aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2005-04-21 23:30:14 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2005-04-21 23:30:14 +0000
commitb5f662fa0314f7e7e690aae8ebff7136cc3a5ab0 (patch)
treee7c0cbff032351446ce38058e84f6f6f9fd2300d /lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
parent4633f1cde84b1dbb05dfbdce17ca6b483596cee7 (diff)
Remove trailing whitespace
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21425 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r--lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp636
1 files changed, 318 insertions, 318 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
index f5faae5e31..4c0e449513 100644
--- a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
+++ b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
@@ -6,10 +6,10 @@
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
-//
-// This ModuloScheduling pass is based on the Swing Modulo Scheduling
-// algorithm.
-//
+//
+// This ModuloScheduling pass is based on the Swing Modulo Scheduling
+// algorithm.
+//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ModuloSched"
@@ -44,7 +44,7 @@ using namespace llvm;
///
FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
- return new ModuloSchedulingPass(targ);
+ return new ModuloSchedulingPass(targ);
}
@@ -55,7 +55,7 @@ static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
std::string Filename = GraphName + ".dot";
O << "Writing '" << Filename << "'...";
std::ofstream F(Filename.c_str());
-
+
if (F.good())
WriteGraph(F, GT);
else
@@ -86,7 +86,7 @@ namespace llvm {
static std::string getGraphName(MSchedGraph *F) {
return "Dependence Graph";
}
-
+
static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
if (Node->getInst()) {
std::stringstream ss;
@@ -102,15 +102,15 @@ namespace llvm {
std::string edgelabel = "";
switch (I.getEdge().getDepOrderType()) {
- case MSchedGraphEdge::TrueDep:
+ case MSchedGraphEdge::TrueDep:
edgelabel = "True";
break;
-
- case MSchedGraphEdge::AntiDep:
+
+ case MSchedGraphEdge::AntiDep:
edgelabel = "Anti";
break;
- case MSchedGraphEdge::OutputDep:
+ case MSchedGraphEdge::OutputDep:
edgelabel = "Output";
break;
@@ -140,37 +140,37 @@ namespace llvm {
/// 1) Computation and Analysis of the dependence graph
/// 2) Ordering of the nodes
/// 3) Scheduling
-///
+///
bool ModuloSchedulingPass::runOnFunction(Function &F) {
alarm(300);
bool Changed = false;
int numMS = 0;
-
+
DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
-
+
//Get MachineFunction
MachineFunction &MF = MachineFunction::get(&F);
-
+
DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>();
-
+
//Worklist
std::vector<MachineBasicBlock*> Worklist;
-
+
//Iterate over BasicBlocks and put them into our worklist if they are valid
for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
- if(MachineBBisValid(BI)) {
+ if(MachineBBisValid(BI)) {
Worklist.push_back(&*BI);
++ValidLoops;
}
-
+
defaultInst = 0;
DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
//Iterate over the worklist and perform scheduling
- for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
+ for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
BE = Worklist.end(); BI != BE; ++BI) {
//Print out BB for debugging
@@ -192,71 +192,71 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
}
MSchedGraph *MSG = new MSchedGraph(*BI, target, indVarInstrs[*BI], DA, machineTollvm[*BI]);
-
+
//Write Graph out to file
DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
-
+
//Calculate Resource II
int ResMII = calculateResMII(*BI);
-
+
//Calculate Recurrence II
int RecMII = calculateRecMII(MSG, ResMII);
DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
-
-
+
+
//Our starting initiation interval is the maximum of RecMII and ResMII
II = std::max(RecMII, ResMII);
-
+
//Print out II, RecMII, and ResMII
DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
-
+
//Dump node properties if in debug mode
- DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
E = nodeToAttributesMap.end(); I !=E; ++I) {
- std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
- << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
+ std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
+ << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
<< " Height: " << I->second.height << "\n";
});
//Calculate Node Properties
calculateNodeAttributes(MSG, ResMII);
-
+
//Dump node properties if in debug mode
- DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
E = nodeToAttributesMap.end(); I !=E; ++I) {
- std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
- << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
+ std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
+ << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
<< " Height: " << I->second.height << "\n";
});
-
+
//Put nodes in order to schedule them
computePartialOrder();
-
+
//Dump out partial order
- DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
+ DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
E = partialOrder.end(); I !=E; ++I) {
std::cerr << "Start set in PO\n";
for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
std::cerr << "PO:" << **J << "\n";
});
-
+
//Place nodes in final order
orderNodes();
-
+
//Dump out order of nodes
DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
std::cerr << "FO:" << **I << "\n";
});
-
+
//Finally schedule nodes
bool haveSched = computeSchedule(*BI);
-
+
//Print out final schedule
DEBUG(schedule.print(std::cerr));
-
+
//Final scheduling step is to reconstruct the loop only if we actual have
//stage > 0
if(haveSched) {
@@ -269,7 +269,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
}
else
++NoSched;
-
+
//Clear out our maps for the next basic block that is processed
nodeToAttributesMap.clear();
partialOrder.clear();
@@ -283,12 +283,12 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
//Should't std::find work??
//parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
//parent->getBasicBlockList().erase(llvmBB);
-
+
//delete(llvmBB);
//delete(*BI);
}
- alarm(0);
+ alarm(0);
return Changed;
}
@@ -300,12 +300,12 @@ bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) {
const MachineOperand &mOp = I->getOperand(opNum);
if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
//assert if this is the second def we have seen
- //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n");
+ //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n");
assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
defMap[mOp.getVRegValue()] = &*I;
}
-
+
//See if we can use this Value* as our defaultInst
if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) {
Value *V = mOp.getVRegValue();
@@ -314,12 +314,12 @@ bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) {
}
}
}
-
+
if(!defaultInst)
return false;
-
+
return true;
-
+
}
/// This function checks if a Machine Basic Block is valid for modulo
/// scheduling. This means that it has no control flow (if/else or
@@ -328,14 +328,14 @@ bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) {
bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
bool isLoop = false;
-
+
//Check first if its a valid loop
- for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
+ for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
E = succ_end(BI->getBasicBlock()); I != E; ++I) {
if (*I == BI->getBasicBlock()) // has single block loop
isLoop = true;
}
-
+
if(!isLoop)
return false;
@@ -353,7 +353,7 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
//Get Target machine instruction info
const TargetInstrInfo *TMI = target.getInstrInfo();
-
+
//Check each instruction and look for calls, keep map to get index later
std::map<const MachineInstr*, unsigned> indexMap;
@@ -361,21 +361,21 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
//Get opcode to check instruction type
MachineOpCode OC = I->getOpcode();
-
+
//Look for calls
if(TMI->isCall(OC))
return false;
-
+
//Look for conditional move
- if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
+ if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
|| OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi
- || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr
+ || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr
|| OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
|| OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
|| OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
|| OC == V9::MOVFNEr || OC == V9::MOVFNEi)
return false;
-
+
indexMap[I] = count;
if(TMI->isNop(OC))
@@ -435,7 +435,7 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
//Convert list of LLVM Instructions to list of Machine instructions
std::map<const MachineInstr*, unsigned> mIndVar;
for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
-
+
//If we have a load, we can't handle this loop because there is no way to preserve dependences
//between loads and stores
if(isa<LoadInst>(*N))
@@ -463,7 +463,7 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
return true;
}
-bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
+bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
std::vector<Instruction*> &stack, BasicBlock *BB) {
stack.push_back(I);
@@ -503,14 +503,14 @@ bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &i
//FIXME: In future there should be a way to get alternative resources
//for each instruction
int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
-
+
TIME_REGION(X, "calculateResMII");
const TargetInstrInfo *mii = target.getInstrInfo();
const TargetSchedInfo *msi = target.getSchedInfo();
int ResMII = 0;
-
+
//Map to keep track of usage count of each resource
std::map<unsigned, unsigned> resourceUsageCount;
@@ -533,18 +533,18 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
}
//Find maximum usage count
-
+
//Get max number of instructions that can be issued at once. (FIXME)
int issueSlots = msi->maxNumIssueTotal;
for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
-
+
//Get the total number of the resources in our cpu
int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
-
+
//Get total usage count for this resources
unsigned usageCount = RB->second;
-
+
//Divide the usage count by either the max number we can issue or the number of
//resources (whichever is its upper bound)
double finalUsageCount;
@@ -552,8 +552,8 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
finalUsageCount = ceil(1.0 * usageCount / resourceNum);
else
finalUsageCount = ceil(1.0 * usageCount / issueSlots);
-
-
+
+
//Only keep track of the max
ResMII = std::max( (int) finalUsageCount, ResMII);
@@ -572,16 +572,16 @@ int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
findAllReccurrences(I->second, vNodes, MII);
vNodes.clear();
}*/
-
+
TIME_REGION(X, "calculateRecMII");
findAllCircuits(graph, MII);
int RecMII = 0;
-
+
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
RecMII = std::max(RecMII, I->first);
}
-
+
return MII;
}
@@ -602,20 +602,20 @@ void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII)
//Assert if its already in the map
assert(nodeToAttributesMap.count(I->second) == 0 &&
"Node attributes are already in the map");
-
+
//Put into the map with default attribute values
nodeToAttributesMap[I->second] = MSNodeAttributes();
}
//Create set to deal with reccurrences
std::set<MSchedGraphNode*> visitedNodes;
-
+
//Now Loop over map and calculate the node attributes
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
visitedNodes.clear();
}
-
+
int maxASAP = findMaxASAP();
//Calculate ALAP which depends on ASAP being totally calculated
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
@@ -626,7 +626,7 @@ void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII)
//Calculate MOB which depends on ASAP being totally calculated, also do depth and height
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
(I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
-
+
DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
calculateDepth(I->first, (MSchedGraphNode*) 0);
calculateHeight(I->first, (MSchedGraphNode*) 0);
@@ -639,18 +639,18 @@ void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII)
bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
if(destNode == 0 || srcNode ==0)
return false;
-
+
bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
-
+
DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
return findEdge;
}
-/// calculateASAP - Calculates the
+/// calculateASAP - Calculates the
int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
-
+
DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
//Get current node attributes
@@ -658,46 +658,46 @@ int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedG
if(attributes.ASAP != -1)
return attributes.ASAP;
-
+
int maxPredValue = 0;
-
+
//Iterate over all of the predecessors and find max
for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
-
+
//Only process if we are not ignoring the edge
if(!ignoreEdge(*P, node)) {
int predASAP = -1;
predASAP = calculateASAP(*P, MII, node);
-
+
assert(predASAP != -1 && "ASAP has not been calculated");
int iteDiff = node->getInEdge(*P).getIteDiff();
-
+
int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
maxPredValue = std::max(maxPredValue, currentPredValue);
}
}
-
+
attributes.ASAP = maxPredValue;
DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
-
+
return maxPredValue;
}
-int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
+int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
int maxASAP, MSchedGraphNode *srcNode) {
-
+
DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
-
+
MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
+
if(attributes.ALAP != -1)
return attributes.ALAP;
-
+
if(node->hasSuccessors()) {
-
+
//Trying to deal with the issue where the node has successors, but
//we are ignoring all of the edges to them. So this is my hack for
//now.. there is probably a more elegant way of doing this (FIXME)
@@ -705,11 +705,11 @@ int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
//FIXME, set to something high to start
int minSuccValue = 9999999;
-
+
//Iterate over all of the predecessors and fine max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
+ for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
E = node->succ_end(); P != E; ++P) {
-
+
//Only process if we are not ignoring the edge
if(!ignoreEdge(node, *P)) {
processedOneEdge = true;
@@ -727,10 +727,10 @@ int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
minSuccValue = std::min(minSuccValue, currentSuccValue);
}
}
-
+
if(processedOneEdge)
attributes.ALAP = minSuccValue;
-
+
else
attributes.ALAP = maxASAP;
}
@@ -756,19 +756,19 @@ int ModuloSchedulingPass::findMaxASAP() {
int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
-
+
MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
if(attributes.height != -1)
return attributes.height;
int maxHeight = 0;
-
+
//Iterate over all of the predecessors and find max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
+ for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
E = node->succ_end(); P != E; ++P) {
-
-
+
+
if(!ignoreEdge(node, *P)) {
int succHeight = calculateHeight(*P, node);
@@ -784,7 +784,7 @@ int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode
}
-int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
+int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
MSchedGraphNode *destNode) {
MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
@@ -793,14 +793,14 @@ int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
return attributes.depth;
int maxDepth = 0;
-
+
//Iterate over all of the predecessors and fine max
for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
if(!ignoreEdge(*P, node)) {
int predDepth = -1;
predDepth = calculateDepth(*P, node);
-
+
assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
int currentDepth = predDepth + (*P)->getLatency();
@@ -808,7 +808,7 @@ int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
}
}
attributes.depth = maxDepth;
-
+
DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
return maxDepth;
}
@@ -822,11 +822,11 @@ void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurre
//Loop over all recurrences already in our list
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
-
+
bool all_same = true;
//First compare size
if(R->second.size() == recurrence.size()) {
-
+
for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
all_same = all_same && false;
@@ -841,30 +841,30 @@ void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurre
}
}
}
-
+
if(!same) {
srcBENode = recurrence.back();
destBENode = recurrence.front();
-
+
//FIXME
if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
//DEBUG(std::cerr << "NOT A BACKEDGE\n");
- //find actual backedge HACK HACK
+ //find actual backedge HACK HACK
for(unsigned i=0; i< recurrence.size()-1; ++i) {
if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
srcBENode = recurrence[i];
destBENode = recurrence[i+1];
break;
}
-
+
}
-
+
}
DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
recurrenceList.insert(std::make_pair(II, recurrence));
}
-
+
}
int CircCount;
@@ -888,12 +888,12 @@ void ModuloSchedulingPass::unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*
}
-bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack,
- std::set<MSchedGraphNode*> &blocked, std::vector<MSchedGraphNode*> &SCC,
- MSchedGraphNode *s, std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B,
+bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack,
+ std::set<MSchedGraphNode*> &blocked, std::vector<MSchedGraphNode*> &SCC,
+ MSchedGraphNode *s, std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B,
int II, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
bool f = false;
-
+
DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n");
//Push node onto the stack
@@ -913,7 +913,7 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
if(*I == s) {
//We have a circuit, so add it to our list
-
+
std::vector<MSchedGraphNode*> recc;
//Dump recurrence for now
DEBUG(std::cerr << "Starting Recc\n");
@@ -966,7 +966,7 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
int value = totalDelay-(RecMII * totalDistance);
int lastII = II;
while(value <= 0) {
-
+
lastII = RecMII;
RecMII--;
value = totalDelay-(RecMII * totalDistance);
@@ -988,7 +988,7 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
unblock(v, blocked, B);
}
else {
- for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
+ for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
B[*I].insert(v);
}
@@ -1004,7 +1004,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
CircCount = 0;
- //Keep old to new node mapping information
+ //Keep old to new node mapping information
std::map<MSchedGraphNode*, MSchedGraphNode*> newNodes;
//copy the graph
@@ -1027,7 +1027,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
//Iterate over the graph until its down to one node or empty
while(MSG->size() > 1) {
-
+
//Write Graph out to file
//WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG);
@@ -1070,13 +1070,13 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
}
}
}
-
-
+
+
//Process SCC
DEBUG(for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end();
N != NE; ++N) { std::cerr << *((*N)->getInst()); });
-
+
//Iterate over all nodes in this scc
for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end();
N != NE; ++N) {
@@ -1085,7 +1085,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
}
if(Vk.size() > 1) {
circuit(s, stack, blocked, Vk, s, B, II, newNodes);
-
+
//Find all nodes up to s and delete them
std::vector<MSchedGraphNode*> nodesToRemove;
nodesToRemove.push_back(s);
@@ -1105,10 +1105,10 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
}
-void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
+void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &visitedNodes,
int II) {
-
+
if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
std::vector<MSchedGraphNode*> recurrence;
@@ -1119,13 +1119,13 @@ void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
MSchedGraphNode *last = node;
MSchedGraphNode *srcBackEdge = 0;
MSchedGraphNode *destBackEdge = 0;
-
+
for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
I !=E; ++I) {
- if(*I == node)
+ if(*I == node)
first = false;
if(first)
continue;
@@ -1146,23 +1146,23 @@ void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
}
-
+
//Get final distance calc
distance += node->getInEdge(last).getIteDiff();
DEBUG(std::cerr << "Reccurrence Distance: " << distance << "\n");
//Adjust II until we get close to the inequality delay - II*distance <= 0
-
+
int value = delay-(RecMII * distance);
int lastII = II;
while(value <= 0) {
-
+
lastII = RecMII;
RecMII--;
value = delay-(RecMII * distance);
}
-
-
+
+
DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
assert(distance != 0 && "Recurrence distance should not be zero");
@@ -1179,23 +1179,23 @@ void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
}
}
-void ModuloSchedulingPass::searchPath(MSchedGraphNode *node,
+void ModuloSchedulingPass::searchPath(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &nodesToAdd) {
//Push node onto the path
path.push_back(node);
- //Loop over all successors and see if there is a path from this node to
+ //Loop over all successors and see if there is a path from this node to
//a recurrence in the partial order, if so.. add all nodes to be added to recc
- for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
+ for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
++S) {
//If this node exists in a recurrence already in the partial order, then add all
//nodes in the path to the set of nodes to add
//Check if its already in our partial order, if not add it to the final vector
- for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
-
+
//Check if we should ignore this edge first
if(ignoreEdge(node,*S))
continue;
@@ -1208,12 +1208,12 @@ void ModuloSchedulingPass::searchPath(MSchedGraphNode *node,
searchPath(*S, path, nodesToAdd);
}
}
-
+
//Pop Node off the path
path.pop_back();
}
-void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
+void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &poSet,
std::set<MSchedGraphNode*> &lastNodes) {
@@ -1222,15 +1222,15 @@ void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
DEBUG(std::cerr << "Current node: " << *node << "\n");
- //Loop over all successors and see if there is a path from this node to
+ //Loop over all successors and see if there is a path from this node to
//a recurrence in the partial order, if so.. add all nodes to be added to recc
- for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
+ for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
++S) {
DEBUG(std::cerr << "Succ:" << **S << "\n");
//Check if we should ignore this edge first
if(ignoreEdge(node,*S))
continue;
-
+
if(poSet.count(*S)) {
DEBUG(std::cerr << "Found path to recc from no pred\n");
//Loop over path, if it exists in lastNodes, then add to poset, and remove from lastNodes
@@ -1245,7 +1245,7 @@ void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
else
pathToRecc(*S, path, poSet, lastNodes);
}
-
+
//Pop Node off the path
path.pop_back();
}
@@ -1253,27 +1253,27 @@ void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
void ModuloSchedulingPass::computePartialOrder() {
TIME_REGION(X, "calculatePartialOrder");
-
+
//Only push BA branches onto the final node order, we put other branches after it
//FIXME: Should we really be pushing branches on it a specific order instead of relying
//on BA being there?
std::vector<MSchedGraphNode*> branches;
-
+
//Steps to add a recurrence to the partial order
// 1) Find reccurrence with the highest RecMII. Add it to the partial order.
// 2) For each recurrence with decreasing RecMII, add it to the partial order along with
// any nodes that connect this recurrence to recurrences already in the partial order
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
+ for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
std::set<MSchedGraphNode*> new_recurrence;
//Loop through recurrence and remove any nodes already in the partial order
- for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(),
+ for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(),
NE = I->second.end(); N != NE; ++N) {
bool found = false;
- for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
if(PO->count(*N))
found = true;
@@ -1289,10 +1289,10 @@ void ModuloSchedulingPass::computePartialOrder() {
}
}
-
+
if(new_recurrence.size() > 0) {
-
+
std::vector<MSchedGraphNode*> path;
std::set<MSchedGraphNode*> nodesToAdd;
@@ -1300,12 +1300,12 @@ void ModuloSchedulingPass::computePartialOrder() {
for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(),
NE = new_recurrence.end(); N != NE; ++N)
searchPath(*N, path, nodesToAdd);
-
+
//Add nodes to this recurrence if they are not already in the partial order
for(std::set<MSchedGraphNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
N != NE; ++N) {
bool found = false;
- for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
if(PO->count(*N))
found = true;
@@ -1320,18 +1320,18 @@ void ModuloSchedulingPass::computePartialOrder() {
}
}
-
+
//Add any nodes that are not already in the partial order
//Add them in a set, one set per connected component
std::set<MSchedGraphNode*> lastNodes;
std::set<MSchedGraphNode*> noPredNodes;
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
+ for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
E = nodeToAttributesMap.end(); I != E; ++I) {
-
+
bool found = false;
-
+
//Check if its already in our partial order, if not add it to the final vector
- for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
+ for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
if(PO->