copper_link_82571 - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Configures the link for auto-neg or forced speed and duplex. Then we check
- * for link, once link is established calls to configure collision distance
- * and flow control are called.
- **/
-static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 led_ctrl;
- s32 ret_val;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
-
- switch (hw->phy.type) {
- case e1000_phy_m88:
- ret_val = e1000e_copper_link_setup_m88(hw);
- break;
- case e1000_phy_igp_2:
- ret_val = e1000e_copper_link_setup_igp(hw);
- /* Setup activity LED */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_setup_copper_link(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes links.
- * Upon successful setup, poll for link.
- **/
-static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
-{
- switch (hw->mac.type) {
- case e1000_82571:
- case e1000_82572:
- /* If SerDes loopback mode is entered, there is no form
- * of reset to take the adapter out of that mode. So we
- * have to explicitly take the adapter out of loopback
- * mode. This prevents drivers from twiddling their thumbs
- * if another tool failed to take it out of loopback mode.
- */
- ew32(SCTL,
- E1000_SCTL_DISABLE_SERDES_LOOPBACK);
- break;
- default:
- break;
- }
-
- return e1000e_setup_fiber_serdes_link(hw);
-}
-
-/**
- * e1000_valid_led_default_82571 - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
-
- if (hw->mac.type == e1000_82573 &&
- *data == ID_LED_RESERVED_F746)
- *data = ID_LED_DEFAULT_82573;
- else if (*data == ID_LED_RESERVED_0000 ||
- *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
-
- return 0;
-}
-
-/**
- * e1000e_get_laa_state_82571 - Get locally administered address state
- * @hw: pointer to the HW structure
- *
- * Retrieve and return the current locally administered address state.
- **/
-bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
-{
- if (hw->mac.type != e1000_82571)
- return 0;
-
- return hw->dev_spec.e82571.laa_is_present;
-}
-
-/**
- * e1000e_set_laa_state_82571 - Set locally administered address state
- * @hw: pointer to the HW structure
- * @state: enable/disable locally administered address
- *
- * Enable/Disable the current locally administers address state.
- **/
-void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
-{
- if (hw->mac.type != e1000_82571)
- return;
-
- hw->dev_spec.e82571.laa_is_present = state;
-
- /* If workaround is activated... */
- if (state)
- /* Hold a copy of the LAA in RAR[14] This is done so that
- * between the time RAR[0] gets clobbered and the time it
- * gets fixed, the actual LAA is in one of the RARs and no
- * incoming packets directed to this port are dropped.
- * Eventually the LAA will be in RAR[0] and RAR[14].
- */
- e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
-}
-
-/**
- * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Verifies that the EEPROM has completed the update. After updating the
- * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
- * the checksum fix is not implemented, we need to set the bit and update
- * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
- * we need to return bad checksum.
- **/
-static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u16 data;
-
- if (nvm->type != e1000_nvm_flash_hw)
- return 0;
-
- /* Check bit 4 of word 10h. If it is 0, firmware is done updating
- * 10h-12h. Checksum may need to be fixed.
- */
- ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
- if (ret_val)
- return ret_val;
-
- if (!(data & 0x10)) {
- /* Read 0x23 and check bit 15. This bit is a 1
- * when the checksum has already been fixed. If
- * the checksum is still wrong and this bit is a
- * 1, we need to return bad checksum. Otherwise,
- * we need to set this bit to a 1 and update the
- * checksum.
- */
- ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
- if (ret_val)
- return ret_val;
-
- if (!(data & 0x8000)) {
- data |= 0x8000;
- ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_update_nvm_checksum(hw);
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
-{
- u32 temp;
-
- e1000e_clear_hw_cntrs_base(hw);
-
- temp = er32(PRC64);
- temp = er32(PRC127);
- temp = er32(PRC255);
- temp = er32(PRC511);
- temp = er32(PRC1023);
- temp = er32(PRC1522);
- temp = er32(PTC64);
- temp = er32(PTC127);
- temp = er32(PTC255);
- temp = er32(PTC511);
- temp = er32(PTC1023);
- temp = er32(PTC1522);
-
- temp = er32(ALGNERRC);
- temp = er32(RXERRC);
- temp = er32(TNCRS);
- temp = er32(CEXTERR);
- temp = er32(TSCTC);
- temp = er32(TSCTFC);
-
- temp = er32(MGTPRC);
- temp = er32(MGTPDC);
- temp = er32(MGTPTC);
-
- temp = er32(IAC);
- temp = er32(ICRXOC);
-
- temp = er32(ICRXPTC);
- temp = er32(ICRXATC);
- temp = er32(ICTXPTC);
- temp = er32(ICTXATC);
- temp = er32(ICTXQEC);
- temp = er32(ICTXQMTC);
- temp = er32(ICRXDMTC);
-}
-
-static struct e1000_mac_operations e82571_mac_ops = {
- .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
- /* .check_for_link: media type dependent */
- .cleanup_led = e1000e_cleanup_led_generic,
- .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
- .get_bus_info = e1000e_get_bus_info_pcie,
- /* .get_link_up_info: media type dependent */
- .led_on = e1000e_led_on_generic,
- .led_off = e1000e_led_off_generic,
- .mc_addr_list_update = e1000_mc_addr_list_update_82571,
- .reset_hw = e1000_reset_hw_82571,
- .init_hw = e1000_init_hw_82571,
- .setup_link = e1000_setup_link_82571,
- /* .setup_physical_interface: media type dependent */
-};
-
-static struct e1000_phy_operations e82_phy_ops_igp = {
- .acquire_phy = e1000_get_hw_semaphore_82571,
- .check_reset_block = e1000e_check_reset_block_generic,
- .commit_phy = NULL,
- .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
- .get_cfg_done = e1000_get_cfg_done_82571,
- .get_cable_length = e1000e_get_cable_length_igp_2,
- .get_phy_info = e1000e_get_phy_info_igp,
- .read_phy_reg = e1000e_read_phy_reg_igp,
- .release_phy = e1000_put_hw_semaphore_82571,
- .reset_phy = e1000e_phy_hw_reset_generic,
- .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
- .set_d3_lplu_state = e1000e_set_d3_lplu_state,
- .write_phy_reg = e1000e_write_phy_reg_igp,
-};
-
-static struct e1000_phy_operations e82_phy_ops_m88 = {
- .acquire_phy = e1000_get_hw_semaphore_82571,
- .check_reset_block = e1000e_check_reset_block_generic,
- .commit_phy = e1000e_phy_sw_reset,
- .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
- .get_cfg_done = e1000e_get_cfg_done,
- .get_cable_length = e1000e_get_cable_length_m88,
- .get_phy_info = e1000e_get_phy_info_m88,
- .read_phy_reg = e1000e_read_phy_reg_m88,
- .release_phy = e1000_put_hw_semaphore_82571,
- .reset_phy = e1000e_phy_hw_reset_generic,
- .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
- .set_d3_lplu_state = e1000e_set_d3_lplu_state,
- .write_phy_reg = e1000e_write_phy_reg_m88,
-};
-
-static struct e1000_nvm_operations e82571_nvm_ops = {
- .acquire_nvm = e1000_acquire_nvm_82571,
- .read_nvm = e1000e_read_nvm_eerd,
- .release_nvm = e1000_release_nvm_82571,
- .update_nvm = e1000_update_nvm_checksum_82571,
- .valid_led_default = e1000_valid_led_default_82571,
- .validate_nvm = e1000_validate_nvm_checksum_82571,
- .write_nvm = e1000_write_nvm_82571,
-};
-
-struct e1000_info e1000_82571_info = {
- .mac = e1000_82571,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_STATS_PTC_PRC
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_STATS_ICR_ICT
- | FLAG_HAS_SMART_POWER_DOWN
- | FLAG_RESET_OVERWRITES_LAA /* errata */
- | FLAG_TARC_SPEED_MODE_BIT /* errata */
- | FLAG_APME_CHECK_PORT_B,
- .pba = 38,
- .get_invariants = e1000_get_invariants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_igp,
- .nvm_ops = &e82571_nvm_ops,
-};
-
-struct e1000_info e1000_82572_info = {
- .mac = e1000_82572,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_STATS_PTC_PRC
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_STATS_ICR_ICT
- | FLAG_TARC_SPEED_MODE_BIT, /* errata */
- .pba = 38,
- .get_invariants = e1000_get_invariants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_igp,
- .nvm_ops = &e82571_nvm_ops,
-};
-
-struct e1000_info e1000_82573_info = {
- .mac = e1000_82573,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_STATS_PTC_PRC
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_STATS_ICR_ICT
- | FLAG_HAS_SMART_POWER_DOWN
- | FLAG_HAS_AMT
- | FLAG_HAS_ERT
- | FLAG_HAS_SWSM_ON_LOAD,
- .pba = 20,
- .get_invariants = e1000_get_invariants_82571,
- .mac_ops = &e82571_mac_ops,
- .phy_ops = &e82_phy_ops_m88,
- .nvm_ops = &e82571_nvm_ops,
-};
-
diff --git a/drivers/net/e1000e/Makefile b/drivers/net/e1000e/Makefile
deleted file mode 100644
index 650f866e7ac..00000000000
--- a/drivers/net/e1000e/Makefile
+++ /dev/null
@@ -1,37 +0,0 @@
-################################################################################
-#
-# Intel PRO/1000 Linux driver
-# Copyright(c) 1999 - 2007 Intel Corporation.
-#
-# This program is free software; you can redistribute it and/or modify it
-# under the terms and conditions of the GNU General Public License,
-# version 2, as published by the Free Software Foundation.
-#
-# This program is distributed in the hope it will be useful, but WITHOUT
-# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
-# more details.
-#
-# You should have received a copy of the GNU General Public License along with
-# this program; if not, write to the Free Software Foundation, Inc.,
-# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-#
-# The full GNU General Public License is included in this distribution in
-# the file called "COPYING".
-#
-# Contact Information:
-# Linux NICS <linux.nics@intel.com>
-# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
-# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-#
-################################################################################
-
-#
-# Makefile for the Intel(R) PRO/1000 ethernet driver
-#
-
-obj-$(CONFIG_E1000E) += e1000e.o
-
-e1000e-objs := 82571.o ich8lan.o es2lan.o \
- lib.o phy.o param.o ethtool.o netdev.o
-
diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h
deleted file mode 100644
index a4f511f549f..00000000000
--- a/drivers/net/e1000e/defines.h
+++ /dev/null
@@ -1,741 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#ifndef _E1000_DEFINES_H_
-#define _E1000_DEFINES_H_
-
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Definable Pin 7 */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
-
-/* Receive Descriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
- * filtering */
-#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
- * memory */
-
-/* Receive Control */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-
-/* Use byte values for the following shift parameters
- * Usage:
- * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256], default=256
- * value1 = [1024..64512], default=4096
- * value2 = [0..64512], default=4096
- * value3 = [0..64512], default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
-
-/* SWFW_SYNC Definitions */
-#define E1000_SWFW_EEP_SM 0x1
-#define E1000_SWFW_PHY0_SM 0x2
-#define E1000_SWFW_PHY1_SM 0x4
-
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-
-/* Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-
-/* Constants used to interpret the masked PCI-X bus speed. */
-
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
-#define ADVERTISE_1000_FULL 0x0020
-
-/* 1000/H is not supported, nor spec-compliant. */
-#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
- ADVERTISE_1000_FULL)
-#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
- ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
-#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
-#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
-
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
-
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Transmit Control */
-#define E1000_TCTL_EN 0x00000002 /* enable tx */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-
-/* Transmit Arbitration Count */
-
-/* SerDes Control */
-#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-
-/* Header split receive */
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLD_SHIFT 12
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
-
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-
-#define E1000_KABGTXD_BGSQLBIAS 0x00050000
-
-/* PBA constants */
-#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
-#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
-
-#define E1000_PBS_16K E1000_PBA_16K
-
-#define IFS_MAX 80
-#define IFS_MIN 40
-#define IFS_RATIO 4
-#define IFS_STEP 10
-#define MIN_NUM_XMITS 1000
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXT0 = Receiver Timer Interrupt (ring 0)
- * o TXDW = Transmit Descriptor Written Back
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- * o LSC = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_LSC)
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
- still to be processed. */
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* 802.1q VLAN Packet Size */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-/* Receive Address */
-/* Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor.
- * Technically, we have 16 spots. However, we reserve one of these spots
- * (RAR[15]) for our directed address used by controllers with
- * manageability enabled, allowing us room for 15 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-
-/* Error Codes */
-#define E1000_ERR_NVM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_INIT 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-#define E1000_ERR_SWFW_SYNC 13
-#define E1000_NOT_IMPLEMENTED 14
-
-/* Loop limit on how long we wait for auto-negotiation to complete */
-#define FIBER_LINK_UP_LIMIT 50
-#define COPPER_LINK_UP_LIMIT 10
-#define PHY_AUTO_NEG_LIMIT 45
-#define PHY_FORCE_LIMIT 20
-/* Number of 100 microseconds we wait for PCI Express master disable */
-#define MASTER_DISABLE_TIMEOUT 800
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
-/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
-#define MDIO_OWNERSHIP_TIMEOUT 10
-/* Number of milliseconds for NVM auto read done after MAC reset. */
-#define AUTO_READ_DONE_TIMEOUT 10
-
-/* Flow Control */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-
-/* PCI Express Control */
-#define E1000_GCR_RXD_NO_SNOOP 0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
-#define E1000_GCR_TXD_NO_SNOOP 0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
-
-#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
- E1000_GCR_RXDSCW_NO_SNOOP | \
- E1000_GCR_RXDSCR_NO_SNOOP | \
- E1000_GCR_TXD_NO_SNOOP | \
- E1000_GCR_TXDSCW_NO_SNOOP | \
- E1000_GCR_TXDSCR_NO_SNOOP)
-
-/* PHY Control Register */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-
-/* PHY Status Register */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-
-/* Autoneg Expansion Register */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CONTROL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Register */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-
-/* NVM Control */
-#define E1000_EECD_SK 0x00000001 /* NVM Clock */
-#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* NVM Data In */
-#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
-#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
-#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* NVM Addressing bits based on type
- * (0-small, 1-large) */
-#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
-#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-
-#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */
-#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_NVM_RW_REG_START 1 /* Start operation */
-#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
-#define E1000_FLASH_UPDATES 2000
-
-/* NVM Word Offsets */
-#define NVM_ID_LED_SETTINGS 0x0004
-#define NVM_INIT_CONTROL2_REG 0x000F
-#define NVM_INIT_CONTROL3_PORT_B 0x0014
-#define NVM_INIT_3GIO_3 0x001A
-#define NVM_INIT_CONTROL3_PORT_A 0x0024
-#define NVM_CFG 0x0012
-#define NVM_ALT_MAC_ADDR_PTR 0x0037
-#define NVM_CHECKSUM_REG 0x003F
-
-#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
-#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
-
-/* Mask bits for fields in Word 0x0f of the NVM */
-#define NVM_WORD0F_PAUSE_MASK 0x3000
-#define NVM_WORD0F_PAUSE 0x1000
-#define NVM_WORD0F_ASM_DIR 0x2000
-
-/* Mask bits for fields in Word 0x1a of the NVM */
-#define NVM_WORD1A_ASPM_MASK 0x000C
-
-/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
-#define NVM_SUM 0xBABA
-
-/* PBA (printed board assembly) number words */
-#define NVM_PBA_OFFSET_0 8
-#define NVM_PBA_OFFSET_1 9
-
-#define NVM_WORD_SIZE_BASE_SHIFT 6
-
-/* NVM Commands - SPI */
-#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
-#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
-#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
-#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
-
-/* SPI NVM Status Register */
-#define NVM_STATUS_RDY_SPI 0x01
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-/* PCI/PCI-X/PCI-EX Config space */
-#define PCI_HEADER_TYPE_REGISTER 0x0E
-#define PCIE_LINK_STATUS 0x12
-
-#define PCI_HEADER_TYPE_MULTIFUNC 0x80
-#define PCIE_LINK_WIDTH_MASK 0x3F0
-#define PCIE_LINK_WIDTH_SHIFT 4
-
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF
-
-/* Bit definitions for valid PHY IDs. */
-/* I = Integrated
- * E = External
- */
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define GG82563_E_PHY_ID 0x01410CA0
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
- * 100BASE-TX/10BASE-T:
- * MDI Mode
- */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
- * all speeds.
- */
- /* 1=Enable Extended 10BASE-T distance
- * (Lower 10BASE-T RX Threshold)
- * 0=Normal 10BASE-T RX Threshold */
- /* 1=5-Bit interface in 100BASE-TX
- * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
- * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define GG82563_PAGE_SHIFT 5
-#define GG82563_REG(page, reg) \
- (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-#define GG82563_MIN_ALT_REG 30
-
-/* GG82563 Specific Registers */
-#define GG82563_PHY_SPEC_CTRL \
- GG82563_REG(0, 16) /* PHY Specific Control */
-#define GG82563_PHY_PAGE_SELECT \
- GG82563_REG(0, 22) /* Page Select */
-#define GG82563_PHY_SPEC_CTRL_2 \
- GG82563_REG(0, 26) /* PHY Specific Control 2 */
-#define GG82563_PHY_PAGE_SELECT_ALT \
- GG82563_REG(0, 29) /* Alternate Page Select */
-
-#define GG82563_PHY_MAC_SPEC_CTRL \
- GG82563_REG(2, 21) /* MAC Specific Control Register */
-
-#define GG82563_PHY_DSP_DISTANCE \
- GG82563_REG(5, 26) /* DSP Distance */
-
-/* Page 193 - Port Control Registers */
-#define GG82563_PHY_KMRN_MODE_CTRL \
- GG82563_REG(193, 16) /* Kumeran Mode Control */
-#define GG82563_PHY_PWR_MGMT_CTRL \
- GG82563_REG(193, 20) /* Power Management Control */
-
-/* Page 194 - KMRN Registers */
-#define GG82563_PHY_INBAND_CTRL \
- GG82563_REG(194, 18) /* Inband Control */
-
-/* MDI Control */
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_ERROR 0x40000000
-
-/* SerDes Control */
-#define E1000_GEN_POLL_TIMEOUT 640
-
-#endif /* _E1000_DEFINES_H_ */
diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h
deleted file mode 100644
index 327c0620da3..00000000000
--- a/drivers/net/e1000e/e1000.h
+++ /dev/null
@@ -1,511 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* Linux PRO/1000 Ethernet Driver main header file */
-
-#ifndef _E1000_H_
-#define _E1000_H_
-
-#include <linux/types.h>
-#include <linux/timer.h>
-#include <linux/workqueue.h>
-#include <linux/io.h>
-#include <linux/netdevice.h>
-
-#include "hw.h"
-
-struct e1000_info;
-
-#define ndev_printk(level, netdev, format, arg...) \
- printk(level "%s: " format, (netdev)->name, ## arg)
-
-#ifdef DEBUG
-#define ndev_dbg(netdev, format, arg...) \
- ndev_printk(KERN_DEBUG , netdev, format, ## arg)
-#else
-#define ndev_dbg(netdev, format, arg...) do { (void)(netdev); } while (0)
-#endif
-
-#define ndev_err(netdev, format, arg...) \
- ndev_printk(KERN_ERR , netdev, format, ## arg)
-#define ndev_info(netdev, format, arg...) \
- ndev_printk(KERN_INFO , netdev, format, ## arg)
-#define ndev_warn(netdev, format, arg...) \
- ndev_printk(KERN_WARNING , netdev, format, ## arg)
-#define ndev_notice(netdev, format, arg...) \
- ndev_printk(KERN_NOTICE , netdev, format, ## arg)
-
-
-/* TX/RX descriptor defines */
-#define E1000_DEFAULT_TXD 256
-#define E1000_MAX_TXD 4096
-#define E1000_MIN_TXD 80
-
-#define E1000_DEFAULT_RXD 256
-#define E1000_MAX_RXD 4096
-#define E1000_MIN_RXD 80
-
-/* Early Receive defines */
-#define E1000_ERT_2048 0x100
-
-#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
-
-/* How many Tx Descriptors do we need to call netif_wake_queue ? */
-/* How many Rx Buffers do we bundle into one write to the hardware ? */
-#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
-
-#define AUTO_ALL_MODES 0
-#define E1000_EEPROM_APME 0x0400
-
-#define E1000_MNG_VLAN_NONE (-1)
-
-/* Number of packet split data buffers (not including the header buffer) */
-#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
-
-enum e1000_boards {
- board_82571,
- board_82572,
- board_82573,
- board_80003es2lan,
- board_ich8lan,
- board_ich9lan,
-};
-
-struct e1000_queue_stats {
- u64 packets;
- u64 bytes;
-};
-
-struct e1000_ps_page {
- struct page *page;
- u64 dma; /* must be u64 - written to hw */
-};
-
-/*
- * wrappers around a pointer to a socket buffer,
- * so a DMA handle can be stored along with the buffer
- */
-struct e1000_buffer {
- dma_addr_t dma;
- struct sk_buff *skb;
- union {
- /* TX */
- struct {
- unsigned long time_stamp;
- u16 length;
- u16 next_to_watch;
- };
- /* RX */
- /* arrays of page information for packet split */
- struct e1000_ps_page *ps_pages;
- };
-
-};
-
-struct e1000_ring {
- void *desc; /* pointer to ring memory */
- dma_addr_t dma; /* phys address of ring */
- unsigned int size; /* length of ring in bytes */
- unsigned int count; /* number of desc. in ring */
-
- u16 next_to_use;
- u16 next_to_clean;
-
- u16 head;
- u16 tail;
-
- /* array of buffer information structs */
- struct e1000_buffer *buffer_info;
-
- struct sk_buff *rx_skb_top;
-
- struct e1000_queue_stats stats;
-};
-
-/* board specific private data structure */
-struct e1000_adapter {
- struct timer_list watchdog_timer;
- struct timer_list phy_info_timer;
- struct timer_list blink_timer;
-
- struct work_struct reset_task;
- struct work_struct watchdog_task;
-
- const struct e1000_info *ei;
-
- struct vlan_group *vlgrp;
- u32 bd_number;
- u32 rx_buffer_len;
- u16 mng_vlan_id;
- u16 link_speed;
- u16 link_duplex;
-
- spinlock_t tx_queue_lock; /* prevent concurrent tail updates */
-
- /* this is still needed for 82571 and above */
- atomic_t irq_sem;
-
- /* track device up/down/testing state */
- unsigned long state;
-
- /* Interrupt Throttle Rate */
- u32 itr;
- u32 itr_setting;
- u16 tx_itr;
- u16 rx_itr;
-
- /*
- * TX
- */
- struct e1000_ring *tx_ring /* One per active queue */
- ____cacheline_aligned_in_smp;
-
- struct napi_struct napi;
-
- unsigned long tx_queue_len;
- unsigned int restart_queue;
- u32 txd_cmd;
-
- bool detect_tx_hung;
- u8 tx_timeout_factor;
-
- u32 tx_int_delay;
- u32 tx_abs_int_delay;
-
- unsigned int total_tx_bytes;
- unsigned int total_tx_packets;
- unsigned int total_rx_bytes;
- unsigned int total_rx_packets;
-
- /* TX stats */
- u64 tpt_old;
- u64 colc_old;
- u64 gotcl_old;
- u32 gotcl;
- u32 tx_timeout_count;
- u32 tx_fifo_head;
- u32 tx_head_addr;
- u32 tx_fifo_size;
- u32 tx_dma_failed;
-
- /*
- * RX
- */
- bool (*clean_rx) (struct e1000_adapter *adapter,
- int *work_done, int work_to_do)
- ____cacheline_aligned_in_smp;
- void (*alloc_rx_buf) (struct e1000_adapter *adapter,
- int cleaned_count);
- struct e1000_ring *rx_ring;
-
- u32 rx_int_delay;
- u32 rx_abs_int_delay;
-
- /* RX stats */
- u64 hw_csum_err;
- u64 hw_csum_good;
- u64 rx_hdr_split;
- u64 gorcl_old;
- u32 gorcl;
- u32 alloc_rx_buff_failed;
- u32 rx_dma_failed;
-
- unsigned int rx_ps_pages;
- u16 rx_ps_bsize0;
-
- /* OS defined structs */
- struct net_device *netdev;
- struct pci_dev *pdev;
- struct net_device_stats net_stats;
- spinlock_t stats_lock; /* prevent concurrent stats updates */
-
- /* structs defined in e1000_hw.h */
- struct e1000_hw hw;
-
- struct e1000_hw_stats stats;
- struct e1000_phy_info phy_info;
- struct e1000_phy_stats phy_stats;
-
- struct e1000_ring test_tx_ring;
- struct e1000_ring test_rx_ring;
- u32 test_icr;
-
- u32 msg_enable;
-
- u32 eeprom_wol;
- u32 wol;
- u32 pba;
-
- u8 fc_autoneg;
-
- unsigned long led_status;
-
- unsigned int flags;
-};
-
-struct e1000_info {
- enum e1000_mac_type mac;
- unsigned int flags;
- u32 pba;
- s32 (*get_invariants)(struct e1000_adapter *);
- struct e1000_mac_operations *mac_ops;
- struct e1000_phy_operations *phy_ops;
- struct e1000_nvm_operations *nvm_ops;
-};
-
-/* hardware capability, feature, and workaround flags */
-#define FLAG_HAS_AMT (1 << 0)
-#define FLAG_HAS_FLASH (1 << 1)
-#define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
-#define FLAG_HAS_WOL (1 << 3)
-#define FLAG_HAS_ERT (1 << 4)
-#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
-#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
-#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
-#define FLAG_HAS_STATS_ICR_ICT (1 << 9)
-#define FLAG_HAS_STATS_PTC_PRC (1 << 10)
-#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
-#define FLAG_IS_QUAD_PORT_A (1 << 12)
-#define FLAG_IS_QUAD_PORT (1 << 13)
-#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN (1 << 14)
-#define FLAG_APME_IN_WUC (1 << 15)
-#define FLAG_APME_IN_CTRL3 (1 << 16)
-#define FLAG_APME_CHECK_PORT_B (1 << 17)
-#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
-#define FLAG_NO_WAKE_UCAST (1 << 19)
-#define FLAG_MNG_PT_ENABLED (1 << 20)
-#define FLAG_RESET_OVERWRITES_LAA (1 << 21)
-#define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
-#define FLAG_TARC_SET_BIT_ZERO (1 << 23)
-#define FLAG_RX_NEEDS_RESTART (1 << 24)
-#define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
-#define FLAG_SMART_POWER_DOWN (1 << 26)
-#define FLAG_MSI_ENABLED (1 << 27)
-#define FLAG_RX_CSUM_ENABLED (1 << 28)
-#define FLAG_TSO_FORCE (1 << 29)
-
-#define E1000_RX_DESC_PS(R, i) \
- (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
-#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
-#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc)
-#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
-#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
-
-enum e1000_state_t {
- __E1000_TESTING,
- __E1000_RESETTING,
- __E1000_DOWN
-};
-
-enum latency_range {
- lowest_latency = 0,
- low_latency = 1,
- bulk_latency = 2,
- latency_invalid = 255
-};
-
-extern char e1000e_driver_name[];
-extern const char e1000e_driver_version[];
-
-extern void e1000e_check_options(struct e1000_adapter *adapter);
-extern void e1000e_set_ethtool_ops(struct net_device *netdev);
-
-extern int e1000e_up(struct e1000_adapter *adapter);
-extern void e1000e_down(struct e1000_adapter *adapter);
-extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
-extern void e1000e_reset(struct e1000_adapter *adapter);
-extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
-extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter);
-extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter);
-extern void e1000e_free_rx_resources(struct e1000_adapter *adapter);
-extern void e1000e_free_tx_resources(struct e1000_adapter *adapter);
-extern void e1000e_update_stats(struct e1000_adapter *adapter);
-
-extern unsigned int copybreak;
-
-extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw);
-
-extern struct e1000_info e1000_82571_info;
-extern struct e1000_info e1000_82572_info;
-extern struct e1000_info e1000_82573_info;
-extern struct e1000_info e1000_ich8_info;
-extern struct e1000_info e1000_ich9_info;
-extern struct e1000_info e1000_es2_info;
-
-extern s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num);
-
-extern s32 e1000e_commit_phy(struct e1000_hw *hw);
-
-extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
-
-extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw);
-extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state);
-
-extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state);
-extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
-extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
-
-extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
-extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
-extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw);
-extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw);
-extern s32 e1000e_led_on_generic(struct e1000_hw *hw);
-extern s32 e1000e_led_off_generic(struct e1000_hw *hw);
-extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw);
-extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
-extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
-extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw);
-extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw);
-extern s32 e1000e_id_led_init(struct e1000_hw *hw);
-extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw);
-extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw);
-extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
-extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
-extern s32 e1000e_setup_link(struct e1000_hw *hw);
-extern void e1000e_clear_vfta(struct e1000_hw *hw);
-extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
-extern void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count,
- u32 rar_used_count, u32 rar_count);
-extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
-extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
-extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
-extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw);
-extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
-extern void e1000e_config_collision_dist(struct e1000_hw *hw);
-extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw);
-extern s32 e1000e_force_mac_fc(struct e1000_hw *hw);
-extern s32 e1000e_blink_led(struct e1000_hw *hw);
-extern void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
-extern void e1000e_reset_adaptive(struct e1000_hw *hw);
-extern void e1000e_update_adaptive(struct e1000_hw *hw);
-
-extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
-extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
-extern void e1000e_put_hw_semaphore(struct e1000_hw *hw);
-extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
-extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
-extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
-extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
-extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
-extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
-extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
-extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
-extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
-extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
-extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
-extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
-extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
-extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
-extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
-extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success);
-extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
-extern s32 e1000e_check_downshift(struct e1000_hw *hw);
-
-static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
-{
- return hw->phy.ops.reset_phy(hw);
-}
-
-static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
-{
- return hw->phy.ops.check_reset_block(hw);
-}
-
-static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- return hw->phy.ops.read_phy_reg(hw, offset, data);
-}
-
-static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
-{
- return hw->phy.ops.write_phy_reg(hw, offset, data);
-}
-
-static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
-{
- return hw->phy.ops.get_cable_length(hw);
-}
-
-extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
-extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
-extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
-extern s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
-extern void e1000e_release_nvm(struct e1000_hw *hw);
-extern void e1000e_reload_nvm(struct e1000_hw *hw);
-extern s32 e1000e_read_mac_addr(struct e1000_hw *hw);
-
-static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
-{
- return hw->nvm.ops.validate_nvm(hw);
-}
-
-static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
-{
- return hw->nvm.ops.update_nvm(hw);
-}
-
-static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- return hw->nvm.ops.read_nvm(hw, offset, words, data);
-}
-
-static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- return hw->nvm.ops.write_nvm(hw, offset, words, data);
-}
-
-static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
-{
- return hw->phy.ops.get_phy_info(hw);
-}
-
-extern bool e1000e_check_mng_mode(struct e1000_hw *hw);
-extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
-extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
-
-static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
-{
- return readl(hw->hw_addr + reg);
-}
-
-static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
-{
- writel(val, hw->hw_addr + reg);
-}
-
-#endif /* _E1000_H_ */
diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c
deleted file mode 100644
index 88657adf965..00000000000
--- a/drivers/net/e1000e/es2lan.c
+++ /dev/null
@@ -1,1232 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/*
- * 80003ES2LAN Gigabit Ethernet Controller (Copper)
- * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
- */
-
-#include <linux/netdevice.h>
-#include <linux/ethtool.h>
-#include <linux/delay.h>
-#include <linux/pci.h>
-
-#include "e1000.h"
-
-#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
-#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
-#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
-
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
-#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
-#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
-
-#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
-#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
-
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
-
-#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
-#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
-
-/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
-#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
-#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
-#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
-#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
-#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
-
-/* PHY Specific Control Register 2 (Page 0, Register 26) */
-#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
- /* 1=Reverse Auto-Negotiation */
-
-/* MAC Specific Control Register (Page 2, Register 21) */
-/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
-#define GG82563_MSCR_TX_CLK_MASK 0x0007
-#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
-#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
-#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
-
-#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
-
-/* DSP Distance Register (Page 5, Register 26) */
-#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
- 1 = 50-80M
- 2 = 80-110M
- 3 = 110-140M
- 4 = >140M */
-
-/* Kumeran Mode Control Register (Page 193, Register 16) */
-#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
-
-/* Power Management Control Register (Page 193, Register 20) */
-#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
- /* 1=Enable SERDES Electrical Idle */
-
-/* In-Band Control Register (Page 194, Register 18) */
-#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
-
-/* A table for the GG82563 cable length where the range is defined
- * with a lower bound at "index" and the upper bound at
- * "index + 5".
- */
-static const u16 e1000_gg82563_cable_length_table[] =
- { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
-
-static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
-static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
-static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
-static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
-static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
-static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
-
-/**
- * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
- * @hw: pointer to the HW structure
- *
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
-
- if (hw->media_type != e1000_media_type_copper) {
- phy->type = e1000_phy_none;
- return 0;
- }
-
- phy->addr = 1;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- phy->reset_delay_us = 100;
- phy->type = e1000_phy_gg82563;
-
- /* This can only be done after all function pointers are setup. */
- ret_val = e1000e_get_phy_id(hw);
-
- /* Verify phy id */
- if (phy->id != GG82563_E_PHY_ID)
- return -E1000_ERR_PHY;
-
- return ret_val;
-}
-
-/**
- * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
- * @hw: pointer to the HW structure
- *
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u16 size;
-
- nvm->opcode_bits = 8;
- nvm->delay_usec = 1;
- switch (nvm->override) {
- case e1000_nvm_override_spi_large:
- nvm->page_size = 32;
- nvm->address_bits = 16;
- break;
- case e1000_nvm_override_spi_small:
- nvm->page_size = 8;
- nvm->address_bits = 8;
- break;
- default:
- nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
- nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
- break;
- }
-
- nvm->type = e1000_nvm_eeprom_spi;
-
- size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
- E1000_EECD_SIZE_EX_SHIFT);
-
- /* Added to a constant, "size" becomes the left-shift value
- * for setting word_size.
- */
- size += NVM_WORD_SIZE_BASE_SHIFT;
- nvm->word_size = 1 << size;
-
- return 0;
-}
-
-/**
- * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
- * @hw: pointer to the HW structure
- *
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_mac_operations *func = &mac->ops;
-
- /* Set media type */
- switch (adapter->pdev->device) {
- case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
- hw->media_type = e1000_media_type_internal_serdes;
- break;
- default:
- hw->media_type = e1000_media_type_copper;
- break;
- }
-
- /* Set mta register count */
- mac->mta_reg_count = 128;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_RAR_ENTRIES;
- /* Set if manageability features are enabled. */
- mac->arc_subsystem_valid =
- (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
-
- /* check for link */
- switch (hw->media_type) {
- case e1000_media_type_copper:
- func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
- func->check_for_link = e1000e_check_for_copper_link;
- break;
- case e1000_media_type_fiber:
- func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
- func->check_for_link = e1000e_check_for_fiber_link;
- break;
- case e1000_media_type_internal_serdes:
- func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
- func->check_for_link = e1000e_check_for_serdes_link;
- break;
- default:
- return -E1000_ERR_CONFIG;
- break;
- }
-
- return 0;
-}
-
-static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- s32 rc;
-
- rc = e1000_init_mac_params_80003es2lan(adapter);
- if (rc)
- return rc;
-
- rc = e1000_init_nvm_params_80003es2lan(hw);
- if (rc)
- return rc;
-
- rc = e1000_init_phy_params_80003es2lan(hw);
- if (rc)
- return rc;
-
- return 0;
-}
-
-/**
- * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to acquire access rights to the correct PHY. This is a
- * function pointer entry point called by the api module.
- **/
-static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
-
- return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_release_phy_80003es2lan - Release rights to access PHY
- * @hw: pointer to the HW structure
- *
- * A wrapper to release access rights to the correct PHY. This is a
- * function pointer entry point called by the api module.
- **/
-static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
-{
- u16 mask;
-
- mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
- e1000_release_swfw_sync_80003es2lan(hw, mask);
-}
-
-/**
- * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
- * @hw: pointer to the HW structure
- *
- * Acquire the semaphore to access the EEPROM. This is a function
- * pointer entry point called by the api module.
- **/
-static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_acquire_nvm(hw);
-
- if (ret_val)
- e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-
- return ret_val;
-}
-
-/**
- * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
- * @hw: pointer to the HW structure
- *
- * Release the semaphore used to access the EEPROM. This is a
- * function pointer entry point called by the api module.
- **/
-static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
-{
- e1000e_release_nvm(hw);
- e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
-}
-
-/**
- * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- **/
-static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
- u32 swmask = mask;
- u32 fwmask = mask << 16;
- s32 i = 0;
- s32 timeout = 200;
-
- while (i < timeout) {
- if (e1000e_get_hw_semaphore(hw))
- return -E1000_ERR_SWFW_SYNC;
-
- swfw_sync = er32(SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
-
- /* Firmware currently using resource (fwmask)
- * or other software thread using resource (swmask) */
- e1000e_put_hw_semaphore(hw);
- mdelay(5);
- i++;
- }
-
- if (i == timeout) {
- hw_dbg(hw,
- "Driver can't access resource, SW_FW_SYNC timeout.\n");
- return -E1000_ERR_SWFW_SYNC;
- }
-
- swfw_sync |= swmask;
- ew32(SW_FW_SYNC, swfw_sync);
-
- e1000e_put_hw_semaphore(hw);
-
- return 0;
-}
-
-/**
- * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- **/
-static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
-{
- u32 swfw_sync;
-
- while (e1000e_get_hw_semaphore(hw) != 0);
- /* Empty */
-
- swfw_sync = er32(SW_FW_SYNC);
- swfw_sync &= ~mask;
- ew32(SW_FW_SYNC, swfw_sync);
-
- e1000e_put_hw_semaphore(hw);
-}
-
-/**
- * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @data: pointer to the data returned from the operation
- *
- * Read the GG82563 PHY register. This is a function pointer entry
- * point called by the api module.
- **/
-static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 *data)
-{
- s32 ret_val;
- u32 page_select;
- u16 temp;
-
- /* Select Configuration Page */
- if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
- page_select = GG82563_PHY_PAGE_SELECT;
- else
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- page_select = GG82563_PHY_PAGE_SELECT_ALT;
-
- temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
- ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
- if (ret_val)
- return ret_val;
-
- /* The "ready" bit in the MDIC register may be incorrectly set
- * before the device has completed the "Page Select" MDI
- * transaction. So we wait 200us after each MDI command...
- */
- udelay(200);
-
- /* ...and verify the command was successful. */
- ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
-
- if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
- ret_val = -E1000_ERR_PHY;
- return ret_val;
- }
-
- udelay(200);
-
- ret_val = e1000e_read_phy_reg_m88(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- udelay(200);
-
- return ret_val;
-}
-
-/**
- * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @data: value to write to the register
- *
- * Write to the GG82563 PHY register. This is a function pointer entry
- * point called by the api module.
- **/
-static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
- u32 offset, u16 data)
-{
- s32 ret_val;
- u32 page_select;
- u16 temp;
-
- /* Select Configuration Page */
- if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
- page_select = GG82563_PHY_PAGE_SELECT;
- else
- /* Use Alternative Page Select register to access
- * registers 30 and 31
- */
- page_select = GG82563_PHY_PAGE_SELECT_ALT;
-
- temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
- ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
- if (ret_val)
- return ret_val;
-
-
- /* The "ready" bit in the MDIC register may be incorrectly set
- * before the device has completed the "Page Select" MDI
- * transaction. So we wait 200us after each MDI command...
- */
- udelay(200);
-
- /* ...and verify the command was successful. */
- ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
-
- if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
- return -E1000_ERR_PHY;
-
- udelay(200);
-
- ret_val = e1000e_write_phy_reg_m88(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- udelay(200);
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
- * @hw: pointer to the HW structure
- * @offset: offset of the register to read
- * @words: number of words to write
- * @data: buffer of data to write to the NVM
- *
- * Write "words" of data to the ESB2 NVM. This is a function
- * pointer entry point called by the api module.
- **/
-static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
-{
- return e1000e_write_nvm_spi(hw, offset, words, data);
-}
-
-/**
- * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
- * @hw: pointer to the HW structure
- *
- * Wait a specific amount of time for manageability processes to complete.
- * This is a function pointer entry point called by the phy module.
- **/
-static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
-{
- s32 timeout = PHY_CFG_TIMEOUT;
- u32 mask = E1000_NVM_CFG_DONE_PORT_0;
-
- if (hw->bus.func == 1)
- mask = E1000_NVM_CFG_DONE_PORT_1;
-
- while (timeout) {
- if (er32(EEMNGCTL) & mask)
- break;
- msleep(1);
- timeout--;
- }
- if (!timeout) {
- hw_dbg(hw, "MNG configuration cycle has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return 0;
-}
-
-/**
- * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
- * @hw: pointer to the HW structure
- *
- * Force the speed and duplex settings onto the PHY. This is a
- * function pointer entry point called by the phy module.
- **/
-static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
- ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- /* Reset the phy to commit changes. */
- phy_data |= MII_CR_RESET;
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- if (hw->phy.wait_for_link) {
- hw_dbg(hw, "Waiting for forced speed/duplex link "
- "on GG82563 phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- /* We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = e1000e_phy_reset_dsp(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Resetting the phy means we need to verify the TX_CLK corresponds
- * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
- */
- phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
- if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
- phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
- else
- phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
-
- /* In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
-
- return ret_val;
-}
-
-/**
- * e1000_get_cable_length_80003es2lan - Set approximate cable length
- * @hw: pointer to the HW structure
- *
- * Find the approximate cable length as measured by the GG82563 PHY.
- * This is a function pointer entry point called by the phy module.
- **/
-static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- u16 index;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
- if (ret_val)
- return ret_val;
-
- index = phy_data & GG82563_DSPD_CABLE_LENGTH;
- phy->min_cable_length = e1000_gg82563_cable_length_table[index];
- phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return 0;
-}
-
-/**
- * e1000_get_link_up_info_80003es2lan - Report speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to speed buffer
- * @duplex: pointer to duplex buffer
- *
- * Retrieve the current speed and duplex configuration.
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- if (hw->media_type == e1000_media_type_copper) {
- ret_val = e1000e_get_speed_and_duplex_copper(hw,
- speed,
- duplex);
- if (ret_val)
- return ret_val;
- if (*speed == SPEED_1000)
- ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
- else
- ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
- *duplex);
- } else {
- ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
- speed,
- duplex);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
- * @hw: pointer to the HW structure
- *
- * Perform a global reset to the ESB2 controller.
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 icr;
- s32 ret_val;
-
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000e_disable_pcie_master(hw);
- if (ret_val)
- hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
-
- hw_dbg(hw, "Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- e1e_flush();
-
- msleep(10);
-
- ctrl = er32(CTRL);
-
- hw_dbg(hw, "Issuing a global reset to MAC\n");
- ew32(CTRL, ctrl | E1000_CTRL_RST);
-
- ret_val = e1000e_get_auto_rd_done(hw);
- if (ret_val)
- /* We don't want to continue accessing MAC registers. */
- return ret_val;
-
- /* Clear any pending interrupt events. */
- ew32(IMC, 0xffffffff);
- icr = er32(ICR);
-
- return 0;
-}
-
-/**
- * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
- * @hw: pointer to the HW structure
- *
- * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
- * This is a function pointer entry point called by the api module.
- **/
-static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 reg_data;
- s32 ret_val;
- u16 i;
-
- e1000_initialize_hw_bits_80003es2lan(hw);
-
- /* Initialize identification LED */
- ret_val = e1000e_id_led_init(hw);
- if (ret_val) {
- hw_dbg(hw, "Error initializing identification LED\n");
- return ret_val;
- }
-
- /* Disabling VLAN filtering */
- hw_dbg(hw, "Initializing the IEEE VLAN\n");
- e1000e_clear_vfta(hw);
-
- /* Setup the receive address. */
- e1000e_init_rx_addrs(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- hw_dbg(hw, "Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = e1000e_setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- reg_data = er32(TXDCTL);
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL, reg_data);
-
- /* ...for both queues. */
- reg_data = er32(TXDCTL1);
- reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
- ew32(TXDCTL1, reg_data);
-
- /* Enable retransmit on late collisions */
- reg_data = er32(TCTL);
- reg_data |= E1000_TCTL_RTLC;
- ew32(TCTL, reg_data);
-
- /* Configure Gigabit Carry Extend Padding */
- reg_data = er32(TCTL_EXT);
- reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
- reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
- ew32(TCTL_EXT, reg_data);
-
- /* Configure Transmit Inter-Packet Gap */
- reg_data = er32(TIPG);
- reg_data &= ~E1000_TIPG_IPGT_MASK;
- reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
- ew32(TIPG, reg_data);
-
- reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
- reg_data &= ~0x00100000;
- E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_80003es2lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
- * @hw: pointer to the HW structure
- *
- * Initializes required hardware-dependent bits needed for normal operation.
- **/
-static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
-{
- u32 reg;
-
- /* Transmit Descriptor Control 0 */
- reg = er32(TXDCTL);
- reg |= (1 << 22);
- ew32(TXDCTL, reg);
-
- /* Transmit Descriptor Control 1 */
- reg = er32(TXDCTL1);
- reg |= (1 << 22);
- ew32(TXDCTL1, reg);
-
- /* Transmit Arbitration Control 0 */
- reg = er32(TARC0);
- reg &= ~(0xF << 27); /* 30:27 */
- if (hw->media_type != e1000_media_type_copper)
- reg &= ~(1 << 20);
- ew32(TARC0, reg);
-
- /* Transmit Arbitration Control 1 */
- reg = er32(TARC1);
- if (er32(TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- ew32(TARC1, reg);
-}
-
-/**
- * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
- * @hw: pointer to the HW structure
- *
- * Setup some GG82563 PHY registers for obtaining link
- **/
-static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u32 ctrl_ext;
- u16 data;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
- /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
- data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
-
- ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
- data);
- if (ret_val)
- return ret_val;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
- switch (phy->mdix) {
- case 1:
- data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
- break;
- case 2:
- data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
- break;
- case 0:
- default:
- data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if (phy->disable_polarity_correction)
- data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-
- ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000e_commit_phy(hw);
- if (ret_val) {
- hw_dbg(hw, "Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Bypass RX and TX FIFO's */
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
- E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
- E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
- ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
- if (ret_val)
- return ret_val;
-
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
- ew32(CTRL_EXT, ctrl_ext);
-
- ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- /* Do not init these registers when the HW is in IAMT mode, since the
- * firmware will have already initialized them. We only initialize
- * them if the HW is not in IAMT mode.
- */
- if (!e1000e_check_mng_mode(hw)) {
- /* Enable Electrical Idle on the PHY */
- data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
- ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
- if (ret_val)
- return ret_val;
- }
-
- /* Workaround: Disable padding in Kumeran interface in the MAC
- * and in the PHY to avoid CRC errors.
- */
- ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data |= GG82563_ICR_DIS_PADDING;
- ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
- if (ret_val)
- return ret_val;
-
- return 0;
-}
-
-/**
- * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
- * @hw: pointer to the HW structure
- *
- * Essentially a wrapper for setting up all things "copper" related.
- * This is a function pointer entry point called by the mac module.
- **/
-static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 reg_data;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
-
- /* Set the mac to wait the maximum time between each
- * iteration and increase the max iterations when
- * polling the phy; this fixes erroneous timeouts at 10Mbps. */
- ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_read_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000e_setup_copper_link(hw);
-
- return 0;
-}
-
-/**
- * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
- * @hw: pointer to the HW structure
- * @duplex: current duplex setting
- *
- * Configure the KMRN interface by applying last minute quirks for
- * 10/100 operation.
- **/
-static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
-{
- s32 ret_val;
- u32 tipg;
- u16 reg_data;
-
- reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = er32(TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
- ew32(TIPG, tipg);
-
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
- if (ret_val)
- return ret_val;
-
- if (duplex == HALF_DUPLEX)
- reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
- else
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
- ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return 0;
-}
-
-/**
- * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
- * @hw: pointer to the HW structure
- *
- * Configure the KMRN interface by applying last minute quirks for
- * gigabit operation.
- **/
-static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 reg_data;
- u32 tipg;
-
- reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
- ret_val = e1000e_write_kmrn_reg(hw,
- E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
- reg_data);
- if (ret_val)
- return ret_val;
-
- /* Configure Transmit Inter-Packet Gap */
- tipg = er32(TIPG);
- tipg &= ~E1000_TIPG_IPGT_MASK;
- tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
- ew32(TIPG, tipg);
-
- ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
- if (ret_val)
- return ret_val;
-
- reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
- ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
-
- return ret_val;
-}
-
-/**
- * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the hardware counters by reading the counter registers.
- **/
-static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
-{
- u32 temp;
-
- e1000e_clear_hw_cntrs_base(hw);
-
- temp = er32(PRC64);
- temp = er32(PRC127);
- temp = er32(PRC255);
- temp = er32(PRC511);
- temp = er32(PRC1023);
- temp = er32(PRC1522);
- temp = er32(PTC64);
- temp = er32(PTC127);
- temp = er32(PTC255);
- temp = er32(PTC511);
- temp = er32(PTC1023);
- temp = er32(PTC1522);
-
- temp = er32(ALGNERRC);
- temp = er32(RXERRC);
- temp = er32(TNCRS);
- temp = er32(CEXTERR);
- temp = er32(TSCTC);
- temp = er32(TSCTFC);
-
- temp = er32(MGTPRC);
- temp = er32(MGTPDC);
- temp = er32(MGTPTC);
-
- temp = er32(IAC);
- temp = er32(ICRXOC);
-
- temp = er32(ICRXPTC);
- temp = er32(ICRXATC);
- temp = er32(ICTXPTC);
- temp = er32(ICTXATC);
- temp = er32(ICTXQEC);
- temp = er32(ICTXQMTC);
- temp = er32(ICRXDMTC);
-}
-
-static struct e1000_mac_operations es2_mac_ops = {
- .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
- /* check_for_link dependent on media type */
- .cleanup_led = e1000e_cleanup_led_generic,
- .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
- .get_bus_info = e1000e_get_bus_info_pcie,
- .get_link_up_info = e1000_get_link_up_info_80003es2lan,
- .led_on = e1000e_led_on_generic,
- .led_off = e1000e_led_off_generic,
- .mc_addr_list_update = e1000e_mc_addr_list_update_generic,
- .reset_hw = e1000_reset_hw_80003es2lan,
- .init_hw = e1000_init_hw_80003es2lan,
- .setup_link = e1000e_setup_link,
- /* setup_physical_interface dependent on media type */
-};
-
-static struct e1000_phy_operations es2_phy_ops = {
- .acquire_phy = e1000_acquire_phy_80003es2lan,
- .check_reset_block = e1000e_check_reset_block_generic,
- .commit_phy = e1000e_phy_sw_reset,
- .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
- .get_cfg_done = e1000_get_cfg_done_80003es2lan,
- .get_cable_length = e1000_get_cable_length_80003es2lan,
- .get_phy_info = e1000e_get_phy_info_m88,
- .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
- .release_phy = e1000_release_phy_80003es2lan,
- .reset_phy = e1000e_phy_hw_reset_generic,
- .set_d0_lplu_state = NULL,
- .set_d3_lplu_state = e1000e_set_d3_lplu_state,
- .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
-};
-
-static struct e1000_nvm_operations es2_nvm_ops = {
- .acquire_nvm = e1000_acquire_nvm_80003es2lan,
- .read_nvm = e1000e_read_nvm_eerd,
- .release_nvm = e1000_release_nvm_80003es2lan,
- .update_nvm = e1000e_update_nvm_checksum_generic,
- .valid_led_default = e1000e_valid_led_default,
- .validate_nvm = e1000e_validate_nvm_checksum_generic,
- .write_nvm = e1000_write_nvm_80003es2lan,
-};
-
-struct e1000_info e1000_es2_info = {
- .mac = e1000_80003es2lan,
- .flags = FLAG_HAS_HW_VLAN_FILTER
- | FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_STATS_PTC_PRC
- | FLAG_HAS_WOL
- | FLAG_APME_IN_CTRL3
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_STATS_ICR_ICT
- | FLAG_RX_NEEDS_RESTART /* errata */
- | FLAG_TARC_SET_BIT_ZERO /* errata */
- | FLAG_APME_CHECK_PORT_B
- | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
- | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
- .pba = 38,
- .get_invariants = e1000_get_invariants_80003es2lan,
- .mac_ops = &es2_mac_ops,
- .phy_ops = &es2_phy_ops,
- .nvm_ops = &es2_nvm_ops,
-};
-
diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c
deleted file mode 100644
index f77a7427d3a..00000000000
--- a/drivers/net/e1000e/ethtool.c
+++ /dev/null
@@ -1,1821 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* ethtool support for e1000 */
-
-#include <linux/netdevice.h>
-#include <linux/ethtool.h>
-#include <linux/pci.h>
-#include <linux/delay.h>
-
-#include "e1000.h"
-
-struct e1000_stats {
- char stat_string[ETH_GSTRING_LEN];
- int sizeof_stat;
- int stat_offset;
-};
-
-#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
- offsetof(struct e1000_adapter, m)
-static const struct e1000_stats e1000_gstrings_stats[] = {
- { "rx_packets", E1000_STAT(stats.gprc) },
- { "tx_packets", E1000_STAT(stats.gptc) },
- { "rx_bytes", E1000_STAT(stats.gorcl) },
- { "tx_bytes", E1000_STAT(stats.gotcl) },
- { "rx_broadcast", E1000_STAT(stats.bprc) },
- { "tx_broadcast", E1000_STAT(stats.bptc) },
- { "rx_multicast", E1000_STAT(stats.mprc) },
- { "tx_multicast", E1000_STAT(stats.mptc) },
- { "rx_errors", E1000_STAT(net_stats.rx_errors) },
- { "tx_errors", E1000_STAT(net_stats.tx_errors) },
- { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
- { "multicast", E1000_STAT(stats.mprc) },
- { "collisions", E1000_STAT(stats.colc) },
- { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
- { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
- { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
- { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
- { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
- { "rx_missed_errors", E1000_STAT(stats.mpc) },
- { "tx_aborted_errors", E1000_STAT(stats.ecol) },
- { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
- { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
- { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
- { "tx_window_errors", E1000_STAT(stats.latecol) },
- { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
- { "tx_deferred_ok", E1000_STAT(stats.dc) },
- { "tx_single_coll_ok", E1000_STAT(stats.scc) },
- { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
- { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
- { "tx_restart_queue", E1000_STAT(restart_queue) },
- { "rx_long_length_errors", E1000_STAT(stats.roc) },
- { "rx_short_length_errors", E1000_STAT(stats.ruc) },
- { "rx_align_errors", E1000_STAT(stats.algnerrc) },
- { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
- { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
- { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
- { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
- { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
- { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
- { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
- { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
- { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
- { "rx_header_split", E1000_STAT(rx_hdr_split) },
- { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
- { "tx_smbus", E1000_STAT(stats.mgptc) },
- { "rx_smbus", E1000_STAT(stats.mgprc) },
- { "dropped_smbus", E1000_STAT(stats.mgpdc) },
- { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
- { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
-};
-
-#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
-#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
-static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
- "Register test (offline)", "Eeprom test (offline)",
- "Interrupt test (offline)", "Loopback test (offline)",
- "Link test (on/offline)"
-};
-#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
-
-static int e1000_get_settings(struct net_device *netdev,
- struct ethtool_cmd *ecmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 status;
-
- if (hw->media_type == e1000_media_type_copper) {
-
- ecmd->supported = (SUPPORTED_10baseT_Half |
- SUPPORTED_10baseT_Full |
- SUPPORTED_100baseT_Half |
- SUPPORTED_100baseT_Full |
- SUPPORTED_1000baseT_Full |
- SUPPORTED_Autoneg |
- SUPPORTED_TP);
- if (hw->phy.type == e1000_phy_ife)
- ecmd->supported &= ~SUPPORTED_1000baseT_Full;
- ecmd->advertising = ADVERTISED_TP;
-
- if (hw->mac.autoneg == 1) {
- ecmd->advertising |= ADVERTISED_Autoneg;
- /* the e1000 autoneg seems to match ethtool nicely */
- ecmd->advertising |= hw->phy.autoneg_advertised;
- }
-
- ecmd->port = PORT_TP;
- ecmd->phy_address = hw->phy.addr;
- ecmd->transceiver = XCVR_INTERNAL;
-
- } else {
- ecmd->supported = (SUPPORTED_1000baseT_Full |
- SUPPORTED_FIBRE |
- SUPPORTED_Autoneg);
-
- ecmd->advertising = (ADVERTISED_1000baseT_Full |
- ADVERTISED_FIBRE |
- ADVERTISED_Autoneg);
-
- ecmd->port = PORT_FIBRE;
- ecmd->transceiver = XCVR_EXTERNAL;
- }
-
- status = er32(STATUS);
- if (status & E1000_STATUS_LU) {
- if (status & E1000_STATUS_SPEED_1000)
- ecmd->speed = 1000;
- else if (status & E1000_STATUS_SPEED_100)
- ecmd->speed = 100;
- else
- ecmd->speed = 10;
-
- if (status & E1000_STATUS_FD)
- ecmd->duplex = DUPLEX_FULL;
- else
- ecmd->duplex = DUPLEX_HALF;
- } else {
- ecmd->speed = -1;
- ecmd->duplex = -1;
- }
-
- ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
- hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
- return 0;
-}
-
-static u32 e1000_get_link(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 status;
-
- status = er32(STATUS);
- return (status & E1000_STATUS_LU);
-}
-
-static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
-{
- struct e1000_mac_info *mac = &adapter->hw.mac;
-
- mac->autoneg = 0;
-
- /* Fiber NICs only allow 1000 gbps Full duplex */
- if ((adapter->hw.media_type == e1000_media_type_fiber) &&
- spddplx != (SPEED_1000 + DUPLEX_FULL)) {
- ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
- "configuration\n");
- return -EINVAL;
- }
-
- switch (spddplx) {
- case SPEED_10 + DUPLEX_HALF:
- mac->forced_speed_duplex = ADVERTISE_10_HALF;
- break;
- case SPEED_10 + DUPLEX_FULL:
- mac->forced_speed_duplex = ADVERTISE_10_FULL;
- break;
- case SPEED_100 + DUPLEX_HALF:
- mac->forced_speed_duplex = ADVERTISE_100_HALF;
- break;
- case SPEED_100 + DUPLEX_FULL:
- mac->forced_speed_duplex = ADVERTISE_100_FULL;
- break;
- case SPEED_1000 + DUPLEX_FULL:
- mac->autoneg = 1;
- adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
- break;
- case SPEED_1000 + DUPLEX_HALF: /* not supported */
- default:
- ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
- "configuration\n");
- return -EINVAL;
- }
- return 0;
-}
-
-static int e1000_set_settings(struct net_device *netdev,
- struct ethtool_cmd *ecmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- /* When SoL/IDER sessions are active, autoneg/speed/duplex
- * cannot be changed */
- if (e1000_check_reset_block(hw)) {
- ndev_err(netdev, "Cannot change link "
- "characteristics when SoL/IDER is active.\n");
- return -EINVAL;
- }
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- msleep(1);
-
- if (ecmd->autoneg == AUTONEG_ENABLE) {
- hw->mac.autoneg = 1;
- if (hw->media_type == e1000_media_type_fiber)
- hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
- ADVERTISED_FIBRE |
- ADVERTISED_Autoneg;
- else
- hw->phy.autoneg_advertised = ecmd->advertising |
- ADVERTISED_TP |
- ADVERTISED_Autoneg;
- ecmd->advertising = hw->phy.autoneg_advertised;
- } else {
- if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
- clear_bit(__E1000_RESETTING, &adapter->state);
- return -EINVAL;
- }
- }
-
- /* reset the link */
-
- if (netif_running(adapter->netdev)) {
- e1000e_down(adapter);
- e1000e_up(adapter);
- } else {
- e1000e_reset(adapter);
- }
-
- clear_bit(__E1000_RESETTING, &adapter->state);
- return 0;
-}
-
-static void e1000_get_pauseparam(struct net_device *netdev,
- struct ethtool_pauseparam *pause)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- pause->autoneg =
- (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
-
- if (hw->mac.fc == e1000_fc_rx_pause) {
- pause->rx_pause = 1;
- } else if (hw->mac.fc == e1000_fc_tx_pause) {
- pause->tx_pause = 1;
- } else if (hw->mac.fc == e1000_fc_full) {
- pause->rx_pause = 1;
- pause->tx_pause = 1;
- }
-}
-
-static int e1000_set_pauseparam(struct net_device *netdev,
- struct ethtool_pauseparam *pause)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- int retval = 0;
-
- adapter->fc_autoneg = pause->autoneg;
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- msleep(1);
-
- if (pause->rx_pause && pause->tx_pause)
- hw->mac.fc = e1000_fc_full;
- else if (pause->rx_pause && !pause->tx_pause)
- hw->mac.fc = e1000_fc_rx_pause;
- else if (!pause->rx_pause && pause->tx_pause)
- hw->mac.fc = e1000_fc_tx_pause;
- else if (!pause->rx_pause && !pause->tx_pause)
- hw->mac.fc = e1000_fc_none;
-
- hw->mac.original_fc = hw->mac.fc;
-
- if (adapter->fc_autoneg == AUTONEG_ENABLE) {
- hw->mac.fc = e1000_fc_default;
- if (netif_running(adapter->netdev)) {
- e1000e_down(adapter);
- e1000e_up(adapter);
- } else {
- e1000e_reset(adapter);
- }
- } else {
- retval = ((hw->media_type == e1000_media_type_fiber) ?
- hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
- }
-
- clear_bit(__E1000_RESETTING, &adapter->state);
- return retval;
-}
-
-static u32 e1000_get_rx_csum(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- return (adapter->flags & FLAG_RX_CSUM_ENABLED);
-}
-
-static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (data)
- adapter->flags |= FLAG_RX_CSUM_ENABLED;
- else
- adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
-
- if (netif_running(netdev))
- e1000e_reinit_locked(adapter);
- else
- e1000e_reset(adapter);
- return 0;
-}
-
-static u32 e1000_get_tx_csum(struct net_device *netdev)
-{
- return ((netdev->features & NETIF_F_HW_CSUM) != 0);
-}
-
-static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
-{
- if (data)
- netdev->features |= NETIF_F_HW_CSUM;
- else
- netdev->features &= ~NETIF_F_HW_CSUM;
-
- return 0;
-}
-
-static int e1000_set_tso(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (data) {
- netdev->features |= NETIF_F_TSO;
- netdev->features |= NETIF_F_TSO6;
- } else {
- netdev->features &= ~NETIF_F_TSO;
- netdev->features &= ~NETIF_F_TSO6;
- }
-
- ndev_info(netdev, "TSO is %s\n",
- data ? "Enabled" : "Disabled");
- adapter->flags |= FLAG_TSO_FORCE;
- return 0;
-}
-
-static u32 e1000_get_msglevel(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- return adapter->msg_enable;
-}
-
-static void e1000_set_msglevel(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- adapter->msg_enable = data;
-}
-
-static int e1000_get_regs_len(struct net_device *netdev)
-{
-#define E1000_REGS_LEN 32 /* overestimate */
- return E1000_REGS_LEN * sizeof(u32);
-}
-
-static void e1000_get_regs(struct net_device *netdev,
- struct ethtool_regs *regs, void *p)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 *regs_buff = p;
- u16 phy_data;
- u8 revision_id;
-
- memset(p, 0, E1000_REGS_LEN * sizeof(u32));
-
- pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
-
- regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
-
- regs_buff[0] = er32(CTRL);
- regs_buff[1] = er32(STATUS);
-
- regs_buff[2] = er32(RCTL);
- regs_buff[3] = er32(RDLEN);
- regs_buff[4] = er32(RDH);
- regs_buff[5] = er32(RDT);
- regs_buff[6] = er32(RDTR);
-
- regs_buff[7] = er32(TCTL);
- regs_buff[8] = er32(TDLEN);
- regs_buff[9] = er32(TDH);
- regs_buff[10] = er32(TDT);
- regs_buff[11] = er32(TIDV);
-
- regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
- if (hw->phy.type == e1000_phy_m88) {
- e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- regs_buff[13] = (u32)phy_data; /* cable length */
- regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
- regs_buff[18] = regs_buff[13]; /* cable polarity */
- regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[20] = regs_buff[17]; /* polarity correction */
- /* phy receive errors */
- regs_buff[22] = adapter->phy_stats.receive_errors;
- regs_buff[23] = regs_buff[13]; /* mdix mode */
- }
- regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
- e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
- regs_buff[24] = (u32)phy_data; /* phy local receiver status */
- regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
-}
-
-static int e1000_get_eeprom_len(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- return adapter->hw.nvm.word_size * 2;
-}
-
-static int e1000_get_eeprom(struct net_device *netdev,
- struct ethtool_eeprom *eeprom, u8 *bytes)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 *eeprom_buff;
- int first_word;
- int last_word;
- int ret_val = 0;
- u16 i;
-
- if (eeprom->len == 0)
- return -EINVAL;
-
- eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
-
- first_word = eeprom->offset >> 1;
- last_word = (eeprom->offset + eeprom->len - 1) >> 1;
-
- eeprom_buff = kmalloc(sizeof(u16) *
- (last_word - first_word + 1), GFP_KERNEL);
- if (!eeprom_buff)
- return -ENOMEM;
-
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
- ret_val = e1000_read_nvm(hw, first_word,
- last_word - first_word + 1,
- eeprom_buff);
- } else {
- for (i = 0; i < last_word - first_word + 1; i++) {
- ret_val = e1000_read_nvm(hw, first_word + i, 1,
- &eeprom_buff[i]);
- if (ret_val)
- break;
- }
- }
-
- /* Device's eeprom is always little-endian, word addressable */
- for (i = 0; i < last_word - first_word + 1; i++)
- le16_to_cpus(&eeprom_buff[i]);
-
- memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
- kfree(eeprom_buff);
-
- return ret_val;
-}
-
-static int e1000_set_eeprom(struct net_device *netdev,
- struct ethtool_eeprom *eeprom, u8 *bytes)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 *eeprom_buff;
- void *ptr;
- int max_len;
- int first_word;
- int last_word;
- int ret_val = 0;
- u16 i;
-
- if (eeprom->len == 0)
- return -EOPNOTSUPP;
-
- if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
- return -EFAULT;
-
- max_len = hw->nvm.word_size * 2;
-
- first_word = eeprom->offset >> 1;
- last_word = (eeprom->offset + eeprom->len - 1) >> 1;
- eeprom_buff = kmalloc(max_len, GFP_KERNEL);
- if (!eeprom_buff)
- return -ENOMEM;
-
- ptr = (void *)eeprom_buff;
-
- if (eeprom->offset & 1) {
- /* need read/modify/write of first changed EEPROM word */
- /* only the second byte of the word is being modified */
- ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
- ptr++;
- }
- if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
- /* need read/modify/write of last changed EEPROM word */
- /* only the first byte of the word is being modified */
- ret_val = e1000_read_nvm(hw, last_word, 1,
- &eeprom_buff[last_word - first_word]);
-
- /* Device's eeprom is always little-endian, word addressable */
- for (i = 0; i < last_word - first_word + 1; i++)
- le16_to_cpus(&eeprom_buff[i]);
-
- memcpy(ptr, bytes, eeprom->len);
-
- for (i = 0; i < last_word - first_word + 1; i++)
- eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
-
- ret_val = e1000_write_nvm(hw, first_word,
- last_word - first_word + 1, eeprom_buff);
-
- /* Update the checksum over the first part of the EEPROM if needed
- * and flush shadow RAM for 82573 controllers */
- if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
- (hw->mac.type == e1000_82573)))
- e1000e_update_nvm_checksum(hw);
-
- kfree(eeprom_buff);
- return ret_val;
-}
-
-static void e1000_get_drvinfo(struct net_device *netdev,
- struct ethtool_drvinfo *drvinfo)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- char firmware_version[32];
- u16 eeprom_data;
-
- strncpy(drvinfo->driver, e1000e_driver_name, 32);
- strncpy(drvinfo->version, e1000e_driver_version, 32);
-
- /* EEPROM image version # is reported as firmware version # for
- * PCI-E controllers */
- e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
- sprintf(firmware_version, "%d.%d-%d",
- (eeprom_data & 0xF000) >> 12,
- (eeprom_data & 0x0FF0) >> 4,
- eeprom_data & 0x000F);
-
- strncpy(drvinfo->fw_version, firmware_version, 32);
- strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
- drvinfo->regdump_len = e1000_get_regs_len(netdev);
- drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
-}
-
-static void e1000_get_ringparam(struct net_device *netdev,
- struct ethtool_ringparam *ring)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_ring *rx_ring = adapter->rx_ring;
-
- ring->rx_max_pending = E1000_MAX_RXD;
- ring->tx_max_pending = E1000_MAX_TXD;
- ring->rx_mini_max_pending = 0;
- ring->rx_jumbo_max_pending = 0;
- ring->rx_pending = rx_ring->count;
- ring->tx_pending = tx_ring->count;
- ring->rx_mini_pending = 0;
- ring->rx_jumbo_pending = 0;
-}
-
-static int e1000_set_ringparam(struct net_device *netdev,
- struct ethtool_ringparam *ring)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_ring *tx_ring, *tx_old;
- struct e1000_ring *rx_ring, *rx_old;
- int err;
-
- if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
- return -EINVAL;
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- msleep(1);
-
- if (netif_running(adapter->netdev))
- e1000e_down(adapter);
-
- tx_old = adapter->tx_ring;
- rx_old = adapter->rx_ring;
-
- err = -ENOMEM;
- tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
- if (!tx_ring)
- goto err_alloc_tx;
-
- rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
- if (!rx_ring)
- goto err_alloc_rx;
-
- adapter->tx_ring = tx_ring;
- adapter->rx_ring = rx_ring;
-
- rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
- rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
- rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
-
- tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
- tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
- tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
-
- if (netif_running(adapter->netdev)) {
- /* Try to get new resources before deleting old */
- err = e1000e_setup_rx_resources(adapter);
- if (err)
- goto err_setup_rx;
- err = e1000e_setup_tx_resources(adapter);
- if (err)
- goto err_setup_tx;
-
- /* save the new, restore the old in order to free it,
- * then restore the new back again */
- adapter->rx_ring = rx_old;
- adapter->tx_ring = tx_old;
- e1000e_free_rx_resources(adapter);
- e1000e_free_tx_resources(adapter);
- kfree(tx_old);
- kfree(rx_old);
- adapter->rx_ring = rx_ring;
- adapter->tx_ring = tx_ring;
- err = e1000e_up(adapter);
- if (err)
- goto err_setup;
- }
-
- clear_bit(__E1000_RESETTING, &adapter->state);
- return 0;
-err_setup_tx:
- e1000e_free_rx_resources(adapter);
-err_setup_rx:
- adapter->rx_ring = rx_old;
- adapter->tx_ring = tx_old;
- kfree(rx_ring);
-err_alloc_rx:
- kfree(tx_ring);
-err_alloc_tx:
- e1000e_up(adapter);
-err_setup:
- clear_bit(__E1000_RESETTING, &adapter->state);
- return err;
-}
-
-static bool reg_pattern_test_array(struct e1000_adapter *adapter, u64 *data,
- int reg, int offset, u32 mask, u32 write)
-{
- int i;
- u32 read;
- static const u32 test[] =
- {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
- for (i = 0; i < ARRAY_SIZE(test); i++) {
- E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
- (test[i] & write));
- read = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
- if (read != (test[i] & write & mask)) {
- ndev_err(adapter->netdev, "pattern test reg %04X "
- "failed: got 0x%08X expected 0x%08X\n",
- reg + offset,
- read, (test[i] & write & mask));
- *data = reg;
- return true;
- }
- }
- return false;
-}
-
-static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
- int reg, u32 mask, u32 write)
-{
- u32 read;
- __ew32(&adapter->hw, reg, write & mask);
- read = __er32(&adapter->hw, reg);
- if ((write & mask) != (read & mask)) {
- ndev_err(adapter->netdev, "set/check reg %04X test failed: "
- "got 0x%08X expected 0x%08X\n", reg, (read & mask),
- (write & mask));
- *data = reg;
- return true;
- }
- return false;
-}
-
-#define REG_PATTERN_TEST(R, M, W) \
- do { \
- if (reg_pattern_test_array(adapter, data, R, 0, M, W)) \
- return 1; \
- } while (0)
-
-#define REG_PATTERN_TEST_ARRAY(R, offset, M, W) \
- do { \
- if (reg_pattern_test_array(adapter, data, R, offset, M, W)) \
- return 1; \
- } while (0)
-
-#define REG_SET_AND_CHECK(R, M, W) \
- do { \
- if (reg_set_and_check(adapter, data, R, M, W)) \
- return 1; \
- } while (0)
-
-static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &adapter->hw.mac;
- struct net_device *netdev = adapter->netdev;
- u32 value;
- u32 before;
- u32 after;
- u32 i;
- u32 toggle;
-
- /* The status register is Read Only, so a write should fail.
- * Some bits that get toggled are ignored.
- */
- switch (mac->type) {
- /* there are several bits on newer hardware that are r/w */
- case e1000_82571:
- case e1000_82572:
- case e1000_80003es2lan:
- toggle = 0x7FFFF3FF;
- break;
- case e1000_82573:
- case e1000_ich8lan:
- case e1000_ich9lan:
- toggle = 0x7FFFF033;
- break;
- default:
- toggle = 0xFFFFF833;
- break;
- }
-
- before = er32(STATUS);
- value = (er32(STATUS) & toggle);
- ew32(STATUS, toggle);
- after = er32(STATUS) & toggle;
- if (value != after) {
- ndev_err(netdev, "failed STATUS register test got: "
- "0x%08X expected: 0x%08X\n", after, value);
- *data = 1;
- return 1;
- }
- /* restore previous status */
- ew32(STATUS, before);
-
- if ((mac->type != e1000_ich8lan) &&
- (mac->type != e1000_ich9lan)) {
- REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
- }
-
- REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
- REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
- REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
- REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
-
- REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
-
- before = (((mac->type == e1000_ich8lan) ||
- (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
- REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
- REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
-
- REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
- if ((mac->type != e1000_ich8lan) &&
- (mac->type != e1000_ich9lan))
- REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
- REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
- for (i = 0; i < mac->rar_entry_count; i++)
- REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
- 0x8003FFFF, 0xFFFFFFFF);
-
- for (i = 0; i < mac->mta_reg_count; i++)
- REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
-
- *data = 0;
- return 0;
-}
-
-static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
-{
- u16 temp;
- u16 checksum = 0;
- u16 i;
-
- *data = 0;
- /* Read and add up the contents of the EEPROM */
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
- if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
- *data = 1;
- break;
- }
- checksum += temp;
- }
-
- /* If Checksum is not Correct return error else test passed */
- if ((checksum != (u16) NVM_SUM) && !(*data))
- *data = 2;
-
- return *data;
-}
-
-static irqreturn_t e1000_test_intr(int irq, void *data)
-{
- struct net_device *netdev = (struct net_device *) data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- adapter->test_icr |= er32(ICR);
-
- return IRQ_HANDLED;
-}
-
-static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 mask;
- u32 shared_int = 1;
- u32 irq = adapter->pdev->irq;
- int i;
-
- *data = 0;
-
- /* NOTE: we don't test MSI interrupts here, yet */
- /* Hook up test interrupt handler just for this test */
- if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
- netdev)) {
- shared_int = 0;
- } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
- netdev->name, netdev)) {
- *data = 1;
- return -1;
- }
- ndev_info(netdev, "testing %s interrupt\n",
- (shared_int ? "shared" : "unshared"));
-
- /* Disable all the interrupts */
- ew32(IMC, 0xFFFFFFFF);
- msleep(10);
-
- /* Test each interrupt */
- for (i = 0; i < 10; i++) {
-
- if (((adapter->hw.mac.type == e1000_ich8lan) ||
- (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
- continue;
-
- /* Interrupt to test */
- mask = 1 << i;
-
- if (!shared_int) {
- /* Disable the interrupt to be reported in
- * the cause register and then force the same
- * interrupt and see if one gets posted. If
- * an interrupt was posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMC, mask);
- ew32(ICS, mask);
- msleep(10);
-
- if (adapter->test_icr & mask) {
- *data = 3;
- break;
- }
- }
-
- /* Enable the interrupt to be reported in
- * the cause register and then force the same
- * interrupt and see if one gets posted. If
- * an interrupt was not posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMS, mask);
- ew32(ICS, mask);
- msleep(10);
-
- if (!(adapter->test_icr & mask)) {
- *data = 4;
- break;
- }
-
- if (!shared_int) {
- /* Disable the other interrupts to be reported in
- * the cause register and then force the other
- * interrupts and see if any get posted. If
- * an interrupt was posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMC, ~mask & 0x00007FFF);
- ew32(ICS, ~mask & 0x00007FFF);
- msleep(10);
-
- if (adapter->test_icr) {
- *data = 5;
- break;
- }
- }
- }
-
- /* Disable all the interrupts */
- ew32(IMC, 0xFFFFFFFF);
- msleep(10);
-
- /* Unhook test interrupt handler */
- free_irq(irq, netdev);
-
- return *data;
-}
-
-static void e1000_free_desc_rings(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = &adapter->test_tx_ring;
- struct e1000_ring *rx_ring = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- int i;
-
- if (tx_ring->desc && tx_ring->buffer_info) {
- for (i = 0; i < tx_ring->count; i++) {
- if (tx_ring->buffer_info[i].dma)
- pci_unmap_single(pdev,
- tx_ring->buffer_info[i].dma,
- tx_ring->buffer_info[i].length,
- PCI_DMA_TODEVICE);
- if (tx_ring->buffer_info[i].skb)
- dev_kfree_skb(tx_ring->buffer_info[i].skb);
- }
- }
-
- if (rx_ring->desc && rx_ring->buffer_info) {
- for (i = 0; i < rx_ring->count; i++) {
- if (rx_ring->buffer_info[i].dma)
- pci_unmap_single(pdev,
- rx_ring->buffer_info[i].dma,
- 2048, PCI_DMA_FROMDEVICE);
- if (rx_ring->buffer_info[i].skb)
- dev_kfree_skb(rx_ring->buffer_info[i].skb);
- }
- }
-
- if (tx_ring->desc) {
- dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
- tx_ring->dma);
- tx_ring->desc = NULL;
- }
- if (rx_ring->desc) {
- dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
- rx_ring->dma);
- rx_ring->desc = NULL;
- }
-
- kfree(tx_ring->buffer_info);
- tx_ring->buffer_info = NULL;
- kfree(rx_ring->buffer_info);
- rx_ring->buffer_info = NULL;
-}
-
-static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = &adapter->test_tx_ring;
- struct e1000_ring *rx_ring = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
- int size;
- int i;
- int ret_val;
-
- /* Setup Tx descriptor ring and Tx buffers */
-
- if (!tx_ring->count)
- tx_ring->count = E1000_DEFAULT_TXD;
-
- size = tx_ring->count * sizeof(struct e1000_buffer);
- tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
- if (!tx_ring->buffer_info) {
- ret_val = 1;
- goto err_nomem;
- }
- memset(tx_ring->buffer_info, 0, size);
-
- tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
- tx_ring->size = ALIGN(tx_ring->size, 4096);
- tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
- &tx_ring->dma, GFP_KERNEL);
- if (!tx_ring->desc) {
- ret_val = 2;
- goto err_nomem;
- }
- memset(tx_ring->desc, 0, tx_ring->size);
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
-
- ew32(TDBAL,
- ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
- ew32(TDBAH, ((u64) tx_ring->dma >> 32));
- ew32(TDLEN,
- tx_ring->count * sizeof(struct e1000_tx_desc));
- ew32(TDH, 0);
- ew32(TDT, 0);
- ew32(TCTL,
- E1000_TCTL_PSP | E1000_TCTL_EN |
- E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
- E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
-
- for (i = 0; i < tx_ring->count; i++) {
- struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
- struct sk_buff *skb;
- unsigned int skb_size = 1024;
-
- skb = alloc_skb(skb_size, GFP_KERNEL);
- if (!skb) {
- ret_val = 3;
- goto err_nomem;
- }
- skb_put(skb, skb_size);
- tx_ring->buffer_info[i].skb = skb;
- tx_ring->buffer_info[i].length = skb->len;
- tx_ring->buffer_info[i].dma =
- pci_map_single(pdev, skb->data, skb->len,
- PCI_DMA_TODEVICE);
- if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
- ret_val = 4;
- goto err_nomem;
- }
- tx_desc->buffer_addr = cpu_to_le64(
- tx_ring->buffer_info[i].dma);
- tx_desc->lower.data = cpu_to_le32(skb->len);
- tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
- E1000_TXD_CMD_IFCS |
- E1000_TXD_CMD_RPS);
- tx_desc->upper.data = 0;
- }
-
- /* Setup Rx descriptor ring and Rx buffers */
-
- if (!rx_ring->count)
- rx_ring->count = E1000_DEFAULT_RXD;
-
- size = rx_ring->count * sizeof(struct e1000_buffer);
- rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
- if (!rx_ring->buffer_info) {
- ret_val = 5;
- goto err_nomem;
- }
- memset(rx_ring->buffer_info, 0, size);
-
- rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
- rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
- &rx_ring->dma, GFP_KERNEL);
- if (!rx_ring->desc) {
- ret_val = 6;
- goto err_nomem;
- }
- memset(rx_ring->desc, 0, rx_ring->size);
- rx_ring->next_to_use = 0;
- rx_ring->next_to_clean = 0;
-
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
- ew32(RDBAH, ((u64) rx_ring->dma >> 32));
- ew32(RDLEN, rx_ring->size);
- ew32(RDH, 0);
- ew32(RDT, 0);
- rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
- E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
- (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
- ew32(RCTL, rctl);
-
- for (i = 0; i < rx_ring->count; i++) {
- struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
- struct sk_buff *skb;
-
- skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
- if (!skb) {
- ret_val = 7;
- goto err_nomem;
- }
- skb_reserve(skb, NET_IP_ALIGN);
- rx_ring->buffer_info[i].skb = skb;
- rx_ring->buffer_info[i].dma =
- pci_map_single(pdev, skb->data, 2048,
- PCI_DMA_FROMDEVICE);
- if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
- ret_val = 8;
- goto err_nomem;
- }
- rx_desc->buffer_addr =
- cpu_to_le64(rx_ring->buffer_info[i].dma);
- memset(skb->data, 0x00, skb->len);
- }
-
- return 0;
-
-err_nomem:
- e1000_free_desc_rings(adapter);
- return ret_val;
-}
-
-static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
-{
- /* Write out to PHY registers 29 and 30 to disable the Receiver. */
- e1e_wphy(&adapter->hw, 29, 0x001F);
- e1e_wphy(&adapter->hw, 30, 0x8FFC);
- e1e_wphy(&adapter->hw, 29, 0x001A);
- e1e_wphy(&adapter->hw, 30, 0x8FF0);
-}
-
-static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_reg = 0;
- u32 stat_reg = 0;
-
- adapter->hw.mac.autoneg = 0;
-
- if (adapter->hw.phy.type == e1000_phy_m88) {
- /* Auto-MDI/MDIX Off */
- e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
- /* reset to update Auto-MDI/MDIX */
- e1e_wphy(hw, PHY_CONTROL, 0x9140);
- /* autoneg off */
- e1e_wphy(hw, PHY_CONTROL, 0x8140);
- } else if (adapter->hw.phy.type == e1000_phy_gg82563)
- e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
-
- ctrl_reg = er32(CTRL);
-
- if (adapter->hw.phy.type == e1000_phy_ife) {
- /* force 100, set loopback */
- e1e_wphy(hw, PHY_CONTROL, 0x6100);
-
- /* Now set up the MAC to the same speed/duplex as the PHY. */
- ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
- ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_100 |/* Force Speed to 100 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
- } else {
- /* force 1000, set loopback */
- e1e_wphy(hw, PHY_CONTROL, 0x4140);
-
- /* Now set up the MAC to the same speed/duplex as the PHY. */
- ctrl_reg = er32(CTRL);
- ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
- ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
- }
-
- if (adapter->hw.media_type == e1000_media_type_copper &&
- adapter->hw.phy.type == e1000_phy_m88) {
- ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
- } else {
- /* Set the ILOS bit on the fiber Nic if half duplex link is
- * detected. */
- stat_reg = er32(STATUS);
- if ((stat_reg & E1000_STATUS_FD) == 0)
- ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
- }
-
- ew32(CTRL, ctrl_reg);
-
- /* Disable the receiver on the PHY so when a cable is plugged in, the
- * PHY does not begin to autoneg when a cable is reconnected to the NIC.
- */
- if (adapter->hw.phy.type == e1000_phy_m88)
- e1000_phy_disable_receiver(adapter);
-
- udelay(500);
-
- return 0;
-}
-
-static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl = er32(CTRL);
- int link = 0;
-
- /* special requirements for 82571/82572 fiber adapters */
-
- /* jump through hoops to make sure link is up because serdes
- * link is hardwired up */
- ctrl |= E1000_CTRL_SLU;
- ew32(CTRL, ctrl);
-
- /* disable autoneg */
- ctrl = er32(TXCW);
- ctrl &= ~(1 << 31);
- ew32(TXCW, ctrl);
-
- link = (er32(STATUS) & E1000_STATUS_LU);
-
- if (!link) {
- /* set invert loss of signal */
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_ILOS;
- ew32(CTRL, ctrl);
- }
-
- /* special write to serdes control register to enable SerDes analog
- * loopback */
-#define E1000_SERDES_LB_ON 0x410
- ew32(SCTL, E1000_SERDES_LB_ON);
- msleep(10);
-
- return 0;
-}
-
-/* only call this for fiber/serdes connections to es2lan */
-static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrlext = er32(CTRL_EXT);
- u32 ctrl = er32(CTRL);
-
- /* save CTRL_EXT to restore later, reuse an empty variable (unused
- on mac_type 80003es2lan) */
- adapter->tx_fifo_head = ctrlext;
-
- /* clear the serdes mode bits, putting the device into mac loopback */
- ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
- ew32(CTRL_EXT, ctrlext);
-
- /* force speed to 1000/FD, link up */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
- E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* set mac loopback */
- ctrl = er32(RCTL);
- ctrl |= E1000_RCTL_LBM_MAC;
- ew32(RCTL, ctrl);
-
- /* set testing mode parameters (no need to reset later) */
-#define KMRNCTRLSTA_OPMODE (0x1F << 16)
-#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
- ew32(KMRNCTRLSTA,
- (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
-
- return 0;
-}
-
-static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
-
- if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes) {
- switch (hw->mac.type) {
- case e1000_80003es2lan:
- return e1000_set_es2lan_mac_loopback(adapter);
- break;
- case e1000_82571:
- case e1000_82572:
- return e1000_set_82571_fiber_loopback(adapter);
- break;
- default:
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_LBM_TCVR;
- ew32(RCTL, rctl);
- return 0;
- }
- } else if (hw->media_type == e1000_media_type_copper) {
- return e1000_integrated_phy_loopback(adapter);
- }
-
- return 7;
-}
-
-static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
- u16 phy_reg;
-
- rctl = er32(RCTL);
- rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
- ew32(RCTL, rctl);
-
- switch (hw->mac.type) {
- case e1000_80003es2lan:
- if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes) {
- /* restore CTRL_EXT, stealing space from tx_fifo_head */
- ew32(CTRL_EXT,
- adapter->tx_fifo_head);
- adapter->tx_fifo_head = 0;
- }
- /* fall through */
- case e1000_82571:
- case e1000_82572:
- if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes) {
-#define E1000_SERDES_LB_OFF 0x400
- ew32(SCTL, E1000_SERDES_LB_OFF);
- msleep(10);
- break;
- }
- /* Fall Through */
- default:
- hw->mac.autoneg = 1;
- if (hw->phy.type == e1000_phy_gg82563)
- e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
- e1e_rphy(hw, PHY_CONTROL, &phy_reg);
- if (phy_reg & MII_CR_LOOPBACK) {
- phy_reg &= ~MII_CR_LOOPBACK;
- e1e_wphy(hw, PHY_CONTROL, phy_reg);
- e1000e_commit_phy(hw);
- }
- break;
- }
-}
-
-static void e1000_create_lbtest_frame(struct sk_buff *skb,
- unsigned int frame_size)
-{
- memset(skb->data, 0xFF, frame_size);
- frame_size &= ~1;
- memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
- memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
- memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
-}
-
-static int e1000_check_lbtest_frame(struct sk_buff *skb,
- unsigned int frame_size)
-{
- frame_size &= ~1;
- if (*(skb->data + 3) == 0xFF)
- if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
- (*(skb->data + frame_size / 2 + 12) == 0xAF))
- return 0;
- return 13;
-}
-
-static int e1000_run_loopback_test(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = &adapter->test_tx_ring;
- struct e1000_ring *rx_ring = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_hw *hw = &adapter->hw;
- int i, j, k, l;
- int lc;
- int good_cnt;
- int ret_val = 0;
- unsigned long time;
-
- ew32(RDT, rx_ring->count - 1);
-
- /* Calculate the loop count based on the largest descriptor ring
- * The idea is to wrap the largest ring a number of times using 64
- * send/receive pairs during each loop
- */
-
- if (rx_ring->count <= tx_ring->count)
- lc = ((tx_ring->count / 64) * 2) + 1;
- else
- lc = ((rx_ring->count / 64) * 2) + 1;
-
- k = 0;
- l = 0;
- for (j = 0; j <= lc; j++) { /* loop count loop */
- for (i = 0; i < 64; i++) { /* send the packets */
- e1000_create_lbtest_frame(
- tx_ring->buffer_info[i].skb, 1024);
- pci_dma_sync_single_for_device(pdev,
- tx_ring->buffer_info[k].dma,
- tx_ring->buffer_info[k].length,
- PCI_DMA_TODEVICE);
- k++;
- if (k == tx_ring->count)
- k = 0;
- }
- ew32(TDT, k);
- msleep(200);
- time = jiffies; /* set the start time for the receive */
- good_cnt = 0;
- do { /* receive the sent packets */
- pci_dma_sync_single_for_cpu(pdev,
- rx_ring->buffer_info[l].dma, 2048,
- PCI_DMA_FROMDEVICE);
-
- ret_val = e1000_check_lbtest_frame(
- rx_ring->buffer_info[l].skb, 1024);
- if (!ret_val)
- good_cnt++;
- l++;
- if (l == rx_ring->count)
- l = 0;
- /* time + 20 msecs (200 msecs on 2.4) is more than
- * enough time to complete the receives, if it's
- * exceeded, break and error off
- */
- } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
- if (good_cnt != 64) {
- ret_val = 13; /* ret_val is the same as mis-compare */
- break;
- }
- if (jiffies >= (time + 2)) {
- ret_val = 14; /* error code for time out error */
- break;
- }
- } /* end loop count loop */
- return ret_val;
-}
-
-static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
-{
- /* PHY loopback cannot be performed if SoL/IDER
- * sessions are active */
- if (e1000_check_reset_block(&adapter->hw)) {
- ndev_err(adapter->netdev, "Cannot do PHY loopback test "
- "when SoL/IDER is active.\n");
- *data = 0;
- goto out;
- }
-
- *data = e1000_setup_desc_rings(adapter);
- if (*data)
- goto out;
-
- *data = e1000_setup_loopback_test(adapter);
- if (*data)
- goto err_loopback;
-
- *data = e1000_run_loopback_test(adapter);
- e1000_loopback_cleanup(adapter);
-
-err_loopback:
- e1000_free_desc_rings(adapter);
-out:
- return *data;
-}
-
-static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- *data = 0;
- if (hw->media_type == e1000_media_type_internal_serdes) {
- int i = 0;
- hw->mac.serdes_has_link = 0;
-
- /* On some blade server designs, link establishment
- * could take as long as 2-3 minutes */
- do {
- hw->mac.ops.check_for_link(hw);
- if (hw->mac.serdes_has_link)
- return *data;
- msleep(20);
- } while (i++ < 3750);
-
- *data = 1;
- } else {
- hw->mac.ops.check_for_link(hw);
- if (hw->mac.autoneg)
- msleep(4000);
-
- if (!(er32(STATUS) &
- E1000_STATUS_LU))
- *data = 1;
- }
- return *data;
-}
-
-static int e1000e_get_sset_count(struct net_device *netdev, int sset)
-{
- switch (sset) {
- case ETH_SS_TEST:
- return E1000_TEST_LEN;
- case ETH_SS_STATS:
- return E1000_STATS_LEN;
- default:
- return -EOPNOTSUPP;
- }
-}
-
-static void e1000_diag_test(struct net_device *netdev,
- struct ethtool_test *eth_test, u64 *data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- u16 autoneg_advertised;
- u8 forced_speed_duplex;
- u8 autoneg;
- bool if_running = netif_running(netdev);
-
- set_bit(__E1000_TESTING, &adapter->state);
- if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
- /* Offline tests */
-
- /* save speed, duplex, autoneg settings */
- autoneg_advertised = adapter->hw.phy.autoneg_advertised;
- forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
- autoneg = adapter->hw.mac.autoneg;
-
- ndev_info(netdev, "offline testing starting\n");
-
- /* Link test performed before hardware reset so autoneg doesn't
- * interfere with test result */
- if (e1000_link_test(adapter, &data[4]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- if (if_running)
- /* indicate we're in test mode */
- dev_close(netdev);
- else
- e1000e_reset(adapter);
-
- if (e1000_reg_test(adapter, &data[0]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000e_reset(adapter);
- if (e1000_eeprom_test(adapter, &data[1]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000e_reset(adapter);
- if (e1000_intr_test(adapter, &data[2]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000e_reset(adapter);
- /* make sure the phy is powered up */
- e1000e_power_up_phy(adapter);
- if (e1000_loopback_test(adapter, &data[3]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- /* restore speed, duplex, autoneg settings */
- adapter->hw.phy.autoneg_advertised = autoneg_advertised;
- adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
- adapter->hw.mac.autoneg = autoneg;
-
- /* force this routine to wait until autoneg complete/timeout */
- adapter->hw.phy.wait_for_link = 1;
- e1000e_reset(adapter);
- adapter->hw.phy.wait_for_link = 0;
-
- clear_bit(__E1000_TESTING, &adapter->state);
- if (if_running)
- dev_open(netdev);
- } else {
- ndev_info(netdev, "online testing starting\n");
- /* Online tests */
- if (e1000_link_test(adapter, &data[4]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- /* Online tests aren't run; pass by default */
- data[0] = 0;
- data[1] = 0;
- data[2] = 0;
- data[3] = 0;
-
- clear_bit(__E1000_TESTING, &adapter->state);
- }
- msleep_interruptible(4 * 1000);
-}
-
-static void e1000_get_wol(struct net_device *netdev,
- struct ethtool_wolinfo *wol)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- wol->supported = 0;
- wol->wolopts = 0;
-
- if (!(adapter->flags & FLAG_HAS_WOL))
- return;
-
- wol->supported = WAKE_UCAST | WAKE_MCAST |
- WAKE_BCAST | WAKE_MAGIC |
- WAKE_PHY | WAKE_ARP;
-
- /* apply any specific unsupported masks here */
- if (adapter->flags & FLAG_NO_WAKE_UCAST) {
- wol->supported &= ~WAKE_UCAST;
-
- if (adapter->wol & E1000_WUFC_EX)
- ndev_err(netdev, "Interface does not support "
- "directed (unicast) frame wake-up packets\n");
- }
-
- if (adapter->wol & E1000_WUFC_EX)
- wol->wolopts |= WAKE_UCAST;
- if (adapter->wol & E1000_WUFC_MC)
- wol->wolopts |= WAKE_MCAST;
- if (adapter->wol & E1000_WUFC_BC)
- wol->wolopts |= WAKE_BCAST;
- if (adapter->wol & E1000_WUFC_MAG)
- wol->wolopts |= WAKE_MAGIC;
- if (adapter->wol & E1000_WUFC_LNKC)
- wol->wolopts |= WAKE_PHY;
- if (adapter->wol & E1000_WUFC_ARP)
- wol->wolopts |= WAKE_ARP;
-}
-
-static int e1000_set_wol(struct net_device *netdev,
- struct ethtool_wolinfo *wol)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (wol->wolopts & WAKE_MAGICSECURE)
- return -EOPNOTSUPP;
-
- if (!(adapter->flags & FLAG_HAS_WOL))
- return wol->wolopts ? -EOPNOTSUPP : 0;
-
- /* these settings will always override what we currently have */
- adapter->wol = 0;
-
- if (wol->wolopts & WAKE_UCAST)
- adapter->wol |= E1000_WUFC_EX;
- if (wol->wolopts & WAKE_MCAST)
- adapter->wol |= E1000_WUFC_MC;
- if (wol->wolopts & WAKE_BCAST)
- adapter->wol |= E1000_WUFC_BC;
- if (wol->wolopts & WAKE_MAGIC)
- adapter->wol |= E1000_WUFC_MAG;
- if (wol->wolopts & WAKE_PHY)
- adapter->wol |= E1000_WUFC_LNKC;
- if (wol->wolopts & WAKE_ARP)
- adapter->wol |= E1000_WUFC_ARP;
-
- return 0;
-}
-
-/* toggle LED 4 times per second = 2 "blinks" per second */
-#define E1000_ID_INTERVAL (HZ/4)
-
-/* bit defines for adapter->led_status */
-#define E1000_LED_ON 0
-
-static void e1000_led_blink_callback(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *) data;
-
- if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
- adapter->hw.mac.ops.led_off(&adapter->hw);
- else
- adapter->hw.mac.ops.led_on(&adapter->hw);
-
- mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
-}
-
-static int e1000_phys_id(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (!data)
- data = INT_MAX;
-
- if (adapter->hw.phy.type == e1000_phy_ife) {
- if (!adapter->blink_timer.function) {
- init_timer(&adapter->blink_timer);
- adapter->blink_timer.function =
- e1000_led_blink_callback;
- adapter->blink_timer.data = (unsigned long) adapter;
- }
- mod_timer(&adapter->blink_timer, jiffies);
- msleep_interruptible(data * 1000);
- del_timer_sync(&adapter->blink_timer);
- e1e_wphy(&adapter->hw,
- IFE_PHY_SPECIAL_CONTROL_LED, 0);
- } else {
- e1000e_blink_led(&adapter->hw);
- msleep_interruptible(data * 1000);
- }
-
- adapter->hw.mac.ops.led_off(&adapter->hw);
- clear_bit(E1000_LED_ON, &adapter->led_status);
- adapter->hw.mac.ops.cleanup_led(&adapter->hw);
-
- return 0;
-}
-
-static int e1000_nway_reset(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- if (netif_running(netdev))
- e1000e_reinit_locked(adapter);
- return 0;
-}
-
-static void e1000_get_ethtool_stats(struct net_device *netdev,
- struct ethtool_stats *stats,
- u64 *data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- int i;
-
- e1000e_update_stats(adapter);
- for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
- char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
- data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
- sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
- }
-}
-
-static void e1000_get_strings(struct net_device *netdev, u32 stringset,
- u8 *data)
-{
- u8 *p = data;
- int i;
-
- switch (stringset) {
- case ETH_SS_TEST:
- memcpy(data, *e1000_gstrings_test,
- sizeof(e1000_gstrings_test));
- break;
- case ETH_SS_STATS:
- for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
- memcpy(p, e1000_gstrings_stats[i].stat_string,
- ETH_GSTRING_LEN);
- p += ETH_GSTRING_LEN;
- }
- break;
- }
-}
-
-static const struct ethtool_ops e1000_ethtool_ops = {
- .get_settings = e1000_get_settings,
- .set_settings = e1000_set_settings,
- .get_drvinfo = e1000_get_drvinfo,
- .get_regs_len = e1000_get_regs_len,
- .get_regs = e1000_get_regs,
- .get_wol = e1000_get_wol,
- .set_wol = e1000_set_wol,
- .get_msglevel = e1000_get_msglevel,
- .set_msglevel = e1000_set_msglevel,
- .nway_reset = e1000_nway_reset,
- .get_link = e1000_get_link,
- .get_eeprom_len = e1000_get_eeprom_len,
- .get_eeprom = e1000_get_eeprom,
- .set_eeprom = e1000_set_eeprom,
- .get_ringparam = e1000_get_ringparam,
- .set_ringparam = e1000_set_ringparam,
- .get_pauseparam = e1000_get_pauseparam,
- .set_pauseparam = e1000_set_pauseparam,
- .get_rx_csum = e1000_get_rx_csum,
- .set_rx_csum = e1000_set_rx_csum,
- .get_tx_csum = e1000_get_tx_csum,
- .set_tx_csum = e1000_set_tx_csum,
- .get_sg = ethtool_op_get_sg,
- .set_sg = ethtool_op_set_sg,
- .get_tso = ethtool_op_get_tso,
- .set_tso = e1000_set_tso,
- .self_test = e1000_diag_test,
- .get_strings = e1000_get_strings,
- .phys_id = e1000_phys_id,
- .get_ethtool_stats = e1000_get_ethtool_stats,
- .get_sset_count = e1000e_get_sset_count,
-};
-
-void e1000e_set_ethtool_ops(struct net_device *netdev)
-{
- SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
-}
diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h
deleted file mode 100644
index 916025b30fc..00000000000
--- a/drivers/net/e1000e/hw.h
+++ /dev/null
@@ -1,868 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#ifndef _E1000_HW_H_
-#define _E1000_HW_H_
-
-#include <linux/types.h>
-
-struct e1000_hw;
-struct e1000_adapter;
-
-#include "defines.h"
-
-#define er32(reg) __er32(hw, E1000_##reg)
-#define ew32(reg,val) __ew32(hw, E1000_##reg, (val))
-#define e1e_flush() er32(STATUS)
-
-#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
- (writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
-
-#define E1000_READ_REG_ARRAY(a, reg, offset) \
- (readl((a)->hw_addr + reg + ((offset) << 2)))
-
-enum e1e_registers {
- E1000_CTRL = 0x00000, /* Device Control - RW */
- E1000_STATUS = 0x00008, /* Device Status - RO */
- E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */
- E1000_EERD = 0x00014, /* EEPROM Read - RW */
- E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
- E1000_FLA = 0x0001C, /* Flash Access - RW */
- E1000_MDIC = 0x00020, /* MDI Control - RW */
- E1000_SCTL = 0x00024, /* SerDes Control - RW */
- E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */
- E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */
- E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */
- E1000_FCT = 0x00030, /* Flow Control Type - RW */
- E1000_VET = 0x00038, /* VLAN Ether Type - RW */
- E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */
- E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */
- E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */
- E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */
- E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */
- E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */
- E1000_RCTL = 0x00100, /* RX Control - RW */
- E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */
- E1000_TXCW = 0x00178, /* TX Configuration Word - RW */
- E1000_RXCW = 0x00180, /* RX Configuration Word - RO */
- E1000_TCTL = 0x00400, /* TX Control - RW */
- E1000_TCTL_EXT = 0x00404, /* Extended TX Control - RW */
- E1000_TIPG = 0x00410, /* TX Inter-packet gap -RW */
- E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle - RW */
- E1000_LEDCTL = 0x00E00, /* LED Control - RW */
- E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */
- E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */
- E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */
- E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */
- E1000_PBS = 0x01008, /* Packet Buffer Size */
- E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
- E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */
- E1000_FLOP = 0x0103C, /* FLASH Opcode Register */
- E1000_ERT = 0x02008, /* Early Rx Threshold - RW */
- E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */
- E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */
- E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */
- E1000_RDBAL = 0x02800, /* RX Descriptor Base Address Low - RW */
- E1000_RDBAH = 0x02804, /* RX Descriptor Base Address High - RW */
- E1000_RDLEN = 0x02808, /* RX Descriptor Length - RW */
- E1000_RDH = 0x02810, /* RX Descriptor Head - RW */
- E1000_RDT = 0x02818, /* RX Descriptor Tail - RW */
- E1000_RDTR = 0x02820, /* RX Delay Timer - RW */
- E1000_RADV = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */
-
-/* Convenience macros
- *
- * Note: "_n" is the queue number of the register to be written to.
- *
- * Example usage:
- * E1000_RDBAL_REG(current_rx_queue)
- *
- */
-#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8))
- E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */
- E1000_TDBAL = 0x03800, /* TX Descriptor Base Address Low - RW */
- E1000_TDBAH = 0x03804, /* TX Descriptor Base Address High - RW */
- E1000_TDLEN = 0x03808, /* TX Descriptor Length - RW */
- E1000_TDH = 0x03810, /* TX Descriptor Head - RW */
- E1000_TDT = 0x03818, /* TX Descriptor Tail - RW */
- E1000_TIDV = 0x03820, /* TX Interrupt Delay Value - RW */
- E1000_TXDCTL = 0x03828, /* TX Descriptor Control - RW */
- E1000_TADV = 0x0382C, /* TX Interrupt Absolute Delay Val - RW */
- E1000_TARC0 = 0x03840, /* TX Arbitration Count (0) */
- E1000_TXDCTL1 = 0x03928, /* TX Descriptor Control (1) - RW */
- E1000_TARC1 = 0x03940, /* TX Arbitration Count (1) */
- E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */
- E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
- E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */
- E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */
- E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */
- E1000_SCC = 0x04014, /* Single Collision Count - R/clr */
- E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */
- E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */
- E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */
- E1000_COLC = 0x04028, /* Collision Count - R/clr */
- E1000_DC = 0x04030, /* Defer Count - R/clr */
- E1000_TNCRS = 0x04034, /* TX-No CRS - R/clr */
- E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */
- E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */
- E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */
- E1000_XONRXC = 0x04048, /* XON RX Count - R/clr */
- E1000_XONTXC = 0x0404C, /* XON TX Count - R/clr */
- E1000_XOFFRXC = 0x04050, /* XOFF RX Count - R/clr */
- E1000_XOFFTXC = 0x04054, /* XOFF TX Count - R/clr */
- E1000_FCRUC = 0x04058, /* Flow Control RX Unsupported Count- R/clr */
- E1000_PRC64 = 0x0405C, /* Packets RX (64 bytes) - R/clr */
- E1000_PRC127 = 0x04060, /* Packets RX (65-127 bytes) - R/clr */
- E1000_PRC255 = 0x04064, /* Packets RX (128-255 bytes) - R/clr */
- E1000_PRC511 = 0x04068, /* Packets RX (255-511 bytes) - R/clr */
- E1000_PRC1023 = 0x0406C, /* Packets RX (512-1023 bytes) - R/clr */
- E1000_PRC1522 = 0x04070, /* Packets RX (1024-1522 bytes) - R/clr */
- E1000_GPRC = 0x04074, /* Good Packets RX Count - R/clr */
- E1000_BPRC = 0x04078, /* Broadcast Packets RX Count - R/clr */
- E1000_MPRC = 0x0407C, /* Multicast Packets RX Count - R/clr */
- E1000_GPTC = 0x04080, /* Good Packets TX Count - R/clr */
- E1000_GORCL = 0x04088, /* Good Octets RX Count Low - R/clr */
- E1000_GORCH = 0x0408C, /* Good Octets RX Count High - R/clr */
- E1000_GOTCL = 0x04090, /* Good Octets TX Count Low - R/clr */
- E1000_GOTCH = 0x04094, /* Good Octets TX Count High - R/clr */
- E1000_RNBC = 0x040A0, /* RX No Buffers Count - R/clr */
- E1000_RUC = 0x040A4, /* RX Undersize Count - R/clr */
- E1000_RFC = 0x040A8, /* RX Fragment Count - R/clr */
- E1000_ROC = 0x040AC, /* RX Oversize Count - R/clr */
- E1000_RJC = 0x040B0, /* RX Jabber Count - R/clr */
- E1000_MGTPRC = 0x040B4, /* Management Packets RX Count - R/clr */
- E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */
- E1000_MGTPTC = 0x040BC, /* Management Packets TX Count - R/clr */
- E1000_TORL = 0x040C0, /* Total Octets RX Low - R/clr */
- E1000_TORH = 0x040C4, /* Total Octets RX High - R/clr */
- E1000_TOTL = 0x040C8, /* Total Octets TX Low - R/clr */
- E1000_TOTH = 0x040CC, /* Total Octets TX High - R/clr */
- E1000_TPR = 0x040D0, /* Total Packets RX - R/clr */
- E1000_TPT = 0x040D4, /* Total Packets TX - R/clr */
- E1000_PTC64 = 0x040D8, /* Packets TX (64 bytes) - R/clr */
- E1000_PTC127 = 0x040DC, /* Packets TX (65-127 bytes) - R/clr */
- E1000_PTC255 = 0x040E0, /* Packets TX (128-255 bytes) - R/clr */
- E1000_PTC511 = 0x040E4, /* Packets TX (256-511 bytes) - R/clr */
- E1000_PTC1023 = 0x040E8, /* Packets TX (512-1023 bytes) - R/clr */
- E1000_PTC1522 = 0x040EC, /* Packets TX (1024-1522 Bytes) - R/clr */
- E1000_MPTC = 0x040F0, /* Multicast Packets TX Count - R/clr */
- E1000_BPTC = 0x040F4, /* Broadcast Packets TX Count - R/clr */
- E1000_TSCTC = 0x040F8, /* TCP Segmentation Context TX - R/clr */
- E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context TX Fail - R/clr */
- E1000_IAC = 0x04100, /* Interrupt Assertion Count */
- E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
- E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
- E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
- E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
- E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */
- E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
- E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
- E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
- E1000_RXCSUM = 0x05000, /* RX Checksum Control - RW */
- E1000_RFCTL = 0x05008, /* Receive Filter Control */
- E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
- E1000_RA = 0x05400, /* Receive Address - RW Array */
- E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */
- E1000_WUC = 0x05800, /* Wakeup Control - RW */
- E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */
- E1000_WUS = 0x05810, /* Wakeup Status - RO */
- E1000_MANC = 0x05820, /* Management Control - RW */
- E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */
- E1000_HOST_IF = 0x08800, /* Host Interface */
-
- E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
- E1000_MANC2H = 0x05860, /* Management Control To Host - RW */
- E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
- E1000_GCR = 0x05B00, /* PCI-Ex Control */
- E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */
- E1000_SWSM = 0x05B50, /* SW Semaphore */
- E1000_FWSM = 0x05B54, /* FW Semaphore */
- E1000_HICR = 0x08F00, /* Host Interface Control */
-};
-
-/* RSS registers */
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
-#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
-
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
-
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
-
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_MDIX 0x0008
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-#define IGP02E1000_AGC_RANGE 15
-
-/* manage.c */
-#define E1000_VFTA_ENTRY_SHIFT 5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-
-#define E1000_HICR_EN 0x01 /* Enable bit - RO */
-#define E1000_HICR_C 0x02 /* Driver sets this bit when done
- * to put command in RAM */
-#define E1000_HICR_FW_RESET_ENABLE 0x40
-#define E1000_HICR_FW_RESET 0x80
-
-#define E1000_FWSM_MODE_MASK 0xE
-#define E1000_FWSM_MODE_SHIFT 1
-
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
-
-/* nvm.c */
-#define E1000_STM_OPCODE 0xDB00
-
-#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
-#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KMRNCTRLSTA_REN 0x00200000
-#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
-#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
-
-/* IFE PHY Extended Status Control */
-#define IFE_PESC_POLARITY_REVERSED 0x0100
-
-/* IFE PHY Special Control */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
-#define IFE_PSC_FORCE_POLARITY 0x0020
-
-/* IFE PHY Special Control and LED Control */
-#define IFE_PSCL_PROBE_MODE 0x0020
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-/* IFE PHY MDIX Control */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
-
-#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
-
-#define E1000_DEV_ID_82571EB_COPPER 0x105E
-#define E1000_DEV_ID_82571EB_FIBER 0x105F
-#define E1000_DEV_ID_82571EB_SERDES 0x1060
-#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
-#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
-#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
-#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
-#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
-#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
-#define E1000_DEV_ID_82572EI_COPPER 0x107D
-#define E1000_DEV_ID_82572EI_FIBER 0x107E
-#define E1000_DEV_ID_82572EI_SERDES 0x107F
-#define E1000_DEV_ID_82572EI 0x10B9
-#define E1000_DEV_ID_82573E 0x108B
-#define E1000_DEV_ID_82573E_IAMT 0x108C
-#define E1000_DEV_ID_82573L 0x109A
-
-#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
-#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
-#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
-#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
-
-#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
-#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
-#define E1000_DEV_ID_ICH8_IGP_C 0x104B
-#define E1000_DEV_ID_ICH8_IFE 0x104C
-#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
-#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
-#define E1000_DEV_ID_ICH8_IGP_M 0x104D
-#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
-#define E1000_DEV_ID_ICH9_IGP_C 0x294C
-#define E1000_DEV_ID_ICH9_IFE 0x10C0
-#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
-#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
-
-#define E1000_FUNC_1 1
-
-enum e1000_mac_type {
- e1000_82571,
- e1000_82572,
- e1000_82573,
- e1000_80003es2lan,
- e1000_ich8lan,
- e1000_ich9lan,
-};
-
-enum e1000_media_type {
- e1000_media_type_unknown = 0,
- e1000_media_type_copper = 1,
- e1000_media_type_fiber = 2,
- e1000_media_type_internal_serdes = 3,
- e1000_num_media_types
-};
-
-enum e1000_nvm_type {
- e1000_nvm_unknown = 0,
- e1000_nvm_none,
- e1000_nvm_eeprom_spi,
- e1000_nvm_flash_hw,
- e1000_nvm_flash_sw
-};
-
-enum e1000_nvm_override {
- e1000_nvm_override_none = 0,
- e1000_nvm_override_spi_small,
- e1000_nvm_override_spi_large
-};
-
-enum e1000_phy_type {
- e1000_phy_unknown = 0,
- e1000_phy_none,
- e1000_phy_m88,
- e1000_phy_igp,
- e1000_phy_igp_2,
- e1000_phy_gg82563,
- e1000_phy_igp_3,
- e1000_phy_ife,
-};
-
-enum e1000_bus_width {
- e1000_bus_width_unknown = 0,
- e1000_bus_width_pcie_x1,
- e1000_bus_width_pcie_x2,
- e1000_bus_width_pcie_x4 = 4,
- e1000_bus_width_32,
- e1000_bus_width_64,
- e1000_bus_width_reserved
-};
-
-enum e1000_1000t_rx_status {
- e1000_1000t_rx_status_not_ok = 0,
- e1000_1000t_rx_status_ok,
- e1000_1000t_rx_status_undefined = 0xFF
-};
-
-enum e1000_rev_polarity{
- e1000_rev_polarity_normal = 0,
- e1000_rev_polarity_reversed,
- e1000_rev_polarity_undefined = 0xFF
-};
-
-enum e1000_fc_mode {
- e1000_fc_none = 0,
- e1000_fc_rx_pause,
- e1000_fc_tx_pause,
- e1000_fc_full,
- e1000_fc_default = 0xFF
-};
-
-enum e1000_ms_type {
- e1000_ms_hw_default = 0,
- e1000_ms_force_master,
- e1000_ms_force_slave,
- e1000_ms_auto
-};
-
-enum e1000_smart_speed {
- e1000_smart_speed_default = 0,
- e1000_smart_speed_on,
- e1000_smart_speed_off
-};
-
-/* Receive Descriptor */
-struct e1000_rx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- __le16 length; /* Length of data DMAed into data buffer */
- __le16 csum; /* Packet checksum */
- u8 status; /* Descriptor status */
- u8 errors; /* Descriptor Errors */
- __le16 special;
-};
-
-/* Receive Descriptor - Extended */
-union e1000_rx_desc_extended {
- struct {
- __le64 buffer_addr;
- __le64 reserved;
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length;
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union e1000_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- __le64 buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length0; /* length of buffer 0 */
- __le16 vlan; /* VLAN tag */
- } middle;
- struct {
- __le16 header_status;
- __le16 length[3]; /* length of buffers 1-3 */
- } upper;
- __le64 reserved;
- } wb; /* writeback */
-};
-
-/* Transmit Descriptor */
-struct e1000_tx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 cso; /* Checksum offset */
- u8 cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 css; /* Checksum start */
- __le16 special;
- } fields;
- } upper;
-};
-
-/* Offload Context Descriptor */
-struct e1000_context_desc {
- union {
- __le32 ip_config;
- struct {
- u8 ipcss; /* IP checksum start */
- u8 ipcso; /* IP checksum offset */
- __le16 ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- __le32 tcp_config;
- struct {
- u8 tucss; /* TCP checksum start */
- u8 tucso; /* TCP checksum offset */
- __le16 tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- __le32 cmd_and_length;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 hdr_len; /* Header length */
- __le16 mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct e1000_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's buffer address */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 typ_len_ext;
- u8 cmd;
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 popts; /* Packet Options */
- __le16 special; /* */
- } fields;
- } upper;
-};
-
-/* Statistics counters collected by the MAC */
-struct e1000_hw_stats {
- u64 crcerrs;
- u64 algnerrc;
- u64 symerrs;
- u64 rxerrc;
- u64 mpc;
- u64 scc;
- u64 ecol;
- u64 mcc;
- u64 latecol;
- u64 colc;
- u64 dc;
- u64 tncrs;
- u64 sec;
- u64 cexterr;
- u64 rlec;
- u64 xonrxc;
- u64 xontxc;
- u64 xoffrxc;
- u64 xofftxc;
- u64 fcruc;
- u64 prc64;
- u64 prc127;
- u64 prc255;
- u64 prc511;
- u64 prc1023;
- u64 prc1522;
- u64 gprc;
- u64 bprc;
- u64 mprc;
- u64 gptc;
- u64 gorcl;
- u64 gorch;
- u64 gotcl;
- u64 gotch;
- u64 rnbc;
- u64 ruc;
- u64 rfc;
- u64 roc;
- u64 rjc;
- u64 mgprc;
- u64 mgpdc;
- u64 mgptc;
- u64 torl;
- u64 torh;
- u64 totl;
- u64 toth;
- u64 tpr;
- u64 tpt;
- u64 ptc64;
- u64 ptc127;
- u64 ptc255;
- u64 ptc511;
- u64 ptc1023;
- u64 ptc1522;
- u64 mptc;
- u64 bptc;
- u64 tsctc;
- u64 tsctfc;
- u64 iac;
- u64 icrxptc;
- u64 icrxatc;
- u64 ictxptc;
- u64 ictxatc;
- u64 ictxqec;
- u64 ictxqmtc;
- u64 icrxdmtc;
- u64 icrxoc;
-};
-
-struct e1000_phy_stats {
- u32 idle_errors;
- u32 receive_errors;
-};
-
-struct e1000_host_mng_dhcp_cookie {
- u32 signature;
- u8 status;
- u8 reserved0;
- u16 vlan_id;
- u32 reserved1;
- u16 reserved2;
- u8 reserved3;
- u8 checksum;
-};
-
-/* Host Interface "Rev 1" */
-struct e1000_host_command_header {
- u8 command_id;
- u8 command_length;
- u8 command_options;
- u8 checksum;
-};
-
-#define E1000_HI_MAX_DATA_LENGTH 252
-struct e1000_host_command_info {
- struct e1000_host_command_header command_header;
- u8 command_data[E1000_HI_MAX_DATA_LENGTH];
-};
-
-/* Host Interface "Rev 2" */
-struct e1000_host_mng_command_header {
- u8 command_id;
- u8 checksum;
- u16 reserved1;
- u16 reserved2;
- u16 command_length;
-};
-
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
-struct e1000_host_mng_command_info {
- struct e1000_host_mng_command_header command_header;
- u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
-};
-
-/* Function pointers and static data for the MAC. */
-struct e1000_mac_operations {
- u32 mng_mode_enab;
-
- s32 (*check_for_link)(struct e1000_hw *);
- s32 (*cleanup_led)(struct e1000_hw *);
- void (*clear_hw_cntrs)(struct e1000_hw *);
- s32 (*get_bus_info)(struct e1000_hw *);
- s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
- s32 (*led_on)(struct e1000_hw *);
- s32 (*led_off)(struct e1000_hw *);
- void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32,
- u32);
- s32 (*reset_hw)(struct e1000_hw *);
- s32 (*init_hw)(struct e1000_hw *);
- s32 (*setup_link)(struct e1000_hw *);
- s32 (*setup_physical_interface)(struct e1000_hw *);
-};
-
-/* Function pointers for the PHY. */
-struct e1000_phy_operations {
- s32 (*acquire_phy)(struct e1000_hw *);
- s32 (*check_reset_block)(struct e1000_hw *);
- s32 (*commit_phy)(struct e1000_hw *);
- s32 (*force_speed_duplex)(struct e1000_hw *);
- s32 (*get_cfg_done)(struct e1000_hw *hw);
- s32 (*get_cable_length)(struct e1000_hw *);
- s32 (*get_phy_info)(struct e1000_hw *);
- s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
- void (*release_phy)(struct e1000_hw *);
- s32 (*reset_phy)(struct e1000_hw *);
- s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
- s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
- s32 (*write_phy_reg)(struct e1000_hw *, u32, u16);
-};
-
-/* Function pointers for the NVM. */
-struct e1000_nvm_operations {
- s32 (*acquire_nvm)(struct e1000_hw *);
- s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
- void (*release_nvm)(struct e1000_hw *);
- s32 (*update_nvm)(struct e1000_hw *);
- s32 (*valid_led_default)(struct e1000_hw *, u16 *);
- s32 (*validate_nvm)(struct e1000_hw *);
- s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
-};
-
-struct e1000_mac_info {
- struct e1000_mac_operations ops;
-
- u8 addr[6];
- u8 perm_addr[6];
-
- enum e1000_mac_type type;
- enum e1000_fc_mode fc;
- enum e1000_fc_mode original_fc;
-
- u32 collision_delta;
- u32 ledctl_default;
- u32 ledctl_mode1;
- u32 ledctl_mode2;
- u32 max_frame_size;
- u32 mc_filter_type;
- u32 min_frame_size;
- u32 tx_packet_delta;
- u32 txcw;
-
- u16 current_ifs_val;
- u16 ifs_max_val;
- u16 ifs_min_val;
- u16 ifs_ratio;
- u16 ifs_step_size;
- u16 mta_reg_count;
- u16 rar_entry_count;
- u16 fc_high_water;
- u16 fc_low_water;
- u16 fc_pause_time;
-
- u8 forced_speed_duplex;
-
- bool arc_subsystem_valid;
- bool autoneg;
- bool autoneg_failed;
- bool get_link_status;
- bool in_ifs_mode;
- bool serdes_has_link;
- bool tx_pkt_filtering;
-};
-
-struct e1000_phy_info {
- struct e1000_phy_operations ops;
-
- enum e1000_phy_type type;
-
- enum e1000_1000t_rx_status local_rx;
- enum e1000_1000t_rx_status remote_rx;
- enum e1000_ms_type ms_type;
- enum e1000_ms_type original_ms_type;
- enum e1000_rev_polarity cable_polarity;
- enum e1000_smart_speed smart_speed;
-
- u32 addr;
- u32 id;
- u32 reset_delay_us; /* in usec */
- u32 revision;
-
- u16 autoneg_advertised;
- u16 autoneg_mask;
- u16 cable_length;
- u16 max_cable_length;
- u16 min_cable_length;
-
- u8 mdix;
-
- bool disable_polarity_correction;
- bool is_mdix;
- bool polarity_correction;
- bool speed_downgraded;
- bool wait_for_link;
-};
-
-struct e1000_nvm_info {
- struct e1000_nvm_operations ops;
-
- enum e1000_nvm_type type;
- enum e1000_nvm_override override;
-
- u32 flash_bank_size;
- u32 flash_base_addr;
-
- u16 word_size;
- u16 delay_usec;
- u16 address_bits;
- u16 opcode_bits;
- u16 page_size;
-};
-
-struct e1000_bus_info {
- enum e1000_bus_width width;
-
- u16 func;
-};
-
-struct e1000_dev_spec_82571 {
- bool laa_is_present;
- bool alt_mac_addr_is_present;
-};
-
-struct e1000_shadow_ram {
- u16 value;
- bool modified;
-};
-
-#define E1000_ICH8_SHADOW_RAM_WORDS 2048
-
-struct e1000_dev_spec_ich8lan {
- bool kmrn_lock_loss_workaround_enabled;
- struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
-};
-
-struct e1000_hw {
- struct e1000_adapter *adapter;
-
- u8 __iomem *hw_addr;
- u8 __iomem *flash_address;
-
- struct e1000_mac_info mac;
- struct e1000_phy_info phy;
- struct e1000_nvm_info nvm;
- struct e1000_bus_info bus;
- struct e1000_host_mng_dhcp_cookie mng_cookie;
-
- union {
- struct e1000_dev_spec_82571 e82571;
- struct e1000_dev_spec_ich8lan ich8lan;
- } dev_spec;
-
- enum e1000_media_type media_type;
-};
-
-#ifdef DEBUG
-#define hw_dbg(hw, format, arg...) \
- printk(KERN_DEBUG "%s: " format, e1000e_get_hw_dev_name(hw), ##arg)
-#else
-static inline int __attribute__ ((format (printf, 2, 3)))
-hw_dbg(struct e1000_hw *hw, const char *format, ...)
-{
- return 0;
-}
-#endif
-
-#endif
diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c
deleted file mode 100644
index 0ae39550768..00000000000
--- a/drivers/net/e1000e/ich8lan.c
+++ /dev/null
@@ -1,2225 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/*
- * 82562G-2 10/100 Network Connection
- * 82562GT 10/100 Network Connection
- * 82562GT-2 10/100 Network Connection
- * 82562V 10/100 Network Connection
- * 82562V-2 10/100 Network Connection
- * 82566DC-2 Gigabit Network Connection
- * 82566DC Gigabit Network Connection
- * 82566DM-2 Gigabit Network Connection
- * 82566DM Gigabit Network Connection
- * 82566MC Gigabit Network Connection
- * 82566MM Gigabit Network Connection
- */
-
-#include <linux/netdevice.h>
-#include <linux/ethtool.h>
-#include <linux/delay.h>
-#include <linux/pci.h>
-
-#include "e1000.h"
-
-#define ICH_FLASH_GFPREG 0x0000
-#define ICH_FLASH_HSFSTS 0x0004
-#define ICH_FLASH_HSFCTL 0x0006
-#define ICH_FLASH_FADDR 0x0008
-#define ICH_FLASH_FDATA0 0x0010
-
-#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
-#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
-#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
-#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
-
-#define ICH_CYCLE_READ 0
-#define ICH_CYCLE_WRITE 2
-#define ICH_CYCLE_ERASE 3
-
-#define FLASH_GFPREG_BASE_MASK 0x1FFF
-#define FLASH_SECTOR_ADDR_SHIFT 12
-
-#define ICH_FLASH_SEG_SIZE_256 256
-#define ICH_FLASH_SEG_SIZE_4K 4096
-#define ICH_FLASH_SEG_SIZE_8K 8192
-#define ICH_FLASH_SEG_SIZE_64K 65536
-
-
-#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
-
-#define E1000_ICH_MNG_IAMT_MODE 0x2
-
-#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
- (ID_LED_DEF1_OFF2 << 8) | \
- (ID_LED_DEF1_ON2 << 4) | \
- (ID_LED_DEF1_DEF2))
-
-#define E1000_ICH_NVM_SIG_WORD 0x13
-#define E1000_ICH_NVM_SIG_MASK 0xC000
-
-#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
-
-#define E1000_FEXTNVM_SW_CONFIG 1
-#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
-
-#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
-
-#define E1000_ICH_RAR_ENTRIES 7
-
-#define PHY_PAGE_SHIFT 5
-#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
- ((reg) & MAX_PHY_REG_ADDRESS))
-#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
-#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
-
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
-#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
-#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
-
-/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
-/* Offset 04h HSFSTS */
-union ich8_hws_flash_status {
- struct ich8_hsfsts {
- u16 flcdone :1; /* bit 0 Flash Cycle Done */
- u16 flcerr :1; /* bit 1 Flash Cycle Error */
- u16 dael :1; /* bit 2 Direct Access error Log */
- u16 berasesz :2; /* bit 4:3 Sector Erase Size */
- u16 flcinprog :1; /* bit 5 flash cycle in Progress */
- u16 reserved1 :2; /* bit 13:6 Reserved */
- u16 reserved2 :6; /* bit 13:6 Reserved */
- u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
- u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
- } hsf_status;
- u16 regval;
-};
-
-/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
-/* Offset 06h FLCTL */
-union ich8_hws_flash_ctrl {
- struct ich8_hsflctl {
- u16 flcgo :1; /* 0 Flash Cycle Go */
- u16 flcycle :2; /* 2:1 Flash Cycle */
- u16 reserved :5; /* 7:3 Reserved */
- u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
- u16 flockdn :6; /* 15:10 Reserved */
- } hsf_ctrl;
- u16 regval;
-};
-
-/* ICH Flash Region Access Permissions */
-union ich8_hws_flash_regacc {
- struct ich8_flracc {
- u32 grra :8; /* 0:7 GbE region Read Access */
- u32 grwa :8; /* 8:15 GbE region Write Access */
- u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
- u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
- } hsf_flregacc;
- u16 regval;
-};
-
-static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
-static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
-static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
-static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
-static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
-static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte);
-static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
- u16 *data);
-static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data);
-static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
-static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
-
-static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
-{
- return readw(hw->flash_address + reg);
-}
-
-static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
-{
- return readl(hw->flash_address + reg);
-}
-
-static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
-{
- writew(val, hw->flash_address + reg);
-}
-
-static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
-{
- writel(val, hw->flash_address + reg);
-}
-
-#define er16flash(reg) __er16flash(hw, (reg))
-#define er32flash(reg) __er32flash(hw, (reg))
-#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
-#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
-
-/**
- * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific PHY parameters and function pointers.
- **/
-static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 i = 0;
-
- phy->addr = 1;
- phy->reset_delay_us = 100;
-
- phy->id = 0;
- while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
- (i++ < 100)) {
- msleep(1);
- ret_val = e1000e_get_phy_id(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Verify phy id */
- switch (phy->id) {
- case IGP03E1000_E_PHY_ID:
- phy->type = e1000_phy_igp_3;
- phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy->type = e1000_phy_ife;
- phy->autoneg_mask = E1000_ALL_NOT_GIG;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific NVM parameters and function
- * pointers.
- **/
-static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 gfpreg;
- u32 sector_base_addr;
- u32 sector_end_addr;
- u16 i;
-
- /* Can't read flash registers if the register set isn't mapped.
- */
- if (!hw->flash_address) {
- hw_dbg(hw, "ERROR: Flash registers not mapped\n");
- return -E1000_ERR_CONFIG;
- }
-
- nvm->type = e1000_nvm_flash_sw;
-
- gfpreg = er32flash(ICH_FLASH_GFPREG);
-
- /* sector_X_addr is a "sector"-aligned address (4096 bytes)
- * Add 1 to sector_end_addr since this sector is included in
- * the overall size. */
- sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
- sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
-
- /* flash_base_addr is byte-aligned */
- nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
-
- /* find total size of the NVM, then cut in half since the total
- * size represents two separate NVM banks. */
- nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
- << FLASH_SECTOR_ADDR_SHIFT;
- nvm->flash_bank_size /= 2;
- /* Adjust to word count */
- nvm->flash_bank_size /= sizeof(u16);
-
- nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
-
- /* Clear shadow ram */
- for (i = 0; i < nvm->word_size; i++) {
- dev_spec->shadow_ram[i].modified = 0;
- dev_spec->shadow_ram[i].value = 0xFFFF;
- }
-
- return 0;
-}
-
-/**
- * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * Initialize family-specific MAC parameters and function
- * pointers.
- **/
-static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &hw->mac;
-
- /* Set media type function pointer */
- hw->media_type = e1000_media_type_copper;
-
- /* Set mta register count */
- mac->mta_reg_count = 32;
- /* Set rar entry count */
- mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
- if (mac->type == e1000_ich8lan)
- mac->rar_entry_count--;
- /* Set if manageability features are enabled. */
- mac->arc_subsystem_valid = 1;
-
- /* Enable PCS Lock-loss workaround for ICH8 */
- if (mac->type == e1000_ich8lan)
- e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
-
- return 0;
-}
-
-static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- s32 rc;
-
- rc = e1000_init_mac_params_ich8lan(adapter);
- if (rc)
- return rc;
-
- rc = e1000_init_nvm_params_ich8lan(hw);
- if (rc)
- return rc;
-
- rc = e1000_init_phy_params_ich8lan(hw);
- if (rc)
- return rc;
-
- if ((adapter->hw.mac.type == e1000_ich8lan) &&
- (adapter->hw.phy.type == e1000_phy_igp_3))
- adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
-
- return 0;
-}
-
-/**
- * e1000_acquire_swflag_ich8lan - Acquire software control flag
- * @hw: pointer to the HW structure
- *
- * Acquires the software control flag for performing NVM and PHY
- * operations. This is a function pointer entry point only called by
- * read/write routines for the PHY and NVM parts.
- **/
-static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
- u32 timeout = PHY_CFG_TIMEOUT;
-
- while (timeout) {
- extcnf_ctrl = er32(EXTCNF_CTRL);
- extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
- if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
- break;
- mdelay(1);
- timeout--;
- }
-
- if (!timeout) {
- hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
- return -E1000_ERR_CONFIG;
- }
-
- return 0;
-}
-
-/**
- * e1000_release_swflag_ich8lan - Release software control flag
- * @hw: pointer to the HW structure
- *
- * Releases the software control flag for performing NVM and PHY operations.
- * This is a function pointer entry point only called by read/write
- * routines for the PHY and NVM parts.
- **/
-static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
-{
- u32 extcnf_ctrl;
-
- extcnf_ctrl = er32(EXTCNF_CTRL);
- extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
- ew32(EXTCNF_CTRL, extcnf_ctrl);
-}
-
-/**
- * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Checks if firmware is blocking the reset of the PHY.
- * This is a function pointer entry point only called by
- * reset routines.
- **/
-static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
-{
- u32 fwsm;
-
- fwsm = er32(FWSM);
-
- return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
-}
-
-/**
- * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
- * @hw: pointer to the HW structure
- *
- * Forces the speed and duplex settings of the PHY.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- if (phy->type != e1000_phy_ife) {
- ret_val = e1000e_phy_force_speed_duplex_igp(hw);
- return ret_val;
- }
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, data);
- if (ret_val)
- return ret_val;
-
- /* Disable MDI-X support for 10/100 */
- ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IFE_PMC_AUTO_MDIX;
- data &= ~IFE_PMC_FORCE_MDIX;
-
- ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
- if (ret_val)
- return ret_val;
-
- hw_dbg(hw, "IFE PMC: %X\n", data);
-
- udelay(1);
-
- if (phy->wait_for_link) {
- hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- hw_dbg(hw, "Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
- }
-
- return 0;
-}
-
-/**
- * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
- * @hw: pointer to the HW structure
- *
- * Resets the PHY
- * This is a function pointer entry point called by drivers
- * or other shared routines.
- **/
-static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i;
- u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
- s32 ret_val;
- u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
- u16 word_addr, reg_data, reg_addr, phy_page = 0;
-
- ret_val = e1000e_phy_hw_reset_generic(hw);
- if (ret_val)
- return ret_val;
-
- /* Initialize the PHY from the NVM on ICH platforms. This
- * is needed due to an issue where the NVM configuration is
- * not properly autoloaded after power transitions.
- * Therefore, after each PHY reset, we will load the
- * configuration data out of the NVM manually.
- */
- if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
- struct e1000_adapter *adapter = hw->adapter;
-
- /* Check if SW needs configure the PHY */
- if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
- (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
- sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
- else
- sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
-
- data = er32(FEXTNVM);
- if (!(data & sw_cfg_mask))
- return 0;
-
- /* Wait for basic configuration completes before proceeding*/
- do {
- data = er32(STATUS);
- data &= E1000_STATUS_LAN_INIT_DONE;
- udelay(100);
- } while ((!data) && --loop);
-
- /* If basic configuration is incomplete before the above loop
- * count reaches 0, loading the configuration from NVM will
- * leave the PHY in a bad state possibly resulting in no link.
- */
- if (loop == 0) {
- hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
- }
-
- /* Clear the Init Done bit for the next init event */
- data = er32(STATUS);
- data &= ~E1000_STATUS_LAN_INIT_DONE;
- ew32(STATUS, data);
-
- /* Make sure HW does not configure LCD from PHY
- * extended configuration before SW configuration */
- data = er32(EXTCNF_CTRL);
- if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
- return 0;
-
- cnf_size = er32(EXTCNF_SIZE);
- cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
- cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
- if (!cnf_size)
- return 0;
-
- cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
- cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
-
- /* Configure LCD from extended configuration
- * region. */
-
- /* cnf_base_addr is in DWORD */
- word_addr = (u16)(cnf_base_addr << 1);
-
- for (i = 0; i < cnf_size; i++) {
- ret_val = e1000_read_nvm(hw,
- (word_addr + i * 2),
- 1,
- &reg_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_nvm(hw,
- (word_addr + i * 2 + 1),
- 1,
- &reg_addr);
- if (ret_val)
- return ret_val;
-
- /* Save off the PHY page for future writes. */
- if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
- phy_page = reg_data;
- continue;
- }
-
- reg_addr |= phy_page;
-
- ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
- * @hw: pointer to the HW structure
- *
- * Populates "phy" structure with various feature states.
- * This function is only called by other family-specific
- * routines.
- **/
-static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- hw_dbg(hw, "Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
- if (ret_val)
- return ret_val;
- phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
-
- if (phy->polarity_correction) {
- ret_val = e1000_check_polarity_ife_ich8lan(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* Polarity is forced */
- phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
- }
-
- ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
-
- /* The following parameters are undefined for 10/100 operation. */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
-
- return 0;
-}
-
-/**
- * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
- * @hw: pointer to the HW structure
- *
- * Wrapper for calling the get_phy_info routines for the appropriate phy type.
- * This is a function pointer entry point called by drivers
- * or other shared routines.
- **/
-static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
-{
- switch (hw->phy.type) {
- case e1000_phy_ife:
- return e1000_get_phy_info_ife_ich8lan(hw);
- break;
- case e1000_phy_igp_3:
- return e1000e_get_phy_info_igp(hw);
- break;
- default:
- break;
- }
-
- return -E1000_ERR_PHY_TYPE;
-}
-
-/**
- * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
- * @hw: pointer to the HW structure
- *
- * Polarity is determined on the polarity reversal feature being enabled.
- * This function is only called by other family-specific
- * routines.
- **/
-static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- /* Polarity is determined based on the reversal feature
- * being enabled.
- */
- if (phy->polarity_correction) {
- offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
- mask = IFE_PESC_POLARITY_REVERSED;
- } else {
- offset = IFE_PHY_SPECIAL_CONTROL;
- mask = IFE_PSC_FORCE_POLARITY;
- }
-
- ret_val = e1e_rphy(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->cable_polarity = (phy_data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
- * @hw: pointer to the HW structure
- * @active: TRUE to enable LPLU, FALSE to disable
- *
- * Sets the LPLU D0 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 phy_ctrl;
- s32 ret_val = 0;
- u16 data;
-
- if (phy->type != e1000_phy_igp_3)
- return ret_val;
-
- phy_ctrl = er32(PHY_CTRL);
-
- if (active) {
- phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
-
- /* Call gig speed drop workaround on LPLU before accessing
- * any PHY registers */
- if ((hw->mac.type == e1000_ich8lan) &&
- (hw->phy.type == e1000_phy_igp_3))
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- if (ret_val)
- return ret_val;
- } else {
- phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained. */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
- * @hw: pointer to the HW structure
- * @active: TRUE to enable LPLU, FALSE to disable
- *
- * Sets the LPLU D3 state according to the active flag. When
- * activating LPLU this function also disables smart speed
- * and vice versa. LPLU will not be activated unless the
- * device autonegotiation advertisement meets standards of
- * either 10 or 10/100 or 10/100/1000 at all duplexes.
- * This is a function pointer entry point only called by
- * PHY setup routines.
- **/
-static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 phy_ctrl;
- s32 ret_val;
- u16 data;
-
- phy_ctrl = er32(PHY_CTRL);
-
- if (!active) {
- phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained. */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
- ew32(PHY_CTRL, phy_ctrl);
-
- /* Call gig speed drop workaround on LPLU before accessing
- * any PHY registers */
- if ((hw->mac.type == e1000_ich8lan) &&
- (hw->phy.type == e1000_phy_igp_3))
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- data);
- }
-
- return 0;
-}
-
-/**
- * e1000_read_nvm_ich8lan - Read word(s) from the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the word(s) to read.
- * @words: Size of data to read in words
- * @data: Pointer to the word(s) to read at offset.
- *
- * Reads a word(s) from the NVM using the flash access registers.
- **/
-static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 act_offset;
- s32 ret_val;
- u16 i, word;
-
- if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
- (words == 0)) {
- hw_dbg(hw, "nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = e1000_acquire_swflag_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Start with the bank offset, then add the relative offset. */
- act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
- ? nvm->flash_bank_size
- : 0;
- act_offset += offset;
-
- for (i = 0; i < words; i++) {
- if ((dev_spec->shadow_ram) &&
- (dev_spec->shadow_ram[offset+i].modified)) {
- data[i] = dev_spec->shadow_ram[offset+i].value;
- } else {
- ret_val = e1000_read_flash_word_ich8lan(hw,
- act_offset + i,
- &word);
- if (ret_val)
- break;
- data[i] = word;
- }
- }
-
- e1000_release_swflag_ich8lan(hw);
-
- return ret_val;
-}
-
-/**
- * e1000_flash_cycle_init_ich8lan - Initialize flash
- * @hw: pointer to the HW structure
- *
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
- **/
-static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
-{
- union ich8_hws_flash_status hsfsts;
- s32 ret_val = -E1000_ERR_NVM;
- s32 i = 0;
-
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
-
- /* Check if the flash descriptor is valid */
- if (hsfsts.hsf_status.fldesvalid == 0) {
- hw_dbg(hw, "Flash descriptor invalid. "
- "SW Sequencing must be used.");
- return -E1000_ERR_NVM;
- }
-
- /* Clear FCERR and DAEL in hw status by writing 1 */
- hsfsts.hsf_status.flcerr = 1;
- hsfsts.hsf_status.dael = 1;
-
- ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
-
- /* Either we should have a hardware SPI cycle in progress
- * bit to check against, in order to start a new cycle or
- * FDONE bit should be changed in the hardware so that it
- * is 1 after hardware reset, which can then be used as an
- * indication whether a cycle is in progress or has been
- * completed.
- */
-
- if (hsfsts.hsf_status.flcinprog == 0) {
- /* There is no cycle running at present,
- * so we can start a cycle */
- /* Begin by setting Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
- ret_val = 0;
- } else {
- /* otherwise poll for sometime so the current
- * cycle has a chance to end before giving up. */
- for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcinprog == 0) {
- ret_val = 0;
- break;
- }
- udelay(1);
- }
- if (ret_val == 0) {
- /* Successful in waiting for previous cycle to timeout,
- * now set the Flash Cycle Done. */
- hsfsts.hsf_status.flcdone = 1;
- ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
- } else {
- hw_dbg(hw, "Flash controller busy, cannot get access");
- }
- }
-
- return ret_val;
-}
-
-/**
- * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
- * @hw: pointer to the HW structure
- * @timeout: maximum time to wait for completion
- *
- * This function starts a flash cycle and waits for its completion.
- **/
-static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
-{
- union ich8_hws_flash_ctrl hsflctl;
- union ich8_hws_flash_status hsfsts;
- s32 ret_val = -E1000_ERR_NVM;
- u32 i = 0;
-
- /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcgo = 1;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* wait till FDONE bit is set to 1 */
- do {
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcdone == 1)
- break;
- udelay(1);
- } while (i++ < timeout);
-
- if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
- return 0;
-
- return ret_val;
-}
-
-/**
- * e1000_read_flash_word_ich8lan - Read word from flash
- * @hw: pointer to the HW structure
- * @offset: offset to data location
- * @data: pointer to the location for storing the data
- *
- * Reads the flash word at offset into data. Offset is converted
- * to bytes before read.
- **/
-static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
- u16 *data)
-{
- /* Must convert offset into bytes. */
- offset <<= 1;
-
- return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
-}
-
-/**
- * e1000_read_flash_data_ich8lan - Read byte or word from NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the byte or word to read.
- * @size: Size of data to read, 1=byte 2=word
- * @data: Pointer to the word to store the value read.
- *
- * Reads a byte or word from the NVM using the flash access registers.
- **/
-static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 *data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- u32 flash_data = 0;
- s32 ret_val = -E1000_ERR_NVM;
- u8 count = 0;
-
- if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
- return -E1000_ERR_NVM;
-
- flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
-
- do {
- udelay(1);
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val != 0)
- break;
-
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
-
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_READ_COMMAND_TIMEOUT);
-
- /* Check if FCERR is set to 1, if set to 1, clear it
- * and try the whole sequence a few more times, else
- * read in (shift in) the Flash Data0, the order is
- * least significant byte first msb to lsb */
- if (ret_val == 0) {
- flash_data = er32flash(ICH_FLASH_FDATA0);
- if (size == 1) {
- *data = (u8)(flash_data & 0x000000FF);
- } else if (size == 2) {
- *data = (u16)(flash_data & 0x0000FFFF);
- }
- break;
- } else {
- /* If we've gotten here, then things are probably
- * completely hosed, but if the error condition is
- * detected, it won't hurt to give it another try...
- * ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1) {
- /* Repeat for some time before giving up. */
- continue;
- } else if (hsfsts.hsf_status.flcdone == 0) {
- hw_dbg(hw, "Timeout error - flash cycle "
- "did not complete.");
- break;
- }
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return ret_val;
-}
-
-/**
- * e1000_write_nvm_ich8lan - Write word(s) to the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the word(s) to write.
- * @words: Size of data to write in words
- * @data: Pointer to the word(s) to write at offset.
- *
- * Writes a byte or word to the NVM using the flash access registers.
- **/
-static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- s32 ret_val;
- u16 i;
-
- if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
- (words == 0)) {
- hw_dbg(hw, "nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = e1000_acquire_swflag_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- for (i = 0; i < words; i++) {
- dev_spec->shadow_ram[offset+i].modified = 1;
- dev_spec->shadow_ram[offset+i].value = data[i];
- }
-
- e1000_release_swflag_ich8lan(hw);
-
- return 0;
-}
-
-/**
- * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
- * @hw: pointer to the HW structure
- *
- * The NVM checksum is updated by calling the generic update_nvm_checksum,
- * which writes the checksum to the shadow ram. The changes in the shadow
- * ram are then committed to the EEPROM by processing each bank at a time
- * checking for the modified bit and writing only the pending changes.
- * After a successful commit, the shadow ram is cleared and is ready for
- * future writes.
- **/
-static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 i, act_offset, new_bank_offset, old_bank_offset;
- s32 ret_val;
- u16 data;
-
- ret_val = e1000e_update_nvm_checksum_generic(hw);
- if (ret_val)
- return ret_val;;
-
- if (nvm->type != e1000_nvm_flash_sw)
- return ret_val;;
-
- ret_val = e1000_acquire_swflag_ich8lan(hw);
- if (ret_val)
- return ret_val;;
-
- /* We're writing to the opposite bank so if we're on bank 1,
- * write to bank 0 etc. We also need to erase the segment that
- * is going to be written */
- if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
- new_bank_offset = nvm->flash_bank_size;
- old_bank_offset = 0;
- e1000_erase_flash_bank_ich8lan(hw, 1);
- } else {
- old_bank_offset = nvm->flash_bank_size;
- new_bank_offset = 0;
- e1000_erase_flash_bank_ich8lan(hw, 0);
- }
-
- for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
- /* Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM */
- if (dev_spec->shadow_ram[i].modified) {
- data = dev_spec->shadow_ram[i].value;
- } else {
- e1000_read_flash_word_ich8lan(hw,
- i + old_bank_offset,
- &data);
- }
-
- /* If the word is 0x13, then make sure the signature bits
- * (15:14) are 11b until the commit has completed.
- * This will allow us to write 10b which indicates the
- * signature is valid. We want to do this after the write
- * has completed so that we don't mark the segment valid
- * while the write is still in progress */
- if (i == E1000_ICH_NVM_SIG_WORD)
- data |= E1000_ICH_NVM_SIG_MASK;
-
- /* Convert offset to bytes. */
- act_offset = (i + new_bank_offset) << 1;
-
- udelay(100);
- /* Write the bytes to the new bank. */
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset,
- (u8)data);
- if (ret_val)
- break;
-
- udelay(100);
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset + 1,
- (u8)(data >> 8));
- if (ret_val)
- break;
- }
-
- /* Don't bother writing the segment valid bits if sector
- * programming failed. */
- if (ret_val) {
- hw_dbg(hw, "Flash commit failed.\n");
- e1000_release_swflag_ich8lan(hw);
- return ret_val;
- }
-
- /* Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b */
- act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
- e1000_read_flash_word_ich8lan(hw, act_offset, &data);
- data &= 0xBFFF;
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
- act_offset * 2 + 1,
- (u8)(data >> 8));
- if (ret_val) {
- e1000_release_swflag_ich8lan(hw);
- return ret_val;
- }
-
- /* And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase */
- act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
- ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
- if (ret_val) {
- e1000_release_swflag_ich8lan(hw);
- return ret_val;
- }
-
- /* Great! Everything worked, we can now clear the cached entries. */
- for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
- dev_spec->shadow_ram[i].modified = 0;
- dev_spec->shadow_ram[i].value = 0xFFFF;
- }
-
- e1000_release_swflag_ich8lan(hw);
-
- /* Reload the EEPROM, or else modifications will not appear
- * until after the next adapter reset.
- */
- e1000e_reload_nvm(hw);
- msleep(10);
-
- return ret_val;
-}
-
-/**
- * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
- * If the bit is 0, that the EEPROM had been modified, but the checksum was not
- * calculated, in which case we need to calculate the checksum and set bit 6.
- **/
-static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 data;
-
- /* Read 0x19 and check bit 6. If this bit is 0, the checksum
- * needs to be fixed. This bit is an indication that the NVM
- * was prepared by OEM software and did not calculate the
- * checksum...a likely scenario.
- */
- ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
- if (ret_val)
- return ret_val;
-
- if ((data & 0x40) == 0) {
- data |= 0x40;
- ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_update_nvm_checksum(hw);
- if (ret_val)
- return ret_val;
- }
-
- return e1000e_validate_nvm_checksum_generic(hw);
-}
-
-/**
- * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
- * @hw: pointer to the HW structure
- * @offset: The offset (in bytes) of the byte/word to read.
- * @size: Size of data to read, 1=byte 2=word
- * @data: The byte(s) to write to the NVM.
- *
- * Writes one/two bytes to the NVM using the flash access registers.
- **/
-static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 size, u16 data)
-{
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- u32 flash_data = 0;
- s32 ret_val;
- u8 count = 0;
-
- if (size < 1 || size > 2 || data > size * 0xff ||
- offset > ICH_FLASH_LINEAR_ADDR_MASK)
- return -E1000_ERR_NVM;
-
- flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
- hw->nvm.flash_base_addr;
-
- do {
- udelay(1);
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val)
- break;
-
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
- hsflctl.hsf_ctrl.fldbcount = size -1;
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
-
- if (size == 1)
- flash_data = (u32)data & 0x00FF;
- else
- flash_data = (u32)data;
-
- ew32flash(ICH_FLASH_FDATA0, flash_data);
-
- /* check if FCERR is set to 1 , if set to 1, clear it
- * and try the whole sequence a few more times else done */
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_WRITE_COMMAND_TIMEOUT);
- if (!ret_val)
- break;
-
- /* If we're here, then things are most likely
- * completely hosed, but if the error condition
- * is detected, it won't hurt to give it another
- * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
- */
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1)
- /* Repeat for some time before giving up. */
- continue;
- if (hsfsts.hsf_status.flcdone == 0) {
- hw_dbg(hw, "Timeout error - flash cycle "
- "did not complete.");
- break;
- }
- } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
- return ret_val;
-}
-
-/**
- * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
- * @hw: pointer to the HW structure
- * @offset: The index of the byte to read.
- * @data: The byte to write to the NVM.
- *
- * Writes a single byte to the NVM using the flash access registers.
- **/
-static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
- u8 data)
-{
- u16 word = (u16)data;
-
- return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
-}
-
-/**
- * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
- * @hw: pointer to the HW structure
- * @offset: The offset of the byte to write.
- * @byte: The byte to write to the NVM.
- *
- * Writes a single byte to the NVM using the flash access registers.
- * Goes through a retry algorithm before giving up.
- **/
-static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
- u32 offset, u8 byte)
-{
- s32 ret_val;
- u16 program_retries;
-
- ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
- if (!ret_val)
- return ret_val;
-
- for (program_retries = 0; program_retries < 100; program_retries++) {
- hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
- udelay(100);
- ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
- if (!ret_val)
- break;
- }
- if (program_retries == 100)
- return -E1000_ERR_NVM;
-
- return 0;
-}
-
-/**
- * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
- * @hw: pointer to the HW structure
- * @bank: 0 for first bank, 1 for second bank, etc.
- *
- * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
- * bank N is 4096 * N + flash_reg_addr.
- **/
-static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- union ich8_hws_flash_status hsfsts;
- union ich8_hws_flash_ctrl hsflctl;
- u32 flash_linear_addr;
- /* bank size is in 16bit words - adjust to bytes */
- u32 flash_bank_size = nvm->flash_bank_size * 2;
- s32 ret_val;
- s32 count = 0;
- s32 iteration;
- s32 sector_size;
- s32 j;
-
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
-
- /* Determine HW Sector size: Read BERASE bits of hw flash status
- * register */
- /* 00: The Hw sector is 256 bytes, hence we need to erase 16
- * consecutive sectors. The start index for the nth Hw sector
- * can be calculated as = bank * 4096 + n * 256
- * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
- * The start index for the nth Hw sector can be calculated
- * as = bank * 4096
- * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
- * (ich9 only, otherwise error condition)
- * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
- */
- switch (hsfsts.hsf_status.berasesz) {
- case 0:
- /* Hw sector size 256 */
- sector_size = ICH_FLASH_SEG_SIZE_256;
- iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
- break;
- case 1:
- sector_size = ICH_FLASH_SEG_SIZE_4K;
- iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
- break;
- case 2:
- if (hw->mac.type == e1000_ich9lan) {
- sector_size = ICH_FLASH_SEG_SIZE_8K;
- iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
- } else {
- return -E1000_ERR_NVM;
- }
- break;
- case 3:
- sector_size = ICH_FLASH_SEG_SIZE_64K;
- iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
- break;
- default:
- return -E1000_ERR_NVM;
- }
-
- /* Start with the base address, then add the sector offset. */
- flash_linear_addr = hw->nvm.flash_base_addr;
- flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
-
- for (j = 0; j < iteration ; j++) {
- do {
- /* Steps */
- ret_val = e1000_flash_cycle_init_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- /* Write a value 11 (block Erase) in Flash
- * Cycle field in hw flash control */
- hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
- ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
-
- /* Write the last 24 bits of an index within the
- * block into Flash Linear address field in Flash
- * Address.
- */
- flash_linear_addr += (j * sector_size);
- ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
-
- ret_val = e1000_flash_cycle_ich8lan(hw,
- ICH_FLASH_ERASE_COMMAND_TIMEOUT);
- if (ret_val == 0)
- break;
-
- /* Check if FCERR is set to 1. If 1,
- * clear it and try the whole sequence
- * a few more times else Done */
- hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
- if (hsfsts.hsf_status.flcerr == 1)
- /* repeat for some time before
- * giving up */
- continue;
- else if (hsfsts.hsf_status.flcdone == 0)
- return ret_val;
- } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
- }
-
- return 0;
-}
-
-/**
- * e1000_valid_led_default_ich8lan - Set the default LED settings
- * @hw: pointer to the HW structure
- * @data: Pointer to the LED settings
- *
- * Reads the LED default settings from the NVM to data. If the NVM LED
- * settings is all 0's or F's, set the LED default to a valid LED default
- * setting.
- **/
-static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
-
- if (*data == ID_LED_RESERVED_0000 ||
- *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT_ICH8LAN;
-
- return 0;
-}
-
-/**
- * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
- * @hw: pointer to the HW structure
- *
- * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
- * register, so the the bus width is hard coded.
- **/
-static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val;
-
- ret_val = e1000e_get_bus_info_pcie(hw);
-
- /* ICH devices are "PCI Express"-ish. They have
- * a configuration space, but do not contain
- * PCI Express Capability registers, so bus width
- * must be hardcoded.
- */
- if (bus->width == e1000_bus_width_unknown)
- bus->width = e1000_bus_width_pcie_x1;
-
- return ret_val;
-}
-
-/**
- * e1000_reset_hw_ich8lan - Reset the hardware
- * @hw: pointer to the HW structure
- *
- * Does a full reset of the hardware which includes a reset of the PHY and
- * MAC.
- **/
-static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
-{
- u32 ctrl, icr, kab;
- s32 ret_val;
-
- /* Prevent the PCI-E bus from sticking if there is no TLP connection
- * on the last TLP read/write transaction when MAC is reset.
- */
- ret_val = e1000e_disable_pcie_master(hw);
- if (ret_val) {
- hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
- }
-
- hw_dbg(hw, "Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC
- * with the global reset.
- */
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- e1e_flush();
-
- msleep(10);
-
- /* Workaround for ICH8 bit corruption issue in FIFO memory */
- if (hw->mac.type == e1000_ich8lan) {
- /* Set Tx and Rx buffer allocation to 8k apiece. */
- ew32(PBA, E1000_PBA_8K);
- /* Set Packet Buffer Size to 16k. */
- ew32(PBS, E1000_PBS_16K);
- }
-
- ctrl = er32(CTRL);
-
- if (!e1000_check_reset_block(hw)) {
- /* PHY HW reset requires MAC CORE reset at the same
- * time to make sure the interface between MAC and the
- * external PHY is reset.
- */
- ctrl |= E1000_CTRL_PHY_RST;
- }
- ret_val = e1000_acquire_swflag_ich8lan(hw);
- hw_dbg(hw, "Issuing a global reset to ich8lan");
- ew32(CTRL, (ctrl | E1000_CTRL_RST));
- msleep(20);
-
- ret_val = e1000e_get_auto_rd_done(hw);
- if (ret_val) {
- /*
- * When auto config read does not complete, do not
- * return with an error. This can happen in situations
- * where there is no eeprom and prevents getting link.
- */
- hw_dbg(hw, "Auto Read Done did not complete\n");
- }
-
- ew32(IMC, 0xffffffff);
- icr = er32(ICR);
-
- kab = er32(KABGTXD);
- kab |= E1000_KABGTXD_BGSQLBIAS;
- ew32(KABGTXD, kab);
-
- return ret_val;
-}
-
-/**
- * e1000_init_hw_ich8lan - Initialize the hardware
- * @hw: pointer to the HW structure
- *
- * Prepares the hardware for transmit and receive by doing the following:
- * - initialize hardware bits
- * - initialize LED identification
- * - setup receive address registers
- * - setup flow control
- * - setup transmit descriptors
- * - clear statistics
- **/
-static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl_ext, txdctl, snoop;
- s32 ret_val;
- u16 i;
-
- e1000_initialize_hw_bits_ich8lan(hw);
-
- /* Initialize identification LED */
- ret_val = e1000e_id_led_init(hw);
- if (ret_val) {
- hw_dbg(hw, "Error initializing identification LED\n");
- return ret_val;
- }
-
- /* Setup the receive address. */
- e1000e_init_rx_addrs(hw, mac->rar_entry_count);
-
- /* Zero out the Multicast HASH table */
- hw_dbg(hw, "Zeroing the MTA\n");
- for (i = 0; i < mac->mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
-
- /* Setup link and flow control */
- ret_val = e1000_setup_link_ich8lan(hw);
-
- /* Set the transmit descriptor write-back policy for both queues */
- txdctl = er32(TXDCTL);
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
- ew32(TXDCTL, txdctl);
- txdctl = er32(TXDCTL1);
- txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
- E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
- ew32(TXDCTL1, txdctl);
-
- /* ICH8 has opposite polarity of no_snoop bits.
- * By default, we should use snoop behavior. */
- if (mac->type == e1000_ich8lan)
- snoop = PCIE_ICH8_SNOOP_ALL;
- else
- snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
- e1000e_set_pcie_no_snoop(hw, snoop);
-
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- ew32(CTRL_EXT, ctrl_ext);
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs_ich8lan(hw);
-
- return 0;
-}
-/**
- * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
- * @hw: pointer to the HW structure
- *
- * Sets/Clears required hardware bits necessary for correctly setting up the
- * hardware for transmit and receive.
- **/
-static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
-{
- u32 reg;
-
- /* Extended Device Control */
- reg = er32(CTRL_EXT);
- reg |= (1 << 22);
- ew32(CTRL_EXT, reg);
-
- /* Transmit Descriptor Control 0 */
- reg = er32(TXDCTL);
- reg |= (1 << 22);
- ew32(TXDCTL, reg);
-
- /* Transmit Descriptor Control 1 */
- reg = er32(TXDCTL1);
- reg |= (1 << 22);
- ew32(TXDCTL1, reg);
-
- /* Transmit Arbitration Control 0 */
- reg = er32(TARC0);
- if (hw->mac.type == e1000_ich8lan)
- reg |= (1 << 28) | (1 << 29);
- reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
- ew32(TARC0, reg);
-
- /* Transmit Arbitration Control 1 */
- reg = er32(TARC1);
- if (er32(TCTL) & E1000_TCTL_MULR)
- reg &= ~(1 << 28);
- else
- reg |= (1 << 28);
- reg |= (1 << 24) | (1 << 26) | (1 << 30);
- ew32(TARC1, reg);
-
- /* Device Status */
- if (hw->mac.type == e1000_ich8lan) {
- reg = er32(STATUS);
- reg &= ~(1 << 31);
- ew32(STATUS, reg);
- }
-}
-
-/**
- * e1000_setup_link_ich8lan - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
-
- if (e1000_check_reset_block(hw))
- return 0;
-
- /* ICH parts do not have a word in the NVM to determine
- * the default flow control setting, so we explicitly
- * set it to full.
- */
- if (mac->fc == e1000_fc_default)
- mac->fc = e1000_fc_full;
-
- mac->original_fc = mac->fc;
-
- hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
-
- /* Continue to configure the copper link. */
- ret_val = e1000_setup_copper_link_ich8lan(hw);
- if (ret_val)
- return ret_val;
-
- ew32(FCTTV, mac->fc_pause_time);
-
- return e1000e_set_fc_watermarks(hw);
-}
-
-/**
- * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
- * @hw: pointer to the HW structure
- *
- * Configures the kumeran interface to the PHY to wait the appropriate time
- * when polling the PHY, then call the generic setup_copper_link to finish
- * configuring the copper link.
- **/
-static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 reg_data;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
-
- /* Set the mac to wait the maximum time between each iteration
- * and increase the max iterations when polling the phy;
- * this fixes erroneous timeouts at 10Mbps. */
- ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
- if (ret_val)
- return ret_val;
- reg_data |= 0x3F;
- ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy.type == e1000_phy_igp_3) {
- ret_val = e1000e_copper_link_setup_igp(hw);
- if (ret_val)
- return ret_val;
- }
-
- return e1000e_setup_copper_link(hw);
-}
-
-/**
- * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
- * @hw: pointer to the HW structure
- * @speed: pointer to store current link speed
- * @duplex: pointer to store the current link duplex
- *
- * Calls the generic get_speed_and_duplex to retreive the current link
- * information and then calls the Kumeran lock loss workaround for links at
- * gigabit speeds.
- **/
-static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- s32 ret_val;
-
- ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac.type == e1000_ich8lan) &&
- (hw->phy.type == e1000_phy_igp_3) &&
- (*speed == SPEED_1000)) {
- ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
- * @hw: pointer to the HW structure
- *
- * Work-around for 82566 Kumeran PCS lock loss:
- * On link status change (i.e. PCI reset, speed change) and link is up and
- * speed is gigabit-
- * 0) if workaround is optionally disabled do nothing
- * 1) wait 1ms for Kumeran link to come up
- * 2) check Kumeran Diagnostic register PCS lock loss bit
- * 3) if not set the link is locked (all is good), otherwise...
- * 4) reset the PHY
- * 5) repeat up to 10 times
- * Note: this is only called for IGP3 copper when speed is 1gb.
- **/
-static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
- u32 phy_ctrl;
- s32 ret_val;
- u16 i, data;
- bool link;
-
- if (!dev_spec->kmrn_lock_loss_workaround_enabled)
- return 0;
-
- /* Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouled up link
- * stability */
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (!link)
- return 0;
-
- for (i = 0; i < 10; i++) {
- /* read once to clear */
- ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
- if (ret_val)
- return ret_val;
- /* and again to get new status */
- ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
- if (ret_val)
- return ret_val;
-
- /* check for PCS lock */
- if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
- return 0;
-
- /* Issue PHY reset */
- e1000_phy_hw_reset(hw);
- mdelay(5);
- }
- /* Disable GigE link negotiation */
- phy_ctrl = er32(PHY_CTRL);
- phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
- ew32(PHY_CTRL, phy_ctrl);
-
- /* Call gig speed drop workaround on Gig disable before accessing
- * any PHY registers */
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* unable to acquire PCS lock */
- return -E1000_ERR_PHY;
-}
-
-/**
- * e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
- * @hw: pointer to the HW structure
- * @state: boolean value used to set the current Kumeran workaround state
- *
- * If ICH8, set the current Kumeran workaround state (enabled - TRUE
- * /disabled - FALSE).
- **/
-void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
- bool state)
-{
- struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
-
- if (hw->mac.type != e1000_ich8lan) {
- hw_dbg(hw, "Workaround applies to ICH8 only.\n");
- return;
- }
-
- dev_spec->kmrn_lock_loss_workaround_enabled = state;
-}
-
-/**
- * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
- * @hw: pointer to the HW structure
- *
- * Workaround for 82566 power-down on D3 entry:
- * 1) disable gigabit link
- * 2) write VR power-down enable
- * 3) read it back
- * Continue if successful, else issue LCD reset and repeat
- **/
-void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
-{
- u32 reg;
- u16 data;
- u8 retry = 0;
-
- if (hw->phy.type != e1000_phy_igp_3)
- return;
-
- /* Try the workaround twice (if needed) */
- do {
- /* Disable link */
- reg = er32(PHY_CTRL);
- reg |= (E1000_PHY_CTRL_GBE_DISABLE |
- E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
- ew32(PHY_CTRL, reg);
-
- /* Call gig speed drop workaround on Gig disable before
- * accessing any PHY registers */
- if (hw->mac.type == e1000_ich8lan)
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* Write VR power-down enable */
- e1e_rphy(hw, IGP3_VR_CTRL, &data);
- data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
- e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
-
- /* Read it back and test */
- e1e_rphy(hw, IGP3_VR_CTRL, &data);
- data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
- if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
- break;
-
- /* Issue PHY reset and repeat at most one more time */
- reg = er32(CTRL);
- ew32(CTRL, reg | E1000_CTRL_PHY_RST);
- retry++;
- } while (retry);
-}
-
-/**
- * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
- * @hw: pointer to the HW structure
- *
- * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
- * LPLU, Gig disable, MDIC PHY reset):
- * 1) Set Kumeran Near-end loopback
- * 2) Clear Kumeran Near-end loopback
- * Should only be called for ICH8[m] devices with IGP_3 Phy.
- **/
-void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 reg_data;
-
- if ((hw->mac.type != e1000_ich8lan) ||
- (hw->phy.type != e1000_phy_igp_3))
- return;
-
- ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- &reg_data);
- if (ret_val)
- return;
- reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
- ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
- if (ret_val)
- return;
- reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
- ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
- reg_data);
-}
-
-/**
- * e1000_cleanup_led_ich8lan - Restore the default LED operation
- * @hw: pointer to the HW structure
- *
- * Return the LED back to the default configuration.
- **/
-static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
-{
- if (hw->phy.type == e1000_phy_ife)
- return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
-
- ew32(LEDCTL, hw->mac.ledctl_default);
- return 0;
-}
-
-/**
- * e1000_led_on_ich8lan - Turn LEDs on
- * @hw: pointer to the HW structure
- *
- * Turn on the LEDs.
- **/
-static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
-{
- if (hw->phy.type == e1000_phy_ife)
- return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
-
- ew32(LEDCTL, hw->mac.ledctl_mode2);
- return 0;
-}
-
-/**
- * e1000_led_off_ich8lan - Turn LEDs off
- * @hw: pointer to the HW structure
- *
- * Turn off the LEDs.
- **/
-static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
-{
- if (hw->phy.type == e1000_phy_ife)
- return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
- (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
-
- ew32(LEDCTL, hw->mac.ledctl_mode1);
- return 0;
-}
-
-/**
- * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
- * @hw: pointer to the HW structure
- *
- * Clears hardware counters specific to the silicon family and calls
- * clear_hw_cntrs_generic to clear all general purpose counters.
- **/
-static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
-{
- u32 temp;
-
- e1000e_clear_hw_cntrs_base(hw);
-
- temp = er32(ALGNERRC);
- temp = er32(RXERRC);
- temp = er32(TNCRS);
- temp = er32(CEXTERR);
- temp = er32(TSCTC);
- temp = er32(TSCTFC);
-
- temp = er32(MGTPRC);
- temp = er32(MGTPDC);
- temp = er32(MGTPTC);
-
- temp = er32(IAC);
- temp = er32(ICRXOC);
-
-}
-
-static struct e1000_mac_operations ich8_mac_ops = {
- .mng_mode_enab = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
- .check_for_link = e1000e_check_for_copper_link,
- .cleanup_led = e1000_cleanup_led_ich8lan,
- .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
- .get_bus_info = e1000_get_bus_info_ich8lan,
- .get_link_up_info = e1000_get_link_up_info_ich8lan,
- .led_on = e1000_led_on_ich8lan,
- .led_off = e1000_led_off_ich8lan,
- .mc_addr_list_update = e1000e_mc_addr_list_update_generic,
- .reset_hw = e1000_reset_hw_ich8lan,
- .init_hw = e1000_init_hw_ich8lan,
- .setup_link = e1000_setup_link_ich8lan,
- .setup_physical_interface= e1000_setup_copper_link_ich8lan,
-};
-
-static struct e1000_phy_operations ich8_phy_ops = {
- .acquire_phy = e1000_acquire_swflag_ich8lan,
- .check_reset_block = e1000_check_reset_block_ich8lan,
- .commit_phy = NULL,
- .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
- .get_cfg_done = e1000e_get_cfg_done,
- .get_cable_length = e1000e_get_cable_length_igp_2,
- .get_phy_info = e1000_get_phy_info_ich8lan,
- .read_phy_reg = e1000e_read_phy_reg_igp,
- .release_phy = e1000_release_swflag_ich8lan,
- .reset_phy = e1000_phy_hw_reset_ich8lan,
- .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
- .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
- .write_phy_reg = e1000e_write_phy_reg_igp,
-};
-
-static struct e1000_nvm_operations ich8_nvm_ops = {
- .acquire_nvm = e1000_acquire_swflag_ich8lan,
- .read_nvm = e1000_read_nvm_ich8lan,
- .release_nvm = e1000_release_swflag_ich8lan,
- .update_nvm = e1000_update_nvm_checksum_ich8lan,
- .valid_led_default = e1000_valid_led_default_ich8lan,
- .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
- .write_nvm = e1000_write_nvm_ich8lan,
-};
-
-struct e1000_info e1000_ich8_info = {
- .mac = e1000_ich8lan,
- .flags = FLAG_HAS_WOL
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_AMT
- | FLAG_HAS_FLASH
- | FLAG_APME_IN_WUC,
- .pba = 8,
- .get_invariants = e1000_get_invariants_ich8lan,
- .mac_ops = &ich8_mac_ops,
- .phy_ops = &ich8_phy_ops,
- .nvm_ops = &ich8_nvm_ops,
-};
-
-struct e1000_info e1000_ich9_info = {
- .mac = e1000_ich9lan,
- .flags = FLAG_HAS_JUMBO_FRAMES
- | FLAG_HAS_WOL
- | FLAG_RX_CSUM_ENABLED
- | FLAG_HAS_CTRLEXT_ON_LOAD
- | FLAG_HAS_AMT
- | FLAG_HAS_ERT
- | FLAG_HAS_FLASH
- | FLAG_APME_IN_WUC,
- .pba = 10,
- .get_invariants = e1000_get_invariants_ich8lan,
- .mac_ops = &ich8_mac_ops,
- .phy_ops = &ich8_phy_ops,
- .nvm_ops = &ich8_nvm_ops,
-};
-
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
deleted file mode 100644
index 95f75a43c9f..00000000000
--- a/drivers/net/e1000e/lib.c
+++ /dev/null
@@ -1,2504 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include <linux/netdevice.h>
-#include <linux/ethtool.h>
-#include <linux/delay.h>
-#include <linux/pci.h>
-
-#include "e1000.h"
-
-enum e1000_mng_mode {
- e1000_mng_mode_none = 0,
- e1000_mng_mode_asf,
- e1000_mng_mode_pt,
- e1000_mng_mode_ipmi,
- e1000_mng_mode_host_if_only
-};
-
-#define E1000_FACTPS_MNGCG 0x20000000
-
-#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management
- * Technology signature */
-
-/**
- * e1000e_get_bus_info_pcie - Get PCIe bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCIe), and PCIe function.
- **/
-s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- struct e1000_adapter *adapter = hw->adapter;
- u32 status;
- u16 pcie_link_status, pci_header_type, cap_offset;
-
- cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
- if (!cap_offset) {
- bus->width = e1000_bus_width_unknown;
- } else {
- pci_read_config_word(adapter->pdev,
- cap_offset + PCIE_LINK_STATUS,
- &pcie_link_status);
- bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCIE_LINK_WIDTH_MASK) >>
- PCIE_LINK_WIDTH_SHIFT);
- }
-
- pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
- &pci_header_type);
- if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
- status = er32(STATUS);
- bus->func = (status & E1000_STATUS_FUNC_MASK)
- >> E1000_STATUS_FUNC_SHIFT;
- } else {
- bus->func = 0;
- }
-
- return 0;
-}
-
-/**
- * e1000e_write_vfta - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
-void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
-{
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
- e1e_flush();
-}
-
-/**
- * e1000e_init_rx_addrs - Initialize receive address's
- * @hw: pointer to the HW structure
- * @rar_count: receive address registers
- *
- * Setups the receive address registers by setting the base receive address
- * register to the devices MAC address and clearing all the other receive
- * address registers to 0.
- **/
-void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
-{
- u32 i;
-
- /* Setup the receive address */
- hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
-
- e1000e_rar_set(hw, hw->mac.addr, 0);
-
- /* Zero out the other (rar_entry_count - 1) receive addresses */
- hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
- e1e_flush();
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
- e1e_flush();
- }
-}
-
-/**
- * e1000e_rar_set - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
-void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] |
- ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- rar_high |= E1000_RAH_AV;
-
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
-}
-
-/**
- * e1000_mta_set - Set multicast filter table address
- * @hw: pointer to the HW structure
- * @hash_value: determines the MTA register and bit to set
- *
- * The multicast table address is a register array of 32-bit registers.
- * The hash_value is used to determine what register the bit is in, the
- * current value is read, the new bit is OR'd in and the new value is
- * written back into the register.
- **/
-static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
-{
- u32 hash_bit, hash_reg, mta;
-
- /* The MTA is a register array of 32-bit registers. It is
- * treated like an array of (32*mta_reg_count) bits. We want to
- * set bit BitArray[hash_value]. So we figure out what register
- * the bit is in, read it, OR in the new bit, then write
- * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
- * mask to bits 31:5 of the hash value which gives us the
- * register we're modifying. The hash bit within that register
- * is determined by the lower 5 bits of the hash value.
- */
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
-
- mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
-
- mta |= (1 << hash_bit);
-
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
- e1e_flush();
-}
-
-/**
- * e1000_hash_mc_addr - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value. See
- * e1000_mta_set_generic()
- **/
-static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
-
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
- /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask. */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
-
- /* The portion of the address that is used for the hash table
- * is determined by the mc_filter_type setting.
- * The algorithm is such that there is a total of 8 bits of shifting.
- * The bit_shift for a mc_filter_type of 0 represents the number of
- * left-shifts where the MSB of mc_addr[5] would still fall within
- * the hash_mask. Case 0 does this exactly. Since there are a total
- * of 8 bits of shifting, then mc_addr[4] will shift right the
- * remaining number of bits. Thus 8 - bit_shift. The rest of the
- * cases are a variation of this algorithm...essentially raising the
- * number of bits to shift mc_addr[5] left, while still keeping the
- * 8-bit shifting total.
- */
- /* For example, given the following Destination MAC Address and an
- * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
- * we can see that the bit_shift for case 0 is 4. These are the hash
- * values resulting from each mc_filter_type...
- * [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- *
- * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
- * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
- * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
- * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
- */
- switch (hw->mac.mc_filter_type) {
- default:
- case 0:
- break;
- case 1:
- bit_shift += 1;
- break;
- case 2:
- bit_shift += 2;
- break;
- case 3:
- bit_shift += 4;
- break;
- }
-
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
-
- return hash_value;
-}
-
-/**
- * e1000e_mc_addr_list_update_generic - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- * @rar_used_count: the first RAR register free to program
- * @rar_count: total number of supported Receive Address Registers
- *
- * Updates the Receive Address Registers and Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- * The parameter rar_count will usually be hw->mac.rar_entry_count
- * unless there are workarounds that change this.
- **/
-void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count,
- u32 rar_used_count, u32 rar_count)
-{
- u32 hash_value;
- u32 i;
-
- /* Load the first set of multicast addresses into the exact
- * filters (RAR). If there are not enough to fill the RAR
- * array, clear the filters.
- */
- for (i = rar_used_count; i < rar_count; i++) {
- if (mc_addr_count) {
- e1000e_rar_set(hw, mc_addr_list, i);
- mc_addr_count--;
- mc_addr_list += ETH_ALEN;
- } else {
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
- e1e_flush();
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
- e1e_flush();
- }
- }
-
- /* Clear the old settings from the MTA */
- hw_dbg(hw, "Clearing MTA\n");
- for (i = 0; i < hw->mac.mta_reg_count; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
- e1e_flush();
- }
-
- /* Load any remaining multicast addresses into the hash table. */
- for (; mc_addr_count > 0; mc_addr_count--) {
- hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
- hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
- e1000_mta_set(hw, hash_value);
- mc_addr_list += ETH_ALEN;
- }
-}
-
-/**
- * e1000e_clear_hw_cntrs_base - Clear base hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the base hardware counters by reading the counter registers.
- **/
-void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
-{
- u32 temp;
-
- temp = er32(CRCERRS);
- temp = er32(SYMERRS);
- temp = er32(MPC);
- temp = er32(SCC);
- temp = er32(ECOL);
- temp = er32(MCC);
- temp = er32(LATECOL);
- temp = er32(COLC);
- temp = er32(DC);
- temp = er32(SEC);
- temp = er32(RLEC);
- temp = er32(XONRXC);
- temp = er32(XONTXC);
- temp = er32(XOFFRXC);
- temp = er32(XOFFTXC);
- temp = er32(FCRUC);
- temp = er32(GPRC);
- temp = er32(BPRC);
- temp = er32(MPRC);
- temp = er32(GPTC);
- temp = er32(GORCL);
- temp = er32(GORCH);
- temp = er32(GOTCL);
- temp = er32(GOTCH);
- temp = er32(RNBC);
- temp = er32(RUC);
- temp = er32(RFC);
- temp = er32(ROC);
- temp = er32(RJC);
- temp = er32(TORL);
- temp = er32(TORH);
- temp = er32(TOTL);
- temp = er32(TOTH);
- temp = er32(TPR);
- temp = er32(TPT);
- temp = er32(MPTC);
- temp = er32(BPTC);
-}
-
-/**
- * e1000e_check_for_copper_link - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
-s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
-
- /* We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status)
- return 0;
-
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- return ret_val; /* No link detected */
-
- mac->get_link_status = 0;
-
- /* Check if there was DownShift, must be checked
- * immediately after link-up */
- e1000e_check_downshift(hw);
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg) {
- ret_val = -E1000_ERR_CONFIG;
- return ret_val;
- }
-
- /* Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- e1000e_config_collision_dist(hw);
-
- /* Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- hw_dbg(hw, "Error configuring flow control\n");
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_check_for_fiber_link - Check for link (Fiber)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
-
- /* If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), the cable is plugged in (we have signal),
- * and our link partner is not trying to auto-negotiate with us (we
- * are receiving idles or data), we need to force link up. We also
- * need to give auto-negotiation time to complete, in case the cable
- * was just plugged in. The autoneg_failed flag does this.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- return 0;
- }
- hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- hw_dbg(hw, "Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /* If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = 1;
- }
-
- return 0;
-}
-
-/**
- * e1000e_check_for_serdes_link - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
-
- /* If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
- if (mac->autoneg_failed == 0) {
- mac->autoneg_failed = 1;
- return 0;
- }
- hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000e_config_fc_after_link_up(hw);
- if (ret_val) {
- hw_dbg(hw, "Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /* If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, mac->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = 1;
- } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
- /* If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- udelay(10);
- if (E1000_RXCW_SYNCH & er32(RXCW)) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = 1;
- hw_dbg(hw, "SERDES: Link is up.\n");
- }
- } else {
- mac->serdes_has_link = 0;
- hw_dbg(hw, "SERDES: Link is down.\n");
- }
- }
-
- if (E1000_TXCW_ANE & er32(TXCW)) {
- status = er32(STATUS);
- mac->serdes_has_link = (status & E1000_STATUS_LU);
- }
-
- return 0;
-}
-
-/**
- * e1000_set_default_fc_generic - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
-static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- u16 nvm_data;
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
-
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
-
- if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
- mac->fc = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- mac->fc = e1000_fc_tx_pause;
- else
- mac->fc = e1000_fc_full;
-
- return 0;
-}
-
-/**
- * e1000e_setup_link - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-s32 e1000e_setup_link(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
-
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not need to set it up again.
- */
- if (e1000_check_reset_block(hw))
- return 0;
-
- /*
- * If flow control is set to default, set flow control based on
- * the EEPROM flow control settings.
- */
- if (mac->fc == e1000_fc_default) {
- ret_val = e1000_set_default_fc_generic(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- mac->original_fc = mac->fc;
-
- hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
-
- /* Call the necessary media_type subroutine to configure the link. */
- ret_val = mac->ops.setup_physical_interface(hw);
- if (ret_val)
- return ret_val;
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
- ew32(FCT, FLOW_CONTROL_TYPE);
- ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
-
- ew32(FCTTV, mac->fc_pause_time);
-
- return e1000e_set_fc_watermarks(hw);
-}
-
-/**
- * e1000_commit_fc_settings_generic - Configure flow control
- * @hw: pointer to the HW structure
- *
- * Write the flow control settings to the Transmit Config Word Register (TXCW)
- * base on the flow control settings in e1000_mac_info.
- **/
-static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 txcw;
-
- /* Check for a software override of the flow control settings, and
- * setup the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Transmit Config Word Register (TXCW) and re-start auto-
- * negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames,
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we
- * do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (mac->fc) {
- case e1000_fc_none:
- /* Flow control completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case e1000_fc_rx_pause:
- /* RX Flow control is enabled and TX Flow control is disabled
- * by a software over-ride. Since there really isn't a way to
- * advertise that we are capable of RX Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric RX
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case e1000_fc_tx_pause:
- /* TX Flow control is enabled, and RX Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case e1000_fc_full:
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- hw_dbg(hw, "Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- ew32(TXCW, txcw);
- mac->txcw = txcw;
-
- return 0;
-}
-
-/**
- * e1000_poll_fiber_serdes_link_generic - Poll for link up
- * @hw: pointer to the HW structure
- *
- * Polls for link up by reading the status register, if link fails to come
- * up with auto-negotiation, then the link is forced if a signal is detected.
- **/
-static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 i, status;
- s32 ret_val;
-
- /* If we have a signal (the cable is plugged in, or assumed true for
- * serdes media) then poll for a "Link-Up" indication in the Device
- * Status Register. Time-out if a link isn't seen in 500 milliseconds
- * seconds (Auto-negotiation should complete in less than 500
- * milliseconds even if the other end is doing it in SW).
- */
- for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
- msleep(10);
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == FIBER_LINK_UP_LIMIT) {
- hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
- mac->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * mac->check_for_link. This routine will force the
- * link up if we detect a signal. This will allow us to
- * communicate with non-autonegotiating link partners.
- */
- ret_val = mac->ops.check_for_link(hw);
- if (ret_val) {
- hw_dbg(hw, "Error while checking for link\n");
- return ret_val;
- }
- mac->autoneg_failed = 0;
- } else {
- mac->autoneg_failed = 0;
- hw_dbg(hw, "Valid Link Found\n");
- }
-
- return 0;
-}
-
-/**
- * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes
- * links. Upon successful setup, poll for link.
- **/
-s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- ctrl = er32(CTRL);
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- e1000e_config_collision_dist(hw);
-
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- return ret_val;
-
- /* Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- hw_dbg(hw, "Auto-negotiation enabled\n");
-
- ew32(CTRL, ctrl);
- e1e_flush();
- msleep(1);
-
- /* For these adapters, the SW defineable pin 1 is set when the optics
- * detect a signal. If we have a signal, then poll for a "Link-Up"
- * indication.
- */
- if (hw->media_type == e1000_media_type_internal_serdes ||
- (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- } else {
- hw_dbg(hw, "No signal detected\n");
- }
-
- return 0;
-}
-
-/**
- * e1000e_config_collision_dist - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup. Currently no func pointer exists and all
- * implementations are handled in the generic version of this function.
- **/
-void e1000e_config_collision_dist(struct e1000_hw *hw)
-{
- u32 tctl;
-
- tctl = er32(TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
- ew32(TCTL, tctl);
- e1e_flush();
-}
-
-/**
- * e1000e_set_fc_watermarks - Set flow control high/low watermarks
- * @hw: pointer to the HW structure
- *
- * Sets the flow control high/low threshold (watermark) registers. If
- * flow control XON frame transmission is enabled, then set XON frame
- * tansmission as well.
- **/
-s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 fcrtl = 0, fcrth = 0;
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames is not enabled, then these
- * registers will be set to 0.
- */
- if (mac->fc & e1000_fc_tx_pause) {
- /* We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- fcrtl = mac->fc_low_water;
- fcrtl |= E1000_FCRTL_XONE;
- fcrth = mac->fc_high_water;
- }
- ew32(FCRTL, fcrtl);
- ew32(FCRTH, fcrth);
-
- return 0;
-}
-
-/**
- * e1000e_force_mac_fc - Force the MAC's flow control settings
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
- * device control register to reflect the adapter settings. TFCE and RFCE
- * need to be explicitly set by software when a copper PHY is used because
- * autonegotiation is managed by the PHY rather than the MAC. Software must
- * also configure these bits when link is forced on a fiber connection.
- **/
-s32 e1000e_force_mac_fc(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
-
- ctrl = er32(CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "mac->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- hw_dbg(hw, "mac->fc = %u\n", mac->fc);
-
- switch (mac->fc) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- hw_dbg(hw, "Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ew32(CTRL, ctrl);
-
- return 0;
-}
-
-/**
- * e1000e_config_fc_after_link_up - Configures flow control after link
- * @hw: pointer to the HW structure
- *
- * Checks the status of auto-negotiation after link up to ensure that the
- * speed and duplex were not forced. If the link needed to be forced, then
- * flow control needs to be forced also. If auto-negotiation is enabled
- * and did not fail, then we configure flow control based on our link
- * partner.
- **/
-s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = 0;
- u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
- u16 speed, duplex;
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (mac->autoneg_failed) {
- if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes)
- ret_val = e1000e_force_mac_fc(hw);
- } else {
- if (hw->media_type == e1000_media_type_copper)
- ret_val = e1000e_force_mac_fc(hw);
- }
-
- if (ret_val) {
- hw_dbg(hw, "Error forcing flow control settings\n");
- return ret_val;
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- hw_dbg(hw, "Copper PHY and Auto Neg "
- "has not completed.\n");
- return ret_val;
- }
-
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (Address 4) and the Auto_Negotiation Base
- * Page Ability Register (Address 5) to determine how
- * flow control was negotiated.
- */
- ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (mac->original_fc == e1000_fc_full) {
- mac->fc = e1000_fc_full;
- hw_dbg(hw, "Flow Control = FULL.\r\n");
- } else {
- mac->fc = e1000_fc_rx_pause;
- hw_dbg(hw, "Flow Control = "
- "RX PAUSE frames only.\r\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- *
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- mac->fc = e1000_fc_tx_pause;
- hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- mac->fc = e1000_fc_rx_pause;
- hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
- } else {
- /*
- * Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- mac->fc = e1000_fc_none;
- hw_dbg(hw, "Flow Control = NONE.\r\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- hw_dbg(hw, "Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- mac->fc = e1000_fc_none;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000e_force_mac_fc(hw);
- if (ret_val) {
- hw_dbg(hw, "Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Read the status register for the current speed/duplex and store the current
- * speed and duplex for copper connections.
- **/
-s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
- u32 status;
-
- status = er32(STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- hw_dbg(hw, "1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- hw_dbg(hw, "100 Mbs, ");
- } else {
- *speed = SPEED_10;
- hw_dbg(hw, "10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- hw_dbg(hw, "Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- hw_dbg(hw, "Half Duplex\n");
- }
-
- return 0;
-}
-
-/**
- * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Sets the speed and duplex to gigabit full duplex (the only possible option)
- * for fiber/serdes links.
- **/
-s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
-
- return 0;
-}
-
-/**
- * e1000e_get_hw_semaphore - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = er32(SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- udelay(50);
- i++;
- }
-
- if (i == timeout) {
- hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_NVM;
- }
-
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (er32(SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- udelay(50);
- }
-
- if (i == timeout) {
- /* Release semaphores */
- e1000e_put_hw_semaphore(hw);
- hw_dbg(hw, "Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000e_put_hw_semaphore - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-void e1000e_put_hw_semaphore(struct e1000_hw *hw)
-{
- u32 swsm;
-
- swsm = er32(SWSM);
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
- ew32(SWSM, swsm);
-}
-
-/**
- * e1000e_get_auto_rd_done - Check for auto read completion
- * @hw: pointer to the HW structure
- *
- * Check EEPROM for Auto Read done bit.
- **/
-s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
-{
- s32 i = 0;
-
- while (i < AUTO_READ_DONE_TIMEOUT) {
- if (er32(EECD) & E1000_EECD_AUTO_RD)
- break;
- msleep(1);
- i++;
- }
-
- if (i == AUTO_READ_DONE_TIMEOUT) {
- hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return 0;
-}
-
-/**
- * e1000e_valid_led_default - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
-
- return 0;
-}
-
-/**
- * e1000e_id_led_init -
- * @hw: pointer to the HW structure
- *
- **/
-s32 e1000e_id_led_init(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 data, i, temp;
- const u16 led_mask = 0x0F;
-
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- return ret_val;
-
- mac->ledctl_default = er32(LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
-
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000e_cleanup_led_generic - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
-s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
-{
- ew32(LEDCTL, hw->mac.ledctl_default);
- return 0;
-}
-
-/**
- * e1000e_blink_led - Blink LED
- * @hw: pointer to the HW structure
- *
- * Blink the LEDs which are set to be on.
- **/
-s32 e1000e_blink_led(struct e1000_hw *hw)
-{
- u32 ledctl_blink = 0;
- u32 i;
-
- if (hw->media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /* set the blink bit for each LED that's "on" (0x0E)
- * in ledctl_mode2 */
- ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 4; i++)
- if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
- E1000_LEDCTL_MODE_LED_ON)
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
- (i * 8));
- }
-
- ew32(LEDCTL, ledctl_blink);
-
- return 0;
-}
-
-/**
- * e1000e_led_on_generic - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
-s32 e1000e_led_on_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- switch (hw->media_type) {
- case e1000_media_type_fiber:
- ctrl = er32(CTRL);
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- ew32(CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- ew32(LEDCTL, hw->mac.ledctl_mode2);
- break;
- default:
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000e_led_off_generic - Turn LED off
- * @hw: pointer to the HW structure
- *
- * Turn LED off.
- **/
-s32 e1000e_led_off_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- switch (hw->media_type) {
- case e1000_media_type_fiber:
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- ew32(CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- ew32(LEDCTL, hw->mac.ledctl_mode1);
- break;
- default:
- break;
- }
-
- return 0;
-}
-
-/**
- * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
- * @hw: pointer to the HW structure
- * @no_snoop: bitmap of snoop events
- *
- * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
- **/
-void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
-{
- u32 gcr;
-
- if (no_snoop) {
- gcr = er32(GCR);
- gcr &= ~(PCIE_NO_SNOOP_ALL);
- gcr |= no_snoop;
- ew32(GCR, gcr);
- }
-}
-
-/**
- * e1000e_disable_pcie_master - Disables PCI-express master access
- * @hw: pointer to the HW structure
- *
- * Returns 0 if successful, else returns -10
- * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- * the master requests to be disabled.
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests.
- **/
-s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 timeout = MASTER_DISABLE_TIMEOUT;
-
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- ew32(CTRL, ctrl);
-
- while (timeout) {
- if (!(er32(STATUS) &
- E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- udelay(100);
- timeout--;
- }
-
- if (!timeout) {
- hw_dbg(hw, "Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return 0;
-}
-
-/**
- * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Reset the Adaptive Interframe Spacing throttle to default values.
- **/
-void e1000e_reset_adaptive(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- mac->current_ifs_val = 0;
- mac->ifs_min_val = IFS_MIN;
- mac->ifs_max_val = IFS_MAX;
- mac->ifs_step_size = IFS_STEP;
- mac->ifs_ratio = IFS_RATIO;
-
- mac->in_ifs_mode = 0;
- ew32(AIT, 0);
-}
-
-/**
- * e1000e_update_adaptive - Update Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Update the Adaptive Interframe Spacing Throttle value based on the
- * time between transmitted packets and time between collisions.
- **/
-void e1000e_update_adaptive(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
- if (mac->tx_packet_delta > MIN_NUM_XMITS) {
- mac->in_ifs_mode = 1;
- if (mac->current_ifs_val < mac->ifs_max_val) {
- if (!mac->current_ifs_val)
- mac->current_ifs_val = mac->ifs_min_val;
- else
- mac->current_ifs_val +=
- mac->ifs_step_size;
- ew32(AIT,
- mac->current_ifs_val);
- }
- }
- } else {
- if (mac->in_ifs_mode &&
- (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
- mac->current_ifs_val = 0;
- mac->in_ifs_mode = 0;
- ew32(AIT, 0);
- }
- }
-}
-
-/**
- * e1000_raise_eec_clk - Raise EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Enable/Raise the EEPROM clock bit.
- **/
-static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd | E1000_EECD_SK;
- ew32(EECD, *eecd);
- e1e_flush();
- udelay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_lower_eec_clk - Lower EEPROM clock
- * @hw: pointer to the HW structure
- * @eecd: pointer to the EEPROM
- *
- * Clear/Lower the EEPROM clock bit.
- **/
-static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
-{
- *eecd = *eecd & ~E1000_EECD_SK;
- ew32(EECD, *eecd);
- e1e_flush();
- udelay(hw->nvm.delay_usec);
-}
-
-/**
- * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
- * @hw: pointer to the HW structure
- * @data: data to send to the EEPROM
- * @count: number of bits to shift out
- *
- * We need to shift 'count' bits out to the EEPROM. So, the value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- **/
-static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u32 mask;
-
- mask = 0x01 << (count - 1);
- if (nvm->type == e1000_nvm_eeprom_spi)
- eecd |= E1000_EECD_DO;
-
- do {
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- ew32(EECD, eecd);
- e1e_flush();
-
- udelay(nvm->delay_usec);
-
- e1000_raise_eec_clk(hw, &eecd);
- e1000_lower_eec_clk(hw, &eecd);
-
- mask >>= 1;
- } while (mask);
-
- eecd &= ~E1000_EECD_DI;
- ew32(EECD, eecd);
-}
-
-/**
- * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
- * @hw: pointer to the HW structure
- * @count: number of bits to shift in
- *
- * In order to read a register from the EEPROM, we need to shift 'count' bits
- * in from the EEPROM. Bits are "shifted in" by raising the clock input to
- * the EEPROM (setting the SK bit), and then reading the value of the data out
- * "DO" bit. During this "shifting in" process the data in "DI" bit should
- * always be clear.
- **/
-static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
-{
- u32 eecd;
- u32 i;
- u16 data;
-
- eecd = er32(EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for (i = 0; i < count; i++) {
- data <<= 1;
- e1000_raise_eec_clk(hw, &eecd);
-
- eecd = er32(EECD);
-
- eecd &= ~E1000_EECD_DI;
- if (eecd & E1000_EECD_DO)
- data |= 1;
-
- e1000_lower_eec_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/**
- * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
- * @hw: pointer to the HW structure
- * @ee_reg: EEPROM flag for polling
- *
- * Polls the EEPROM status bit for either read or write completion based
- * upon the value of 'ee_reg'.
- **/
-s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
-{
- u32 attempts = 100000;
- u32 i, reg = 0;
-
- for (i = 0; i < attempts; i++) {
- if (ee_reg == E1000_NVM_POLL_READ)
- reg = er32(EERD);
- else
- reg = er32(EEWR);
-
- if (reg & E1000_NVM_RW_REG_DONE)
- return 0;
-
- udelay(5);
- }
-
- return -E1000_ERR_NVM;
-}
-
-/**
- * e1000e_acquire_nvm - Generic request for access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -E1000_ERR_NVM (-1).
- **/
-s32 e1000e_acquire_nvm(struct e1000_hw *hw)
-{
- u32 eecd = er32(EECD);
- s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
-
- ew32(EECD, eecd | E1000_EECD_REQ);
- eecd = er32(EECD);
-
- while (timeout) {
- if (eecd & E1000_EECD_GNT)
- break;
- udelay(5);
- eecd = er32(EECD);
- timeout--;
- }
-
- if (!timeout) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- hw_dbg(hw, "Could not acquire NVM grant\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000_standby_nvm - Return EEPROM to standby state
- * @hw: pointer to the HW structure
- *
- * Return the EEPROM to a standby state.
- **/
-static void e1000_standby_nvm(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
-
- if (nvm->type == e1000_nvm_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- e1e_flush();
- udelay(nvm->delay_usec);
- eecd &= ~E1000_EECD_CS;
- ew32(EECD, eecd);
- e1e_flush();
- udelay(nvm->delay_usec);
- }
-}
-
-/**
- * e1000_stop_nvm - Terminate EEPROM command
- * @hw: pointer to the HW structure
- *
- * Terminates the current command by inverting the EEPROM's chip select pin.
- **/
-static void e1000_stop_nvm(struct e1000_hw *hw)
-{
- u32 eecd;
-
- eecd = er32(EECD);
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
- /* Pull CS high */
- eecd |= E1000_EECD_CS;
- e1000_lower_eec_clk(hw, &eecd);
- }
-}
-
-/**
- * e1000e_release_nvm - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
- **/
-void e1000e_release_nvm(struct e1000_hw *hw)
-{
- u32 eecd;
-
- e1000_stop_nvm(hw);
-
- eecd = er32(EECD);
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
-}
-
-/**
- * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
- * @hw: pointer to the HW structure
- *
- * Setups the EEPROM for reading and writing.
- **/
-static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 eecd = er32(EECD);
- u16 timeout = 0;
- u8 spi_stat_reg;
-
- if (nvm->type == e1000_nvm_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- udelay(1);
- timeout = NVM_MAX_RETRY_SPI;
-
- /* Read "Status Register" repeatedly until the LSB is cleared.
- * The EEPROM will signal that the command has been completed
- * by clearing bit 0 of the internal status register. If it's
- * not cleared within 'timeout', then error out. */
- while (timeout) {
- e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
- hw->nvm.opcode_bits);
- spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
- if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
- break;
-
- udelay(5);
- e1000_standby_nvm(hw);
- timeout--;
- }
-
- if (!timeout) {
- hw_dbg(hw, "SPI NVM Status error\n");
- return -E1000_ERR_NVM;
- }
- }
-
- return 0;
-}
-
-/**
- * e1000e_read_nvm_spi - Reads EEPROM using SPI
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM.
- **/
-s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i = 0;
- s32 ret_val;
- u16 word_in;
- u8 read_opcode = NVM_READ_OPCODE_SPI;
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words. */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- hw_dbg(hw, "nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = nvm->ops.acquire_nvm(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val) {
- nvm->ops.release_nvm(hw);
- return ret_val;
- }
-
- e1000_standby_nvm(hw);
-
- if ((nvm->address_bits == 8) && (offset >= 128))
- read_opcode |= NVM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
-
- /* Read the data. SPI NVMs increment the address with each byte
- * read and will roll over if reading beyond the end. This allows
- * us to read the whole NVM from any offset */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_eec_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
-
- nvm->ops.release_nvm(hw);
- return 0;
-}
-
-/**
- * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the EEPROM to read
- * @words: number of words to read
- * @data: word read from the EEPROM
- *
- * Reads a 16 bit word from the EEPROM using the EERD register.
- **/
-s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- u32 i, eerd = 0;
- s32 ret_val = 0;
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words. */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- hw_dbg(hw, "nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- for (i = 0; i < words; i++) {
- eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
- E1000_NVM_RW_REG_START;
-
- ew32(EERD, eerd);
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
- if (ret_val)
- break;
-
- data[i] = (er32(EERD) >>
- E1000_NVM_RW_REG_DATA);
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_write_nvm_spi - Write to EEPROM using SPI
- * @hw: pointer to the HW structure
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the EEPROM
- *
- * Writes data to EEPROM at offset using SPI interface.
- *
- * If e1000e_update_nvm_checksum is not called after this function , the
- * EEPROM will most likely contain an invalid checksum.
- **/
-s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- struct e1000_nvm_info *nvm = &hw->nvm;
- s32 ret_val;
- u16 widx = 0;
-
- /* A check for invalid values: offset too large, too many words,
- * and not enough words. */
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
- (words == 0)) {
- hw_dbg(hw, "nvm parameter(s) out of bounds\n");
- return -E1000_ERR_NVM;
- }
-
- ret_val = nvm->ops.acquire_nvm(hw);
- if (ret_val)
- return ret_val;
-
- msleep(10);
-
- while (widx < words) {
- u8 write_opcode = NVM_WRITE_OPCODE_SPI;
-
- ret_val = e1000_ready_nvm_eeprom(hw);
- if (ret_val) {
- nvm->ops.release_nvm(hw);
- return ret_val;
- }
-
- e1000_standby_nvm(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode) */
- e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
- nvm->opcode_bits);
-
- e1000_standby_nvm(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the
- * opcode */
- if ((nvm->address_bits == 8) && (offset >= 128))
- write_opcode |= NVM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
- e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
- nvm->address_bits);
-
- /* Loop to allow for up to whole page write of eeprom */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_eec_bits(hw, word_out, 16);
- widx++;
-
- if ((((offset + widx) * 2) % nvm->page_size) == 0) {
- e1000_standby_nvm(hw);
- break;
- }
- }
- }
-
- msleep(10);
- return 0;
-}
-
-/**
- * e1000e_read_mac_addr - Read device MAC address
- * @hw: pointer to the HW structure
- *
- * Reads the device MAC address from the EEPROM and stores the value.
- * Since devices with two ports use the same EEPROM, we increment the
- * last bit in the MAC address for the second port.
- **/
-s32 e1000e_read_mac_addr(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 offset, nvm_data, i;
- u16 mac_addr_offset = 0;
-
- if (hw->mac.type == e1000_82571) {
- /* Check for an alternate MAC address. An alternate MAC
- * address can be setup by pre-boot software and must be
- * treated like a permanent address and must override the
- * actual permanent MAC address. */
- ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &mac_addr_offset);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
- if (mac_addr_offset == 0xFFFF)
- mac_addr_offset = 0;
-
- if (mac_addr_offset) {
- if (hw->bus.func == E1000_FUNC_1)
- mac_addr_offset += ETH_ALEN/sizeof(u16);
-
- /* make sure we have a valid mac address here
- * before using it */
- ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
- &nvm_data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
- if (nvm_data & 0x0001)
- mac_addr_offset = 0;
- }
-
- if (mac_addr_offset)
- hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
- }
-
- for (i = 0; i < ETH_ALEN; i += 2) {
- offset = mac_addr_offset + (i >> 1);
- ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
- hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
- hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
- }
-
- /* Flip last bit of mac address if we're on second port */
- if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
- hw->mac.perm_addr[5] ^= 1;
-
- for (i = 0; i < ETH_ALEN; i++)
- hw->mac.addr[i] = hw->mac.perm_addr[i];
-
- return 0;
-}
-
-/**
- * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- **/
-s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
-
- if (checksum != (u16) NVM_SUM) {
- hw_dbg(hw, "NVM Checksum Invalid\n");
- return -E1000_ERR_NVM;
- }
-
- return 0;
-}
-
-/**
- * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM.
- **/
-s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 checksum = 0;
- u16 i, nvm_data;
-
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error while updating checksum.\n");
- return ret_val;
- }
- checksum += nvm_data;
- }
- checksum = (u16) NVM_SUM - checksum;
- ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
- if (ret_val)
- hw_dbg(hw, "NVM Write Error while updating checksum.\n");
-
- return ret_val;
-}
-
-/**
- * e1000e_reload_nvm - Reloads EEPROM
- * @hw: pointer to the HW structure
- *
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
- * extended control register.
- **/
-void e1000e_reload_nvm(struct e1000_hw *hw)
-{
- u32 ctrl_ext;
-
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
-}
-
-/**
- * e1000_calculate_checksum - Calculate checksum for buffer
- * @buffer: pointer to EEPROM
- * @length: size of EEPROM to calculate a checksum for
- *
- * Calculates the checksum for some buffer on a specified length. The
- * checksum calculated is returned.
- **/
-static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
-{
- u32 i;
- u8 sum = 0;
-
- if (!buffer)
- return 0;
-
- for (i = 0; i < length; i++)
- sum += buffer[i];
-
- return (u8) (0 - sum);
-}
-
-/**
- * e1000_mng_enable_host_if - Checks host interface is enabled
- * @hw: pointer to the HW structure
- *
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
- *
- * This function checks whether the HOST IF is enabled for command operation
- * and also checks whether the previous command is completed. It busy waits
- * in case of previous command is not completed.
- **/
-static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
-{
- u32 hicr;
- u8 i;
-
- /* Check that the host interface is enabled. */
- hicr = er32(HICR);
- if ((hicr & E1000_HICR_EN) == 0) {
- hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
- /* check the previous command is completed */
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
- hicr = er32(HICR);
- if (!(hicr & E1000_HICR_C))
- break;
- mdelay(1);
- }
-
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
- hw_dbg(hw, "Previous command timeout failed .\n");
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
- }
-
- return 0;
-}
-
-/**
- * e1000e_check_mng_mode - check management mode
- * @hw: pointer to the HW structure
- *
- * Reads the firmware semaphore register and returns true (>0) if
- * manageability is enabled, else false (0).
- **/
-bool e1000e_check_mng_mode(struct e1000_hw *hw)
-{
- u32 fwsm = er32(FWSM);
-
- return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab;
-}
-
-/**
- * e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX
- * @hw: pointer to the HW structure
- *
- * Enables packet filtering on transmit packets if manageability is enabled
- * and host interface is enabled.
- **/
-bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
-{
- struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
- u32 *buffer = (u32 *)&hw->mng_cookie;
- u32 offset;
- s32 ret_val, hdr_csum, csum;
- u8 i, len;
-
- /* No manageability, no filtering */
- if (!e1000e_check_mng_mode(hw)) {
- hw->mac.tx_pkt_filtering = 0;
- return 0;
- }
-
- /* If we can't read from the host interface for whatever
- * reason, disable filtering.
- */
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val != 0) {
- hw->mac.tx_pkt_filtering = 0;
- return ret_val;
- }
-
- /* Read in the header. Length and offset are in dwords. */
- len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
- offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
- for (i = 0; i < len; i++)
- *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
- hdr_csum = hdr->checksum;
- hdr->checksum = 0;
- csum = e1000_calculate_checksum((u8 *)hdr,
- E1000_MNG_DHCP_COOKIE_LENGTH);
- /* If either the checksums or signature don't match, then
- * the cookie area isn't considered valid, in which case we
- * take the safe route of assuming Tx filtering is enabled.
- */
- if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
- hw->mac.tx_pkt_filtering = 1;
- return 1;
- }
-
- /* Cookie area is valid, make the final check for filtering. */
- if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
- hw->mac.tx_pkt_filtering = 0;
- return 0;
- }
-
- hw->mac.tx_pkt_filtering = 1;
- return 1;
-}
-
-/**
- * e1000_mng_write_cmd_header - Writes manageability command header
- * @hw: pointer to the HW structure
- * @hdr: pointer to the host interface command header
- *
- * Writes the command header after does the checksum calculation.
- **/
-static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
- struct e1000_host_mng_command_header *hdr)
-{
- u16 i, length = sizeof(struct e1000_host_mng_command_header);
-
- /* Write the whole command header structure with new checksum. */
-
- hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
-
- length >>= 2;
- /* Write the relevant command block into the ram area. */
- for (i = 0; i < length; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
- *((u32 *) hdr + i));
- e1e_flush();
- }
-
- return 0;
-}
-
-/**
- * e1000_mng_host_if_write - Writes to the manageability host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface buffer
- * @length: size of the buffer
- * @offset: location in the buffer to write to
- * @sum: sum of the data (not checksum)
- *
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient
- * way. Also fills up the sum of the buffer in *buffer parameter.
- **/
-static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
- u16 length, u16 offset, u8 *sum)
-{
- u8 *tmp;
- u8 *bufptr = buffer;
- u32 data = 0;
- u16 remaining, i, j, prev_bytes;
-
- /* sum = only sum of the data and it is not checksum */
-
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
- return -E1000_ERR_PARAM;
-
- tmp = (u8 *)&data;
- prev_bytes = offset & 0x3;
- offset >>= 2;
-
- if (prev_bytes) {
- data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
- for (j = prev_bytes; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
- length -= j - prev_bytes;
- offset++;
- }
-
- remaining = length & 0x3;
- length -= remaining;
-
- /* Calculate length in DWORDs */
- length >>= 2;
-
- /* The device driver writes the relevant command block into the
- * ram area. */
- for (i = 0; i < length; i++) {
- for (j = 0; j < sizeof(u32); j++) {
- *(tmp + j) = *bufptr++;
- *sum += *(tmp + j);
- }
-
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
- }
- if (remaining) {
- for (j = 0; j < sizeof(u32); j++) {
- if (j < remaining)
- *(tmp + j) = *bufptr++;
- else
- *(tmp + j) = 0;
-
- *sum += *(tmp + j);
- }
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
- }
-
- return 0;
-}
-
-/**
- * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
- * @hw: pointer to the HW structure
- * @buffer: pointer to the host interface
- * @length: size of the buffer
- *
- * Writes the DHCP information to the host interface.
- **/
-s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
-{
- struct e1000_host_mng_command_header hdr;
- s32 ret_val;
- u32 hicr;
-
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
- hdr.command_length = length;
- hdr.reserved1 = 0;
- hdr.reserved2 = 0;
- hdr.checksum = 0;
-
- /* Enable the host interface */
- ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val)
- return ret_val;
-
- /* Populate the host interface with the contents of "buffer". */
- ret_val = e1000_mng_host_if_write(hw, buffer, length,
- sizeof(hdr), &(hdr.checksum));
- if (ret_val)
- return ret_val;
-
- /* Write the manageability command header */
- ret_val = e1000_mng_write_cmd_header(hw, &hdr);
- if (ret_val)
- return ret_val;
-
- /* Tell the ARC a new command is pending. */
- hicr = er32(HICR);
- ew32(HICR, hicr | E1000_HICR_C);
-
- return 0;
-}
-
-/**
- * e1000e_enable_mng_pass_thru - Enable processing of ARP's
- * @hw: pointer to the HW structure
- *
- * Verifies the hardware needs to allow ARPs to be processed by the host.
- **/
-bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
-{
- u32 manc;
- u32 fwsm, factps;
- bool ret_val = 0;
-
- manc = er32(MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return ret_val;
-
- if (hw->mac.arc_subsystem_valid) {
- fwsm = er32(FWSM);
- factps = er32(FACTPS);
-
- if (!(factps & E1000_FACTPS_MNGCG) &&
- ((fwsm & E1000_FWSM_MODE_MASK) ==
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
- ret_val = 1;
- return ret_val;
- }
- } else {
- if ((manc & E1000_MANC_SMBUS_EN) &&
- !(manc & E1000_MANC_ASF_EN)) {
- ret_val = 1;
- return ret_val;
- }
- }
-
- return ret_val;
-}
-
-s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num)
-{
- s32 ret_val;
- u16 nvm_data;
-
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
- *part_num = (u32)(nvm_data << 16);
-
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
- if (ret_val) {
- hw_dbg(hw, "NVM Read Error\n");
- return ret_val;
- }
- *part_num |= nvm_data;
-
- return 0;
-}
diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c
deleted file mode 100644
index fc5c63f4f57..00000000000
--- a/drivers/net/e1000e/netdev.c
+++ /dev/null
@@ -1,4156 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/init.h>
-#include <linux/pci.h>
-#include <linux/vmalloc.h>
-#include <linux/pagemap.h>
-#include <linux/delay.h>
-#include <linux/netdevice.h>
-#include <linux/tcp.h>
-#include <linux/ipv6.h>
-#include <net/checksum.h>
-#include <net/ip6_checksum.h>
-#include <linux/mii.h>
-#include <linux/ethtool.h>
-#include <linux/if_vlan.h>
-#include <linux/cpu.h>
-#include <linux/smp.h>
-
-#include "e1000.h"
-
-#define DRV_VERSION "0.2.0"
-char e1000e_driver_name[] = "e1000e";
-const char e1000e_driver_version[] = DRV_VERSION;
-
-static const struct e1000_info *e1000_info_tbl[] = {
- [board_82571] = &e1000_82571_info,
- [board_82572] = &e1000_82572_info,
- [board_82573] = &e1000_82573_info,
- [board_80003es2lan] = &e1000_es2_info,
- [board_ich8lan] = &e1000_ich8_info,
- [board_ich9lan] = &e1000_ich9_info,
-};
-
-#ifdef DEBUG
-/**
- * e1000_get_hw_dev_name - return device name string
- * used by hardware layer to print debugging information
- **/
-char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
-{
- return hw->adapter->netdev->name;
-}
-#endif
-
-/**
- * e1000_desc_unused - calculate if we have unused descriptors
- **/
-static int e1000_desc_unused(struct e1000_ring *ring)
-{
- if (ring->next_to_clean > ring->next_to_use)
- return ring->next_to_clean - ring->next_to_use - 1;
-
- return ring->count + ring->next_to_clean - ring->next_to_use - 1;
-}
-
-/**
- * e1000_receive_skb - helper function to handle rx indications
- * @adapter: board private structure
- * @status: descriptor status field as written by hardware
- * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
- * @skb: pointer to sk_buff to be indicated to stack
- **/
-static void e1000_receive_skb(struct e1000_adapter *adapter,
- struct net_device *netdev,
- struct sk_buff *skb,
- u8 status, __le16 vlan)
-{
- skb->protocol = eth_type_trans(skb, netdev);
-
- if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
- vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
- le16_to_cpu(vlan) &
- E1000_RXD_SPC_VLAN_MASK);
- else
- netif_receive_skb(skb);
-
- netdev->last_rx = jiffies;
-}
-
-/**
- * e1000_rx_checksum - Receive Checksum Offload for 82543
- * @adapter: board private structure
- * @status_err: receive descriptor status and error fields
- * @csum: receive descriptor csum field
- * @sk_buff: socket buffer with received data
- **/
-static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
- u32 csum, struct sk_buff *skb)
-{
- u16 status = (u16)status_err;
- u8 errors = (u8)(status_err >> 24);
- skb->ip_summed = CHECKSUM_NONE;
-
- /* Ignore Checksum bit is set */
- if (status & E1000_RXD_STAT_IXSM)
- return;
- /* TCP/UDP checksum error bit is set */
- if (errors & E1000_RXD_ERR_TCPE) {
- /* let the stack verify checksum errors */
- adapter->hw_csum_err++;
- return;
- }
-
- /* TCP/UDP Checksum has not been calculated */
- if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
- return;
-
- /* It must be a TCP or UDP packet with a valid checksum */
- if (status & E1000_RXD_STAT_TCPCS) {
- /* TCP checksum is good */
- skb->ip_summed = CHECKSUM_UNNECESSARY;
- } else {
- /* IP fragment with UDP payload */
- /* Hardware complements the payload checksum, so we undo it
- * and then put the value in host order for further stack use.
- */
- __sum16 sum = (__force __sum16)htons(csum);
- skb->csum = csum_unfold(~sum);
- skb->ip_summed = CHECKSUM_COMPLETE;
- }
- adapter->hw_csum_good++;
-}
-
-/**
- * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
- * @adapter: address of board private structure
- **/
-static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
- int cleaned_count)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_rx_desc *rx_desc;
- struct e1000_buffer *buffer_info;
- struct sk_buff *skb;
- unsigned int i;
- unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
-
- i = rx_ring->next_to_use;
- buffer_info = &rx_ring->buffer_info[i];
-
- while (cleaned_count--) {
- skb = buffer_info->skb;
- if (skb) {
- skb_trim(skb, 0);
- goto map_skb;
- }
-
- skb = netdev_alloc_skb(netdev, bufsz);
- if (!skb) {
- /* Better luck next round */
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- /* Make buffer alignment 2 beyond a 16 byte boundary
- * this will result in a 16 byte aligned IP header after
- * the 14 byte MAC header is removed
- */
- skb_reserve(skb, NET_IP_ALIGN);
-
- buffer_info->skb = skb;
-map_skb:
- buffer_info->dma = pci_map_single(pdev, skb->data,
- adapter->rx_buffer_len,
- PCI_DMA_FROMDEVICE);
- if (pci_dma_mapping_error(buffer_info->dma)) {
- dev_err(&pdev->dev, "RX DMA map failed\n");
- adapter->rx_dma_failed++;
- break;
- }
-
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-
- i++;
- if (i == rx_ring->count)
- i = 0;
- buffer_info = &rx_ring->buffer_info[i];
- }
-
- if (rx_ring->next_to_use != i) {
- rx_ring->next_to_use = i;
- if (i-- == 0)
- i = (rx_ring->count - 1);
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64). */
- wmb();
- writel(i, adapter->hw.hw_addr + rx_ring->tail);
- }
-}
-
-/**
- * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
- * @adapter: address of board private structure
- **/
-static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
- int cleaned_count)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- union e1000_rx_desc_packet_split *rx_desc;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info;
- struct e1000_ps_page *ps_page;
- struct sk_buff *skb;
- unsigned int i, j;
-
- i = rx_ring->next_to_use;
- buffer_info = &rx_ring->buffer_info[i];
-
- while (cleaned_count--) {
- rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
-
- for (j = 0; j < PS_PAGE_BUFFERS; j++) {
- ps_page = &buffer_info->ps_pages[j];
- if (j >= adapter->rx_ps_pages) {
- /* all unused desc entries get hw null ptr */
- rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
- continue;
- }
- if (!ps_page->page) {
- ps_page->page = alloc_page(GFP_ATOMIC);
- if (!ps_page->page) {
- adapter->alloc_rx_buff_failed++;
- goto no_buffers;
- }
- ps_page->dma = pci_map_page(pdev,
- ps_page->page,
- 0, PAGE_SIZE,
- PCI_DMA_FROMDEVICE);
- if (pci_dma_mapping_error(ps_page->dma)) {
- dev_err(&adapter->pdev->dev,
- "RX DMA page map failed\n");
- adapter->rx_dma_failed++;
- goto no_buffers;
- }
- }
- /*
- * Refresh the desc even if buffer_addrs
- * didn't change because each write-back
- * erases this info.
- */
- rx_desc->read.buffer_addr[j+1] =
- cpu_to_le64(ps_page->dma);
- }
-
- skb = netdev_alloc_skb(netdev,
- adapter->rx_ps_bsize0 + NET_IP_ALIGN);
-
- if (!skb) {
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- /* Make buffer alignment 2 beyond a 16 byte boundary
- * this will result in a 16 byte aligned IP header after
- * the 14 byte MAC header is removed
- */
- skb_reserve(skb, NET_IP_ALIGN);
-
- buffer_info->skb = skb;
- buffer_info->dma = pci_map_single(pdev, skb->data,
- adapter->rx_ps_bsize0,
- PCI_DMA_FROMDEVICE);
- if (pci_dma_mapping_error(buffer_info->dma)) {
- dev_err(&pdev->dev, "RX DMA map failed\n");
- adapter->rx_dma_failed++;
- /* cleanup skb */
- dev_kfree_skb_any(skb);
- buffer_info->skb = NULL;
- break;
- }
-
- rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
-
- i++;
- if (i == rx_ring->count)
- i = 0;
- buffer_info = &rx_ring->buffer_info[i];
- }
-
-no_buffers:
- if (rx_ring->next_to_use != i) {
- rx_ring->next_to_use = i;
-
- if (!(i--))
- i = (rx_ring->count - 1);
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64). */
- wmb();
- /* Hardware increments by 16 bytes, but packet split
- * descriptors are 32 bytes...so we increment tail
- * twice as much.
- */
- writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
- }
-}
-
-/**
- * e1000_clean_rx_irq - Send received data up the network stack; legacy
- * @adapter: board private structure
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- **/
-static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
- int *work_done, int work_to_do)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_rx_desc *rx_desc, *next_rxd;
- struct e1000_buffer *buffer_info, *next_buffer;
- u32 length;
- unsigned int i;
- int cleaned_count = 0;
- bool cleaned = 0;
- unsigned int total_rx_bytes = 0, total_rx_packets = 0;
-
- i = rx_ring->next_to_clean;
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- buffer_info = &rx_ring->buffer_info[i];
-
- while (rx_desc->status & E1000_RXD_STAT_DD) {
- struct sk_buff *skb;
- u8 status;
-
- if (*work_done >= work_to_do)
- break;
- (*work_done)++;
-
- status = rx_desc->status;
- skb = buffer_info->skb;
- buffer_info->skb = NULL;
-
- prefetch(skb->data - NET_IP_ALIGN);
-
- i++;
- if (i == rx_ring->count)
- i = 0;
- next_rxd = E1000_RX_DESC(*rx_ring, i);
- prefetch(next_rxd);
-
- next_buffer = &rx_ring->buffer_info[i];
-
- cleaned = 1;
- cleaned_count++;
- pci_unmap_single(pdev,
- buffer_info->dma,
- adapter->rx_buffer_len,
- PCI_DMA_FROMDEVICE);
- buffer_info->dma = 0;
-
- length = le16_to_cpu(rx_desc->length);
-
- /* !EOP means multiple descriptors were used to store a single
- * packet, also make sure the frame isn't just CRC only */
- if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
- /* All receives must fit into a single buffer */
- ndev_dbg(netdev, "%s: Receive packet consumed "
- "multiple buffers\n", netdev->name);
- /* recycle */
- buffer_info->skb = skb;
- goto next_desc;
- }
-
- if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
- /* recycle */
- buffer_info->skb = skb;
- goto next_desc;
- }
-
- total_rx_bytes += length;
- total_rx_packets++;
-
- /* code added for copybreak, this should improve
- * performance for small packets with large amounts
- * of reassembly being done in the stack */
- if (length < copybreak) {
- struct sk_buff *new_skb =
- netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
- if (new_skb) {
- skb_reserve(new_skb, NET_IP_ALIGN);
- memcpy(new_skb->data - NET_IP_ALIGN,
- skb->data - NET_IP_ALIGN,
- length + NET_IP_ALIGN);
- /* save the skb in buffer_info as good */
- buffer_info->skb = skb;
- skb = new_skb;
- }
- /* else just continue with the old one */
- }
- /* end copybreak code */
- skb_put(skb, length);
-
- /* Receive Checksum Offload */
- e1000_rx_checksum(adapter,
- (u32)(status) |
- ((u32)(rx_desc->errors) << 24),
- le16_to_cpu(rx_desc->csum), skb);
-
- e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
-
-next_desc:
- rx_desc->status = 0;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
- adapter->alloc_rx_buf(adapter, cleaned_count);
- cleaned_count = 0;
- }
-
- /* use prefetched values */
- rx_desc = next_rxd;
- buffer_info = next_buffer;
- }
- rx_ring->next_to_clean = i;
-
- cleaned_count = e1000_desc_unused(rx_ring);
- if (cleaned_count)
- adapter->alloc_rx_buf(adapter, cleaned_count);
-
- adapter->total_rx_packets += total_rx_packets;
- adapter->total_rx_bytes += total_rx_bytes;
- adapter->net_stats.rx_packets += total_rx_packets;
- adapter->net_stats.rx_bytes += total_rx_bytes;
- return cleaned;
-}
-
-static void e1000_put_txbuf(struct e1000_adapter *adapter,
- struct e1000_buffer *buffer_info)
-{
- if (buffer_info->dma) {
- pci_unmap_page(adapter->pdev, buffer_info->dma,
- buffer_info->length, PCI_DMA_TODEVICE);
- buffer_info->dma = 0;
- }
- if (buffer_info->skb) {
- dev_kfree_skb_any(buffer_info->skb);
- buffer_info->skb = NULL;
- }
-}
-
-static void e1000_print_tx_hang(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- unsigned int i = tx_ring->next_to_clean;
- unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
- struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
- struct net_device *netdev = adapter->netdev;
-
- /* detected Tx unit hang */
- ndev_err(netdev,
- "Detected Tx Unit Hang:\n"
- " TDH <%x>\n"
- " TDT <%x>\n"
- " next_to_use <%x>\n"
- " next_to_clean <%x>\n"
- "buffer_info[next_to_clean]:\n"
- " time_stamp <%lx>\n"
- " next_to_watch <%x>\n"
- " jiffies <%lx>\n"
- " next_to_watch.status <%x>\n",
- readl(adapter->hw.hw_addr + tx_ring->head),
- readl(adapter->hw.hw_addr + tx_ring->tail),
- tx_ring->next_to_use,
- tx_ring->next_to_clean,
- tx_ring->buffer_info[eop].time_stamp,
- eop,
- jiffies,
- eop_desc->upper.fields.status);
-}
-
-/**
- * e1000_clean_tx_irq - Reclaim resources after transmit completes
- * @adapter: board private structure
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- **/
-static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_tx_desc *tx_desc, *eop_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i, eop;
- unsigned int count = 0;
- bool cleaned = 0;
- unsigned int total_tx_bytes = 0, total_tx_packets = 0;
-
- i = tx_ring->next_to_clean;
- eop = tx_ring->buffer_info[i].next_to_watch;
- eop_desc = E1000_TX_DESC(*tx_ring, eop);
-
- while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
- for (cleaned = 0; !cleaned; ) {
- tx_desc = E1000_TX_DESC(*tx_ring, i);
- buffer_info = &tx_ring->buffer_info[i];
- cleaned = (i == eop);
-
- if (cleaned) {
- struct sk_buff *skb = buffer_info->skb;
- unsigned int segs, bytecount;
- segs = skb_shinfo(skb)->gso_segs ?: 1;
- /* multiply data chunks by size of headers */
- bytecount = ((segs - 1) * skb_headlen(skb)) +
- skb->len;
- total_tx_packets += segs;
- total_tx_bytes += bytecount;
- }
-
- e1000_put_txbuf(adapter, buffer_info);
- tx_desc->upper.data = 0;
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- }
-
- eop = tx_ring->buffer_info[i].next_to_watch;
- eop_desc = E1000_TX_DESC(*tx_ring, eop);
-#define E1000_TX_WEIGHT 64
- /* weight of a sort for tx, to avoid endless transmit cleanup */
- if (count++ == E1000_TX_WEIGHT)
- break;
- }
-
- tx_ring->next_to_clean = i;
-
-#define TX_WAKE_THRESHOLD 32
- if (cleaned && netif_carrier_ok(netdev) &&
- e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
- /* Make sure that anybody stopping the queue after this
- * sees the new next_to_clean.
- */
- smp_mb();
-
- if (netif_queue_stopped(netdev) &&
- !(test_bit(__E1000_DOWN, &adapter->state))) {
- netif_wake_queue(netdev);
- ++adapter->restart_queue;
- }
- }
-
- if (adapter->detect_tx_hung) {
- /* Detect a transmit hang in hardware, this serializes the
- * check with the clearing of time_stamp and movement of i */
- adapter->detect_tx_hung = 0;
- if (tx_ring->buffer_info[eop].dma &&
- time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
- + (adapter->tx_timeout_factor * HZ))
- && !(er32(STATUS) &
- E1000_STATUS_TXOFF)) {
- e1000_print_tx_hang(adapter);
- netif_stop_queue(netdev);
- }
- }
- adapter->total_tx_bytes += total_tx_bytes;
- adapter->total_tx_packets += total_tx_packets;
- adapter->net_stats.tx_packets += total_tx_packets;
- adapter->net_stats.tx_bytes += total_tx_bytes;
- return cleaned;
-}
-
-/**
- * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
- * @adapter: board private structure
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- **/
-static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
- int *work_done, int work_to_do)
-{
- union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info, *next_buffer;
- struct e1000_ps_page *ps_page;
- struct sk_buff *skb;
- unsigned int i, j;
- u32 length, staterr;
- int cleaned_count = 0;
- bool cleaned = 0;
- unsigned int total_rx_bytes = 0, total_rx_packets = 0;
-
- i = rx_ring->next_to_clean;
- rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
- staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
- buffer_info = &rx_ring->buffer_info[i];
-
- while (staterr & E1000_RXD_STAT_DD) {
- if (*work_done >= work_to_do)
- break;
- (*work_done)++;
- skb = buffer_info->skb;
-
- /* in the packet split case this is header only */
- prefetch(skb->data - NET_IP_ALIGN);
-
- i++;
- if (i == rx_ring->count)
- i = 0;
- next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
- prefetch(next_rxd);
-
- next_buffer = &rx_ring->buffer_info[i];
-
- cleaned = 1;
- cleaned_count++;
- pci_unmap_single(pdev, buffer_info->dma,
- adapter->rx_ps_bsize0,
- PCI_DMA_FROMDEVICE);
- buffer_info->dma = 0;
-
- if (!(staterr & E1000_RXD_STAT_EOP)) {
- ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
- "up the full packet\n", netdev->name);
- dev_kfree_skb_irq(skb);
- goto next_desc;
- }
-
- if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
- dev_kfree_skb_irq(skb);
- goto next_desc;
- }
-
- length = le16_to_cpu(rx_desc->wb.middle.length0);
-
- if (!length) {
- ndev_dbg(netdev, "%s: Last part of the packet spanning"
- " multiple descriptors\n", netdev->name);
- dev_kfree_skb_irq(skb);
- goto next_desc;
- }
-
- /* Good Receive */
- skb_put(skb, length);
-
- {
- /* this looks ugly, but it seems compiler issues make it
- more efficient than reusing j */
- int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
-
- /* page alloc/put takes too long and effects small packet
- * throughput, so unsplit small packets and save the alloc/put*/
- if (l1 && (l1 <= copybreak) &&
- ((length + l1) <= adapter->rx_ps_bsize0)) {
- u8 *vaddr;
-
- ps_page = &buffer_info->ps_pages[0];
-
- /* there is no documentation about how to call
- * kmap_atomic, so we can't hold the mapping
- * very long */
- pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
- PAGE_SIZE, PCI_DMA_FROMDEVICE);
- vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
- memcpy(skb_tail_pointer(skb), vaddr, l1);
- kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
- pci_dma_sync_single_for_device(pdev, ps_page->dma,
- PAGE_SIZE, PCI_DMA_FROMDEVICE);
-
- skb_put(skb, l1);
- goto copydone;
- } /* if */
- }
-
- for (j = 0; j < PS_PAGE_BUFFERS; j++) {
- length = le16_to_cpu(rx_desc->wb.upper.length[j]);
- if (!length)
- break;
-
- ps_page = &buffer_info->ps_pages[j];
- pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
- PCI_DMA_FROMDEVICE);
- ps_page->dma = 0;
- skb_fill_page_desc(skb, j, ps_page->page, 0, length);
- ps_page->page = NULL;
- skb->len += length;
- skb->data_len += length;
- skb->truesize += length;
- }
-
-copydone:
- total_rx_bytes += skb->len;
- total_rx_packets++;
-
- e1000_rx_checksum(adapter, staterr, le16_to_cpu(
- rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
-
- if (rx_desc->wb.upper.header_status &
- cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
- adapter->rx_hdr_split++;
-
- e1000_receive_skb(adapter, netdev, skb,
- staterr, rx_desc->wb.middle.vlan);
-
-next_desc:
- rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
- buffer_info->skb = NULL;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
- adapter->alloc_rx_buf(adapter, cleaned_count);
- cleaned_count = 0;
- }
-
- /* use prefetched values */
- rx_desc = next_rxd;
- buffer_info = next_buffer;
-
- staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
- }
- rx_ring->next_to_clean = i;
-
- cleaned_count = e1000_desc_unused(rx_ring);
- if (cleaned_count)
- adapter->alloc_rx_buf(adapter, cleaned_count);
-
- adapter->total_rx_packets += total_rx_packets;
- adapter->total_rx_bytes += total_rx_bytes;
- adapter->net_stats.rx_packets += total_rx_packets;
- adapter->net_stats.rx_bytes += total_rx_bytes;
- return cleaned;
-}
-
-/**
- * e1000_clean_rx_ring - Free Rx Buffers per Queue
- * @adapter: board private structure
- **/
-static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
-{
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info;
- struct e1000_ps_page *ps_page;
- struct pci_dev *pdev = adapter->pdev;
- unsigned int i, j;
-
- /* Free all the Rx ring sk_buffs */
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- if (buffer_info->dma) {
- if (adapter->clean_rx == e1000_clean_rx_irq)
- pci_unmap_single(pdev, buffer_info->dma,
- adapter->rx_buffer_len,
- PCI_DMA_FROMDEVICE);
- else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
- pci_unmap_single(pdev, buffer_info->dma,
- adapter->rx_ps_bsize0,
- PCI_DMA_FROMDEVICE);
- buffer_info->dma = 0;
- }
-
- if (buffer_info->skb) {
- dev_kfree_skb(buffer_info->skb);
- buffer_info->skb = NULL;
- }
-
- for (j = 0; j < PS_PAGE_BUFFERS; j++) {
- ps_page = &buffer_info->ps_pages[j];
- if (!ps_page->page)
- break;
- pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
- PCI_DMA_FROMDEVICE);
- ps_page->dma = 0;
- put_page(ps_page->page);
- ps_page->page = NULL;
- }
- }
-
- /* there also may be some cached data from a chained receive */
- if (rx_ring->rx_skb_top) {
- dev_kfree_skb(rx_ring->rx_skb_top);
- rx_ring->rx_skb_top = NULL;
- }
-
- /* Zero out the descriptor ring */
- memset(rx_ring->desc, 0, rx_ring->size);
-
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
-
- writel(0, adapter->hw.hw_addr + rx_ring->head);
- writel(0, adapter->hw.hw_addr + rx_ring->tail);
-}
-
-/**
- * e1000_intr_msi - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-static irqreturn_t e1000_intr_msi(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 icr = er32(ICR);
-
- /* read ICR disables interrupts using IAM, so keep up with our
- * enable/disable accounting */
- atomic_inc(&adapter->irq_sem);
-
- if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
- hw->mac.get_link_status = 1;
- /* ICH8 workaround-- Call gig speed drop workaround on cable
- * disconnect (LSC) before accessing any PHY registers */
- if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
- (!(er32(STATUS) & E1000_STATUS_LU)))
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* 80003ES2LAN workaround-- For packet buffer work-around on
- * link down event; disable receives here in the ISR and reset
- * adapter in watchdog */
- if (netif_carrier_ok(netdev) &&
- adapter->flags & FLAG_RX_NEEDS_RESTART) {
- /* disable receives */
- u32 rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- }
- /* guard against interrupt when we're going down */
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->watchdog_timer, jiffies + 1);
- }
-
- if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
- adapter->total_tx_bytes = 0;
- adapter->total_tx_packets = 0;
- adapter->total_rx_bytes = 0;
- adapter->total_rx_packets = 0;
- __netif_rx_schedule(netdev, &adapter->napi);
- } else {
- atomic_dec(&adapter->irq_sem);
- }
-
- return IRQ_HANDLED;
-}
-
-/**
- * e1000_intr - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-static irqreturn_t e1000_intr(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- u32 rctl, icr = er32(ICR);
- if (!icr)
- return IRQ_NONE; /* Not our interrupt */
-
- /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
- * not set, then the adapter didn't send an interrupt */
- if (!(icr & E1000_ICR_INT_ASSERTED))
- return IRQ_NONE;
-
- /* Interrupt Auto-Mask...upon reading ICR,
- * interrupts are masked. No need for the
- * IMC write, but it does mean we should
- * account for it ASAP. */
- atomic_inc(&adapter->irq_sem);
-
- if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
- hw->mac.get_link_status = 1;
- /* ICH8 workaround-- Call gig speed drop workaround on cable
- * disconnect (LSC) before accessing any PHY registers */
- if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
- (!(er32(STATUS) & E1000_STATUS_LU)))
- e1000e_gig_downshift_workaround_ich8lan(hw);
-
- /* 80003ES2LAN workaround--
- * For packet buffer work-around on link down event;
- * disable receives here in the ISR and
- * reset adapter in watchdog
- */
- if (netif_carrier_ok(netdev) &&
- (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
- /* disable receives */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- }
- /* guard against interrupt when we're going down */
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->watchdog_timer, jiffies + 1);
- }
-
- if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
- adapter->total_tx_bytes = 0;
- adapter->total_tx_packets = 0;
- adapter->total_rx_bytes = 0;
- adapter->total_rx_packets = 0;
- __netif_rx_schedule(netdev, &adapter->napi);
- } else {
- atomic_dec(&adapter->irq_sem);
- }
-
- return IRQ_HANDLED;
-}
-
-static int e1000_request_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- irq_handler_t handler = e1000_intr;
- int irq_flags = IRQF_SHARED;
- int err;
-
- if (!pci_enable_msi(adapter->pdev)) {
- adapter->flags |= FLAG_MSI_ENABLED;
- handler = e1000_intr_msi;
- irq_flags = 0;
- }
-
- err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
- netdev);
- if (err) {
- ndev_err(netdev,
- "Unable to allocate %s interrupt (return: %d)\n",
- adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
- err);
- if (adapter->flags & FLAG_MSI_ENABLED)
- pci_disable_msi(adapter->pdev);
- }
-
- return err;
-}
-
-static void e1000_free_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
-
- free_irq(adapter->pdev->irq, netdev);
- if (adapter->flags & FLAG_MSI_ENABLED) {
- pci_disable_msi(adapter->pdev);
- adapter->flags &= ~FLAG_MSI_ENABLED;
- }
-}
-
-/**
- * e1000_irq_disable - Mask off interrupt generation on the NIC
- **/
-static void e1000_irq_disable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- atomic_inc(&adapter->irq_sem);
- ew32(IMC, ~0);
- e1e_flush();
- synchronize_irq(adapter->pdev->irq);
-}
-
-/**
- * e1000_irq_enable - Enable default interrupt generation settings
- **/
-static void e1000_irq_enable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- if (atomic_dec_and_test(&adapter->irq_sem)) {
- ew32(IMS, IMS_ENABLE_MASK);
- e1e_flush();
- }
-}
-
-/**
- * e1000_get_hw_control - get control of the h/w from f/w
- * @adapter: address of board private structure
- *
- * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that
- * the driver is loaded. For AMT version (only with 82573)
- * of the f/w this means that the network i/f is open.
- **/
-static void e1000_get_hw_control(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_ext;
- u32 swsm;
-
- /* Let firmware know the driver has taken over */
- if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
- } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
- ctrl_ext = er32(CTRL_EXT);
- ew32(CTRL_EXT,
- ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
- }
-}
-
-/**
- * e1000_release_hw_control - release control of the h/w to f/w
- * @adapter: address of board private structure
- *
- * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
- * For ASF and Pass Through versions of f/w this means that the
- * driver is no longer loaded. For AMT version (only with 82573) i
- * of the f/w this means that the network i/f is closed.
- *
- **/
-static void e1000_release_hw_control(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_ext;
- u32 swsm;
-
- /* Let firmware taken over control of h/w */
- if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
- swsm = er32(SWSM);
- ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
- } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
- ctrl_ext = er32(CTRL_EXT);
- ew32(CTRL_EXT,
- ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
- }
-}
-
-/**
- * @e1000_alloc_ring - allocate memory for a ring structure
- **/
-static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
- struct e1000_ring *ring)
-{
- struct pci_dev *pdev = adapter->pdev;
-
- ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
- GFP_KERNEL);
- if (!ring->desc)
- return -ENOMEM;
-
- return 0;
-}
-
-/**
- * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
- * @adapter: board private structure
- *
- * Return 0 on success, negative on failure
- **/
-int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- int err = -ENOMEM, size;
-
- size = sizeof(struct e1000_buffer) * tx_ring->count;
- tx_ring->buffer_info = vmalloc(size);
- if (!tx_ring->buffer_info)
- goto err;
- memset(tx_ring->buffer_info, 0, size);
-
- /* round up to nearest 4K */
- tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
- tx_ring->size = ALIGN(tx_ring->size, 4096);
-
- err = e1000_alloc_ring_dma(adapter, tx_ring);
- if (err)
- goto err;
-
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
- spin_lock_init(&adapter->tx_queue_lock);
-
- return 0;
-err:
- vfree(tx_ring->buffer_info);
- ndev_err(adapter->netdev,
- "Unable to allocate memory for the transmit descriptor ring\n");
- return err;
-}
-
-/**
- * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
- * @adapter: board private structure
- *
- * Returns 0 on success, negative on failure
- **/
-int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
-{
- struct e1000_ring *rx_ring = adapter->rx_ring;
- struct e1000_buffer *buffer_info;
- int i, size, desc_len, err = -ENOMEM;
-
- size = sizeof(struct e1000_buffer) * rx_ring->count;
- rx_ring->buffer_info = vmalloc(size);
- if (!rx_ring->buffer_info)
- goto err;
- memset(rx_ring->buffer_info, 0, size);
-
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
- sizeof(struct e1000_ps_page),
- GFP_KERNEL);
- if (!buffer_info->ps_pages)
- goto err_pages;
- }
-
- desc_len = sizeof(union e1000_rx_desc_packet_split);
-
- /* Round up to nearest 4K */
- rx_ring->size = rx_ring->count * desc_len;
- rx_ring->size = ALIGN(rx_ring->size, 4096);
-
- err = e1000_alloc_ring_dma(adapter, rx_ring);
- if (err)
- goto err_pages;
-
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
- rx_ring->rx_skb_top = NULL;
-
- return 0;
-
-err_pages:
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- kfree(buffer_info->ps_pages);
- }
-err:
- vfree(rx_ring->buffer_info);
- ndev_err(adapter->netdev,
- "Unable to allocate memory for the transmit descriptor ring\n");
- return err;
-}
-
-/**
- * e1000_clean_tx_ring - Free Tx Buffers
- * @adapter: board private structure
- **/
-static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_buffer *buffer_info;
- unsigned long size;
- unsigned int i;
-
- for (i = 0; i < tx_ring->count; i++) {
- buffer_info = &tx_ring->buffer_info[i];
- e1000_put_txbuf(adapter, buffer_info);
- }
-
- size = sizeof(struct e1000_buffer) * tx_ring->count;
- memset(tx_ring->buffer_info, 0, size);
-
- memset(tx_ring->desc, 0, tx_ring->size);
-
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
-
- writel(0, adapter->hw.hw_addr + tx_ring->head);
- writel(0, adapter->hw.hw_addr + tx_ring->tail);
-}
-
-/**
- * e1000e_free_tx_resources - Free Tx Resources per Queue
- * @adapter: board private structure
- *
- * Free all transmit software resources
- **/
-void e1000e_free_tx_resources(struct e1000_adapter *adapter)
-{
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *tx_ring = adapter->tx_ring;
-
- e1000_clean_tx_ring(adapter);
-
- vfree(tx_ring->buffer_info);
- tx_ring->buffer_info = NULL;
-
- dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
- tx_ring->dma);
- tx_ring->desc = NULL;
-}
-
-/**
- * e1000e_free_rx_resources - Free Rx Resources
- * @adapter: board private structure
- *
- * Free all receive software resources
- **/
-
-void e1000e_free_rx_resources(struct e1000_adapter *adapter)
-{
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- int i;
-
- e1000_clean_rx_ring(adapter);
-
- for (i = 0; i < rx_ring->count; i++) {
- kfree(rx_ring->buffer_info[i].ps_pages);
- }
-
- vfree(rx_ring->buffer_info);
- rx_ring->buffer_info = NULL;
-
- dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
- rx_ring->dma);
- rx_ring->desc = NULL;
-}
-
-/**
- * e1000_update_itr - update the dynamic ITR value based on statistics
- * @adapter: pointer to adapter
- * @itr_setting: current adapter->itr
- * @packets: the number of packets during this measurement interval
- * @bytes: the number of bytes during this measurement interval
- *
- * Stores a new ITR value based on packets and byte
- * counts during the last interrupt. The advantage of per interrupt
- * computation is faster updates and more accurate ITR for the current
- * traffic pattern. Constants in this function were computed
- * based on theoretical maximum wire speed and thresholds were set based
- * on testing data as well as attempting to minimize response time
- * while increasing bulk throughput.
- * this functionality is controlled by the InterruptThrottleRate module
- * parameter (see e1000_param.c)
- **/
-static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
- u16 itr_setting, int packets,
- int bytes)
-{
- unsigned int retval = itr_setting;
-
- if (packets == 0)
- goto update_itr_done;
-
- switch (itr_setting) {
- case lowest_latency:
- /* handle TSO and jumbo frames */
- if (bytes/packets > 8000)
- retval = bulk_latency;
- else if ((packets < 5) && (bytes > 512)) {
- retval = low_latency;
- }
- break;
- case low_latency: /* 50 usec aka 20000 ints/s */
- if (bytes > 10000) {
- /* this if handles the TSO accounting */
- if (bytes/packets > 8000) {
- retval = bulk_latency;
- } else if ((packets < 10) || ((bytes/packets) > 1200)) {
- retval = bulk_latency;
- } else if ((packets > 35)) {
- retval = lowest_latency;
- }
- } else if (bytes/packets > 2000) {
- retval = bulk_latency;
- } else if (packets <= 2 && bytes < 512) {
- retval = lowest_latency;
- }
- break;
- case bulk_latency: /* 250 usec aka 4000 ints/s */
- if (bytes > 25000) {
- if (packets > 35) {
- retval = low_latency;
- }
- } else if (bytes < 6000) {
- retval = low_latency;
- }
- break;
- }
-
-update_itr_done:
- return retval;
-}
-
-static void e1000_set_itr(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 current_itr;
- u32 new_itr = adapter->itr;
-
- /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
- if (adapter->link_speed != SPEED_1000) {
- current_itr = 0;
- new_itr = 4000;
- goto set_itr_now;
- }
-
- adapter->tx_itr = e1000_update_itr(adapter,
- adapter->tx_itr,
- adapter->total_tx_packets,
- adapter->total_tx_bytes);
- /* conservative mode (itr 3) eliminates the lowest_latency setting */
- if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
- adapter->tx_itr = low_latency;
-
- adapter->rx_itr = e1000_update_itr(adapter,
- adapter->rx_itr,
- adapter->total_rx_packets,
- adapter->total_rx_bytes);
- /* conservative mode (itr 3) eliminates the lowest_latency setting */
- if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
- adapter->rx_itr = low_latency;
-
- current_itr = max(adapter->rx_itr, adapter->tx_itr);
-
- switch (current_itr) {
- /* counts and packets in update_itr are dependent on these numbers */
- case lowest_latency:
- new_itr = 70000;
- break;
- case low_latency:
- new_itr = 20000; /* aka hwitr = ~200 */
- break;
- case bulk_latency:
- new_itr = 4000;
- break;
- default:
- break;
- }
-
-set_itr_now:
- if (new_itr != adapter->itr) {
- /* this attempts to bias the interrupt rate towards Bulk
- * by adding intermediate steps when interrupt rate is
- * increasing */
- new_itr = new_itr > adapter->itr ?
- min(adapter->itr + (new_itr >> 2), new_itr) :
- new_itr;
- adapter->itr = new_itr;
- ew32(ITR, 1000000000 / (new_itr * 256));
- }
-}
-
-/**
- * e1000_clean - NAPI Rx polling callback
- * @adapter: board private structure
- * @budget: amount of packets driver is allowed to process this poll
- **/
-static int e1000_clean(struct napi_struct *napi, int budget)
-{
- struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
- struct net_device *poll_dev = adapter->netdev;
- int tx_cleaned = 0, work_done = 0;
-
- /* Must NOT use netdev_priv macro here. */
- adapter = poll_dev->priv;
-
- /* e1000_clean is called per-cpu. This lock protects
- * tx_ring from being cleaned by multiple cpus
- * simultaneously. A failure obtaining the lock means
- * tx_ring is currently being cleaned anyway. */
- if (spin_trylock(&adapter->tx_queue_lock)) {
- tx_cleaned = e1000_clean_tx_irq(adapter);
- spin_unlock(&adapter->tx_queue_lock);
- }
-
- adapter->clean_rx(adapter, &work_done, budget);
-
- if (tx_cleaned)
- work_done = budget;
-
- /* If budget not fully consumed, exit the polling mode */
- if (work_done < budget) {
- if (adapter->itr_setting & 3)
- e1000_set_itr(adapter);
- netif_rx_complete(poll_dev, napi);
- e1000_irq_enable(adapter);
- }
-
- return work_done;
-}
-
-static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 vfta, index;
-
- /* don't update vlan cookie if already programmed */
- if ((adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
- (vid == adapter->mng_vlan_id))
- return;
- /* add VID to filter table */
- index = (vid >> 5) & 0x7F;
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
- vfta |= (1 << (vid & 0x1F));
- e1000e_write_vfta(hw, index, vfta);
-}
-
-static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 vfta, index;
-
- e1000_irq_disable(adapter);
- vlan_group_set_device(adapter->vlgrp, vid, NULL);
- e1000_irq_enable(adapter);
-
- if ((adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
- (vid == adapter->mng_vlan_id)) {
- /* release control to f/w */
- e1000_release_hw_control(adapter);
- return;
- }
-
- /* remove VID from filter table */
- index = (vid >> 5) & 0x7F;
- vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
- vfta &= ~(1 << (vid & 0x1F));
- e1000e_write_vfta(hw, index, vfta);
-}
-
-static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- u16 vid = adapter->hw.mng_cookie.vlan_id;
- u16 old_vid = adapter->mng_vlan_id;
-
- if (!adapter->vlgrp)
- return;
-
- if (!vlan_group_get_device(adapter->vlgrp, vid)) {
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- if (adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
- e1000_vlan_rx_add_vid(netdev, vid);
- adapter->mng_vlan_id = vid;
- }
-
- if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
- (vid != old_vid) &&
- !vlan_group_get_device(adapter->vlgrp, old_vid))
- e1000_vlan_rx_kill_vid(netdev, old_vid);
- } else {
- adapter->mng_vlan_id = vid;
- }
-}
-
-
-static void e1000_vlan_rx_register(struct net_device *netdev,
- struct vlan_group *grp)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl, rctl;
-
- e1000_irq_disable(adapter);
- adapter->vlgrp = grp;
-
- if (grp) {
- /* enable VLAN tag insert/strip */
- ctrl = er32(CTRL);
- ctrl |= E1000_CTRL_VME;
- ew32(CTRL, ctrl);
-
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
- /* enable VLAN receive filtering */
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_VFE;
- rctl &= ~E1000_RCTL_CFIEN;
- ew32(RCTL, rctl);
- e1000_update_mng_vlan(adapter);
- }
- } else {
- /* disable VLAN tag insert/strip */
- ctrl = er32(CTRL);
- ctrl &= ~E1000_CTRL_VME;
- ew32(CTRL, ctrl);
-
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
- /* disable VLAN filtering */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_VFE;
- ew32(RCTL, rctl);
- if (adapter->mng_vlan_id !=
- (u16)E1000_MNG_VLAN_NONE) {
- e1000_vlan_rx_kill_vid(netdev,
- adapter->mng_vlan_id);
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- }
- }
- }
-
- e1000_irq_enable(adapter);
-}
-
-static void e1000_restore_vlan(struct e1000_adapter *adapter)
-{
- u16 vid;
-
- e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
-
- if (!adapter->vlgrp)
- return;
-
- for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
- if (!vlan_group_get_device(adapter->vlgrp, vid))
- continue;
- e1000_vlan_rx_add_vid(adapter->netdev, vid);
- }
-}
-
-static void e1000_init_manageability(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 manc, manc2h;
-
- if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
- return;
-
- manc = er32(MANC);
-
- /* enable receiving management packets to the host. this will probably
- * generate destination unreachable messages from the host OS, but
- * the packets will be handled on SMBUS */
- manc |= E1000_MANC_EN_MNG2HOST;
- manc2h = er32(MANC2H);
-#define E1000_MNG2HOST_PORT_623 (1 << 5)
-#define E1000_MNG2HOST_PORT_664 (1 << 6)
- manc2h |= E1000_MNG2HOST_PORT_623;
- manc2h |= E1000_MNG2HOST_PORT_664;
- ew32(MANC2H, manc2h);
- ew32(MANC, manc);
-}
-
-/**
- * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Tx unit of the MAC after a reset.
- **/
-static void e1000_configure_tx(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- u64 tdba;
- u32 tdlen, tctl, tipg, tarc;
- u32 ipgr1, ipgr2;
-
- /* Setup the HW Tx Head and Tail descriptor pointers */
- tdba = tx_ring->dma;
- tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
- ew32(TDBAL, (tdba & DMA_32BIT_MASK));
- ew32(TDBAH, (tdba >> 32));
- ew32(TDLEN, tdlen);
- ew32(TDH, 0);
- ew32(TDT, 0);
- tx_ring->head = E1000_TDH;
- tx_ring->tail = E1000_TDT;
-
- /* Set the default values for the Tx Inter Packet Gap timer */
- tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
- ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
- ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
-
- if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
- ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
-
- tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
- tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
- ew32(TIPG, tipg);
-
- /* Set the Tx Interrupt Delay register */
- ew32(TIDV, adapter->tx_int_delay);
- /* tx irq moderation */
- ew32(TADV, adapter->tx_abs_int_delay);
-
- /* Program the Transmit Control Register */
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
-
- if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
- tarc = er32(TARC0);
- /* set the speed mode bit, we'll clear it if we're not at
- * gigabit link later */
-#define SPEED_MODE_BIT (1 << 21)
- tarc |= SPEED_MODE_BIT;
- ew32(TARC0, tarc);
- }
-
- /* errata: program both queues to unweighted RR */
- if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
- tarc = er32(TARC0);
- tarc |= 1;
- ew32(TARC0, tarc);
- tarc = er32(TARC1);
- tarc |= 1;
- ew32(TARC1, tarc);
- }
-
- e1000e_config_collision_dist(hw);
-
- /* Setup Transmit Descriptor Settings for eop descriptor */
- adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
-
- /* only set IDE if we are delaying interrupts using the timers */
- if (adapter->tx_int_delay)
- adapter->txd_cmd |= E1000_TXD_CMD_IDE;
-
- /* enable Report Status bit */
- adapter->txd_cmd |= E1000_TXD_CMD_RS;
-
- ew32(TCTL, tctl);
-
- adapter->tx_queue_len = adapter->netdev->tx_queue_len;
-}
-
-/**
- * e1000_setup_rctl - configure the receive control registers
- * @adapter: Board private structure
- **/
-#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
- (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
-static void e1000_setup_rctl(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl, rfctl;
- u32 psrctl = 0;
- u32 pages = 0;
-
- /* Program MC offset vector base */
- rctl = er32(RCTL);
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
- E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
- (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
-
- /* Do not Store bad packets */
- rctl &= ~E1000_RCTL_SBP;
-
- /* Enable Long Packet receive */
- if (adapter->netdev->mtu <= ETH_DATA_LEN)
- rctl &= ~E1000_RCTL_LPE;
- else
- rctl |= E1000_RCTL_LPE;
-
- /* Enable hardware CRC frame stripping */
- rctl |= E1000_RCTL_SECRC;
-
- /* Setup buffer sizes */
- rctl &= ~E1000_RCTL_SZ_4096;
- rctl |= E1000_RCTL_BSEX;
- switch (adapter->rx_buffer_len) {
- case 256:
- rctl |= E1000_RCTL_SZ_256;
- rctl &= ~E1000_RCTL_BSEX;
- break;
- case 512:
- rctl |= E1000_RCTL_SZ_512;
- rctl &= ~E1000_RCTL_BSEX;
- break;
- case 1024:
- rctl |= E1000_RCTL_SZ_1024;
- rctl &= ~E1000_RCTL_BSEX;
- break;
- case 2048:
- default:
- rctl |= E1000_RCTL_SZ_2048;
- rctl &= ~E1000_RCTL_BSEX;
- break;
- case 4096:
- rctl |= E1000_RCTL_SZ_4096;
- break;
- case 8192:
- rctl |= E1000_RCTL_SZ_8192;
- break;
- case 16384:
- rctl |= E1000_RCTL_SZ_16384;
- break;
- }
-
- /*
- * 82571 and greater support packet-split where the protocol
- * header is placed in skb->data and the packet data is
- * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
- * In the case of a non-split, skb->data is linearly filled,
- * followed by the page buffers. Therefore, skb->data is
- * sized to hold the largest protocol header.
- *
- * allocations using alloc_page take too long for regular MTU
- * so only enable packet split for jumbo frames
- *
- * Using pages when the page size is greater than 16k wastes
- * a lot of memory, since we allocate 3 pages at all times
- * per packet.
- */
- adapter->rx_ps_pages = 0;
- pages = PAGE_USE_COUNT(adapter->netdev->mtu);
- if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
- adapter->rx_ps_pages = pages;
-
- if (adapter->rx_ps_pages) {
- /* Configure extra packet-split registers */
- rfctl = er32(RFCTL);
- rfctl |= E1000_RFCTL_EXTEN;
- /* disable packet split support for IPv6 extension headers,
- * because some malformed IPv6 headers can hang the RX */
- rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
- E1000_RFCTL_NEW_IPV6_EXT_DIS);
-
- ew32(RFCTL, rfctl);
-
- /* Enable Packet split descriptors */
- rctl |= E1000_RCTL_DTYP_PS;
-
- psrctl |= adapter->rx_ps_bsize0 >>
- E1000_PSRCTL_BSIZE0_SHIFT;
-
- switch (adapter->rx_ps_pages) {
- case 3:
- psrctl |= PAGE_SIZE <<
- E1000_PSRCTL_BSIZE3_SHIFT;
- case 2:
- psrctl |= PAGE_SIZE <<
- E1000_PSRCTL_BSIZE2_SHIFT;
- case 1:
- psrctl |= PAGE_SIZE >>
- E1000_PSRCTL_BSIZE1_SHIFT;
- break;
- }
-
- ew32(PSRCTL, psrctl);
- }
-
- ew32(RCTL, rctl);
-}
-
-/**
- * e1000_configure_rx - Configure Receive Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Rx unit of the MAC after a reset.
- **/
-static void e1000_configure_rx(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_ring *rx_ring = adapter->rx_ring;
- u64 rdba;
- u32 rdlen, rctl, rxcsum, ctrl_ext;
-
- if (adapter->rx_ps_pages) {
- /* this is a 32 byte descriptor */
- rdlen = rx_ring->count *
- sizeof(union e1000_rx_desc_packet_split);
- adapter->clean_rx = e1000_clean_rx_irq_ps;
- adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
- } else {
- rdlen = rx_ring->count *
- sizeof(struct e1000_rx_desc);
- adapter->clean_rx = e1000_clean_rx_irq;
- adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
- }
-
- /* disable receives while setting up the descriptors */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- e1e_flush();
- msleep(10);
-
- /* set the Receive Delay Timer Register */
- ew32(RDTR, adapter->rx_int_delay);
-
- /* irq moderation */
- ew32(RADV, adapter->rx_abs_int_delay);
- if (adapter->itr_setting != 0)
- ew32(ITR,
- 1000000000 / (adapter->itr * 256));
-
- ctrl_ext = er32(CTRL_EXT);
- /* Reset delay timers after every interrupt */
- ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
- /* Auto-Mask interrupts upon ICR access */
- ctrl_ext |= E1000_CTRL_EXT_IAME;
- ew32(IAM, 0xffffffff);
- ew32(CTRL_EXT, ctrl_ext);
- e1e_flush();
-
- /* Setup the HW Rx Head and Tail Descriptor Pointers and
- * the Base and Length of the Rx Descriptor Ring */
- rdba = rx_ring->dma;
- ew32(RDBAL, (rdba & DMA_32BIT_MASK));
- ew32(RDBAH, (rdba >> 32));
- ew32(RDLEN, rdlen);
- ew32(RDH, 0);
- ew32(RDT, 0);
- rx_ring->head = E1000_RDH;
- rx_ring->tail = E1000_RDT;
-
- /* Enable Receive Checksum Offload for TCP and UDP */
- rxcsum = er32(RXCSUM);
- if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
- rxcsum |= E1000_RXCSUM_TUOFL;
-
- /* IPv4 payload checksum for UDP fragments must be
- * used in conjunction with packet-split. */
- if (adapter->rx_ps_pages)
- rxcsum |= E1000_RXCSUM_IPPCSE;
- } else {
- rxcsum &= ~E1000_RXCSUM_TUOFL;
- /* no need to clear IPPCSE as it defaults to 0 */
- }
- ew32(RXCSUM, rxcsum);
-
- /* Enable early receives on supported devices, only takes effect when
- * packet size is equal or larger than the specified value (in 8 byte
- * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
- if ((adapter->flags & FLAG_HAS_ERT) &&
- (adapter->netdev->mtu > ETH_DATA_LEN))
- ew32(ERT, E1000_ERT_2048);
-
- /* Enable Receives */
- ew32(RCTL, rctl);
-}
-
-/**
- * e1000_mc_addr_list_update - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- * @rar_used_count: the first RAR register free to program
- * @rar_count: total number of supported Receive Address Registers
- *
- * Updates the Receive Address Registers and Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- * The parameter rar_count will usually be hw->mac.rar_entry_count
- * unless there are workarounds that change this. Currently no func pointer
- * exists and all implementations are handled in the generic version of this
- * function.
- **/
-static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
- u32 mc_addr_count, u32 rar_used_count,
- u32 rar_count)
-{
- hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
- rar_used_count, rar_count);
-}
-
-/**
- * e1000_set_multi - Multicast and Promiscuous mode set
- * @netdev: network interface device structure
- *
- * The set_multi entry point is called whenever the multicast address
- * list or the network interface flags are updated. This routine is
- * responsible for configuring the hardware for proper multicast,
- * promiscuous mode, and all-multi behavior.
- **/
-static void e1000_set_multi(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_mac_info *mac = &hw->mac;
- struct dev_mc_list *mc_ptr;
- u8 *mta_list;
- u32 rctl;
- int i;
-
- /* Check for Promiscuous and All Multicast modes */
-
- rctl = er32(RCTL);
-
- if (netdev->flags & IFF_PROMISC) {
- rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- } else if (netdev->flags & IFF_ALLMULTI) {
- rctl |= E1000_RCTL_MPE;
- rctl &= ~E1000_RCTL_UPE;
- } else {
- rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
- }
-
- ew32(RCTL, rctl);
-
- if (netdev->mc_count) {
- mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
- if (!mta_list)
- return;
-
- /* prepare a packed array of only addresses. */
- mc_ptr = netdev->mc_list;
-
- for (i = 0; i < netdev->mc_count; i++) {
- if (!mc_ptr)
- break;
- memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
- ETH_ALEN);
- mc_ptr = mc_ptr->next;
- }
-
- e1000_mc_addr_list_update(hw, mta_list, i, 1,
- mac->rar_entry_count);
- kfree(mta_list);
- } else {
- /*
- * if we're called from probe, we might not have
- * anything to do here, so clear out the list
- */
- e1000_mc_addr_list_update(hw, NULL, 0, 1,
- mac->rar_entry_count);
- }
-}
-
-/**
- * e1000_configure - configure the hardware for RX and TX
- * @adapter: private board structure
- **/
-static void e1000_configure(struct e1000_adapter *adapter)
-{
- e1000_set_multi(adapter->netdev);
-
- e1000_restore_vlan(adapter);
- e1000_init_manageability(adapter);
-
- e1000_configure_tx(adapter);
- e1000_setup_rctl(adapter);
- e1000_configure_rx(adapter);
- adapter->alloc_rx_buf(adapter,
- e1000_desc_unused(adapter->rx_ring));
-}
-
-/**
- * e1000e_power_up_phy - restore link in case the phy was powered down
- * @adapter: address of board private structure
- *
- * The phy may be powered down to save power and turn off link when the
- * driver is unloaded and wake on lan is not enabled (among others)
- * *** this routine MUST be followed by a call to e1000e_reset ***
- **/
-void e1000e_power_up_phy(struct e1000_adapter *adapter)
-{
- u16 mii_reg = 0;
-
- /* Just clear the power down bit to wake the phy back up */
- if (adapter->hw.media_type == e1000_media_type_copper) {
- /* according to the manual, the phy will retain its
- * settings across a power-down/up cycle */
- e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
- mii_reg &= ~MII_CR_POWER_DOWN;
- e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
- }
-
- adapter->hw.mac.ops.setup_link(&adapter->hw);
-}
-
-/**
- * e1000_power_down_phy - Power down the PHY
- *
- * Power down the PHY so no link is implied when interface is down
- * The PHY cannot be powered down is management or WoL is active
- */
-static void e1000_power_down_phy(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 mii_reg;
-
- /* WoL is enabled */
- if (adapter->wol)
- return;
-
- /* non-copper PHY? */
- if (adapter->hw.media_type != e1000_media_type_copper)
- return;
-
- /* reset is blocked because of a SoL/IDER session */
- if (e1000e_check_mng_mode(hw) ||
- e1000_check_reset_block(hw))
- return;
-
- /* manageability (AMT) is enabled */
- if (er32(MANC) & E1000_MANC_SMBUS_EN)
- return;
-
- /* power down the PHY */
- e1e_rphy(hw, PHY_CONTROL, &mii_reg);
- mii_reg |= MII_CR_POWER_DOWN;
- e1e_wphy(hw, PHY_CONTROL, mii_reg);
- mdelay(1);
-}
-
-/**
- * e1000e_reset - bring the hardware into a known good state
- *
- * This function boots the hardware and enables some settings that
- * require a configuration cycle of the hardware - those cannot be
- * set/changed during runtime. After reset the device needs to be
- * properly configured for rx, tx etc.
- */
-void e1000e_reset(struct e1000_adapter *adapter)
-{
- struct e1000_mac_info *mac = &adapter->hw.mac;
- struct e1000_hw *hw = &adapter->hw;
- u32 tx_space, min_tx_space, min_rx_space;
- u32 pba;
- u16 hwm;
-
- ew32(PBA, adapter->pba);
-
- if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
- /* To maintain wire speed transmits, the Tx FIFO should be
- * large enough to accommodate two full transmit packets,
- * rounded up to the next 1KB and expressed in KB. Likewise,
- * the Rx FIFO should be large enough to accommodate at least
- * one full receive packet and is similarly rounded up and
- * expressed in KB. */
- pba = er32(PBA);
- /* upper 16 bits has Tx packet buffer allocation size in KB */
- tx_space = pba >> 16;
- /* lower 16 bits has Rx packet buffer allocation size in KB */
- pba &= 0xffff;
- /* the tx fifo also stores 16 bytes of information about the tx
- * but don't include ethernet FCS because hardware appends it */
- min_tx_space = (mac->max_frame_size +
- sizeof(struct e1000_tx_desc) -
- ETH_FCS_LEN) * 2;
- min_tx_space = ALIGN(min_tx_space, 1024);
- min_tx_space >>= 10;
- /* software strips receive CRC, so leave room for it */
- min_rx_space = mac->max_frame_size;
- min_rx_space = ALIGN(min_rx_space, 1024);
- min_rx_space >>= 10;
-
- /* If current Tx allocation is less than the min Tx FIFO size,
- * and the min Tx FIFO size is less than the current Rx FIFO
- * allocation, take space away from current Rx allocation */
- if ((tx_space < min_tx_space) &&
- ((min_tx_space - tx_space) < pba)) {
- pba -= min_tx_space - tx_space;
-
- /* if short on rx space, rx wins and must trump tx
- * adjustment or use Early Receive if available */
- if ((pba < min_rx_space) &&
- (!(adapter->flags & FLAG_HAS_ERT)))
- /* ERT enabled in e1000_configure_rx */
- pba = min_rx_space;
- }
-
- ew32(PBA, pba);
- }
-
-
- /* flow control settings */
- /* The high water mark must be low enough to fit one full frame
- * (or the size used for early receive) above it in the Rx FIFO.
- * Set it to the lower of:
- * - 90% of the Rx FIFO size, and
- * - the full Rx FIFO size minus the early receive size (for parts
- * with ERT support assuming ERT set to E1000_ERT_2048), or
- * - the full Rx FIFO size minus one full frame */
- if (adapter->flags & FLAG_HAS_ERT)
- hwm = min(((adapter->pba << 10) * 9 / 10),
- ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
- else
- hwm = min(((adapter->pba << 10) * 9 / 10),
- ((adapter->pba << 10) - mac->max_frame_size));
-
- mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
- mac->fc_low_water = mac->fc_high_water - 8;
-
- if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
- mac->fc_pause_time = 0xFFFF;
- else
- mac->fc_pause_time = E1000_FC_PAUSE_TIME;
- mac->fc = mac->original_fc;
-
- /* Allow time for pending master requests to run */
- mac->ops.reset_hw(hw);
- ew32(WUC, 0);
-
- if (mac->ops.init_hw(hw))
- ndev_err(adapter->netdev, "Hardware Error\n");
-
- e1000_update_mng_vlan(adapter);
-
- /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
- ew32(VET, ETH_P_8021Q);
-
- e1000e_reset_adaptive(hw);
- e1000_get_phy_info(hw);
-
- if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
- u16 phy_data = 0;
- /* speed up time to link by disabling smart power down, ignore
- * the return value of this function because there is nothing
- * different we would do if it failed */
- e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- phy_data &= ~IGP02E1000_PM_SPD;
- e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
- }
-}
-
-int e1000e_up(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- /* hardware has been reset, we need to reload some things */
- e1000_configure(adapter);
-
- clear_bit(__E1000_DOWN, &adapter->state);
-
- napi_enable(&adapter->napi);
- e1000_irq_enable(adapter);
-
- /* fire a link change interrupt to start the watchdog */
- ew32(ICS, E1000_ICS_LSC);
- return 0;
-}
-
-void e1000e_down(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 tctl, rctl;
-
- /* signal that we're down so the interrupt handler does not
- * reschedule our watchdog timer */
- set_bit(__E1000_DOWN, &adapter->state);
-
- /* disable receives in the hardware */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- /* flush and sleep below */
-
- netif_stop_queue(netdev);
-
- /* disable transmits in the hardware */
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_EN;
- ew32(TCTL, tctl);
- /* flush both disables and wait for them to finish */
- e1e_flush();
- msleep(10);
-
- napi_disable(&adapter->napi);
- atomic_set(&adapter->irq_sem, 0);
- e1000_irq_disable(adapter);
-
- del_timer_sync(&adapter->watchdog_timer);
- del_timer_sync(&adapter->phy_info_timer);
-
- netdev->tx_queue_len = adapter->tx_queue_len;
- netif_carrier_off(netdev);
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
-
- e1000e_reset(adapter);
- e1000_clean_tx_ring(adapter);
- e1000_clean_rx_ring(adapter);
-
- /*
- * TODO: for power management, we could drop the link and
- * pci_disable_device here.
- */
-}
-
-void e1000e_reinit_locked(struct e1000_adapter *adapter)
-{
- might_sleep();
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- msleep(1);
- e1000e_down(adapter);
- e1000e_up(adapter);
- clear_bit(__E1000_RESETTING, &adapter->state);
-}
-
-/**
- * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
- * @adapter: board private structure to initialize
- *
- * e1000_sw_init initializes the Adapter private data structure.
- * Fields are initialized based on PCI device information and
- * OS network device settings (MTU size).
- **/
-static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
-
- adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
- adapter->rx_ps_bsize0 = 128;
- hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
- hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
-
- adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
- if (!adapter->tx_ring)
- goto err;
-
- adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
- if (!adapter->rx_ring)
- goto err;
-
- spin_lock_init(&adapter->tx_queue_lock);
-
- /* Explicitly disable IRQ since the NIC can be in any state. */
- atomic_set(&adapter->irq_sem, 0);
- e1000_irq_disable(adapter);
-
- spin_lock_init(&adapter->stats_lock);
-
- set_bit(__E1000_DOWN, &adapter->state);
- return 0;
-
-err:
- ndev_err(netdev, "Unable to allocate memory for queues\n");
- kfree(adapter->rx_ring);
- kfree(adapter->tx_ring);
- return -ENOMEM;
-}
-
-/**
- * e1000_open - Called when a network interface is made active
- * @netdev: network interface device structure
- *
- * Returns 0 on success, negative value on failure
- *
- * The open entry point is called when a network interface is made
- * active by the system (IFF_UP). At this point all resources needed
- * for transmit and receive operations are allocated, the interrupt
- * handler is registered with the OS, the watchdog timer is started,
- * and the stack is notified that the interface is ready.
- **/
-static int e1000_open(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- int err;
-
- /* disallow open during test */
- if (test_bit(__E1000_TESTING, &adapter->state))
- return -EBUSY;
-
- /* allocate transmit descriptors */
- err = e1000e_setup_tx_resources(adapter);
- if (err)
- goto err_setup_tx;
-
- /* allocate receive descriptors */
- err = e1000e_setup_rx_resources(adapter);
- if (err)
- goto err_setup_rx;
-
- e1000e_power_up_phy(adapter);
-
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- if ((adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
- e1000_update_mng_vlan(adapter);
-
- /* If AMT is enabled, let the firmware know that the network
- * interface is now open */
- if ((adapter->flags & FLAG_HAS_AMT) &&
- e1000e_check_mng_mode(&adapter->hw))
- e1000_get_hw_control(adapter);
-
- /* before we allocate an interrupt, we must be ready to handle it.
- * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
- * as soon as we call pci_request_irq, so we have to setup our
- * clean_rx handler before we do so. */
- e1000_configure(adapter);
-
- err = e1000_request_irq(adapter);
- if (err)
- goto err_req_irq;
-
- /* From here on the code is the same as e1000e_up() */
- clear_bit(__E1000_DOWN, &adapter->state);
-
- napi_enable(&adapter->napi);
-
- e1000_irq_enable(adapter);
-
- /* fire a link status change interrupt to start the watchdog */
- ew32(ICS, E1000_ICS_LSC);
-
- return 0;
-
-err_req_irq:
- e1000_release_hw_control(adapter);
- e1000_power_down_phy(adapter);
- e1000e_free_rx_resources(adapter);
-err_setup_rx:
- e1000e_free_tx_resources(adapter);
-err_setup_tx:
- e1000e_reset(adapter);
-
- return err;
-}
-
-/**
- * e1000_close - Disables a network interface
- * @netdev: network interface device structure
- *
- * Returns 0, this is not allowed to fail
- *
- * The close entry point is called when an interface is de-activated
- * by the OS. The hardware is still under the drivers control, but
- * needs to be disabled. A global MAC reset is issued to stop the
- * hardware, and all transmit and receive resources are freed.
- **/
-static int e1000_close(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
- e1000e_down(adapter);
- e1000_power_down_phy(adapter);
- e1000_free_irq(adapter);
-
- e1000e_free_tx_resources(adapter);
- e1000e_free_rx_resources(adapter);
-
- /* kill manageability vlan ID if supported, but not if a vlan with
- * the same ID is registered on the host OS (let 8021q kill it) */
- if ((adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
- !(adapter->vlgrp &&
- vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
- e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
-
- /* If AMT is enabled, let the firmware know that the network
- * interface is now closed */
- if ((adapter->flags & FLAG_HAS_AMT) &&
- e1000e_check_mng_mode(&adapter->hw))
- e1000_release_hw_control(adapter);
-
- return 0;
-}
-/**
- * e1000_set_mac - Change the Ethernet Address of the NIC
- * @netdev: network interface device structure
- * @p: pointer to an address structure
- *
- * Returns 0 on success, negative on failure
- **/
-static int e1000_set_mac(struct net_device *netdev, void *p)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct sockaddr *addr = p;
-
- if (!is_valid_ether_addr(addr->sa_data))
- return -EADDRNOTAVAIL;
-
- memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
- memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
-
- e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
-
- if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
- /* activate the work around */
- e1000e_set_laa_state_82571(&adapter->hw, 1);
-
- /* Hold a copy of the LAA in RAR[14] This is done so that
- * between the time RAR[0] gets clobbered and the time it
- * gets fixed (in e1000_watchdog), the actual LAA is in one
- * of the RARs and no incoming packets directed to this port
- * are dropped. Eventually the LAA will be in RAR[0] and
- * RAR[14] */
- e1000e_rar_set(&adapter->hw,
- adapter->hw.mac.addr,
- adapter->hw.mac.rar_entry_count - 1);
- }
-
- return 0;
-}
-
-/* Need to wait a few seconds after link up to get diagnostic information from
- * the phy */
-static void e1000_update_phy_info(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *) data;
- e1000_get_phy_info(&adapter->hw);
-}
-
-/**
- * e1000e_update_stats - Update the board statistics counters
- * @adapter: board private structure
- **/
-void e1000e_update_stats(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct pci_dev *pdev = adapter->pdev;
- unsigned long irq_flags;
- u16 phy_tmp;
-
-#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
-
- /*
- * Prevent stats update while adapter is being reset, or if the pci
- * connection is down.
- */
- if (adapter->link_speed == 0)
- return;
- if (pci_channel_offline(pdev))
- return;
-
- spin_lock_irqsave(&adapter->stats_lock, irq_flags);
-
- /* these counters are modified from e1000_adjust_tbi_stats,
- * called from the interrupt context, so they must only
- * be written while holding adapter->stats_lock
- */
-
- adapter->stats.crcerrs += er32(CRCERRS);
- adapter->stats.gprc += er32(GPRC);
- adapter->stats.gorcl += er32(GORCL);
- adapter->stats.gorch += er32(GORCH);
- adapter->stats.bprc += er32(BPRC);
- adapter->stats.mprc += er32(MPRC);
- adapter->stats.roc += er32(ROC);
-
- if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
- adapter->stats.prc64 += er32(PRC64);
- adapter->stats.prc127 += er32(PRC127);
- adapter->stats.prc255 += er32(PRC255);
- adapter->stats.prc511 += er32(PRC511);
- adapter->stats.prc1023 += er32(PRC1023);
- adapter->stats.prc1522 += er32(PRC1522);
- adapter->stats.symerrs += er32(SYMERRS);
- adapter->stats.sec += er32(SEC);
- }
-
- adapter->stats.mpc += er32(MPC);
- adapter->stats.scc += er32(SCC);
- adapter->stats.ecol += er32(ECOL);
- adapter->stats.mcc += er32(MCC);
- adapter->stats.latecol += er32(LATECOL);
- adapter->stats.dc += er32(DC);
- adapter->stats.rlec += er32(RLEC);
- adapter->stats.xonrxc += er32(XONRXC);
- adapter->stats.xontxc += er32(XONTXC);
- adapter->stats.xoffrxc += er32(XOFFRXC);
- adapter->stats.xofftxc += er32(XOFFTXC);
- adapter->stats.fcruc += er32(FCRUC);
- adapter->stats.gptc += er32(GPTC);
- adapter->stats.gotcl += er32(GOTCL);
- adapter->stats.gotch += er32(GOTCH);
- adapter->stats.rnbc += er32(RNBC);
- adapter->stats.ruc += er32(RUC);
- adapter->stats.rfc += er32(RFC);
- adapter->stats.rjc += er32(RJC);
- adapter->stats.torl += er32(TORL);
- adapter->stats.torh += er32(TORH);
- adapter->stats.totl += er32(TOTL);
- adapter->stats.toth += er32(TOTH);
- adapter->stats.tpr += er32(TPR);
-
- if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
- adapter->stats.ptc64 += er32(PTC64);
- adapter->stats.ptc127 += er32(PTC127);
- adapter->stats.ptc255 += er32(PTC255);
- adapter->stats.ptc511 += er32(PTC511);
- adapter->stats.ptc1023 += er32(PTC1023);
- adapter->stats.ptc1522 += er32(PTC1522);
- }
-
- adapter->stats.mptc += er32(MPTC);
- adapter->stats.bptc += er32(BPTC);
-
- /* used for adaptive IFS */
-
- hw->mac.tx_packet_delta = er32(TPT);
- adapter->stats.tpt += hw->mac.tx_packet_delta;
- hw->mac.collision_delta = er32(COLC);
- adapter->stats.colc += hw->mac.collision_delta;
-
- adapter->stats.algnerrc += er32(ALGNERRC);
- adapter->stats.rxerrc += er32(RXERRC);
- adapter->stats.tncrs += er32(TNCRS);
- adapter->stats.cexterr += er32(CEXTERR);
- adapter->stats.tsctc += er32(TSCTC);
- adapter->stats.tsctfc += er32(TSCTFC);
-
- adapter->stats.iac += er32(IAC);
-
- if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
- adapter->stats.icrxoc += er32(ICRXOC);
- adapter->stats.icrxptc += er32(ICRXPTC);
- adapter->stats.icrxatc += er32(ICRXATC);
- adapter->stats.ictxptc += er32(ICTXPTC);
- adapter->stats.ictxatc += er32(ICTXATC);
- adapter->stats.ictxqec += er32(ICTXQEC);
- adapter->stats.ictxqmtc += er32(ICTXQMTC);
- adapter->stats.icrxdmtc += er32(ICRXDMTC);
- }
-
- /* Fill out the OS statistics structure */
- adapter->net_stats.multicast = adapter->stats.mprc;
- adapter->net_stats.collisions = adapter->stats.colc;
-
- /* Rx Errors */
-
- /* RLEC on some newer hardware can be incorrect so build
- * our own version based on RUC and ROC */
- adapter->net_stats.rx_errors = adapter->stats.rxerrc +
- adapter->stats.crcerrs + adapter->stats.algnerrc +
- adapter->stats.ruc + adapter->stats.roc +
- adapter->stats.cexterr;
- adapter->net_stats.rx_length_errors = adapter->stats.ruc +
- adapter->stats.roc;
- adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
- adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
- adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
-
- /* Tx Errors */
- adapter->net_stats.tx_errors = adapter->stats.ecol +
- adapter->stats.latecol;
- adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
- adapter->net_stats.tx_window_errors = adapter->stats.latecol;
- adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
-
- /* Tx Dropped needs to be maintained elsewhere */
-
- /* Phy Stats */
- if (hw->media_type == e1000_media_type_copper) {
- if ((adapter->link_speed == SPEED_1000) &&
- (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
- phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
- adapter->phy_stats.idle_errors += phy_tmp;
- }
- }
-
- /* Management Stats */
- adapter->stats.mgptc += er32(MGTPTC);
- adapter->stats.mgprc += er32(MGTPRC);
- adapter->stats.mgpdc += er32(MGTPDC);
-
- spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
-}
-
-static void e1000_print_link_info(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl = er32(CTRL);
-
- ndev_info(netdev,
- "Link is Up %d Mbps %s, Flow Control: %s\n",
- adapter->link_speed,
- (adapter->link_duplex == FULL_DUPLEX) ?
- "Full Duplex" : "Half Duplex",
- ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
- "RX/TX" :
- ((ctrl & E1000_CTRL_RFCE) ? "RX" :
- ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
-}
-
-/**
- * e1000_watchdog - Timer Call-back
- * @data: pointer to adapter cast into an unsigned long
- **/
-static void e1000_watchdog(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *) data;
-
- /* Do the rest outside of interrupt context */
- schedule_work(&adapter->watchdog_task);
-
- /* TODO: make this use queue_delayed_work() */
-}
-
-static void e1000_watchdog_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter = container_of(work,
- struct e1000_adapter, watchdog_task);
-
- struct net_device *netdev = adapter->netdev;
- struct e1000_mac_info *mac = &adapter->hw.mac;
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_hw *hw = &adapter->hw;
- u32 link, tctl;
- s32 ret_val;
- int tx_pending = 0;
-
- if ((netif_carrier_ok(netdev)) &&
- (er32(STATUS) & E1000_STATUS_LU))
- goto link_up;
-
- ret_val = mac->ops.check_for_link(hw);
- if ((ret_val == E1000_ERR_PHY) &&
- (adapter->hw.phy.type == e1000_phy_igp_3) &&
- (er32(CTRL) &
- E1000_PHY_CTRL_GBE_DISABLE)) {
- /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
- ndev_info(netdev,
- "Gigabit has been disabled, downgrading speed\n");
- }
-
- if ((e1000e_enable_tx_pkt_filtering(hw)) &&
- (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
- e1000_update_mng_vlan(adapter);
-
- if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
- !(er32(TXCW) & E1000_TXCW_ANE))
- link = adapter->hw.mac.serdes_has_link;
- else
- link = er32(STATUS) & E1000_STATUS_LU;
-
- if (link) {
- if (!netif_carrier_ok(netdev)) {
- bool txb2b = 1;
- mac->ops.get_link_up_info(&adapter->hw,
- &adapter->link_speed,
- &adapter->link_duplex);
- e1000_print_link_info(adapter);
- /* tweak tx_queue_len according to speed/duplex
- * and adjust the timeout factor */
- netdev->tx_queue_len = adapter->tx_queue_len;
- adapter->tx_timeout_factor = 1;
- switch (adapter->link_speed) {
- case SPEED_10:
- txb2b = 0;
- netdev->tx_queue_len = 10;
- adapter->tx_timeout_factor = 14;
- break;
- case SPEED_100:
- txb2b = 0;
- netdev->tx_queue_len = 100;
- /* maybe add some timeout factor ? */
- break;
- }
-
- /* workaround: re-program speed mode bit after
- * link-up event */
- if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
- !txb2b) {
- u32 tarc0;
- tarc0 = er32(TARC0);
- tarc0 &= ~SPEED_MODE_BIT;
- ew32(TARC0, tarc0);
- }
-
- /* disable TSO for pcie and 10/100 speeds, to avoid
- * some hardware issues */
- if (!(adapter->flags & FLAG_TSO_FORCE)) {
- switch (adapter->link_speed) {
- case SPEED_10:
- case SPEED_100:
- ndev_info(netdev,
- "10/100 speed: disabling TSO\n");
- netdev->features &= ~NETIF_F_TSO;
- netdev->features &= ~NETIF_F_TSO6;
- break;
- case SPEED_1000:
- netdev->features |= NETIF_F_TSO;
- netdev->features |= NETIF_F_TSO6;
- break;
- default:
- /* oops */
- break;
- }
- }
-
- /* enable transmits in the hardware, need to do this
- * after setting TARC0 */
- tctl = er32(TCTL);
- tctl |= E1000_TCTL_EN;
- ew32(TCTL, tctl);
-
- netif_carrier_on(netdev);
- netif_wake_queue(netdev);
-
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->phy_info_timer,
- round_jiffies(jiffies + 2 * HZ));
- } else {
- /* make sure the receive unit is started */
- if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
- u32 rctl = er32(RCTL);
- ew32(RCTL, rctl |
- E1000_RCTL_EN);
- }
- }
- } else {
- if (netif_carrier_ok(netdev)) {
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
- ndev_info(netdev, "Link is Down\n");
- netif_carrier_off(netdev);
- netif_stop_queue(netdev);
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->phy_info_timer,
- round_jiffies(jiffies + 2 * HZ));
-
- if (adapter->flags & FLAG_RX_NEEDS_RESTART)
- schedule_work(&adapter->reset_task);
- }
- }
-
-link_up:
- e1000e_update_stats(adapter);
-
- mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
- adapter->tpt_old = adapter->stats.tpt;
- mac->collision_delta = adapter->stats.colc - adapter->colc_old;
- adapter->colc_old = adapter->stats.colc;
-
- adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
- adapter->gorcl_old = adapter->stats.gorcl;
- adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
- adapter->gotcl_old = adapter->stats.gotcl;
-
- e1000e_update_adaptive(&adapter->hw);
-
- if (!netif_carrier_ok(netdev)) {
- tx_pending = (e1000_desc_unused(tx_ring) + 1 <
- tx_ring->count);
- if (tx_pending) {
- /* We've lost link, so the controller stops DMA,
- * but we've got queued Tx work that's never going
- * to get done, so reset controller to flush Tx.
- * (Do the reset outside of interrupt context). */
- adapter->tx_timeout_count++;
- schedule_work(&adapter->reset_task);
- }
- }
-
- /* Cause software interrupt to ensure rx ring is cleaned */
- ew32(ICS, E1000_ICS_RXDMT0);
-
- /* Force detection of hung controller every watchdog period */
- adapter->detect_tx_hung = 1;
-
- /* With 82571 controllers, LAA may be overwritten due to controller
- * reset from the other port. Set the appropriate LAA in RAR[0] */
- if (e1000e_get_laa_state_82571(hw))
- e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
-
- /* Reset the timer */
- if (!test_bit(__E1000_DOWN, &adapter->state))
- mod_timer(&adapter->watchdog_timer,
- round_jiffies(jiffies + 2 * HZ));
-}
-
-#define E1000_TX_FLAGS_CSUM 0x00000001
-#define E1000_TX_FLAGS_VLAN 0x00000002
-#define E1000_TX_FLAGS_TSO 0x00000004
-#define E1000_TX_FLAGS_IPV4 0x00000008
-#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
-#define E1000_TX_FLAGS_VLAN_SHIFT 16
-
-static int e1000_tso(struct e1000_adapter *adapter,
- struct sk_buff *skb)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_context_desc *context_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i;
- u32 cmd_length = 0;
- u16 ipcse = 0, tucse, mss;
- u8 ipcss, ipcso, tucss, tucso, hdr_len;
- int err;
-
- if (skb_is_gso(skb)) {
- if (skb_header_cloned(skb)) {
- err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
- if (err)
- return err;
- }
-
- hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
- mss = skb_shinfo(skb)->gso_size;
- if (skb->protocol == htons(ETH_P_IP)) {
- struct iphdr *iph = ip_hdr(skb);
- iph->tot_len = 0;
- iph->check = 0;
- tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
- iph->daddr, 0,
- IPPROTO_TCP,
- 0);
- cmd_length = E1000_TXD_CMD_IP;
- ipcse = skb_transport_offset(skb) - 1;
- } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
- ipv6_hdr(skb)->payload_len = 0;
- tcp_hdr(skb)->check =
- ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
- &ipv6_hdr(skb)->daddr,
- 0, IPPROTO_TCP, 0);
- ipcse = 0;
- }
- ipcss = skb_network_offset(skb);
- ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
- tucss = skb_transport_offset(skb);
- tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
- tucse = 0;
-
- cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
- E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
-
- i = tx_ring->next_to_use;
- context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
- buffer_info = &tx_ring->buffer_info[i];
-
- context_desc->lower_setup.ip_fields.ipcss = ipcss;
- context_desc->lower_setup.ip_fields.ipcso = ipcso;
- context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
- context_desc->upper_setup.tcp_fields.tucss = tucss;
- context_desc->upper_setup.tcp_fields.tucso = tucso;
- context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
- context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
- context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
- context_desc->cmd_and_length = cpu_to_le32(cmd_length);
-
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- tx_ring->next_to_use = i;
-
- return 1;
- }
-
- return 0;
-}
-
-static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_context_desc *context_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i;
- u8 css;
-
- if (skb->ip_summed == CHECKSUM_PARTIAL) {
- css = skb_transport_offset(skb);
-
- i = tx_ring->next_to_use;
- buffer_info = &tx_ring->buffer_info[i];
- context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
-
- context_desc->lower_setup.ip_config = 0;
- context_desc->upper_setup.tcp_fields.tucss = css;
- context_desc->upper_setup.tcp_fields.tucso =
- css + skb->csum_offset;
- context_desc->upper_setup.tcp_fields.tucse = 0;
- context_desc->tcp_seg_setup.data = 0;
- context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
-
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- tx_ring->next_to_use = i;
-
- return 1;
- }
-
- return 0;
-}
-
-#define E1000_MAX_PER_TXD 8192
-#define E1000_MAX_TXD_PWR 12
-
-static int e1000_tx_map(struct e1000_adapter *adapter,
- struct sk_buff *skb, unsigned int first,
- unsigned int max_per_txd, unsigned int nr_frags,
- unsigned int mss)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_buffer *buffer_info;
- unsigned int len = skb->len - skb->data_len;
- unsigned int offset = 0, size, count = 0, i;
- unsigned int f;
-
- i = tx_ring->next_to_use;
-
- while (len) {
- buffer_info = &tx_ring->buffer_info[i];
- size = min(len, max_per_txd);
-
- /* Workaround for premature desc write-backs
- * in TSO mode. Append 4-byte sentinel desc */
- if (mss && !nr_frags && size == len && size > 8)
- size -= 4;
-
- buffer_info->length = size;
- /* set time_stamp *before* dma to help avoid a possible race */
- buffer_info->time_stamp = jiffies;
- buffer_info->dma =
- pci_map_single(adapter->pdev,
- skb->data + offset,
- size,
- PCI_DMA_TODEVICE);
- if (pci_dma_mapping_error(buffer_info->dma)) {
- dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
- adapter->tx_dma_failed++;
- return -1;
- }
- buffer_info->next_to_watch = i;
-
- len -= size;
- offset += size;
- count++;
- i++;
- if (i == tx_ring->count)
- i = 0;
- }
-
- for (f = 0; f < nr_frags; f++) {
- struct skb_frag_struct *frag;
-
- frag = &skb_shinfo(skb)->frags[f];
- len = frag->size;
- offset = frag->page_offset;
-
- while (len) {
- buffer_info = &tx_ring->buffer_info[i];
- size = min(len, max_per_txd);
- /* Workaround for premature desc write-backs
- * in TSO mode. Append 4-byte sentinel desc */
- if (mss && f == (nr_frags-1) && size == len && size > 8)
- size -= 4;
-
- buffer_info->length = size;
- buffer_info->time_stamp = jiffies;
- buffer_info->dma =
- pci_map_page(adapter->pdev,
- frag->page,
- offset,
- size,
- PCI_DMA_TODEVICE);
- if (pci_dma_mapping_error(buffer_info->dma)) {
- dev_err(&adapter->pdev->dev,
- "TX DMA page map failed\n");
- adapter->tx_dma_failed++;
- return -1;
- }
-
- buffer_info->next_to_watch = i;
-
- len -= size;
- offset += size;
- count++;
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- }
- }
-
- if (i == 0)
- i = tx_ring->count - 1;
- else
- i--;
-
- tx_ring->buffer_info[i].skb = skb;
- tx_ring->buffer_info[first].next_to_watch = i;
-
- return count;
-}
-
-static void e1000_tx_queue(struct e1000_adapter *adapter,
- int tx_flags, int count)
-{
- struct e1000_ring *tx_ring = adapter->tx_ring;
- struct e1000_tx_desc *tx_desc = NULL;
- struct e1000_buffer *buffer_info;
- u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
- unsigned int i;
-
- if (tx_flags & E1000_TX_FLAGS_TSO) {
- txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
- E1000_TXD_CMD_TSE;
- txd_upper |= E1000_TXD_POPTS_TXSM << 8;
-
- if (tx_flags & E1000_TX_FLAGS_IPV4)
- txd_upper |= E1000_TXD_POPTS_IXSM << 8;
- }
-
- if (tx_flags & E1000_TX_FLAGS_CSUM) {
- txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
- txd_upper |= E1000_TXD_POPTS_TXSM << 8;
- }
-
- if (tx_flags & E1000_TX_FLAGS_VLAN) {
- txd_lower |= E1000_TXD_CMD_VLE;
- txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
- }
-
- i = tx_ring->next_to_use;
-
- while (count--) {
- buffer_info = &tx_ring->buffer_info[i];
- tx_desc = E1000_TX_DESC(*tx_ring, i);
- tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
- tx_desc->lower.data =
- cpu_to_le32(txd_lower | buffer_info->length);
- tx_desc->upper.data = cpu_to_le32(txd_upper);
-
- i++;
- if (i == tx_ring->count)
- i = 0;
- }
-
- tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64). */
- wmb();
-
- tx_ring->next_to_use = i;
- writel(i, adapter->hw.hw_addr + tx_ring->tail);
- /* we need this if more than one processor can write to our tail
- * at a time, it synchronizes IO on IA64/Altix systems */
- mmiowb();
-}
-
-#define MINIMUM_DHCP_PACKET_SIZE 282
-static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
- struct sk_buff *skb)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 length, offset;
-
- if (vlan_tx_tag_present(skb)) {
- if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
- && (adapter->hw.mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
- return 0;
- }
-
- if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
- return 0;
-
- if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
- return 0;
-
- {
- const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
- struct udphdr *udp;
-
- if (ip->protocol != IPPROTO_UDP)
- return 0;
-
- udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
- if (ntohs(udp->dest) != 67)
- return 0;
-
- offset = (u8 *)udp + 8 - skb->data;
- length = skb->len - offset;
- return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
- }
-
- return 0;
-}
-
-static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- netif_stop_queue(netdev);
- /* Herbert's original patch had:
- * smp_mb__after_netif_stop_queue();
- * but since that doesn't exist yet, just open code it. */
- smp_mb();
-
- /* We need to check again in a case another CPU has just
- * made room available. */
- if (e1000_desc_unused(adapter->tx_ring) < size)
- return -EBUSY;
-
- /* A reprieve! */
- netif_start_queue(netdev);
- ++adapter->restart_queue;
- return 0;
-}
-
-static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (e1000_desc_unused(adapter->tx_ring) >= size)
- return 0;
- return __e1000_maybe_stop_tx(netdev, size);
-}
-
-#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
-static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_ring *tx_ring = adapter->tx_ring;
- unsigned int first;
- unsigned int max_per_txd = E1000_MAX_PER_TXD;
- unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
- unsigned int tx_flags = 0;
- unsigned int len = skb->len - skb->data_len;
- unsigned long irq_flags;
- unsigned int nr_frags;
- unsigned int mss;
- int count = 0;
- int tso;
- unsigned int f;
-
- if (test_bit(__E1000_DOWN, &adapter->state)) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
-
- if (skb->len <= 0) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
-
- mss = skb_shinfo(skb)->gso_size;
- /* The controller does a simple calculation to
- * make sure there is enough room in the FIFO before
- * initiating the DMA for each buffer. The calc is:
- * 4 = ceil(buffer len/mss). To make sure we don't
- * overrun the FIFO, adjust the max buffer len if mss
- * drops. */
- if (mss) {
- u8 hdr_len;
- max_per_txd = min(mss << 2, max_per_txd);
- max_txd_pwr = fls(max_per_txd) - 1;
-
- /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
- * points to just header, pull a few bytes of payload from
- * frags into skb->data */
- hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
- if (skb->data_len && (hdr_len == len)) {
- unsigned int pull_size;
-
- pull_size = min((unsigned int)4, skb->data_len);
- if (!__pskb_pull_tail(skb, pull_size)) {
- ndev_err(netdev,
- "__pskb_pull_tail failed.\n");
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
- len = skb->len - skb->data_len;
- }
- }
-
- /* reserve a descriptor for the offload context */
- if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
- count++;
- count++;
-
- count += TXD_USE_COUNT(len, max_txd_pwr);
-
- nr_frags = skb_shinfo(skb)->nr_frags;
- for (f = 0; f < nr_frags; f++)
- count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
- max_txd_pwr);
-
- if (adapter->hw.mac.tx_pkt_filtering)
- e1000_transfer_dhcp_info(adapter, skb);
-
- if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
- /* Collision - tell upper layer to requeue */
- return NETDEV_TX_LOCKED;
-
- /* need: count + 2 desc gap to keep tail from touching
- * head, otherwise try next time */
- if (e1000_maybe_stop_tx(netdev, count + 2)) {
- spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
- return NETDEV_TX_BUSY;
- }
-
- if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
- tx_flags |= E1000_TX_FLAGS_VLAN;
- tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
- }
-
- first = tx_ring->next_to_use;
-
- tso = e1000_tso(adapter, skb);
- if (tso < 0) {
- dev_kfree_skb_any(skb);
- spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
- return NETDEV_TX_OK;
- }
-
- if (tso)
- tx_flags |= E1000_TX_FLAGS_TSO;
- else if (e1000_tx_csum(adapter, skb))
- tx_flags |= E1000_TX_FLAGS_CSUM;
-
- /* Old method was to assume IPv4 packet by default if TSO was enabled.
- * 82571 hardware supports TSO capabilities for IPv6 as well...
- * no longer assume, we must. */
- if (skb->protocol == htons(ETH_P_IP))
- tx_flags |= E1000_TX_FLAGS_IPV4;
-
- count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
- if (count < 0) {
- /* handle pci_map_single() error in e1000_tx_map */
- dev_kfree_skb_any(skb);
- spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
- return NETDEV_TX_OK;
- }
-
- e1000_tx_queue(adapter, tx_flags, count);
-
- netdev->trans_start = jiffies;
-
- /* Make sure there is space in the ring for the next send. */
- e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
-
- spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
- return NETDEV_TX_OK;
-}
-
-/**
- * e1000_tx_timeout - Respond to a Tx Hang
- * @netdev: network interface device structure
- **/
-static void e1000_tx_timeout(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /* Do the reset outside of interrupt context */
- adapter->tx_timeout_count++;
- schedule_work(&adapter->reset_task);
-}
-
-static void e1000_reset_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter;
- adapter = container_of(work, struct e1000_adapter, reset_task);
-
- e1000e_reinit_locked(adapter);
-}
-
-/**
- * e1000_get_stats - Get System Network Statistics
- * @netdev: network interface device structure
- *
- * Returns the address of the device statistics structure.
- * The statistics are actually updated from the timer callback.
- **/
-static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /* only return the current stats */
- return &adapter->net_stats;
-}
-
-/**
- * e1000_change_mtu - Change the Maximum Transfer Unit
- * @netdev: network interface device structure
- * @new_mtu: new value for maximum frame size
- *
- * Returns 0 on success, negative on failure
- **/
-static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
-
- if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
- (max_frame > MAX_JUMBO_FRAME_SIZE)) {
- ndev_err(netdev, "Invalid MTU setting\n");
- return -EINVAL;
- }
-
- /* Jumbo frame size limits */
- if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
- if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
- ndev_err(netdev, "Jumbo Frames not supported.\n");
- return -EINVAL;
- }
- if (adapter->hw.phy.type == e1000_phy_ife) {
- ndev_err(netdev, "Jumbo Frames not supported.\n");
- return -EINVAL;
- }
- }
-
-#define MAX_STD_JUMBO_FRAME_SIZE 9234
- if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
- ndev_err(netdev, "MTU > 9216 not supported.\n");
- return -EINVAL;
- }
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
- msleep(1);
- /* e1000e_down has a dependency on max_frame_size */
- adapter->hw.mac.max_frame_size = max_frame;
- if (netif_running(netdev))
- e1000e_down(adapter);
-
- /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
- * means we reserve 2 more, this pushes us to allocate from the next
- * larger slab size.
- * i.e. RXBUFFER_2048 --> size-4096 slab */
-
- if (max_frame <= 256)
- adapter->rx_buffer_len = 256;
- else if (max_frame <= 512)
- adapter->rx_buffer_len = 512;
- else if (max_frame <= 1024)
- adapter->rx_buffer_len = 1024;
- else if (max_frame <= 2048)
- adapter->rx_buffer_len = 2048;
- else
- adapter->rx_buffer_len = 4096;
-
- /* adjust allocation if LPE protects us, and we aren't using SBP */
- if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
- (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
- adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
- + ETH_FCS_LEN ;
-
- ndev_info(netdev, "changing MTU from %d to %d\n",
- netdev->mtu, new_mtu);
- netdev->mtu = new_mtu;
-
- if (netif_running(netdev))
- e1000e_up(adapter);
- else
- e1000e_reset(adapter);
-
- clear_bit(__E1000_RESETTING, &adapter->state);
-
- return 0;
-}
-
-static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
- int cmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct mii_ioctl_data *data = if_mii(ifr);
- unsigned long irq_flags;
-
- if (adapter->hw.media_type != e1000_media_type_copper)
- return -EOPNOTSUPP;
-
- switch (cmd) {
- case SIOCGMIIPHY:
- data->phy_id = adapter->hw.phy.addr;
- break;
- case SIOCGMIIREG:
- if (!capable(CAP_NET_ADMIN))
- return -EPERM;
- spin_lock_irqsave(&adapter->stats_lock, irq_flags);
- if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
- &data->val_out)) {
- spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
- return -EIO;
- }
- spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
- break;
- case SIOCSMIIREG:
- default:
- return -EOPNOTSUPP;
- }
- return 0;
-}
-
-static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
-{
- switch (cmd) {
- case SIOCGMIIPHY:
- case SIOCGMIIREG:
- case SIOCSMIIREG:
- return e1000_mii_ioctl(netdev, ifr, cmd);
- default:
- return -EOPNOTSUPP;
- }
-}
-
-static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl, ctrl_ext, rctl, status;
- u32 wufc = adapter->wol;
- int retval = 0;
-
- netif_device_detach(netdev);
-
- if (netif_running(netdev)) {
- WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
- e1000e_down(adapter);
- e1000_free_irq(adapter);
- }
-
- retval = pci_save_state(pdev);
- if (retval)
- return retval;
-
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- wufc &= ~E1000_WUFC_LNKC;
-
- if (wufc) {
- e1000_setup_rctl(adapter);
- e1000_set_multi(netdev);
-
- /* turn on all-multi mode if wake on multicast is enabled */
- if (wufc & E1000_WUFC_MC) {
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_MPE;
- ew32(RCTL, rctl);
- }
-
- ctrl = er32(CTRL);
- /* advertise wake from D3Cold */
- #define E1000_CTRL_ADVD3WUC 0x00100000
- /* phy power management enable */
- #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
- ctrl |= E1000_CTRL_ADVD3WUC |
- E1000_CTRL_EN_PHY_PWR_MGMT;
- ew32(CTRL, ctrl);
-
- if (adapter->hw.media_type == e1000_media_type_fiber ||
- adapter->hw.media_type == e1000_media_type_internal_serdes) {
- /* keep the laser running in D3 */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- /* Allow time for pending master requests to run */
- e1000e_disable_pcie_master(&adapter->hw);
-
- ew32(WUC, E1000_WUC_PME_EN);
- ew32(WUFC, wufc);
- pci_enable_wake(pdev, PCI_D3hot, 1);
- pci_enable_wake(pdev, PCI_D3cold, 1);
- } else {
- ew32(WUC, 0);
- ew32(WUFC, 0);
- pci_enable_wake(pdev, PCI_D3hot, 0);
- pci_enable_wake(pdev, PCI_D3cold, 0);
- }
-
- /* make sure adapter isn't asleep if manageability is enabled */
- if (adapter->flags & FLAG_MNG_PT_ENABLED) {
- pci_enable_wake(pdev, PCI_D3hot, 1);
- pci_enable_wake(pdev, PCI_D3cold, 1);
- }
-
- if (adapter->hw.phy.type == e1000_phy_igp_3)
- e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
-
- /* Release control of h/w to f/w. If f/w is AMT enabled, this
- * would have already happened in close and is redundant. */
- e1000_release_hw_control(adapter);
-
- pci_disable_device(pdev);
-
- pci_set_power_state(pdev, pci_choose_state(pdev, state));
-
- return 0;
-}
-
-static void e1000e_disable_l1aspm(struct pci_dev *pdev)
-{
- int pos;
- u16 val;
-
- /*
- * 82573 workaround - disable L1 ASPM on mobile chipsets
- *
- * L1 ASPM on various mobile (ich7) chipsets do not behave properly
- * resulting in lost data or garbage information on the pci-e link
- * level. This could result in (false) bad EEPROM checksum errors,
- * long ping times (up to 2s) or even a system freeze/hang.
- *
- * Unfortunately this feature saves about 1W power consumption when
- * active.
- */
- pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
- pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
- if (val & 0x2) {
- dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
- val &= ~0x2;
- pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
- }
-}
-
-#ifdef CONFIG_PM
-static int e1000_resume(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 err;
-
- pci_set_power_state(pdev, PCI_D0);
- pci_restore_state(pdev);
- e1000e_disable_l1aspm(pdev);
- err = pci_enable_device(pdev);
- if (err) {
- dev_err(&pdev->dev,
- "Cannot enable PCI device from suspend\n");
- return err;
- }
-
- pci_set_master(pdev);
-
- pci_enable_wake(pdev, PCI_D3hot, 0);
- pci_enable_wake(pdev, PCI_D3cold, 0);
-
- if (netif_running(netdev)) {
- err = e1000_request_irq(adapter);
- if (err)
- return err;
- }
-
- e1000e_power_up_phy(adapter);
- e1000e_reset(adapter);
- ew32(WUS, ~0);
-
- e1000_init_manageability(adapter);
-
- if (netif_running(netdev))
- e1000e_up(adapter);
-
- netif_device_attach(netdev);
-
- /* If the controller has AMT, do not set DRV_LOAD until the interface
- * is up. For all other cases, let the f/w know that the h/w is now
- * under the control of the driver. */
- if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
- e1000_get_hw_control(adapter);
-
- return 0;
-}
-#endif
-
-static void e1000_shutdown(struct pci_dev *pdev)
-{
- e1000_suspend(pdev, PMSG_SUSPEND);
-}
-
-#ifdef CONFIG_NET_POLL_CONTROLLER
-/*
- * Polling 'interrupt' - used by things like netconsole to send skbs
- * without having to re-enable interrupts. It's not called while
- * the interrupt routine is executing.
- */
-static void e1000_netpoll(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- disable_irq(adapter->pdev->irq);
- e1000_intr(adapter->pdev->irq, netdev);
-
- e1000_clean_tx_irq(adapter);
-
- enable_irq(adapter->pdev->irq);
-}
-#endif
-
-/**
- * e1000_io_error_detected - called when PCI error is detected
- * @pdev: Pointer to PCI device
- * @state: The current pci connection state
- *
- * This function is called after a PCI bus error affecting
- * this device has been detected.
- */
-static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
- pci_channel_state_t state)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- netif_device_detach(netdev);
-
- if (netif_running(netdev))
- e1000e_down(adapter);
- pci_disable_device(pdev);
-
- /* Request a slot slot reset. */
- return PCI_ERS_RESULT_NEED_RESET;
-}
-
-/**
- * e1000_io_slot_reset - called after the pci bus has been reset.
- * @pdev: Pointer to PCI device
- *
- * Restart the card from scratch, as if from a cold-boot. Implementation
- * resembles the first-half of the e1000_resume routine.
- */
-static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- e1000e_disable_l1aspm(pdev);
- if (pci_enable_device(pdev)) {
- dev_err(&pdev->dev,
- "Cannot re-enable PCI device after reset.\n");
- return PCI_ERS_RESULT_DISCONNECT;
- }
- pci_set_master(pdev);
-
- pci_enable_wake(pdev, PCI_D3hot, 0);
- pci_enable_wake(pdev, PCI_D3cold, 0);
-
- e1000e_reset(adapter);
- ew32(WUS, ~0);
-
- return PCI_ERS_RESULT_RECOVERED;
-}
-
-/**
- * e1000_io_resume - called when traffic can start flowing again.
- * @pdev: Pointer to PCI device
- *
- * This callback is called when the error recovery driver tells us that
- * its OK to resume normal operation. Implementation resembles the
- * second-half of the e1000_resume routine.
- */
-static void e1000_io_resume(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- e1000_init_manageability(adapter);
-
- if (netif_running(netdev)) {
- if (e1000e_up(adapter)) {
- dev_err(&pdev->dev,
- "can't bring device back up after reset\n");
- return;
- }
- }
-
- netif_device_attach(netdev);
-
- /* If the controller has AMT, do not set DRV_LOAD until the interface
- * is up. For all other cases, let the f/w know that the h/w is now
- * under the control of the driver. */
- if (!(adapter->flags & FLAG_HAS_AMT) ||
- !e1000e_check_mng_mode(&adapter->hw))
- e1000_get_hw_control(adapter);
-
-}
-
-static void e1000_print_device_info(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- u32 part_num;
-
- /* print bus type/speed/width info */
- ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
- "%02x:%02x:%02x:%02x:%02x:%02x\n",
- /* bus width */
- ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
- "Width x1"),
- /* MAC address */
- netdev->dev_addr[0], netdev->dev_addr[1],
- netdev->dev_addr[2], netdev->dev_addr[3],
- netdev->dev_addr[4], netdev->dev_addr[5]);
- ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
- (hw->phy.type == e1000_phy_ife)
- ? "10/100" : "1000");
- e1000e_read_part_num(hw, &part_num);
- ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
- hw->mac.type, hw->phy.type,
- (part_num >> 8), (part_num & 0xff));
-}
-
-/**
- * e1000_probe - Device Initialization Routine
- * @pdev: PCI device information struct
- * @ent: entry in e1000_pci_tbl
- *
- * Returns 0 on success, negative on failure
- *
- * e1000_probe initializes an adapter identified by a pci_dev structure.
- * The OS initialization, configuring of the adapter private structure,
- * and a hardware reset occur.
- **/
-static int __devinit e1000_probe(struct pci_dev *pdev,
- const struct pci_device_id *ent)
-{
- struct net_device *netdev;
- struct e1000_adapter *adapter;
- struct e1000_hw *hw;
- const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
- unsigned long mmio_start, mmio_len;
- unsigned long flash_start, flash_len;
-
- static int cards_found;
- int i, err, pci_using_dac;
- u16 eeprom_data = 0;
- u16 eeprom_apme_mask = E1000_EEPROM_APME;
-
- e1000e_disable_l1aspm(pdev);
- err = pci_enable_device(pdev);
- if (err)
- return err;
-
- pci_using_dac = 0;
- err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
- if (!err) {
- err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
- if (!err)
- pci_using_dac = 1;
- } else {
- err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
- if (err) {
- err = pci_set_consistent_dma_mask(pdev,
- DMA_32BIT_MASK);
- if (err) {
- dev_err(&pdev->dev, "No usable DMA "
- "configuration, aborting\n");
- goto err_dma;
- }
- }
- }
-
- err = pci_request_regions(pdev, e1000e_driver_name);
- if (err)
- goto err_pci_reg;
-
- pci_set_master(pdev);
-
- err = -ENOMEM;
- netdev = alloc_etherdev(sizeof(struct e1000_adapter));
- if (!netdev)
- goto err_alloc_etherdev;
-
- SET_NETDEV_DEV(netdev, &pdev->dev);
-
- pci_set_drvdata(pdev, netdev);
- adapter = netdev_priv(netdev);
- hw = &adapter->hw;
- adapter->netdev = netdev;
- adapter->pdev = pdev;
- adapter->ei = ei;
- adapter->pba = ei->pba;
- adapter->flags = ei->flags;
- adapter->hw.adapter = adapter;
- adapter->hw.mac.type = ei->mac;
- adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
-
- mmio_start = pci_resource_start(pdev, 0);
- mmio_len = pci_resource_len(pdev, 0);
-
- err = -EIO;
- adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
- if (!adapter->hw.hw_addr)
- goto err_ioremap;
-
- if ((adapter->flags & FLAG_HAS_FLASH) &&
- (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
- flash_start = pci_resource_start(pdev, 1);
- flash_len = pci_resource_len(pdev, 1);
- adapter->hw.flash_address = ioremap(flash_start, flash_len);
- if (!adapter->hw.flash_address)
- goto err_flashmap;
- }
-
- /* construct the net_device struct */
- netdev->open = &e1000_open;
- netdev->stop = &e1000_close;
- netdev->hard_start_xmit = &e1000_xmit_frame;
- netdev->get_stats = &e1000_get_stats;
- netdev->set_multicast_list = &e1000_set_multi;
- netdev->set_mac_address = &e1000_set_mac;
- netdev->change_mtu = &e1000_change_mtu;
- netdev->do_ioctl = &e1000_ioctl;
- e1000e_set_ethtool_ops(netdev);
- netdev->tx_timeout = &e1000_tx_timeout;
- netdev->watchdog_timeo = 5 * HZ;
- netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
- netdev->vlan_rx_register = e1000_vlan_rx_register;
- netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
- netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
-#ifdef CONFIG_NET_POLL_CONTROLLER
- netdev->poll_controller = e1000_netpoll;
-#endif
- strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
-
- netdev->mem_start = mmio_start;
- netdev->mem_end = mmio_start + mmio_len;
-
- adapter->bd_number = cards_found++;
-
- /* setup adapter struct */
- err = e1000_sw_init(adapter);
- if (err)
- goto err_sw_init;
-
- err = -EIO;
-
- memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
- memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
- memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
-
- err = ei->get_invariants(adapter);
- if (err)
- goto err_hw_init;
-
- hw->mac.ops.get_bus_info(&adapter->hw);
-
- adapter->hw.phy.wait_for_link = 0;
-
- /* Copper options */
- if (adapter->hw.media_type == e1000_media_type_copper) {
- adapter->hw.phy.mdix = AUTO_ALL_MODES;
- adapter->hw.phy.disable_polarity_correction = 0;
- adapter->hw.phy.ms_type = e1000_ms_hw_default;
- }
-
- if (e1000_check_reset_block(&adapter->hw))
- ndev_info(netdev,
- "PHY reset is blocked due to SOL/IDER session.\n");
-
- netdev->features = NETIF_F_SG |
- NETIF_F_HW_CSUM |
- NETIF_F_HW_VLAN_TX |
- NETIF_F_HW_VLAN_RX;
-
- if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
- netdev->features |= NETIF_F_HW_VLAN_FILTER;
-
- netdev->features |= NETIF_F_TSO;
- netdev->features |= NETIF_F_TSO6;
-
- if (pci_using_dac)
- netdev->features |= NETIF_F_HIGHDMA;
-
- /* We should not be using LLTX anymore, but we are still TX faster with
- * it. */
- netdev->features |= NETIF_F_LLTX;
-
- if (e1000e_enable_mng_pass_thru(&adapter->hw))
- adapter->flags |= FLAG_MNG_PT_ENABLED;
-
- /* before reading the NVM, reset the controller to
- * put the device in a known good starting state */
- adapter->hw.mac.ops.reset_hw(&adapter->hw);
-
- /*
- * systems with ASPM and others may see the checksum fail on the first
- * attempt. Let's give it a few tries
- */
- for (i = 0;; i++) {
- if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
- break;
- if (i == 2) {
- ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
- err = -EIO;
- goto err_eeprom;
- }
- }
-
- /* copy the MAC address out of the NVM */
- if (e1000e_read_mac_addr(&adapter->hw))
- ndev_err(netdev, "NVM Read Error while reading MAC address\n");
-
- memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
- memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
-
- if (!is_valid_ether_addr(netdev->perm_addr)) {
- ndev_err(netdev, "Invalid MAC Address: "
- "%02x:%02x:%02x:%02x:%02x:%02x\n",
- netdev->perm_addr[0], netdev->perm_addr[1],
- netdev->perm_addr[2], netdev->perm_addr[3],
- netdev->perm_addr[4], netdev->perm_addr[5]);
- err = -EIO;
- goto err_eeprom;
- }
-
- init_timer(&adapter->watchdog_timer);
- adapter->watchdog_timer.function = &e1000_watchdog;
- adapter->watchdog_timer.data = (unsigned long) adapter;
-
- init_timer(&adapter->phy_info_timer);
- adapter->phy_info_timer.function = &e1000_update_phy_info;
- adapter->phy_info_timer.data = (unsigned long) adapter;
-
- INIT_WORK(&adapter->reset_task, e1000_reset_task);
- INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
-
- e1000e_check_options(adapter);
-
- /* Initialize link parameters. User can change them with ethtool */
- adapter->hw.mac.autoneg = 1;
- adapter->fc_autoneg = 1;
- adapter->hw.mac.original_fc = e1000_fc_default;
- adapter->hw.mac.fc = e1000_fc_default;
- adapter->hw.phy.autoneg_advertised = 0x2f;
-
- /* ring size defaults */
- adapter->rx_ring->count = 256;
- adapter->tx_ring->count = 256;
-
- /*
- * Initial Wake on LAN setting - If APM wake is enabled in
- * the EEPROM, enable the ACPI Magic Packet filter
- */
- if (adapter->flags & FLAG_APME_IN_WUC) {
- /* APME bit in EEPROM is mapped to WUC.APME */
- eeprom_data = er32(WUC);
- eeprom_apme_mask = E1000_WUC_APME;
- } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
- if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
- (adapter->hw.bus.func == 1))
- e1000_read_nvm(&adapter->hw,
- NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
- else
- e1000_read_nvm(&adapter->hw,
- NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
- }
-
- /* fetch WoL from EEPROM */
- if (eeprom_data & eeprom_apme_mask)
- adapter->eeprom_wol |= E1000_WUFC_MAG;
-
- /*
- * now that we have the eeprom settings, apply the special cases
- * where the eeprom may be wrong or the board simply won't support
- * wake on lan on a particular port
- */
- if (!(adapter->flags & FLAG_HAS_WOL))
- adapter->eeprom_wol = 0;
-
- /* initialize the wol settings based on the eeprom settings */
- adapter->wol = adapter->eeprom_wol;
-
- /* reset the hardware with the new settings */
- e1000e_reset(adapter);
-
- /* If the controller has AMT, do not set DRV_LOAD until the interface
- * is up. For all other cases, let the f/w know that the h/w is now
- * under the control of the driver. */
- if (!(adapter->flags & FLAG_HAS_AMT) ||
- !e1000e_check_mng_mode(&adapter->hw))
- e1000_get_hw_control(adapter);
-
- /* tell the stack to leave us alone until e1000_open() is called */
- netif_carrier_off(netdev);
- netif_stop_queue(netdev);
-
- strcpy(netdev->name, "eth%d");
- err = register_netdev(netdev);
- if (err)
- goto err_register;
-
- e1000_print_device_info(adapter);
-
- return 0;
-
-err_register:
-err_hw_init:
- e1000_release_hw_control(adapter);
-err_eeprom:
- if (!e1000_check_reset_block(&adapter->hw))
- e1000_phy_hw_reset(&adapter->hw);
-
- if (adapter->hw.flash_address)
- iounmap(adapter->hw.flash_address);
-
-err_flashmap:
- kfree(adapter->tx_ring);
- kfree(adapter->rx_ring);
-err_sw_init:
- iounmap(adapter->hw.hw_addr);
-err_ioremap:
- free_netdev(netdev);
-err_alloc_etherdev:
- pci_release_regions(pdev);
-err_pci_reg:
-err_dma:
- pci_disable_device(pdev);
- return err;
-}
-
-/**
- * e1000_remove - Device Removal Routine
- * @pdev: PCI device information struct
- *
- * e1000_remove is called by the PCI subsystem to alert the driver
- * that it should release a PCI device. The could be caused by a
- * Hot-Plug event, or because the driver is going to be removed from
- * memory.
- **/
-static void __devexit e1000_remove(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /* flush_scheduled work may reschedule our watchdog task, so
- * explicitly disable watchdog tasks from being rescheduled */
- set_bit(__E1000_DOWN, &adapter->state);
- del_timer_sync(&adapter->watchdog_timer);
- del_timer_sync(&adapter->phy_info_timer);
-
- flush_scheduled_work();
-
- /* Release control of h/w to f/w. If f/w is AMT enabled, this
- * would have already happened in close and is redundant. */
- e1000_release_hw_control(adapter);
-
- unregister_netdev(netdev);
-
- if (!e1000_check_reset_block(&adapter->hw))
- e1000_phy_hw_reset(&adapter->hw);
-
- kfree(adapter->tx_ring);
- kfree(adapter->rx_ring);
-
- iounmap(adapter->hw.hw_addr);
- if (adapter->hw.flash_address)
- iounmap(adapter->hw.flash_address);
- pci_release_regions(pdev);
-
- free_netdev(netdev);
-
- pci_disable_device(pdev);
-}
-
-/* PCI Error Recovery (ERS) */
-static struct pci_error_handlers e1000_err_handler = {
- .error_detected = e1000_io_error_detected,
- .slot_reset = e1000_io_slot_reset,
- .resume = e1000_io_resume,
-};
-
-static struct pci_device_id e1000_pci_tbl[] = {
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
- board_80003es2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
- board_80003es2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
- board_80003es2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
- board_80003es2lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
- { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
-
- { } /* terminate list */
-};
-MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
-
-/* PCI Device API Driver */
-static struct pci_driver e1000_driver = {
- .name = e1000e_driver_name,
- .id_table = e1000_pci_tbl,
- .probe = e1000_probe,
- .remove = __devexit_p(e1000_remove),
-#ifdef CONFIG_PM
- /* Power Managment Hooks */
- .suspend = e1000_suspend,
- .resume = e1000_resume,
-#endif
- .shutdown = e1000_shutdown,
- .err_handler = &e1000_err_handler
-};
-
-/**
- * e1000_init_module - Driver Registration Routine
- *
- * e1000_init_module is the first routine called when the driver is
- * loaded. All it does is register with the PCI subsystem.
- **/
-static int __init e1000_init_module(void)
-{
- int ret;
- printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
- e1000e_driver_name, e1000e_driver_version);
- printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
- e1000e_driver_name);
- ret = pci_register_driver(&e1000_driver);
-
- return ret;
-}
-module_init(e1000_init_module);
-
-/**
- * e1000_exit_module - Driver Exit Cleanup Routine
- *
- * e1000_exit_module is called just before the driver is removed
- * from memory.
- **/
-static void __exit e1000_exit_module(void)
-{
- pci_unregister_driver(&e1000_driver);
-}
-module_exit(e1000_exit_module);
-
-
-MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
-MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
-MODULE_LICENSE("GPL");
-MODULE_VERSION(DRV_VERSION);
-
-/* e1000_main.c */
diff --git a/drivers/net/e1000e/param.c b/drivers/net/e1000e/param.c
deleted file mode 100644
index df266c32ac4..00000000000
--- a/drivers/net/e1000e/param.c
+++ /dev/null
@@ -1,376 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include <linux/netdevice.h>
-
-#include "e1000.h"
-
-/* This is the only thing that needs to be changed to adjust the
- * maximum number of ports that the driver can manage.
- */
-
-#define E1000_MAX_NIC 32
-
-#define OPTION_UNSET -1
-#define OPTION_DISABLED 0
-#define OPTION_ENABLED 1
-
-#define COPYBREAK_DEFAULT 256
-unsigned int copybreak = COPYBREAK_DEFAULT;
-module_param(copybreak, uint, 0644);
-MODULE_PARM_DESC(copybreak,
- "Maximum size of packet that is copied to a new buffer on receive");
-
-/* All parameters are treated the same, as an integer array of values.
- * This macro just reduces the need to repeat the same declaration code
- * over and over (plus this helps to avoid typo bugs).
- */
-
-#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
-#define E1000_PARAM(X, desc) \
- static int __devinitdata X[E1000_MAX_NIC+1] \
- = E1000_PARAM_INIT; \
- static unsigned int num_##X; \
- module_param_array_named(X, X, int, &num_##X, 0); \
- MODULE_PARM_DESC(X, desc);
-
-
-/* Transmit Interrupt Delay in units of 1.024 microseconds
- * Tx interrupt delay needs to typically be set to something non zero
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
-#define DEFAULT_TIDV 8
-#define MAX_TXDELAY 0xFFFF
-#define MIN_TXDELAY 0
-
-/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
-#define DEFAULT_TADV 32
-#define MAX_TXABSDELAY 0xFFFF
-#define MIN_TXABSDELAY 0
-
-/* Receive Interrupt Delay in units of 1.024 microseconds
- * hardware will likely hang if you set this to anything but zero.
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
-#define DEFAULT_RDTR 0
-#define MAX_RXDELAY 0xFFFF
-#define MIN_RXDELAY 0
-
-/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
-#define DEFAULT_RADV 8
-#define MAX_RXABSDELAY 0xFFFF
-#define MIN_RXABSDELAY 0
-
-/* Interrupt Throttle Rate (interrupts/sec)
- *
- * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
- */
-E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
-#define DEFAULT_ITR 3
-#define MAX_ITR 100000
-#define MIN_ITR 100
-
-/* Enable Smart Power Down of the PHY
- *
- * Valid Range: 0, 1
- *
- * Default Value: 0 (disabled)
- */
-E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
-
-/* Enable Kumeran Lock Loss workaround
- *
- * Valid Range: 0, 1
- *
- * Default Value: 1 (enabled)
- */
-E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
-
-struct e1000_option {
- enum { enable_option, range_option, list_option } type;
- const char *name;
- const char *err;
- int def;
- union {
- struct { /* range_option info */
- int min;
- int max;
- } r;
- struct { /* list_option info */
- int nr;
- struct e1000_opt_list { int i; char *str; } *p;
- } l;
- } arg;
-};
-
-static int __devinit e1000_validate_option(unsigned int *value,
- const struct e1000_option *opt,
- struct e1000_adapter *adapter)
-{
- if (*value == OPTION_UNSET) {
- *value = opt->def;
- return 0;
- }
-
- switch (opt->type) {
- case enable_option:
- switch (*value) {
- case OPTION_ENABLED:
- ndev_info(adapter->netdev, "%s Enabled\n", opt->name);
- return 0;
- case OPTION_DISABLED:
- ndev_info(adapter->netdev, "%s Disabled\n", opt->name);
- return 0;
- }
- break;
- case range_option:
- if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
- ndev_info(adapter->netdev,
- "%s set to %i\n", opt->name, *value);
- return 0;
- }
- break;
- case list_option: {
- int i;
- struct e1000_opt_list *ent;
-
- for (i = 0; i < opt->arg.l.nr; i++) {
- ent = &opt->arg.l.p[i];
- if (*value == ent->i) {
- if (ent->str[0] != '\0')
- ndev_info(adapter->netdev, "%s\n",
- ent->str);
- return 0;
- }
- }
- }
- break;
- default:
- BUG();
- }
-
- ndev_info(adapter->netdev, "Invalid %s value specified (%i) %s\n",
- opt->name, *value, opt->err);
- *value = opt->def;
- return -1;
-}
-
-/**
- * e1000e_check_options - Range Checking for Command Line Parameters
- * @adapter: board private structure
- *
- * This routine checks all command line parameters for valid user
- * input. If an invalid value is given, or if no user specified
- * value exists, a default value is used. The final value is stored
- * in a variable in the adapter structure.
- **/
-void __devinit e1000e_check_options(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- int bd = adapter->bd_number;
-
- if (bd >= E1000_MAX_NIC) {
- ndev_notice(netdev,
- "Warning: no configuration for board #%i\n", bd);
- ndev_notice(netdev, "Using defaults for all values\n");
- }
-
- { /* Transmit Interrupt Delay */
- const struct e1000_option opt = {
- .type = range_option,
- .name = "Transmit Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_TIDV),
- .def = DEFAULT_TIDV,
- .arg = { .r = { .min = MIN_TXDELAY,
- .max = MAX_TXDELAY } }
- };
-
- if (num_TxIntDelay > bd) {
- adapter->tx_int_delay = TxIntDelay[bd];
- e1000_validate_option(&adapter->tx_int_delay, &opt,
- adapter);
- } else {
- adapter->tx_int_delay = opt.def;
- }
- }
- { /* Transmit Absolute Interrupt Delay */
- const struct e1000_option opt = {
- .type = range_option,
- .name = "Transmit Absolute Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_TADV),
- .def = DEFAULT_TADV,
- .arg = { .r = { .min = MIN_TXABSDELAY,
- .max = MAX_TXABSDELAY } }
- };
-
- if (num_TxAbsIntDelay > bd) {
- adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
- e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
- adapter);
- } else {
- adapter->tx_abs_int_delay = opt.def;
- }
- }
- { /* Receive Interrupt Delay */
- struct e1000_option opt = {
- .type = range_option,
- .name = "Receive Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_RDTR),
- .def = DEFAULT_RDTR,
- .arg = { .r = { .min = MIN_RXDELAY,
- .max = MAX_RXDELAY } }
- };
-
- if (num_RxIntDelay > bd) {
- adapter->rx_int_delay = RxIntDelay[bd];
- e1000_validate_option(&adapter->rx_int_delay, &opt,
- adapter);
- } else {
- adapter->rx_int_delay = opt.def;
- }
- }
- { /* Receive Absolute Interrupt Delay */
- const struct e1000_option opt = {
- .type = range_option,
- .name = "Receive Absolute Interrupt Delay",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_RADV),
- .def = DEFAULT_RADV,
- .arg = { .r = { .min = MIN_RXABSDELAY,
- .max = MAX_RXABSDELAY } }
- };
-
- if (num_RxAbsIntDelay > bd) {
- adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
- e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
- adapter);
- } else {
- adapter->rx_abs_int_delay = opt.def;
- }
- }
- { /* Interrupt Throttling Rate */
- const struct e1000_option opt = {
- .type = range_option,
- .name = "Interrupt Throttling Rate (ints/sec)",
- .err = "using default of "
- __MODULE_STRING(DEFAULT_ITR),
- .def = DEFAULT_ITR,
- .arg = { .r = { .min = MIN_ITR,
- .max = MAX_ITR } }
- };
-
- if (num_InterruptThrottleRate > bd) {
- adapter->itr = InterruptThrottleRate[bd];
- switch (adapter->itr) {
- case 0:
- ndev_info(netdev, "%s turned off\n",
- opt.name);
- break;
- case 1:
- ndev_info(netdev,
- "%s set to dynamic mode\n",
- opt.name);
- adapter->itr_setting = adapter->itr;
- adapter->itr = 20000;
- break;
- case 3:
- ndev_info(netdev,
- "%s set to dynamic conservative mode\n",
- opt.name);
- adapter->itr_setting = adapter->itr;
- adapter->itr = 20000;
- break;
- default:
- e1000_validate_option(&adapter->itr, &opt,
- adapter);
- /*
- * save the setting, because the dynamic bits
- * change itr. clear the lower two bits
- * because they are used as control
- */
- adapter->itr_setting = adapter->itr & ~3;
- break;
- }
- } else {
- adapter->itr_setting = opt.def;
- adapter->itr = 20000;
- }
- }
- { /* Smart Power Down */
- const struct e1000_option opt = {
- .type = enable_option,
- .name = "PHY Smart Power Down",
- .err = "defaulting to Disabled",
- .def = OPTION_DISABLED
- };
-
- if (num_SmartPowerDownEnable > bd) {
- unsigned int spd = SmartPowerDownEnable[bd];
- e1000_validate_option(&spd, &opt, adapter);
- if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
- && spd)
- adapter->flags |= FLAG_SMART_POWER_DOWN;
- }
- }
- { /* Kumeran Lock Loss Workaround */
- const struct e1000_option opt = {
- .type = enable_option,
- .name = "Kumeran Lock Loss Workaround",
- .err = "defaulting to Enabled",
- .def = OPTION_ENABLED
- };
-
- if (num_KumeranLockLoss > bd) {
- unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
- e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
- if (hw->mac.type == e1000_ich8lan)
- e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
- kmrn_lock_loss);
- } else {
- if (hw->mac.type == e1000_ich8lan)
- e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
- opt.def);
- }
- }
-}
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c
deleted file mode 100644
index dab3c468a76..00000000000
--- a/drivers/net/e1000e/phy.c
+++ /dev/null
@@ -1,1772 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2007 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include <linux/delay.h>
-
-#include "e1000.h"
-
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_wait_autoneg(struct e1000_hw *hw);
-
-/* Cable length tables */
-static const u16 e1000_m88_cable_length_table[] =
- { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
-
-static const u16 e1000_igp_2_cable_length_table[] =
- { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
- 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
- 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
- 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
- 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
- 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
- 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
- 124};
-#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
- ARRAY_SIZE(e1000_igp_2_cable_length_table)
-
-/**
- * e1000e_check_reset_block_generic - Check if PHY reset is blocked
- * @hw: pointer to the HW structure
- *
- * Read the PHY management control register and check whether a PHY reset
- * is blocked. If a reset is not blocked return 0, otherwise
- * return E1000_BLK_PHY_RESET (12).
- **/
-s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
-{
- u32 manc;
-
- manc = er32(MANC);
-
- return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : 0;
-}
-
-/**
- * e1000e_get_phy_id - Retrieve the PHY ID and revision
- * @hw: pointer to the HW structure
- *
- * Reads the PHY registers and stores the PHY ID and possibly the PHY
- * revision in the hardware structure.
- **/
-s32 e1000e_get_phy_id(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_id;
-
- ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id = (u32)(phy_id << 16);
- udelay(20);
- ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
- if (ret_val)
- return ret_val;
-
- phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
- phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
-
- return 0;
-}
-
-/**
- * e1000e_phy_reset_dsp - Reset PHY DSP
- * @hw: pointer to the HW structure
- *
- * Reset the digital signal processor.
- **/
-s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
- if (ret_val)
- return ret_val;
-
- return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
-}
-
-/**
- * e1000_read_phy_reg_mdic - Read MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Reads the MDI control register in the PHY at offset and stores the
- * information read to data.
- **/
-static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- hw_dbg(hw, "PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /* Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = ((offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- ew32(MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < 64; i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- hw_dbg(hw, "MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- hw_dbg(hw, "MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *data = (u16) mdic;
-
- return 0;
-}
-
-/**
- * e1000_write_phy_reg_mdic - Write MDI control register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write to register at offset
- *
- * Writes data to MDI control register in the PHY at offset.
- **/
-static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
-{
- struct e1000_phy_info *phy = &hw->phy;
- u32 i, mdic = 0;
-
- if (offset > MAX_PHY_REG_ADDRESS) {
- hw_dbg(hw, "PHY Address %d is out of range\n", offset);
- return -E1000_ERR_PARAM;
- }
-
- /* Set up Op-code, Phy Address, and register offset in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- mdic = (((u32)data) |
- (offset << E1000_MDIC_REG_SHIFT) |
- (phy->addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- ew32(MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
- udelay(5);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- hw_dbg(hw, "MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
-
- return 0;
-}
-
-/**
- * e1000e_read_phy_reg_m88 - Read m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire_phy(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release_phy(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_m88 - Write m88 PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire_phy(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release_phy(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_read_phy_reg_igp - Read igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary, then reads the PHY register at offset
- * and storing the retrieved information in data. Release any acquired
- * semaphores before exiting.
- **/
-s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire_phy(hw);
- if (ret_val)
- return ret_val;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val) {
- hw->phy.ops.release_phy(hw);
- return ret_val;
- }
- }
-
- ret_val = e1000_read_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release_phy(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_write_phy_reg_igp - Write igp PHY register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary, then writes the data to PHY register
- * at the offset. Release any acquired semaphores before exiting.
- **/
-s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
-{
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire_phy(hw);
- if (ret_val)
- return ret_val;
-
- if (offset > MAX_PHY_MULTI_PAGE_REG) {
- ret_val = e1000_write_phy_reg_mdic(hw,
- IGP01E1000_PHY_PAGE_SELECT,
- (u16)offset);
- if (ret_val) {
- hw->phy.ops.release_phy(hw);
- return ret_val;
- }
- }
-
- ret_val = e1000_write_phy_reg_mdic(hw,
- MAX_PHY_REG_ADDRESS & offset,
- data);
-
- hw->phy.ops.release_phy(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_read_kmrn_reg - Read kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to be read
- * @data: pointer to the read data
- *
- * Acquires semaphore, if necessary. Then reads the PHY register at offset
- * using the kumeran interface. The information retrieved is stored in data.
- * Release any acquired semaphores before exiting.
- **/
-s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
-{
- u32 kmrnctrlsta;
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire_phy(hw);
- if (ret_val)
- return ret_val;
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
-
- udelay(2);
-
- kmrnctrlsta = er32(KMRNCTRLSTA);
- *data = (u16)kmrnctrlsta;
-
- hw->phy.ops.release_phy(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_write_kmrn_reg - Write kumeran register
- * @hw: pointer to the HW structure
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Acquires semaphore, if necessary. Then write the data to PHY register
- * at the offset using the kumeran interface. Release any acquired semaphores
- * before exiting.
- **/
-s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
-{
- u32 kmrnctrlsta;
- s32 ret_val;
-
- ret_val = hw->phy.ops.acquire_phy(hw);
- if (ret_val)
- return ret_val;
-
- kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
- E1000_KMRNCTRLSTA_OFFSET) | data;
- ew32(KMRNCTRLSTA, kmrnctrlsta);
-
- udelay(2);
- hw->phy.ops.release_phy(hw);
-
- return ret_val;
-}
-
-/**
- * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
- * and downshift values are set also.
- **/
-s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (phy->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (phy->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy->revision < 4) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((phy->revision == 2) &&
- (phy->id == M88E1111_I_PHY_ID)) {
- /* 82573L PHY - set the downshift counter to 5x. */
- phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- }
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* Commit the changes. */
- ret_val = e1000e_commit_phy(hw);
- if (ret_val)
- hw_dbg(hw, "Error committing the PHY changes\n");
-
- return ret_val;
-}
-
-/**
- * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
- * @hw: pointer to the HW structure
- *
- * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
- * igp PHY's.
- **/
-s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val) {
- hw_dbg(hw, "Error resetting the PHY.\n");
- return ret_val;
- }
-
- /* Wait 15ms for MAC to configure PHY from NVM settings. */
- msleep(15);
-
- /* disable lplu d0 during driver init */
- ret_val = e1000_set_d0_lplu_state(hw, 0);
- if (ret_val) {
- hw_dbg(hw, "Error Disabling LPLU D0\n");
- return ret_val;
- }
- /* Configure mdi-mdix settings */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (phy->mdix) {
- case 1:
- data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->mac.autoneg) {
- /* when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
-
- /* Set auto Master/Slave resolution process */
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~CR_1000T_MS_ENABLE;
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
- ((data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) :
- e1000_ms_auto;
-
- switch (phy->ms_type) {
- case e1000_ms_force_master:
- data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- data |= CR_1000T_MS_ENABLE;
- data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
- * @hw: pointer to the HW structure
- *
- * Reads the MII auto-neg advertisement register and/or the 1000T control
- * register and if the PHY is already setup for auto-negotiation, then
- * return successful. Otherwise, setup advertisement and flow control to
- * the appropriate values for the wanted auto-negotiation.
- **/
-static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg = 0;
-
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
- NWAY_AR_100TX_HD_CAPS |
- NWAY_AR_10T_FD_CAPS |
- NWAY_AR_10T_HD_CAPS);
- mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
-
- hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
- hw_dbg(hw, "Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
- hw_dbg(hw, "Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
- hw_dbg(hw, "Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
- hw_dbg(hw, "Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
- hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
- hw_dbg(hw, "Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
- * negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->mac.fc) {
- case e1000_fc_none:
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_rx_pause:
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in e1000e_config_fc_after_link_up) we will disable the
- * hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case e1000_fc_tx_pause:
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case e1000_fc_full:
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- hw_dbg(hw, "Flow control param set incorrectly\n");
- ret_val = -E1000_ERR_CONFIG;
- return ret_val;
- }
-
- ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
- ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
- * @hw: pointer to the HW structure
- *
- * Performs initial bounds checking on autoneg advertisement parameter, then
- * configure to advertise the full capability. Setup the PHY to autoneg
- * and restart the negotiation process between the link partner. If
- * wait_for_link, then wait for autoneg to complete before exiting.
- **/
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_ctrl;
-
- /* Perform some bounds checking on the autoneg advertisement
- * parameter.
- */
- phy->autoneg_advertised &= phy->autoneg_mask;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (phy->autoneg_advertised == 0)
- phy->autoneg_advertised = phy->autoneg_mask;
-
- hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- hw_dbg(hw, "Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (phy->wait_for_link) {
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- hw_dbg(hw, "Error while waiting for "
- "autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->mac.get_link_status = 1;
-
- return ret_val;
-}
-
-/**
- * e1000e_setup_copper_link - Configure copper link settings
- * @hw: pointer to the HW structure
- *
- * Calls the appropriate function to configure the link for auto-neg or forced
- * speed and duplex. Then we check for link, once link is established calls
- * to configure collision distance and flow control are called. If link is
- * not established, we return -E1000_ERR_PHY (-2).
- **/
-s32 e1000e_setup_copper_link(struct e1000_hw *hw)
-{
- s32 ret_val;
- bool link;
-
- if (hw->mac.autoneg) {
- /* Setup autoneg and flow control advertisement and perform
- * autonegotiation. */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H or 100F
- * depending on user settings. */
- hw_dbg(hw, "Forcing Speed and Duplex\n");
- ret_val = e1000_phy_force_speed_duplex(hw);
- if (ret_val) {
- hw_dbg(hw, "Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- ret_val = e1000e_phy_has_link_generic(hw,
- COPPER_LINK_UP_LIMIT,
- 10,
- &link);
- if (ret_val)
- return ret_val;
-
- if (link) {
- hw_dbg(hw, "Valid link established!!!\n");
- e1000e_config_collision_dist(hw);
- ret_val = e1000e_config_fc_after_link_up(hw);
- } else {
- hw_dbg(hw, "Unable to establish link!!!\n");
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Waits for link and returns
- * successful if link up is successful, else -E1000_ERR_PHY (-2).
- **/
-s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
-
- udelay(1);
-
- if (phy->wait_for_link) {
- hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- hw_dbg(hw, "Link taking longer than expected.\n");
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw,
- PHY_FORCE_LIMIT,
- 100000,
- &link);
- if (ret_val)
- return ret_val;
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Calls the PHY setup function to force speed and duplex. Clears the
- * auto-crossover to force MDI manually. Resets the PHY to commit the
- * changes. If time expires while waiting for link up, we reset the DSP.
- * After reset, TX_CLK and CRS on TX must be set. Return successful upon
- * successful completion, else return corresponding error code.
- **/
-s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed and duplex are forced.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
-
- /* Reset the phy to commit changes. */
- phy_data |= MII_CR_RESET;
-
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- if (phy->wait_for_link) {
- hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
-
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- /* We didn't get link.
- * Reset the DSP and cross our fingers.
- */
- ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
- if (ret_val)
- return ret_val;
- ret_val = e1000e_phy_reset_dsp(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Try once more */
- ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
- 100000, &link);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Resetting the phy means we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock from
- * the reset value of 2.5MHz.
- */
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* In addition, we must re-enable CRS on Tx for both half and full
- * duplex.
- */
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
- * @hw: pointer to the HW structure
- * @phy_ctrl: pointer to current value of PHY_CONTROL
- *
- * Forces speed and duplex on the PHY by doing the following: disable flow
- * control, force speed/duplex on the MAC, disable auto speed detection,
- * disable auto-negotiation, configure duplex, configure speed, configure
- * the collision distance, write configuration to CTRL register. The
- * caller must write to the PHY_CONTROL register for these settings to
- * take affect.
- **/
-void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 ctrl;
-
- /* Turn off flow control when forcing speed/duplex */
- mac->fc = e1000_fc_none;
-
- /* Force speed/duplex on the mac */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~E1000_CTRL_SPD_SEL;
-
- /* Disable Auto Speed Detection */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Disable autoneg on the phy */
- *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
-
- /* Forcing Full or Half Duplex? */
- if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
- ctrl &= ~E1000_CTRL_FD;
- *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
- hw_dbg(hw, "Half Duplex\n");
- } else {
- ctrl |= E1000_CTRL_FD;
- *phy_ctrl |= MII_CR_FULL_DUPLEX;
- hw_dbg(hw, "Full Duplex\n");
- }
-
- /* Forcing 10mb or 100mb? */
- if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
- ctrl |= E1000_CTRL_SPD_100;
- *phy_ctrl |= MII_CR_SPEED_100;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- hw_dbg(hw, "Forcing 100mb\n");
- } else {
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- *phy_ctrl |= MII_CR_SPEED_10;
- *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- hw_dbg(hw, "Forcing 10mb\n");
- }
-
- e1000e_config_collision_dist(hw);
-
- ew32(CTRL, ctrl);
-}
-
-/**
- * e1000e_set_d3_lplu_state - Sets low power link up state for D3
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D3
- * and SmartSpeed is disabled when active is true, else clear lplu for D3
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained.
- **/
-s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
- if (ret_val)
- return ret_val;
-
- if (!active) {
- data &= ~IGP02E1000_PM_D3_LPLU;
- ret_val = e1e_wphy(hw,
- IGP02E1000_PHY_POWER_MGMT,
- data);
- if (ret_val)
- return ret_val;
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
- * during Dx states where the power conservation is most
- * important. During driver activity we should enable
- * SmartSpeed, so performance is maintained. */
- if (phy->smart_speed == e1000_smart_speed_on) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- } else if (phy->smart_speed == e1000_smart_speed_off) {
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
- data);
- if (ret_val)
- return ret_val;
- }
- } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
- (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
- (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
- data |= IGP02E1000_PM_D3_LPLU;
- ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
- if (ret_val)
- return ret_val;
-
- /* When LPLU is enabled, we should disable SmartSpeed */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
- if (ret_val)
- return ret_val;
-
- data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_check_downshift - Checks whether a downshift in speed occurred
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns 1
- *
- * A downshift is detected by querying the PHY link health.
- **/
-s32 e1000e_check_downshift(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, offset, mask;
-
- switch (phy->type) {
- case e1000_phy_m88:
- case e1000_phy_gg82563:
- offset = M88E1000_PHY_SPEC_STATUS;
- mask = M88E1000_PSSR_DOWNSHIFT;
- break;
- case e1000_phy_igp_2:
- case e1000_phy_igp_3:
- offset = IGP01E1000_PHY_LINK_HEALTH;
- mask = IGP01E1000_PLHR_SS_DOWNGRADE;
- break;
- default:
- /* speed downshift not supported */
- phy->speed_downgraded = 0;
- return 0;
- }
-
- ret_val = e1e_rphy(hw, offset, &phy_data);
-
- if (!ret_val)
- phy->speed_downgraded = (phy_data & mask);
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_m88 - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY specific status register.
- **/
-static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_check_polarity_igp - Checks the polarity.
- * @hw: pointer to the HW structure
- *
- * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
- *
- * Polarity is determined based on the PHY port status register, and the
- * current speed (since there is no polarity at 100Mbps).
- **/
-static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data, offset, mask;
-
- /* Polarity is determined based on the speed of
- * our connection. */
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- offset = IGP01E1000_PHY_PCS_INIT_REG;
- mask = IGP01E1000_PHY_POLARITY_MASK;
- } else {
- /* This really only applies to 10Mbps since
- * there is no polarity for 100Mbps (always 0).
- */
- offset = IGP01E1000_PHY_PORT_STATUS;
- mask = IGP01E1000_PSSR_POLARITY_REVERSED;
- }
-
- ret_val = e1e_rphy(hw, offset, &data);
-
- if (!ret_val)
- phy->cable_polarity = (data & mask)
- ? e1000_rev_polarity_reversed
- : e1000_rev_polarity_normal;
-
- return ret_val;
-}
-
-/**
- * e1000_wait_autoneg - Wait for auto-neg compeletion
- * @hw: pointer to the HW structure
- *
- * Waits for auto-negotiation to complete or for the auto-negotiation time
- * limit to expire, which ever happens first.
- **/
-static s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val = 0;
- u16 i, phy_status;
-
- /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
- for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_AUTONEG_COMPLETE)
- break;
- msleep(100);
- }
-
- /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
- * has completed.
- */
- return ret_val;
-}
-
-/**
- * e1000e_phy_has_link_generic - Polls PHY for link
- * @hw: pointer to the HW structure
- * @iterations: number of times to poll for link
- * @usec_interval: delay between polling attempts
- * @success: pointer to whether polling was successful or not
- *
- * Polls the PHY status register for link, 'iterations' number of times.
- **/
-s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
- u32 usec_interval, bool *success)
-{
- s32 ret_val = 0;
- u16 i, phy_status;
-
- for (i = 0; i < iterations; i++) {
- /* Some PHYs require the PHY_STATUS register to be read
- * twice due to the link bit being sticky. No harm doing
- * it across the board.
- */
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
- if (ret_val)
- break;
- if (phy_status & MII_SR_LINK_STATUS)
- break;
- if (usec_interval >= 1000)
- mdelay(usec_interval/1000);
- else
- udelay(usec_interval);
- }
-
- *success = (i < iterations);
-
- return ret_val;
-}
-
-/**
- * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
- * @hw: pointer to the HW structure
- *
- * Reads the PHY specific status register to retrieve the cable length
- * information. The cable length is determined by averaging the minimum and
- * maximum values to get the "average" cable length. The m88 PHY has four
- * possible cable length values, which are:
- * Register Value Cable Length
- * 0 < 50 meters
- * 1 50 - 80 meters
- * 2 80 - 110 meters
- * 3 110 - 140 meters
- * 4 > 140 meters
- **/
-s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, index;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
- phy->min_cable_length = e1000_m88_cable_length_table[index];
- phy->max_cable_length = e1000_m88_cable_length_table[index+1];
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return ret_val;
-}
-
-/**
- * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
- * @hw: pointer to the HW structure
- *
- * The automatic gain control (agc) normalizes the amplitude of the
- * received signal, adjusting for the attenuation produced by the
- * cable. By reading the AGC registers, which represent the
- * combination of course and fine gain value, the value can be put
- * into a lookup table to obtain the approximate cable length
- * for each channel.
- **/
-s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data, i, agc_value = 0;
- u16 cur_agc_index, max_agc_index = 0;
- u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
- u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
- {IGP02E1000_PHY_AGC_A,
- IGP02E1000_PHY_AGC_B,
- IGP02E1000_PHY_AGC_C,
- IGP02E1000_PHY_AGC_D};
-
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
- ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Getting bits 15:9, which represent the combination of
- * course and fine gain values. The result is a number
- * that can be put into the lookup table to obtain the
- * approximate cable length. */
- cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
- IGP02E1000_AGC_LENGTH_MASK;
-
- /* Array index bound check. */
- if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
- (cur_agc_index == 0))
- return -E1000_ERR_PHY;
-
- /* Remove min & max AGC values from calculation. */
- if (e1000_igp_2_cable_length_table[min_agc_index] >
- e1000_igp_2_cable_length_table[cur_agc_index])
- min_agc_index = cur_agc_index;
- if (e1000_igp_2_cable_length_table[max_agc_index] <
- e1000_igp_2_cable_length_table[cur_agc_index])
- max_agc_index = cur_agc_index;
-
- agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
- }
-
- agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
- e1000_igp_2_cable_length_table[max_agc_index]);
- agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
- /* Calculate cable length with the error range of +/- 10 meters. */
- phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
- (agc_value - IGP02E1000_AGC_RANGE) : 0;
- phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
-
- phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
-
- return ret_val;
-}
-
-/**
- * e1000e_get_phy_info_m88 - Retrieve PHY information
- * @hw: pointer to the HW structure
- *
- * Valid for only copper links. Read the PHY status register (sticky read)
- * to verify that link is up. Read the PHY special control register to
- * determine the polarity and 10base-T extended distance. Read the PHY
- * special status register to determine MDI/MDIx and current speed. If
- * speed is 1000, then determine cable length, local and remote receiver.
- **/
-s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 phy_data;
- bool link;
-
- if (hw->media_type != e1000_media_type_copper) {
- hw_dbg(hw, "Phy info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- hw_dbg(hw, "Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->polarity_correction = (phy_data &
- M88E1000_PSCR_POLARITY_REVERSAL);
-
- ret_val = e1000_check_polarity_m88(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- ret_val = e1000_get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- /* Set values to "undefined" */
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_get_phy_info_igp - Retrieve igp PHY information
- * @hw: pointer to the HW structure
- *
- * Read PHY status to determine if link is up. If link is up, then
- * set/determine 10base-T extended distance and polarity correction. Read
- * PHY port status to determine MDI/MDIx and speed. Based on the speed,
- * determine on the cable length, local and remote receiver.
- **/
-s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u16 data;
- bool link;
-
- ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link) {
- hw_dbg(hw, "Phy info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- phy->polarity_correction = 1;
-
- ret_val = e1000_check_polarity_igp(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
-
- if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- ret_val = e1000_get_cable_length(hw);
- if (ret_val)
- return ret_val;
-
- ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
- if (ret_val)
- return ret_val;
-
- phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
-
- phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
- ? e1000_1000t_rx_status_ok
- : e1000_1000t_rx_status_not_ok;
- } else {
- phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
- phy->local_rx = e1000_1000t_rx_status_undefined;
- phy->remote_rx = e1000_1000t_rx_status_undefined;
- }
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_sw_reset - PHY software reset
- * @hw: pointer to the HW structure
- *
- * Does a software reset of the PHY by reading the PHY control register and
- * setting/write the control register reset bit to the PHY.
- **/
-s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_ctrl;
-
- ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
- if (ret_val)
- return ret_val;
-
- phy_ctrl |= MII_CR_RESET;
- ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- return ret_val;
-}
-
-/**
- * e1000e_phy_hw_reset_generic - PHY hardware reset
- * @hw: pointer to the HW structure
- *
- * Verify the reset block is not blocking us from resetting. Acquire
- * semaphore (if necessary) and read/set/write the device control reset
- * bit in the PHY. Wait the appropriate delay time for the device to
- * reset and release the semaphore (if necessary).
- **/
-s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
-{
- struct e1000_phy_info *phy = &hw->phy;
- s32 ret_val;
- u32 ctrl;
-
- ret_val = e1000_check_reset_block(hw);
- if (ret_val)
- return 0;
-
- ret_val = phy->ops.acquire_phy(hw);
- if (ret_val)
- return ret_val;
-
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
- e1e_flush();
-
- udelay(phy->reset_delay_us);
-
- ew32(CTRL, ctrl);
- e1e_flush();
-
- udelay(150);
-
- phy->ops.release_phy(hw);
-
- return e1000_get_phy_cfg_done(hw);
-}
-
-/**
- * e1000e_get_cfg_done - Generic configuration done
- * @hw: pointer to the HW structure
- *
- * Generic function to wait 10 milli-seconds for configuration to complete
- * and return success.
- **/
-s32 e1000e_get_cfg_done(struct e1000_hw *hw)
-{
- mdelay(10);
- return 0;
-}
-
-/* Internal function pointers */
-
-/**
- * e1000_get_phy_cfg_done - Generic PHY configuration done
- * @hw: pointer to the HW structure
- *
- * Return success if silicon family did not implement a family specific
- * get_cfg_done function.
- **/
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
-{
- if (hw->phy.ops.get_cfg_done)
- return hw->phy.ops.get_cfg_done(hw);
-
- return 0;
-}
-
-/**
- * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
- * @hw: pointer to the HW structure
- *
- * When the silicon family has not implemented a forced speed/duplex
- * function for the PHY, simply return 0.
- **/
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
-{
- if (hw->phy.ops.force_speed_duplex)
- return hw->phy.ops.force_speed_duplex(hw);
-
- return 0;
-}
-
-/**
- * e1000e_get_phy_type_from_id - Get PHY type from id
- * @phy_id: phy_id read from the phy
- *
- * Returns the phy type from the id.
- **/
-enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
-{
- enum e1000_phy_type phy_type = e1000_phy_unknown;
-
- switch (phy_id) {
- case M88E1000_I_PHY_ID:
- case M88E1000_E_PHY_ID:
- case M88E1111_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
- phy_type = e1000_phy_igp_2;
- break;
- case GG82563_E_PHY_ID:
- phy_type = e1000_phy_gg82563;
- break;
- case IGP03E1000_E_PHY_ID:
- phy_type = e1000_phy_igp_3;
- break;
- case IFE_E_PHY_ID:
- case IFE_PLUS_E_PHY_ID:
- case IFE_C_E_PHY_ID:
- phy_type = e1000_phy_ife;
- break;
- default:
- phy_type = e1000_phy_unknown;
- break;
- }
- return phy_type;
-}
-
-/**
- * e1000e_commit_phy - Soft PHY reset
- * @hw: pointer to the HW structure
- *
- * Performs a soft PHY reset on those that apply. This is a function pointer
- * entry point called by drivers.
- **/
-s32 e1000e_commit_phy(struct e1000_hw *hw)
-{
- if (hw->phy.ops.commit_phy)
- return hw->phy.ops.commit_phy(hw);
-
- return 0;
-}
-
-/**
- * e1000_set_d0_lplu_state - Sets low power link up state for D0
- * @hw: pointer to the HW structure
- * @active: boolean used to enable/disable lplu
- *
- * Success returns 0, Failure returns 1
- *
- * The low power link up (lplu) state is set to the power management level D0
- * and SmartSpeed is disabled when active is true, else clear lplu for D0
- * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
- * is used during Dx states where the power conservation is most important.
- * During driver activity, SmartSpeed should be enabled so performance is
- * maintained. This is a function pointer entry point called by drivers.
- **/
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
-{
- if (hw->phy.ops.set_d0_lplu_state)
- return hw->phy.ops.set_d0_lplu_state(hw, active);
-
- return 0;
-}