diff options
Diffstat (limited to 'lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp | 224 |
1 files changed, 1 insertions, 223 deletions
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp index f953a74d9d..238a0366ec 100644 --- a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp +++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp @@ -13,11 +13,11 @@ #define DEBUG_TYPE "isel" #include "SelectionDAGBuild.h" +#include "FunctionLoweringInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Constants.h" -#include "llvm/Constants.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" @@ -68,84 +68,6 @@ LimitFPPrecision("limit-float-precision", cl::location(LimitFloatPrecision), cl::init(0)); -/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence -/// of insertvalue or extractvalue indices that identify a member, return -/// the linearized index of the start of the member. -/// -static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, - const unsigned *Indices, - const unsigned *IndicesEnd, - unsigned CurIndex = 0) { - // Base case: We're done. - if (Indices && Indices == IndicesEnd) - return CurIndex; - - // Given a struct type, recursively traverse the elements. - if (const StructType *STy = dyn_cast<StructType>(Ty)) { - for (StructType::element_iterator EB = STy->element_begin(), - EI = EB, - EE = STy->element_end(); - EI != EE; ++EI) { - if (Indices && *Indices == unsigned(EI - EB)) - return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); - CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); - } - return CurIndex; - } - // Given an array type, recursively traverse the elements. - else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - const Type *EltTy = ATy->getElementType(); - for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { - if (Indices && *Indices == i) - return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); - CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); - } - return CurIndex; - } - // We haven't found the type we're looking for, so keep searching. - return CurIndex + 1; -} - -/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of -/// EVTs that represent all the individual underlying -/// non-aggregate types that comprise it. -/// -/// If Offsets is non-null, it points to a vector to be filled in -/// with the in-memory offsets of each of the individual values. -/// -static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, - SmallVectorImpl<EVT> &ValueVTs, - SmallVectorImpl<uint64_t> *Offsets = 0, - uint64_t StartingOffset = 0) { - // Given a struct type, recursively traverse the elements. - if (const StructType *STy = dyn_cast<StructType>(Ty)) { - const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); - for (StructType::element_iterator EB = STy->element_begin(), - EI = EB, - EE = STy->element_end(); - EI != EE; ++EI) - ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, - StartingOffset + SL->getElementOffset(EI - EB)); - return; - } - // Given an array type, recursively traverse the elements. - if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { - const Type *EltTy = ATy->getElementType(); - uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); - for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) - ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, - StartingOffset + i * EltSize); - return; - } - // Interpret void as zero return values. - if (Ty == Type::getVoidTy(Ty->getContext())) - return; - // Base case: we can get an EVT for this LLVM IR type. - ValueVTs.push_back(TLI.getValueType(Ty)); - if (Offsets) - Offsets->push_back(StartingOffset); -} - namespace llvm { /// RegsForValue - This struct represents the registers (physical or virtual) /// that a particular set of values is assigned, and the type information about @@ -241,150 +163,6 @@ namespace llvm { }; } -/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by -/// PHI nodes or outside of the basic block that defines it, or used by a -/// switch or atomic instruction, which may expand to multiple basic blocks. -static bool isUsedOutsideOfDefiningBlock(Instruction *I) { - if (isa<PHINode>(I)) return true; - BasicBlock *BB = I->getParent(); - for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) - if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) - return true; - return false; -} - -/// isOnlyUsedInEntryBlock - If the specified argument is only used in the -/// entry block, return true. This includes arguments used by switches, since -/// the switch may expand into multiple basic blocks. -static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) { - // With FastISel active, we may be splitting blocks, so force creation - // of virtual registers for all non-dead arguments. - // Don't force virtual registers for byval arguments though, because - // fast-isel can't handle those in all cases. - if (EnableFastISel && !A->hasByValAttr()) - return A->use_empty(); - - BasicBlock *Entry = A->getParent()->begin(); - for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI) - if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) - return false; // Use not in entry block. - return true; -} - -FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) - : TLI(tli) { -} - -void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf, - SelectionDAG &DAG, - bool EnableFastISel) { - Fn = &fn; - MF = &mf; - RegInfo = &MF->getRegInfo(); - - // Create a vreg for each argument register that is not dead and is used - // outside of the entry block for the function. - for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); - AI != E; ++AI) - if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) - InitializeRegForValue(AI); - - // Initialize the mapping of values to registers. This is only set up for - // instruction values that are used outside of the block that defines - // them. - Function::iterator BB = Fn->begin(), EB = Fn->end(); - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) - if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) - if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { - const Type *Ty = AI->getAllocatedType(); - uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); - unsigned Align = - std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), - AI->getAlignment()); - - TySize *= CUI->getZExtValue(); // Get total allocated size. - if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. - StaticAllocaMap[AI] = - MF->getFrameInfo()->CreateStackObject(TySize, Align, false); - } - - for (; BB != EB; ++BB) - for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) - if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) - if (!isa<AllocaInst>(I) || - !StaticAllocaMap.count(cast<AllocaInst>(I))) - InitializeRegForValue(I); - - // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This - // also creates the initial PHI MachineInstrs, though none of the input - // operands are populated. - for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) { - MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); - MBBMap[BB] = MBB; - MF->push_back(MBB); - - // Transfer the address-taken flag. This is necessary because there could - // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only - // the first one should be marked. - if (BB->hasAddressTaken()) - MBB->setHasAddressTaken(); - - // Create Machine PHI nodes for LLVM PHI nodes, lowering them as - // appropriate. - PHINode *PN; - DebugLoc DL; - for (BasicBlock::iterator - I = BB->begin(), E = BB->end(); I != E; ++I) { - - PN = dyn_cast<PHINode>(I); - if (!PN || PN->use_empty()) continue; - - unsigned PHIReg = ValueMap[PN]; - assert(PHIReg && "PHI node does not have an assigned virtual register!"); - - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(TLI, PN->getType(), ValueVTs); - for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { - EVT VT = ValueVTs[vti]; - unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); - const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); - for (unsigned i = 0; i != NumRegisters; ++i) - BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i); - PHIReg += NumRegisters; - } - } - } -} - -unsigned FunctionLoweringInfo::MakeReg(EVT VT) { - return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); -} - -/// CreateRegForValue - Allocate the appropriate number of virtual registers of -/// the correctly promoted or expanded types. Assign these registers -/// consecutive vreg numbers and return the first assigned number. -/// -/// In the case that the given value has struct or array type, this function -/// will assign registers for each member or element. -/// -unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { - SmallVector<EVT, 4> ValueVTs; - ComputeValueVTs(TLI, V->getType(), ValueVTs); - - unsigned FirstReg = 0; - for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { - EVT ValueVT = ValueVTs[Value]; - EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT); - - unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT); - for (unsigned i = 0; i != NumRegs; ++i) { - unsigned R = MakeReg(RegisterVT); - if (!FirstReg) FirstReg = R; - } - } - return FirstReg; -} - /// getCopyFromParts - Create a value that contains the specified legal parts /// combined into the value they represent. If the parts combine to a type /// larger then ValueVT then AssertOp can be used to specify whether the extra |