aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDan Gohman <gohman@apple.com>2009-11-23 17:16:22 +0000
committerDan Gohman <gohman@apple.com>2009-11-23 17:16:22 +0000
commit6277eb2bb997a5da0808a8a5a57f18fd9faaf336 (patch)
tree051ad9a97f2a200b7d5bf765b854f8255de70f88
parentb27db37ed05a846bd2e0fcdaf592e5bb1a573f8b (diff)
Move the FunctionLoweringInfo class and some related utility functions out
of SelectionDAGBuild.h/cpp into its own files, to help separate general lowering logic from SelectionDAG-specific lowering logic. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89667 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp278
-rw-r--r--lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h137
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp224
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGBuild.h87
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp3
5 files changed, 419 insertions, 310 deletions
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
new file mode 100644
index 0000000000..964b71f0c7
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
@@ -0,0 +1,278 @@
+//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating functions from LLVM IR into
+// Machine IR.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "function-lowering-info"
+#include "FunctionLoweringInfo.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace llvm;
+
+/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
+/// of insertvalue or extractvalue indices that identify a member, return
+/// the linearized index of the start of the member.
+///
+unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
+ const unsigned *Indices,
+ const unsigned *IndicesEnd,
+ unsigned CurIndex) {
+ // Base case: We're done.
+ if (Indices && Indices == IndicesEnd)
+ return CurIndex;
+
+ // Given a struct type, recursively traverse the elements.
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (StructType::element_iterator EB = STy->element_begin(),
+ EI = EB,
+ EE = STy->element_end();
+ EI != EE; ++EI) {
+ if (Indices && *Indices == unsigned(EI - EB))
+ return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
+ CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
+ }
+ return CurIndex;
+ }
+ // Given an array type, recursively traverse the elements.
+ else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ const Type *EltTy = ATy->getElementType();
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
+ if (Indices && *Indices == i)
+ return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
+ CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
+ }
+ return CurIndex;
+ }
+ // We haven't found the type we're looking for, so keep searching.
+ return CurIndex + 1;
+}
+
+/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
+/// EVTs that represent all the individual underlying
+/// non-aggregate types that comprise it.
+///
+/// If Offsets is non-null, it points to a vector to be filled in
+/// with the in-memory offsets of each of the individual values.
+///
+void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
+ SmallVectorImpl<EVT> &ValueVTs,
+ SmallVectorImpl<uint64_t> *Offsets,
+ uint64_t StartingOffset) {
+ // Given a struct type, recursively traverse the elements.
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
+ for (StructType::element_iterator EB = STy->element_begin(),
+ EI = EB,
+ EE = STy->element_end();
+ EI != EE; ++EI)
+ ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
+ StartingOffset + SL->getElementOffset(EI - EB));
+ return;
+ }
+ // Given an array type, recursively traverse the elements.
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ const Type *EltTy = ATy->getElementType();
+ uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+ ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
+ StartingOffset + i * EltSize);
+ return;
+ }
+ // Interpret void as zero return values.
+ if (Ty == Type::getVoidTy(Ty->getContext()))
+ return;
+ // Base case: we can get an EVT for this LLVM IR type.
+ ValueVTs.push_back(TLI.getValueType(Ty));
+ if (Offsets)
+ Offsets->push_back(StartingOffset);
+}
+
+/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
+/// PHI nodes or outside of the basic block that defines it, or used by a
+/// switch or atomic instruction, which may expand to multiple basic blocks.
+static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
+ if (isa<PHINode>(I)) return true;
+ BasicBlock *BB = I->getParent();
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
+ if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
+ return true;
+ return false;
+}
+
+/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
+/// entry block, return true. This includes arguments used by switches, since
+/// the switch may expand into multiple basic blocks.
+static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
+ // With FastISel active, we may be splitting blocks, so force creation
+ // of virtual registers for all non-dead arguments.
+ // Don't force virtual registers for byval arguments though, because
+ // fast-isel can't handle those in all cases.
+ if (EnableFastISel && !A->hasByValAttr())
+ return A->use_empty();
+
+ BasicBlock *Entry = A->getParent()->begin();
+ for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
+ if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
+ return false; // Use not in entry block.
+ return true;
+}
+
+FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
+ : TLI(tli) {
+}
+
+void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
+ bool EnableFastISel) {
+ Fn = &fn;
+ MF = &mf;
+ RegInfo = &MF->getRegInfo();
+
+ // Create a vreg for each argument register that is not dead and is used
+ // outside of the entry block for the function.
+ for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
+ AI != E; ++AI)
+ if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
+ InitializeRegForValue(AI);
+
+ // Initialize the mapping of values to registers. This is only set up for
+ // instruction values that are used outside of the block that defines
+ // them.
+ Function::iterator BB = Fn->begin(), EB = Fn->end();
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
+ const Type *Ty = AI->getAllocatedType();
+ uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+ unsigned Align =
+ std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+ AI->getAlignment());
+
+ TySize *= CUI->getZExtValue(); // Get total allocated size.
+ if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
+ StaticAllocaMap[AI] =
+ MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
+ }
+
+ for (; BB != EB; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
+ if (!isa<AllocaInst>(I) ||
+ !StaticAllocaMap.count(cast<AllocaInst>(I)))
+ InitializeRegForValue(I);
+
+ // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
+ // also creates the initial PHI MachineInstrs, though none of the input
+ // operands are populated.
+ for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
+ MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
+ MBBMap[BB] = MBB;
+ MF->push_back(MBB);
+
+ // Transfer the address-taken flag. This is necessary because there could
+ // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
+ // the first one should be marked.
+ if (BB->hasAddressTaken())
+ MBB->setHasAddressTaken();
+
+ // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
+ // appropriate.
+ PHINode *PN;
+ DebugLoc DL;
+ for (BasicBlock::iterator
+ I = BB->begin(), E = BB->end(); I != E; ++I) {
+
+ PN = dyn_cast<PHINode>(I);
+ if (!PN || PN->use_empty()) continue;
+
+ unsigned PHIReg = ValueMap[PN];
+ assert(PHIReg && "PHI node does not have an assigned virtual register!");
+
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, PN->getType(), ValueVTs);
+ for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
+ EVT VT = ValueVTs[vti];
+ unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ for (unsigned i = 0; i != NumRegisters; ++i)
+ BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
+ PHIReg += NumRegisters;
+ }
+ }
+ }
+}
+
+/// clear - Clear out all the function-specific state. This returns this
+/// FunctionLoweringInfo to an empty state, ready to be used for a
+/// different function.
+void FunctionLoweringInfo::clear() {
+ MBBMap.clear();
+ ValueMap.clear();
+ StaticAllocaMap.clear();
+#ifndef NDEBUG
+ CatchInfoLost.clear();
+ CatchInfoFound.clear();
+#endif
+ LiveOutRegInfo.clear();
+}
+
+unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
+ return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
+}
+
+/// CreateRegForValue - Allocate the appropriate number of virtual registers of
+/// the correctly promoted or expanded types. Assign these registers
+/// consecutive vreg numbers and return the first assigned number.
+///
+/// In the case that the given value has struct or array type, this function
+/// will assign registers for each member or element.
+///
+unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, V->getType(), ValueVTs);
+
+ unsigned FirstReg = 0;
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT ValueVT = ValueVTs[Value];
+ EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
+
+ unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ unsigned R = MakeReg(RegisterVT);
+ if (!FirstReg) FirstReg = R;
+ }
+ }
+ return FirstReg;
+}
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h
new file mode 100644
index 0000000000..09fc23f6ba
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.h
@@ -0,0 +1,137 @@
+//===-- FunctionLoweringInfo.h - Lower functions from LLVM IR to CodeGen --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating functions from LLVM IR into
+// Machine IR.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef FUNCTIONLOWERINGINFO_H
+#define FUNCTIONLOWERINGINFO_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#ifndef NDEBUG
+#include "llvm/ADT/SmallSet.h"
+#endif
+#include "llvm/CodeGen/ValueTypes.h"
+#include <vector>
+
+namespace llvm {
+
+class AllocaInst;
+class BasicBlock;
+class Function;
+class Instruction;
+class MachineBasicBlock;
+class MachineFunction;
+class MachineRegisterInfo;
+class TargetLowering;
+class Value;
+
+//===--------------------------------------------------------------------===//
+/// FunctionLoweringInfo - This contains information that is global to a
+/// function that is used when lowering a region of the function.
+///
+class FunctionLoweringInfo {
+public:
+ TargetLowering &TLI;
+ Function *Fn;
+ MachineFunction *MF;
+ MachineRegisterInfo *RegInfo;
+
+ /// CanLowerReturn - true iff the function's return value can be lowered to
+ /// registers.
+ bool CanLowerReturn;
+
+ /// DemoteRegister - if CanLowerReturn is false, DemoteRegister is a vreg
+ /// allocated to hold a pointer to the hidden sret parameter.
+ unsigned DemoteRegister;
+
+ explicit FunctionLoweringInfo(TargetLowering &TLI);
+
+ /// set - Initialize this FunctionLoweringInfo with the given Function
+ /// and its associated MachineFunction.
+ ///
+ void set(Function &Fn, MachineFunction &MF, bool EnableFastISel);
+
+ /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
+ DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;
+
+ /// ValueMap - Since we emit code for the function a basic block at a time,
+ /// we must remember which virtual registers hold the values for
+ /// cross-basic-block values.
+ DenseMap<const Value*, unsigned> ValueMap;
+
+ /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
+ /// the entry block. This allows the allocas to be efficiently referenced
+ /// anywhere in the function.
+ DenseMap<const AllocaInst*, int> StaticAllocaMap;
+
+#ifndef NDEBUG
+ SmallSet<Instruction*, 8> CatchInfoLost;
+ SmallSet<Instruction*, 8> CatchInfoFound;
+#endif
+
+ unsigned MakeReg(EVT VT);
+
+ /// isExportedInst - Return true if the specified value is an instruction
+ /// exported from its block.
+ bool isExportedInst(const Value *V) {
+ return ValueMap.count(V);
+ }
+
+ unsigned CreateRegForValue(const Value *V);
+
+ unsigned InitializeRegForValue(const Value *V) {
+ unsigned &R = ValueMap[V];
+ assert(R == 0 && "Already initialized this value register!");
+ return R = CreateRegForValue(V);
+ }
+
+ struct LiveOutInfo {
+ unsigned NumSignBits;
+ APInt KnownOne, KnownZero;
+ LiveOutInfo() : NumSignBits(0), KnownOne(1, 0), KnownZero(1, 0) {}
+ };
+
+ /// LiveOutRegInfo - Information about live out vregs, indexed by their
+ /// register number offset by 'FirstVirtualRegister'.
+ std::vector<LiveOutInfo> LiveOutRegInfo;
+
+ /// clear - Clear out all the function-specific state. This returns this
+ /// FunctionLoweringInfo to an empty state, ready to be used for a
+ /// different function.
+ void clear();
+};
+
+/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
+/// of insertvalue or extractvalue indices that identify a member, return
+/// the linearized index of the start of the member.
+///
+unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
+ const unsigned *Indices,
+ const unsigned *IndicesEnd,
+ unsigned CurIndex = 0);
+
+/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
+/// EVTs that represent all the individual underlying
+/// non-aggregate types that comprise it.
+///
+/// If Offsets is non-null, it points to a vector to be filled in
+/// with the in-memory offsets of each of the individual values.
+///
+void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
+ SmallVectorImpl<EVT> &ValueVTs,
+ SmallVectorImpl<uint64_t> *Offsets = 0,
+ uint64_t StartingOffset = 0);
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
index f953a74d9d..238a0366ec 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
@@ -13,11 +13,11 @@
#define DEBUG_TYPE "isel"
#include "SelectionDAGBuild.h"
+#include "FunctionLoweringInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Constants.h"
-#include "llvm/Constants.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
@@ -68,84 +68,6 @@ LimitFPPrecision("limit-float-precision",
cl::location(LimitFloatPrecision),
cl::init(0));
-/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
-/// of insertvalue or extractvalue indices that identify a member, return
-/// the linearized index of the start of the member.
-///
-static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex = 0) {
- // Base case: We're done.
- if (Indices && Indices == IndicesEnd)
- return CurIndex;
-
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI) {
- if (Indices && *Indices == unsigned(EI - EB))
- return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // Given an array type, recursively traverse the elements.
- else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
- if (Indices && *Indices == i)
- return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // We haven't found the type we're looking for, so keep searching.
- return CurIndex + 1;
-}
-
-/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
-/// EVTs that represent all the individual underlying
-/// non-aggregate types that comprise it.
-///
-/// If Offsets is non-null, it points to a vector to be filled in
-/// with the in-memory offsets of each of the individual values.
-///
-static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
- SmallVectorImpl<EVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets = 0,
- uint64_t StartingOffset = 0) {
- // Given a struct type, recursively traverse the elements.
- if (const StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI)
- ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
- StartingOffset + SL->getElementOffset(EI - EB));
- return;
- }
- // Given an array type, recursively traverse the elements.
- if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- const Type *EltTy = ATy->getElementType();
- uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
- StartingOffset + i * EltSize);
- return;
- }
- // Interpret void as zero return values.
- if (Ty == Type::getVoidTy(Ty->getContext()))
- return;
- // Base case: we can get an EVT for this LLVM IR type.
- ValueVTs.push_back(TLI.getValueType(Ty));
- if (Offsets)
- Offsets->push_back(StartingOffset);
-}
-
namespace llvm {
/// RegsForValue - This struct represents the registers (physical or virtual)
/// that a particular set of values is assigned, and the type information about
@@ -241,150 +163,6 @@ namespace llvm {
};
}
-/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
-/// PHI nodes or outside of the basic block that defines it, or used by a
-/// switch or atomic instruction, which may expand to multiple basic blocks.
-static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
- if (isa<PHINode>(I)) return true;
- BasicBlock *BB = I->getParent();
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
- return true;
- return false;
-}
-
-/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
-/// entry block, return true. This includes arguments used by switches, since
-/// the switch may expand into multiple basic blocks.
-static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
- // With FastISel active, we may be splitting blocks, so force creation
- // of virtual registers for all non-dead arguments.
- // Don't force virtual registers for byval arguments though, because
- // fast-isel can't handle those in all cases.
- if (EnableFastISel && !A->hasByValAttr())
- return A->use_empty();
-
- BasicBlock *Entry = A->getParent()->begin();
- for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
- if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
- return false; // Use not in entry block.
- return true;
-}
-
-FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
- : TLI(tli) {
-}
-
-void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
- SelectionDAG &DAG,
- bool EnableFastISel) {
- Fn = &fn;
- MF = &mf;
- RegInfo = &MF->getRegInfo();
-
- // Create a vreg for each argument register that is not dead and is used
- // outside of the entry block for the function.
- for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
- AI != E; ++AI)
- if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
- InitializeRegForValue(AI);
-
- // Initialize the mapping of values to registers. This is only set up for
- // instruction values that are used outside of the block that defines
- // them.
- Function::iterator BB = Fn->begin(), EB = Fn->end();
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
- if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
- const Type *Ty = AI->getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
- AI->getAlignment());
-
- TySize *= CUI->getZExtValue(); // Get total allocated size.
- if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
- StaticAllocaMap[AI] =
- MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
- }
-
- for (; BB != EB; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
- if (!isa<AllocaInst>(I) ||
- !StaticAllocaMap.count(cast<AllocaInst>(I)))
- InitializeRegForValue(I);
-
- // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
- // also creates the initial PHI MachineInstrs, though none of the input
- // operands are populated.
- for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
- MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
- MBBMap[BB] = MBB;
- MF->push_back(MBB);
-
- // Transfer the address-taken flag. This is necessary because there could
- // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
- // the first one should be marked.
- if (BB->hasAddressTaken())
- MBB->setHasAddressTaken();
-
- // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
- // appropriate.
- PHINode *PN;
- DebugLoc DL;
- for (BasicBlock::iterator
- I = BB->begin(), E = BB->end(); I != E; ++I) {
-
- PN = dyn_cast<PHINode>(I);
- if (!PN || PN->use_empty()) continue;
-
- unsigned PHIReg = ValueMap[PN];
- assert(PHIReg && "PHI node does not have an assigned virtual register!");
-
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
- const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
- for (unsigned i = 0; i != NumRegisters; ++i)
- BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
- PHIReg += NumRegisters;
- }
- }
- }
-}
-
-unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
- return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
-}
-
-/// CreateRegForValue - Allocate the appropriate number of virtual registers of
-/// the correctly promoted or expanded types. Assign these registers
-/// consecutive vreg numbers and return the first assigned number.
-///
-/// In the case that the given value has struct or array type, this function
-/// will assign registers for each member or element.
-///
-unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, V->getType(), ValueVTs);
-
- unsigned FirstReg = 0;
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
-
- unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- unsigned R = MakeReg(RegisterVT);
- if (!FirstReg) FirstReg = R;
- }
- }
- return FirstReg;
-}
-
/// getCopyFromParts - Create a value that contains the specified legal parts
/// combined into the value they represent. If the parts combine to a type
/// larger then ValueVT then AssertOp can be used to specify whether the extra
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
index 10f256c153..8f9c7444b5 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.h
@@ -45,6 +45,7 @@ class FPToSIInst;
class FPToUIInst;
class FPTruncInst;
class Function;
+class FunctionLoweringInfo;
class GetElementPtrInst;
class GCFunctionInfo;
class ICmpInst;
@@ -79,92 +80,6 @@ class UnwindInst;
class VAArgInst;
class ZExtInst;
-//===--------------------------------------------------------------------===//
-/// FunctionLoweringInfo - This contains information that is global to a
-/// function that is used when lowering a region of the function.
-///
-class FunctionLoweringInfo {
-public:
- TargetLowering &TLI;
- Function *Fn;
- MachineFunction *MF;
- MachineRegisterInfo *RegInfo;
-
- /// CanLowerReturn - true iff the function's return value can be lowered to
- /// registers.
- bool CanLowerReturn;
-
- /// DemoteRegister - if CanLowerReturn is false, DemoteRegister is a vreg
- /// allocated to hold a pointer to the hidden sret parameter.
- unsigned DemoteRegister;
-
- explicit FunctionLoweringInfo(TargetLowering &TLI);
-
- /// set - Initialize this FunctionLoweringInfo with the given Function
- /// and its associated MachineFunction.
- ///
- void set(Function &Fn, MachineFunction &MF, SelectionDAG &DAG,
- bool EnableFastISel);
-
- /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
- DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;
-
- /// ValueMap - Since we emit code for the function a basic block at a time,
- /// we must remember which virtual registers hold the values for
- /// cross-basic-block values.
- DenseMap<const Value*, unsigned> ValueMap;
-
- /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
- /// the entry block. This allows the allocas to be efficiently referenced
- /// anywhere in the function.
- DenseMap<const AllocaInst*, int> StaticAllocaMap;
-
-#ifndef NDEBUG
- SmallSet<Instruction*, 8> CatchInfoLost;
- SmallSet<Instruction*, 8> CatchInfoFound;
-#endif
-
- unsigned MakeReg(EVT VT);
-
- /// isExportedInst - Return true if the specified value is an instruction
- /// exported from its block.
- bool isExportedInst(const Value *V) {
- return ValueMap.count(V);
- }
-
- unsigned CreateRegForValue(const Value *V);
-
- unsigned InitializeRegForValue(const Value *V) {
- unsigned &R = ValueMap[V];
- assert(R == 0 && "Already initialized this value register!");
- return R = CreateRegForValue(V);
- }
-
- struct LiveOutInfo {
- unsigned NumSignBits;
- APInt KnownOne, KnownZero;
- LiveOutInfo() : NumSignBits(0), KnownOne(1, 0), KnownZero(1, 0) {}
- };
-
- /// LiveOutRegInfo - Information about live out vregs, indexed by their
- /// register number offset by 'FirstVirtualRegister'.
- std::vector<LiveOutInfo> LiveOutRegInfo;
-
- /// clear - Clear out all the function-specific state. This returns this
- /// FunctionLoweringInfo to an empty state, ready to be used for a
- /// different function.
- void clear() {
- MBBMap.clear();
- ValueMap.clear();
- StaticAllocaMap.clear();
-#ifndef NDEBUG
- CatchInfoLost.clear();
- CatchInfoFound.clear();
-#endif
- LiveOutRegInfo.clear();
- }
-};
-
//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index 3a54a9ccd9..70bbb112c4 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -14,6 +14,7 @@
#define DEBUG_TYPE "isel"
#include "ScheduleDAGSDNodes.h"
#include "SelectionDAGBuild.h"
+#include "FunctionLoweringInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DebugInfo.h"
@@ -331,7 +332,7 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
CurDAG->init(*MF, MMI, DW);
- FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
+ FuncInfo->set(Fn, *MF, EnableFastISel);
SDL->init(GFI, *AA);
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)