From b5f662fa0314f7e7e690aae8ebff7136cc3a5ab0 Mon Sep 17 00:00:00 2001 From: Misha Brukman Date: Thu, 21 Apr 2005 23:30:14 +0000 Subject: Remove trailing whitespace git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21425 91177308-0d34-0410-b5e6-96231b3b80d8 --- .../SparcV9/ModuloScheduling/ModuloScheduling.cpp | 636 ++++++++++----------- 1 file changed, 318 insertions(+), 318 deletions(-) (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp') diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp index f5faae5e31..4c0e449513 100644 --- a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp +++ b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp @@ -6,10 +6,10 @@ // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// -// -// This ModuloScheduling pass is based on the Swing Modulo Scheduling -// algorithm. -// +// +// This ModuloScheduling pass is based on the Swing Modulo Scheduling +// algorithm. +// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ModuloSched" @@ -44,7 +44,7 @@ using namespace llvm; /// FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); - return new ModuloSchedulingPass(targ); + return new ModuloSchedulingPass(targ); } @@ -55,7 +55,7 @@ static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, std::string Filename = GraphName + ".dot"; O << "Writing '" << Filename << "'..."; std::ofstream F(Filename.c_str()); - + if (F.good()) WriteGraph(F, GT); else @@ -86,7 +86,7 @@ namespace llvm { static std::string getGraphName(MSchedGraph *F) { return "Dependence Graph"; } - + static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { if (Node->getInst()) { std::stringstream ss; @@ -102,15 +102,15 @@ namespace llvm { std::string edgelabel = ""; switch (I.getEdge().getDepOrderType()) { - case MSchedGraphEdge::TrueDep: + case MSchedGraphEdge::TrueDep: edgelabel = "True"; break; - - case MSchedGraphEdge::AntiDep: + + case MSchedGraphEdge::AntiDep: edgelabel = "Anti"; break; - case MSchedGraphEdge::OutputDep: + case MSchedGraphEdge::OutputDep: edgelabel = "Output"; break; @@ -140,37 +140,37 @@ namespace llvm { /// 1) Computation and Analysis of the dependence graph /// 2) Ordering of the nodes /// 3) Scheduling -/// +/// bool ModuloSchedulingPass::runOnFunction(Function &F) { alarm(300); bool Changed = false; int numMS = 0; - + DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n"); - + //Get MachineFunction MachineFunction &MF = MachineFunction::get(&F); - + DependenceAnalyzer &DA = getAnalysis(); - + //Worklist std::vector Worklist; - + //Iterate over BasicBlocks and put them into our worklist if they are valid for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) - if(MachineBBisValid(BI)) { + if(MachineBBisValid(BI)) { Worklist.push_back(&*BI); ++ValidLoops; } - + defaultInst = 0; DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n"); //Iterate over the worklist and perform scheduling - for(std::vector::iterator BI = Worklist.begin(), + for(std::vector::iterator BI = Worklist.begin(), BE = Worklist.end(); BI != BE; ++BI) { //Print out BB for debugging @@ -192,71 +192,71 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) { } MSchedGraph *MSG = new MSchedGraph(*BI, target, indVarInstrs[*BI], DA, machineTollvm[*BI]); - + //Write Graph out to file DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); - + //Calculate Resource II int ResMII = calculateResMII(*BI); - + //Calculate Recurrence II int RecMII = calculateRecMII(MSG, ResMII); DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n"); - - + + //Our starting initiation interval is the maximum of RecMII and ResMII II = std::max(RecMII, ResMII); - + //Print out II, RecMII, and ResMII DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n"); - + //Dump node properties if in debug mode - DEBUG(for(std::map::iterator I = nodeToAttributesMap.begin(), + DEBUG(for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I !=E; ++I) { - std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " - << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth + std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " + << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth << " Height: " << I->second.height << "\n"; }); //Calculate Node Properties calculateNodeAttributes(MSG, ResMII); - + //Dump node properties if in debug mode - DEBUG(for(std::map::iterator I = nodeToAttributesMap.begin(), + DEBUG(for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I !=E; ++I) { - std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " - << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth + std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " + << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth << " Height: " << I->second.height << "\n"; }); - + //Put nodes in order to schedule them computePartialOrder(); - + //Dump out partial order - DEBUG(for(std::vector >::iterator I = partialOrder.begin(), + DEBUG(for(std::vector >::iterator I = partialOrder.begin(), E = partialOrder.end(); I !=E; ++I) { std::cerr << "Start set in PO\n"; for(std::set::iterator J = I->begin(), JE = I->end(); J != JE; ++J) std::cerr << "PO:" << **J << "\n"; }); - + //Place nodes in final order orderNodes(); - + //Dump out order of nodes DEBUG(for(std::vector::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { std::cerr << "FO:" << **I << "\n"; }); - + //Finally schedule nodes bool haveSched = computeSchedule(*BI); - + //Print out final schedule DEBUG(schedule.print(std::cerr)); - + //Final scheduling step is to reconstruct the loop only if we actual have //stage > 0 if(haveSched) { @@ -269,7 +269,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) { } else ++NoSched; - + //Clear out our maps for the next basic block that is processed nodeToAttributesMap.clear(); partialOrder.clear(); @@ -283,12 +283,12 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) { //Should't std::find work?? //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB)); //parent->getBasicBlockList().erase(llvmBB); - + //delete(llvmBB); //delete(*BI); } - alarm(0); + alarm(0); return Changed; } @@ -300,12 +300,12 @@ bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) { const MachineOperand &mOp = I->getOperand(opNum); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { //assert if this is the second def we have seen - //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n"); + //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n"); assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map"); defMap[mOp.getVRegValue()] = &*I; } - + //See if we can use this Value* as our defaultInst if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { Value *V = mOp.getVRegValue(); @@ -314,12 +314,12 @@ bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) { } } } - + if(!defaultInst) return false; - + return true; - + } /// This function checks if a Machine Basic Block is valid for modulo /// scheduling. This means that it has no control flow (if/else or @@ -328,14 +328,14 @@ bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) { bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { bool isLoop = false; - + //Check first if its a valid loop - for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), + for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), E = succ_end(BI->getBasicBlock()); I != E; ++I) { if (*I == BI->getBasicBlock()) // has single block loop isLoop = true; } - + if(!isLoop) return false; @@ -353,7 +353,7 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { //Get Target machine instruction info const TargetInstrInfo *TMI = target.getInstrInfo(); - + //Check each instruction and look for calls, keep map to get index later std::map indexMap; @@ -361,21 +361,21 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { //Get opcode to check instruction type MachineOpCode OC = I->getOpcode(); - + //Look for calls if(TMI->isCall(OC)) return false; - + //Look for conditional move - if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi + if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi - || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr + || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi || OC == V9::MOVFNEr || OC == V9::MOVFNEi) return false; - + indexMap[I] = count; if(TMI->isNop(OC)) @@ -435,7 +435,7 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { //Convert list of LLVM Instructions to list of Machine instructions std::map mIndVar; for(std::set::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) { - + //If we have a load, we can't handle this loop because there is no way to preserve dependences //between loads and stores if(isa(*N)) @@ -463,7 +463,7 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { return true; } -bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set &indVar, +bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set &indVar, std::vector &stack, BasicBlock *BB) { stack.push_back(I); @@ -503,14 +503,14 @@ bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set &i //FIXME: In future there should be a way to get alternative resources //for each instruction int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { - + TIME_REGION(X, "calculateResMII"); const TargetInstrInfo *mii = target.getInstrInfo(); const TargetSchedInfo *msi = target.getSchedInfo(); int ResMII = 0; - + //Map to keep track of usage count of each resource std::map resourceUsageCount; @@ -533,18 +533,18 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { } //Find maximum usage count - + //Get max number of instructions that can be issued at once. (FIXME) int issueSlots = msi->maxNumIssueTotal; for(std::map::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { - + //Get the total number of the resources in our cpu int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; - + //Get total usage count for this resources unsigned usageCount = RB->second; - + //Divide the usage count by either the max number we can issue or the number of //resources (whichever is its upper bound) double finalUsageCount; @@ -552,8 +552,8 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { finalUsageCount = ceil(1.0 * usageCount / resourceNum); else finalUsageCount = ceil(1.0 * usageCount / issueSlots); - - + + //Only keep track of the max ResMII = std::max( (int) finalUsageCount, ResMII); @@ -572,16 +572,16 @@ int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { findAllReccurrences(I->second, vNodes, MII); vNodes.clear(); }*/ - + TIME_REGION(X, "calculateRecMII"); findAllCircuits(graph, MII); int RecMII = 0; - + for(std::set > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { RecMII = std::max(RecMII, I->first); } - + return MII; } @@ -602,20 +602,20 @@ void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) //Assert if its already in the map assert(nodeToAttributesMap.count(I->second) == 0 && "Node attributes are already in the map"); - + //Put into the map with default attribute values nodeToAttributesMap[I->second] = MSNodeAttributes(); } //Create set to deal with reccurrences std::set visitedNodes; - + //Now Loop over map and calculate the node attributes for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { calculateASAP(I->first, MII, (MSchedGraphNode*) 0); visitedNodes.clear(); } - + int maxASAP = findMaxASAP(); //Calculate ALAP which depends on ASAP being totally calculated for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { @@ -626,7 +626,7 @@ void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) //Calculate MOB which depends on ASAP being totally calculated, also do depth and height for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); - + DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); calculateDepth(I->first, (MSchedGraphNode*) 0); calculateHeight(I->first, (MSchedGraphNode*) 0); @@ -639,18 +639,18 @@ void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { if(destNode == 0 || srcNode ==0) return false; - + bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); - + DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n"); return findEdge; } -/// calculateASAP - Calculates the +/// calculateASAP - Calculates the int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { - + DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); //Get current node attributes @@ -658,46 +658,46 @@ int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedG if(attributes.ASAP != -1) return attributes.ASAP; - + int maxPredValue = 0; - + //Iterate over all of the predecessors and find max for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - + //Only process if we are not ignoring the edge if(!ignoreEdge(*P, node)) { int predASAP = -1; predASAP = calculateASAP(*P, MII, node); - + assert(predASAP != -1 && "ASAP has not been calculated"); int iteDiff = node->getInEdge(*P).getIteDiff(); - + int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); maxPredValue = std::max(maxPredValue, currentPredValue); } } - + attributes.ASAP = maxPredValue; DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); - + return maxPredValue; } -int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, +int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, int maxASAP, MSchedGraphNode *srcNode) { - + DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); - + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - + if(attributes.ALAP != -1) return attributes.ALAP; - + if(node->hasSuccessors()) { - + //Trying to deal with the issue where the node has successors, but //we are ignoring all of the edges to them. So this is my hack for //now.. there is probably a more elegant way of doing this (FIXME) @@ -705,11 +705,11 @@ int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, //FIXME, set to something high to start int minSuccValue = 9999999; - + //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::succ_iterator P = node->succ_begin(), + for(MSchedGraphNode::succ_iterator P = node->succ_begin(), E = node->succ_end(); P != E; ++P) { - + //Only process if we are not ignoring the edge if(!ignoreEdge(node, *P)) { processedOneEdge = true; @@ -727,10 +727,10 @@ int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, minSuccValue = std::min(minSuccValue, currentSuccValue); } } - + if(processedOneEdge) attributes.ALAP = minSuccValue; - + else attributes.ALAP = maxASAP; } @@ -756,19 +756,19 @@ int ModuloSchedulingPass::findMaxASAP() { int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { - + MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.height != -1) return attributes.height; int maxHeight = 0; - + //Iterate over all of the predecessors and find max - for(MSchedGraphNode::succ_iterator P = node->succ_begin(), + for(MSchedGraphNode::succ_iterator P = node->succ_begin(), E = node->succ_end(); P != E; ++P) { - - + + if(!ignoreEdge(node, *P)) { int succHeight = calculateHeight(*P, node); @@ -784,7 +784,7 @@ int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode } -int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, +int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, MSchedGraphNode *destNode) { MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; @@ -793,14 +793,14 @@ int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, return attributes.depth; int maxDepth = 0; - + //Iterate over all of the predecessors and fine max for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { if(!ignoreEdge(*P, node)) { int predDepth = -1; predDepth = calculateDepth(*P, node); - + assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); int currentDepth = predDepth + (*P)->getLatency(); @@ -808,7 +808,7 @@ int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, } } attributes.depth = maxDepth; - + DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); return maxDepth; } @@ -822,11 +822,11 @@ void ModuloSchedulingPass::addReccurrence(std::vector &recurre //Loop over all recurrences already in our list for(std::set > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { - + bool all_same = true; //First compare size if(R->second.size() == recurrence.size()) { - + for(std::vector::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { all_same = all_same && false; @@ -841,30 +841,30 @@ void ModuloSchedulingPass::addReccurrence(std::vector &recurre } } } - + if(!same) { srcBENode = recurrence.back(); destBENode = recurrence.front(); - + //FIXME if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { //DEBUG(std::cerr << "NOT A BACKEDGE\n"); - //find actual backedge HACK HACK + //find actual backedge HACK HACK for(unsigned i=0; i< recurrence.size()-1; ++i) { if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { srcBENode = recurrence[i]; destBENode = recurrence[i+1]; break; } - + } - + } DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); recurrenceList.insert(std::make_pair(II, recurrence)); } - + } int CircCount; @@ -888,12 +888,12 @@ void ModuloSchedulingPass::unblock(MSchedGraphNode *u, std::set &stack, - std::set &blocked, std::vector &SCC, - MSchedGraphNode *s, std::map > &B, +bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector &stack, + std::set &blocked, std::vector &SCC, + MSchedGraphNode *s, std::map > &B, int II, std::map &newNodes) { bool f = false; - + DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n"); //Push node onto the stack @@ -913,7 +913,7 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) { if(*I == s) { //We have a circuit, so add it to our list - + std::vector recc; //Dump recurrence for now DEBUG(std::cerr << "Starting Recc\n"); @@ -966,7 +966,7 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) + for(std::set::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) B[*I].insert(v); } @@ -1004,7 +1004,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) { CircCount = 0; - //Keep old to new node mapping information + //Keep old to new node mapping information std::map newNodes; //copy the graph @@ -1027,7 +1027,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) { //Iterate over the graph until its down to one node or empty while(MSG->size() > 1) { - + //Write Graph out to file //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG); @@ -1070,13 +1070,13 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) { } } } - - + + //Process SCC DEBUG(for(std::vector::iterator N = Vk.begin(), NE = Vk.end(); N != NE; ++N) { std::cerr << *((*N)->getInst()); }); - + //Iterate over all nodes in this scc for(std::vector::iterator N = Vk.begin(), NE = Vk.end(); N != NE; ++N) { @@ -1085,7 +1085,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) { } if(Vk.size() > 1) { circuit(s, stack, blocked, Vk, s, B, II, newNodes); - + //Find all nodes up to s and delete them std::vector nodesToRemove; nodesToRemove.push_back(s); @@ -1105,10 +1105,10 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) { } -void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, +void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, std::vector &visitedNodes, int II) { - + if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { std::vector recurrence; @@ -1119,13 +1119,13 @@ void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, MSchedGraphNode *last = node; MSchedGraphNode *srcBackEdge = 0; MSchedGraphNode *destBackEdge = 0; - + for(std::vector::iterator I = visitedNodes.begin(), E = visitedNodes.end(); I !=E; ++I) { - if(*I == node) + if(*I == node) first = false; if(first) continue; @@ -1146,23 +1146,23 @@ void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, } - + //Get final distance calc distance += node->getInEdge(last).getIteDiff(); DEBUG(std::cerr << "Reccurrence Distance: " << distance << "\n"); //Adjust II until we get close to the inequality delay - II*distance <= 0 - + int value = delay-(RecMII * distance); int lastII = II; while(value <= 0) { - + lastII = RecMII; RecMII--; value = delay-(RecMII * distance); } - - + + DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); assert(distance != 0 && "Recurrence distance should not be zero"); @@ -1179,23 +1179,23 @@ void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, } } -void ModuloSchedulingPass::searchPath(MSchedGraphNode *node, +void ModuloSchedulingPass::searchPath(MSchedGraphNode *node, std::vector &path, std::set &nodesToAdd) { //Push node onto the path path.push_back(node); - //Loop over all successors and see if there is a path from this node to + //Loop over all successors and see if there is a path from this node to //a recurrence in the partial order, if so.. add all nodes to be added to recc - for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; + for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { //If this node exists in a recurrence already in the partial order, then add all //nodes in the path to the set of nodes to add //Check if its already in our partial order, if not add it to the final vector - for(std::vector >::iterator PO = partialOrder.begin(), + for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { - + //Check if we should ignore this edge first if(ignoreEdge(node,*S)) continue; @@ -1208,12 +1208,12 @@ void ModuloSchedulingPass::searchPath(MSchedGraphNode *node, searchPath(*S, path, nodesToAdd); } } - + //Pop Node off the path path.pop_back(); } -void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node, +void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node, std::vector &path, std::set &poSet, std::set &lastNodes) { @@ -1222,15 +1222,15 @@ void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node, DEBUG(std::cerr << "Current node: " << *node << "\n"); - //Loop over all successors and see if there is a path from this node to + //Loop over all successors and see if there is a path from this node to //a recurrence in the partial order, if so.. add all nodes to be added to recc - for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; + for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { DEBUG(std::cerr << "Succ:" << **S << "\n"); //Check if we should ignore this edge first if(ignoreEdge(node,*S)) continue; - + if(poSet.count(*S)) { DEBUG(std::cerr << "Found path to recc from no pred\n"); //Loop over path, if it exists in lastNodes, then add to poset, and remove from lastNodes @@ -1245,7 +1245,7 @@ void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node, else pathToRecc(*S, path, poSet, lastNodes); } - + //Pop Node off the path path.pop_back(); } @@ -1253,27 +1253,27 @@ void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node, void ModuloSchedulingPass::computePartialOrder() { TIME_REGION(X, "calculatePartialOrder"); - + //Only push BA branches onto the final node order, we put other branches after it //FIXME: Should we really be pushing branches on it a specific order instead of relying //on BA being there? std::vector branches; - + //Steps to add a recurrence to the partial order // 1) Find reccurrence with the highest RecMII. Add it to the partial order. // 2) For each recurrence with decreasing RecMII, add it to the partial order along with // any nodes that connect this recurrence to recurrences already in the partial order - for(std::set > >::reverse_iterator + for(std::set > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { std::set new_recurrence; //Loop through recurrence and remove any nodes already in the partial order - for(std::vector::const_iterator N = I->second.begin(), + for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { bool found = false; - for(std::vector >::iterator PO = partialOrder.begin(), + for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(*N)) found = true; @@ -1289,10 +1289,10 @@ void ModuloSchedulingPass::computePartialOrder() { } } - + if(new_recurrence.size() > 0) { - + std::vector path; std::set nodesToAdd; @@ -1300,12 +1300,12 @@ void ModuloSchedulingPass::computePartialOrder() { for(std::set::iterator N = new_recurrence.begin(), NE = new_recurrence.end(); N != NE; ++N) searchPath(*N, path, nodesToAdd); - + //Add nodes to this recurrence if they are not already in the partial order for(std::set::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end(); N != NE; ++N) { bool found = false; - for(std::vector >::iterator PO = partialOrder.begin(), + for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(*N)) found = true; @@ -1320,18 +1320,18 @@ void ModuloSchedulingPass::computePartialOrder() { } } - + //Add any nodes that are not already in the partial order //Add them in a set, one set per connected component std::set lastNodes; std::set noPredNodes; - for(std::map::iterator I = nodeToAttributesMap.begin(), + for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - + bool found = false; - + //Check if its already in our partial order, if not add it to the final vector - for(std::vector >::iterator PO = partialOrder.begin(), + for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(I->first)) found = true; @@ -1345,13 +1345,13 @@ void ModuloSchedulingPass::computePartialOrder() { /*for(std::set::iterator N = noPredNodes.begin(), NE = noPredNodes.end(); N != NE; ++N) { DEBUG(std::cerr << "No Pred Path from: " << **N << "\n"); - for(std::vector >::iterator PO = partialOrder.begin(), + for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { std::vector path; pathToRecc(*N, path, *PO, lastNodes); } }*/ - + //Break up remaining nodes that are not in the partial order ///into their connected compoenents @@ -1361,8 +1361,8 @@ void ModuloSchedulingPass::computePartialOrder() { if(ccSet.size() > 0) partialOrder.push_back(ccSet); } - - + + //Clean up branches by putting them in final order assert(branches.size() == 0 && "We should not have any branches in our graph"); } @@ -1377,39 +1377,39 @@ void ModuloSchedulingPass::connectedComponentSet(MSchedGraphNode *node, std::set } else return; - + //Loop over successors and recurse if we have not seen this node before for(MSchedGraphNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) { connectedComponentSet(*node_succ, ccSet, lastNodes); } - + } void ModuloSchedulingPass::predIntersect(std::set &CurrentSet, std::set &IntersectResult) { - + for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), + for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { - + //Check if we are supposed to ignore this edge or not if(ignoreEdge(*P,FinalNodeOrder[j])) continue; - + if(CurrentSet.count(*P)) if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) IntersectResult.insert(*P); } - } + } } - + void ModuloSchedulingPass::succIntersect(std::set &CurrentSet, std::set &IntersectResult) { for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), + for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { //Check if we are supposed to ignore this edge or not @@ -1433,7 +1433,7 @@ void dumpIntersection(std::set &IntersectCurrent) { void ModuloSchedulingPass::orderNodes() { - + TIME_REGION(X, "orderNodes"); int BOTTOM_UP = 0; @@ -1442,7 +1442,7 @@ void ModuloSchedulingPass::orderNodes() { //Set default order int order = BOTTOM_UP; - + //Loop over all the sets and place them in the final node order for(std::vector >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { @@ -1481,7 +1481,7 @@ void ModuloSchedulingPass::orderNodes() { //Get node attributes MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); - + if(maxASAP <= nodeAttr.ASAP) { maxASAP = nodeAttr.ASAP; node = *J; @@ -1492,7 +1492,7 @@ void ModuloSchedulingPass::orderNodes() { order = BOTTOM_UP; } } - + //Repeat until all nodes are put into the final order from current set while(IntersectCurrent.size() > 0) { @@ -1501,15 +1501,15 @@ void ModuloSchedulingPass::orderNodes() { while(IntersectCurrent.size() > 0) { DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); - + int MOB = 0; int height = 0; MSchedGraphNode *highestHeightNode = *(IntersectCurrent.begin()); - + //Find node in intersection with highest heigh and lowest MOB - for(std::set::iterator I = IntersectCurrent.begin(), + for(std::set::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) { - + //Get current nodes properties MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; @@ -1526,7 +1526,7 @@ void ModuloSchedulingPass::orderNodes() { } } } - + //Append our node with greatest height to the NodeOrder if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); @@ -1534,16 +1534,16 @@ void ModuloSchedulingPass::orderNodes() { } //Remove V from IntersectOrder - IntersectCurrent.erase(std::find(IntersectCurrent.begin(), + IntersectCurrent.erase(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), highestHeightNode)); //Intersect V's successors with CurrentSet for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), E = highestHeightNode->succ_end(); P != E; ++P) { - //if(lower_bound(CurrentSet->begin(), + //if(lower_bound(CurrentSet->begin(), // CurrentSet->end(), *P) != CurrentSet->end()) { - if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { + if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { if(ignoreEdge(highestHeightNode, *P)) continue; //If not already in Intersect, add @@ -1575,12 +1575,12 @@ void ModuloSchedulingPass::orderNodes() { int MOB = 0; int depth = 0; MSchedGraphNode *highestDepthNode = *(IntersectCurrent.begin()); - - for(std::set::iterator I = IntersectCurrent.begin(), + + for(std::set::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) { //Find node attribute in graph MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - + if(depth < nodeAttr.depth) { highestDepthNode = *I; depth = nodeAttr.depth; @@ -1594,8 +1594,8 @@ void ModuloSchedulingPass::orderNodes() { } } } - - + + //Append highest depth node to the NodeOrder if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { @@ -1604,21 +1604,21 @@ void ModuloSchedulingPass::orderNodes() { } //Remove heightestDepthNode from IntersectOrder IntersectCurrent.erase(highestDepthNode); - + //Intersect heightDepthNode's pred with CurrentSet - for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), + for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), E = highestDepthNode->pred_end(); P != E; ++P) { if(CurrentSet->count(*P)) { if(ignoreEdge(*P, highestDepthNode)) continue; - + //If not already in Intersect, add if(!IntersectCurrent.count(*P)) IntersectCurrent.insert(*P); } } - + } //End while loop over Intersect Size //Change order @@ -1632,9 +1632,9 @@ void ModuloSchedulingPass::orderNodes() { DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); } //End Wrapping while loop - DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); + DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); }//End for over all sets of nodes - + //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no //data dependencies) to the final order. We add this manually. It will always be //in the last set of S since its not part of a recurrence @@ -1654,7 +1654,7 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) { TIME_REGION(X, "computeSchedule"); bool success = false; - + //FIXME: Should be set to max II of the original loop //Cap II in order to prevent infinite loop int capII = 100; @@ -1665,9 +1665,9 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) { std::vector branches; //Loop over the final node order and process each node - for(std::vector::iterator I = FinalNodeOrder.begin(), + for(std::vector::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { - + //CalculateEarly and Late start int EarlyStart = -1; int LateStart = 99999; //Set to something higher then we would ever expect (FIXME) @@ -1686,12 +1686,12 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) { if(sched) { //Loop over nodes in the schedule and determine if they are predecessors //or successors of the node we are trying to schedule - for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); + for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { - + //For this cycle, get the vector of nodes schedule and loop over it for(std::vector::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { - + if((*I)->isPredecessor(*schedNode)) { int diff = (*I)->getInEdge(*schedNode).getIteDiff(); int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; @@ -1741,11 +1741,11 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) { count--; } - + //Check if the node has no pred or successors and set Early Start to its ASAP if(!hasSucc && !hasPred) EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; - + DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); @@ -1766,14 +1766,14 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) { } else success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); - + if(!success) { ++IncreasedII; - ++II; + ++II; schedule.clear(); break; } - + } if(success) { @@ -1787,19 +1787,19 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) { } DEBUG(std::cerr << "Final II: " << II << "\n"); } - + if(II >= capII) { DEBUG(std::cerr << "Maximum II reached, giving up\n"); return false; } assert(II < capII && "The II should not exceed the original loop number of cycles"); - } + } return true; } -bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, +bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, int start, int end) { bool success = false; @@ -1808,7 +1808,7 @@ bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, //Make sure start and end are not negative //if(start < 0) { //start = 0; - + //} //if(end < 0) //end = 0; @@ -1822,12 +1822,12 @@ bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, while(increaseSC) { - + increaseSC = false; increaseSC = schedule.insert(node, cycle); - - if(!increaseSC) + + if(!increaseSC) return true; //Increment cycle to try again @@ -1866,7 +1866,7 @@ void ModuloSchedulingPass::writePrologues(std::vector &prol for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { maxStageCount = std::max(maxStageCount, I->second); - + //Put int the map so we know what instructions in each stage are in the kernel DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n"); inKernel[I->second].insert(I->first); @@ -1879,7 +1879,7 @@ void ModuloSchedulingPass::writePrologues(std::vector &prol for(int i = 0; i < maxStageCount; ++i) { BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent())); MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); - + DEBUG(std::cerr << "i=" << i << "\n"); for(int j = i; j >= 0; --j) { for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { @@ -1890,14 +1890,14 @@ void ModuloSchedulingPass::writePrologues(std::vector &prol //If its a branch, insert a nop if(mii->isBranch(instClone->getOpcode())) BuildMI(machineBB, V9::NOP, 0); - - + + DEBUG(std::cerr << "Cloning: " << *MI << "\n"); //After cloning, we may need to save the value that this instruction defines for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { Instruction *tmp; - + //get machine operand MachineOperand &mOp = instClone->getOperand(opNum); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { @@ -1924,7 +1924,7 @@ void ModuloSchedulingPass::writePrologues(std::vector &prol saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else + else saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); @@ -1961,7 +1961,7 @@ void ModuloSchedulingPass::writePrologues(std::vector &prol /*for(std::vector::iterator BR = branches.begin(), BE = branches.end(); BR != BE; ++BR) { - + //Stick in branch at the end machineBB->push_back((*BR)->getInst()->clone()); @@ -1970,18 +1970,18 @@ void ModuloSchedulingPass::writePrologues(std::vector &prol }*/ - (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); + (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); prologues.push_back(machineBB); llvm_prologues.push_back(llvmBB); } } void ModuloSchedulingPass::writeEpilogues(std::vector &epilogues, const MachineBasicBlock *origBB, std::vector &llvm_epilogues, std::map > &valuesToSave, std::map > &newValues,std::map &newValLocation, std::map > &kernelPHIs ) { - + std::map > inKernel; - + for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - + //Ignore the branch, we will handle this separately //if(I->first->isBranch()) //continue; @@ -2010,7 +2010,7 @@ void ModuloSchedulingPass::writeEpilogues(std::vector &epil for(int i = schedule.getMaxStage()-1; i >= 0; --i) { BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent())); MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); - + DEBUG(std::cerr << " Epilogue #: " << i << "\n"); @@ -2021,26 +2021,26 @@ void ModuloSchedulingPass::writeEpilogues(std::vector &epil if(inKernel[j].count(&*MI)) { DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); MachineInstr *clone = MI->clone(); - + //Update operands that need to use the result from the phi for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { //get machine operand const MachineOperand &mOp = clone->getOperand(opNum); - + if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { - + DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); - + //If this is the last instructions for the max iterations ago, don't update operands if(inEpilogue.count(mOp.getVRegValue())) if(inEpilogue[mOp.getVRegValue()] == i) continue; - + //Quickly write appropriate phis for this operand if(newValues.count(mOp.getVRegValue())) { if(newValues[mOp.getVRegValue()].count(i)) { Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); - + //Get machine code for this instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) tmp); @@ -2053,10 +2053,10 @@ void ModuloSchedulingPass::writeEpilogues(std::vector &epil valPHIs[mOp.getVRegValue()] = tmp; } } - + if(valPHIs.count(mOp.getVRegValue())) { //Update the operand in the cloned instruction - clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); + clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); } } else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { @@ -2071,14 +2071,14 @@ void ModuloSchedulingPass::writeEpilogues(std::vector &epil (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); epilogues.push_back(machineBB); llvm_epilogues.push_back(llvmBB); - + DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); DEBUG(machineBB->print(std::cerr)); } } void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map > &valuesToSave, std::map > &newValues, std::map &newValLocation, std::map > &kernelPHIs) { - + //Keep track of operands that are read and saved from a previous iteration. The new clone //instruction will use the result of the phi instead. std::map finalPHIValue; @@ -2089,7 +2089,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma //Get target information to look at machine operands const TargetInstrInfo *mii = target.getInstrInfo(); - + //Create TmpInstructions for the final phis for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { @@ -2102,7 +2102,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma branches.push_back(instClone); continue; }*/ - + //Clone instruction const MachineInstr *inst = I->first; MachineInstr *instClone = inst->clone(); @@ -2119,7 +2119,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma for(unsigned i=0; i < inst->getNumOperands(); ++i) { //get machine operand const MachineOperand &mOp = inst->getOperand(i); - + if(I->second != 0) { if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { @@ -2134,21 +2134,21 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma //Check if we already have a final PHI value for this if(!finalPHIValue.count(mOp.getVRegValue())) { TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - + //Get machine code for this instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) tmp); - + //Update the operand in the cloned instruction instClone->getOperand(i).setValueReg(tmp); - + //save this as our final phi finalPHIValue[mOp.getVRegValue()] = tmp; newValLocation[tmp] = machineBB; } else { //Use the previous final phi value - instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); + instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); } } } @@ -2156,9 +2156,9 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma if(I->second != schedule.getMaxStage()) { if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { if(valuesToSave.count(mOp.getVRegValue())) { - + TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - + //Get machine code for this instruction MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); tempVec.addTemp((Value*) tmp); @@ -2169,10 +2169,10 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else + else saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - + + //Save for future cleanup kernelValue[mOp.getVRegValue()] = tmp; newValLocation[tmp] = machineBB; @@ -2181,7 +2181,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma } } } - + } //Add branches @@ -2196,14 +2196,14 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma //Loop over each value we need to generate phis for - for(std::map >::iterator V = newValues.begin(), + for(std::map >::iterator V = newValues.begin(), E = newValues.end(); V != E; ++V) { DEBUG(std::cerr << "Writing phi for" << *(V->first)); DEBUG(std::cerr << "\nMap of Value* for this phi\n"); - DEBUG(for(std::map::iterator I = V->second.begin(), - IE = V->second.end(); I != IE; ++I) { + DEBUG(for(std::map::iterator I = V->second.begin(), + IE = V->second.end(); I != IE; ++I) { std::cerr << "Stage: " << I->first; std::cerr << " Value: " << *(I->second) << "\n"; }); @@ -2211,7 +2211,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma //If we only have one current iteration live, its safe to set lastPhi = to kernel value if(V->second.size() == 1) { assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi"); - MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n"); kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first]; DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n"); @@ -2220,10 +2220,10 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma //Keep track of last phi created. Instruction *lastPhi = 0; - + unsigned count = 1; //Loop over the the map backwards to generate phis - for(std::map::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); + for(std::map::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); I != IE; ++I) { if(count < (V->second).size()) { @@ -2244,7 +2244,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma //Get machine code for this instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) tmp); - + MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); @@ -2266,7 +2266,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma } } - } + } DEBUG(std::cerr << "KERNEL after PHIs\n"); DEBUG(machineBB->print(std::cerr)); @@ -2280,7 +2280,7 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect //Worklist of TmpInstructions that need to be added to a MCFI std::vector addToMCFI; - + //Worklist to add OR instructions to end of kernel so not to invalidate the iterator //std::vector > newORs; @@ -2288,11 +2288,11 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect //Start with the kernel and for each phi insert a copy for the phi def and for each arg for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) { - + DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); //Get op code and check if its a phi if(I->getOpcode() == V9::PHI) { - + DEBUG(std::cerr << "Replacing PHI: " << *I << "\n"); Instruction *tmp = 0; @@ -2322,12 +2322,12 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else + else BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - + break; } - + } } @@ -2339,18 +2339,18 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect BuildMI(*kernelBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); else if(tmp->getType() == Type::DoubleTy) BuildMI(*kernelBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else + else BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); - - + + worklist.push_back(std::make_pair(kernelBB, I)); } } - + } - + } //Add TmpInstructions to some MCFI @@ -2366,7 +2366,7 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect //Remove phis from epilogue for(std::vector::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) { for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) { - + DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); //Get op code and check if its a phi if(I->getOpcode() == V9::PHI) { @@ -2376,12 +2376,12 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect //Get Operand const MachineOperand &mOp = I->getOperand(i); assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); - + if(!tmp) { tmp = new TmpInstruction(mOp.getVRegValue()); addToMCFI.push_back(tmp); } - + //Now for all our arguments we read, OR to the new TmpInstruction that we created if(mOp.isUse()) { DEBUG(std::cerr << "Use: " << mOp << "\n"); @@ -2398,15 +2398,15 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else + else BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); break; } - + } - + } else { //Remove the phi and replace it with an OR @@ -2415,16 +2415,16 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect BuildMI(**MB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); else if(tmp->getType() == Type::DoubleTy) BuildMI(**MB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else + else BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); worklist.push_back(std::make_pair(*MB,I)); } - + } } - + } } @@ -2439,10 +2439,10 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect //Delete the phis for(std::vector >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { - + DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n"); I->first->erase(I->second); - + } @@ -2489,7 +2489,7 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { //make sure its def is not of the same stage as this instruction //because it will be consumed before its used Instruction *defInst = (Instruction*) srcI; - + //Should we save this value? bool save = true; @@ -2498,7 +2498,7 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { continue; MachineInstr *defInstr = defMap[srcI]; - + if(lastInstrs.count(defInstr)) { if(lastInstrs[defInstr] == I->second) { @@ -2506,10 +2506,10 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { } } - + if(save) valuesToSave[srcI] = std::make_pair(I->first, i); - } + } } if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { @@ -2523,7 +2523,7 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { //Map to keep track of old to new values std::map > newValues; - + //Map to keep track of old to new values in kernel std::map > kernelPHIs; @@ -2538,9 +2538,9 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { //Write prologue if(schedule.getMaxStage() != 0) writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation); - + //Print out epilogues and prologue - DEBUG(for(std::vector::iterator I = prologues.begin(), E = prologues.end(); + DEBUG(for(std::vector::iterator I = prologues.begin(), E = prologues.end(); I != E; ++I) { std::cerr << "PROLOGUE\n"; (*I)->print(std::cerr); @@ -2550,8 +2550,8 @@ void ModuloS