diff options
Diffstat (limited to 'drivers/mtd')
219 files changed, 24936 insertions, 20622 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index 27143e042af..94b821042d9 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig @@ -74,8 +74,8 @@ config MTD_REDBOOT_PARTS_READONLY endif # MTD_REDBOOT_PARTS config MTD_CMDLINE_PARTS - bool "Command line partition table parsing" - depends on MTD = "y" + tristate "Command line partition table parsing" + depends on MTD ---help--- Allow generic configuration of the MTD partition tables via the kernel command line. Multiple flash resources are supported for hardware where @@ -148,25 +148,20 @@ config MTD_BCM63XX_PARTS This provides partions parsing for BCM63xx devices with CFE bootloaders. -comment "User Modules And Translation Layers" - -config MTD_CHAR - tristate "Direct char device access to MTD devices" +config MTD_BCM47XX_PARTS + tristate "BCM47XX partitioning support" + depends on BCM47XX || ARCH_BCM_5301X help - This provides a character device for each MTD device present in - the system, allowing the user to read and write directly to the - memory chips, and also use ioctl() to obtain information about - the device, or to erase parts of it. + This provides partitions parser for devices based on BCM47xx + boards. -config HAVE_MTD_OTP - bool - help - Enable access to OTP regions using MTD_CHAR. +comment "User Modules And Translation Layers" +# +# MTD block device support is select'ed if needed +# config MTD_BLKDEVS - tristate "Common interface to block layer for MTD 'translation layers'" - depends on BLOCK - default n + tristate config MTD_BLOCK tristate "Caching block device access to MTD devices" @@ -284,7 +279,7 @@ config SSFDC config SM_FTL tristate "SmartMedia/xD new translation layer" - depends on EXPERIMENTAL && BLOCK + depends on BLOCK select MTD_BLKDEVS select MTD_NAND_ECC help @@ -326,6 +321,8 @@ source "drivers/mtd/onenand/Kconfig" source "drivers/mtd/lpddr/Kconfig" +source "drivers/mtd/spi-nor/Kconfig" + source "drivers/mtd/ubi/Kconfig" endif # MTD diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile index f90135429dc..99bb9a1f6e1 100644 --- a/drivers/mtd/Makefile +++ b/drivers/mtd/Makefile @@ -4,7 +4,7 @@ # Core functionality. obj-$(CONFIG_MTD) += mtd.o -mtd-y := mtdcore.o mtdsuper.o mtdconcat.o mtdpart.o +mtd-y := mtdcore.o mtdsuper.o mtdconcat.o mtdpart.o mtdchar.o obj-$(CONFIG_MTD_OF_PARTS) += ofpart.o obj-$(CONFIG_MTD_REDBOOT_PARTS) += redboot.o @@ -12,9 +12,9 @@ obj-$(CONFIG_MTD_CMDLINE_PARTS) += cmdlinepart.o obj-$(CONFIG_MTD_AFS_PARTS) += afs.o obj-$(CONFIG_MTD_AR7_PARTS) += ar7part.o obj-$(CONFIG_MTD_BCM63XX_PARTS) += bcm63xxpart.o +obj-$(CONFIG_MTD_BCM47XX_PARTS) += bcm47xxpart.o # 'Users' - code which presents functionality to userspace. -obj-$(CONFIG_MTD_CHAR) += mtdchar.o obj-$(CONFIG_MTD_BLKDEVS) += mtd_blkdevs.o obj-$(CONFIG_MTD_BLOCK) += mtdblock.o obj-$(CONFIG_MTD_BLOCK_RO) += mtdblock_ro.o @@ -32,4 +32,5 @@ inftl-objs := inftlcore.o inftlmount.o obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/ +obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/ obj-$(CONFIG_MTD_UBI) += ubi/ diff --git a/drivers/mtd/afs.c b/drivers/mtd/afs.c index 5a3942bf109..96a33e3f7b0 100644 --- a/drivers/mtd/afs.c +++ b/drivers/mtd/afs.c @@ -264,7 +264,8 @@ static struct mtd_part_parser afs_parser = { static int __init afs_parser_init(void) { - return register_mtd_parser(&afs_parser); + register_mtd_parser(&afs_parser); + return 0; } static void __exit afs_parser_exit(void) diff --git a/drivers/mtd/ar7part.c b/drivers/mtd/ar7part.c index 94539312995..7c9172ad262 100644 --- a/drivers/mtd/ar7part.c +++ b/drivers/mtd/ar7part.c @@ -26,19 +26,16 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/bootmem.h> -#include <linux/magic.h> #include <linux/module.h> +#include <uapi/linux/magic.h> + #define AR7_PARTS 4 #define ROOT_OFFSET 0xe0000 #define LOADER_MAGIC1 le32_to_cpu(0xfeedfa42) #define LOADER_MAGIC2 le32_to_cpu(0xfeed1281) -#ifndef SQUASHFS_MAGIC -#define SQUASHFS_MAGIC 0x73717368 -#endif - struct ar7_bin_rec { unsigned int checksum; unsigned int length; @@ -142,10 +139,17 @@ static struct mtd_part_parser ar7_parser = { static int __init ar7_parser_init(void) { - return register_mtd_parser(&ar7_parser); + register_mtd_parser(&ar7_parser); + return 0; +} + +static void __exit ar7_parser_exit(void) +{ + deregister_mtd_parser(&ar7_parser); } module_init(ar7_parser_init); +module_exit(ar7_parser_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR( "Felix Fietkau <nbd@openwrt.org>, " diff --git a/drivers/mtd/bcm47xxpart.c b/drivers/mtd/bcm47xxpart.c new file mode 100644 index 00000000000..adfa74c1bc4 --- /dev/null +++ b/drivers/mtd/bcm47xxpart.c @@ -0,0 +1,282 @@ +/* + * BCM47XX MTD partitioning + * + * Copyright © 2012 Rafał Miłecki <zajec5@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> + +/* 10 parts were found on sflash on Netgear WNDR4500 */ +#define BCM47XXPART_MAX_PARTS 12 + +/* + * Amount of bytes we read when analyzing each block of flash memory. + * Set it big enough to allow detecting partition and reading important data. + */ +#define BCM47XXPART_BYTES_TO_READ 0x4e8 + +/* Magics */ +#define BOARD_DATA_MAGIC 0x5246504D /* MPFR */ +#define BOARD_DATA_MAGIC2 0xBD0D0BBD +#define CFE_MAGIC 0x43464531 /* 1EFC */ +#define FACTORY_MAGIC 0x59544346 /* FCTY */ +#define NVRAM_HEADER 0x48534C46 /* FLSH */ +#define POT_MAGIC1 0x54544f50 /* POTT */ +#define POT_MAGIC2 0x504f /* OP */ +#define ML_MAGIC1 0x39685a42 +#define ML_MAGIC2 0x26594131 +#define TRX_MAGIC 0x30524448 +#define SQSH_MAGIC 0x71736873 /* shsq */ + +struct trx_header { + uint32_t magic; + uint32_t length; + uint32_t crc32; + uint16_t flags; + uint16_t version; + uint32_t offset[3]; +} __packed; + +static void bcm47xxpart_add_part(struct mtd_partition *part, char *name, + u64 offset, uint32_t mask_flags) +{ + part->name = name; + part->offset = offset; + part->mask_flags = mask_flags; +} + +static int bcm47xxpart_parse(struct mtd_info *master, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data) +{ + struct mtd_partition *parts; + uint8_t i, curr_part = 0; + uint32_t *buf; + size_t bytes_read; + uint32_t offset; + uint32_t blocksize = master->erasesize; + struct trx_header *trx; + int trx_part = -1; + int last_trx_part = -1; + int possible_nvram_sizes[] = { 0x8000, 0xF000, 0x10000, }; + + if (blocksize <= 0x10000) + blocksize = 0x10000; + + /* Alloc */ + parts = kzalloc(sizeof(struct mtd_partition) * BCM47XXPART_MAX_PARTS, + GFP_KERNEL); + if (!parts) + return -ENOMEM; + + buf = kzalloc(BCM47XXPART_BYTES_TO_READ, GFP_KERNEL); + if (!buf) { + kfree(parts); + return -ENOMEM; + } + + /* Parse block by block looking for magics */ + for (offset = 0; offset <= master->size - blocksize; + offset += blocksize) { + /* Nothing more in higher memory */ + if (offset >= 0x2000000) + break; + + if (curr_part >= BCM47XXPART_MAX_PARTS) { + pr_warn("Reached maximum number of partitions, scanning stopped!\n"); + break; + } + + /* Read beginning of the block */ + if (mtd_read(master, offset, BCM47XXPART_BYTES_TO_READ, + &bytes_read, (uint8_t *)buf) < 0) { + pr_err("mtd_read error while parsing (offset: 0x%X)!\n", + offset); + continue; + } + + /* Magic or small NVRAM at 0x400 */ + if ((buf[0x4e0 / 4] == CFE_MAGIC && buf[0x4e4 / 4] == CFE_MAGIC) || + (buf[0x400 / 4] == NVRAM_HEADER)) { + bcm47xxpart_add_part(&parts[curr_part++], "boot", + offset, MTD_WRITEABLE); + continue; + } + + /* + * board_data starts with board_id which differs across boards, + * but we can use 'MPFR' (hopefully) magic at 0x100 + */ + if (buf[0x100 / 4] == BOARD_DATA_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "board_data", + offset, MTD_WRITEABLE); + continue; + } + + /* Found on Huawei E970 */ + if (buf[0x000 / 4] == FACTORY_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "factory", + offset, MTD_WRITEABLE); + continue; + } + + /* POT(TOP) */ + if (buf[0x000 / 4] == POT_MAGIC1 && + (buf[0x004 / 4] & 0xFFFF) == POT_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "POT", offset, + MTD_WRITEABLE); + continue; + } + + /* ML */ + if (buf[0x010 / 4] == ML_MAGIC1 && + buf[0x014 / 4] == ML_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "ML", offset, + MTD_WRITEABLE); + continue; + } + + /* TRX */ + if (buf[0x000 / 4] == TRX_MAGIC) { + if (BCM47XXPART_MAX_PARTS - curr_part < 4) { + pr_warn("Not enough partitions left to register trx, scanning stopped!\n"); + break; + } + + trx = (struct trx_header *)buf; + + trx_part = curr_part; + bcm47xxpart_add_part(&parts[curr_part++], "firmware", + offset, 0); + + i = 0; + /* We have LZMA loader if offset[2] points to sth */ + if (trx->offset[2]) { + bcm47xxpart_add_part(&parts[curr_part++], + "loader", + offset + trx->offset[i], + 0); + i++; + } + + bcm47xxpart_add_part(&parts[curr_part++], "linux", + offset + trx->offset[i], 0); + i++; + + /* + * Pure rootfs size is known and can be calculated as: + * trx->length - trx->offset[i]. We don't fill it as + * we want to have jffs2 (overlay) in the same mtd. + */ + bcm47xxpart_add_part(&parts[curr_part++], "rootfs", + offset + trx->offset[i], 0); + i++; + + last_trx_part = curr_part - 1; + + /* + * We have whole TRX scanned, skip to the next part. Use + * roundown (not roundup), as the loop will increase + * offset in next step. + */ + offset = rounddown(offset + trx->length, blocksize); + continue; + } + + /* Squashfs on devices not using TRX */ + if (buf[0x000 / 4] == SQSH_MAGIC) { + bcm47xxpart_add_part(&parts[curr_part++], "rootfs", + offset, 0); + continue; + } + + /* Read middle of the block */ + if (mtd_read(master, offset + 0x8000, 0x4, + &bytes_read, (uint8_t *)buf) < 0) { + pr_err("mtd_read error while parsing (offset: 0x%X)!\n", + offset); + continue; + } + + /* Some devices (ex. WNDR3700v3) don't have a standard 'MPFR' */ + if (buf[0x000 / 4] == BOARD_DATA_MAGIC2) { + bcm47xxpart_add_part(&parts[curr_part++], "board_data", + offset, MTD_WRITEABLE); + continue; + } + } + + /* Look for NVRAM at the end of the last block. */ + for (i = 0; i < ARRAY_SIZE(possible_nvram_sizes); i++) { + if (curr_part >= BCM47XXPART_MAX_PARTS) { + pr_warn("Reached maximum number of partitions, scanning stopped!\n"); + break; + } + + offset = master->size - possible_nvram_sizes[i]; + if (mtd_read(master, offset, 0x4, &bytes_read, + (uint8_t *)buf) < 0) { + pr_err("mtd_read error while reading at offset 0x%X!\n", + offset); + continue; + } + + /* Standard NVRAM */ + if (buf[0] == NVRAM_HEADER) { + bcm47xxpart_add_part(&parts[curr_part++], "nvram", + master->size - blocksize, 0); + break; + } + } + + kfree(buf); + + /* + * Assume that partitions end at the beginning of the one they are + * followed by. + */ + for (i = 0; i < curr_part; i++) { + u64 next_part_offset = (i < curr_part - 1) ? + parts[i + 1].offset : master->size; + + parts[i].size = next_part_offset - parts[i].offset; + if (i == last_trx_part && trx_part >= 0) + parts[trx_part].size = next_part_offset - + parts[trx_part].offset; + } + + *pparts = parts; + return curr_part; +}; + +static struct mtd_part_parser bcm47xxpart_mtd_parser = { + .owner = THIS_MODULE, + .parse_fn = bcm47xxpart_parse, + .name = "bcm47xxpart", +}; + +static int __init bcm47xxpart_init(void) +{ + register_mtd_parser(&bcm47xxpart_mtd_parser); + return 0; +} + +static void __exit bcm47xxpart_exit(void) +{ + deregister_mtd_parser(&bcm47xxpart_mtd_parser); +} + +module_init(bcm47xxpart_init); +module_exit(bcm47xxpart_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("MTD partitioning for BCM47XX flash memories"); diff --git a/drivers/mtd/bcm63xxpart.c b/drivers/mtd/bcm63xxpart.c index 63d2a64331f..b2443f7031c 100644 --- a/drivers/mtd/bcm63xxpart.c +++ b/drivers/mtd/bcm63xxpart.c @@ -4,7 +4,7 @@ * Copyright © 2006-2008 Florian Fainelli <florian@openwrt.org> * Mike Albon <malbon@openwrt.org> * Copyright © 2009-2010 Daniel Dickinson <openwrt@cshore.neomailbox.net> - * Copyright © 2011-2012 Jonas Gorski <jonas.gorski@gmail.com> + * Copyright © 2011-2013 Jonas Gorski <jonas.gorski@gmail.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -27,18 +27,19 @@ #include <linux/crc32.h> #include <linux/module.h> #include <linux/kernel.h> +#include <linux/sizes.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> +#include <asm/mach-bcm63xx/bcm63xx_nvram.h> #include <asm/mach-bcm63xx/bcm963xx_tag.h> #include <asm/mach-bcm63xx/board_bcm963xx.h> #define BCM63XX_EXTENDED_SIZE 0xBFC00000 /* Extended flash address */ -#define BCM63XX_MIN_CFE_SIZE 0x10000 /* always at least 64KiB */ -#define BCM63XX_MIN_NVRAM_SIZE 0x10000 /* always at least 64KiB */ +#define BCM63XX_CFE_BLOCK_SIZE SZ_64K /* always at least 64KiB */ #define BCM63XX_CFE_MAGIC_OFFSET 0x4e0 @@ -79,7 +80,7 @@ static int bcm63xx_parse_cfe_partitions(struct mtd_info *master, unsigned int rootfsaddr, kerneladdr, spareaddr; unsigned int rootfslen, kernellen, sparelen, totallen; unsigned int cfelen, nvramlen; - int namelen = 0; + unsigned int cfe_erasesize; int i; u32 computed_crc; bool rootfs_first = false; @@ -87,8 +88,12 @@ static int bcm63xx_parse_cfe_partitions(struct mtd_info *master, if (bcm63xx_detect_cfe(master)) return -EINVAL; - cfelen = max_t(uint32_t, master->erasesize, BCM63XX_MIN_CFE_SIZE); - nvramlen = max_t(uint32_t, master->erasesize, BCM63XX_MIN_NVRAM_SIZE); + cfe_erasesize = max_t(uint32_t, master->erasesize, + BCM63XX_CFE_BLOCK_SIZE); + + cfelen = cfe_erasesize; + nvramlen = bcm63xx_nvram_get_psi_size() * SZ_1K; + nvramlen = roundup(nvramlen, cfe_erasesize); /* Allocate memory for buffer */ buf = vmalloc(sizeof(struct bcm_tag)); @@ -121,7 +126,6 @@ static int bcm63xx_parse_cfe_partitions(struct mtd_info *master, kerneladdr = kerneladdr - BCM63XX_EXTENDED_SIZE; rootfsaddr = rootfsaddr - BCM63XX_EXTENDED_SIZE; spareaddr = roundup(totallen, master->erasesize) + cfelen; - sparelen = master->size - spareaddr - nvramlen; if (rootfsaddr < kerneladdr) { /* default Broadcom layout */ @@ -139,19 +143,15 @@ static int bcm63xx_parse_cfe_partitions(struct mtd_info *master, rootfslen = 0; rootfsaddr = 0; spareaddr = cfelen; - sparelen = master->size - cfelen - nvramlen; } + sparelen = master->size - spareaddr - nvramlen; /* Determine number of partitions */ - namelen = 8; - if (rootfslen > 0) { + if (rootfslen > 0) nrparts++; - namelen += 6; - } - if (kernellen > 0) { + + if (kernellen > 0) nrparts++; - namelen += 6; - } /* Ask kernel for more memory */ parts = kzalloc(sizeof(*parts) * nrparts + 10 * nrparts, GFP_KERNEL); @@ -193,17 +193,16 @@ static int bcm63xx_parse_cfe_partitions(struct mtd_info *master, parts[curpart].name = "nvram"; parts[curpart].offset = master->size - nvramlen; parts[curpart].size = nvramlen; + curpart++; /* Global partition "linux" to make easy firmware upgrade */ - curpart++; parts[curpart].name = "linux"; parts[curpart].offset = cfelen; parts[curpart].size = master->size - cfelen - nvramlen; for (i = 0; i < nrparts; i++) - pr_info("Partition %d is %s offset %lx and length %lx\n", i, - parts[i].name, (long unsigned int)(parts[i].offset), - (long unsigned int)(parts[i].size)); + pr_info("Partition %d is %s offset %llx and length %llx\n", i, + parts[i].name, parts[i].offset, parts[i].size); pr_info("Spare partition is offset %x and length %x\n", spareaddr, sparelen); @@ -222,7 +221,8 @@ static struct mtd_part_parser bcm63xx_cfe_parser = { static int __init bcm63xx_cfe_parser_init(void) { - return register_mtd_parser(&bcm63xx_cfe_parser); + register_mtd_parser(&bcm63xx_cfe_parser); + return 0; } static void __exit bcm63xx_cfe_parser_exit(void) diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig index b1e3c26edd6..9f02c28c020 100644 --- a/drivers/mtd/chips/Kconfig +++ b/drivers/mtd/chips/Kconfig @@ -43,9 +43,6 @@ choice prompt "Flash cmd/query data swapping" depends on MTD_CFI_ADV_OPTIONS default MTD_CFI_NOSWAP - -config MTD_CFI_NOSWAP - bool "NO" ---help--- This option defines the way in which the CPU attempts to arrange data bits when writing the 'magic' commands to the chips. Saying @@ -55,12 +52,8 @@ config MTD_CFI_NOSWAP Specific arrangements are possible with the BIG_ENDIAN_BYTE and LITTLE_ENDIAN_BYTE, if the bytes are reversed. - If you have a LART, on which the data (and address) lines were - connected in a fashion which ensured that the nets were as short - as possible, resulting in a bit-shuffling which seems utterly - random to the untrained eye, you need the LART_ENDIAN_BYTE option. - - Yes, there really exists something sicker than PDP-endian :) +config MTD_CFI_NOSWAP + bool "NO" config MTD_CFI_BE_BYTE_SWAP bool "BIG_ENDIAN_BYTE" @@ -153,7 +146,6 @@ config MTD_CFI_I8 config MTD_OTP bool "Protection Registers aka one-time programmable (OTP) bits" depends on MTD_CFI_ADV_OPTIONS - select HAVE_MTD_OTP default n help This enables support for reading, writing and locking so called @@ -177,33 +169,33 @@ config MTD_OTP in the programming of OTP bits will waste them. config MTD_CFI_INTELEXT - tristate "Support for Intel/Sharp flash chips" + tristate "Support for CFI command set 0001 (Intel/Sharp chips)" depends on MTD_GEN_PROBE select MTD_CFI_UTIL help The Common Flash Interface defines a number of different command sets which a CFI-compliant chip may claim to implement. This code - provides support for one of those command sets, used on Intel - StrataFlash and other parts. + provides support for command set 0001, used on Intel StrataFlash + and other parts. config MTD_CFI_AMDSTD - tristate "Support for AMD/Fujitsu/Spansion flash chips" + tristate "Support for CFI command set 0002 (AMD/Fujitsu/Spansion chips)" depends on MTD_GEN_PROBE select MTD_CFI_UTIL help The Common Flash Interface defines a number of different command sets which a CFI-compliant chip may claim to implement. This code - provides support for one of those command sets, used on chips - including the AMD Am29LV320. + provides support for command set 0002, used on chips including + the AMD Am29LV320. config MTD_CFI_STAA - tristate "Support for ST (Advanced Architecture) flash chips" + tristate "Support for CFI command set 0020 (ST (Advanced Architecture) chips)" depends on MTD_GEN_PROBE select MTD_CFI_UTIL help The Common Flash Interface defines a number of different command sets which a CFI-compliant chip may claim to implement. This code - provides support for one of those command sets. + provides support for command set 0020. config MTD_CFI_UTIL tristate @@ -232,7 +224,7 @@ config MTD_ABSENT config MTD_XIP bool "XIP aware MTD support" - depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && EXPERIMENTAL && ARCH_MTD_XIP + depends on !SMP && (MTD_CFI_INTELEXT || MTD_CFI_AMDSTD) && ARCH_MTD_XIP default y if XIP_KERNEL help This allows MTD support to work with flash memory which is also diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index dbbd2edfb81..a7543ba3e19 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -21,7 +21,6 @@ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> -#include <linux/init.h> #include <asm/io.h> #include <asm/byteorder.h> @@ -53,6 +52,11 @@ /* Atmel chips */ #define AT49BV640D 0x02de #define AT49BV640DT 0x02db +/* Sharp chips */ +#define LH28F640BFHE_PTTL90 0x00b0 +#define LH28F640BFHE_PBTL90 0x00b1 +#define LH28F640BFHE_PTTL70A 0x00b2 +#define LH28F640BFHE_PBTL70A 0x00b3 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); @@ -69,10 +73,10 @@ static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, s static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t); -static int cfi_intelext_get_fact_prot_info (struct mtd_info *, - struct otp_info *, size_t); -static int cfi_intelext_get_user_prot_info (struct mtd_info *, - struct otp_info *, size_t); +static int cfi_intelext_get_fact_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +static int cfi_intelext_get_user_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); #endif static int cfi_intelext_suspend (struct mtd_info *); static void cfi_intelext_resume (struct mtd_info *); @@ -259,6 +263,36 @@ static void fixup_st_m28w320cb(struct mtd_info *mtd) (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; }; +static int is_LH28F640BF(struct cfi_private *cfi) +{ + /* Sharp LH28F640BF Family */ + if (cfi->mfr == CFI_MFR_SHARP && ( + cfi->id == LH28F640BFHE_PTTL90 || cfi->id == LH28F640BFHE_PBTL90 || + cfi->id == LH28F640BFHE_PTTL70A || cfi->id == LH28F640BFHE_PBTL70A)) + return 1; + return 0; +} + +static void fixup_LH28F640BF(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + + /* Reset the Partition Configuration Register on LH28F640BF + * to a single partition (PCR = 0x000): PCR is embedded into A0-A15. */ + if (is_LH28F640BF(cfi)) { + printk(KERN_INFO "Reset Partition Config. Register: 1 Partition of 4 planes\n"); + map_write(map, CMD(0x60), 0); + map_write(map, CMD(0x04), 0); + + /* We have set one single partition thus + * Simultaneous Operations are not allowed */ + printk(KERN_INFO "cfi_cmdset_0001: Simultaneous Operations disabled\n"); + extp->FeatureSupport &= ~512; + } +} + static void fixup_use_point(struct mtd_info *mtd) { struct map_info *map = mtd->priv; @@ -310,6 +344,8 @@ static struct cfi_fixup cfi_fixup_table[] = { { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct }, { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb }, { CFI_MFR_INTEL, CFI_ID_ANY, fixup_unlock_powerup_lock }, + { CFI_MFR_SHARP, CFI_ID_ANY, fixup_unlock_powerup_lock }, + { CFI_MFR_SHARP, CFI_ID_ANY, fixup_LH28F640BF }, { 0, 0, NULL } }; @@ -435,10 +471,8 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) int i; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) { - printk(KERN_ERR "Failed to allocate memory for MTD device\n"); + if (!mtd) return NULL; - } mtd->priv = map; mtd->type = MTD_NORFLASH; @@ -564,10 +598,8 @@ static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); - if (!mtd->eraseregions) { - printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); + if (!mtd->eraseregions) goto setup_err; - } for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { unsigned long ernum, ersize; @@ -1654,6 +1686,12 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, initial_adr = adr; cmd_adr = adr & ~(wbufsize-1); + /* Sharp LH28F640BF chips need the first address for the + * Page Buffer Program command. See Table 5 of + * LH28F320BF, LH28F640BF, LH28F128BF Series (Appendix FUM00701) */ + if (is_LH28F640BF(cfi)) + cmd_adr = adr; + /* Let's determine this according to the interleave only once */ write_cmd = (cfi->cfiq->P_ID != P_ID_INTEL_PERFORMANCE) ? CMD(0xe8) : CMD(0xe9); @@ -2043,7 +2081,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip { struct cfi_private *cfi = map->fldrv_priv; struct cfi_pri_intelext *extp = cfi->cmdset_priv; - int udelay; + int mdelay; int ret; adr += chip->start; @@ -2072,9 +2110,17 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip * If Instant Individual Block Locking supported then no need * to delay. */ - udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; + /* + * Unlocking may take up to 1.4 seconds on some Intel flashes. So + * lets use a max of 1.5 seconds (1500ms) as timeout. + * + * See "Clear Block Lock-Bits Time" on page 40 in + * "3 Volt Intel StrataFlash Memory" 28F128J3,28F640J3,28F320J3 manual + * from February 2003 + */ + mdelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1500 : 0; - ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100); + ret = WAIT_TIMEOUT(map, chip, adr, mdelay, mdelay * 1000); if (ret) { map_write(map, CMD(0x70), adr); chip->state = FL_STATUS; @@ -2391,24 +2437,19 @@ static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd, NULL, do_otp_lock, 1); } -static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) -{ - size_t retlen; - int ret; +static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) - ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0); - return ret ? : retlen; +{ + return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 0); } -static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { - size_t retlen; - int ret; - - ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1); - return ret ? : retlen; + return cfi_intelext_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 1); } #endif diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c index 22d0493a026..e21fde9d4d7 100644 --- a/drivers/mtd/chips/cfi_cmdset_0002.c +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -24,7 +24,6 @@ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> -#include <linux/init.h> #include <asm/io.h> #include <asm/byteorder.h> @@ -33,6 +32,8 @@ #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/reboot.h> +#include <linux/of.h> +#include <linux/of_platform.h> #include <linux/mtd/map.h> #include <linux/mtd/mtd.h> #include <linux/mtd/cfi.h> @@ -74,6 +75,10 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); + static struct mtd_chip_driver cfi_amdstd_chipdrv = { .probe = NULL, /* Not usable directly */ .destroy = cfi_amdstd_destroy, @@ -431,17 +436,78 @@ static void cfi_fixup_major_minor(struct cfi_private *cfi, } } +static int is_m29ew(struct cfi_private *cfi) +{ + if (cfi->mfr == CFI_MFR_INTEL && + ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || + (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) + return 1; + return 0; +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: + * Some revisions of the M29EW suffer from erase suspend hang ups. In + * particular, it can occur when the sequence + * Erase Confirm -> Suspend -> Program -> Resume + * causes a lockup due to internal timing issues. The consequence is that the + * erase cannot be resumed without inserting a dummy command after programming + * and prior to resuming. [...] The work-around is to issue a dummy write cycle + * that writes an F0 command code before the RESUME command. + */ +static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ + if (is_m29ew(cfi)) + map_write(map, CMD(0xF0), adr); +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: + * + * Some revisions of the M29EW (for example, A1 and A2 step revisions) + * are affected by a problem that could cause a hang up when an ERASE SUSPEND + * command is issued after an ERASE RESUME operation without waiting for a + * minimum delay. The result is that once the ERASE seems to be completed + * (no bits are toggling), the contents of the Flash memory block on which + * the erase was ongoing could be inconsistent with the expected values + * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 + * values), causing a consequent failure of the ERASE operation. + * The occurrence of this issue could be high, especially when file system + * operations on the Flash are intensive. As a result, it is recommended + * that a patch be applied. Intensive file system operations can cause many + * calls to the garbage routine to free Flash space (also by erasing physical + * Flash blocks) and as a result, many consecutive SUSPEND and RESUME + * commands can occur. The problem disappears when a delay is inserted after + * the RESUME command by using the udelay() function available in Linux. + * The DELAY value must be tuned based on the customer's platform. + * The maximum value that fixes the problem in all cases is 500us. + * But, in our experience, a delay of 30 µs to 50 µs is sufficient + * in most cases. + * We have chosen 500µs because this latency is acceptable. + */ +static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) +{ + /* + * Resolving the Delay After Resume Issue see Micron TN-13-07 + * Worst case delay must be 500µs but 30-50µs should be ok as well + */ + if (is_m29ew(cfi)) + cfi_udelay(500); +} + struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) { struct cfi_private *cfi = map->fldrv_priv; + struct device_node __maybe_unused *np = map->device_node; struct mtd_info *mtd; int i; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) { - printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); + if (!mtd) return NULL; - } mtd->priv = map; mtd->type = MTD_NORFLASH; @@ -508,6 +574,17 @@ struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) cfi_tell_features(extp); #endif +#ifdef CONFIG_OF + if (np && of_property_read_bool( + np, "use-advanced-sector-protection") + && extp->BlkProtUnprot == 8) { + printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n"); + mtd->_lock = cfi_ppb_lock; + mtd->_unlock = cfi_ppb_unlock; + mtd->_is_locked = cfi_ppb_is_locked; + } +#endif + bootloc = extp->TopBottom; if ((bootloc < 2) || (bootloc > 5)) { printk(KERN_WARNING "%s: CFI contains unrecognised boot " @@ -581,10 +658,8 @@ static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); - if (!mtd->eraseregions) { - printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); + if (!mtd->eraseregions) goto setup_err; - } for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { unsigned long ernum, ersize; @@ -776,7 +851,10 @@ static void put_chip(struct map_info *map, struct flchip *chip, unsigned long ad switch(chip->oldstate) { case FL_ERASING: + cfi_fixup_m29ew_erase_suspend(map, + chip->in_progress_block_addr); map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); + cfi_fixup_m29ew_delay_after_resume(cfi); chip->oldstate = FL_READY; chip->state = FL_ERASING; break; @@ -916,6 +994,8 @@ static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, /* Disallow XIP again */ local_irq_disable(); + /* Correct Erase Suspend Hangups for M29EW */ + cfi_fixup_m29ew_erase_suspend(map, adr); /* Resume the write or erase operation */ map_write(map, cfi->sector_erase_cmd, adr); chip->state = oldstate; @@ -1469,13 +1549,25 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, UDELAY(map, chip, adr, 1); } - /* reset on all failures. */ - map_write( map, CMD(0xF0), chip->start ); + /* + * Recovery from write-buffer programming failures requires + * the write-to-buffer-reset sequence. Since the last part + * of the sequence also works as a normal reset, we can run + * the same commands regardless of why we are here. + * See e.g. + * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf + */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); xip_enable(map, chip, adr); /* FIXME - should have reset delay before continuing */ - printk(KERN_WARNING "MTD %s(): software timeout\n", - __func__ ); + printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n", + __func__, adr); ret = -EIO; op_done: @@ -2093,6 +2185,205 @@ static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); } +/* + * Advanced Sector Protection - PPB (Persistent Protection Bit) locking + */ + +struct ppb_lock { + struct flchip *chip; + loff_t offset; + int locked; +}; + +#define MAX_SECTORS 512 + +#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1) +#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2) +#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3) + +static int __maybe_unused do_ppb_xxlock(struct map_info *map, + struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + /* PPB entry command */ + cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { + chip->state = FL_LOCKING; + map_write(map, CMD(0xA0), chip->start + adr); + map_write(map, CMD(0x00), chip->start + adr); + } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { + /* + * Unlocking of one specific sector is not supported, so we + * have to unlock all sectors of this device instead + */ + chip->state = FL_UNLOCKING; + map_write(map, CMD(0x80), chip->start); + map_write(map, CMD(0x30), chip->start); + } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) { + chip->state = FL_JEDEC_QUERY; + /* Return locked status: 0->locked, 1->unlocked */ + ret = !cfi_read_query(map, adr); + } else + BUG(); + + /* + * Wait for some time as unlocking of all sectors takes quite long + */ + timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */ + for (;;) { + if (chip_ready(map, adr)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); + ret = -EIO; + break; + } + + UDELAY(map, chip, adr, 1); + } + + /* Exit BC commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + + chip->state = FL_READY; + put_chip(map, chip, adr + chip->start); + mutex_unlock(&chip->mutex); + + return ret; +} + +static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_LOCK); +} + +static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + struct mtd_erase_region_info *regions = mtd->eraseregions; + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct ppb_lock *sect; + unsigned long adr; + loff_t offset; + uint64_t length; + int chipnum; + int i; + int sectors; + int ret; + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. So lets + * first check the locking status of all sectors and save + * it for future use. + */ + sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL); + if (!sect) + return -ENOMEM; + + /* + * This code to walk all sectors is a slightly modified version + * of the cfi_varsize_frob() code. + */ + i = 0; + chipnum = 0; + adr = 0; + sectors = 0; + offset = 0; + length = mtd->size; + + while (length) { + int size = regions[i].erasesize; + + /* + * Only test sectors that shall not be unlocked. The other + * sectors shall be unlocked, so lets keep their locking + * status at "unlocked" (locked=0) for the final re-locking. + */ + if ((adr < ofs) || (adr >= (ofs + len))) { + sect[sectors].chip = &cfi->chips[chipnum]; + sect[sectors].offset = offset; + sect[sectors].locked = do_ppb_xxlock( + map, &cfi->chips[chipnum], adr, 0, + DO_XXLOCK_ONEBLOCK_GETLOCK); + } + + adr += size; + offset += size; + length -= size; + + if (offset == regions[i].offset + size * regions[i].numblocks) + i++; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + + sectors++; + if (sectors >= MAX_SECTORS) { + printk(KERN_ERR "Only %d sectors for PPB locking supported!\n", + MAX_SECTORS); + kfree(sect); + return -EINVAL; + } + } + + /* Now unlock the whole chip */ + ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_UNLOCK); + if (ret) { + kfree(sect); + return ret; + } + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. + */ + for (i = 0; i < sectors; i++) { + if (sect[i].locked) + do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0, + DO_XXLOCK_ONEBLOCK_LOCK); + } + + kfree(sect); + return ret; +} + +static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0; +} static void cfi_amdstd_sync (struct mtd_info *mtd) { diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c index 096993f9711..423666b51ef 100644 --- a/drivers/mtd/chips/cfi_cmdset_0020.c +++ b/drivers/mtd/chips/cfi_cmdset_0020.c @@ -22,7 +22,6 @@ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> -#include <linux/init.h> #include <asm/io.h> #include <asm/byteorder.h> @@ -176,7 +175,6 @@ static struct mtd_info *cfi_staa_setup(struct map_info *map) //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); if (!mtd) { - printk(KERN_ERR "Failed to allocate memory for MTD device\n"); kfree(cfi->cmdset_priv); return NULL; } @@ -189,7 +187,6 @@ static struct mtd_info *cfi_staa_setup(struct map_info *map) mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); if (!mtd->eraseregions) { - printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); kfree(cfi->cmdset_priv); kfree(mtd); return NULL; @@ -964,7 +961,7 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd, chipnum++; if (chipnum >= cfi->numchips) - break; + break; } } @@ -1173,7 +1170,7 @@ static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) chipnum++; if (chipnum >= cfi->numchips) - break; + break; } } return 0; diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c index d2553527940..e8d0164498b 100644 --- a/drivers/mtd/chips/cfi_probe.c +++ b/drivers/mtd/chips/cfi_probe.c @@ -168,10 +168,8 @@ static int __xipram cfi_chip_setup(struct map_info *map, return 0; cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); - if (!cfi->cfiq) { - printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); + if (!cfi->cfiq) return 0; - } memset(cfi->cfiq,0,sizeof(struct cfi_ident)); diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c index f992418f40a..09c79bd0b4f 100644 --- a/drivers/mtd/chips/cfi_util.c +++ b/drivers/mtd/chips/cfi_util.c @@ -116,10 +116,8 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n printk(KERN_INFO "%s Extended Query Table at 0x%4.4X\n", name, adr); extp = kmalloc(size, GFP_KERNEL); - if (!extp) { - printk(KERN_ERR "Failed to allocate memory\n"); + if (!extp) goto out; - } #ifdef CONFIG_MTD_XIP local_irq_disable(); @@ -241,7 +239,7 @@ int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob, chipnum++; if (chipnum >= cfi->numchips) - break; + break; } } diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c index 3b9a2843c5f..b57ceea2151 100644 --- a/drivers/mtd/chips/gen_probe.c +++ b/drivers/mtd/chips/gen_probe.c @@ -114,7 +114,6 @@ static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chi mapsize = sizeof(long) * DIV_ROUND_UP(max_chips, BITS_PER_LONG); chip_map = kzalloc(mapsize, GFP_KERNEL); if (!chip_map) { - printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name); kfree(cfi.cfiq); return NULL; } @@ -139,7 +138,6 @@ static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chi retcfi = kmalloc(sizeof(struct cfi_private) + cfi.numchips * sizeof(struct flchip), GFP_KERNEL); if (!retcfi) { - printk(KERN_WARNING "%s: kmalloc failed for CFI private structure\n", map->name); kfree(cfi.cfiq); kfree(chip_map); return NULL; @@ -204,14 +202,14 @@ static inline struct mtd_info *cfi_cmdset_unknown(struct map_info *map, struct cfi_private *cfi = map->fldrv_priv; __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; #ifdef CONFIG_MODULES - char probename[16+sizeof(MODULE_SYMBOL_PREFIX)]; + char probename[sizeof(VMLINUX_SYMBOL_STR(cfi_cmdset_%4.4X))]; cfi_cmdset_fn_t *probe_function; - sprintf(probename, MODULE_SYMBOL_PREFIX "cfi_cmdset_%4.4X", type); + sprintf(probename, VMLINUX_SYMBOL_STR(cfi_cmdset_%4.4X), type); probe_function = __symbol_get(probename); if (!probe_function) { - request_module(probename + sizeof(MODULE_SYMBOL_PREFIX) - 1); + request_module("cfi_cmdset_%4.4X", type); probe_function = __symbol_get(probename); } diff --git a/drivers/mtd/chips/jedec_probe.c b/drivers/mtd/chips/jedec_probe.c index c443f527a53..7c0b27d132b 100644 --- a/drivers/mtd/chips/jedec_probe.c +++ b/drivers/mtd/chips/jedec_probe.c @@ -120,7 +120,7 @@ #define PM49FL008 0x006A /* Sharp */ -#define LH28F640BF 0x00b0 +#define LH28F640BF 0x00B0 /* ST - www.st.com */ #define M29F800AB 0x0058 @@ -1299,13 +1299,14 @@ static const struct amd_flash_info jedec_table[] = { .mfr_id = CFI_MFR_SHARP, .dev_id = LH28F640BF, .name = "LH28F640BF", - .devtypes = CFI_DEVICETYPE_X8, + .devtypes = CFI_DEVICETYPE_X16, .uaddr = MTD_UADDR_UNNECESSARY, - .dev_size = SIZE_4MiB, - .cmd_set = P_ID_INTEL_STD, - .nr_regions = 1, + .dev_size = SIZE_8MiB, + .cmd_set = P_ID_INTEL_EXT, + .nr_regions = 2, .regions = { - ERASEINFO(0x40000,16), + ERASEINFO(0x10000, 127), + ERASEINFO(0x02000, 8), } }, { .mfr_id = CFI_MFR_SST, diff --git a/drivers/mtd/cmdlinepart.c b/drivers/mtd/cmdlinepart.c index 4558e0f4d07..3e829b37af8 100644 --- a/drivers/mtd/cmdlinepart.c +++ b/drivers/mtd/cmdlinepart.c @@ -22,11 +22,22 @@ * * mtdparts=<mtddef>[;<mtddef] * <mtddef> := <mtd-id>:<partdef>[,<partdef>] - * where <mtd-id> is the name from the "cat /proc/mtd" command - * <partdef> := <size>[@offset][<name>][ro][lk] + * <partdef> := <size>[@<offset>][<name>][ro][lk] * <mtd-id> := unique name used in mapping driver/device (mtd->name) * <size> := standard linux memsize OR "-" to denote all remaining space + * size is automatically truncated at end of device + * if specified or trucated size is 0 the part is skipped + * <offset> := standard linux memsize + * if omitted the part will immediately follow the previous part + * or 0 if the first part * <name> := '(' NAME ')' + * NAME will appear in /proc/mtd + * + * <size> and <offset> can be specified such that the parts are out of order + * in physical memory and may even overlap. + * + * The parts are assigned MTD numbers in the order they are specified in the + * command line regardless of their order in physical memory. * * Examples: * @@ -39,11 +50,10 @@ #include <linux/kernel.h> #include <linux/slab.h> - #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> -#include <linux/bootmem.h> #include <linux/module.h> +#include <linux/err.h> /* error message prefix */ #define ERRP "mtd: " @@ -57,8 +67,8 @@ /* special size referring to all the remaining space in a partition */ -#define SIZE_REMAINING UINT_MAX -#define OFFSET_CONTINUOUS UINT_MAX +#define SIZE_REMAINING ULLONG_MAX +#define OFFSET_CONTINUOUS ULLONG_MAX struct cmdline_mtd_partition { struct cmdline_mtd_partition *next; @@ -71,8 +81,9 @@ struct cmdline_mtd_partition { static struct cmdline_mtd_partition *partitions; /* the command line passed to mtdpart_setup() */ +static char *mtdparts; static char *cmdline; -static int cmdline_parsed = 0; +static int cmdline_parsed; /* * Parse one partition definition for an MTD. Since there can be many @@ -83,15 +94,14 @@ static int cmdline_parsed = 0; * syntax has been verified ok. */ static struct mtd_partition * newpart(char *s, - char **retptr, - int *num_parts, - int this_part, - unsigned char **extra_mem_ptr, - int extra_mem_size) + char **retptr, + int *num_parts, + int this_part, + unsigned char **extra_mem_ptr, + int extra_mem_size) { struct mtd_partition *parts; - unsigned long size; - unsigned long offset = OFFSET_CONTINUOUS; + unsigned long long size, offset = OFFSET_CONTINUOUS; char *name; int name_len; unsigned char *extra_mem; @@ -99,124 +109,107 @@ static struct mtd_partition * newpart(char *s, unsigned int mask_flags; /* fetch the partition size */ - if (*s == '-') - { /* assign all remaining space to this partition */ + if (*s == '-') { + /* assign all remaining space to this partition */ size = SIZE_REMAINING; s++; - } - else - { + } else { size = memparse(s, &s); - if (size < PAGE_SIZE) - { - printk(KERN_ERR ERRP "partition size too small (%lx)\n", size); - return NULL; + if (size < PAGE_SIZE) { + printk(KERN_ERR ERRP "partition size too small (%llx)\n", + size); + return ERR_PTR(-EINVAL); } } /* fetch partition name and flags */ mask_flags = 0; /* this is going to be a regular partition */ delim = 0; - /* check for offset */ - if (*s == '@') - { - s++; - offset = memparse(s, &s); - } - /* now look for name */ + + /* check for offset */ + if (*s == '@') { + s++; + offset = memparse(s, &s); + } + + /* now look for name */ if (*s == '(') - { delim = ')'; - } - if (delim) - { + if (delim) { char *p; - name = ++s; + name = ++s; p = strchr(name, delim); - if (!p) - { + if (!p) { printk(KERN_ERR ERRP "no closing %c found in partition name\n", delim); - return NULL; + return ERR_PTR(-EINVAL); } name_len = p - name; s = p + 1; - } - else - { - name = NULL; + } else { + name = NULL; name_len = 13; /* Partition_000 */ } /* record name length for memory allocation later */ extra_mem_size += name_len + 1; - /* test for options */ - if (strncmp(s, "ro", 2) == 0) - { + /* test for options */ + if (strncmp(s, "ro", 2) == 0) { mask_flags |= MTD_WRITEABLE; s += 2; - } + } - /* if lk is found do NOT unlock the MTD partition*/ - if (strncmp(s, "lk", 2) == 0) - { + /* if lk is found do NOT unlock the MTD partition*/ + if (strncmp(s, "lk", 2) == 0) { mask_flags |= MTD_POWERUP_LOCK; s += 2; - } + } /* test if more partitions are following */ - if (*s == ',') - { - if (size == SIZE_REMAINING) - { + if (*s == ',') { + if (size == SIZE_REMAINING) { printk(KERN_ERR ERRP "no partitions allowed after a fill-up partition\n"); - return NULL; + return ERR_PTR(-EINVAL); } /* more partitions follow, parse them */ parts = newpart(s + 1, &s, num_parts, this_part + 1, &extra_mem, extra_mem_size); - if (!parts) - return NULL; - } - else - { /* this is the last partition: allocate space for all */ + if (IS_ERR(parts)) + return parts; + } else { + /* this is the last partition: allocate space for all */ int alloc_size; *num_parts = this_part + 1; alloc_size = *num_parts * sizeof(struct mtd_partition) + extra_mem_size; + parts = kzalloc(alloc_size, GFP_KERNEL); if (!parts) - return NULL; + return ERR_PTR(-ENOMEM); extra_mem = (unsigned char *)(parts + *num_parts); } + /* enter this partition (offset will be calculated later if it is zero at this point) */ parts[this_part].size = size; parts[this_part].offset = offset; parts[this_part].mask_flags = mask_flags; if (name) - { strlcpy(extra_mem, name, name_len + 1); - } else - { sprintf(extra_mem, "Partition_%03d", this_part); - } parts[this_part].name = extra_mem; extra_mem += name_len + 1; dbg(("partition %d: name <%s>, offset %llx, size %llx, mask flags %x\n", - this_part, - parts[this_part].name, - parts[this_part].offset, - parts[this_part].size, - parts[this_part].mask_flags)); + this_part, parts[this_part].name, parts[this_part].offset, + parts[this_part].size, parts[this_part].mask_flags)); /* return (updated) pointer to extra_mem memory */ if (extra_mem_ptr) - *extra_mem_ptr = extra_mem; + *extra_mem_ptr = extra_mem; /* return (updated) pointer command line string */ *retptr = s; @@ -236,16 +229,16 @@ static int mtdpart_setup_real(char *s) { struct cmdline_mtd_partition *this_mtd; struct mtd_partition *parts; - int mtd_id_len; - int num_parts; + int mtd_id_len, num_parts; char *p, *mtd_id; - mtd_id = s; + mtd_id = s; + /* fetch <mtd-id> */ - if (!(p = strchr(s, ':'))) - { + p = strchr(s, ':'); + if (!p) { printk(KERN_ERR ERRP "no mtd-id\n"); - return 0; + return -EINVAL; } mtd_id_len = p - mtd_id; @@ -262,8 +255,7 @@ static int mtdpart_setup_real(char *s) (unsigned char**)&this_mtd, /* out: extra mem */ mtd_id_len + 1 + sizeof(*this_mtd) + sizeof(void*)-1 /*alignment*/); - if(!parts) - { + if (IS_ERR(parts)) { /* * An error occurred. We're either: * a) out of memory, or @@ -271,12 +263,12 @@ static int mtdpart_setup_real(char *s) * Either way, this mtd is hosed and we're * unlikely to succeed in parsing any more */ - return 0; + return PTR_ERR(parts); } /* align this_mtd */ this_mtd = (struct cmdline_mtd_partition *) - ALIGN((unsigned long)this_mtd, sizeof(void*)); + ALIGN((unsigned long)this_mtd, sizeof(void *)); /* enter results */ this_mtd->parts = parts; this_mtd->num_parts = num_parts; @@ -296,14 +288,14 @@ static int mtdpart_setup_real(char *s) break; /* does another spec follow? */ - if (*s != ';') - { + if (*s != ';') { printk(KERN_ERR ERRP "bad character after partition (%c)\n", *s); - return 0; + return -EINVAL; } s++; } - return 1; + + return 0; } /* @@ -317,46 +309,64 @@ static int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { - unsigned long offset; - int i; + unsigned long long offset; + int i, err; struct cmdline_mtd_partition *part; const char *mtd_id = master->name; /* parse command line */ - if (!cmdline_parsed) - mtdpart_setup_real(cmdline); + if (!cmdline_parsed) { + err = mtdpart_setup_real(cmdline); + if (err) + return err; + } - for(part = partitions; part; part = part->next) - { + /* + * Search for the partition definition matching master->name. + * If master->name is not set, stop at first partition definition. + */ + for (part = partitions; part; part = part->next) { if ((!mtd_id) || (!strcmp(part->mtd_id, mtd_id))) - { - for(i = 0, offset = 0; i < part->num_parts; i++) - { - if (part->parts[i].offset == OFFSET_CONTINUOUS) - part->parts[i].offset = offset; - else - offset = part->parts[i].offset; - if (part->parts[i].size == SIZE_REMAINING) - part->parts[i].size = master->size - offset; - if (offset + part->parts[i].size > master->size) - { - printk(KERN_WARNING ERRP - "%s: partitioning exceeds flash size, truncating\n", - part->mtd_id); - part->parts[i].size = master->size - offset; - part->num_parts = i; - } - offset += part->parts[i].size; - } - *pparts = kmemdup(part->parts, - sizeof(*part->parts) * part->num_parts, - GFP_KERNEL); - if (!*pparts) - return -ENOMEM; - return part->num_parts; + break; + } + + if (!part) + return 0; + + for (i = 0, offset = 0; i < part->num_parts; i++) { + if (part->parts[i].offset == OFFSET_CONTINUOUS) + part->parts[i].offset = offset; + else + offset = part->parts[i].offset; + + if (part->parts[i].size == SIZE_REMAINING) + part->parts[i].size = master->size - offset; + + if (offset + part->parts[i].size > master->size) { + printk(KERN_WARNING ERRP + "%s: partitioning exceeds flash size, truncating\n", + part->mtd_id); + part->parts[i].size = master->size - offset; + } + offset += part->parts[i].size; + + if (part->parts[i].size == 0) { + printk(KERN_WARNING ERRP + "%s: skipping zero sized partition\n", + part->mtd_id); + part->num_parts--; + memmove(&part->parts[i], &part->parts[i + 1], + sizeof(*part->parts) * (part->num_parts - i)); + i--; } } - return 0; + + *pparts = kmemdup(part->parts, sizeof(*part->parts) * part->num_parts, + GFP_KERNEL); + if (!*pparts) + return -ENOMEM; + + return part->num_parts; } @@ -367,7 +377,7 @@ static int parse_cmdline_partitions(struct mtd_info *master, * * This function needs to be visible for bootloaders. */ -static int mtdpart_setup(char *s) +static int __init mtdpart_setup(char *s) { cmdline = s; return 1; @@ -383,10 +393,22 @@ static struct mtd_part_parser cmdline_parser = { static int __init cmdline_parser_init(void) { - return register_mtd_parser(&cmdline_parser); + if (mtdparts) + mtdpart_setup(mtdparts); + register_mtd_parser(&cmdline_parser); + return 0; +} + +static void __exit cmdline_parser_exit(void) +{ + deregister_mtd_parser(&cmdline_parser); } module_init(cmdline_parser_init); +module_exit(cmdline_parser_exit); + +MODULE_PARM_DESC(mtdparts, "Partitioning specification"); +module_param(mtdparts, charp, 0); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig index 4cdb2af7bf4..c49d0b127fe 100644 --- a/drivers/mtd/devices/Kconfig +++ b/drivers/mtd/devices/Kconfig @@ -52,7 +52,7 @@ config MTD_MS02NV config MTD_DATAFLASH tristate "Support for AT45xxx DataFlash" - depends on SPI_MASTER && EXPERIMENTAL + depends on SPI_MASTER help This enables access to AT45xxx DataFlash chips, using SPI. Sometimes DataFlash chips are packaged inside MMC-format @@ -71,7 +71,6 @@ config MTD_DATAFLASH_WRITE_VERIFY config MTD_DATAFLASH_OTP bool "DataFlash OTP support (Security Register)" depends on MTD_DATAFLASH - select HAVE_MTD_OTP help Newer DataFlash chips (revisions C and D) support 128 bytes of one-time-programmable (OTP) data. The first half may be written @@ -81,7 +80,7 @@ config MTD_DATAFLASH_OTP config MTD_M25P80 tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)" - depends on SPI_MASTER && EXPERIMENTAL + depends on SPI_MASTER && MTD_SPI_NOR help This enables access to most modern SPI flash chips, used for program and data storage. Series supported include Atmel AT26DF, @@ -96,13 +95,6 @@ config MTD_M25P80 if you want to specify device partitioning or to use a device which doesn't support the JEDEC ID instruction. -config M25PXX_USE_FAST_READ - bool "Use FAST_READ OPCode allowing SPI CLK <= 50MHz" - depends on MTD_M25P80 - default y - help - This option enables FAST_READ access supported by ST M25Pxx. - config MTD_SPEAR_SMI tristate "SPEAR MTD NOR Support through SMI controller" depends on PLAT_SPEAR @@ -120,6 +112,14 @@ config MTD_SST25L Set up your spi devices with the right board-specific platform data, if you want to specify device partitioning. +config MTD_BCM47XXSFLASH + tristate "R/O support for serial flash on BCMA bus" + depends on BCMA_SFLASH + help + BCMA bus can have various flash memories attached, they are + registered by bcma as platform devices. This enables driver for + serial flash memories (only read-only mode is implemented). + config MTD_SLRAM tristate "Uncached system RAM" help @@ -197,73 +197,11 @@ config MTD_BLOCK2MTD comment "Disk-On-Chip Device Drivers" -config MTD_DOC2000 - tristate "M-Systems Disk-On-Chip 2000 and Millennium (DEPRECATED)" - depends on MTD_NAND - select MTD_DOCPROBE - select MTD_NAND_IDS - ---help--- - This provides an MTD device driver for the M-Systems DiskOnChip - 2000 and Millennium devices. Originally designed for the DiskOnChip - 2000, it also now includes support for the DiskOnChip Millennium. - If you have problems with this driver and the DiskOnChip Millennium, - you may wish to try the alternative Millennium driver below. To use - the alternative driver, you will need to undefine DOC_SINGLE_DRIVER - in the <file:drivers/mtd/devices/docprobe.c> source code. - - If you use this device, you probably also want to enable the NFTL - 'NAND Flash Translation Layer' option below, which is used to - emulate a block device by using a kind of file system on the flash - chips. - - NOTE: This driver is deprecated and will probably be removed soon. - Please try the new DiskOnChip driver under "NAND Flash Device - Drivers". - -config MTD_DOC2001 - tristate "M-Systems Disk-On-Chip Millennium-only alternative driver (DEPRECATED)" - depends on MTD_NAND - select MTD_DOCPROBE - select MTD_NAND_IDS - ---help--- - This provides an alternative MTD device driver for the M-Systems - DiskOnChip Millennium devices. Use this if you have problems with - the combined DiskOnChip 2000 and Millennium driver above. To get - the DiskOnChip probe code to load and use this driver instead of - the other one, you will need to undefine DOC_SINGLE_DRIVER near - the beginning of <file:drivers/mtd/devices/docprobe.c>. - - If you use this device, you probably also want to enable the NFTL - 'NAND Flash Translation Layer' option below, which is used to - emulate a block device by using a kind of file system on the flash - chips. - - NOTE: This driver is deprecated and will probably be removed soon. - Please try the new DiskOnChip driver under "NAND Flash Device - Drivers". - -config MTD_DOC2001PLUS - tristate "M-Systems Disk-On-Chip Millennium Plus" - depends on MTD_NAND - select MTD_DOCPROBE - select MTD_NAND_IDS - ---help--- - This provides an MTD device driver for the M-Systems DiskOnChip - Millennium Plus devices. - - If you use this device, you probably also want to enable the INFTL - 'Inverse NAND Flash Translation Layer' option below, which is used - to emulate a block device by using a kind of file system on the - flash chips. - - NOTE: This driver will soon be replaced by the new DiskOnChip driver - under "NAND Flash Device Drivers" (currently that driver does not - support all Millennium Plus devices). - config MTD_DOCG3 tristate "M-Systems Disk-On-Chip G3" select BCH select BCH_CONST_PARAMS + select BITREVERSE ---help--- This provides an MTD device driver for the M-Systems DiskOnChip G3 devices. @@ -272,6 +210,14 @@ config MTD_DOCG3 M-Systems and now Sandisk. The support is very experimental, and doesn't give access to any write operations. +config MTD_ST_SPI_FSM + tristate "ST Microelectronics SPI FSM Serial Flash Controller" + depends on ARCH_STI + help + This provides an MTD device driver for the ST Microelectronics + SPI Fast Sequence Mode (FSM) Serial Flash Controller and support + for a subset of connected Serial Flash devices. + if MTD_DOCG3 config BCH_CONST_M default 14 @@ -279,59 +225,4 @@ config BCH_CONST_T default 4 endif -config MTD_DOCPROBE - tristate - select MTD_DOCECC - -config MTD_DOCECC - tristate - -config MTD_DOCPROBE_ADVANCED - bool "Advanced detection options for DiskOnChip" - depends on MTD_DOCPROBE - help - This option allows you to specify nonstandard address at which to - probe for a DiskOnChip, or to change the detection options. You - are unlikely to need any of this unless you are using LinuxBIOS. - Say 'N'. - -config MTD_DOCPROBE_ADDRESS - hex "Physical address of DiskOnChip" if MTD_DOCPROBE_ADVANCED - depends on MTD_DOCPROBE - default "0x0" - ---help--- - By default, the probe for DiskOnChip devices will look for a - DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. - This option allows you to specify a single address at which to probe - for the device, which is useful if you have other devices in that - range which get upset when they are probed. - - (Note that on PowerPC, the normal probe will only check at - 0xE4000000.) - - Normally, you should leave this set to zero, to allow the probe at - the normal addresses. - -config MTD_DOCPROBE_HIGH - bool "Probe high addresses" - depends on MTD_DOCPROBE_ADVANCED - help - By default, the probe for DiskOnChip devices will look for a - DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. - This option changes to make it probe between 0xFFFC8000 and - 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be - useful to you. Say 'N'. - -config MTD_DOCPROBE_55AA - bool "Probe for 0x55 0xAA BIOS Extension Signature" - depends on MTD_DOCPROBE_ADVANCED - help - Check for the 0x55 0xAA signature of a DiskOnChip, and do not - continue with probing if it is absent. The signature will always be - present for a DiskOnChip 2000 or a normal DiskOnChip Millennium. - Only if you have overwritten the first block of a DiskOnChip - Millennium will it be absent. Enable this option if you are using - LinuxBIOS or if you need to recover a DiskOnChip Millennium on which - you have managed to wipe the first block. - endmenu diff --git a/drivers/mtd/devices/Makefile b/drivers/mtd/devices/Makefile index a4dd1d822b6..c68868f6058 100644 --- a/drivers/mtd/devices/Makefile +++ b/drivers/mtd/devices/Makefile @@ -2,12 +2,7 @@ # linux/drivers/mtd/devices/Makefile # -obj-$(CONFIG_MTD_DOC2000) += doc2000.o -obj-$(CONFIG_MTD_DOC2001) += doc2001.o -obj-$(CONFIG_MTD_DOC2001PLUS) += doc2001plus.o obj-$(CONFIG_MTD_DOCG3) += docg3.o -obj-$(CONFIG_MTD_DOCPROBE) += docprobe.o -obj-$(CONFIG_MTD_DOCECC) += docecc.o obj-$(CONFIG_MTD_SLRAM) += slram.o obj-$(CONFIG_MTD_PHRAM) += phram.o obj-$(CONFIG_MTD_PMC551) += pmc551.o @@ -17,7 +12,11 @@ obj-$(CONFIG_MTD_LART) += lart.o obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o obj-$(CONFIG_MTD_M25P80) += m25p80.o +obj-$(CONFIG_MTD_NAND_OMAP_BCH) += elm.o obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o obj-$(CONFIG_MTD_SST25L) += sst25l.o +obj-$(CONFIG_MTD_BCM47XXSFLASH) += bcm47xxsflash.o +obj-$(CONFIG_MTD_ST_SPI_FSM) += st_spi_fsm.o -CFLAGS_docg3.o += -I$(src)
\ No newline at end of file + +CFLAGS_docg3.o += -I$(src) diff --git a/drivers/mtd/devices/bcm47xxsflash.c b/drivers/mtd/devices/bcm47xxsflash.c new file mode 100644 index 00000000000..77de29bc02b --- /dev/null +++ b/drivers/mtd/devices/bcm47xxsflash.c @@ -0,0 +1,340 @@ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/platform_device.h> +#include <linux/bcma/bcma.h> + +#include "bcm47xxsflash.h" + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Serial flash driver for BCMA bus"); + +static const char * const probes[] = { "bcm47xxpart", NULL }; + +/************************************************** + * Various helpers + **************************************************/ + +static void bcm47xxsflash_cmd(struct bcm47xxsflash *b47s, u32 opcode) +{ + int i; + + b47s->cc_write(b47s, BCMA_CC_FLASHCTL, BCMA_CC_FLASHCTL_START | opcode); + for (i = 0; i < 1000; i++) { + if (!(b47s->cc_read(b47s, BCMA_CC_FLASHCTL) & + BCMA_CC_FLASHCTL_BUSY)) + return; + cpu_relax(); + } + pr_err("Control command failed (timeout)!\n"); +} + +static int bcm47xxsflash_poll(struct bcm47xxsflash *b47s, int timeout) +{ + unsigned long deadline = jiffies + timeout; + + do { + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + bcm47xxsflash_cmd(b47s, OPCODE_ST_RDSR); + if (!(b47s->cc_read(b47s, BCMA_CC_FLASHDATA) & + SR_ST_WIP)) + return 0; + break; + case BCM47XXSFLASH_TYPE_ATMEL: + bcm47xxsflash_cmd(b47s, OPCODE_AT_STATUS); + if (b47s->cc_read(b47s, BCMA_CC_FLASHDATA) & + SR_AT_READY) + return 0; + break; + } + + cpu_relax(); + udelay(1); + } while (!time_after_eq(jiffies, deadline)); + + pr_err("Timeout waiting for flash to be ready!\n"); + + return -EBUSY; +} + +/************************************************** + * MTD ops + **************************************************/ + +static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int err; + + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + bcm47xxsflash_cmd(b47s, OPCODE_ST_WREN); + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, erase->addr); + /* Newer flashes have "sub-sectors" which can be erased + * independently with a new command: ST_SSE. The ST_SE command + * erases 64KB just as before. + */ + if (b47s->blocksize < (64 * 1024)) + bcm47xxsflash_cmd(b47s, OPCODE_ST_SSE); + else + bcm47xxsflash_cmd(b47s, OPCODE_ST_SE); + break; + case BCM47XXSFLASH_TYPE_ATMEL: + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, erase->addr << 1); + bcm47xxsflash_cmd(b47s, OPCODE_AT_PAGE_ERASE); + break; + } + + err = bcm47xxsflash_poll(b47s, HZ); + if (err) + erase->state = MTD_ERASE_FAILED; + else + erase->state = MTD_ERASE_DONE; + + if (erase->callback) + erase->callback(erase); + + return err; +} + +static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + + /* Check address range */ + if ((from + len) > mtd->size) + return -EINVAL; + + memcpy_fromio(buf, (void __iomem *)KSEG0ADDR(b47s->window + from), + len); + *retlen = len; + + return len; +} + +static int bcm47xxsflash_write_st(struct mtd_info *mtd, u32 offset, size_t len, + const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int written = 0; + + /* Enable writes */ + bcm47xxsflash_cmd(b47s, OPCODE_ST_WREN); + + /* Write first byte */ + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, offset); + b47s->cc_write(b47s, BCMA_CC_FLASHDATA, *buf++); + + /* Program page */ + if (b47s->bcma_cc->core->id.rev < 20) { + bcm47xxsflash_cmd(b47s, OPCODE_ST_PP); + return 1; /* 1B written */ + } + + /* Program page and set CSA (on newer chips we can continue writing) */ + bcm47xxsflash_cmd(b47s, OPCODE_ST_CSA | OPCODE_ST_PP); + offset++; + len--; + written++; + + while (len > 0) { + /* Page boundary, another function call is needed */ + if ((offset & 0xFF) == 0) + break; + + bcm47xxsflash_cmd(b47s, OPCODE_ST_CSA | *buf++); + offset++; + len--; + written++; + } + + /* All done, drop CSA & poll */ + b47s->cc_write(b47s, BCMA_CC_FLASHCTL, 0); + udelay(1); + if (bcm47xxsflash_poll(b47s, HZ / 10)) + pr_err("Flash rejected dropping CSA\n"); + + return written; +} + +static int bcm47xxsflash_write_at(struct mtd_info *mtd, u32 offset, size_t len, + const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + u32 mask = b47s->blocksize - 1; + u32 page = (offset & ~mask) << 1; + u32 byte = offset & mask; + int written = 0; + + /* If we don't overwrite whole page, read it to the buffer first */ + if (byte || (len < b47s->blocksize)) { + int err; + + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, page); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_LOAD); + /* 250 us for AT45DB321B */ + err = bcm47xxsflash_poll(b47s, HZ / 1000); + if (err) { + pr_err("Timeout reading page 0x%X info buffer\n", page); + return err; + } + } + + /* Change buffer content with our data */ + while (len > 0) { + /* Page boundary, another function call is needed */ + if (byte == b47s->blocksize) + break; + + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, byte++); + b47s->cc_write(b47s, BCMA_CC_FLASHDATA, *buf++); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_WRITE); + len--; + written++; + } + + /* Program page with the buffer content */ + b47s->cc_write(b47s, BCMA_CC_FLASHADDR, page); + bcm47xxsflash_cmd(b47s, OPCODE_AT_BUF1_PROGRAM); + + return written; +} + +static int bcm47xxsflash_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct bcm47xxsflash *b47s = mtd->priv; + int written; + + /* Writing functions can return without writing all passed data, for + * example when the hardware is too old or when we git page boundary. + */ + while (len > 0) { + switch (b47s->type) { + case BCM47XXSFLASH_TYPE_ST: + written = bcm47xxsflash_write_st(mtd, to, len, buf); + break; + case BCM47XXSFLASH_TYPE_ATMEL: + written = bcm47xxsflash_write_at(mtd, to, len, buf); + break; + default: + BUG_ON(1); + } + if (written < 0) { + pr_err("Error writing at offset 0x%llX\n", to); + return written; + } + to += (loff_t)written; + len -= written; + *retlen += written; + buf += written; + } + + return 0; +} + +static void bcm47xxsflash_fill_mtd(struct bcm47xxsflash *b47s) +{ + struct mtd_info *mtd = &b47s->mtd; + + mtd->priv = b47s; + mtd->name = "bcm47xxsflash"; + mtd->owner = THIS_MODULE; + + mtd->type = MTD_NORFLASH; + mtd->flags = MTD_CAP_NORFLASH; + mtd->size = b47s->size; + mtd->erasesize = b47s->blocksize; + mtd->writesize = 1; + mtd->writebufsize = 1; + + mtd->_erase = bcm47xxsflash_erase; + mtd->_read = bcm47xxsflash_read; + mtd->_write = bcm47xxsflash_write; +} + +/************************************************** + * BCMA + **************************************************/ + +static int bcm47xxsflash_bcma_cc_read(struct bcm47xxsflash *b47s, u16 offset) +{ + return bcma_cc_read32(b47s->bcma_cc, offset); +} + +static void bcm47xxsflash_bcma_cc_write(struct bcm47xxsflash *b47s, u16 offset, + u32 value) +{ + bcma_cc_write32(b47s->bcma_cc, offset, value); +} + +static int bcm47xxsflash_bcma_probe(struct platform_device *pdev) +{ + struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev); + struct bcm47xxsflash *b47s; + int err; + + b47s = devm_kzalloc(&pdev->dev, sizeof(*b47s), GFP_KERNEL); + if (!b47s) + return -ENOMEM; + sflash->priv = b47s; + + b47s->bcma_cc = container_of(sflash, struct bcma_drv_cc, sflash); + b47s->cc_read = bcm47xxsflash_bcma_cc_read; + b47s->cc_write = bcm47xxsflash_bcma_cc_write; + + switch (b47s->bcma_cc->capabilities & BCMA_CC_CAP_FLASHT) { + case BCMA_CC_FLASHT_STSER: + b47s->type = BCM47XXSFLASH_TYPE_ST; + break; + case BCMA_CC_FLASHT_ATSER: + b47s->type = BCM47XXSFLASH_TYPE_ATMEL; + break; + } + + b47s->window = sflash->window; + b47s->blocksize = sflash->blocksize; + b47s->numblocks = sflash->numblocks; + b47s->size = sflash->size; + bcm47xxsflash_fill_mtd(b47s); + + err = mtd_device_parse_register(&b47s->mtd, probes, NULL, NULL, 0); + if (err) { + pr_err("Failed to register MTD device: %d\n", err); + return err; + } + + if (bcm47xxsflash_poll(b47s, HZ / 10)) + pr_warn("Serial flash busy\n"); + + return 0; +} + +static int bcm47xxsflash_bcma_remove(struct platform_device *pdev) +{ + struct bcma_sflash *sflash = dev_get_platdata(&pdev->dev); + struct bcm47xxsflash *b47s = sflash->priv; + + mtd_device_unregister(&b47s->mtd); + + return 0; +} + +static struct platform_driver bcma_sflash_driver = { + .probe = bcm47xxsflash_bcma_probe, + .remove = bcm47xxsflash_bcma_remove, + .driver = { + .name = "bcma_sflash", + .owner = THIS_MODULE, + }, +}; + +/************************************************** + * Init + **************************************************/ + +module_platform_driver(bcma_sflash_driver); diff --git a/drivers/mtd/devices/bcm47xxsflash.h b/drivers/mtd/devices/bcm47xxsflash.h new file mode 100644 index 00000000000..fe93daf4f48 --- /dev/null +++ b/drivers/mtd/devices/bcm47xxsflash.h @@ -0,0 +1,76 @@ +#ifndef __BCM47XXSFLASH_H +#define __BCM47XXSFLASH_H + +#include <linux/mtd/mtd.h> + +/* Used for ST flashes only. */ +#define OPCODE_ST_WREN 0x0006 /* Write Enable */ +#define OPCODE_ST_WRDIS 0x0004 /* Write Disable */ +#define OPCODE_ST_RDSR 0x0105 /* Read Status Register */ +#define OPCODE_ST_WRSR 0x0101 /* Write Status Register */ +#define OPCODE_ST_READ 0x0303 /* Read Data Bytes */ +#define OPCODE_ST_PP 0x0302 /* Page Program */ +#define OPCODE_ST_SE 0x02d8 /* Sector Erase */ +#define OPCODE_ST_BE 0x00c7 /* Bulk Erase */ +#define OPCODE_ST_DP 0x00b9 /* Deep Power-down */ +#define OPCODE_ST_RES 0x03ab /* Read Electronic Signature */ +#define OPCODE_ST_CSA 0x1000 /* Keep chip select asserted */ +#define OPCODE_ST_SSE 0x0220 /* Sub-sector Erase */ + +/* Used for Atmel flashes only. */ +#define OPCODE_AT_READ 0x07e8 +#define OPCODE_AT_PAGE_READ 0x07d2 +#define OPCODE_AT_STATUS 0x01d7 +#define OPCODE_AT_BUF1_WRITE 0x0384 +#define OPCODE_AT_BUF2_WRITE 0x0387 +#define OPCODE_AT_BUF1_ERASE_PROGRAM 0x0283 +#define OPCODE_AT_BUF2_ERASE_PROGRAM 0x0286 +#define OPCODE_AT_BUF1_PROGRAM 0x0288 +#define OPCODE_AT_BUF2_PROGRAM 0x0289 +#define OPCODE_AT_PAGE_ERASE 0x0281 +#define OPCODE_AT_BLOCK_ERASE 0x0250 +#define OPCODE_AT_BUF1_WRITE_ERASE_PROGRAM 0x0382 +#define OPCODE_AT_BUF2_WRITE_ERASE_PROGRAM 0x0385 +#define OPCODE_AT_BUF1_LOAD 0x0253 +#define OPCODE_AT_BUF2_LOAD 0x0255 +#define OPCODE_AT_BUF1_COMPARE 0x0260 +#define OPCODE_AT_BUF2_COMPARE 0x0261 +#define OPCODE_AT_BUF1_REPROGRAM 0x0258 +#define OPCODE_AT_BUF2_REPROGRAM 0x0259 + +/* Status register bits for ST flashes */ +#define SR_ST_WIP 0x01 /* Write In Progress */ +#define SR_ST_WEL 0x02 /* Write Enable Latch */ +#define SR_ST_BP_MASK 0x1c /* Block Protect */ +#define SR_ST_BP_SHIFT 2 +#define SR_ST_SRWD 0x80 /* Status Register Write Disable */ + +/* Status register bits for Atmel flashes */ +#define SR_AT_READY 0x80 +#define SR_AT_MISMATCH 0x40 +#define SR_AT_ID_MASK 0x38 +#define SR_AT_ID_SHIFT 3 + +struct bcma_drv_cc; + +enum bcm47xxsflash_type { + BCM47XXSFLASH_TYPE_ATMEL, + BCM47XXSFLASH_TYPE_ST, +}; + +struct bcm47xxsflash { + struct bcma_drv_cc *bcma_cc; + int (*cc_read)(struct bcm47xxsflash *b47s, u16 offset); + void (*cc_write)(struct bcm47xxsflash *b47s, u16 offset, u32 value); + + enum bcm47xxsflash_type type; + + u32 window; + u32 blocksize; + u16 numblocks; + u32 size; + + struct mtd_info mtd; +}; + +#endif /* BCM47XXSFLASH */ diff --git a/drivers/mtd/devices/block2mtd.c b/drivers/mtd/devices/block2mtd.c index 681e2ee0f2d..66f0405f7e5 100644 --- a/drivers/mtd/devices/block2mtd.c +++ b/drivers/mtd/devices/block2mtd.c @@ -6,6 +6,9 @@ * * Licence: GPL */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/module.h> #include <linux/fs.h> #include <linux/blkdev.h> @@ -17,10 +20,7 @@ #include <linux/mutex.h> #include <linux/mount.h> #include <linux/slab.h> - -#define ERROR(fmt, args...) printk(KERN_ERR "block2mtd: " fmt "\n" , ## args) -#define INFO(fmt, args...) printk(KERN_INFO "block2mtd: " fmt "\n" , ## args) - +#include <linux/major.h> /* Info for the block device */ struct block2mtd_dev { @@ -62,6 +62,7 @@ static int _block2mtd_erase(struct block2mtd_dev *dev, loff_t to, size_t len) memset(page_address(page), 0xff, PAGE_SIZE); set_page_dirty(page); unlock_page(page); + balance_dirty_pages_ratelimited(mapping); break; } @@ -83,7 +84,7 @@ static int block2mtd_erase(struct mtd_info *mtd, struct erase_info *instr) err = _block2mtd_erase(dev, from, len); mutex_unlock(&dev->write_mutex); if (err) { - ERROR("erase failed err = %d", err); + pr_err("erase failed err = %d\n", err); instr->state = MTD_ERASE_FAILED; } else instr->state = MTD_ERASE_DONE; @@ -152,6 +153,7 @@ static int _block2mtd_write(struct block2mtd_dev *dev, const u_char *buf, memcpy(page_address(page) + offset, buf, cpylen); set_page_dirty(page); unlock_page(page); + balance_dirty_pages_ratelimited(mapping); } page_cache_release(page); @@ -207,7 +209,6 @@ static void block2mtd_free_device(struct block2mtd_dev *dev) } -/* FIXME: ensure that mtd->size % erase_size == 0 */ static struct block2mtd_dev *add_device(char *devname, int erase_size) { const fmode_t mode = FMODE_READ | FMODE_WRITE | FMODE_EXCL; @@ -237,14 +238,19 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size) #endif if (IS_ERR(bdev)) { - ERROR("error: cannot open device %s", devname); - goto devinit_err; + pr_err("error: cannot open device %s\n", devname); + goto err_free_block2mtd; } dev->blkdev = bdev; if (MAJOR(bdev->bd_dev) == MTD_BLOCK_MAJOR) { - ERROR("attempting to use an MTD device as a block device"); - goto devinit_err; + pr_err("attempting to use an MTD device as a block device\n"); + goto err_free_block2mtd; + } + + if ((long)dev->blkdev->bd_inode->i_size % erase_size) { + pr_err("erasesize must be a divisor of device size\n"); + goto err_free_block2mtd; } mutex_init(&dev->write_mutex); @@ -253,7 +259,7 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size) /* make the name contain the block device in */ name = kasprintf(GFP_KERNEL, "block2mtd: %s", devname); if (!name) - goto devinit_err; + goto err_destroy_mutex; dev->mtd.name = name; @@ -272,15 +278,18 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size) if (mtd_device_register(&dev->mtd, NULL, 0)) { /* Device didn't get added, so free the entry */ - goto devinit_err; + goto err_destroy_mutex; } list_add(&dev->list, &blkmtd_device_list); - INFO("mtd%d: [%s] erase_size = %dKiB [%d]", dev->mtd.index, - dev->mtd.name + strlen("block2mtd: "), - dev->mtd.erasesize >> 10, dev->mtd.erasesize); + pr_info("mtd%d: [%s] erase_size = %dKiB [%d]\n", + dev->mtd.index, + dev->mtd.name + strlen("block2mtd: "), + dev->mtd.erasesize >> 10, dev->mtd.erasesize); return dev; -devinit_err: +err_destroy_mutex: + mutex_destroy(&dev->write_mutex); +err_free_block2mtd: block2mtd_free_device(dev); return NULL; } @@ -337,17 +346,11 @@ static inline void kill_final_newline(char *str) } -#define parse_err(fmt, args...) do { \ - ERROR(fmt, ## args); \ - return 0; \ -} while (0) - #ifndef MODULE static int block2mtd_init_called = 0; static char block2mtd_paramline[80 + 12]; /* 80 for device, 12 for erase size */ #endif - static int block2mtd_setup2(const char *val) { char buf[80 + 12]; /* 80 for device, 12 for erase size */ @@ -357,8 +360,10 @@ static int block2mtd_setup2(const char *val) size_t erase_size = PAGE_SIZE; int i, ret; - if (strnlen(val, sizeof(buf)) >= sizeof(buf)) - parse_err("parameter too long"); + if (strnlen(val, sizeof(buf)) >= sizeof(buf)) { + pr_err("parameter too long\n"); + return 0; + } strcpy(str, val); kill_final_newline(str); @@ -366,20 +371,27 @@ static int block2mtd_setup2(const char *val) for (i = 0; i < 2; i++) token[i] = strsep(&str, ","); - if (str) - parse_err("too many arguments"); + if (str) { + pr_err("too many arguments\n"); + return 0; + } - if (!token[0]) - parse_err("no argument"); + if (!token[0]) { + pr_err("no argument\n"); + return 0; + } name = token[0]; - if (strlen(name) + 1 > 80) - parse_err("device name too long"); + if (strlen(name) + 1 > 80) { + pr_err("device name too long\n"); + return 0; + } if (token[1]) { ret = parse_num(&erase_size, token[1]); if (ret) { - parse_err("illegal erase size"); + pr_err("illegal erase size\n"); + return 0; } } @@ -433,7 +445,7 @@ static int __init block2mtd_init(void) } -static void __devexit block2mtd_exit(void) +static void block2mtd_exit(void) { struct list_head *pos, *next; @@ -442,8 +454,10 @@ static void __devexit block2mtd_exit(void) struct block2mtd_dev *dev = list_entry(pos, typeof(*dev), list); block2mtd_sync(&dev->mtd); mtd_device_unregister(&dev->mtd); - INFO("mtd%d: [%s] removed", dev->mtd.index, - dev->mtd.name + strlen("block2mtd: ")); + mutex_destroy(&dev->write_mutex); + pr_info("mtd%d: [%s] removed\n", + dev->mtd.index, + dev->mtd.name + strlen("block2mtd: ")); list_del(&dev->list); block2mtd_free_device(dev); } diff --git a/drivers/mtd/devices/doc2000.c b/drivers/mtd/devices/doc2000.c deleted file mode 100644 index a4eb8b5b85e..00000000000 --- a/drivers/mtd/devices/doc2000.c +++ /dev/null @@ -1,1178 +0,0 @@ - -/* - * Linux driver for Disk-On-Chip 2000 and Millennium - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - */ - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/sched.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/bitops.h> -#include <linux/mutex.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> - -#define DOC_SUPPORT_2000 -#define DOC_SUPPORT_2000TSOP -#define DOC_SUPPORT_MILLENNIUM - -#ifdef DOC_SUPPORT_2000 -#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) -#else -#define DoC_is_2000(doc) (0) -#endif - -#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM) -#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) -#else -#define DoC_is_Millennium(doc) (0) -#endif - -/* #define ECC_DEBUG */ - -/* I have no idea why some DoC chips can not use memcpy_from|to_io(). - * This may be due to the different revisions of the ASIC controller built-in or - * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment - * this: - #undef USE_MEMCPY -*/ - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf); -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf); -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, - size_t *retlen, const u_char *buf); -static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); - -static struct mtd_info *doc2klist = NULL; - -/* Perform the required delay cycles by reading from the appropriate register */ -static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) -{ - volatile char dummy; - int i; - - for (i = 0; i < cycles; i++) { - if (DoC_is_Millennium(doc)) - dummy = ReadDOC(doc->virtadr, NOP); - else - dummy = ReadDOC(doc->virtadr, DOCStatus); - } - -} - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(struct DiskOnChip *doc) -{ - void __iomem *docptr = doc->virtadr; - unsigned long timeo = jiffies + (HZ * 10); - - pr_debug("_DoC_WaitReady called for out-of-line wait\n"); - - /* Out-of-line routine to wait for chip response */ - while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 2); - - if (time_after(jiffies, timeo)) { - pr_debug("_DoC_WaitReady timed out.\n"); - return -EIO; - } - udelay(1); - cond_resched(); - } - - return 0; -} - -static inline int DoC_WaitReady(struct DiskOnChip *doc) -{ - void __iomem *docptr = doc->virtadr; - - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* 4 read form NOP register should be issued in prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 4); - - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(doc); - - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 2); - - return ret; -} - -/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static int DoC_Command(struct DiskOnChip *doc, unsigned char command, - unsigned char xtraflags) -{ - void __iomem *docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags |= CDSN_CTRL_FLASH_IO; - - /* Assert the CLE (Command Latch Enable) line to the flash chip */ - WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - if (DoC_is_Millennium(doc)) - WriteDOC(command, docptr, CDSNSlowIO); - - /* Send the command */ - WriteDOC_(command, docptr, doc->ioreg); - if (DoC_is_Millennium(doc)) - WriteDOC(command, docptr, WritePipeTerm); - - /* Lower the CLE line */ - WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ - return DoC_WaitReady(doc); -} - -/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, - unsigned char xtraflags1, unsigned char xtraflags2) -{ - int i; - void __iomem *docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags1 |= CDSN_CTRL_FLASH_IO; - - /* Assert the ALE (Address Latch Enable) line to the flash chip */ - WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Send the address */ - /* Devices with 256-byte page are addressed as: - Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) - * there is no device on the market with page256 - and more than 24 bits. - Devices with 512-byte page are addressed as: - Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) - * 25-31 is sent only if the chip support it. - * bit 8 changes the read command to be sent - (NAND_CMD_READ0 or NAND_CMD_READ1). - */ - - if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - - if (doc->page256) { - ofs = ofs >> 8; - } else { - ofs = ofs >> 9; - } - - if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { - for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - } - - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, WritePipeTerm); - - DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ - - /* FIXME: The SlowIO's for millennium could be replaced by - a single WritePipeTerm here. mf. */ - - /* Lower the ALE line */ - WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, - CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 */ - return DoC_WaitReady(doc); -} - -/* Read a buffer from DoC, taking care of Millennium odditys */ -static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) -{ - volatile int dummy; - int modulus = 0xffff; - void __iomem *docptr = doc->virtadr; - int i; - - if (len <= 0) - return; - - if (DoC_is_Millennium(doc)) { - /* Read the data via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); - - /* Millennium should use the LastDataRead register - Pipeline Reads */ - len--; - - /* This is needed for correctly ECC calculation */ - modulus = 0xff; - } - - for (i = 0; i < len; i++) - buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); - - if (DoC_is_Millennium(doc)) { - buf[i] = ReadDOC(docptr, LastDataRead); - } -} - -/* Write a buffer to DoC, taking care of Millennium odditys */ -static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) -{ - void __iomem *docptr = doc->virtadr; - int i; - - if (len <= 0) - return; - - for (i = 0; i < len; i++) - WriteDOC_(buf[i], docptr, doc->ioreg + i); - - if (DoC_is_Millennium(doc)) { - WriteDOC(0x00, docptr, WritePipeTerm); - } -} - - -/* DoC_SelectChip: Select a given flash chip within the current floor */ - -static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) -{ - void __iomem *docptr = doc->virtadr; - - /* Software requirement 11.4.4 before writing DeviceSelect */ - /* Deassert the CE line to eliminate glitches on the FCE# outputs */ - WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Select the individual flash chip requested */ - WriteDOC(chip, docptr, CDSNDeviceSelect); - DoC_Delay(doc, 4); - - /* Reassert the CE line */ - WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, - CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for it to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ - -static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) -{ - void __iomem *docptr = doc->virtadr; - - /* Select the floor (bank) of chips required */ - WriteDOC(floor, docptr, FloorSelect); - - /* Wait for the chip to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i, j; - volatile char dummy; - - /* Page in the required floor/chip */ - DoC_SelectFloor(doc, floor); - DoC_SelectChip(doc, chip); - - /* Reset the chip */ - if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { - pr_debug("DoC_Command (reset) for %d,%d returned true\n", - floor, chip); - return 0; - } - - - /* Read the NAND chip ID: 1. Send ReadID command */ - if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { - pr_debug("DoC_Command (ReadID) for %d,%d returned true\n", - floor, chip); - return 0; - } - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); - - /* Read the manufacturer and device id codes from the device */ - - if (DoC_is_Millennium(doc)) { - DoC_Delay(doc, 2); - dummy = ReadDOC(doc->virtadr, ReadPipeInit); - mfr = ReadDOC(doc->virtadr, LastDataRead); - - DoC_Delay(doc, 2); - dummy = ReadDOC(doc->virtadr, ReadPipeInit); - id = ReadDOC(doc->virtadr, LastDataRead); - } else { - /* CDSN Slow IO register see Software Req 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - mfr = ReadDOC_(doc->virtadr, doc->ioreg); - - /* CDSN Slow IO register see Software Req 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - id = ReadDOC_(doc->virtadr, doc->ioreg); - } - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - /* Check it's the same as the first chip we identified. - * M-Systems say that any given DiskOnChip device should only - * contain _one_ type of flash part, although that's not a - * hardware restriction. */ - if (doc->mfr) { - if (doc->mfr == mfr && doc->id == id) - return 1; /* This is the same as the first */ - else - printk(KERN_WARNING - "Flash chip at floor %d, chip %d is different:\n", - floor, chip); - } - - /* Print and store the manufacturer and ID codes. */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (id == nand_flash_ids[i].id) { - /* Try to identify manufacturer */ - for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { - if (nand_manuf_ids[j].id == mfr) - break; - } - printk(KERN_INFO - "Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s:%s)\n", mfr, id, - nand_manuf_ids[j].name, nand_flash_ids[i].name); - if (!doc->mfr) { - doc->mfr = mfr; - doc->id = id; - doc->chipshift = - ffs((nand_flash_ids[i].chipsize << 20)) - 1; - doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0; - doc->pageadrlen = doc->chipshift > 25 ? 3 : 2; - doc->erasesize = - nand_flash_ids[i].erasesize; - return 1; - } - return 0; - } - } - - - /* We haven't fully identified the chip. Print as much as we know. */ - printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n", - id, mfr); - - printk(KERN_WARNING "Please report to dwmw2@infradead.org\n"); - return 0; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ - -static void DoC_ScanChips(struct DiskOnChip *this, int maxchips) -{ - int floor, chip; - int numchips[MAX_FLOORS]; - int ret = 1; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - ret = 1; - numchips[floor] = 0; - for (chip = 0; chip < maxchips && ret != 0; chip++) { - - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - printk(KERN_NOTICE "No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); - if (!this->chips) { - printk(KERN_NOTICE "No memory for allocating chip info structures\n"); - return; - } - - ret = 0; - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - for (chip = 0; chip < numchips[floor]; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - - printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", - this->numchips, this->totlen >> 20); -} - -static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) -{ - int tmp1, tmp2, retval; - if (doc1->physadr == doc2->physadr) - return 1; - - /* Use the alias resolution register which was set aside for this - * purpose. If it's value is the same on both chips, they might - * be the same chip, and we write to one and check for a change in - * the other. It's unclear if this register is usuable in the - * DoC 2000 (it's in the Millennium docs), but it seems to work. */ - tmp1 = ReadDOC(doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp1 != tmp2) - return 0; - - WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp2 == (tmp1 + 1) % 0xff) - retval = 1; - else - retval = 0; - - /* Restore register contents. May not be necessary, but do it just to - * be safe. */ - WriteDOC(tmp1, doc1->virtadr, AliasResolution); - - return retval; -} - -/* This routine is found from the docprobe code by symbol_get(), - * which will bump the use count of this module. */ -void DoC2k_init(struct mtd_info *mtd) -{ - struct DiskOnChip *this = mtd->priv; - struct DiskOnChip *old = NULL; - int maxchips; - - /* We must avoid being called twice for the same device. */ - - if (doc2klist) - old = doc2klist->priv; - - while (old) { - if (DoC2k_is_alias(old, this)) { - printk(KERN_NOTICE - "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n", - this->physadr); - iounmap(this->virtadr); - kfree(mtd); - return; - } - if (old->nextdoc) - old = old->nextdoc->priv; - else - old = NULL; - } - - - switch (this->ChipID) { - case DOC_ChipID_Doc2kTSOP: - mtd->name = "DiskOnChip 2000 TSOP"; - this->ioreg = DoC_Mil_CDSN_IO; - /* Pretend it's a Millennium */ - this->ChipID = DOC_ChipID_DocMil; - maxchips = MAX_CHIPS; - break; - case DOC_ChipID_Doc2k: - mtd->name = "DiskOnChip 2000"; - this->ioreg = DoC_2k_CDSN_IO; - maxchips = MAX_CHIPS; - break; - case DOC_ChipID_DocMil: - mtd->name = "DiskOnChip Millennium"; - this->ioreg = DoC_Mil_CDSN_IO; - maxchips = MAX_CHIPS_MIL; - break; - default: - printk("Unknown ChipID 0x%02x\n", this->ChipID); - kfree(mtd); - iounmap(this->virtadr); - return; - } - - printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name, - this->physadr); - - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->writebufsize = mtd->writesize = 512; - mtd->oobsize = 16; - mtd->ecc_strength = 2; - mtd->owner = THIS_MODULE; - mtd->_erase = doc_erase; - mtd->_read = doc_read; - mtd->_write = doc_write; - mtd->_read_oob = doc_read_oob; - mtd->_write_oob = doc_write_oob; - this->curfloor = -1; - this->curchip = -1; - mutex_init(&this->lock); - - /* Ident all the chips present. */ - DoC_ScanChips(this, maxchips); - - if (!this->totlen) { - kfree(mtd); - iounmap(this->virtadr); - } else { - this->nextdoc = doc2klist; - doc2klist = mtd; - mtd->size = this->totlen; - mtd->erasesize = this->erasesize; - mtd_device_register(mtd, NULL, 0); - return; - } -} -EXPORT_SYMBOL_GPL(DoC2k_init); - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t * retlen, u_char * buf) -{ - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip; - unsigned char syndrome[6], eccbuf[6]; - volatile char dummy; - int i, len256 = 0, ret=0; - size_t left = len; - - mutex_lock(&this->lock); - while (left) { - len = left; - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - /* The ECC will not be calculated correctly if less than 512 is read */ - if (len != 0x200) - printk(KERN_WARNING - "ECC needs a full sector read (adr: %lx size %lx)\n", - (long) from, (long) len); - - /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */ - - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[from >> (this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, - (!this->page256 - && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, - CDSN_CTRL_ECC_IO); - - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN, docptr, ECCConf); - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && from + len > (from | 0xff) + 1) { - len256 = (from | 0xff) + 1 - from; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, - CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - /* Let the caller know we completed it */ - *retlen += len; - - /* Read the ECC data through the DiskOnChip ECC logic */ - /* Note: this will work even with 2M x 8bit devices as */ - /* they have 8 bytes of OOB per 256 page. mf. */ - DoC_ReadBuf(this, eccbuf, 6); - - /* Flush the pipeline */ - if (DoC_is_Millennium(this)) { - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - i = ReadDOC(docptr, ECCConf); - } else { - dummy = ReadDOC(docptr, 2k_ECCStatus); - dummy = ReadDOC(docptr, 2k_ECCStatus); - i = ReadDOC(docptr, 2k_ECCStatus); - } - - /* Check the ECC Status */ - if (i & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrome through the DiskOnChip ECC - logic. These syndrome will be all ZERO when there - is no error */ - for (i = 0; i < 6; i++) { - syndrome[i] = - ReadDOC(docptr, ECCSyndrome0 + i); - } - nb_errors = doc_decode_ecc(buf, syndrome); - -#ifdef ECC_DEBUG - printk(KERN_ERR "Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the - read. Not that this can be told to - user-space, via sys_read(), but at least - MTD-aware stuff can know about it by - checking *retlen */ - ret = -EIO; - } - } - -#ifdef PSYCHO_DEBUG - printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], - eccbuf[3], eccbuf[4], eccbuf[5]); -#endif - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - - /* according to 11.4.1, we need to wait for the busy line - * drop if we read to the end of the page. */ - if(0 == ((from + len) & 0x1ff)) - { - DoC_WaitReady(this); - } - - from += len; - left -= len; - buf += len; - } - - mutex_unlock(&this->lock); - - return ret; -} - -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t * retlen, const u_char * buf) -{ - struct DiskOnChip *this = mtd->priv; - int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ - void __iomem *docptr = this->virtadr; - unsigned char eccbuf[6]; - volatile char dummy; - int len256 = 0; - struct Nand *mychip; - size_t left = len; - int status; - - mutex_lock(&this->lock); - while (left) { - len = left; - - /* Don't allow a single write to cross a 512-byte block boundary */ - if (to + len > ((to | 0x1ff) + 1)) - len = ((to | 0x1ff) + 1) - to; - - /* The ECC will not be calculated correctly if less than 512 is written */ -/* DBB- - if (len != 0x200 && eccbuf) - printk(KERN_WARNING - "ECC needs a full sector write (adr: %lx size %lx)\n", - (long) to, (long) len); - -DBB */ - - /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[to >> (this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Set device to main plane of flash */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_Command(this, - (!this->page256 - && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); - - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && to + len > (to | 0xff) + 1) { - len256 = (to | 0xff) + 1 - to; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - printk(KERN_ERR "Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - mutex_unlock(&this->lock); - return -EIO; - } - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, - CDSN_CTRL_ECC_IO); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl); - - if (DoC_is_Millennium(this)) { - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - } else { - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - } - - WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr, - CDSNControl); - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (di = 0; di < 6; di++) { - eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); - } - - /* Reset the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - -#ifdef PSYCHO_DEBUG - printk - ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - mutex_unlock(&this->lock); - return -EIO; - } - - /* Let the caller know we completed it */ - *retlen += len; - - { - unsigned char x[8]; - size_t dummy; - int ret; - - /* Write the ECC data to flash */ - for (di=0; di<6; di++) - x[di] = eccbuf[di]; - - x[6]=0x55; - x[7]=0x55; - - ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x); - if (ret) { - mutex_unlock(&this->lock); - return ret; - } - } - - to += len; - left -= len; - buf += len; - } - - mutex_unlock(&this->lock); - return 0; -} - -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - struct DiskOnChip *this = mtd->priv; - int len256 = 0, ret; - struct Nand *mychip; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OPS_PLACE_OOB); - - ofs += ops->ooboffs; - - mutex_lock(&this->lock); - - mychip = &this->chips[ofs >> this->chipshift]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), - CDSN_CTRL_WP, 0); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - ops->retlen = len; - /* Reading the full OOB data drops us off of the end of the page, - * causing the flash device to go into busy mode, so we need - * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ - - ret = DoC_WaitReady(this); - - mutex_unlock(&this->lock); - return ret; - -} - -static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, - size_t * retlen, const u_char * buf) -{ - struct DiskOnChip *this = mtd->priv; - int len256 = 0; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - volatile int dummy; - int status; - - // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len, - // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - - /* issue the Read2 command to set the pointer to the Spare Data Area. */ - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return -EIO; - } - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return -EIO; - } - - *retlen = len; - return 0; - -} - -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - struct DiskOnChip *this = mtd->priv; - int ret; - - BUG_ON(ops->mode != MTD_OPS_PLACE_OOB); - - mutex_lock(&this->lock); - ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len, - &ops->retlen, ops->oobbuf); - - mutex_unlock(&this->lock); - return ret; -} - -static int doc_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - struct DiskOnChip *this = mtd->priv; - __u32 ofs = instr->addr; - __u32 len = instr->len; - volatile int dummy; - void __iomem *docptr = this->virtadr; - struct Nand *mychip; - int status; - - mutex_lock(&this->lock); - - if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) { - mutex_unlock(&this->lock); - return -EINVAL; - } - - instr->state = MTD_ERASING; - - /* FIXME: Do this in the background. Use timers or schedule_task() */ - while(len) { - mychip = &this->chips[ofs >> this->chipshift]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, NAND_CMD_ERASE1, 0); - DoC_Address(this, ADDR_PAGE, ofs, 0, 0); - DoC_Command(this, NAND_CMD_ERASE2, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - - if (DoC_is_Millennium(this)) { - ReadDOC(docptr, ReadPipeInit); - status = ReadDOC(docptr, LastDataRead); - } else { - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - status = ReadDOC_(docptr, this->ioreg); - } - - if (status & 1) { - printk(KERN_ERR "Error erasing at 0x%x\n", ofs); - /* There was an error */ - instr->state = MTD_ERASE_FAILED; - goto callback; - } - ofs += mtd->erasesize; - len -= mtd->erasesize; - } - instr->state = MTD_ERASE_DONE; - - callback: - mtd_erase_callback(instr); - - mutex_unlock(&this->lock); - return 0; -} - - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static void __exit cleanup_doc2000(void) -{ - struct mtd_info *mtd; - struct DiskOnChip *this; - - while ((mtd = doc2klist)) { - this = mtd->priv; - doc2klist = this->nextdoc; - - mtd_device_unregister(mtd); - - iounmap(this->virtadr); - kfree(this->chips); - kfree(mtd); - } -} - -module_exit(cleanup_doc2000); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); -MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium"); - diff --git a/drivers/mtd/devices/doc2001.c b/drivers/mtd/devices/doc2001.c deleted file mode 100644 index f6927955dab..00000000000 --- a/drivers/mtd/devices/doc2001.c +++ /dev/null @@ -1,824 +0,0 @@ - -/* - * Linux driver for Disk-On-Chip Millennium - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - */ - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/bitops.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> - -/* #define ECC_DEBUG */ - -/* I have no idea why some DoC chips can not use memcop_form|to_io(). - * This may be due to the different revisions of the ASIC controller built-in or - * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment - * this:*/ -#undef USE_MEMCPY - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf); -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf); -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); - -static struct mtd_info *docmillist = NULL; - -/* Perform the required delay cycles by reading from the NOP register */ -static void DoC_Delay(void __iomem * docptr, unsigned short cycles) -{ - volatile char dummy; - int i; - - for (i = 0; i < cycles; i++) - dummy = ReadDOC(docptr, NOP); -} - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(void __iomem * docptr) -{ - unsigned short c = 0xffff; - - pr_debug("_DoC_WaitReady called for out-of-line wait\n"); - - /* Out-of-line routine to wait for chip response */ - while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c) - ; - - if (c == 0) - pr_debug("_DoC_WaitReady timed out.\n"); - - return (c == 0); -} - -static inline int DoC_WaitReady(void __iomem * docptr) -{ - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* 4 read form NOP register should be issued in prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(docptr, 4); - - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(docptr); - - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(docptr, 2); - - return ret; -} - -/* DoC_Command: Send a flash command to the flash chip through the CDSN IO register - with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static void DoC_Command(void __iomem * docptr, unsigned char command, - unsigned char xtraflags) -{ - /* Assert the CLE (Command Latch Enable) line to the flash chip */ - WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); - - /* Send the command */ - WriteDOC(command, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - - /* Lower the CLE line */ - WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); -} - -/* DoC_Address: Set the current address for the flash chip through the CDSN IO register - with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs, - unsigned char xtraflags1, unsigned char xtraflags2) -{ - /* Assert the ALE (Address Latch Enable) line to the flash chip */ - WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); - - /* Send the address */ - switch (numbytes) - { - case 1: - /* Send single byte, bits 0-7. */ - WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - break; - case 2: - /* Send bits 9-16 followed by 17-23 */ - WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - break; - case 3: - /* Send 0-7, 9-16, then 17-23 */ - WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); - WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); - WriteDOC(0x00, docptr, WritePipeTerm); - break; - default: - return; - } - - /* Lower the ALE line */ - WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(docptr, 4); -} - -/* DoC_SelectChip: Select a given flash chip within the current floor */ -static int DoC_SelectChip(void __iomem * docptr, int chip) -{ - /* Select the individual flash chip requested */ - WriteDOC(chip, docptr, CDSNDeviceSelect); - DoC_Delay(docptr, 4); - - /* Wait for it to be ready */ - return DoC_WaitReady(docptr); -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ -static int DoC_SelectFloor(void __iomem * docptr, int floor) -{ - /* Select the floor (bank) of chips required */ - WriteDOC(floor, docptr, FloorSelect); - - /* Wait for the chip to be ready */ - return DoC_WaitReady(docptr); -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i, j; - volatile char dummy; - - /* Page in the required floor/chip - FIXME: is this supported by Millennium ?? */ - DoC_SelectFloor(doc->virtadr, floor); - DoC_SelectChip(doc->virtadr, chip); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_WaitReady(doc->virtadr); - - /* Read the NAND chip ID: 1. Send ReadID command */ - DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP); - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00); - - /* Read the manufacturer and device id codes of the flash device through - CDSN IO register see Software Requirement 11.4 item 5.*/ - dummy = ReadDOC(doc->virtadr, ReadPipeInit); - DoC_Delay(doc->virtadr, 2); - mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO); - - DoC_Delay(doc->virtadr, 2); - id = ReadDOC(doc->virtadr, Mil_CDSN_IO); - dummy = ReadDOC(doc->virtadr, LastDataRead); - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - /* FIXME: to deal with multi-flash on multi-Millennium case more carefully */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if ( id == nand_flash_ids[i].id) { - /* Try to identify manufacturer */ - for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { - if (nand_manuf_ids[j].id == mfr) - break; - } - printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s:%s)\n", - mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name); - doc->mfr = mfr; - doc->id = id; - doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1; - break; - } - } - - if (nand_flash_ids[i].name == NULL) - return 0; - else - return 1; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ -static void DoC_ScanChips(struct DiskOnChip *this) -{ - int floor, chip; - int numchips[MAX_FLOORS_MIL]; - int ret; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) { - numchips[floor] = 0; - for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) { - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - printk("No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); - if (!this->chips){ - printk("No memory for allocating chip info structures\n"); - return; - } - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) { - for (chip = 0 ; chip < numchips[floor] ; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", - this->numchips ,this->totlen >> 20); -} - -static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) -{ - int tmp1, tmp2, retval; - - if (doc1->physadr == doc2->physadr) - return 1; - - /* Use the alias resolution register which was set aside for this - * purpose. If it's value is the same on both chips, they might - * be the same chip, and we write to one and check for a change in - * the other. It's unclear if this register is usuable in the - * DoC 2000 (it's in the Millenium docs), but it seems to work. */ - tmp1 = ReadDOC(doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp1 != tmp2) - return 0; - - WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, AliasResolution); - if (tmp2 == (tmp1+1) % 0xff) - retval = 1; - else - retval = 0; - - /* Restore register contents. May not be necessary, but do it just to - * be safe. */ - WriteDOC(tmp1, doc1->virtadr, AliasResolution); - - return retval; -} - -/* This routine is found from the docprobe code by symbol_get(), - * which will bump the use count of this module. */ -void DoCMil_init(struct mtd_info *mtd) -{ - struct DiskOnChip *this = mtd->priv; - struct DiskOnChip *old = NULL; - - /* We must avoid being called twice for the same device. */ - if (docmillist) - old = docmillist->priv; - - while (old) { - if (DoCMil_is_alias(this, old)) { - printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at " - "0x%lX - already configured\n", this->physadr); - iounmap(this->virtadr); - kfree(mtd); - return; - } - if (old->nextdoc) - old = old->nextdoc->priv; - else - old = NULL; - } - - mtd->name = "DiskOnChip Millennium"; - printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n", - this->physadr); - - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - - /* FIXME: erase size is not always 8KiB */ - mtd->erasesize = 0x2000; - mtd->writebufsize = mtd->writesize = 512; - mtd->oobsize = 16; - mtd->ecc_strength = 2; - mtd->owner = THIS_MODULE; - mtd->_erase = doc_erase; - mtd->_read = doc_read; - mtd->_write = doc_write; - mtd->_read_oob = doc_read_oob; - mtd->_write_oob = doc_write_oob; - this->curfloor = -1; - this->curchip = -1; - - /* Ident all the chips present. */ - DoC_ScanChips(this); - - if (!this->totlen) { - kfree(mtd); - iounmap(this->virtadr); - } else { - this->nextdoc = docmillist; - docmillist = mtd; - mtd->size = this->totlen; - mtd_device_register(mtd, NULL, 0); - return; - } -} -EXPORT_SYMBOL_GPL(DoCMil_init); - -static int doc_read (struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - int i, ret; - volatile char dummy; - unsigned char syndrome[6], eccbuf[6]; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[from >> (this->chipshift)]; - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* issue the Read0 or Read1 command depend on which half of the page - we are accessing. Polling the Flash Ready bit after issue 3 bytes - address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP); - DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00); - DoC_WaitReady(docptr); - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_EN, docptr, ECCConf); - - /* Read the data via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); -#ifndef USE_MEMCPY - for (i = 0; i < len-1; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); - } -#else - memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); -#endif - buf[len - 1] = ReadDOC(docptr, LastDataRead); - - /* Let the caller know we completed it */ - *retlen = len; - ret = 0; - - /* Read the ECC data from Spare Data Area, - see Reed-Solomon EDC/ECC 11.1 */ - dummy = ReadDOC(docptr, ReadPipeInit); -#ifndef USE_MEMCPY - for (i = 0; i < 5; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); - } -#else - memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5); -#endif - eccbuf[5] = ReadDOC(docptr, LastDataRead); - - /* Flush the pipeline */ - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - - /* Check the ECC Status */ - if (ReadDOC(docptr, ECCConf) & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printk("DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrome through the DiskOnChip ECC logic. - These syndrome will be all ZERO when there is no error */ - for (i = 0; i < 6; i++) { - syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i); - } - nb_errors = doc_decode_ecc(buf, syndrome); -#ifdef ECC_DEBUG - printk("ECC Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the read. Not that - this can be told to user-space, via sys_read(), but at least - MTD-aware stuff can know about it by checking *retlen */ - ret = -EIO; - } - } - -#ifdef PSYCHO_DEBUG - printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - - return ret; -} - -static int doc_write (struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - int i,ret = 0; - char eccbuf[6]; - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[to >> (this->chipshift)]; - -#if 0 - /* Don't allow a single write to cross a 512-byte block boundary */ - if (to + len > ( (to | 0x1ff) + 1)) - len = ((to | 0x1ff) + 1) - to; -#else - /* Don't allow writes which aren't exactly one block */ - if (to & 0x1ff || len != 0x200) - return -EINVAL; -#endif - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0x00); - DoC_WaitReady(docptr); - /* Set device to main plane of flash */ - DoC_Command(docptr, NAND_CMD_READ0, 0x00); - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(docptr, 3, to, 0x00, 0x00); - DoC_WaitReady(docptr); - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); - - /* Write the data via the internal pipeline through CDSN IO register, - see Pipelined Write Operations 11.2 */ -#ifndef USE_MEMCPY - for (i = 0; i < len; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); - } -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); -#endif - WriteDOC(0x00, docptr, WritePipeTerm); - - /* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic - see Reed-Solomon EDC/ECC 11.1 */ - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (i = 0; i < 6; i++) { - eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i); - } - - /* ignore the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - -#ifndef USE_MEMCPY - /* Write the ECC data to flash */ - for (i = 0; i < 6; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i); - } -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6); -#endif - - /* write the block status BLOCK_USED (0x5555) at the end of ECC data - FIXME: this is only a hack for programming the IPL area for LinuxBIOS - and should be replace with proper codes in user space utilities */ - WriteDOC(0x55, docptr, Mil_CDSN_IO); - WriteDOC(0x55, docptr, Mil_CDSN_IO + 1); - - WriteDOC(0x00, docptr, WritePipeTerm); - -#ifdef PSYCHO_DEBUG - printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); - dummy = ReadDOC(docptr, ReadPipeInit); - DoC_Delay(docptr, 2); - if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { - printk("Error programming flash\n"); - /* Error in programming - FIXME: implement Bad Block Replacement (in nftl.c ??) */ - ret = -EIO; - } - dummy = ReadDOC(docptr, LastDataRead); - - /* Let the caller know we completed it */ - *retlen = len; - - return ret; -} - -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ -#ifndef USE_MEMCPY - int i; -#endif - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OPS_PLACE_OOB); - - ofs += ops->ooboffs; - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* issue the Read2 command to set the pointer to the Spare Data Area. - Polling the Flash Ready bit after issue 3 bytes address in - Sequence Read Mode, see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00); - DoC_WaitReady(docptr); - - /* Read the data out via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); -#ifndef USE_MEMCPY - for (i = 0; i < len-1; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); - } -#else - memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); -#endif - buf[len - 1] = ReadDOC(docptr, LastDataRead); - - ops->retlen = len; - - return 0; -} - -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ -#ifndef USE_MEMCPY - int i; -#endif - volatile char dummy; - int ret = 0; - struct DiskOnChip *this = mtd->priv; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OPS_PLACE_OOB); - - ofs += ops->ooboffs; - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_WaitReady(docptr); - /* issue the Read2 command to set the pointer to the Spare Data Area. */ - DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(docptr, 3, ofs, 0x00, 0x00); - - /* Write the data via the internal pipeline through CDSN IO register, - see Pipelined Write Operations 11.2 */ -#ifndef USE_MEMCPY - for (i = 0; i < len; i++) { - /* N.B. you have to increase the source address in this way or the - ECC logic will not work properly */ - WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); - } -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); -#endif - WriteDOC(0x00, docptr, WritePipeTerm); - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, 0x00); - dummy = ReadDOC(docptr, ReadPipeInit); - DoC_Delay(docptr, 2); - if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { - printk("Error programming oob data\n"); - /* FIXME: implement Bad Block Replacement (in nftl.c ??) */ - ops->retlen = 0; - ret = -EIO; - } - dummy = ReadDOC(docptr, LastDataRead); - - ops->retlen = len; - - return ret; -} - -int doc_erase (struct mtd_info *mtd, struct erase_info *instr) -{ - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - __u32 ofs = instr->addr; - __u32 len = instr->len; - void __iomem *docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - - if (len != mtd->erasesize) - printk(KERN_WARNING "Erase not right size (%x != %x)n", - len, mtd->erasesize); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - instr->state = MTD_ERASE_PENDING; - - /* issue the Erase Setup command */ - DoC_Command(docptr, NAND_CMD_ERASE1, 0x00); - DoC_Address(docptr, 2, ofs, 0x00, 0x00); - - /* Commit the Erase Start command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_ERASE2, 0x00); - DoC_WaitReady(docptr); - - instr->state = MTD_ERASING; - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5. - FIXME: it seems that we are not wait long enough, some blocks are not - erased fully */ - DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); - dummy = ReadDOC(docptr, ReadPipeInit); - DoC_Delay(docptr, 2); - if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { - printk("Error Erasing at 0x%x\n", ofs); - /* There was an error - FIXME: implement Bad Block Replacement (in nftl.c ??) */ - instr->state = MTD_ERASE_FAILED; - } else - instr->state = MTD_ERASE_DONE; - dummy = ReadDOC(docptr, LastDataRead); - - mtd_erase_callback(instr); - - return 0; -} - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static void __exit cleanup_doc2001(void) -{ - struct mtd_info *mtd; - struct DiskOnChip *this; - - while ((mtd=docmillist)) { - this = mtd->priv; - docmillist = this->nextdoc; - - mtd_device_unregister(mtd); - - iounmap(this->virtadr); - kfree(this->chips); - kfree(mtd); - } -} - -module_exit(cleanup_doc2001); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); -MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium"); diff --git a/drivers/mtd/devices/doc2001plus.c b/drivers/mtd/devices/doc2001plus.c deleted file mode 100644 index 04eb2e4aa50..00000000000 --- a/drivers/mtd/devices/doc2001plus.c +++ /dev/null @@ -1,1088 +0,0 @@ -/* - * Linux driver for Disk-On-Chip Millennium Plus - * - * (c) 2002-2003 Greg Ungerer <gerg@snapgear.com> - * (c) 2002-2003 SnapGear Inc - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - * - * Released under GPL - */ - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/bitops.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> - -/* #define ECC_DEBUG */ - -/* I have no idea why some DoC chips can not use memcop_form|to_io(). - * This may be due to the different revisions of the ASIC controller built-in or - * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment - * this:*/ -#undef USE_MEMCPY - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf); -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf); -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops); -static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); - -static struct mtd_info *docmilpluslist = NULL; - - -/* Perform the required delay cycles by writing to the NOP register */ -static void DoC_Delay(void __iomem * docptr, int cycles) -{ - int i; - - for (i = 0; (i < cycles); i++) - WriteDOC(0, docptr, Mplus_NOP); -} - -#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(void __iomem * docptr) -{ - unsigned int c = 0xffff; - - pr_debug("_DoC_WaitReady called for out-of-line wait\n"); - - /* Out-of-line routine to wait for chip response */ - while (((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) && --c) - ; - - if (c == 0) - pr_debug("_DoC_WaitReady timed out.\n"); - - return (c == 0); -} - -static inline int DoC_WaitReady(void __iomem * docptr) -{ - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* read form NOP register should be issued prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(docptr, 4); - - if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(docptr); - - return ret; -} - -/* For some reason the Millennium Plus seems to occasionally put itself - * into reset mode. For me this happens randomly, with no pattern that I - * can detect. M-systems suggest always check this on any block level - * operation and setting to normal mode if in reset mode. - */ -static inline void DoC_CheckASIC(void __iomem * docptr) -{ - /* Make sure the DoC is in normal mode */ - if ((ReadDOC(docptr, Mplus_DOCControl) & DOC_MODE_NORMAL) == 0) { - WriteDOC((DOC_MODE_NORMAL | DOC_MODE_MDWREN), docptr, Mplus_DOCControl); - WriteDOC(~(DOC_MODE_NORMAL | DOC_MODE_MDWREN), docptr, Mplus_CtrlConfirm); - } -} - -/* DoC_Command: Send a flash command to the flash chip through the Flash - * command register. Need 2 Write Pipeline Terminates to complete send. - */ -static void DoC_Command(void __iomem * docptr, unsigned char command, - unsigned char xtraflags) -{ - WriteDOC(command, docptr, Mplus_FlashCmd); - WriteDOC(command, docptr, Mplus_WritePipeTerm); - WriteDOC(command, docptr, Mplus_WritePipeTerm); -} - -/* DoC_Address: Set the current address for the flash chip through the Flash - * Address register. Need 2 Write Pipeline Terminates to complete send. - */ -static inline void DoC_Address(struct DiskOnChip *doc, int numbytes, - unsigned long ofs, unsigned char xtraflags1, - unsigned char xtraflags2) -{ - void __iomem * docptr = doc->virtadr; - - /* Allow for possible Mill Plus internal flash interleaving */ - ofs >>= doc->interleave; - - switch (numbytes) { - case 1: - /* Send single byte, bits 0-7. */ - WriteDOC(ofs & 0xff, docptr, Mplus_FlashAddress); - break; - case 2: - /* Send bits 9-16 followed by 17-23 */ - WriteDOC((ofs >> 9) & 0xff, docptr, Mplus_FlashAddress); - WriteDOC((ofs >> 17) & 0xff, docptr, Mplus_FlashAddress); - break; - case 3: - /* Send 0-7, 9-16, then 17-23 */ - WriteDOC(ofs & 0xff, docptr, Mplus_FlashAddress); - WriteDOC((ofs >> 9) & 0xff, docptr, Mplus_FlashAddress); - WriteDOC((ofs >> 17) & 0xff, docptr, Mplus_FlashAddress); - break; - default: - return; - } - - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); -} - -/* DoC_SelectChip: Select a given flash chip within the current floor */ -static int DoC_SelectChip(void __iomem * docptr, int chip) -{ - /* No choice for flash chip on Millennium Plus */ - return 0; -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ -static int DoC_SelectFloor(void __iomem * docptr, int floor) -{ - WriteDOC((floor & 0x3), docptr, Mplus_DeviceSelect); - return 0; -} - -/* - * Translate the given offset into the appropriate command and offset. - * This does the mapping using the 16bit interleave layout defined by - * M-Systems, and looks like this for a sector pair: - * +-----------+-------+-------+-------+--------------+---------+-----------+ - * | 0 --- 511 |512-517|518-519|520-521| 522 --- 1033 |1034-1039|1040 - 1055| - * +-----------+-------+-------+-------+--------------+---------+-----------+ - * | Data 0 | ECC 0 |Flags0 |Flags1 | Data 1 |ECC 1 | OOB 1 + 2 | - * +-----------+-------+-------+-------+--------------+---------+-----------+ - */ -/* FIXME: This lives in INFTL not here. Other users of flash devices - may not want it */ -static unsigned int DoC_GetDataOffset(struct mtd_info *mtd, loff_t *from) -{ - struct DiskOnChip *this = mtd->priv; - - if (this->interleave) { - unsigned int ofs = *from & 0x3ff; - unsigned int cmd; - - if (ofs < 512) { - cmd = NAND_CMD_READ0; - ofs &= 0x1ff; - } else if (ofs < 1014) { - cmd = NAND_CMD_READ1; - ofs = (ofs & 0x1ff) + 10; - } else { - cmd = NAND_CMD_READOOB; - ofs = ofs - 1014; - } - - *from = (*from & ~0x3ff) | ofs; - return cmd; - } else { - /* No interleave */ - if ((*from) & 0x100) - return NAND_CMD_READ1; - return NAND_CMD_READ0; - } -} - -static unsigned int DoC_GetECCOffset(struct mtd_info *mtd, loff_t *from) -{ - unsigned int ofs, cmd; - - if (*from & 0x200) { - cmd = NAND_CMD_READOOB; - ofs = 10 + (*from & 0xf); - } else { - cmd = NAND_CMD_READ1; - ofs = (*from & 0xf); - } - - *from = (*from & ~0x3ff) | ofs; - return cmd; -} - -static unsigned int DoC_GetFlagsOffset(struct mtd_info *mtd, loff_t *from) -{ - unsigned int ofs, cmd; - - cmd = NAND_CMD_READ1; - ofs = (*from & 0x200) ? 8 : 6; - *from = (*from & ~0x3ff) | ofs; - return cmd; -} - -static unsigned int DoC_GetHdrOffset(struct mtd_info *mtd, loff_t *from) -{ - unsigned int ofs, cmd; - - cmd = NAND_CMD_READOOB; - ofs = (*from & 0x200) ? 24 : 16; - *from = (*from & ~0x3ff) | ofs; - return cmd; -} - -static inline void MemReadDOC(void __iomem * docptr, unsigned char *buf, int len) -{ -#ifndef USE_MEMCPY - int i; - for (i = 0; i < len; i++) - buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); -#else - memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len); -#endif -} - -static inline void MemWriteDOC(void __iomem * docptr, unsigned char *buf, int len) -{ -#ifndef USE_MEMCPY - int i; - for (i = 0; i < len; i++) - WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); -#else - memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); -#endif -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i, j; - volatile char dummy; - void __iomem * docptr = doc->virtadr; - - /* Page in the required floor/chip */ - DoC_SelectFloor(docptr, floor); - DoC_SelectChip(docptr, chip); - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - /* Read the NAND chip ID: 1. Send ReadID command */ - DoC_Command(docptr, NAND_CMD_READID, 0); - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc, 1, 0x00, 0, 0x00); - - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - /* Read the manufacturer and device id codes of the flash device through - CDSN IO register see Software Requirement 11.4 item 5.*/ - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - - mfr = ReadDOC(docptr, Mil_CDSN_IO); - if (doc->interleave) - dummy = ReadDOC(docptr, Mil_CDSN_IO); /* 2 way interleave */ - - id = ReadDOC(docptr, Mil_CDSN_IO); - if (doc->interleave) - dummy = ReadDOC(docptr, Mil_CDSN_IO); /* 2 way interleave */ - - dummy = ReadDOC(docptr, Mplus_LastDataRead); - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (id == nand_flash_ids[i].id) { - /* Try to identify manufacturer */ - for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { - if (nand_manuf_ids[j].id == mfr) - break; - } - printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s:%s)\n", mfr, id, - nand_manuf_ids[j].name, nand_flash_ids[i].name); - doc->mfr = mfr; - doc->id = id; - doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1; - doc->erasesize = nand_flash_ids[i].erasesize << doc->interleave; - break; - } - } - - if (nand_flash_ids[i].name == NULL) - return 0; - return 1; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ -static void DoC_ScanChips(struct DiskOnChip *this) -{ - int floor, chip; - int numchips[MAX_FLOORS_MPLUS]; - int ret; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - /* Work out the intended interleave setting */ - this->interleave = 0; - if (this->ChipID == DOC_ChipID_DocMilPlus32) - this->interleave = 1; - - /* Check the ASIC agrees */ - if ( (this->interleave << 2) != - (ReadDOC(this->virtadr, Mplus_Configuration) & 4)) { - u_char conf = ReadDOC(this->virtadr, Mplus_Configuration); - printk(KERN_NOTICE "Setting DiskOnChip Millennium Plus interleave to %s\n", - this->interleave?"on (16-bit)":"off (8-bit)"); - conf ^= 4; - WriteDOC(conf, this->virtadr, Mplus_Configuration); - } - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0,ret = 1; floor < MAX_FLOORS_MPLUS; floor++) { - numchips[floor] = 0; - for (chip = 0; chip < MAX_CHIPS_MPLUS && ret != 0; chip++) { - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - printk("No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); - if (!this->chips){ - printk("MTD: No memory for allocating chip info structures\n"); - return; - } - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0, ret = 0; floor < MAX_FLOORS_MPLUS; floor++) { - for (chip = 0 ; chip < numchips[floor] ; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", - this->numchips ,this->totlen >> 20); -} - -static int DoCMilPlus_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) -{ - int tmp1, tmp2, retval; - - if (doc1->physadr == doc2->physadr) - return 1; - - /* Use the alias resolution register which was set aside for this - * purpose. If it's value is the same on both chips, they might - * be the same chip, and we write to one and check for a change in - * the other. It's unclear if this register is usuable in the - * DoC 2000 (it's in the Millennium docs), but it seems to work. */ - tmp1 = ReadDOC(doc1->virtadr, Mplus_AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, Mplus_AliasResolution); - if (tmp1 != tmp2) - return 0; - - WriteDOC((tmp1+1) % 0xff, doc1->virtadr, Mplus_AliasResolution); - tmp2 = ReadDOC(doc2->virtadr, Mplus_AliasResolution); - if (tmp2 == (tmp1+1) % 0xff) - retval = 1; - else - retval = 0; - - /* Restore register contents. May not be necessary, but do it just to - * be safe. */ - WriteDOC(tmp1, doc1->virtadr, Mplus_AliasResolution); - - return retval; -} - -/* This routine is found from the docprobe code by symbol_get(), - * which will bump the use count of this module. */ -void DoCMilPlus_init(struct mtd_info *mtd) -{ - struct DiskOnChip *this = mtd->priv; - struct DiskOnChip *old = NULL; - - /* We must avoid being called twice for the same device. */ - if (docmilpluslist) - old = docmilpluslist->priv; - - while (old) { - if (DoCMilPlus_is_alias(this, old)) { - printk(KERN_NOTICE "Ignoring DiskOnChip Millennium " - "Plus at 0x%lX - already configured\n", - this->physadr); - iounmap(this->virtadr); - kfree(mtd); - return; - } - if (old->nextdoc) - old = old->nextdoc->priv; - else - old = NULL; - } - - mtd->name = "DiskOnChip Millennium Plus"; - printk(KERN_NOTICE "DiskOnChip Millennium Plus found at " - "address 0x%lX\n", this->physadr); - - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->writebufsize = mtd->writesize = 512; - mtd->oobsize = 16; - mtd->ecc_strength = 2; - mtd->owner = THIS_MODULE; - mtd->_erase = doc_erase; - mtd->_read = doc_read; - mtd->_write = doc_write; - mtd->_read_oob = doc_read_oob; - mtd->_write_oob = doc_write_oob; - this->curfloor = -1; - this->curchip = -1; - - /* Ident all the chips present. */ - DoC_ScanChips(this); - - if (!this->totlen) { - kfree(mtd); - iounmap(this->virtadr); - } else { - this->nextdoc = docmilpluslist; - docmilpluslist = mtd; - mtd->size = this->totlen; - mtd->erasesize = this->erasesize; - mtd_device_register(mtd, NULL, 0); - return; - } -} -EXPORT_SYMBOL_GPL(DoCMilPlus_init); - -#if 0 -static int doc_dumpblk(struct mtd_info *mtd, loff_t from) -{ - int i; - loff_t fofs; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[from >> (this->chipshift)]; - unsigned char *bp, buf[1056]; - char c[32]; - - from &= ~0x3ff; - - /* Don't allow read past end of device */ - if (from >= this->totlen) - return -EINVAL; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - fofs = from; - DoC_Command(docptr, DoC_GetDataOffset(mtd, &fofs), 0); - DoC_Address(this, 3, fofs, 0, 0x00); - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - - /* Read the data via the internal pipeline through CDSN IO - register, see Pipelined Read Operations 11.3 */ - MemReadDOC(docptr, buf, 1054); - buf[1054] = ReadDOC(docptr, Mplus_LastDataRead); - buf[1055] = ReadDOC(docptr, Mplus_LastDataRead); - - memset(&c[0], 0, sizeof(c)); - printk("DUMP OFFSET=%x:\n", (int)from); - - for (i = 0, bp = &buf[0]; (i < 1056); i++) { - if ((i % 16) == 0) - printk("%08x: ", i); - printk(" %02x", *bp); - c[(i & 0xf)] = ((*bp >= 0x20) && (*bp <= 0x7f)) ? *bp : '.'; - bp++; - if (((i + 1) % 16) == 0) - printk(" %s\n", c); - } - printk("\n"); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - return 0; -} -#endif - -static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - int ret, i; - volatile char dummy; - loff_t fofs; - unsigned char syndrome[6], eccbuf[6]; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[from >> (this->chipshift)]; - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - fofs = from; - DoC_Command(docptr, DoC_GetDataOffset(mtd, &fofs), 0); - DoC_Address(this, 3, fofs, 0, 0x00); - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); - - /* Let the caller know we completed it */ - *retlen = len; - ret = 0; - - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - - /* Read the data via the internal pipeline through CDSN IO - register, see Pipelined Read Operations 11.3 */ - MemReadDOC(docptr, buf, len); - - /* Read the ECC data following raw data */ - MemReadDOC(docptr, eccbuf, 4); - eccbuf[4] = ReadDOC(docptr, Mplus_LastDataRead); - eccbuf[5] = ReadDOC(docptr, Mplus_LastDataRead); - - /* Flush the pipeline */ - dummy = ReadDOC(docptr, Mplus_ECCConf); - dummy = ReadDOC(docptr, Mplus_ECCConf); - - /* Check the ECC Status */ - if (ReadDOC(docptr, Mplus_ECCConf) & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printk("DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrome through the DiskOnChip ECC logic. - These syndrome will be all ZERO when there is no error */ - for (i = 0; i < 6; i++) - syndrome[i] = ReadDOC(docptr, Mplus_ECCSyndrome0 + i); - - nb_errors = doc_decode_ecc(buf, syndrome); -#ifdef ECC_DEBUG - printk("ECC Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the - read. Not that this can be told to user-space, via - sys_read(), but at least MTD-aware stuff can know - about it by checking *retlen */ -#ifdef ECC_DEBUG - printk("%s(%d): Millennium Plus ECC error (from=0x%x:\n", - __FILE__, __LINE__, (int)from); - printk(" syndrome= %02x:%02x:%02x:%02x:%02x:" - "%02x\n", - syndrome[0], syndrome[1], syndrome[2], - syndrome[3], syndrome[4], syndrome[5]); - printk(" eccbuf= %02x:%02x:%02x:%02x:%02x:" - "%02x\n", - eccbuf[0], eccbuf[1], eccbuf[2], - eccbuf[3], eccbuf[4], eccbuf[5]); -#endif - ret = -EIO; - } - } - -#ifdef PSYCHO_DEBUG - printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , Mplus_ECCConf); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - return ret; -} - -static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - int i, before, ret = 0; - loff_t fto; - volatile char dummy; - char eccbuf[6]; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[to >> (this->chipshift)]; - - /* Don't allow writes which aren't exactly one block (512 bytes) */ - if ((to & 0x1ff) || (len != 0x200)) - return -EINVAL; - - /* Determine position of OOB flags, before or after data */ - before = (this->interleave && (to & 0x200)); - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - /* Set device to appropriate plane of flash */ - fto = to; - WriteDOC(DoC_GetDataOffset(mtd, &fto), docptr, Mplus_FlashCmd); - - /* On interleaved devices the flags for 2nd half 512 are before data */ - if (before) - fto -= 2; - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(this, 3, fto, 0x00, 0x00); - - /* Disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - - if (before) { - /* Write the block status BLOCK_USED (0x5555) */ - WriteDOC(0x55, docptr, Mil_CDSN_IO); - WriteDOC(0x55, docptr, Mil_CDSN_IO); - } - - /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); - - MemWriteDOC(docptr, (unsigned char *) buf, len); - - /* Write ECC data to flash, the ECC info is generated by - the DiskOnChip ECC logic see Reed-Solomon EDC/ECC 11.1 */ - DoC_Delay(docptr, 3); - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (i = 0; i < 6; i++) - eccbuf[i] = ReadDOC(docptr, Mplus_ECCSyndrome0 + i); - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); - - /* Write the ECC data to flash */ - MemWriteDOC(docptr, eccbuf, 6); - - if (!before) { - /* Write the block status BLOCK_USED (0x5555) */ - WriteDOC(0x55, docptr, Mil_CDSN_IO+6); - WriteDOC(0x55, docptr, Mil_CDSN_IO+7); - } - -#ifdef PSYCHO_DEBUG - printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, 0); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - DoC_Delay(docptr, 2); - if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) { - printk("MTD: Error 0x%x programming at 0x%x\n", dummy, (int)to); - /* Error in programming - FIXME: implement Bad Block Replacement (in nftl.c ??) */ - ret = -EIO; - } - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - /* Let the caller know we completed it */ - *retlen = len; - - return ret; -} - -static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - loff_t fofs, base; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - size_t i, size, got, want; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OPS_PLACE_OOB); - - ofs += ops->ooboffs; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect); - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - DoC_WaitReady(docptr); - - /* Maximum of 16 bytes in the OOB region, so limit read to that */ - if (len > 16) - len = 16; - got = 0; - want = len; - - for (i = 0; ((i < 3) && (want > 0)); i++) { - /* Figure out which region we are accessing... */ - fofs = ofs; - base = ofs & 0xf; - if (!this->interleave) { - DoC_Command(docptr, NAND_CMD_READOOB, 0); - size = 16 - base; - } else if (base < 6) { - DoC_Command(docptr, DoC_GetECCOffset(mtd, &fofs), 0); - size = 6 - base; - } else if (base < 8) { - DoC_Command(docptr, DoC_GetFlagsOffset(mtd, &fofs), 0); - size = 8 - base; - } else { - DoC_Command(docptr, DoC_GetHdrOffset(mtd, &fofs), 0); - size = 16 - base; - } - if (size > want) - size = want; - - /* Issue read command */ - DoC_Address(this, 3, fofs, 0, 0x00); - WriteDOC(0, docptr, Mplus_FlashControl); - DoC_WaitReady(docptr); - - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - MemReadDOC(docptr, &buf[got], size - 2); - buf[got + size - 2] = ReadDOC(docptr, Mplus_LastDataRead); - buf[got + size - 1] = ReadDOC(docptr, Mplus_LastDataRead); - - ofs += size; - got += size; - want -= size; - } - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - ops->retlen = len; - return 0; -} - -static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, - struct mtd_oob_ops *ops) -{ - volatile char dummy; - loff_t fofs, base; - struct DiskOnChip *this = mtd->priv; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - size_t i, size, got, want; - int ret = 0; - uint8_t *buf = ops->oobbuf; - size_t len = ops->len; - - BUG_ON(ops->mode != MTD_OPS_PLACE_OOB); - - ofs += ops->ooboffs; - - DoC_CheckASIC(docptr); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect); - - - /* Maximum of 16 bytes in the OOB region, so limit write to that */ - if (len > 16) - len = 16; - got = 0; - want = len; - - for (i = 0; ((i < 3) && (want > 0)); i++) { - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(docptr, NAND_CMD_RESET, 0); - DoC_WaitReady(docptr); - - /* Figure out which region we are accessing... */ - fofs = ofs; - base = ofs & 0x0f; - if (!this->interleave) { - WriteDOC(NAND_CMD_READOOB, docptr, Mplus_FlashCmd); - size = 16 - base; - } else if (base < 6) { - WriteDOC(DoC_GetECCOffset(mtd, &fofs), docptr, Mplus_FlashCmd); - size = 6 - base; - } else if (base < 8) { - WriteDOC(DoC_GetFlagsOffset(mtd, &fofs), docptr, Mplus_FlashCmd); - size = 8 - base; - } else { - WriteDOC(DoC_GetHdrOffset(mtd, &fofs), docptr, Mplus_FlashCmd); - size = 16 - base; - } - if (size > want) - size = want; - - /* Issue the Serial Data In command to initial the Page Program process */ - DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); - DoC_Address(this, 3, fofs, 0, 0x00); - - /* Disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - - /* Write the data via the internal pipeline through CDSN IO - register, see Pipelined Write Operations 11.2 */ - MemWriteDOC(docptr, (unsigned char *) &buf[got], size); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - - /* Commit the Page Program command and wait for ready - see Software Requirement 11.4 item 1.*/ - DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); - DoC_WaitReady(docptr); - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5.*/ - DoC_Command(docptr, NAND_CMD_STATUS, 0x00); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - DoC_Delay(docptr, 2); - if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) { - printk("MTD: Error 0x%x programming oob at 0x%x\n", - dummy, (int)ofs); - /* FIXME: implement Bad Block Replacement */ - ops->retlen = 0; - ret = -EIO; - } - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - ofs += size; - got += size; - want -= size; - } - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - ops->retlen = len; - return ret; -} - -int doc_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - volatile char dummy; - struct DiskOnChip *this = mtd->priv; - __u32 ofs = instr->addr; - __u32 len = instr->len; - void __iomem * docptr = this->virtadr; - struct Nand *mychip = &this->chips[ofs >> this->chipshift]; - - DoC_CheckASIC(docptr); - - if (len != mtd->erasesize) - printk(KERN_WARNING "MTD: Erase not right size (%x != %x)n", - len, mtd->erasesize); - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(docptr, mychip->floor); - DoC_SelectChip(docptr, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(docptr, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - instr->state = MTD_ERASE_PENDING; - - /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */ - WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect); - - DoC_Command(docptr, NAND_CMD_RESET, 0x00); - DoC_WaitReady(docptr); - - DoC_Command(docptr, NAND_CMD_ERASE1, 0); - DoC_Address(this, 2, ofs, 0, 0x00); - DoC_Command(docptr, NAND_CMD_ERASE2, 0); - DoC_WaitReady(docptr); - instr->state = MTD_ERASING; - - /* Read the status of the flash device through CDSN IO register - see Software Requirement 11.4 item 5. */ - DoC_Command(docptr, NAND_CMD_STATUS, 0); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - dummy = ReadDOC(docptr, Mplus_ReadPipeInit); - if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) { - printk("MTD: Error 0x%x erasing at 0x%x\n", dummy, ofs); - /* FIXME: implement Bad Block Replacement (in nftl.c ??) */ - instr->state = MTD_ERASE_FAILED; - } else { - instr->state = MTD_ERASE_DONE; - } - dummy = ReadDOC(docptr, Mplus_LastDataRead); - - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - - mtd_erase_callback(instr); - - return 0; -} - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static void __exit cleanup_doc2001plus(void) -{ - struct mtd_info *mtd; - struct DiskOnChip *this; - - while ((mtd=docmilpluslist)) { - this = mtd->priv; - docmilpluslist = this->nextdoc; - - mtd_device_unregister(mtd); - - iounmap(this->virtadr); - kfree(this->chips); - kfree(mtd); - } -} - -module_exit(cleanup_doc2001plus); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com> et al."); -MODULE_DESCRIPTION("Driver for DiskOnChip Millennium Plus"); diff --git a/drivers/mtd/devices/docecc.c b/drivers/mtd/devices/docecc.c deleted file mode 100644 index 4a1c39b6f37..00000000000 --- a/drivers/mtd/devices/docecc.c +++ /dev/null @@ -1,521 +0,0 @@ -/* - * ECC algorithm for M-systems disk on chip. We use the excellent Reed - * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the - * GNU GPL License. The rest is simply to convert the disk on chip - * syndrome into a standard syndome. - * - * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <asm/uaccess.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/doc2000.h> - -#define DEBUG_ECC 0 -/* need to undef it (from asm/termbits.h) */ -#undef B0 - -#define MM 10 /* Symbol size in bits */ -#define KK (1023-4) /* Number of data symbols per block */ -#define B0 510 /* First root of generator polynomial, alpha form */ -#define PRIM 1 /* power of alpha used to generate roots of generator poly */ -#define NN ((1 << MM) - 1) - -typedef unsigned short dtype; - -/* 1+x^3+x^10 */ -static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; - -/* This defines the type used to store an element of the Galois Field - * used by the code. Make sure this is something larger than a char if - * if anything larger than GF(256) is used. - * - * Note: unsigned char will work up to GF(256) but int seems to run - * faster on the Pentium. - */ -typedef int gf; - -/* No legal value in index form represents zero, so - * we need a special value for this purpose - */ -#define A0 (NN) - -/* Compute x % NN, where NN is 2**MM - 1, - * without a slow divide - */ -static inline gf -modnn(int x) -{ - while (x >= NN) { - x -= NN; - x = (x >> MM) + (x & NN); - } - return x; -} - -#define CLEAR(a,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = 0;\ -} - -#define COPY(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define COPYDOWN(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define Ldec 1 - -/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] - lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; - polynomial form -> index form index_of[j=alpha**i] = i - alpha=2 is the primitive element of GF(2**m) - HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: - Let @ represent the primitive element commonly called "alpha" that - is the root of the primitive polynomial p(x). Then in GF(2^m), for any - 0 <= i <= 2^m-2, - @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation - of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for - example the polynomial representation of @^5 would be given by the binary - representation of the integer "alpha_to[5]". - Similarly, index_of[] can be used as follows: - As above, let @ represent the primitive element of GF(2^m) that is - the root of the primitive polynomial p(x). In order to find the power - of @ (alpha) that has the polynomial representation - a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - we consider the integer "i" whose binary representation with a(0) being LSB - and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry - "index_of[i]". Now, @^index_of[i] is that element whose polynomial - representation is (a(0),a(1),a(2),...,a(m-1)). - NOTE: - The element alpha_to[2^m-1] = 0 always signifying that the - representation of "@^infinity" = 0 is (0,0,0,...,0). - Similarly, the element index_of[0] = A0 always signifying - that the power of alpha which has the polynomial representation - (0,0,...,0) is "infinity". - -*/ - -static void -generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) -{ - register int i, mask; - - mask = 1; - Alpha_to[MM] = 0; - for (i = 0; i < MM; i++) { - Alpha_to[i] = mask; - Index_of[Alpha_to[i]] = i; - /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ - if (Pp[i] != 0) - Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ - mask <<= 1; /* single left-shift */ - } - Index_of[Alpha_to[MM]] = MM; - /* - * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by - * poly-repr of @^i shifted left one-bit and accounting for any @^MM - * term that may occur when poly-repr of @^i is shifted. - */ - mask >>= 1; - for (i = MM + 1; i < NN; i++) { - if (Alpha_to[i - 1] >= mask) - Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); - else - Alpha_to[i] = Alpha_to[i - 1] << 1; - Index_of[Alpha_to[i]] = i; - } - Index_of[0] = A0; - Alpha_to[NN] = 0; -} - -/* - * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content - * of the feedback shift register after having processed the data and - * the ECC. - * - * Return number of symbols corrected, or -1 if codeword is illegal - * or uncorrectable. If eras_pos is non-null, the detected error locations - * are written back. NOTE! This array must be at least NN-KK elements long. - * The corrected data are written in eras_val[]. They must be xor with the data - * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . - * - * First "no_eras" erasures are declared by the calling program. Then, the - * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). - * If the number of channel errors is not greater than "t_after_eras" the - * transmitted codeword will be recovered. Details of algorithm can be found - * in R. Blahut's "Theory ... of Error-Correcting Codes". - - * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure - * will result. The decoder *could* check for this condition, but it would involve - * extra time on every decoding operation. - * */ -static int -eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], - gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], - int no_eras) -{ - int deg_lambda, el, deg_omega; - int i, j, r,k; - gf u,q,tmp,num1,num2,den,discr_r; - gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly - * and syndrome poly */ - gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; - gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; - int syn_error, count; - - syn_error = 0; - for(i=0;i<NN-KK;i++) - syn_error |= bb[i]; - - if (!syn_error) { - /* if remainder is zero, data[] is a codeword and there are no - * errors to correct. So return data[] unmodified - */ - count = 0; - goto finish; - } - - for(i=1;i<=NN-KK;i++){ - s[i] = bb[0]; - } - for(j=1;j<NN-KK;j++){ - if(bb[j] == 0) - continue; - tmp = Index_of[bb[j]]; - - for(i=1;i<=NN-KK;i++) - s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; - } - - /* undo the feedback register implicit multiplication and convert - syndromes to index form */ - - for(i=1;i<=NN-KK;i++) { - tmp = Index_of[s[i]]; - if (tmp != A0) - tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); - s[i] = tmp; - } - - CLEAR(&lambda[1],NN-KK); - lambda[0] = 1; - - if (no_eras > 0) { - /* Init lambda to be the erasure locator polynomial */ - lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; - for (i = 1; i < no_eras; i++) { - u = modnn(PRIM*eras_pos[i]); - for (j = i+1; j > 0; j--) { - tmp = Index_of[lambda[j - 1]]; - if(tmp != A0) - lambda[j] ^= Alpha_to[modnn(u + tmp)]; - } - } -#if DEBUG_ECC >= 1 - /* Test code that verifies the erasure locator polynomial just constructed - Needed only for decoder debugging. */ - - /* find roots of the erasure location polynomial */ - for(i=1;i<=no_eras;i++) - reg[i] = Index_of[lambda[i]]; - count = 0; - for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { - q = 1; - for (j = 1; j <= no_eras; j++) - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - if (q != 0) - continue; - /* store root and error location number indices */ - root[count] = i; - loc[count] = k; - count++; - } - if (count != no_eras) { - printf("\n lambda(x) is WRONG\n"); - count = -1; - goto finish; - } -#if DEBUG_ECC >= 2 - printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); - for (i = 0; i < count; i++) - printf("%d ", loc[i]); - printf("\n"); -#endif -#endif - } - for(i=0;i<NN-KK+1;i++) - b[i] = Index_of[lambda[i]]; - - /* - * Begin Berlekamp-Massey algorithm to determine error+erasure - * locator polynomial - */ - r = no_eras; - el = no_eras; - while (++r <= NN-KK) { /* r is the step number */ - /* Compute discrepancy at the r-th step in poly-form */ - discr_r = 0; - for (i = 0; i < r; i++){ - if ((lambda[i] != 0) && (s[r - i] != A0)) { - discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; - } - } - discr_r = Index_of[discr_r]; /* Index form */ - if (discr_r == A0) { - /* 2 lines below: B(x) <-- x*B(x) */ - COPYDOWN(&b[1],b,NN-KK); - b[0] = A0; - } else { - /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ - t[0] = lambda[0]; - for (i = 0 ; i < NN-KK; i++) { - if(b[i] != A0) - t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; - else - t[i+1] = lambda[i+1]; - } - if (2 * el <= r + no_eras - 1) { - el = r + no_eras - el; - /* - * 2 lines below: B(x) <-- inv(discr_r) * - * lambda(x) - */ - for (i = 0; i <= NN-KK; i++) - b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); - } else { - /* 2 lines below: B(x) <-- x*B(x) */ - COPYDOWN(&b[1],b,NN-KK); - b[0] = A0; - } - COPY(lambda,t,NN-KK+1); - } - } - - /* Convert lambda to index form and compute deg(lambda(x)) */ - deg_lambda = 0; - for(i=0;i<NN-KK+1;i++){ - lambda[i] = Index_of[lambda[i]]; - if(lambda[i] != A0) - deg_lambda = i; - } - /* - * Find roots of the error+erasure locator polynomial by Chien - * Search - */ - COPY(®[1],&lambda[1],NN-KK); - count = 0; /* Number of roots of lambda(x) */ - for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { - q = 1; - for (j = deg_lambda; j > 0; j--){ - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - } - if (q != 0) - continue; - /* store root (index-form) and error location number */ - root[count] = i; - loc[count] = k; - /* If we've already found max possible roots, - * abort the search to save time - */ - if(++count == deg_lambda) - break; - } - if (deg_lambda != count) { - /* - * deg(lambda) unequal to number of roots => uncorrectable - * error detected - */ - count = -1; - goto finish; - } - /* - * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo - * x**(NN-KK)). in index form. Also find deg(omega). - */ - deg_omega = 0; - for (i = 0; i < NN-KK;i++){ - tmp = 0; - j = (deg_lambda < i) ? deg_lambda : i; - for(;j >= 0; j--){ - if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) - tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; - } - if(tmp != 0) - deg_omega = i; - omega[i] = Index_of[tmp]; - } - omega[NN-KK] = A0; - - /* - * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = - * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form - */ - for (j = count-1; j >=0; j--) { - num1 = 0; - for (i = deg_omega; i >= 0; i--) { - if (omega[i] != A0) - num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; - } - num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; - den = 0; - - /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ - for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { - if(lambda[i+1] != A0) - den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; - } - if (den == 0) { -#if DEBUG_ECC >= 1 - printf("\n ERROR: denominator = 0\n"); -#endif - /* Convert to dual- basis */ - count = -1; - goto finish; - } - /* Apply error to data */ - if (num1 != 0) { - eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; - } else { - eras_val[j] = 0; - } - } - finish: - for(i=0;i<count;i++) - eras_pos[i] = loc[i]; - return count; -} - -/***************************************************************************/ -/* The DOC specific code begins here */ - -#define SECTOR_SIZE 512 -/* The sector bytes are packed into NB_DATA MM bits words */ -#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) - -/* - * Correct the errors in 'sector[]' by using 'ecc1[]' which is the - * content of the feedback shift register applyied to the sector and - * the ECC. Return the number of errors corrected (and correct them in - * sector), or -1 if error - */ -int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) -{ - int parity, i, nb_errors; - gf bb[NN - KK + 1]; - gf error_val[NN-KK]; - int error_pos[NN-KK], pos, bitpos, index, val; - dtype *Alpha_to, *Index_of; - - /* init log and exp tables here to save memory. However, it is slower */ - Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); - if (!Alpha_to) - return -1; - - Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL); - if (!Index_of) { - kfree(Alpha_to); - return -1; - } - - generate_gf(Alpha_to, Index_of); - - parity = ecc1[1]; - - bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); - bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); - bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); - bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); - - nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, - error_val, error_pos, 0); - if (nb_errors <= 0) - goto the_end; - - /* correct the errors */ - for(i=0;i<nb_errors;i++) { - pos = error_pos[i]; - if (pos >= NB_DATA && pos < KK) { - nb_errors = -1; - goto the_end; - } - if (pos < NB_DATA) { - /* extract bit position (MSB first) */ - pos = 10 * (NB_DATA - 1 - pos) - 6; - /* now correct the following 10 bits. At most two bytes - can be modified since pos is even */ - index = (pos >> 3) ^ 1; - bitpos = pos & 7; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] >> (2 + bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - index = ((pos >> 3) + 1) ^ 1; - bitpos = (bitpos + 10) & 7; - if (bitpos == 0) - bitpos = 8; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] << (8 - bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - } - } - - /* use parity to test extra errors */ - if ((parity & 0xff) != 0) - nb_errors = -1; - - the_end: - kfree(Alpha_to); - kfree(Index_of); - return nb_errors; -} - -EXPORT_SYMBOL_GPL(doc_decode_ecc); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>"); -MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware"); diff --git a/drivers/mtd/devices/docg3.c b/drivers/mtd/devices/docg3.c index f70854d728f..91a169c44b3 100644 --- a/drivers/mtd/devices/docg3.c +++ b/drivers/mtd/devices/docg3.c @@ -123,7 +123,7 @@ static inline void doc_flash_address(struct docg3 *docg3, u8 addr) doc_writeb(docg3, addr, DOC_FLASHADDRESS); } -static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; +static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; static int doc_register_readb(struct docg3 *docg3, int reg) { @@ -919,19 +919,13 @@ static int doc_read_oob(struct mtd_info *mtd, loff_t from, eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); if (nboob >= DOC_LAYOUT_OOB_SIZE) { - doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", - oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3], - oobbuf[4], oobbuf[5], oobbuf[6]); + doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); - doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", - oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11], - oobbuf[12], oobbuf[13], oobbuf[14]); + doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); } doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); - doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", - hwecc[0], hwecc[1], hwecc[2], hwecc[3], hwecc[4], - hwecc[5], hwecc[6]); + doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); ret = -EIO; if (is_prot_seq_error(docg3)) @@ -1446,7 +1440,7 @@ static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, oobdelta = mtd->ecclayout->oobavail; break; default: - oobdelta = 0; + return -EINVAL; } if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || (ofs % DOC_LAYOUT_PAGE_SIZE)) @@ -1614,8 +1608,8 @@ static ssize_t dps1_insert_key(struct device *dev, #define FLOOR_SYSFS(id) { \ __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ - __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \ - __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \ + __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ + __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ } static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { @@ -2053,21 +2047,21 @@ static int __init docg3_probe(struct platform_device *pdev) ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!ress) { dev_err(dev, "No I/O memory resource defined\n"); - goto noress; + return ret; } - base = ioremap(ress->start, DOC_IOSPACE_SIZE); + base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); ret = -ENOMEM; - cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS, - GFP_KERNEL); + cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS, + GFP_KERNEL); if (!cascade) - goto nomem1; + return ret; cascade->base = base; mutex_init(&cascade->lock); cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, DOC_ECC_BCH_PRIMPOLY); if (!cascade->bch) - goto nomem2; + return ret; for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { mtd = doc_probe_device(cascade, floor, dev); @@ -2103,15 +2097,10 @@ notfound: ret = -ENODEV; dev_info(dev, "No supported DiskOnChip found\n"); err_probe: - kfree(cascade->bch); + free_bch(cascade->bch); for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) if (cascade->floors[floor]) doc_release_device(cascade->floors[floor]); -nomem2: - kfree(cascade); -nomem1: - iounmap(base); -noress: return ret; } @@ -2125,7 +2114,6 @@ static int __exit docg3_release(struct platform_device *pdev) { struct docg3_cascade *cascade = platform_get_drvdata(pdev); struct docg3 *docg3 = cascade->floors[0]->priv; - void __iomem *base = cascade->base; int floor; doc_unregister_sysfs(pdev, cascade); @@ -2135,8 +2123,6 @@ static int __exit docg3_release(struct platform_device *pdev) doc_release_device(cascade->floors[floor]); free_bch(docg3->cascade->bch); - kfree(cascade); - iounmap(base); return 0; } @@ -2150,18 +2136,7 @@ static struct platform_driver g3_driver = { .remove = __exit_p(docg3_release), }; -static int __init docg3_init(void) -{ - return platform_driver_probe(&g3_driver, docg3_probe); -} -module_init(docg3_init); - - -static void __exit docg3_exit(void) -{ - platform_driver_unregister(&g3_driver); -} -module_exit(docg3_exit); +module_platform_driver_probe(g3_driver, docg3_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); diff --git a/drivers/mtd/devices/docprobe.c b/drivers/mtd/devices/docprobe.c deleted file mode 100644 index 706b847b46b..00000000000 --- a/drivers/mtd/devices/docprobe.c +++ /dev/null @@ -1,327 +0,0 @@ - -/* Linux driver for Disk-On-Chip devices */ -/* Probe routines common to all DoC devices */ -/* (C) 1999 Machine Vision Holdings, Inc. */ -/* (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> */ - - -/* DOC_PASSIVE_PROBE: - In order to ensure that the BIOS checksum is correct at boot time, and - hence that the onboard BIOS extension gets executed, the DiskOnChip - goes into reset mode when it is read sequentially: all registers - return 0xff until the chip is woken up again by writing to the - DOCControl register. - - Unfortunately, this means that the probe for the DiskOnChip is unsafe, - because one of the first things it does is write to where it thinks - the DOCControl register should be - which may well be shared memory - for another device. I've had machines which lock up when this is - attempted. Hence the possibility to do a passive probe, which will fail - to detect a chip in reset mode, but is at least guaranteed not to lock - the machine. - - If you have this problem, uncomment the following line: -#define DOC_PASSIVE_PROBE -*/ - - -/* DOC_SINGLE_DRIVER: - Millennium driver has been merged into DOC2000 driver. - - The old Millennium-only driver has been retained just in case there - are problems with the new code. If the combined driver doesn't work - for you, you can try the old one by undefining DOC_SINGLE_DRIVER - below and also enabling it in your configuration. If this fixes the - problems, please send a report to the MTD mailing list at - <linux-mtd@lists.infradead.org>. -*/ -#define DOC_SINGLE_DRIVER - -#include <linux/kernel.h> -#include <linux/module.h> -#include <asm/errno.h> -#include <asm/io.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/types.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/doc2000.h> - - -static unsigned long doc_config_location = CONFIG_MTD_DOCPROBE_ADDRESS; -module_param(doc_config_location, ulong, 0); -MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); - -static unsigned long __initdata doc_locations[] = { -#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) -#ifdef CONFIG_MTD_DOCPROBE_HIGH - 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, - 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, - 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, - 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, - 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, -#else /* CONFIG_MTD_DOCPROBE_HIGH */ - 0xc8000, 0xca000, 0xcc000, 0xce000, - 0xd0000, 0xd2000, 0xd4000, 0xd6000, - 0xd8000, 0xda000, 0xdc000, 0xde000, - 0xe0000, 0xe2000, 0xe4000, 0xe6000, - 0xe8000, 0xea000, 0xec000, 0xee000, -#endif /* CONFIG_MTD_DOCPROBE_HIGH */ -#else -#warning Unknown architecture for DiskOnChip. No default probe locations defined -#endif - 0xffffffff }; - -/* doccheck: Probe a given memory window to see if there's a DiskOnChip present */ - -static inline int __init doccheck(void __iomem *potential, unsigned long physadr) -{ - void __iomem *window=potential; - unsigned char tmp, tmpb, tmpc, ChipID; -#ifndef DOC_PASSIVE_PROBE - unsigned char tmp2; -#endif - - /* Routine copied from the Linux DOC driver */ - -#ifdef CONFIG_MTD_DOCPROBE_55AA - /* Check for 0x55 0xAA signature at beginning of window, - this is no longer true once we remove the IPL (for Millennium */ - if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa) - return 0; -#endif /* CONFIG_MTD_DOCPROBE_55AA */ - -#ifndef DOC_PASSIVE_PROBE - /* It's not possible to cleanly detect the DiskOnChip - the - * bootup procedure will put the device into reset mode, and - * it's not possible to talk to it without actually writing - * to the DOCControl register. So we store the current contents - * of the DOCControl register's location, in case we later decide - * that it's not a DiskOnChip, and want to put it back how we - * found it. - */ - tmp2 = ReadDOC(window, DOCControl); - - /* Reset the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - - /* Enable the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); -#endif /* !DOC_PASSIVE_PROBE */ - - /* We need to read the ChipID register four times. For some - newer DiskOnChip 2000 units, the first three reads will - return the DiskOnChip Millennium ident. Don't ask. */ - ChipID = ReadDOC(window, ChipID); - - switch (ChipID) { - case DOC_ChipID_Doc2k: - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - tmpb = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - tmpc = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - if (tmp != tmpb && tmp == tmpc) - return ChipID; - break; - - case DOC_ChipID_DocMil: - /* Check for the new 2000 with Millennium ASIC */ - ReadDOC(window, ChipID); - ReadDOC(window, ChipID); - if (ReadDOC(window, ChipID) != DOC_ChipID_DocMil) - ChipID = DOC_ChipID_Doc2kTSOP; - - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - tmpb = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - tmpc = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - if (tmp != tmpb && tmp == tmpc) - return ChipID; - break; - - case DOC_ChipID_DocMilPlus16: - case DOC_ChipID_DocMilPlus32: - case 0: - /* Possible Millennium+, need to do more checks */ -#ifndef DOC_PASSIVE_PROBE - /* Possibly release from power down mode */ - for (tmp = 0; (tmp < 4); tmp++) - ReadDOC(window, Mplus_Power); - - /* Reset the DiskOnChip ASIC */ - tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | - DOC_MODE_BDECT; - WriteDOC(tmp, window, Mplus_DOCControl); - WriteDOC(~tmp, window, Mplus_CtrlConfirm); - - mdelay(1); - /* Enable the DiskOnChip ASIC */ - tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | - DOC_MODE_BDECT; - WriteDOC(tmp, window, Mplus_DOCControl); - WriteDOC(~tmp, window, Mplus_CtrlConfirm); - mdelay(1); -#endif /* !DOC_PASSIVE_PROBE */ - - ChipID = ReadDOC(window, ChipID); - - switch (ChipID) { - case DOC_ChipID_DocMilPlus16: - case DOC_ChipID_DocMilPlus32: - /* Check the TOGGLE bit in the toggle register */ - tmp = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT; - tmpb = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT; - tmpc = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT; - if (tmp != tmpb && tmp == tmpc) - return ChipID; - default: - break; - } - /* FALL TRHU */ - - default: - -#ifdef CONFIG_MTD_DOCPROBE_55AA - printk(KERN_DEBUG "Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n", - ChipID, physadr); -#endif -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register, in case it's not - * actually a DiskOnChip. - */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; - } - - printk(KERN_WARNING "DiskOnChip failed TOGGLE test, dropping.\n"); - -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register: it's not a DiskOnChip */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; -} - -static int docfound; - -extern void DoC2k_init(struct mtd_info *); -extern void DoCMil_init(struct mtd_info *); -extern void DoCMilPlus_init(struct mtd_info *); - -static void __init DoC_Probe(unsigned long physadr) -{ - void __iomem *docptr; - struct DiskOnChip *this; - struct mtd_info *mtd; - int ChipID; - char namebuf[15]; - char *name = namebuf; - void (*initroutine)(struct mtd_info *) = NULL; - - docptr = ioremap(physadr, DOC_IOREMAP_LEN); - - if (!docptr) - return; - - if ((ChipID = doccheck(docptr, physadr))) { - if (ChipID == DOC_ChipID_Doc2kTSOP) { - /* Remove this at your own peril. The hardware driver works but nothing prevents you from erasing bad blocks */ - printk(KERN_NOTICE "Refusing to drive DiskOnChip 2000 TSOP until Bad Block Table is correctly supported by INFTL\n"); - iounmap(docptr); - return; - } - docfound = 1; - mtd = kzalloc(sizeof(struct DiskOnChip) + sizeof(struct mtd_info), GFP_KERNEL); - if (!mtd) { - printk(KERN_WARNING "Cannot allocate memory for data structures. Dropping.\n"); - iounmap(docptr); - return; - } - - this = (struct DiskOnChip *)(&mtd[1]); - mtd->priv = this; - this->virtadr = docptr; - this->physadr = physadr; - this->ChipID = ChipID; - sprintf(namebuf, "with ChipID %2.2X", ChipID); - - switch(ChipID) { - case DOC_ChipID_Doc2kTSOP: - name="2000 TSOP"; - initroutine = symbol_request(DoC2k_init); - break; - - case DOC_ChipID_Doc2k: - name="2000"; - initroutine = symbol_request(DoC2k_init); - break; - - case DOC_ChipID_DocMil: - name="Millennium"; -#ifdef DOC_SINGLE_DRIVER - initroutine = symbol_request(DoC2k_init); -#else - initroutine = symbol_request(DoCMil_init); -#endif /* DOC_SINGLE_DRIVER */ - break; - - case DOC_ChipID_DocMilPlus16: - case DOC_ChipID_DocMilPlus32: - name="MillenniumPlus"; - initroutine = symbol_request(DoCMilPlus_init); - break; - } - - if (initroutine) { - (*initroutine)(mtd); - symbol_put_addr(initroutine); - return; - } - printk(KERN_NOTICE "Cannot find driver for DiskOnChip %s at 0x%lX\n", name, physadr); - kfree(mtd); - } - iounmap(docptr); -} - - -/**************************************************************************** - * - * Module stuff - * - ****************************************************************************/ - -static int __init init_doc(void) -{ - int i; - - if (doc_config_location) { - printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); - DoC_Probe(doc_config_location); - } else { - for (i=0; (doc_locations[i] != 0xffffffff); i++) { - DoC_Probe(doc_locations[i]); - } - } - /* No banner message any more. Print a message if no DiskOnChip - found, so the user knows we at least tried. */ - if (!docfound) - printk(KERN_INFO "No recognised DiskOnChip devices found\n"); - return -EAGAIN; -} - -module_init(init_doc); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("Probe code for DiskOnChip 2000 and Millennium devices"); - diff --git a/drivers/mtd/devices/elm.c b/drivers/mtd/devices/elm.c new file mode 100644 index 00000000000..b4f61c7fc16 --- /dev/null +++ b/drivers/mtd/devices/elm.c @@ -0,0 +1,579 @@ +/* + * Error Location Module + * + * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ + +#define DRIVER_NAME "omap-elm" + +#include <linux/platform_device.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/of.h> +#include <linux/sched.h> +#include <linux/pm_runtime.h> +#include <linux/platform_data/elm.h> + +#define ELM_SYSCONFIG 0x010 +#define ELM_IRQSTATUS 0x018 +#define ELM_IRQENABLE 0x01c +#define ELM_LOCATION_CONFIG 0x020 +#define ELM_PAGE_CTRL 0x080 +#define ELM_SYNDROME_FRAGMENT_0 0x400 +#define ELM_SYNDROME_FRAGMENT_1 0x404 +#define ELM_SYNDROME_FRAGMENT_2 0x408 +#define ELM_SYNDROME_FRAGMENT_3 0x40c +#define ELM_SYNDROME_FRAGMENT_4 0x410 +#define ELM_SYNDROME_FRAGMENT_5 0x414 +#define ELM_SYNDROME_FRAGMENT_6 0x418 +#define ELM_LOCATION_STATUS 0x800 +#define ELM_ERROR_LOCATION_0 0x880 + +/* ELM Interrupt Status Register */ +#define INTR_STATUS_PAGE_VALID BIT(8) + +/* ELM Interrupt Enable Register */ +#define INTR_EN_PAGE_MASK BIT(8) + +/* ELM Location Configuration Register */ +#define ECC_BCH_LEVEL_MASK 0x3 + +/* ELM syndrome */ +#define ELM_SYNDROME_VALID BIT(16) + +/* ELM_LOCATION_STATUS Register */ +#define ECC_CORRECTABLE_MASK BIT(8) +#define ECC_NB_ERRORS_MASK 0x1f + +/* ELM_ERROR_LOCATION_0-15 Registers */ +#define ECC_ERROR_LOCATION_MASK 0x1fff + +#define ELM_ECC_SIZE 0x7ff + +#define SYNDROME_FRAGMENT_REG_SIZE 0x40 +#define ERROR_LOCATION_SIZE 0x100 + +struct elm_registers { + u32 elm_irqenable; + u32 elm_sysconfig; + u32 elm_location_config; + u32 elm_page_ctrl; + u32 elm_syndrome_fragment_6[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_5[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_4[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_3[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_2[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_1[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_0[ERROR_VECTOR_MAX]; +}; + +struct elm_info { + struct device *dev; + void __iomem *elm_base; + struct completion elm_completion; + struct list_head list; + enum bch_ecc bch_type; + struct elm_registers elm_regs; + int ecc_steps; + int ecc_syndrome_size; +}; + +static LIST_HEAD(elm_devices); + +static void elm_write_reg(struct elm_info *info, int offset, u32 val) +{ + writel(val, info->elm_base + offset); +} + +static u32 elm_read_reg(struct elm_info *info, int offset) +{ + return readl(info->elm_base + offset); +} + +/** + * elm_config - Configure ELM module + * @dev: ELM device + * @bch_type: Type of BCH ecc + */ +int elm_config(struct device *dev, enum bch_ecc bch_type, + int ecc_steps, int ecc_step_size, int ecc_syndrome_size) +{ + u32 reg_val; + struct elm_info *info = dev_get_drvdata(dev); + + if (!info) { + dev_err(dev, "Unable to configure elm - device not probed?\n"); + return -ENODEV; + } + /* ELM cannot detect ECC errors for chunks > 1KB */ + if (ecc_step_size > ((ELM_ECC_SIZE + 1) / 2)) { + dev_err(dev, "unsupported config ecc-size=%d\n", ecc_step_size); + return -EINVAL; + } + /* ELM support 8 error syndrome process */ + if (ecc_steps > ERROR_VECTOR_MAX) { + dev_err(dev, "unsupported config ecc-step=%d\n", ecc_steps); + return -EINVAL; + } + + reg_val = (bch_type & ECC_BCH_LEVEL_MASK) | (ELM_ECC_SIZE << 16); + elm_write_reg(info, ELM_LOCATION_CONFIG, reg_val); + info->bch_type = bch_type; + info->ecc_steps = ecc_steps; + info->ecc_syndrome_size = ecc_syndrome_size; + + return 0; +} +EXPORT_SYMBOL(elm_config); + +/** + * elm_configure_page_mode - Enable/Disable page mode + * @info: elm info + * @index: index number of syndrome fragment vector + * @enable: enable/disable flag for page mode + * + * Enable page mode for syndrome fragment index + */ +static void elm_configure_page_mode(struct elm_info *info, int index, + bool enable) +{ + u32 reg_val; + + reg_val = elm_read_reg(info, ELM_PAGE_CTRL); + if (enable) + reg_val |= BIT(index); /* enable page mode */ + else + reg_val &= ~BIT(index); /* disable page mode */ + + elm_write_reg(info, ELM_PAGE_CTRL, reg_val); +} + +/** + * elm_load_syndrome - Load ELM syndrome reg + * @info: elm info + * @err_vec: elm error vectors + * @ecc: buffer with calculated ecc + * + * Load syndrome fragment registers with calculated ecc in reverse order. + */ +static void elm_load_syndrome(struct elm_info *info, + struct elm_errorvec *err_vec, u8 *ecc) +{ + int i, offset; + u32 val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + elm_configure_page_mode(info, i, true); + offset = ELM_SYNDROME_FRAGMENT_0 + + SYNDROME_FRAGMENT_REG_SIZE * i; + switch (info->bch_type) { + case BCH8_ECC: + /* syndrome fragment 0 = ecc[9-12B] */ + val = cpu_to_be32(*(u32 *) &ecc[9]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[5-8B] */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[5]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 2 = ecc[1-4B] */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[1]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 3 = ecc[0B] */ + offset += 4; + val = ecc[0]; + elm_write_reg(info, offset, val); + break; + case BCH4_ECC: + /* syndrome fragment 0 = ecc[20-52b] bits */ + val = (cpu_to_be32(*(u32 *) &ecc[3]) >> 4) | + ((ecc[2] & 0xf) << 28); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[0-20b] bits */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12; + elm_write_reg(info, offset, val); + break; + case BCH16_ECC: + val = cpu_to_be32(*(u32 *) &ecc[22]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[18]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[14]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[10]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[6]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[2]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[0]) >> 16; + elm_write_reg(info, offset, val); + break; + default: + pr_err("invalid config bch_type\n"); + } + } + + /* Update ecc pointer with ecc byte size */ + ecc += info->ecc_syndrome_size; + } +} + +/** + * elm_start_processing - start elm syndrome processing + * @info: elm info + * @err_vec: elm error vectors + * + * Set syndrome valid bit for syndrome fragment registers for which + * elm syndrome fragment registers are loaded. This enables elm module + * to start processing syndrome vectors. + */ +static void elm_start_processing(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, offset; + u32 reg_val; + + /* + * Set syndrome vector valid, so that ELM module + * will process it for vectors error is reported + */ + for (i = 0; i < info->ecc_steps; i++) { + if (err_vec[i].error_reported) { + offset = ELM_SYNDROME_FRAGMENT_6 + + SYNDROME_FRAGMENT_REG_SIZE * i; + reg_val = elm_read_reg(info, offset); + reg_val |= ELM_SYNDROME_VALID; + elm_write_reg(info, offset, reg_val); + } + } +} + +/** + * elm_error_correction - locate correctable error position + * @info: elm info + * @err_vec: elm error vectors + * + * On completion of processing by elm module, error location status + * register updated with correctable/uncorrectable error information. + * In case of correctable errors, number of errors located from + * elm location status register & read the positions from + * elm error location register. + */ +static void elm_error_correction(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, j, errors = 0; + int offset; + u32 reg_val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + offset = ELM_LOCATION_STATUS + ERROR_LOCATION_SIZE * i; + reg_val = elm_read_reg(info, offset); + + /* Check correctable error or not */ + if (reg_val & ECC_CORRECTABLE_MASK) { + offset = ELM_ERROR_LOCATION_0 + + ERROR_LOCATION_SIZE * i; + + /* Read count of correctable errors */ + err_vec[i].error_count = reg_val & + ECC_NB_ERRORS_MASK; + + /* Update the error locations in error vector */ + for (j = 0; j < err_vec[i].error_count; j++) { + + reg_val = elm_read_reg(info, offset); + err_vec[i].error_loc[j] = reg_val & + ECC_ERROR_LOCATION_MASK; + + /* Update error location register */ + offset += 4; + } + + errors += err_vec[i].error_count; + } else { + err_vec[i].error_uncorrectable = true; + } + + /* Clearing interrupts for processed error vectors */ + elm_write_reg(info, ELM_IRQSTATUS, BIT(i)); + + /* Disable page mode */ + elm_configure_page_mode(info, i, false); + } + } +} + +/** + * elm_decode_bch_error_page - Locate error position + * @dev: device pointer + * @ecc_calc: calculated ECC bytes from GPMC + * @err_vec: elm error vectors + * + * Called with one or more error reported vectors & vectors with + * error reported is updated in err_vec[].error_reported + */ +void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc, + struct elm_errorvec *err_vec) +{ + struct elm_info *info = dev_get_drvdata(dev); + u32 reg_val; + + /* Enable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + elm_write_reg(info, ELM_IRQSTATUS, reg_val & INTR_STATUS_PAGE_VALID); + elm_write_reg(info, ELM_IRQENABLE, INTR_EN_PAGE_MASK); + + /* Load valid ecc byte to syndrome fragment register */ + elm_load_syndrome(info, err_vec, ecc_calc); + + /* Enable syndrome processing for which syndrome fragment is updated */ + elm_start_processing(info, err_vec); + + /* Wait for ELM module to finish locating error correction */ + wait_for_completion(&info->elm_completion); + + /* Disable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQENABLE); + elm_write_reg(info, ELM_IRQENABLE, reg_val & ~INTR_EN_PAGE_MASK); + elm_error_correction(info, err_vec); +} +EXPORT_SYMBOL(elm_decode_bch_error_page); + +static irqreturn_t elm_isr(int this_irq, void *dev_id) +{ + u32 reg_val; + struct elm_info *info = dev_id; + + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + + /* All error vectors processed */ + if (reg_val & INTR_STATUS_PAGE_VALID) { + elm_write_reg(info, ELM_IRQSTATUS, + reg_val & INTR_STATUS_PAGE_VALID); + complete(&info->elm_completion); + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +static int elm_probe(struct platform_device *pdev) +{ + int ret = 0; + struct resource *res, *irq; + struct elm_info *info; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->dev = &pdev->dev; + + irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); + if (!irq) { + dev_err(&pdev->dev, "no irq resource defined\n"); + return -ENODEV; + } + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + info->elm_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(info->elm_base)) + return PTR_ERR(info->elm_base); + + ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0, + pdev->name, info); + if (ret) { + dev_err(&pdev->dev, "failure requesting irq %i\n", irq->start); + return ret; + } + + pm_runtime_enable(&pdev->dev); + if (pm_runtime_get_sync(&pdev->dev) < 0) { + ret = -EINVAL; + pm_runtime_disable(&pdev->dev); + dev_err(&pdev->dev, "can't enable clock\n"); + return ret; + } + + init_completion(&info->elm_completion); + INIT_LIST_HEAD(&info->list); + list_add(&info->list, &elm_devices); + platform_set_drvdata(pdev, info); + return ret; +} + +static int elm_remove(struct platform_device *pdev) +{ + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); + return 0; +} + +#ifdef CONFIG_PM_SLEEP +/** + * elm_context_save + * saves ELM configurations to preserve them across Hardware powered-down + */ +static int elm_context_save(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + regs->elm_irqenable = elm_read_reg(info, ELM_IRQENABLE); + regs->elm_sysconfig = elm_read_reg(info, ELM_SYSCONFIG); + regs->elm_location_config = elm_read_reg(info, ELM_LOCATION_CONFIG); + regs->elm_page_ctrl = elm_read_reg(info, ELM_PAGE_CTRL); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + regs->elm_syndrome_fragment_5[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_5 + offset); + regs->elm_syndrome_fragment_4[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_4 + offset); + case BCH8_ECC: + regs->elm_syndrome_fragment_3[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_3 + offset); + regs->elm_syndrome_fragment_2[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_2 + offset); + case BCH4_ECC: + regs->elm_syndrome_fragment_1[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_1 + offset); + regs->elm_syndrome_fragment_0[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_0 + offset); + break; + default: + return -EINVAL; + } + /* ELM SYNDROME_VALID bit in SYNDROME_FRAGMENT_6[] needs + * to be saved for all BCH schemes*/ + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + } + return 0; +} + +/** + * elm_context_restore + * writes configurations saved duing power-down back into ELM registers + */ +static int elm_context_restore(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + elm_write_reg(info, ELM_IRQENABLE, regs->elm_irqenable); + elm_write_reg(info, ELM_SYSCONFIG, regs->elm_sysconfig); + elm_write_reg(info, ELM_LOCATION_CONFIG, regs->elm_location_config); + elm_write_reg(info, ELM_PAGE_CTRL, regs->elm_page_ctrl); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset, + regs->elm_syndrome_fragment_5[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset, + regs->elm_syndrome_fragment_4[i]); + case BCH8_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset, + regs->elm_syndrome_fragment_3[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset, + regs->elm_syndrome_fragment_2[i]); + case BCH4_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset, + regs->elm_syndrome_fragment_1[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_0 + offset, + regs->elm_syndrome_fragment_0[i]); + break; + default: + return -EINVAL; + } + /* ELM_SYNDROME_VALID bit to be set in last to trigger FSM */ + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i] & + ELM_SYNDROME_VALID); + } + return 0; +} + +static int elm_suspend(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + elm_context_save(info); + pm_runtime_put_sync(dev); + return 0; +} + +static int elm_resume(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + pm_runtime_get_sync(dev); + elm_context_restore(info); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume); + +#ifdef CONFIG_OF +static const struct of_device_id elm_of_match[] = { + { .compatible = "ti,am3352-elm" }, + {}, +}; +MODULE_DEVICE_TABLE(of, elm_of_match); +#endif + +static struct platform_driver elm_driver = { + .driver = { + .name = DRIVER_NAME, + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(elm_of_match), + .pm = &elm_pm_ops, + }, + .probe = elm_probe, + .remove = elm_remove, +}; + +module_platform_driver(elm_driver); + +MODULE_DESCRIPTION("ELM driver for BCH error correction"); +MODULE_AUTHOR("Texas Instruments"); +MODULE_ALIAS("platform: elm"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c index 5d0d68c3fe2..ed7e0a1bed3 100644 --- a/drivers/mtd/devices/m25p80.c +++ b/drivers/mtd/devices/m25p80.c @@ -15,952 +15,233 @@ * */ -#include <linux/init.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/device.h> -#include <linux/interrupt.h> -#include <linux/mutex.h> -#include <linux/math64.h> -#include <linux/slab.h> -#include <linux/sched.h> -#include <linux/mod_devicetable.h> - -#include <linux/mtd/cfi.h> + #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> -#include <linux/of_platform.h> #include <linux/spi/spi.h> #include <linux/spi/flash.h> +#include <linux/mtd/spi-nor.h> -/* Flash opcodes. */ -#define OPCODE_WREN 0x06 /* Write enable */ -#define OPCODE_RDSR 0x05 /* Read status register */ -#define OPCODE_WRSR 0x01 /* Write status register 1 byte */ -#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */ -#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ -#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ -#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ -#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ -#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */ -#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ -#define OPCODE_RDID 0x9f /* Read JEDEC ID */ - -/* Used for SST flashes only. */ -#define OPCODE_BP 0x02 /* Byte program */ -#define OPCODE_WRDI 0x04 /* Write disable */ -#define OPCODE_AAI_WP 0xad /* Auto address increment word program */ - -/* Used for Macronix flashes only. */ -#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */ -#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */ - -/* Used for Spansion flashes only. */ -#define OPCODE_BRWR 0x17 /* Bank register write */ - -/* Status Register bits. */ -#define SR_WIP 1 /* Write in progress */ -#define SR_WEL 2 /* Write enable latch */ -/* meaning of other SR_* bits may differ between vendors */ -#define SR_BP0 4 /* Block protect 0 */ -#define SR_BP1 8 /* Block protect 1 */ -#define SR_BP2 0x10 /* Block protect 2 */ -#define SR_SRWD 0x80 /* SR write protect */ - -/* Define max times to check status register before we give up. */ -#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ -#define MAX_CMD_SIZE 5 - -#ifdef CONFIG_M25PXX_USE_FAST_READ -#define OPCODE_READ OPCODE_FAST_READ -#define FAST_READ_DUMMY_BYTE 1 -#else -#define OPCODE_READ OPCODE_NORM_READ -#define FAST_READ_DUMMY_BYTE 0 -#endif - -#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16) - -/****************************************************************************/ - +#define MAX_CMD_SIZE 6 struct m25p { struct spi_device *spi; - struct mutex lock; + struct spi_nor spi_nor; struct mtd_info mtd; - u16 page_size; - u16 addr_width; - u8 erase_opcode; - u8 *command; + u8 command[MAX_CMD_SIZE]; }; -static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) +static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) { - return container_of(mtd, struct m25p, mtd); -} - -/****************************************************************************/ - -/* - * Internal helper functions - */ - -/* - * Read the status register, returning its value in the location - * Return the status register value. - * Returns negative if error occurred. - */ -static int read_sr(struct m25p *flash) -{ - ssize_t retval; - u8 code = OPCODE_RDSR; - u8 val; - - retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); - - if (retval < 0) { - dev_err(&flash->spi->dev, "error %d reading SR\n", - (int) retval); - return retval; - } + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; + int ret; - return val; -} + ret = spi_write_then_read(spi, &code, 1, val, len); + if (ret < 0) + dev_err(&spi->dev, "error %d reading %x\n", ret, code); -/* - * Write status register 1 byte - * Returns negative if error occurred. - */ -static int write_sr(struct m25p *flash, u8 val) -{ - flash->command[0] = OPCODE_WRSR; - flash->command[1] = val; - - return spi_write(flash->spi, flash->command, 2); + return ret; } -/* - * Set write enable latch with Write Enable command. - * Returns negative if error occurred. - */ -static inline int write_enable(struct m25p *flash) +static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd) { - u8 code = OPCODE_WREN; - - return spi_write_then_read(flash->spi, &code, 1, NULL, 0); -} - -/* - * Send write disble instruction to the chip. - */ -static inline int write_disable(struct m25p *flash) -{ - u8 code = OPCODE_WRDI; - - return spi_write_then_read(flash->spi, &code, 1, NULL, 0); + /* opcode is in cmd[0] */ + cmd[1] = addr >> (nor->addr_width * 8 - 8); + cmd[2] = addr >> (nor->addr_width * 8 - 16); + cmd[3] = addr >> (nor->addr_width * 8 - 24); + cmd[4] = addr >> (nor->addr_width * 8 - 32); } -/* - * Enable/disable 4-byte addressing mode. - */ -static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable) +static int m25p_cmdsz(struct spi_nor *nor) { - switch (JEDEC_MFR(jedec_id)) { - case CFI_MFR_MACRONIX: - flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B; - return spi_write(flash->spi, flash->command, 1); - default: - /* Spansion style */ - flash->command[0] = OPCODE_BRWR; - flash->command[1] = enable << 7; - return spi_write(flash->spi, flash->command, 2); - } + return 1 + nor->addr_width; } -/* - * Service routine to read status register until ready, or timeout occurs. - * Returns non-zero if error. - */ -static int wait_till_ready(struct m25p *flash) +static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len, + int wr_en) { - unsigned long deadline; - int sr; - - deadline = jiffies + MAX_READY_WAIT_JIFFIES; - - do { - if ((sr = read_sr(flash)) < 0) - break; - else if (!(sr & SR_WIP)) - return 0; - - cond_resched(); + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; - } while (!time_after_eq(jiffies, deadline)); + flash->command[0] = opcode; + if (buf) + memcpy(&flash->command[1], buf, len); - return 1; + return spi_write(spi, flash->command, len + 1); } -/* - * Erase the whole flash memory - * - * Returns 0 if successful, non-zero otherwise. - */ -static int erase_chip(struct m25p *flash) +static void m25p80_write(struct spi_nor *nor, loff_t to, size_t len, + size_t *retlen, const u_char *buf) { - pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__, - (long long)(flash->mtd.size >> 10)); - - /* Wait until finished previous write command. */ - if (wait_till_ready(flash)) - return 1; - - /* Send write enable, then erase commands. */ - write_enable(flash); - - /* Set up command buffer. */ - flash->command[0] = OPCODE_CHIP_ERASE; - - spi_write(flash->spi, flash->command, 1); - - return 0; -} - -static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd) -{ - /* opcode is in cmd[0] */ - cmd[1] = addr >> (flash->addr_width * 8 - 8); - cmd[2] = addr >> (flash->addr_width * 8 - 16); - cmd[3] = addr >> (flash->addr_width * 8 - 24); - cmd[4] = addr >> (flash->addr_width * 8 - 32); -} + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; + struct spi_transfer t[2] = {}; + struct spi_message m; + int cmd_sz = m25p_cmdsz(nor); -static int m25p_cmdsz(struct m25p *flash) -{ - return 1 + flash->addr_width; -} + spi_message_init(&m); -/* - * Erase one sector of flash memory at offset ``offset'' which is any - * address within the sector which should be erased. - * - * Returns 0 if successful, non-zero otherwise. - */ -static int erase_sector(struct m25p *flash, u32 offset) -{ - pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev), - __func__, flash->mtd.erasesize / 1024, offset); + if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) + cmd_sz = 1; - /* Wait until finished previous write command. */ - if (wait_till_ready(flash)) - return 1; + flash->command[0] = nor->program_opcode; + m25p_addr2cmd(nor, to, flash->command); - /* Send write enable, then erase commands. */ - write_enable(flash); + t[0].tx_buf = flash->command; + t[0].len = cmd_sz; + spi_message_add_tail(&t[0], &m); - /* Set up command buffer. */ - flash->command[0] = flash->erase_opcode; - m25p_addr2cmd(flash, offset, flash->command); + t[1].tx_buf = buf; + t[1].len = len; + spi_message_add_tail(&t[1], &m); - spi_write(flash->spi, flash->command, m25p_cmdsz(flash)); + spi_sync(spi, &m); - return 0; + *retlen += m.actual_length - cmd_sz; } -/****************************************************************************/ - -/* - * MTD implementation - */ - -/* - * Erase an address range on the flash chip. The address range may extend - * one or more erase sectors. Return an error is there is a problem erasing. - */ -static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) +static inline unsigned int m25p80_rx_nbits(struct spi_nor *nor) { - struct m25p *flash = mtd_to_m25p(mtd); - u32 addr,len; - uint32_t rem; - - pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev), - __func__, (long long)instr->addr, - (long long)instr->len); - - div_u64_rem(instr->len, mtd->erasesize, &rem); - if (rem) - return -EINVAL; - - addr = instr->addr; - len = instr->len; - - mutex_lock(&flash->lock); - - /* whole-chip erase? */ - if (len == flash->mtd.size) { - if (erase_chip(flash)) { - instr->state = MTD_ERASE_FAILED; - mutex_unlock(&flash->lock); - return -EIO; - } - - /* REVISIT in some cases we could speed up erasing large regions - * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up - * to use "small sector erase", but that's not always optimal. - */ - - /* "sector"-at-a-time erase */ - } else { - while (len) { - if (erase_sector(flash, addr)) { - instr->state = MTD_ERASE_FAILED; - mutex_unlock(&flash->lock); - return -EIO; - } - - addr += mtd->erasesize; - len -= mtd->erasesize; - } + switch (nor->flash_read) { + case SPI_NOR_DUAL: + return 2; + case SPI_NOR_QUAD: + return 4; + default: + return 0; } - - mutex_unlock(&flash->lock); - - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - - return 0; } /* - * Read an address range from the flash chip. The address range + * Read an address range from the nor chip. The address range * may be any size provided it is within the physical boundaries. */ -static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) +static int m25p80_read(struct spi_nor *nor, loff_t from, size_t len, + size_t *retlen, u_char *buf) { - struct m25p *flash = mtd_to_m25p(mtd); + struct m25p *flash = nor->priv; + struct spi_device *spi = flash->spi; struct spi_transfer t[2]; struct spi_message m; + int dummy = nor->read_dummy; + int ret; - pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev), - __func__, (u32)from, len); + /* Wait till previous write/erase is done. */ + ret = nor->wait_till_ready(nor); + if (ret) + return ret; spi_message_init(&m); memset(t, 0, (sizeof t)); - /* NOTE: - * OPCODE_FAST_READ (if available) is faster. - * Should add 1 byte DUMMY_BYTE. - */ + flash->command[0] = nor->read_opcode; + m25p_addr2cmd(nor, from, flash->command); + t[0].tx_buf = flash->command; - t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE; + t[0].len = m25p_cmdsz(nor) + dummy; spi_message_add_tail(&t[0], &m); t[1].rx_buf = buf; + t[1].rx_nbits = m25p80_rx_nbits(nor); t[1].len = len; spi_message_add_tail(&t[1], &m); - mutex_lock(&flash->lock); - - /* Wait till previous write/erase is done. */ - if (wait_till_ready(flash)) { - /* REVISIT status return?? */ - mutex_unlock(&flash->lock); - return 1; - } - - /* FIXME switch to OPCODE_FAST_READ. It's required for higher - * clocks; and at this writing, every chip this driver handles - * supports that opcode. - */ - - /* Set up the write data buffer. */ - flash->command[0] = OPCODE_READ; - m25p_addr2cmd(flash, from, flash->command); - - spi_sync(flash->spi, &m); - - *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE; - - mutex_unlock(&flash->lock); - - return 0; -} - -/* - * Write an address range to the flash chip. Data must be written in - * FLASH_PAGESIZE chunks. The address range may be any size provided - * it is within the physical boundaries. - */ -static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - struct m25p *flash = mtd_to_m25p(mtd); - u32 page_offset, page_size; - struct spi_transfer t[2]; - struct spi_message m; - - pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), - __func__, (u32)to, len); - - spi_message_init(&m); - memset(t, 0, (sizeof t)); - - t[0].tx_buf = flash->command; - t[0].len = m25p_cmdsz(flash); - spi_message_add_tail(&t[0], &m); - - t[1].tx_buf = buf; - spi_message_add_tail(&t[1], &m); - - mutex_lock(&flash->lock); - - /* Wait until finished previous write command. */ - if (wait_till_ready(flash)) { - mutex_unlock(&flash->lock); - return 1; - } - - write_enable(flash); - - /* Set up the opcode in the write buffer. */ - flash->command[0] = OPCODE_PP; - m25p_addr2cmd(flash, to, flash->command); - - page_offset = to & (flash->page_size - 1); - - /* do all the bytes fit onto one page? */ - if (page_offset + len <= flash->page_size) { - t[1].len = len; - - spi_sync(flash->spi, &m); - - *retlen = m.actual_length - m25p_cmdsz(flash); - } else { - u32 i; - - /* the size of data remaining on the first page */ - page_size = flash->page_size - page_offset; - - t[1].len = page_size; - spi_sync(flash->spi, &m); - - *retlen = m.actual_length - m25p_cmdsz(flash); - - /* write everything in flash->page_size chunks */ - for (i = page_size; i < len; i += page_size) { - page_size = len - i; - if (page_size > flash->page_size) - page_size = flash->page_size; - - /* write the next page to flash */ - m25p_addr2cmd(flash, to + i, flash->command); - - t[1].tx_buf = buf + i; - t[1].len = page_size; - - wait_till_ready(flash); - - write_enable(flash); - - spi_sync(flash->spi, &m); - - *retlen += m.actual_length - m25p_cmdsz(flash); - } - } - - mutex_unlock(&flash->lock); + spi_sync(spi, &m); + *retlen = m.actual_length - m25p_cmdsz(nor) - dummy; return 0; } -static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) +static int m25p80_erase(struct spi_nor *nor, loff_t offset) { - struct m25p *flash = mtd_to_m25p(mtd); - struct spi_transfer t[2]; - struct spi_message m; - size_t actual; - int cmd_sz, ret; - - pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), - __func__, (u32)to, len); - - spi_message_init(&m); - memset(t, 0, (sizeof t)); - - t[0].tx_buf = flash->command; - t[0].len = m25p_cmdsz(flash); - spi_message_add_tail(&t[0], &m); + struct m25p *flash = nor->priv; + int ret; - t[1].tx_buf = buf; - spi_message_add_tail(&t[1], &m); - - mutex_lock(&flash->lock); + dev_dbg(nor->dev, "%dKiB at 0x%08x\n", + flash->mtd.erasesize / 1024, (u32)offset); /* Wait until finished previous write command. */ - ret = wait_till_ready(flash); + ret = nor->wait_till_ready(nor); if (ret) - goto time_out; - - write_enable(flash); - - actual = to % 2; - /* Start write from odd address. */ - if (actual) { - flash->command[0] = OPCODE_BP; - m25p_addr2cmd(flash, to, flash->command); - - /* write one byte. */ - t[1].len = 1; - spi_sync(flash->spi, &m); - ret = wait_till_ready(flash); - if (ret) - goto time_out; - *retlen += m.actual_length - m25p_cmdsz(flash); - } - to += actual; - - flash->command[0] = OPCODE_AAI_WP; - m25p_addr2cmd(flash, to, flash->command); - - /* Write out most of the data here. */ - cmd_sz = m25p_cmdsz(flash); - for (; actual < len - 1; actual += 2) { - t[0].len = cmd_sz; - /* write two bytes. */ - t[1].len = 2; - t[1].tx_buf = buf + actual; - - spi_sync(flash->spi, &m); - ret = wait_till_ready(flash); - if (ret) - goto time_out; - *retlen += m.actual_length - cmd_sz; - cmd_sz = 1; - to += 2; - } - write_disable(flash); - ret = wait_till_ready(flash); - if (ret) - goto time_out; - - /* Write out trailing byte if it exists. */ - if (actual != len) { - write_enable(flash); - flash->command[0] = OPCODE_BP; - m25p_addr2cmd(flash, to, flash->command); - t[0].len = m25p_cmdsz(flash); - t[1].len = 1; - t[1].tx_buf = buf + actual; - - spi_sync(flash->spi, &m); - ret = wait_till_ready(flash); - if (ret) - goto time_out; - *retlen += m.actual_length - m25p_cmdsz(flash); - write_disable(flash); - } - -time_out: - mutex_unlock(&flash->lock); - return ret; -} - -/****************************************************************************/ - -/* - * SPI device driver setup and teardown - */ + return ret; -struct flash_info { - /* JEDEC id zero means "no ID" (most older chips); otherwise it has - * a high byte of zero plus three data bytes: the manufacturer id, - * then a two byte device id. - */ - u32 jedec_id; - u16 ext_id; - - /* The size listed here is what works with OPCODE_SE, which isn't - * necessarily called a "sector" by the vendor. - */ - unsigned sector_size; - u16 n_sectors; - - u16 page_size; - u16 addr_width; + /* Send write enable, then erase commands. */ + ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); + if (ret) + return ret; - u16 flags; -#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ -#define M25P_NO_ERASE 0x02 /* No erase command needed */ -}; + /* Set up command buffer. */ + flash->command[0] = nor->erase_opcode; + m25p_addr2cmd(nor, offset, flash->command); -#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ - ((kernel_ulong_t)&(struct flash_info) { \ - .jedec_id = (_jedec_id), \ - .ext_id = (_ext_id), \ - .sector_size = (_sector_size), \ - .n_sectors = (_n_sectors), \ - .page_size = 256, \ - .flags = (_flags), \ - }) - -#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \ - ((kernel_ulong_t)&(struct flash_info) { \ - .sector_size = (_sector_size), \ - .n_sectors = (_n_sectors), \ - .page_size = (_page_size), \ - .addr_width = (_addr_width), \ - .flags = M25P_NO_ERASE, \ - }) - -/* NOTE: double check command sets and memory organization when you add - * more flash chips. This current list focusses on newer chips, which - * have been converging on command sets which including JEDEC ID. - */ -static const struct spi_device_id m25p_ids[] = { - /* Atmel -- some are (confusingly) marketed as "DataFlash" */ - { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, - { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, - - { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, - { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, - { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, - - { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, - { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, - { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, - { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, - - /* EON -- en25xxx */ - { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, - { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, - { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, - { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, - - /* Everspin */ - { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) }, - - /* Intel/Numonyx -- xxxs33b */ - { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, - { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, - { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, - - /* Macronix */ - { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, - { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, - { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, - { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, - { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, - { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, - { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, - { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, - { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, - { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, - - /* Spansion -- single (large) sector size only, at least - * for the chips listed here (without boot sectors). - */ - { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, - { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, - { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, - { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, - { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) }, - { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, - { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, - { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) }, - { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) }, - { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, - { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, - { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, - { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, - { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, - { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, - { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, - - /* SST -- large erase sizes are "overlays", "sectors" are 4K */ - { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) }, - { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) }, - { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) }, - { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) }, - { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) }, - { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) }, - { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) }, - { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) }, - - /* ST Microelectronics -- newer production may have feature updates */ - { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, - { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, - { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, - { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, - { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, - { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, - { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, - { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, - { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, - - { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, - { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, - { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, - { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, - { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, - { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, - { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, - { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, - { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, - - { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, - { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, - { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, - - { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, - { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, - - { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, - { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, - { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, - { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, - - /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ - { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, - { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, - { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, - { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, - { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, - { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, - { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, - { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, - { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, - { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, - - /* Catalyst / On Semiconductor -- non-JEDEC */ - { "cat25c11", CAT25_INFO( 16, 8, 16, 1) }, - { "cat25c03", CAT25_INFO( 32, 8, 16, 2) }, - { "cat25c09", CAT25_INFO( 128, 8, 32, 2) }, - { "cat25c17", CAT25_INFO( 256, 8, 32, 2) }, - { "cat25128", CAT25_INFO(2048, 8, 64, 2) }, - { }, -}; -MODULE_DEVICE_TABLE(spi, m25p_ids); + spi_write(flash->spi, flash->command, m25p_cmdsz(nor)); -static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi) -{ - int tmp; - u8 code = OPCODE_RDID; - u8 id[5]; - u32 jedec; - u16 ext_jedec; - struct flash_info *info; - - /* JEDEC also defines an optional "extended device information" - * string for after vendor-specific data, after the three bytes - * we use here. Supporting some chips might require using it. - */ - tmp = spi_write_then_read(spi, &code, 1, id, 5); - if (tmp < 0) { - pr_debug("%s: error %d reading JEDEC ID\n", - dev_name(&spi->dev), tmp); - return ERR_PTR(tmp); - } - jedec = id[0]; - jedec = jedec << 8; - jedec |= id[1]; - jedec = jedec << 8; - jedec |= id[2]; - - ext_jedec = id[3] << 8 | id[4]; - - for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) { - info = (void *)m25p_ids[tmp].driver_data; - if (info->jedec_id == jedec) { - if (info->ext_id != 0 && info->ext_id != ext_jedec) - continue; - return &m25p_ids[tmp]; - } - } - dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); - return ERR_PTR(-ENODEV); + return 0; } - /* * board specific setup should have ensured the SPI clock used here * matches what the READ command supports, at least until this driver * understands FAST_READ (for clocks over 25 MHz). */ -static int __devinit m25p_probe(struct spi_device *spi) +static int m25p_probe(struct spi_device *spi) { - const struct spi_device_id *id = spi_get_device_id(spi); - struct flash_platform_data *data; - struct m25p *flash; - struct flash_info *info; - unsigned i; struct mtd_part_parser_data ppdata; + struct flash_platform_data *data; + struct m25p *flash; + struct spi_nor *nor; + enum read_mode mode = SPI_NOR_NORMAL; + int ret; -#ifdef CONFIG_MTD_OF_PARTS - if (!of_device_is_available(spi->dev.of_node)) - return -ENODEV; -#endif - - /* Platform data helps sort out which chip type we have, as - * well as how this board partitions it. If we don't have - * a chip ID, try the JEDEC id commands; they'll work for most - * newer chips, even if we don't recognize the particular chip. - */ - data = spi->dev.platform_data; - if (data && data->type) { - const struct spi_device_id *plat_id; - - for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) { - plat_id = &m25p_ids[i]; - if (strcmp(data->type, plat_id->name)) - continue; - break; - } - - if (i < ARRAY_SIZE(m25p_ids) - 1) - id = plat_id; - else - dev_warn(&spi->dev, "unrecognized id %s\n", data->type); - } - - info = (void *)id->driver_data; - - if (info->jedec_id) { - const struct spi_device_id *jid; - - jid = jedec_probe(spi); - if (IS_ERR(jid)) { - return PTR_ERR(jid); - } else if (jid != id) { - /* - * JEDEC knows better, so overwrite platform ID. We - * can't trust partitions any longer, but we'll let - * mtd apply them anyway, since some partitions may be - * marked read-only, and we don't want to lose that - * information, even if it's not 100% accurate. - */ - dev_warn(&spi->dev, "found %s, expected %s\n", - jid->name, id->name); - id = jid; - info = (void *)jid->driver_data; - } - } - - flash = kzalloc(sizeof *flash, GFP_KERNEL); + flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); if (!flash) return -ENOMEM; - flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL); - if (!flash->command) { - kfree(flash); - return -ENOMEM; - } - flash->spi = spi; - mutex_init(&flash->lock); - dev_set_drvdata(&spi->dev, flash); + nor = &flash->spi_nor; - /* - * Atmel, SST and Intel/Numonyx serial flash tend to power - * up with the software protection bits set - */ + /* install the hooks */ + nor->read = m25p80_read; + nor->write = m25p80_write; + nor->erase = m25p80_erase; + nor->write_reg = m25p80_write_reg; + nor->read_reg = m25p80_read_reg; - if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || - JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || - JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { - write_enable(flash); - write_sr(flash, 0); - } + nor->dev = &spi->dev; + nor->mtd = &flash->mtd; + nor->priv = flash; - if (data && data->name) - flash->mtd.name = data->name; - else - flash->mtd.name = dev_name(&spi->dev); - - flash->mtd.type = MTD_NORFLASH; - flash->mtd.writesize = 1; - flash->mtd.flags = MTD_CAP_NORFLASH; - flash->mtd.size = info->sector_size * info->n_sectors; - flash->mtd._erase = m25p80_erase; - flash->mtd._read = m25p80_read; - - /* sst flash chips use AAI word program */ - if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) - flash->mtd._write = sst_write; - else - flash->mtd._write = m25p80_write; - - /* prefer "small sector" erase if possible */ - if (info->flags & SECT_4K) { - flash->erase_opcode = OPCODE_BE_4K; - flash->mtd.erasesize = 4096; - } else { - flash->erase_opcode = OPCODE_SE; - flash->mtd.erasesize = info->sector_size; - } + spi_set_drvdata(spi, flash); + flash->mtd.priv = nor; + flash->spi = spi; - if (info->flags & M25P_NO_ERASE) - flash->mtd.flags |= MTD_NO_ERASE; + if (spi->mode & SPI_RX_QUAD) + mode = SPI_NOR_QUAD; + else if (spi->mode & SPI_RX_DUAL) + mode = SPI_NOR_DUAL; + ret = spi_nor_scan(nor, spi_get_device_id(spi), mode); + if (ret) + return ret; + data = dev_get_platdata(&spi->dev); ppdata.of_node = spi->dev.of_node; - flash->mtd.dev.parent = &spi->dev; - flash->page_size = info->page_size; - flash->mtd.writebufsize = flash->page_size; - - if (info->addr_width) - flash->addr_width = info->addr_width; - else { - /* enable 4-byte addressing if the device exceeds 16MiB */ - if (flash->mtd.size > 0x1000000) { - flash->addr_width = 4; - set_4byte(flash, info->jedec_id, 1); - } else - flash->addr_width = 3; - } - dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name, - (long long)flash->mtd.size >> 10); - - pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) " - ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", - flash->mtd.name, - (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), - flash->mtd.erasesize, flash->mtd.erasesize / 1024, - flash->mtd.numeraseregions); - - if (flash->mtd.numeraseregions) - for (i = 0; i < flash->mtd.numeraseregions; i++) - pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, " - ".erasesize = 0x%.8x (%uKiB), " - ".numblocks = %d }\n", - i, (long long)flash->mtd.eraseregions[i].offset, - flash->mtd.eraseregions[i].erasesize, - flash->mtd.eraseregions[i].erasesize / 1024, - flash->mtd.eraseregions[i].numblocks); - - - /* partitions should match sector boundaries; and it may be good to - * use readonly partitions for writeprotected sectors (BP2..BP0). - */ return mtd_device_parse_register(&flash->mtd, NULL, &ppdata, data ? data->parts : NULL, data ? data->nr_parts : 0); } -static int __devexit m25p_remove(struct spi_device *spi) +static int m25p_remove(struct spi_device *spi) { - struct m25p *flash = dev_get_drvdata(&spi->dev); - int status; + struct m25p *flash = spi_get_drvdata(spi); /* Clean up MTD stuff. */ - status = mtd_device_unregister(&flash->mtd); - if (status == 0) { - kfree(flash->command); - kfree(flash); - } - return 0; + return mtd_device_unregister(&flash->mtd); } @@ -969,9 +250,9 @@ static struct spi_driver m25p80_driver = { .name = "m25p80", .owner = THIS_MODULE, }, - .id_table = m25p_ids, + .id_table = spi_nor_ids, .probe = m25p_probe, - .remove = __devexit_p(m25p_remove), + .remove = m25p_remove, /* REVISIT: many of these chips have deep power-down modes, which * should clearly be entered on suspend() to minimize power use. diff --git a/drivers/mtd/devices/ms02-nv.c b/drivers/mtd/devices/ms02-nv.c index 182849d39c6..5c8b322ba90 100644 --- a/drivers/mtd/devices/ms02-nv.c +++ b/drivers/mtd/devices/ms02-nv.c @@ -205,7 +205,7 @@ static int __init ms02nv_init_one(ulong addr) mtd->type = MTD_RAM; mtd->flags = MTD_CAP_RAM; mtd->size = fixsize; - mtd->name = (char *)ms02nv_name; + mtd->name = ms02nv_name; mtd->owner = THIS_MODULE; mtd->_read = ms02nv_read; mtd->_write = ms02nv_write; diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c index 928fb0e6d73..dd22ce2cc9a 100644 --- a/drivers/mtd/devices/mtd_dataflash.c +++ b/drivers/mtd/devices/mtd_dataflash.c @@ -10,7 +10,6 @@ * 2 of the License, or (at your option) any later version. */ #include <linux/module.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/device.h> @@ -88,8 +87,6 @@ struct dataflash { uint8_t command[4]; char name[24]; - unsigned partitioned:1; - unsigned short page_offset; /* offset in flash address */ unsigned int page_size; /* of bytes per page */ @@ -105,8 +102,6 @@ static const struct of_device_id dataflash_dt_ids[] = { { .compatible = "atmel,dataflash", }, { /* sentinel */ } }; -#else -#define dataflash_dt_ids NULL #endif /* ......................................................................... */ @@ -444,8 +439,8 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, #ifdef CONFIG_MTD_DATAFLASH_OTP -static int dataflash_get_otp_info(struct mtd_info *mtd, - struct otp_info *info, size_t len) +static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *info) { /* Report both blocks as identical: bytes 0..64, locked. * Unless the user block changed from all-ones, we can't @@ -454,7 +449,8 @@ static int dataflash_get_otp_info(struct mtd_info *mtd, info->start = 0; info->length = 64; info->locked = 1; - return sizeof(*info); + *retlen = sizeof(*info); + return 0; } static ssize_t otp_read(struct spi_device *spi, unsigned base, @@ -546,14 +542,18 @@ static int dataflash_write_user_otp(struct mtd_info *mtd, struct dataflash *priv = mtd->priv; int status; - if (len > 64) - return -EINVAL; + if (from >= 64) { + /* + * Attempting to write beyond the end of OTP memory, + * no data can be written. + */ + *retlen = 0; + return 0; + } - /* Strictly speaking, we *could* truncate the write ... but - * let's not do that for the only write that's ever possible. - */ + /* Truncate the write to fit into OTP memory. */ if ((from + len) > 64) - return -EINVAL; + len = 64 - from; /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes * IN: ignore all @@ -618,14 +618,13 @@ static char *otp_setup(struct mtd_info *device, char revision) /* * Register DataFlash device with MTD subsystem. */ -static int __devinit -add_dataflash_otp(struct spi_device *spi, char *name, - int nr_pages, int pagesize, int pageoffset, char revision) +static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, + int pagesize, int pageoffset, char revision) { struct dataflash *priv; struct mtd_info *device; struct mtd_part_parser_data ppdata; - struct flash_platform_data *pdata = spi->dev.platform_data; + struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); char *otp_tag = ""; int err = 0; @@ -664,7 +663,7 @@ add_dataflash_otp(struct spi_device *spi, char *name, dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", name, (long long)((device->size + 1023) >> 10), pagesize, otp_tag); - dev_set_drvdata(&spi->dev, priv); + spi_set_drvdata(spi, priv); ppdata.of_node = spi->dev.of_node; err = mtd_device_parse_register(device, NULL, &ppdata, @@ -674,14 +673,12 @@ add_dataflash_otp(struct spi_device *spi, char *name, if (!err) return 0; - dev_set_drvdata(&spi->dev, NULL); kfree(priv); return err; } -static inline int __devinit -add_dataflash(struct spi_device *spi, char *name, - int nr_pages, int pagesize, int pageoffset) +static inline int add_dataflash(struct spi_device *spi, char *name, + int nr_pages, int pagesize, int pageoffset) { return add_dataflash_otp(spi, name, nr_pages, pagesize, pageoffset, 0); @@ -705,7 +702,7 @@ struct flash_info { #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ }; -static struct flash_info __devinitdata dataflash_data [] = { +static struct flash_info dataflash_data[] = { /* * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, @@ -740,7 +737,7 @@ static struct flash_info __devinitdata dataflash_data [] = { { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, }; -static struct flash_info *__devinit jedec_probe(struct spi_device *spi) +static struct flash_info *jedec_probe(struct spi_device *spi) { int tmp; uint8_t code = OP_READ_ID; @@ -823,7 +820,7 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi) * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 */ -static int __devinit dataflash_probe(struct spi_device *spi) +static int dataflash_probe(struct spi_device *spi) { int status; struct flash_info *info; @@ -885,7 +882,7 @@ static int __devinit dataflash_probe(struct spi_device *spi) break; /* obsolete AT45DB1282 not (yet?) supported */ default: - pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev), + dev_info(&spi->dev, "unsupported device (%x)\n", status & 0x3c); status = -ENODEV; } @@ -897,18 +894,16 @@ static int __devinit dataflash_probe(struct spi_device *spi) return status; } -static int __devexit dataflash_remove(struct spi_device *spi) +static int dataflash_remove(struct spi_device *spi) { - struct dataflash *flash = dev_get_drvdata(&spi->dev); + struct dataflash *flash = spi_get_drvdata(spi); int status; pr_debug("%s: remove\n", dev_name(&spi->dev)); status = mtd_device_unregister(&flash->mtd); - if (status == 0) { - dev_set_drvdata(&spi->dev, NULL); + if (status == 0) kfree(flash); - } return status; } @@ -916,11 +911,11 @@ static struct spi_driver dataflash_driver = { .driver = { .name = "mtd_dataflash", .owner = THIS_MODULE, - .of_match_table = dataflash_dt_ids, + .of_match_table = of_match_ptr(dataflash_dt_ids), }, .probe = dataflash_probe, - .remove = __devexit_p(dataflash_remove), + .remove = dataflash_remove, /* FIXME: investigate suspend and resume... */ }; diff --git a/drivers/mtd/devices/mtdram.c b/drivers/mtd/devices/mtdram.c index ec59d65897f..8e285089229 100644 --- a/drivers/mtd/devices/mtdram.c +++ b/drivers/mtd/devices/mtdram.c @@ -92,7 +92,7 @@ static void __exit cleanup_mtdram(void) } int mtdram_init_device(struct mtd_info *mtd, void *mapped_address, - unsigned long size, char *name) + unsigned long size, const char *name) { memset(mtd, 0, sizeof(*mtd)); diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c index 67823de68db..2cceebfb251 100644 --- a/drivers/mtd/devices/phram.c +++ b/drivers/mtd/devices/phram.c @@ -94,7 +94,7 @@ static void unregister_devices(void) } } -static int register_device(char *name, unsigned long start, unsigned long len) +static int register_device(char *name, phys_addr_t start, size_t len) { struct phram_mtd_list *new; int ret = -ENOMEM; @@ -141,35 +141,35 @@ out0: return ret; } -static int ustrtoul(const char *cp, char **endp, unsigned int base) +static int parse_num64(uint64_t *num64, char *token) { - unsigned long result = simple_strtoul(cp, endp, base); - - switch (**endp) { - case 'G': - result *= 1024; - case 'M': - result *= 1024; - case 'k': - result *= 1024; + size_t len; + int shift = 0; + int ret; + + len = strlen(token); /* By dwmw2 editorial decree, "ki", "Mi" or "Gi" are to be used. */ - if ((*endp)[1] == 'i') - (*endp) += 2; + if (len > 2) { + if (token[len - 1] == 'i') { + switch (token[len - 2]) { + case 'G': + shift += 10; + case 'M': + shift += 10; + case 'k': + shift += 10; + token[len - 2] = 0; + break; + default: + return -EINVAL; + } + } } - return result; -} - -static int parse_num32(uint32_t *num32, const char *token) -{ - char *endp; - unsigned long n; - n = ustrtoul(token, &endp, 0); - if (*endp) - return -EINVAL; + ret = kstrtou64(token, 0, num64); + *num64 <<= shift; - *num32 = n; - return 0; + return ret; } static int parse_name(char **pname, const char *token) @@ -205,23 +205,26 @@ static inline void kill_final_newline(char *str) return 1; \ } while (0) +#ifndef MODULE +static int phram_init_called; /* * This shall contain the module parameter if any. It is of the form: * - phram=<device>,<address>,<size> for module case * - phram.phram=<device>,<address>,<size> for built-in case - * We leave 64 bytes for the device name, 12 for the address and 12 for the + * We leave 64 bytes for the device name, 20 for the address and 20 for the * size. * Example: phram.phram=rootfs,0xa0000000,512Mi */ -static __initdata char phram_paramline[64+12+12]; +static char phram_paramline[64 + 20 + 20]; +#endif -static int __init phram_setup(const char *val) +static int phram_setup(const char *val) { - char buf[64+12+12], *str = buf; + char buf[64 + 20 + 20], *str = buf; char *token[3]; char *name; - uint32_t start; - uint32_t len; + uint64_t start; + uint64_t len; int i, ret; if (strnlen(val, sizeof(buf)) >= sizeof(buf)) @@ -243,13 +246,13 @@ static int __init phram_setup(const char *val) if (ret) return ret; - ret = parse_num32(&start, token[1]); + ret = parse_num64(&start, token[1]); if (ret) { kfree(name); parse_err("illegal start address\n"); } - ret = parse_num32(&len, token[2]); + ret = parse_num64(&len, token[2]); if (ret) { kfree(name); parse_err("illegal device length\n"); @@ -257,24 +260,43 @@ static int __init phram_setup(const char *val) ret = register_device(name, start, len); if (!ret) - pr_info("%s device: %#x at %#x\n", name, len, start); + pr_info("%s device: %#llx at %#llx\n", name, len, start); else kfree(name); return ret; } -static int __init phram_param_call(const char *val, struct kernel_param *kp) +static int phram_param_call(const char *val, struct kernel_param *kp) { +#ifdef MODULE + return phram_setup(val); +#else /* - * This function is always called before 'init_phram()', whether - * built-in or module. + * If more parameters are later passed in via + * /sys/module/phram/parameters/phram + * and init_phram() has already been called, + * we can parse the argument now. */ + + if (phram_init_called) + return phram_setup(val); + + /* + * During early boot stage, we only save the parameters + * here. We must parse them later: if the param passed + * from kernel boot command line, phram_param_call() is + * called so early that it is not possible to resolve + * the device (even kmalloc() fails). Defer that work to + * phram_setup(). + */ + if (strlen(val) >= sizeof(phram_paramline)) return -ENOSPC; strcpy(phram_paramline, val); return 0; +#endif } module_param_call(phram, phram_param_call, NULL, NULL, 000); @@ -283,10 +305,15 @@ MODULE_PARM_DESC(phram, "Memory region to map. \"phram=<name>,<start>,<length>\" static int __init init_phram(void) { + int ret = 0; + +#ifndef MODULE if (phram_paramline[0]) - return phram_setup(phram_paramline); + ret = phram_setup(phram_paramline); + phram_init_called = 1; +#endif - return 0; + return ret; } static void __exit cleanup_phram(void) diff --git a/drivers/mtd/devices/pmc551.c b/drivers/mtd/devices/pmc551.c index 0c51b988e1f..f02603e1bfe 100644 --- a/drivers/mtd/devices/pmc551.c +++ b/drivers/mtd/devices/pmc551.c @@ -725,16 +725,11 @@ static int __init init_pmc551(void) } mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); - if (!mtd) { - printk(KERN_NOTICE "pmc551: Cannot allocate new MTD " - "device.\n"); + if (!mtd) break; - } priv = kzalloc(sizeof(struct mypriv), GFP_KERNEL); if (!priv) { - printk(KERN_NOTICE "pmc551: Cannot allocate new MTD " - "device.\n"); kfree(mtd); break; } diff --git a/drivers/mtd/devices/serial_flash_cmds.h b/drivers/mtd/devices/serial_flash_cmds.h new file mode 100644 index 00000000000..f59a125295d --- /dev/null +++ b/drivers/mtd/devices/serial_flash_cmds.h @@ -0,0 +1,61 @@ +/* + * Generic/SFDP Flash Commands and Device Capabilities + * + * Copyright (C) 2013 Lee Jones <lee.jones@lianro.org> + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#ifndef _MTD_SERIAL_FLASH_CMDS_H +#define _MTD_SERIAL_FLASH_CMDS_H + +/* Generic Flash Commands/OPCODEs */ +#define SPINOR_OP_RDSR2 0x35 +#define SPINOR_OP_WRVCR 0x81 +#define SPINOR_OP_RDVCR 0x85 + +/* JEDEC Standard - Serial Flash Discoverable Parmeters (SFDP) Commands */ +#define SPINOR_OP_READ_1_2_2 0xbb /* DUAL I/O READ */ +#define SPINOR_OP_READ_1_4_4 0xeb /* QUAD I/O READ */ + +#define SPINOR_OP_WRITE 0x02 /* PAGE PROGRAM */ +#define SPINOR_OP_WRITE_1_1_2 0xa2 /* DUAL INPUT PROGRAM */ +#define SPINOR_OP_WRITE_1_2_2 0xd2 /* DUAL INPUT EXT PROGRAM */ +#define SPINOR_OP_WRITE_1_1_4 0x32 /* QUAD INPUT PROGRAM */ +#define SPINOR_OP_WRITE_1_4_4 0x12 /* QUAD INPUT EXT PROGRAM */ + +/* READ commands with 32-bit addressing */ +#define SPINOR_OP_READ4_1_2_2 0xbc +#define SPINOR_OP_READ4_1_4_4 0xec + +/* Configuration flags */ +#define FLASH_FLAG_SINGLE 0x000000ff +#define FLASH_FLAG_READ_WRITE 0x00000001 +#define FLASH_FLAG_READ_FAST 0x00000002 +#define FLASH_FLAG_SE_4K 0x00000004 +#define FLASH_FLAG_SE_32K 0x00000008 +#define FLASH_FLAG_CE 0x00000010 +#define FLASH_FLAG_32BIT_ADDR 0x00000020 +#define FLASH_FLAG_RESET 0x00000040 +#define FLASH_FLAG_DYB_LOCKING 0x00000080 + +#define FLASH_FLAG_DUAL 0x0000ff00 +#define FLASH_FLAG_READ_1_1_2 0x00000100 +#define FLASH_FLAG_READ_1_2_2 0x00000200 +#define FLASH_FLAG_READ_2_2_2 0x00000400 +#define FLASH_FLAG_WRITE_1_1_2 0x00001000 +#define FLASH_FLAG_WRITE_1_2_2 0x00002000 +#define FLASH_FLAG_WRITE_2_2_2 0x00004000 + +#define FLASH_FLAG_QUAD 0x00ff0000 +#define FLASH_FLAG_READ_1_1_4 0x00010000 +#define FLASH_FLAG_READ_1_4_4 0x00020000 +#define FLASH_FLAG_READ_4_4_4 0x00040000 +#define FLASH_FLAG_WRITE_1_1_4 0x00100000 +#define FLASH_FLAG_WRITE_1_4_4 0x00200000 +#define FLASH_FLAG_WRITE_4_4_4 0x00400000 + +#endif /* _MTD_SERIAL_FLASH_CMDS_H */ diff --git a/drivers/mtd/devices/slram.c b/drivers/mtd/devices/slram.c index 8f52fc858e4..2fc4957cbe7 100644 --- a/drivers/mtd/devices/slram.c +++ b/drivers/mtd/devices/slram.c @@ -240,7 +240,7 @@ static int parse_cmdline(char *devname, char *szstart, char *szlength) if (*(szlength) != '+') { devlength = simple_strtoul(szlength, &buffer, 0); - devlength = handle_unit(devlength, buffer) - devstart; + devlength = handle_unit(devlength, buffer); if (devlength < devstart) goto err_out; @@ -280,14 +280,11 @@ __setup("slram=", mtd_slram_setup); static int __init init_slram(void) { char *devname; - int i; #ifndef MODULE char *devstart; char *devlength; - i = 0; - if (!map) { E("slram: not enough parameters.\n"); return(-EINVAL); @@ -314,6 +311,7 @@ static int __init init_slram(void) } #else int count; + int i; for (count = 0; count < SLRAM_MAX_DEVICES_PARAMS && map[count]; count++) { diff --git a/drivers/mtd/devices/spear_smi.c b/drivers/mtd/devices/spear_smi.c index 67960362681..c4176b0f382 100644 --- a/drivers/mtd/devices/spear_smi.c +++ b/drivers/mtd/devices/spear_smi.c @@ -6,7 +6,7 @@ * * Copyright © 2010 STMicroelectronics. * Ashish Priyadarshi - * Shiraz Hashim <shiraz.hashim@st.com> + * Shiraz Hashim <shiraz.linux.kernel@gmail.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any @@ -26,6 +26,7 @@ #include <linux/module.h> #include <linux/param.h> #include <linux/platform_device.h> +#include <linux/pm.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/spear_smi.h> @@ -240,8 +241,8 @@ static int spear_smi_read_sr(struct spear_smi *dev, u32 bank) /* copy dev->status (lower 16 bits) in order to release lock */ if (ret > 0) ret = dev->status & 0xffff; - else - ret = -EIO; + else if (ret == 0) + ret = -ETIMEDOUT; /* restore the ctrl regs state */ writel(ctrlreg1, dev->io_base + SMI_CR1); @@ -269,16 +270,19 @@ static int spear_smi_wait_till_ready(struct spear_smi *dev, u32 bank, finish = jiffies + timeout; do { status = spear_smi_read_sr(dev, bank); - if (status < 0) - continue; /* try till timeout */ - else if (!(status & SR_WIP)) + if (status < 0) { + if (status == -ETIMEDOUT) + continue; /* try till finish */ + return status; + } else if (!(status & SR_WIP)) { return 0; + } cond_resched(); } while (!time_after_eq(jiffies, finish)); dev_err(&dev->pdev->dev, "smi controller is busy, timeout\n"); - return status; + return -EBUSY; } /** @@ -335,6 +339,9 @@ static void spear_smi_hw_init(struct spear_smi *dev) val = HOLD1 | BANK_EN | DSEL_TIME | (prescale << 8); mutex_lock(&dev->lock); + /* clear all interrupt conditions */ + writel(0, dev->io_base + SMI_SR); + writel(val, dev->io_base + SMI_CR1); mutex_unlock(&dev->lock); } @@ -391,11 +398,11 @@ static int spear_smi_write_enable(struct spear_smi *dev, u32 bank) writel(ctrlreg1, dev->io_base + SMI_CR1); writel(0, dev->io_base + SMI_CR2); - if (ret <= 0) { + if (ret == 0) { ret = -EIO; dev_err(&dev->pdev->dev, "smi controller failed on write enable\n"); - } else { + } else if (ret > 0) { /* check whether write mode status is set for required bank */ if (dev->status & (1 << (bank + WM_SHIFT))) ret = 0; @@ -462,10 +469,10 @@ static int spear_smi_erase_sector(struct spear_smi *dev, ret = wait_event_interruptible_timeout(dev->cmd_complete, dev->status & TFF, SMI_CMD_TIMEOUT); - if (ret <= 0) { + if (ret == 0) { ret = -EIO; dev_err(&dev->pdev->dev, "sector erase failed\n"); - } else + } else if (ret > 0) ret = 0; /* success */ /* restore ctrl regs */ @@ -543,7 +550,7 @@ static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, { struct spear_snor_flash *flash = get_flash_data(mtd); struct spear_smi *dev = mtd->priv; - void *src; + void __iomem *src; u32 ctrlreg1, val; int ret; @@ -576,7 +583,7 @@ static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, writel(val, dev->io_base + SMI_CR1); - memcpy_fromio(buf, (u8 *)src, len); + memcpy_fromio(buf, src, len); /* restore ctrl reg1 */ writel(ctrlreg1, dev->io_base + SMI_CR1); @@ -589,7 +596,7 @@ static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, } static inline int spear_smi_cpy_toio(struct spear_smi *dev, u32 bank, - void *dest, const void *src, size_t len) + void __iomem *dest, const void *src, size_t len) { int ret; u32 ctrlreg1; @@ -636,7 +643,7 @@ static int spear_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, { struct spear_snor_flash *flash = get_flash_data(mtd); struct spear_smi *dev = mtd->priv; - void *dest; + void __iomem *dest; u32 page_offset, page_size; int ret; @@ -749,8 +756,8 @@ err_probe: #ifdef CONFIG_OF -static int __devinit spear_smi_probe_config_dt(struct platform_device *pdev, - struct device_node *np) +static int spear_smi_probe_config_dt(struct platform_device *pdev, + struct device_node *np) { struct spear_smi_plat_data *pdata = dev_get_platdata(&pdev->dev); struct device_node *pp = NULL; @@ -792,8 +799,8 @@ static int __devinit spear_smi_probe_config_dt(struct platform_device *pdev, return 0; } #else -static int __devinit spear_smi_probe_config_dt(struct platform_device *pdev, - struct device_node *np) +static int spear_smi_probe_config_dt(struct platform_device *pdev, + struct device_node *np) { return -ENOSYS; } @@ -820,7 +827,7 @@ static int spear_smi_setup_banks(struct platform_device *pdev, if (!flash_info) return -ENODEV; - flash = kzalloc(sizeof(*flash), GFP_ATOMIC); + flash = devm_kzalloc(&pdev->dev, sizeof(*flash), GFP_ATOMIC); if (!flash) return -ENOMEM; flash->bank = bank; @@ -831,15 +838,13 @@ static int spear_smi_setup_banks(struct platform_device *pdev, flash_index = spear_smi_probe_flash(dev, bank); if (flash_index < 0) { dev_info(&dev->pdev->dev, "smi-nor%d not found\n", bank); - ret = flash_index; - goto err_probe; + return flash_index; } /* map the memory for nor flash chip */ - flash->base_addr = ioremap(flash_info->mem_base, flash_info->size); - if (!flash->base_addr) { - ret = -EIO; - goto err_probe; - } + flash->base_addr = devm_ioremap(&pdev->dev, flash_info->mem_base, + flash_info->size); + if (!flash->base_addr) + return -EIO; dev->flash[bank] = flash; flash->mtd.priv = dev; @@ -881,17 +886,10 @@ static int spear_smi_setup_banks(struct platform_device *pdev, count); if (ret) { dev_err(&dev->pdev->dev, "Err MTD partition=%d\n", ret); - goto err_map; + return ret; } return 0; - -err_map: - iounmap(flash->base_addr); - -err_probe: - kfree(flash); - return ret; } /** @@ -903,7 +901,7 @@ err_probe: * and do proper init for any found one. * Returns 0 on success, non zero otherwise */ -static int __devinit spear_smi_probe(struct platform_device *pdev) +static int spear_smi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct spear_smi_plat_data *pdata = NULL; @@ -915,7 +913,6 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) if (np) { pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { - pr_err("%s: ERROR: no memory", __func__); ret = -ENOMEM; goto err; } @@ -928,20 +925,13 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) } } else { pdata = dev_get_platdata(&pdev->dev); - if (pdata < 0) { + if (!pdata) { ret = -ENODEV; dev_err(&pdev->dev, "no platform data\n"); goto err; } } - smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!smi_base) { - ret = -ENODEV; - dev_err(&pdev->dev, "invalid smi base address\n"); - goto err; - } - irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = -ENODEV; @@ -949,32 +939,24 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) goto err; } - dev = kzalloc(sizeof(*dev), GFP_ATOMIC); + dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_ATOMIC); if (!dev) { ret = -ENOMEM; - dev_err(&pdev->dev, "mem alloc fail\n"); goto err; } - smi_base = request_mem_region(smi_base->start, resource_size(smi_base), - pdev->name); - if (!smi_base) { - ret = -EBUSY; - dev_err(&pdev->dev, "request mem region fail\n"); - goto err_mem; - } + smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); - dev->io_base = ioremap(smi_base->start, resource_size(smi_base)); - if (!dev->io_base) { - ret = -EIO; - dev_err(&pdev->dev, "ioremap fail\n"); - goto err_ioremap; + dev->io_base = devm_ioremap_resource(&pdev->dev, smi_base); + if (IS_ERR(dev->io_base)) { + ret = PTR_ERR(dev->io_base); + goto err; } dev->pdev = pdev; dev->clk_rate = pdata->clk_rate; - if (dev->clk_rate < 0 || dev->clk_rate > SMI_MAX_CLOCK_FREQ) + if (dev->clk_rate > SMI_MAX_CLOCK_FREQ) dev->clk_rate = SMI_MAX_CLOCK_FREQ; dev->num_flashes = pdata->num_flashes; @@ -984,17 +966,18 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) dev->num_flashes = MAX_NUM_FLASH_CHIP; } - dev->clk = clk_get(&pdev->dev, NULL); + dev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dev->clk)) { ret = PTR_ERR(dev->clk); - goto err_clk; + goto err; } ret = clk_prepare_enable(dev->clk); if (ret) - goto err_clk_prepare_enable; + goto err; - ret = request_irq(irq, spear_smi_int_handler, 0, pdev->name, dev); + ret = devm_request_irq(&pdev->dev, irq, spear_smi_int_handler, 0, + pdev->name, dev); if (ret) { dev_err(&dev->pdev->dev, "SMI IRQ allocation failed\n"); goto err_irq; @@ -1010,25 +993,14 @@ static int __devinit spear_smi_probe(struct platform_device *pdev) ret = spear_smi_setup_banks(pdev, i, pdata->np[i]); if (ret) { dev_err(&dev->pdev->dev, "bank setup failed\n"); - goto err_bank_setup; + goto err_irq; } } return 0; -err_bank_setup: - free_irq(irq, dev); - platform_set_drvdata(pdev, NULL); err_irq: clk_disable_unprepare(dev->clk); -err_clk_prepare_enable: - clk_put(dev->clk); -err_clk: - iounmap(dev->io_base); -err_ioremap: - release_mem_region(smi_base->start, resource_size(smi_base)); -err_mem: - kfree(dev); err: return ret; } @@ -1039,14 +1011,11 @@ err: * * free all allocations and delete the partitions. */ -static int __devexit spear_smi_remove(struct platform_device *pdev) +static int spear_smi_remove(struct platform_device *pdev) { struct spear_smi *dev; - struct spear_smi_plat_data *pdata; struct spear_snor_flash *flash; - struct resource *smi_base; - int ret; - int i, irq; + int ret, i; dev = platform_get_drvdata(pdev); if (!dev) { @@ -1054,8 +1023,6 @@ static int __devexit spear_smi_remove(struct platform_device *pdev) return -ENODEV; } - pdata = dev_get_platdata(&pdev->dev); - /* clean up for all nor flash */ for (i = 0; i < dev->num_flashes; i++) { flash = dev->flash[i]; @@ -1066,48 +1033,39 @@ static int __devexit spear_smi_remove(struct platform_device *pdev) ret = mtd_device_unregister(&flash->mtd); if (ret) dev_err(&pdev->dev, "error removing mtd\n"); - - iounmap(flash->base_addr); - kfree(flash); } - irq = platform_get_irq(pdev, 0); - free_irq(irq, dev); - clk_disable_unprepare(dev->clk); - clk_put(dev->clk); - iounmap(dev->io_base); - kfree(dev); - - smi_base = platform_get_resource(pdev, IORESOURCE_MEM, 0); - release_mem_region(smi_base->start, resource_size(smi_base)); - platform_set_drvdata(pdev, NULL); return 0; } -int spear_smi_suspend(struct platform_device *pdev, pm_message_t state) +#ifdef CONFIG_PM_SLEEP +static int spear_smi_suspend(struct device *dev) { - struct spear_smi *dev = platform_get_drvdata(pdev); + struct spear_smi *sdev = dev_get_drvdata(dev); - if (dev && dev->clk) - clk_disable_unprepare(dev->clk); + if (sdev && sdev->clk) + clk_disable_unprepare(sdev->clk); return 0; } -int spear_smi_resume(struct platform_device *pdev) +static int spear_smi_resume(struct device *dev) { - struct spear_smi *dev = platform_get_drvdata(pdev); + struct spear_smi *sdev = dev_get_drvdata(dev); int ret = -EPERM; - if (dev && dev->clk) - ret = clk_prepare_enable(dev->clk); + if (sdev && sdev->clk) + ret = clk_prepare_enable(sdev->clk); if (!ret) - spear_smi_hw_init(dev); + spear_smi_hw_init(sdev); return ret; } +#endif + +static SIMPLE_DEV_PM_OPS(spear_smi_pm_ops, spear_smi_suspend, spear_smi_resume); #ifdef CONFIG_OF static const struct of_device_id spear_smi_id_table[] = { @@ -1123,25 +1081,13 @@ static struct platform_driver spear_smi_driver = { .bus = &platform_bus_type, .owner = THIS_MODULE, .of_match_table = of_match_ptr(spear_smi_id_table), + .pm = &spear_smi_pm_ops, }, .probe = spear_smi_probe, - .remove = __devexit_p(spear_smi_remove), - .suspend = spear_smi_suspend, - .resume = spear_smi_resume, + .remove = spear_smi_remove, }; - -static int spear_smi_init(void) -{ - return platform_driver_register(&spear_smi_driver); -} -module_init(spear_smi_init); - -static void spear_smi_exit(void) -{ - platform_driver_unregister(&spear_smi_driver); -} -module_exit(spear_smi_exit); +module_platform_driver(spear_smi_driver); MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Ashish Priyadarshi, Shiraz Hashim <shiraz.hashim@st.com>"); +MODULE_AUTHOR("Ashish Priyadarshi, Shiraz Hashim <shiraz.linux.kernel@gmail.com>"); MODULE_DESCRIPTION("MTD SMI driver for serial nor flash chips"); diff --git a/drivers/mtd/devices/sst25l.c b/drivers/mtd/devices/sst25l.c index ab8a2f4c8d6..c63ecbcad0b 100644 --- a/drivers/mtd/devices/sst25l.c +++ b/drivers/mtd/devices/sst25l.c @@ -15,7 +15,6 @@ * */ -#include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/mutex.h> @@ -64,7 +63,7 @@ struct flash_info { #define to_sst25l_flash(x) container_of(x, struct sst25l_flash, mtd) -static struct flash_info __devinitdata sst25l_flash_info[] = { +static struct flash_info sst25l_flash_info[] = { {"sst25lf020a", 0xbf43, 256, 1024, 4096}, {"sst25lf040a", 0xbf44, 256, 2048, 4096}, }; @@ -313,7 +312,7 @@ out: return ret; } -static struct flash_info *__devinit sst25l_match_device(struct spi_device *spi) +static struct flash_info *sst25l_match_device(struct spi_device *spi) { struct flash_info *flash_info = NULL; struct spi_message m; @@ -353,7 +352,7 @@ static struct flash_info *__devinit sst25l_match_device(struct spi_device *spi) return flash_info; } -static int __devinit sst25l_probe(struct spi_device *spi) +static int sst25l_probe(struct spi_device *spi) { struct flash_info *flash_info; struct sst25l_flash *flash; @@ -364,15 +363,15 @@ static int __devinit sst25l_probe(struct spi_device *spi) if (!flash_info) return -ENODEV; - flash = kzalloc(sizeof(struct sst25l_flash), GFP_KERNEL); + flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); if (!flash) return -ENOMEM; flash->spi = spi; mutex_init(&flash->lock); - dev_set_drvdata(&spi->dev, flash); + spi_set_drvdata(spi, flash); - data = spi->dev.platform_data; + data = dev_get_platdata(&spi->dev); if (data && data->name) flash->mtd.name = data->name; else @@ -402,24 +401,17 @@ static int __devinit sst25l_probe(struct spi_device *spi) ret = mtd_device_parse_register(&flash->mtd, NULL, NULL, data ? data->parts : NULL, data ? data->nr_parts : 0); - if (ret) { - kfree(flash); - dev_set_drvdata(&spi->dev, NULL); + if (ret) return -ENODEV; - } return 0; } -static int __devexit sst25l_remove(struct spi_device *spi) +static int sst25l_remove(struct spi_device *spi) { - struct sst25l_flash *flash = dev_get_drvdata(&spi->dev); - int ret; + struct sst25l_flash *flash = spi_get_drvdata(spi); - ret = mtd_device_unregister(&flash->mtd); - if (ret == 0) - kfree(flash); - return ret; + return mtd_device_unregister(&flash->mtd); } static struct spi_driver sst25l_driver = { @@ -428,7 +420,7 @@ static struct spi_driver sst25l_driver = { .owner = THIS_MODULE, }, .probe = sst25l_probe, - .remove = __devexit_p(sst25l_remove), + .remove = sst25l_remove, }; module_spi_driver(sst25l_driver); diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c new file mode 100644 index 00000000000..d252514d3e9 --- /dev/null +++ b/drivers/mtd/devices/st_spi_fsm.c @@ -0,0 +1,2080 @@ +/* + * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller + * + * Author: Angus Clark <angus.clark@st.com> + * + * Copyright (C) 2010-2014 STMicroelectronics Limited + * + * JEDEC probe based on drivers/mtd/devices/m25p80.c + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/regmap.h> +#include <linux/platform_device.h> +#include <linux/mfd/syscon.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/of.h> + +#include "serial_flash_cmds.h" + +/* + * FSM SPI Controller Registers + */ +#define SPI_CLOCKDIV 0x0010 +#define SPI_MODESELECT 0x0018 +#define SPI_CONFIGDATA 0x0020 +#define SPI_STA_MODE_CHANGE 0x0028 +#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100 +#define SPI_FAST_SEQ_ADD1 0x0104 +#define SPI_FAST_SEQ_ADD2 0x0108 +#define SPI_FAST_SEQ_ADD_CFG 0x010c +#define SPI_FAST_SEQ_OPC1 0x0110 +#define SPI_FAST_SEQ_OPC2 0x0114 +#define SPI_FAST_SEQ_OPC3 0x0118 +#define SPI_FAST_SEQ_OPC4 0x011c +#define SPI_FAST_SEQ_OPC5 0x0120 +#define SPI_MODE_BITS 0x0124 +#define SPI_DUMMY_BITS 0x0128 +#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c +#define SPI_FAST_SEQ_1 0x0130 +#define SPI_FAST_SEQ_2 0x0134 +#define SPI_FAST_SEQ_3 0x0138 +#define SPI_FAST_SEQ_4 0x013c +#define SPI_FAST_SEQ_CFG 0x0140 +#define SPI_FAST_SEQ_STA 0x0144 +#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148 +#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c +#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150 +#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154 +#define SPI_PROGRAM_ERASE_TIME 0x0158 +#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c +#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160 +#define SPI_STATUS_WR_TIME_REG 0x0164 +#define SPI_FAST_SEQ_DATA_REG 0x0300 + +/* + * Register: SPI_MODESELECT + */ +#define SPI_MODESELECT_CONTIG 0x01 +#define SPI_MODESELECT_FASTREAD 0x02 +#define SPI_MODESELECT_DUALIO 0x04 +#define SPI_MODESELECT_FSM 0x08 +#define SPI_MODESELECT_QUADBOOT 0x10 + +/* + * Register: SPI_CONFIGDATA + */ +#define SPI_CFG_DEVICE_ST 0x1 +#define SPI_CFG_DEVICE_ATMEL 0x4 +#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4) +#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16) +#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24) + +#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA) +#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0) +#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00) + +/* + * Register: SPI_FAST_SEQ_TRANSFER_SIZE + */ +#define TRANSFER_SIZE(x) ((x) * 8) + +/* + * Register: SPI_FAST_SEQ_ADD_CFG + */ +#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0) +#define ADR_CFG_PADS_1_ADD1 (0x0 << 6) +#define ADR_CFG_PADS_2_ADD1 (0x1 << 6) +#define ADR_CFG_PADS_4_ADD1 (0x3 << 6) +#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8) +#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16)) +#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16)) +#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16)) +#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16)) +#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16)) + +/* + * Register: SPI_FAST_SEQ_n + */ +#define SEQ_OPC_OPCODE(x) ((x) << 0) +#define SEQ_OPC_CYCLES(x) ((x) << 8) +#define SEQ_OPC_PADS_1 (0x0 << 14) +#define SEQ_OPC_PADS_2 (0x1 << 14) +#define SEQ_OPC_PADS_4 (0x3 << 14) +#define SEQ_OPC_CSDEASSERT (1 << 16) + +/* + * Register: SPI_FAST_SEQ_CFG + */ +#define SEQ_CFG_STARTSEQ (1 << 0) +#define SEQ_CFG_SWRESET (1 << 5) +#define SEQ_CFG_CSDEASSERT (1 << 6) +#define SEQ_CFG_READNOTWRITE (1 << 7) +#define SEQ_CFG_ERASE (1 << 8) +#define SEQ_CFG_PADS_1 (0x0 << 16) +#define SEQ_CFG_PADS_2 (0x1 << 16) +#define SEQ_CFG_PADS_4 (0x3 << 16) + +/* + * Register: SPI_MODE_BITS + */ +#define MODE_DATA(x) (x & 0xff) +#define MODE_CYCLES(x) ((x & 0x3f) << 16) +#define MODE_PADS_1 (0x0 << 22) +#define MODE_PADS_2 (0x1 << 22) +#define MODE_PADS_4 (0x3 << 22) +#define DUMMY_CSDEASSERT (1 << 24) + +/* + * Register: SPI_DUMMY_BITS + */ +#define DUMMY_CYCLES(x) ((x & 0x3f) << 16) +#define DUMMY_PADS_1 (0x0 << 22) +#define DUMMY_PADS_2 (0x1 << 22) +#define DUMMY_PADS_4 (0x3 << 22) +#define DUMMY_CSDEASSERT (1 << 24) + +/* + * Register: SPI_FAST_SEQ_FLASH_STA_DATA + */ +#define STA_DATA_BYTE1(x) ((x & 0xff) << 0) +#define STA_DATA_BYTE2(x) ((x & 0xff) << 8) +#define STA_PADS_1 (0x0 << 16) +#define STA_PADS_2 (0x1 << 16) +#define STA_PADS_4 (0x3 << 16) +#define STA_CSDEASSERT (0x1 << 20) +#define STA_RDNOTWR (0x1 << 21) + +/* + * FSM SPI Instruction Opcodes + */ +#define STFSM_OPC_CMD 0x1 +#define STFSM_OPC_ADD 0x2 +#define STFSM_OPC_STA 0x3 +#define STFSM_OPC_MODE 0x4 +#define STFSM_OPC_DUMMY 0x5 +#define STFSM_OPC_DATA 0x6 +#define STFSM_OPC_WAIT 0x7 +#define STFSM_OPC_JUMP 0x8 +#define STFSM_OPC_GOTO 0x9 +#define STFSM_OPC_STOP 0xF + +/* + * FSM SPI Instructions (== opcode + operand). + */ +#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4)) + +#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1) +#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2) +#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3) +#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4) +#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5) +#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1) +#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2) + +#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1) +#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2) + +#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1) +#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1) +#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2) +#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3) + +#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0) +#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0) +#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0) +#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0) + +#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */ +#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */ + +#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */ + +#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */ + +/* S25FLxxxS commands */ +#define S25FL_CMD_WRITE4_1_1_4 0x34 +#define S25FL_CMD_SE4 0xdc +#define S25FL_CMD_CLSR 0x30 +#define S25FL_CMD_DYBWR 0xe1 +#define S25FL_CMD_DYBRD 0xe0 +#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with + * 'SPINOR_OP_WRITE_1_4_4' + * as found on N25Qxxx devices! */ + +/* Status register */ +#define FLASH_STATUS_BUSY 0x01 +#define FLASH_STATUS_WEL 0x02 +#define FLASH_STATUS_BP0 0x04 +#define FLASH_STATUS_BP1 0x08 +#define FLASH_STATUS_BP2 0x10 +#define FLASH_STATUS_SRWP0 0x80 +#define FLASH_STATUS_TIMEOUT 0xff +/* S25FL Error Flags */ +#define S25FL_STATUS_E_ERR 0x20 +#define S25FL_STATUS_P_ERR 0x40 + +#define N25Q_CMD_WRVCR 0x81 +#define N25Q_CMD_RDVCR 0x85 +#define N25Q_CMD_RDVECR 0x65 +#define N25Q_CMD_RDNVCR 0xb5 +#define N25Q_CMD_WRNVCR 0xb1 + +#define FLASH_PAGESIZE 256 /* In Bytes */ +#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */ +#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */ + +/* + * Flags to tweak operation of default read/write/erase routines + */ +#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001 +#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002 +#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008 +#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010 + +struct stfsm_seq { + uint32_t data_size; + uint32_t addr1; + uint32_t addr2; + uint32_t addr_cfg; + uint32_t seq_opc[5]; + uint32_t mode; + uint32_t dummy; + uint32_t status; + uint8_t seq[16]; + uint32_t seq_cfg; +} __packed __aligned(4); + +struct stfsm { + struct device *dev; + void __iomem *base; + struct resource *region; + struct mtd_info mtd; + struct mutex lock; + struct flash_info *info; + + uint32_t configuration; + uint32_t fifo_dir_delay; + bool booted_from_spi; + bool reset_signal; + bool reset_por; + + struct stfsm_seq stfsm_seq_read; + struct stfsm_seq stfsm_seq_write; + struct stfsm_seq stfsm_seq_en_32bit_addr; +}; + +/* Parameters to configure a READ or WRITE FSM sequence */ +struct seq_rw_config { + uint32_t flags; /* flags to support config */ + uint8_t cmd; /* FLASH command */ + int write; /* Write Sequence */ + uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */ + uint8_t data_pads; /* No. of data pads */ + uint8_t mode_data; /* MODE data */ + uint8_t mode_cycles; /* No. of MODE cycles */ + uint8_t dummy_cycles; /* No. of DUMMY cycles */ +}; + +/* SPI Flash Device Table */ +struct flash_info { + char *name; + /* + * JEDEC id zero means "no ID" (most older chips); otherwise it has + * a high byte of zero plus three data bytes: the manufacturer id, + * then a two byte device id. + */ + u32 jedec_id; + u16 ext_id; + /* + * The size listed here is what works with SPINOR_OP_SE, which isn't + * necessarily called a "sector" by the vendor. + */ + unsigned sector_size; + u16 n_sectors; + u32 flags; + /* + * Note, where FAST_READ is supported, freq_max specifies the + * FAST_READ frequency, not the READ frequency. + */ + u32 max_freq; + int (*config)(struct stfsm *); +}; + +static int stfsm_n25q_config(struct stfsm *fsm); +static int stfsm_mx25_config(struct stfsm *fsm); +static int stfsm_s25fl_config(struct stfsm *fsm); +static int stfsm_w25q_config(struct stfsm *fsm); + +static struct flash_info flash_types[] = { + /* + * ST Microelectronics/Numonyx -- + * (newer production versions may have feature updates + * (eg faster operating frequency) + */ +#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST) + { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL }, + { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL }, + { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL }, + { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL }, + { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL }, + { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL }, + +#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_WRITE_1_1_2) + { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL }, + { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL }, + + /* Macronix MX25xxx + * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices + * where operating frequency must be reduced. + */ +#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_SE_4K | \ + FLASH_FLAG_SE_32K) + { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64, + (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86, + stfsm_mx25_config}, + { "mx25l25635e", 0xc22019, 0, 64*1024, 512, + (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, + stfsm_mx25_config }, + { "mx25l25655e", 0xc22619, 0, 64*1024, 512, + (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, + stfsm_mx25_config}, + +#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_2 | \ + FLASH_FLAG_WRITE_1_2_2 | \ + FLASH_FLAG_WRITE_1_1_4 | \ + FLASH_FLAG_WRITE_1_4_4) + { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108, + stfsm_n25q_config }, + { "n25q256", 0x20ba19, 0, 64 * 1024, 512, + N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config }, + + /* + * Spansion S25FLxxxP + * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) + */ +#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_4 | \ + FLASH_FLAG_READ_FAST) + { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config}, + { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80, + stfsm_s25fl_config }, + + /* + * Spansion S25FLxxxS + * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) + * - RESET# signal supported by die but not bristled out on all + * package types. The package type is a function of board design, + * so this information is captured in the board's flags. + * - Supports 'DYB' sector protection. Depending on variant, sectors + * may default to locked state on power-on. + */ +#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \ + FLASH_FLAG_RESET | \ + FLASH_FLAG_DYB_LOCKING) + { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80, + stfsm_s25fl_config }, + { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128, + S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, + { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512, + S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, + + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ +#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_WRITE_1_1_2) + { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL }, + { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL }, + { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL }, + { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL }, + { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL }, + + /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */ +#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \ + FLASH_FLAG_READ_FAST | \ + FLASH_FLAG_READ_1_1_2 | \ + FLASH_FLAG_READ_1_2_2 | \ + FLASH_FLAG_READ_1_1_4 | \ + FLASH_FLAG_READ_1_4_4 | \ + FLASH_FLAG_WRITE_1_1_4) + { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80, + stfsm_w25q_config }, + { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80, + stfsm_w25q_config }, + + /* Sentinel */ + { NULL, 0x000000, 0, 0, 0, 0, 0, NULL }, +}; + +/* + * FSM message sequence configurations: + * + * All configs are presented in order of preference + */ + +/* Default READ configurations, in order of preference */ +static struct seq_rw_config default_read_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* Default WRITE configurations */ +static struct seq_rw_config default_write_configs[] = { + {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0}, + {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [N25Qxxx] Configuration + */ +#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4) +#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3) +#define N25Q_VCR_WRAP_CONT 0x3 + +/* N25Q 3-byte Address READ configurations + * - 'FAST' variants configured for 8 dummy cycles. + * + * Note, the number of dummy cycles used for 'FAST' READ operations is + * configurable and would normally be tuned according to the READ command and + * operating frequency. However, this applies universally to all 'FAST' READ + * commands, including those used by the SPIBoot controller, and remains in + * force until the device is power-cycled. Since the SPIBoot controller is + * hard-wired to use 8 dummy cycles, we must configure the device to also use 8 + * cycles. + */ +static struct seq_rw_config n25q_read3_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* N25Q 4-byte Address READ configurations + * - use special 4-byte address READ commands (reduces overheads, and + * reduces risk of hitting watchdog reset issues). + * - 'FAST' variants configured for 8 dummy cycles (see note above.) + */ +static struct seq_rw_config n25q_read4_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [MX25xxx] Configuration + */ +#define MX25_STATUS_QE (0x1 << 6) + +static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq) +{ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_EN4B) | + SEQ_OPC_CSDEASSERT); + + seq->seq[0] = STFSM_INST_CMD1; + seq->seq[1] = STFSM_INST_WAIT; + seq->seq[2] = STFSM_INST_STOP; + + seq->seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ); + + return 0; +} + +/* + * [S25FLxxx] Configuration + */ +#define STFSM_S25FL_CONFIG_QE (0x1 << 1) + +/* + * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank + * Register, Extended Address Modes, and a 32-bit address command set. The + * 32-bit address command set is used here, since it avoids any problems with + * entering a state that is incompatible with the SPIBoot Controller. + */ +static struct seq_rw_config stfsm_s25fl_read4_configs[] = { + {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 2, 4}, + {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8}, + {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 4, 0}, + {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8}, + {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8}, + {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +static struct seq_rw_config stfsm_s25fl_write4_configs[] = { + {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0}, + {FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0}, + {0x00, 0, 0, 0, 0, 0x00, 0, 0}, +}; + +/* + * [W25Qxxx] Configuration + */ +#define W25Q_STATUS_QE (0x1 << 1) + +static struct stfsm_seq stfsm_seq_read_jedec = { + .data_size = TRANSFER_SIZE(8), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDID)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_read_status_fifo = { + .data_size = TRANSFER_SIZE(4), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDSR)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_erase_sector = { + /* 'addr_cfg' configured during initialisation */ + .seq_opc = { + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_SE)), + }, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_erase_chip = { + .seq_opc = { + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + + (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT), + }, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_WAIT, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static struct stfsm_seq stfsm_seq_write_status = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WRSR)), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_STA_WR1, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), +}; + +static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq) +{ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_EN4B)); + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT); + + seq->seq[0] = STFSM_INST_CMD2; + seq->seq[1] = STFSM_INST_CMD1; + seq->seq[2] = STFSM_INST_WAIT; + seq->seq[3] = STFSM_INST_STOP; + + seq->seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ); + + return 0; +} + +static inline int stfsm_is_idle(struct stfsm *fsm) +{ + return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10; +} + +static inline uint32_t stfsm_fifo_available(struct stfsm *fsm) +{ + return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f; +} + +static void stfsm_clear_fifo(struct stfsm *fsm) +{ + uint32_t avail; + + for (;;) { + avail = stfsm_fifo_available(fsm); + if (!avail) + break; + + while (avail) { + readl(fsm->base + SPI_FAST_SEQ_DATA_REG); + avail--; + } + } +} + +static inline void stfsm_load_seq(struct stfsm *fsm, + const struct stfsm_seq *seq) +{ + void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE; + const uint32_t *src = (const uint32_t *)seq; + int words = sizeof(*seq) / sizeof(*src); + + BUG_ON(!stfsm_is_idle(fsm)); + + while (words--) { + writel(*src, dst); + src++; + dst += 4; + } +} + +static void stfsm_wait_seq(struct stfsm *fsm) +{ + unsigned long deadline; + int timeout = 0; + + deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS); + + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + if (stfsm_is_idle(fsm)) + return; + + cond_resched(); + } + + dev_err(fsm->dev, "timeout on sequence completion\n"); +} + +static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size) +{ + uint32_t remaining = size >> 2; + uint32_t avail; + uint32_t words; + + dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size); + + BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); + + while (remaining) { + for (;;) { + avail = stfsm_fifo_available(fsm); + if (avail) + break; + udelay(1); + } + words = min(avail, remaining); + remaining -= words; + + readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); + buf += words; + } +} + +static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf, + uint32_t size) +{ + uint32_t words = size >> 2; + + dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size); + + BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); + + writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); + + return size; +} + +static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr; + uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; + + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd) | + SEQ_OPC_CSDEASSERT); + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + return 0; +} + +static uint8_t stfsm_wait_busy(struct stfsm *fsm) +{ + struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; + unsigned long deadline; + uint32_t status; + int timeout = 0; + + /* Use RDRS1 */ + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_RDSR)); + + /* Load read_status sequence */ + stfsm_load_seq(fsm, seq); + + /* + * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS) + */ + deadline = jiffies + FLASH_MAX_BUSY_WAIT; + while (!timeout) { + if (time_after_eq(jiffies, deadline)) + timeout = 1; + + stfsm_wait_seq(fsm); + + stfsm_read_fifo(fsm, &status, 4); + + if ((status & FLASH_STATUS_BUSY) == 0) + return 0; + + if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) && + ((status & S25FL_STATUS_P_ERR) || + (status & S25FL_STATUS_E_ERR))) + return (uint8_t)(status & 0xff); + + if (!timeout) + /* Restart */ + writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG); + + cond_resched(); + } + + dev_err(fsm->dev, "timeout on wait_busy\n"); + + return FLASH_STATUS_TIMEOUT; +} + +static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd, + uint8_t *data, int bytes) +{ + struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; + uint32_t tmp; + uint8_t *t = (uint8_t *)&tmp; + int i; + + dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n", + cmd, bytes); + + BUG_ON(bytes != 1 && bytes != 2); + + seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd)), + + stfsm_load_seq(fsm, seq); + + stfsm_read_fifo(fsm, &tmp, 4); + + for (i = 0; i < bytes; i++) + data[i] = t[i]; + + stfsm_wait_seq(fsm); + + return 0; +} + +static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd, + uint16_t data, int bytes, int wait_busy) +{ + struct stfsm_seq *seq = &stfsm_seq_write_status; + + dev_dbg(fsm->dev, + "write 'status' register [0x%02x], %d byte(s), 0x%04x\n" + " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no"); + + BUG_ON(bytes != 1 && bytes != 2); + + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cmd)); + + seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT; + seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2; + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + if (wait_busy) + stfsm_wait_busy(fsm); + + return 0; +} + +/* + * SoC reset on 'boot-from-spi' systems + * + * Certain modes of operation cause the Flash device to enter a particular state + * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit + * Addr' commands). On boot-from-spi systems, it is important to consider what + * happens if a warm reset occurs during this period. The SPIBoot controller + * assumes that Flash device is in its default reset state, 24-bit address mode, + * and ready to accept commands. This can be achieved using some form of + * on-board logic/controller to force a device POR in response to a SoC-level + * reset or by making use of the device reset signal if available (limited + * number of devices only). + * + * Failure to take such precautions can cause problems following a warm reset. + * For some operations (e.g. ERASE), there is little that can be done. For + * other modes of operation (e.g. 32-bit addressing), options are often + * available that can help minimise the window in which a reset could cause a + * problem. + * + */ +static bool stfsm_can_handle_soc_reset(struct stfsm *fsm) +{ + /* Reset signal is available on the board and supported by the device */ + if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET) + return true; + + /* Board-level logic forces a power-on-reset */ + if (fsm->reset_por) + return true; + + /* Reset is not properly handled and may result in failure to reboot */ + return false; +} + +/* Configure 'addr_cfg' according to addressing mode */ +static void stfsm_prepare_erasesec_seq(struct stfsm *fsm, + struct stfsm_seq *seq) +{ + int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8; + + seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2 | + ADR_CFG_CSDEASSERT_ADD2); +} + +/* Search for preferred configuration based on available flags */ +static struct seq_rw_config * +stfsm_search_seq_rw_configs(struct stfsm *fsm, + struct seq_rw_config cfgs[]) +{ + struct seq_rw_config *config; + int flags = fsm->info->flags; + + for (config = cfgs; config->cmd != 0; config++) + if ((config->flags & flags) == config->flags) + return config; + + return NULL; +} + +/* Prepare a READ/WRITE sequence according to configuration parameters */ +static void stfsm_prepare_rw_seq(struct stfsm *fsm, + struct stfsm_seq *seq, + struct seq_rw_config *cfg) +{ + int addr1_cycles, addr2_cycles; + int i = 0; + + memset(seq, 0, sizeof(*seq)); + + /* Add READ/WRITE OPC */ + seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(cfg->cmd)); + + /* Add WREN OPC for a WRITE sequence */ + if (cfg->write) + seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT); + + /* Address configuration (24 or 32-bit addresses) */ + addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8; + addr1_cycles /= cfg->addr_pads; + addr2_cycles = 16 / cfg->addr_pads; + seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */ + (cfg->addr_pads - 1) << 6 | /* ADD1 pads */ + (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */ + ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */ + + /* Data/Sequence configuration */ + seq->seq_cfg = ((cfg->data_pads - 1) << 16 | + SEQ_CFG_STARTSEQ | + SEQ_CFG_CSDEASSERT); + if (!cfg->write) + seq->seq_cfg |= SEQ_CFG_READNOTWRITE; + + /* Mode configuration (no. of pads taken from addr cfg) */ + seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */ + (cfg->mode_cycles & 0x3f) << 16 | /* cycles */ + (cfg->addr_pads - 1) << 22); /* pads */ + + /* Dummy configuration (no. of pads taken from addr cfg) */ + seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */ + (cfg->addr_pads - 1) << 22); /* pads */ + + + /* Instruction sequence */ + i = 0; + if (cfg->write) + seq->seq[i++] = STFSM_INST_CMD2; + + seq->seq[i++] = STFSM_INST_CMD1; + + seq->seq[i++] = STFSM_INST_ADD1; + seq->seq[i++] = STFSM_INST_ADD2; + + if (cfg->mode_cycles) + seq->seq[i++] = STFSM_INST_MODE; + + if (cfg->dummy_cycles) + seq->seq[i++] = STFSM_INST_DUMMY; + + seq->seq[i++] = + cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ; + seq->seq[i++] = STFSM_INST_STOP; +} + +static int stfsm_search_prepare_rw_seq(struct stfsm *fsm, + struct stfsm_seq *seq, + struct seq_rw_config *cfgs) +{ + struct seq_rw_config *config; + + config = stfsm_search_seq_rw_configs(fsm, cfgs); + if (!config) { + dev_err(fsm->dev, "failed to find suitable config\n"); + return -EINVAL; + } + + stfsm_prepare_rw_seq(fsm, seq, config); + + return 0; +} + +/* Prepare a READ/WRITE/ERASE 'default' sequences */ +static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + int ret; + + /* Configure 'READ' sequence */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + default_read_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prep READ sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'WRITE' sequence */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + default_write_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prep WRITE sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'ERASE_SECTOR' sequence */ + stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); + + return 0; +} + +static int stfsm_mx25_config(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + uint32_t data_pads; + uint8_t sta; + int ret; + bool soc_reset; + + /* + * Use default READ/WRITE sequences + */ + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + + /* + * Configure 32-bit Address Support + */ + if (flags & FLASH_FLAG_32BIT_ADDR) { + /* Configure 'enter_32bitaddr' FSM sequence */ + stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); + + soc_reset = stfsm_can_handle_soc_reset(fsm); + if (soc_reset || !fsm->booted_from_spi) + /* If we can handle SoC resets, we enable 32-bit address + * mode pervasively */ + stfsm_enter_32bit_addr(fsm, 1); + + else + /* Else, enable/disable 32-bit addressing before/after + * each operation */ + fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR | + CFG_WRITE_TOGGLE_32BIT_ADDR | + CFG_ERASESEC_TOGGLE_32BIT_ADDR); + } + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(sta & MX25_STATUS_QE)) { + /* Set 'QE' */ + sta |= MX25_STATUS_QE; + + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); + } + } else { + if (sta & MX25_STATUS_QE) { + /* Clear 'QE' */ + sta &= ~MX25_STATUS_QE; + + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); + } + } + + return 0; +} + +static int stfsm_n25q_config(struct stfsm *fsm) +{ + uint32_t flags = fsm->info->flags; + uint8_t vcr; + int ret = 0; + bool soc_reset; + + /* Configure 'READ' sequence */ + if (flags & FLASH_FLAG_32BIT_ADDR) + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + n25q_read4_configs); + else + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + n25q_read3_configs); + if (ret) { + dev_err(fsm->dev, + "failed to prepare READ sequence with flags [0x%08x]\n", + flags); + return ret; + } + + /* Configure 'WRITE' sequence (default configs) */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + default_write_configs); + if (ret) { + dev_err(fsm->dev, + "preparing WRITE sequence using flags [0x%08x] failed\n", + flags); + return ret; + } + + /* * Configure 'ERASE_SECTOR' sequence */ + stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); + + /* Configure 32-bit address support */ + if (flags & FLASH_FLAG_32BIT_ADDR) { + stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); + + soc_reset = stfsm_can_handle_soc_reset(fsm); + if (soc_reset || !fsm->booted_from_spi) { + /* + * If we can handle SoC resets, we enable 32-bit + * address mode pervasively + */ + stfsm_enter_32bit_addr(fsm, 1); + } else { + /* + * If not, enable/disable for WRITE and ERASE + * operations (READ uses special commands) + */ + fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR | + CFG_ERASESEC_TOGGLE_32BIT_ADDR); + } + } + + /* + * Configure device to use 8 dummy cycles + */ + vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED | + N25Q_VCR_WRAP_CONT); + stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0); + + return 0; +} + +static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq) +{ + seq->seq_opc[1] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_SE4)); + + seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2 | + ADR_CFG_CSDEASSERT_ADD2); +} + +static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby) +{ + uint32_t tmp; + struct stfsm_seq seq = { + .data_size = TRANSFER_SIZE(4), + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)), + .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2), + .addr1 = (offs >> 16) & 0xffff, + .addr2 = offs & 0xffff, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_DATA_READ, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + + stfsm_read_fifo(fsm, &tmp, 4); + + *dby = (uint8_t)(tmp >> 24); + + stfsm_wait_seq(fsm); +} + +static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby) +{ + struct stfsm_seq seq = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WREN) | + SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)), + .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | + ADR_CFG_PADS_1_ADD1 | + ADR_CFG_CYCLES_ADD2(16) | + ADR_CFG_PADS_1_ADD2), + .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT, + .addr1 = (offs >> 16) & 0xffff, + .addr2 = offs & 0xffff, + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_ADD1, + STFSM_INST_ADD2, + STFSM_INST_STA_WR1, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + stfsm_wait_seq(fsm); + + stfsm_wait_busy(fsm); +} + +static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm) +{ + struct stfsm_seq seq = { + .seq_opc[0] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(S25FL_CMD_CLSR) | + SEQ_OPC_CSDEASSERT), + .seq_opc[1] = (SEQ_OPC_PADS_1 | + SEQ_OPC_CYCLES(8) | + SEQ_OPC_OPCODE(SPINOR_OP_WRDI) | + SEQ_OPC_CSDEASSERT), + .seq = { + STFSM_INST_CMD1, + STFSM_INST_CMD2, + STFSM_INST_WAIT, + STFSM_INST_STOP, + }, + .seq_cfg = (SEQ_CFG_PADS_1 | + SEQ_CFG_ERASE | + SEQ_CFG_READNOTWRITE | + SEQ_CFG_CSDEASSERT | + SEQ_CFG_STARTSEQ), + }; + + stfsm_load_seq(fsm, &seq); + + stfsm_wait_seq(fsm); + + return 0; +} + +static int stfsm_s25fl_config(struct stfsm *fsm) +{ + struct flash_info *info = fsm->info; + uint32_t flags = info->flags; + uint32_t data_pads; + uint32_t offs; + uint16_t sta_wr; + uint8_t sr1, cr1, dyb; + int update_sr = 0; + int ret; + + if (flags & FLASH_FLAG_32BIT_ADDR) { + /* + * Prepare Read/Write/Erase sequences according to S25FLxxx + * 32-bit address command set + */ + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, + stfsm_s25fl_read4_configs); + if (ret) + return ret; + + ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, + stfsm_s25fl_write4_configs); + if (ret) + return ret; + + stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector); + + } else { + /* Use default configurations for 24-bit addressing */ + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + } + + /* + * For devices that support 'DYB' sector locking, check lock status and + * unlock sectors if necessary (some variants power-on with sectors + * locked by default) + */ + if (flags & FLASH_FLAG_DYB_LOCKING) { + offs = 0; + for (offs = 0; offs < info->sector_size * info->n_sectors;) { + stfsm_s25fl_read_dyb(fsm, offs, &dyb); + if (dyb == 0x00) + stfsm_s25fl_write_dyb(fsm, offs, 0xff); + + /* Handle bottom/top 4KiB parameter sectors */ + if ((offs < info->sector_size * 2) || + (offs >= (info->sector_size - info->n_sectors * 4))) + offs += 0x1000; + else + offs += 0x10000; + } + } + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDSR2, &cr1, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(cr1 & STFSM_S25FL_CONFIG_QE)) { + /* Set 'QE' */ + cr1 |= STFSM_S25FL_CONFIG_QE; + + update_sr = 1; + } + } else { + if (cr1 & STFSM_S25FL_CONFIG_QE) { + /* Clear 'QE' */ + cr1 &= ~STFSM_S25FL_CONFIG_QE; + + update_sr = 1; + } + } + if (update_sr) { + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); + sta_wr = ((uint16_t)cr1 << 8) | sr1; + stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1); + } + + /* + * S25FLxxx devices support Program and Error error flags. + * Configure driver to check flags and clear if necessary. + */ + fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS; + + return 0; +} + +static int stfsm_w25q_config(struct stfsm *fsm) +{ + uint32_t data_pads; + uint8_t sr1, sr2; + uint16_t sr_wr; + int update_sr = 0; + int ret; + + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + + /* Check status of 'QE' bit, update if required. */ + stfsm_read_status(fsm, SPINOR_OP_RDSR2, &sr2, 1); + data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; + if (data_pads == 4) { + if (!(sr2 & W25Q_STATUS_QE)) { + /* Set 'QE' */ + sr2 |= W25Q_STATUS_QE; + update_sr = 1; + } + } else { + if (sr2 & W25Q_STATUS_QE) { + /* Clear 'QE' */ + sr2 &= ~W25Q_STATUS_QE; + update_sr = 1; + } + } + if (update_sr) { + /* Write status register */ + stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); + sr_wr = ((uint16_t)sr2 << 8) | sr1; + stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1); + } + + return 0; +} + +static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size, + uint32_t offset) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_read; + uint32_t data_pads; + uint32_t read_mask; + uint32_t size_ub; + uint32_t size_lb; + uint32_t size_mop; + uint32_t tmp[4]; + uint32_t page_buf[FLASH_PAGESIZE_32]; + uint8_t *p; + + dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */ + data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; + read_mask = (data_pads << 2) - 1; + + /* Handle non-aligned buf */ + p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf; + + /* Handle non-aligned size */ + size_ub = (size + read_mask) & ~read_mask; + size_lb = size & ~read_mask; + size_mop = size & read_mask; + + seq->data_size = TRANSFER_SIZE(size_ub); + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + stfsm_load_seq(fsm, seq); + + if (size_lb) + stfsm_read_fifo(fsm, (uint32_t *)p, size_lb); + + if (size_mop) { + stfsm_read_fifo(fsm, tmp, read_mask + 1); + memcpy(p + size_lb, &tmp, size_mop); + } + + /* Handle non-aligned buf */ + if ((uintptr_t)buf & 0x3) + memcpy(buf, page_buf, size); + + /* Wait for sequence to finish */ + stfsm_wait_seq(fsm); + + stfsm_clear_fifo(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return 0; +} + +static int stfsm_write(struct stfsm *fsm, const uint8_t *buf, + uint32_t size, uint32_t offset) +{ + struct stfsm_seq *seq = &fsm->stfsm_seq_write; + uint32_t data_pads; + uint32_t write_mask; + uint32_t size_ub; + uint32_t size_lb; + uint32_t size_mop; + uint32_t tmp[4]; + uint32_t page_buf[FLASH_PAGESIZE_32]; + uint8_t *t = (uint8_t *)&tmp; + const uint8_t *p; + int ret; + int i; + + dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */ + data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; + write_mask = (data_pads << 2) - 1; + + /* Handle non-aligned buf */ + if ((uintptr_t)buf & 0x3) { + memcpy(page_buf, buf, size); + p = (uint8_t *)page_buf; + } else { + p = buf; + } + + /* Handle non-aligned size */ + size_ub = (size + write_mask) & ~write_mask; + size_lb = size & ~write_mask; + size_mop = size & write_mask; + + seq->data_size = TRANSFER_SIZE(size_ub); + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + /* Need to set FIFO to write mode, before writing data to FIFO (see + * GNBvb79594) + */ + writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG); + + /* + * Before writing data to the FIFO, apply a small delay to allow a + * potential change of FIFO direction to complete. + */ + if (fsm->fifo_dir_delay == 0) + readl(fsm->base + SPI_FAST_SEQ_CFG); + else + udelay(fsm->fifo_dir_delay); + + + /* Write data to FIFO, before starting sequence (see GNBvd79593) */ + if (size_lb) { + stfsm_write_fifo(fsm, (uint32_t *)p, size_lb); + p += size_lb; + } + + /* Handle non-aligned size */ + if (size_mop) { + memset(t, 0xff, write_mask + 1); /* fill with 0xff's */ + for (i = 0; i < size_mop; i++) + t[i] = *p++; + + stfsm_write_fifo(fsm, tmp, write_mask + 1); + } + + /* Start sequence */ + stfsm_load_seq(fsm, seq); + + /* Wait for sequence to finish */ + stfsm_wait_seq(fsm); + + /* Wait for completion */ + ret = stfsm_wait_busy(fsm); + if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) + stfsm_s25fl_clear_status_reg(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return 0; +} + +/* + * Read an address range from the flash chip. The address range + * may be any size provided it is within the physical boundaries. + */ +static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + uint32_t bytes; + + dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n", + __func__, (u32)from, len); + + mutex_lock(&fsm->lock); + + while (len > 0) { + bytes = min_t(size_t, len, FLASH_PAGESIZE); + + stfsm_read(fsm, buf, bytes, from); + + buf += bytes; + from += bytes; + len -= bytes; + + *retlen += bytes; + } + + mutex_unlock(&fsm->lock); + + return 0; +} + +static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset) +{ + struct stfsm_seq *seq = &stfsm_seq_erase_sector; + int ret; + + dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset); + + /* Enter 32-bit address mode, if required */ + if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 1); + + seq->addr1 = (offset >> 16) & 0xffff; + seq->addr2 = offset & 0xffff; + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + /* Wait for completion */ + ret = stfsm_wait_busy(fsm); + if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) + stfsm_s25fl_clear_status_reg(fsm); + + /* Exit 32-bit address mode, if required */ + if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) + stfsm_enter_32bit_addr(fsm, 0); + + return ret; +} + +static int stfsm_erase_chip(struct stfsm *fsm) +{ + const struct stfsm_seq *seq = &stfsm_seq_erase_chip; + + dev_dbg(fsm->dev, "erasing chip\n"); + + stfsm_load_seq(fsm, seq); + + stfsm_wait_seq(fsm); + + return stfsm_wait_busy(fsm); +} + +/* + * Write an address range to the flash chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + + u32 page_offs; + u32 bytes; + uint8_t *b = (uint8_t *)buf; + int ret = 0; + + dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len); + + /* Offset within page */ + page_offs = to % FLASH_PAGESIZE; + + mutex_lock(&fsm->lock); + + while (len) { + /* Write up to page boundary */ + bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len); + + ret = stfsm_write(fsm, b, bytes, to); + if (ret) + goto out1; + + b += bytes; + len -= bytes; + to += bytes; + + /* We are now page-aligned */ + page_offs = 0; + + *retlen += bytes; + + } + +out1: + mutex_unlock(&fsm->lock); + + return ret; +} + +/* + * Erase an address range on the flash chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); + u32 addr, len; + int ret; + + dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__, + (long long)instr->addr, (long long)instr->len); + + addr = instr->addr; + len = instr->len; + + mutex_lock(&fsm->lock); + + /* Whole-chip erase? */ + if (len == mtd->size) { + ret = stfsm_erase_chip(fsm); + if (ret) + goto out1; + } else { + while (len) { + ret = stfsm_erase_sector(fsm, addr); + if (ret) + goto out1; + + addr += mtd->erasesize; + len -= mtd->erasesize; + } + } + + mutex_unlock(&fsm->lock); + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; + +out1: + instr->state = MTD_ERASE_FAILED; + mutex_unlock(&fsm->lock); + + return ret; +} + +static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec) +{ + const struct stfsm_seq *seq = &stfsm_seq_read_jedec; + uint32_t tmp[2]; + + stfsm_load_seq(fsm, seq); + + stfsm_read_fifo(fsm, tmp, 8); + + memcpy(jedec, tmp, 5); + + stfsm_wait_seq(fsm); +} + +static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm) +{ + struct flash_info *info; + u16 ext_jedec; + u32 jedec; + u8 id[5]; + + stfsm_read_jedec(fsm, id); + + jedec = id[0] << 16 | id[1] << 8 | id[2]; + /* + * JEDEC also defines an optional "extended device information" + * string for after vendor-specific data, after the three bytes + * we use here. Supporting some chips might require using it. + */ + ext_jedec = id[3] << 8 | id[4]; + + dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n", + jedec, id[0], id[1], id[2], id[3], id[4]); + + for (info = flash_types; info->name; info++) { + if (info->jedec_id == jedec) { + if (info->ext_id && info->ext_id != ext_jedec) + continue; + return info; + } + } + dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec); + + return NULL; +} + +static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode) +{ + int ret, timeout = 10; + + /* Wait for controller to accept mode change */ + while (--timeout) { + ret = readl(fsm->base + SPI_STA_MODE_CHANGE); + if (ret & 0x1) + break; + udelay(1); + } + + if (!timeout) + return -EBUSY; + + writel(mode, fsm->base + SPI_MODESELECT); + + return 0; +} + +static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq) +{ + uint32_t emi_freq; + uint32_t clk_div; + + /* TODO: Make this dynamic */ + emi_freq = STFSM_DEFAULT_EMI_FREQ; + + /* + * Calculate clk_div - values between 2 and 128 + * Multiple of 2, rounded up + */ + clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq); + if (clk_div < 2) + clk_div = 2; + else if (clk_div > 128) + clk_div = 128; + + /* + * Determine a suitable delay for the IP to complete a change of + * direction of the FIFO. The required delay is related to the clock + * divider used. The following heuristics are based on empirical tests, + * using a 100MHz EMI clock. + */ + if (clk_div <= 4) + fsm->fifo_dir_delay = 0; + else if (clk_div <= 10) + fsm->fifo_dir_delay = 1; + else + fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10); + + dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n", + emi_freq, spi_freq, clk_div); + + writel(clk_div, fsm->base + SPI_CLOCKDIV); +} + +static int stfsm_init(struct stfsm *fsm) +{ + int ret; + + /* Perform a soft reset of the FSM controller */ + writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG); + udelay(1); + writel(0, fsm->base + SPI_FAST_SEQ_CFG); + + /* Set clock to 'safe' frequency initially */ + stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ); + + /* Switch to FSM */ + ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM); + if (ret) + return ret; + + /* Set timing parameters */ + writel(SPI_CFG_DEVICE_ST | + SPI_CFG_DEFAULT_MIN_CS_HIGH | + SPI_CFG_DEFAULT_CS_SETUPHOLD | + SPI_CFG_DEFAULT_DATA_HOLD, + fsm->base + SPI_CONFIGDATA); + writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG); + + /* + * Set the FSM 'WAIT' delay to the minimum workable value. Note, for + * our purposes, the WAIT instruction is used purely to achieve + * "sequence validity" rather than actually implement a delay. + */ + writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME); + + /* Clear FIFO, just in case */ + stfsm_clear_fifo(fsm); + + return 0; +} + +static void stfsm_fetch_platform_configs(struct platform_device *pdev) +{ + struct stfsm *fsm = platform_get_drvdata(pdev); + struct device_node *np = pdev->dev.of_node; + struct regmap *regmap; + uint32_t boot_device_reg; + uint32_t boot_device_spi; + uint32_t boot_device; /* Value we read from *boot_device_reg */ + int ret; + + /* Booting from SPI NOR Flash is the default */ + fsm->booted_from_spi = true; + + regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); + if (IS_ERR(regmap)) + goto boot_device_fail; + + fsm->reset_signal = of_property_read_bool(np, "st,reset-signal"); + + fsm->reset_por = of_property_read_bool(np, "st,reset-por"); + + /* Where in the syscon the boot device information lives */ + ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg); + if (ret) + goto boot_device_fail; + + /* Boot device value when booted from SPI NOR */ + ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi); + if (ret) + goto boot_device_fail; + + ret = regmap_read(regmap, boot_device_reg, &boot_device); + if (ret) + goto boot_device_fail; + + if (boot_device != boot_device_spi) + fsm->booted_from_spi = false; + + return; + +boot_device_fail: + dev_warn(&pdev->dev, + "failed to fetch boot device, assuming boot from SPI\n"); +} + +static int stfsm_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct mtd_part_parser_data ppdata; + struct flash_info *info; + struct resource *res; + struct stfsm *fsm; + int ret; + + if (!np) { + dev_err(&pdev->dev, "No DT found\n"); + return -EINVAL; + } + ppdata.of_node = np; + + fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL); + if (!fsm) + return -ENOMEM; + + fsm->dev = &pdev->dev; + + platform_set_drvdata(pdev, fsm); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) { + dev_err(&pdev->dev, "Resource not found\n"); + return -ENODEV; + } + + fsm->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(fsm->base)) { + dev_err(&pdev->dev, + "Failed to reserve memory region %pR\n", res); + return PTR_ERR(fsm->base); + } + + mutex_init(&fsm->lock); + + ret = stfsm_init(fsm); + if (ret) { + dev_err(&pdev->dev, "Failed to initialise FSM Controller\n"); + return ret; + } + + stfsm_fetch_platform_configs(pdev); + + /* Detect SPI FLASH device */ + info = stfsm_jedec_probe(fsm); + if (!info) + return -ENODEV; + fsm->info = info; + + /* Use device size to determine address width */ + if (info->sector_size * info->n_sectors > 0x1000000) + info->flags |= FLASH_FLAG_32BIT_ADDR; + + /* + * Configure READ/WRITE/ERASE sequences according to platform and + * device flags. + */ + if (info->config) { + ret = info->config(fsm); + if (ret) + return ret; + } else { + ret = stfsm_prepare_rwe_seqs_default(fsm); + if (ret) + return ret; + } + + fsm->mtd.name = info->name; + fsm->mtd.dev.parent = &pdev->dev; + fsm->mtd.type = MTD_NORFLASH; + fsm->mtd.writesize = 4; + fsm->mtd.writebufsize = fsm->mtd.writesize; + fsm->mtd.flags = MTD_CAP_NORFLASH; + fsm->mtd.size = info->sector_size * info->n_sectors; + fsm->mtd.erasesize = info->sector_size; + + fsm->mtd._read = stfsm_mtd_read; + fsm->mtd._write = stfsm_mtd_write; + fsm->mtd._erase = stfsm_mtd_erase; + + dev_info(&pdev->dev, + "Found serial flash device: %s\n" + " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n", + info->name, + (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20), + fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10)); + + return mtd_device_parse_register(&fsm->mtd, NULL, &ppdata, NULL, 0); +} + +static int stfsm_remove(struct platform_device *pdev) +{ + struct stfsm *fsm = platform_get_drvdata(pdev); + + return mtd_device_unregister(&fsm->mtd); +} + +static const struct of_device_id stfsm_match[] = { + { .compatible = "st,spi-fsm", }, + {}, +}; +MODULE_DEVICE_TABLE(of, stfsm_match); + +static struct platform_driver stfsm_driver = { + .probe = stfsm_probe, + .remove = stfsm_remove, + .driver = { + .name = "st-spi-fsm", + .owner = THIS_MODULE, + .of_match_table = stfsm_match, + }, +}; +module_platform_driver(stfsm_driver); + +MODULE_AUTHOR("Angus Clark <angus.clark@st.com>"); +MODULE_DESCRIPTION("ST SPI FSM driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c index 3af35148409..b66b541877f 100644 --- a/drivers/mtd/inftlcore.c +++ b/drivers/mtd/inftlcore.c @@ -50,7 +50,7 @@ static void inftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) struct INFTLrecord *inftl; unsigned long temp; - if (mtd->type != MTD_NANDFLASH || mtd->size > UINT_MAX) + if (!mtd_type_is_nand(mtd) || mtd->size > UINT_MAX) return; /* OK, this is moderately ugly. But probably safe. Alternatives? */ if (memcmp(mtd->name, "DiskOnChip", 10)) diff --git a/drivers/mtd/inftlmount.c b/drivers/mtd/inftlmount.c index 4adc0374fb6..487e64f411a 100644 --- a/drivers/mtd/inftlmount.c +++ b/drivers/mtd/inftlmount.c @@ -30,7 +30,6 @@ #include <asm/uaccess.h> #include <linux/delay.h> #include <linux/slab.h> -#include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nftl.h> #include <linux/mtd/inftl.h> diff --git a/drivers/mtd/lpddr/Kconfig b/drivers/mtd/lpddr/Kconfig index 265f969817e..3a19cbee24d 100644 --- a/drivers/mtd/lpddr/Kconfig +++ b/drivers/mtd/lpddr/Kconfig @@ -1,5 +1,5 @@ -menu "LPDDR flash memory drivers" - depends on MTD!=n +menu "LPDDR & LPDDR2 PCM memory drivers" + depends on MTD config MTD_LPDDR tristate "Support for LPDDR flash chips" @@ -17,4 +17,13 @@ config MTD_QINFO_PROBE Window QINFO interface, permits software to be used for entire families of devices. This serves similar purpose of CFI on legacy Flash products + +config MTD_LPDDR2_NVM + # ARM dependency is only for writel_relaxed() + depends on MTD && ARM + tristate "Support for LPDDR2-NVM flash chips" + help + This option enables support of PCM memories with a LPDDR2-NVM + (Low power double data rate 2) interface. + endmenu diff --git a/drivers/mtd/lpddr/Makefile b/drivers/mtd/lpddr/Makefile index da48e46b581..881d440d483 100644 --- a/drivers/mtd/lpddr/Makefile +++ b/drivers/mtd/lpddr/Makefile @@ -4,3 +4,4 @@ obj-$(CONFIG_MTD_QINFO_PROBE) += qinfo_probe.o obj-$(CONFIG_MTD_LPDDR) += lpddr_cmds.o +obj-$(CONFIG_MTD_LPDDR2_NVM) += lpddr2_nvm.o diff --git a/drivers/mtd/lpddr/lpddr2_nvm.c b/drivers/mtd/lpddr/lpddr2_nvm.c new file mode 100644 index 00000000000..063cec40d0a --- /dev/null +++ b/drivers/mtd/lpddr/lpddr2_nvm.c @@ -0,0 +1,507 @@ +/* + * LPDDR2-NVM MTD driver. This module provides read, write, erase, lock/unlock + * support for LPDDR2-NVM PCM memories + * + * Copyright © 2012 Micron Technology, Inc. + * + * Vincenzo Aliberti <vincenzo.aliberti@gmail.com> + * Domenico Manna <domenico.manna@gmail.com> + * Many thanks to Andrea Vigilante for initial enabling + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__ + +#include <linux/init.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/ioport.h> +#include <linux/err.h> + +/* Parameters */ +#define ERASE_BLOCKSIZE (0x00020000/2) /* in Word */ +#define WRITE_BUFFSIZE (0x00000400/2) /* in Word */ +#define OW_BASE_ADDRESS 0x00000000 /* OW offset */ +#define BUS_WIDTH 0x00000020 /* x32 devices */ + +/* PFOW symbols address offset */ +#define PFOW_QUERY_STRING_P (0x0000/2) /* in Word */ +#define PFOW_QUERY_STRING_F (0x0002/2) /* in Word */ +#define PFOW_QUERY_STRING_O (0x0004/2) /* in Word */ +#define PFOW_QUERY_STRING_W (0x0006/2) /* in Word */ + +/* OW registers address */ +#define CMD_CODE_OFS (0x0080/2) /* in Word */ +#define CMD_DATA_OFS (0x0084/2) /* in Word */ +#define CMD_ADD_L_OFS (0x0088/2) /* in Word */ +#define CMD_ADD_H_OFS (0x008A/2) /* in Word */ +#define MPR_L_OFS (0x0090/2) /* in Word */ +#define MPR_H_OFS (0x0092/2) /* in Word */ +#define CMD_EXEC_OFS (0x00C0/2) /* in Word */ +#define STATUS_REG_OFS (0x00CC/2) /* in Word */ +#define PRG_BUFFER_OFS (0x0010/2) /* in Word */ + +/* Datamask */ +#define MR_CFGMASK 0x8000 +#define SR_OK_DATAMASK 0x0080 + +/* LPDDR2-NVM Commands */ +#define LPDDR2_NVM_LOCK 0x0061 +#define LPDDR2_NVM_UNLOCK 0x0062 +#define LPDDR2_NVM_SW_PROGRAM 0x0041 +#define LPDDR2_NVM_SW_OVERWRITE 0x0042 +#define LPDDR2_NVM_BUF_PROGRAM 0x00E9 +#define LPDDR2_NVM_BUF_OVERWRITE 0x00EA +#define LPDDR2_NVM_ERASE 0x0020 + +/* LPDDR2-NVM Registers offset */ +#define LPDDR2_MODE_REG_DATA 0x0040 +#define LPDDR2_MODE_REG_CFG 0x0050 + +/* + * Internal Type Definitions + * pcm_int_data contains memory controller details: + * @reg_data : LPDDR2_MODE_REG_DATA register address after remapping + * @reg_cfg : LPDDR2_MODE_REG_CFG register address after remapping + * &bus_width: memory bus-width (eg: x16 2 Bytes, x32 4 Bytes) + */ +struct pcm_int_data { + void __iomem *ctl_regs; + int bus_width; +}; + +static DEFINE_MUTEX(lpdd2_nvm_mutex); + +/* + * Build a map_word starting from an u_long + */ +static inline map_word build_map_word(u_long myword) +{ + map_word val = { {0} }; + val.x[0] = myword; + return val; +} + +/* + * Build Mode Register Configuration DataMask based on device bus-width + */ +static inline u_int build_mr_cfgmask(u_int bus_width) +{ + u_int val = MR_CFGMASK; + + if (bus_width == 0x0004) /* x32 device */ + val = val << 16; + + return val; +} + +/* + * Build Status Register OK DataMask based on device bus-width + */ +static inline u_int build_sr_ok_datamask(u_int bus_width) +{ + u_int val = SR_OK_DATAMASK; + + if (bus_width == 0x0004) /* x32 device */ + val = (val << 16)+val; + + return val; +} + +/* + * Evaluates Overlay Window Control Registers address + */ +static inline u_long ow_reg_add(struct map_info *map, u_long offset) +{ + u_long val = 0; + struct pcm_int_data *pcm_data = map->fldrv_priv; + + val = map->pfow_base + offset*pcm_data->bus_width; + + return val; +} + +/* + * Enable lpddr2-nvm Overlay Window + * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers + * used by device commands as well as uservisible resources like Device Status + * Register, Device ID, etc + */ +static inline void ow_enable(struct map_info *map) +{ + struct pcm_int_data *pcm_data = map->fldrv_priv; + + writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18, + pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG); + writel_relaxed(0x01, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA); +} + +/* + * Disable lpddr2-nvm Overlay Window + * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers + * used by device commands as well as uservisible resources like Device Status + * Register, Device ID, etc + */ +static inline void ow_disable(struct map_info *map) +{ + struct pcm_int_data *pcm_data = map->fldrv_priv; + + writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18, + pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG); + writel_relaxed(0x02, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA); +} + +/* + * Execute lpddr2-nvm operations + */ +static int lpddr2_nvm_do_op(struct map_info *map, u_long cmd_code, + u_long cmd_data, u_long cmd_add, u_long cmd_mpr, u_char *buf) +{ + map_word add_l = { {0} }, add_h = { {0} }, mpr_l = { {0} }, + mpr_h = { {0} }, data_l = { {0} }, cmd = { {0} }, + exec_cmd = { {0} }, sr; + map_word data_h = { {0} }; /* only for 2x x16 devices stacked */ + u_long i, status_reg, prg_buff_ofs; + struct pcm_int_data *pcm_data = map->fldrv_priv; + u_int sr_ok_datamask = build_sr_ok_datamask(pcm_data->bus_width); + + /* Builds low and high words for OW Control Registers */ + add_l.x[0] = cmd_add & 0x0000FFFF; + add_h.x[0] = (cmd_add >> 16) & 0x0000FFFF; + mpr_l.x[0] = cmd_mpr & 0x0000FFFF; + mpr_h.x[0] = (cmd_mpr >> 16) & 0x0000FFFF; + cmd.x[0] = cmd_code & 0x0000FFFF; + exec_cmd.x[0] = 0x0001; + data_l.x[0] = cmd_data & 0x0000FFFF; + data_h.x[0] = (cmd_data >> 16) & 0x0000FFFF; /* only for 2x x16 */ + + /* Set Overlay Window Control Registers */ + map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS)); + map_write(map, data_l, ow_reg_add(map, CMD_DATA_OFS)); + map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS)); + map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS)); + map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS)); + map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS)); + if (pcm_data->bus_width == 0x0004) { /* 2x16 devices stacked */ + map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS) + 2); + map_write(map, data_h, ow_reg_add(map, CMD_DATA_OFS) + 2); + map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS) + 2); + map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS) + 2); + map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS) + 2); + map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS) + 2); + } + + /* Fill Program Buffer */ + if ((cmd_code == LPDDR2_NVM_BUF_PROGRAM) || + (cmd_code == LPDDR2_NVM_BUF_OVERWRITE)) { + prg_buff_ofs = (map_read(map, + ow_reg_add(map, PRG_BUFFER_OFS))).x[0]; + for (i = 0; i < cmd_mpr; i++) { + map_write(map, build_map_word(buf[i]), map->pfow_base + + prg_buff_ofs + i); + } + } + + /* Command Execute */ + map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS)); + if (pcm_data->bus_width == 0x0004) /* 2x16 devices stacked */ + map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS) + 2); + + /* Status Register Check */ + do { + sr = map_read(map, ow_reg_add(map, STATUS_REG_OFS)); + status_reg = sr.x[0]; + if (pcm_data->bus_width == 0x0004) {/* 2x16 devices stacked */ + sr = map_read(map, ow_reg_add(map, + STATUS_REG_OFS) + 2); + status_reg += sr.x[0] << 16; + } + } while ((status_reg & sr_ok_datamask) != sr_ok_datamask); + + return (((status_reg & sr_ok_datamask) == sr_ok_datamask) ? 0 : -EIO); +} + +/* + * Execute lpddr2-nvm operations @ block level + */ +static int lpddr2_nvm_do_block_op(struct mtd_info *mtd, loff_t start_add, + uint64_t len, u_char block_op) +{ + struct map_info *map = mtd->priv; + u_long add, end_add; + int ret = 0; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + add = start_add; + end_add = add + len; + + do { + ret = lpddr2_nvm_do_op(map, block_op, 0x00, add, add, NULL); + if (ret) + goto out; + add += mtd->erasesize; + } while (add < end_add); + +out: + ow_disable(map); + mutex_unlock(&lpdd2_nvm_mutex); + return ret; +} + +/* + * verify presence of PFOW string + */ +static int lpddr2_nvm_pfow_present(struct map_info *map) +{ + map_word pfow_val[4]; + unsigned int found = 1; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + /* Load string from array */ + pfow_val[0] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_P)); + pfow_val[1] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_F)); + pfow_val[2] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_O)); + pfow_val[3] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_W)); + + /* Verify the string loaded vs expected */ + if (!map_word_equal(map, build_map_word('P'), pfow_val[0])) + found = 0; + if (!map_word_equal(map, build_map_word('F'), pfow_val[1])) + found = 0; + if (!map_word_equal(map, build_map_word('O'), pfow_val[2])) + found = 0; + if (!map_word_equal(map, build_map_word('W'), pfow_val[3])) + found = 0; + + ow_disable(map); + + mutex_unlock(&lpdd2_nvm_mutex); + + return found; +} + +/* + * lpddr2_nvm driver read method + */ +static int lpddr2_nvm_read(struct mtd_info *mtd, loff_t start_add, + size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + mutex_lock(&lpdd2_nvm_mutex); + + *retlen = len; + + map_copy_from(map, buf, start_add, *retlen); + + mutex_unlock(&lpdd2_nvm_mutex); + return 0; +} + +/* + * lpddr2_nvm driver write method + */ +static int lpddr2_nvm_write(struct mtd_info *mtd, loff_t start_add, + size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct pcm_int_data *pcm_data = map->fldrv_priv; + u_long add, current_len, tot_len, target_len, my_data; + u_char *write_buf = (u_char *)buf; + int ret = 0; + + mutex_lock(&lpdd2_nvm_mutex); + + ow_enable(map); + + /* Set start value for the variables */ + add = start_add; + target_len = len; + tot_len = 0; + + while (tot_len < target_len) { + if (!(IS_ALIGNED(add, mtd->writesize))) { /* do sw program */ + my_data = write_buf[tot_len]; + my_data += (write_buf[tot_len+1]) << 8; + if (pcm_data->bus_width == 0x0004) {/* 2x16 devices */ + my_data += (write_buf[tot_len+2]) << 16; + my_data += (write_buf[tot_len+3]) << 24; + } + ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_SW_OVERWRITE, + my_data, add, 0x00, NULL); + if (ret) + goto out; + + add += pcm_data->bus_width; + tot_len += pcm_data->bus_width; + } else { /* do buffer program */ + current_len = min(target_len - tot_len, + (u_long) mtd->writesize); + ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_BUF_OVERWRITE, + 0x00, add, current_len, write_buf + tot_len); + if (ret) + goto out; + + add += current_len; + tot_len += current_len; + } + } + +out: + *retlen = tot_len; + ow_disable(map); + mutex_unlock(&lpdd2_nvm_mutex); + return ret; +} + +/* + * lpddr2_nvm driver erase method + */ +static int lpddr2_nvm_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + int ret = lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len, + LPDDR2_NVM_ERASE); + if (!ret) { + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + } + + return ret; +} + +/* + * lpddr2_nvm driver unlock method + */ +static int lpddr2_nvm_unlock(struct mtd_info *mtd, loff_t start_add, + uint64_t len) +{ + return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_UNLOCK); +} + +/* + * lpddr2_nvm driver lock method + */ +static int lpddr2_nvm_lock(struct mtd_info *mtd, loff_t start_add, + uint64_t len) +{ + return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_LOCK); +} + +/* + * lpddr2_nvm driver probe method + */ +static int lpddr2_nvm_probe(struct platform_device *pdev) +{ + struct map_info *map; + struct mtd_info *mtd; + struct resource *add_range; + struct resource *control_regs; + struct pcm_int_data *pcm_data; + + /* Allocate memory control_regs data structures */ + pcm_data = devm_kzalloc(&pdev->dev, sizeof(*pcm_data), GFP_KERNEL); + if (!pcm_data) + return -ENOMEM; + + pcm_data->bus_width = BUS_WIDTH; + + /* Allocate memory for map_info & mtd_info data structures */ + map = devm_kzalloc(&pdev->dev, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + + mtd = devm_kzalloc(&pdev->dev, sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return -ENOMEM; + + /* lpddr2_nvm address range */ + add_range = platform_get_resource(pdev, IORESOURCE_MEM, 0); + + /* Populate map_info data structure */ + *map = (struct map_info) { + .virt = devm_ioremap_resource(&pdev->dev, add_range), + .name = pdev->dev.init_name, + .phys = add_range->start, + .size = resource_size(add_range), + .bankwidth = pcm_data->bus_width / 2, + .pfow_base = OW_BASE_ADDRESS, + .fldrv_priv = pcm_data, + }; + if (IS_ERR(map->virt)) + return PTR_ERR(map->virt); + + simple_map_init(map); /* fill with default methods */ + + control_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + pcm_data->ctl_regs = devm_ioremap_resource(&pdev->dev, control_regs); + if (IS_ERR(pcm_data->ctl_regs)) + return PTR_ERR(pcm_data->ctl_regs); + + /* Populate mtd_info data structure */ + *mtd = (struct mtd_info) { + .name = pdev->dev.init_name, + .type = MTD_RAM, + .priv = map, + .size = resource_size(add_range), + .erasesize = ERASE_BLOCKSIZE * pcm_data->bus_width, + .writesize = 1, + .writebufsize = WRITE_BUFFSIZE * pcm_data->bus_width, + .flags = (MTD_CAP_NVRAM | MTD_POWERUP_LOCK), + ._read = lpddr2_nvm_read, + ._write = lpddr2_nvm_write, + ._erase = lpddr2_nvm_erase, + ._unlock = lpddr2_nvm_unlock, + ._lock = lpddr2_nvm_lock, + }; + + /* Verify the presence of the device looking for PFOW string */ + if (!lpddr2_nvm_pfow_present(map)) { + pr_err("device not recognized\n"); + return -EINVAL; + } + /* Parse partitions and register the MTD device */ + return mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); +} + +/* + * lpddr2_nvm driver remove method + */ +static int lpddr2_nvm_remove(struct platform_device *pdev) +{ + return mtd_device_unregister(dev_get_drvdata(&pdev->dev)); +} + +/* Initialize platform_driver data structure for lpddr2_nvm */ +static struct platform_driver lpddr2_nvm_drv = { + .driver = { + .name = "lpddr2_nvm", + }, + .probe = lpddr2_nvm_probe, + .remove = lpddr2_nvm_remove, +}; + +module_platform_driver(lpddr2_nvm_drv); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vincenzo Aliberti <vincenzo.aliberti@gmail.com>"); +MODULE_DESCRIPTION("MTD driver for LPDDR2-NVM PCM memories"); diff --git a/drivers/mtd/lpddr/lpddr_cmds.c b/drivers/mtd/lpddr/lpddr_cmds.c index d3cfe26beea..018c75faadb 100644 --- a/drivers/mtd/lpddr/lpddr_cmds.c +++ b/drivers/mtd/lpddr/lpddr_cmds.c @@ -55,10 +55,8 @@ struct mtd_info *lpddr_cmdset(struct map_info *map) int i, j; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) { - printk(KERN_ERR "Failed to allocate memory for MTD device\n"); + if (!mtd) return NULL; - } mtd->priv = map; mtd->type = MTD_NORFLASH; @@ -388,7 +386,7 @@ static void put_chip(struct map_info *map, struct flchip *chip) wake_up(&chip->wq); } -int do_write_buffer(struct map_info *map, struct flchip *chip, +static int do_write_buffer(struct map_info *map, struct flchip *chip, unsigned long adr, const struct kvec **pvec, unsigned long *pvec_seek, int len) { @@ -469,7 +467,7 @@ int do_write_buffer(struct map_info *map, struct flchip *chip, return ret; } -int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) +static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; @@ -703,7 +701,7 @@ static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) #define DO_XXLOCK_LOCK 1 #define DO_XXLOCK_UNLOCK 2 -int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) +static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) { int ret = 0; struct map_info *map = mtd->priv; @@ -748,34 +746,6 @@ static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); } -int word_program(struct map_info *map, loff_t adr, uint32_t curval) -{ - int ret; - struct lpddr_private *lpddr = map->fldrv_priv; - int chipnum = adr >> lpddr->chipshift; - struct flchip *chip = &lpddr->chips[chipnum]; - - mutex_lock(&chip->mutex); - ret = get_chip(map, chip, FL_WRITING); - if (ret) { - mutex_unlock(&chip->mutex); - return ret; - } - - send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval); - - ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime)); - if (ret) { - printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n", - map->name, adr, curval); - goto out; - } - -out: put_chip(map, chip); - mutex_unlock(&chip->mutex); - return ret; -} - MODULE_LICENSE("GPL"); MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); diff --git a/drivers/mtd/lpddr/qinfo_probe.c b/drivers/mtd/lpddr/qinfo_probe.c index 45abed67f1e..69f2112340b 100644 --- a/drivers/mtd/lpddr/qinfo_probe.c +++ b/drivers/mtd/lpddr/qinfo_probe.c @@ -135,11 +135,8 @@ static int lpddr_chip_setup(struct map_info *map, struct lpddr_private *lpddr) { lpddr->qinfo = kzalloc(sizeof(struct qinfo_chip), GFP_KERNEL); - if (!lpddr->qinfo) { - printk(KERN_WARNING "%s: no memory for LPDDR qinfo structure\n", - map->name); + if (!lpddr->qinfo) return 0; - } /* Get the ManuID */ lpddr->ManufactId = CMDVAL(map_read(map, map->pfow_base + PFOW_MANUFACTURER_ID)); diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index 5ba2458e799..21b2874a303 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig @@ -66,11 +66,11 @@ config MTD_PHYSMAP_BANKWIDTH used internally by the CFI drivers. config MTD_PHYSMAP_OF - tristate "Flash device in physical memory map based on OF description" - depends on OF && (MTD_CFI || MTD_JEDECPROBE || MTD_ROM) + tristate "Memory device in physical memory map based on OF description" + depends on OF && (MTD_CFI || MTD_JEDECPROBE || MTD_ROM || MTD_RAM) help - This provides a 'mapping' driver which allows the NOR Flash and - ROM driver code to communicate with chips which are mapped + This provides a 'mapping' driver which allows the NOR Flash, ROM + and RAM driver code to communicate with chips which are mapped physically into the CPU's memory. The mapping description here is taken from OF device tree. @@ -108,7 +108,7 @@ config MTD_SUN_UFLASH config MTD_SC520CDP tristate "CFI Flash device mapped on AMD SC520 CDP" - depends on X86 && MTD_CFI + depends on (MELAN || COMPILE_TEST) && MTD_CFI help The SC520 CDP board has two banks of CFI-compliant chips and one Dual-in-line JEDEC chip. This 'mapping' driver supports that @@ -116,7 +116,7 @@ config MTD_SC520CDP config MTD_NETSC520 tristate "CFI Flash device mapped on AMD NetSc520" - depends on X86 && MTD_CFI + depends on (MELAN || COMPILE_TEST) && MTD_CFI help This enables access routines for the flash chips on the AMD NetSc520 demonstration board. If you have one of these boards and would like @@ -124,7 +124,7 @@ config MTD_NETSC520 config MTD_TS5500 tristate "JEDEC Flash device mapped on Technologic Systems TS-5500" - depends on X86 + depends on TS5500 || COMPILE_TEST select MTD_JEDECPROBE select MTD_CFI_AMDSTD help @@ -157,24 +157,6 @@ config MTD_PXA2XX help This provides a driver for the NOR flash attached to a PXA2xx chip. -config MTD_OCTAGON - tristate "JEDEC Flash device mapped on Octagon 5066 SBC" - depends on X86 && MTD_JEDEC && MTD_COMPLEX_MAPPINGS - help - This provides a 'mapping' driver which supports the way in which - the flash chips are connected in the Octagon-5066 Single Board - Computer. More information on the board is available at - <http://www.octagonsystems.com/products/5066.aspx>. - -config MTD_VMAX - tristate "JEDEC Flash device mapped on Tempustech VMAX SBC301" - depends on X86 && MTD_JEDEC && MTD_COMPLEX_MAPPINGS - help - This provides a 'mapping' driver which supports the way in which - the flash chips are connected in the Tempustech VMAX SBC301 Single - Board Computer. More information on the board is available at - <http://www.tempustech.com/>. - config MTD_SCx200_DOCFLASH tristate "Flash device mapped with DOCCS on NatSemi SCx200" depends on SCx200 && MTD_CFI @@ -249,22 +231,6 @@ config MTD_LANTIQ help Support for NOR flash attached to the Lantiq SoC's External Bus Unit. -config MTD_DILNETPC - tristate "CFI Flash device mapped on DIL/Net PC" - depends on X86 && MTD_CFI_INTELEXT && BROKEN - help - MTD map driver for SSV DIL/Net PC Boards "DNP" and "ADNP". - For details, see <http://www.ssv-embedded.de/ssv/pc104/p169.htm> - and <http://www.ssv-embedded.de/ssv/pc104/p170.htm> - -config MTD_DILNETPC_BOOTSIZE - hex "Size of DIL/Net PC flash boot partition" - depends on MTD_DILNETPC - default "0x80000" - help - The amount of space taken up by the kernel or Etherboot - on the DIL/Net PC flash chips. - config MTD_L440GX tristate "BIOS flash chip on Intel L440GX boards" depends on X86 && MTD_JEDECPROBE @@ -274,42 +240,6 @@ config MTD_L440GX BE VERY CAREFUL. -config MTD_TQM8XXL - tristate "CFI Flash device mapped on TQM8XXL" - depends on MTD_CFI && TQM8xxL - help - The TQM8xxL PowerPC board has up to two banks of CFI-compliant - chips, currently uses AMD one. This 'mapping' driver supports - that arrangement, allowing the CFI probe and command set driver - code to communicate with the chips on the TQM8xxL board. More at - <http://www.denx.de/wiki/PPCEmbedded/>. - -config MTD_RPXLITE - tristate "CFI Flash device mapped on RPX Lite or CLLF" - depends on MTD_CFI && (RPXCLASSIC || RPXLITE) - help - The RPXLite PowerPC board has CFI-compliant chips mapped in - a strange sparse mapping. This 'mapping' driver supports that - arrangement, allowing the CFI probe and command set driver code - to communicate with the chips on the RPXLite board. More at - <http://www.embeddedplanet.com/>. - -config MTD_MBX860 - tristate "System flash on MBX860 board" - depends on MTD_CFI && MBX - help - This enables access routines for the flash chips on the Motorola - MBX860 board. If you have one of these boards and would like - to use the flash chips on it, say 'Y'. - -config MTD_DBOX2 - tristate "CFI Flash device mapped on D-Box2" - depends on DBOX2 && MTD_CFI_INTELSTD && MTD_CFI_INTELEXT && MTD_CFI_AMDSTD - help - This enables access routines for the flash chips on the Nokia/Sagem - D-Box 2 board. If you have one of these boards and would like to use - the flash chips on it, say 'Y'. - config MTD_CFI_FLAGADM tristate "CFI Flash device mapping on FlagaDM" depends on 8xx && MTD_CFI @@ -324,13 +254,6 @@ config MTD_SOLUTIONENGINE This enables access to the flash chips on the Hitachi SolutionEngine and similar boards. Say 'Y' if you are building a kernel for such a board. -config MTD_CDB89712 - tristate "Cirrus CDB89712 evaluation board mappings" - depends on MTD_CFI && ARCH_CDB89712 - help - This enables access to the flash or ROM chips on the CDB89712 board. - If you have such a board, say 'Y'. - config MTD_SA1100 tristate "CFI Flash device mapped on StrongARM SA11x0" depends on MTD_CFI && ARCH_SA1100 @@ -356,29 +279,6 @@ config MTD_IXP4XX IXDP425 and Coyote. If you have an IXP4xx based board and would like to use the flash chips on it, say 'Y'. -config MTD_IXP2000 - tristate "CFI Flash device mapped on Intel IXP2000 based systems" - depends on MTD_CFI && MTD_COMPLEX_MAPPINGS && ARCH_IXP2000 - help - This enables MTD access to flash devices on platforms based - on Intel's IXP2000 family of network processors. If you have an - IXP2000 based board and would like to use the flash chips on it, - say 'Y'. - -config MTD_FORTUNET - tristate "CFI Flash device mapped on the FortuNet board" - depends on MTD_CFI && SA1100_FORTUNET - help - This enables access to the Flash on the FortuNet board. If you - have such a board, say 'Y'. - -config MTD_AUTCPU12 - tristate "NV-RAM mapping AUTCPU12 board" - depends on ARCH_AUTCPU12 - help - This enables access to the NV-RAM on autronix autcpu12 board. - If you have such a board, say 'Y'. - config MTD_IMPA7 tristate "JEDEC Flash device mapped on impA7" depends on ARM && MTD_JEDECPROBE @@ -386,13 +286,6 @@ config MTD_IMPA7 This enables access to the NOR Flash on the impA7 board of implementa GmbH. If you have such a board, say 'Y' here. -config MTD_H720X - tristate "Hynix evaluation board mappings" - depends on MTD_CFI && ( ARCH_H7201 || ARCH_H7202 ) - help - This enables access to the flash chips on the Hynix evaluation boards. - If you have such a board, say 'Y'. - # This needs CFI or JEDEC, depending on the cards found. config MTD_PCI tristate "PCI MTD driver" @@ -433,7 +326,7 @@ config MTD_BFIN_ASYNC config MTD_GPIO_ADDR tristate "GPIO-assisted Flash Chip Support" - depends on GENERIC_GPIO || GPIOLIB + depends on GPIOLIB depends on MTD_COMPLEX_MAPPINGS help Map driver which allows flashes to be partially physically addressed @@ -443,31 +336,10 @@ config MTD_GPIO_ADDR config MTD_UCLINUX bool "Generic uClinux RAM/ROM filesystem support" - depends on MTD_RAM=y && !MMU + depends on (MTD_RAM=y || MTD_ROM=y) && (!MMU || COLDFIRE) help Map driver to support image based filesystems for uClinux. -config MTD_WRSBC8260 - tristate "Map driver for WindRiver PowerQUICC II MPC82xx board" - depends on (SBC82xx || SBC8560) - select MTD_MAP_BANK_WIDTH_4 - select MTD_MAP_BANK_WIDTH_1 - select MTD_CFI_I1 - select MTD_CFI_I4 - help - Map driver for WindRiver PowerQUICC II MPC82xx board. Drives - all three flash regions on CS0, CS1 and CS6 if they are configured - correctly by the boot loader. - -config MTD_DMV182 - tristate "Map driver for Dy-4 SVME/DMV-182 board." - depends on DMV182 - select MTD_MAP_BANK_WIDTH_32 - select MTD_CFI_I8 - select MTD_CFI_AMDSTD - help - Map driver for Dy-4 SVME/DMV-182 board. - config MTD_INTEL_VR_NOR tristate "NOR flash on Intel Vermilion Range Expansion Bus CS0" depends on PCI diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index 68a9a91d344..141c91a5b24 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile @@ -7,10 +7,8 @@ obj-$(CONFIG_MTD) += map_funcs.o endif # Chip mappings -obj-$(CONFIG_MTD_CDB89712) += cdb89712.o obj-$(CONFIG_MTD_CFI_FLAGADM) += cfi_flagadm.o obj-$(CONFIG_MTD_DC21285) += dc21285.o -obj-$(CONFIG_MTD_DILNETPC) += dilnetpc.o obj-$(CONFIG_MTD_L440GX) += l440gx.o obj-$(CONFIG_MTD_AMD76XROM) += amd76xrom.o obj-$(CONFIG_MTD_ESB2ROM) += esb2rom.o @@ -18,37 +16,25 @@ obj-$(CONFIG_MTD_ICHXROM) += ichxrom.o obj-$(CONFIG_MTD_CK804XROM) += ck804xrom.o obj-$(CONFIG_MTD_TSUNAMI) += tsunami_flash.o obj-$(CONFIG_MTD_PXA2XX) += pxa2xx-flash.o -obj-$(CONFIG_MTD_MBX860) += mbx860.o -obj-$(CONFIG_MTD_OCTAGON) += octagon-5066.o obj-$(CONFIG_MTD_PHYSMAP) += physmap.o obj-$(CONFIG_MTD_PHYSMAP_OF) += physmap_of.o obj-$(CONFIG_MTD_PISMO) += pismo.o obj-$(CONFIG_MTD_PMC_MSP_EVM) += pmcmsp-flash.o obj-$(CONFIG_MTD_PCMCIA) += pcmciamtd.o -obj-$(CONFIG_MTD_RPXLITE) += rpxlite.o -obj-$(CONFIG_MTD_TQM8XXL) += tqm8xxl.o obj-$(CONFIG_MTD_SA1100) += sa1100-flash.o obj-$(CONFIG_MTD_SBC_GXX) += sbc_gxx.o obj-$(CONFIG_MTD_SC520CDP) += sc520cdp.o obj-$(CONFIG_MTD_NETSC520) += netsc520.o obj-$(CONFIG_MTD_TS5500) += ts5500_flash.o obj-$(CONFIG_MTD_SUN_UFLASH) += sun_uflash.o -obj-$(CONFIG_MTD_VMAX) += vmax301.o obj-$(CONFIG_MTD_SCx200_DOCFLASH)+= scx200_docflash.o -obj-$(CONFIG_MTD_DBOX2) += dbox2-flash.o obj-$(CONFIG_MTD_SOLUTIONENGINE)+= solutionengine.o obj-$(CONFIG_MTD_PCI) += pci.o -obj-$(CONFIG_MTD_AUTCPU12) += autcpu12-nvram.o obj-$(CONFIG_MTD_IMPA7) += impa7.o -obj-$(CONFIG_MTD_FORTUNET) += fortunet.o obj-$(CONFIG_MTD_UCLINUX) += uclinux.o obj-$(CONFIG_MTD_NETtel) += nettel.o obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o -obj-$(CONFIG_MTD_H720X) += h720x-flash.o obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o -obj-$(CONFIG_MTD_IXP2000) += ixp2000.o -obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o -obj-$(CONFIG_MTD_DMV182) += dmv182.o obj-$(CONFIG_MTD_PLATRAM) += plat-ram.o obj-$(CONFIG_MTD_INTEL_VR_NOR) += intel_vr_nor.o obj-$(CONFIG_MTD_BFIN_ASYNC) += bfin-async-flash.o diff --git a/drivers/mtd/maps/amd76xrom.c b/drivers/mtd/maps/amd76xrom.c index e2875d6fe12..f7207b0a76d 100644 --- a/drivers/mtd/maps/amd76xrom.c +++ b/drivers/mtd/maps/amd76xrom.c @@ -100,8 +100,8 @@ static void amd76xrom_cleanup(struct amd76xrom_window *window) } -static int __devinit amd76xrom_init_one (struct pci_dev *pdev, - const struct pci_device_id *ent) +static int amd76xrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; u8 byte; @@ -289,7 +289,7 @@ static int __devinit amd76xrom_init_one (struct pci_dev *pdev, } -static void __devexit amd76xrom_remove_one (struct pci_dev *pdev) +static void amd76xrom_remove_one(struct pci_dev *pdev) { struct amd76xrom_window *window = &amd76xrom_window; @@ -347,4 +347,3 @@ module_exit(cleanup_amd76xrom); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Eric Biederman <ebiederman@lnxi.com>"); MODULE_DESCRIPTION("MTD map driver for BIOS chips on the AMD76X southbridge"); - diff --git a/drivers/mtd/maps/autcpu12-nvram.c b/drivers/mtd/maps/autcpu12-nvram.c deleted file mode 100644 index e5bfd0e093b..00000000000 --- a/drivers/mtd/maps/autcpu12-nvram.c +++ /dev/null @@ -1,125 +0,0 @@ -/* - * NV-RAM memory access on autcpu12 - * (C) 2002 Thomas Gleixner (gleixner@autronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <asm/io.h> -#include <asm/sizes.h> -#include <mach/hardware.h> -#include <mach/autcpu12.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - - -static struct mtd_info *sram_mtd; - -struct map_info autcpu12_sram_map = { - .name = "SRAM", - .size = 32768, - .bankwidth = 4, - .phys = 0x12000000, -}; - -static int __init init_autcpu12_sram (void) -{ - int err, save0, save1; - - autcpu12_sram_map.virt = ioremap(0x12000000, SZ_128K); - if (!autcpu12_sram_map.virt) { - printk("Failed to ioremap autcpu12 NV-RAM space\n"); - err = -EIO; - goto out; - } - simple_map_init(&autcpu_sram_map); - - /* - * Check for 32K/128K - * read ofs 0 - * read ofs 0x10000 - * Write complement to ofs 0x100000 - * Read and check result on ofs 0x0 - * Restore contents - */ - save0 = map_read32(&autcpu12_sram_map,0); - save1 = map_read32(&autcpu12_sram_map,0x10000); - map_write32(&autcpu12_sram_map,~save0,0x10000); - /* if we find this pattern on 0x0, we have 32K size - * restore contents and exit - */ - if ( map_read32(&autcpu12_sram_map,0) != save0) { - map_write32(&autcpu12_sram_map,save0,0x0); - goto map; - } - /* We have a 128K found, restore 0x10000 and set size - * to 128K - */ - map_write32(&autcpu12_sram_map,save1,0x10000); - autcpu12_sram_map.size = SZ_128K; - -map: - sram_mtd = do_map_probe("map_ram", &autcpu12_sram_map); - if (!sram_mtd) { - printk("NV-RAM probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - sram_mtd->owner = THIS_MODULE; - sram_mtd->erasesize = 16; - - if (mtd_device_register(sram_mtd, NULL, 0)) { - printk("NV-RAM device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - printk("NV-RAM device size %ldKiB registered on AUTCPU12\n",autcpu12_sram_map.size/SZ_1K); - - return 0; - -out_probe: - map_destroy(sram_mtd); - sram_mtd = 0; - -out_ioremap: - iounmap((void *)autcpu12_sram_map.virt); -out: - return err; -} - -static void __exit cleanup_autcpu12_maps(void) -{ - if (sram_mtd) { - mtd_device_unregister(sram_mtd); - map_destroy(sram_mtd); - iounmap((void *)autcpu12_sram_map.virt); - } -} - -module_init(init_autcpu12_sram); -module_exit(cleanup_autcpu12_maps); - -MODULE_AUTHOR("Thomas Gleixner"); -MODULE_DESCRIPTION("autcpu12 NV-RAM map driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/bfin-async-flash.c b/drivers/mtd/maps/bfin-async-flash.c index ef5cde84a8b..6ea51e54904 100644 --- a/drivers/mtd/maps/bfin-async-flash.c +++ b/drivers/mtd/maps/bfin-async-flash.c @@ -14,7 +14,6 @@ * Licensed under the GPL-2 or later. */ -#include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mtd/mtd.h> @@ -30,7 +29,8 @@ #include <linux/io.h> #include <asm/unaligned.h> -#define pr_devinit(fmt, args...) ({ static const __devinitconst char __fmt[] = fmt; printk(__fmt, ## args); }) +#define pr_devinit(fmt, args...) \ + ({ static const char __fmt[] = fmt; printk(__fmt, ## args); }) #define DRIVER_NAME "bfin-async-flash" @@ -121,12 +121,13 @@ static void bfin_flash_copy_to(struct map_info *map, unsigned long to, const voi switch_back(state); } -static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; +static const char * const part_probe_types[] = { + "cmdlinepart", "RedBoot", NULL }; -static int __devinit bfin_flash_probe(struct platform_device *pdev) +static int bfin_flash_probe(struct platform_device *pdev) { int ret; - struct physmap_flash_data *pdata = pdev->dev.platform_data; + struct physmap_flash_data *pdata = dev_get_platdata(&pdev->dev); struct resource *memory = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct resource *flash_ambctl = platform_get_resource(pdev, IORESOURCE_MEM, 1); struct async_state *state; @@ -172,7 +173,7 @@ static int __devinit bfin_flash_probe(struct platform_device *pdev) return 0; } -static int __devexit bfin_flash_remove(struct platform_device *pdev) +static int bfin_flash_remove(struct platform_device *pdev) { struct async_state *state = platform_get_drvdata(pdev); gpio_free(state->enet_flash_pin); @@ -184,7 +185,7 @@ static int __devexit bfin_flash_remove(struct platform_device *pdev) static struct platform_driver bfin_flash_driver = { .probe = bfin_flash_probe, - .remove = __devexit_p(bfin_flash_remove), + .remove = bfin_flash_remove, .driver = { .name = DRIVER_NAME, }, diff --git a/drivers/mtd/maps/cdb89712.c b/drivers/mtd/maps/cdb89712.c deleted file mode 100644 index c29cbf87ea0..00000000000 --- a/drivers/mtd/maps/cdb89712.c +++ /dev/null @@ -1,278 +0,0 @@ -/* - * Flash on Cirrus CDB89712 - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <asm/io.h> -#include <mach/hardware.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -/* dynamic ioremap() areas */ -#define FLASH_START 0x00000000 -#define FLASH_SIZE 0x800000 -#define FLASH_WIDTH 4 - -#define SRAM_START 0x60000000 -#define SRAM_SIZE 0xc000 -#define SRAM_WIDTH 4 - -#define BOOTROM_START 0x70000000 -#define BOOTROM_SIZE 0x80 -#define BOOTROM_WIDTH 4 - - -static struct mtd_info *flash_mtd; - -struct map_info cdb89712_flash_map = { - .name = "flash", - .size = FLASH_SIZE, - .bankwidth = FLASH_WIDTH, - .phys = FLASH_START, -}; - -struct resource cdb89712_flash_resource = { - .name = "Flash", - .start = FLASH_START, - .end = FLASH_START + FLASH_SIZE - 1, - .flags = IORESOURCE_IO | IORESOURCE_BUSY, -}; - -static int __init init_cdb89712_flash (void) -{ - int err; - - if (request_resource (&ioport_resource, &cdb89712_flash_resource)) { - printk(KERN_NOTICE "Failed to reserve Cdb89712 FLASH space\n"); - err = -EBUSY; - goto out; - } - - cdb89712_flash_map.virt = ioremap(FLASH_START, FLASH_SIZE); - if (!cdb89712_flash_map.virt) { - printk(KERN_NOTICE "Failed to ioremap Cdb89712 FLASH space\n"); - err = -EIO; - goto out_resource; - } - simple_map_init(&cdb89712_flash_map); - flash_mtd = do_map_probe("cfi_probe", &cdb89712_flash_map); - if (!flash_mtd) { - flash_mtd = do_map_probe("map_rom", &cdb89712_flash_map); - if (flash_mtd) - flash_mtd->erasesize = 0x10000; - } - if (!flash_mtd) { - printk("FLASH probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - flash_mtd->owner = THIS_MODULE; - - if (mtd_device_register(flash_mtd, NULL, 0)) { - printk("FLASH device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - return 0; - -out_probe: - map_destroy(flash_mtd); - flash_mtd = 0; -out_ioremap: - iounmap((void *)cdb89712_flash_map.virt); -out_resource: - release_resource (&cdb89712_flash_resource); -out: - return err; -} - - - - - -static struct mtd_info *sram_mtd; - -struct map_info cdb89712_sram_map = { - .name = "SRAM", - .size = SRAM_SIZE, - .bankwidth = SRAM_WIDTH, - .phys = SRAM_START, -}; - -struct resource cdb89712_sram_resource = { - .name = "SRAM", - .start = SRAM_START, - .end = SRAM_START + SRAM_SIZE - 1, - .flags = IORESOURCE_IO | IORESOURCE_BUSY, -}; - -static int __init init_cdb89712_sram (void) -{ - int err; - - if (request_resource (&ioport_resource, &cdb89712_sram_resource)) { - printk(KERN_NOTICE "Failed to reserve Cdb89712 SRAM space\n"); - err = -EBUSY; - goto out; - } - - cdb89712_sram_map.virt = ioremap(SRAM_START, SRAM_SIZE); - if (!cdb89712_sram_map.virt) { - printk(KERN_NOTICE "Failed to ioremap Cdb89712 SRAM space\n"); - err = -EIO; - goto out_resource; - } - simple_map_init(&cdb89712_sram_map); - sram_mtd = do_map_probe("map_ram", &cdb89712_sram_map); - if (!sram_mtd) { - printk("SRAM probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - sram_mtd->owner = THIS_MODULE; - sram_mtd->erasesize = 16; - - if (mtd_device_register(sram_mtd, NULL, 0)) { - printk("SRAM device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - return 0; - -out_probe: - map_destroy(sram_mtd); - sram_mtd = 0; -out_ioremap: - iounmap((void *)cdb89712_sram_map.virt); -out_resource: - release_resource (&cdb89712_sram_resource); -out: - return err; -} - - - - - - - -static struct mtd_info *bootrom_mtd; - -struct map_info cdb89712_bootrom_map = { - .name = "BootROM", - .size = BOOTROM_SIZE, - .bankwidth = BOOTROM_WIDTH, - .phys = BOOTROM_START, -}; - -struct resource cdb89712_bootrom_resource = { - .name = "BootROM", - .start = BOOTROM_START, - .end = BOOTROM_START + BOOTROM_SIZE - 1, - .flags = IORESOURCE_IO | IORESOURCE_BUSY, -}; - -static int __init init_cdb89712_bootrom (void) -{ - int err; - - if (request_resource (&ioport_resource, &cdb89712_bootrom_resource)) { - printk(KERN_NOTICE "Failed to reserve Cdb89712 BOOTROM space\n"); - err = -EBUSY; - goto out; - } - - cdb89712_bootrom_map.virt = ioremap(BOOTROM_START, BOOTROM_SIZE); - if (!cdb89712_bootrom_map.virt) { - printk(KERN_NOTICE "Failed to ioremap Cdb89712 BootROM space\n"); - err = -EIO; - goto out_resource; - } - simple_map_init(&cdb89712_bootrom_map); - bootrom_mtd = do_map_probe("map_rom", &cdb89712_bootrom_map); - if (!bootrom_mtd) { - printk("BootROM probe failed\n"); - err = -ENXIO; - goto out_ioremap; - } - - bootrom_mtd->owner = THIS_MODULE; - bootrom_mtd->erasesize = 0x10000; - - if (mtd_device_register(bootrom_mtd, NULL, 0)) { - printk("BootROM device addition failed\n"); - err = -ENOMEM; - goto out_probe; - } - - return 0; - -out_probe: - map_destroy(bootrom_mtd); - bootrom_mtd = 0; -out_ioremap: - iounmap((void *)cdb89712_bootrom_map.virt); -out_resource: - release_resource (&cdb89712_bootrom_resource); -out: - return err; -} - - - - - -static int __init init_cdb89712_maps(void) -{ - - printk(KERN_INFO "Cirrus CDB89712 MTD mappings:\n Flash 0x%x at 0x%x\n SRAM 0x%x at 0x%x\n BootROM 0x%x at 0x%x\n", - FLASH_SIZE, FLASH_START, SRAM_SIZE, SRAM_START, BOOTROM_SIZE, BOOTROM_START); - - init_cdb89712_flash(); - init_cdb89712_sram(); - init_cdb89712_bootrom(); - - return 0; -} - - -static void __exit cleanup_cdb89712_maps(void) -{ - if (sram_mtd) { - mtd_device_unregister(sram_mtd); - map_destroy(sram_mtd); - iounmap((void *)cdb89712_sram_map.virt); - release_resource (&cdb89712_sram_resource); - } - - if (flash_mtd) { - mtd_device_unregister(flash_mtd); - map_destroy(flash_mtd); - iounmap((void *)cdb89712_flash_map.virt); - release_resource (&cdb89712_flash_resource); - } - - if (bootrom_mtd) { - mtd_device_unregister(bootrom_mtd); - map_destroy(bootrom_mtd); - iounmap((void *)cdb89712_bootrom_map.virt); - release_resource (&cdb89712_bootrom_resource); - } -} - -module_init(init_cdb89712_maps); -module_exit(cleanup_cdb89712_maps); - -MODULE_AUTHOR("Ray L"); -MODULE_DESCRIPTION("ARM CDB89712 map driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/cfi_flagadm.c b/drivers/mtd/maps/cfi_flagadm.c index d16fc9d3b8c..d504b3d1791 100644 --- a/drivers/mtd/maps/cfi_flagadm.c +++ b/drivers/mtd/maps/cfi_flagadm.c @@ -55,13 +55,13 @@ #define FLASH_PARTITION3_SIZE 0x001C0000 -struct map_info flagadm_map = { +static struct map_info flagadm_map = { .name = "FlagaDM flash device", .size = FLASH_SIZE, .bankwidth = 2, }; -struct mtd_partition flagadm_parts[] = { +static struct mtd_partition flagadm_parts[] = { { .name = "Bootloader", .offset = FLASH_PARTITION0_ADDR, @@ -112,7 +112,7 @@ static int __init init_flagadm(void) return 0; } - iounmap((void *)flagadm_map.virt); + iounmap((void __iomem *)flagadm_map.virt); return -ENXIO; } @@ -123,8 +123,8 @@ static void __exit cleanup_flagadm(void) map_destroy(mymtd); } if (flagadm_map.virt) { - iounmap((void *)flagadm_map.virt); - flagadm_map.virt = 0; + iounmap((void __iomem *)flagadm_map.virt); + flagadm_map.virt = NULL; } } diff --git a/drivers/mtd/maps/ck804xrom.c b/drivers/mtd/maps/ck804xrom.c index 3d0e762fa5f..0455166f05f 100644 --- a/drivers/mtd/maps/ck804xrom.c +++ b/drivers/mtd/maps/ck804xrom.c @@ -112,8 +112,8 @@ static void ck804xrom_cleanup(struct ck804xrom_window *window) } -static int __devinit ck804xrom_init_one (struct pci_dev *pdev, - const struct pci_device_id *ent) +static int ck804xrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; u8 byte; @@ -308,8 +308,7 @@ static int __devinit ck804xrom_init_one (struct pci_dev *pdev, out: /* Free any left over map structures */ - if (map) - kfree(map); + kfree(map); /* See if I have any map structures */ if (list_empty(&window->maps)) { @@ -320,7 +319,7 @@ static int __devinit ck804xrom_init_one (struct pci_dev *pdev, } -static void __devexit ck804xrom_remove_one (struct pci_dev *pdev) +static void ck804xrom_remove_one(struct pci_dev *pdev) { struct ck804xrom_window *window = &ck804xrom_window; diff --git a/drivers/mtd/maps/dbox2-flash.c b/drivers/mtd/maps/dbox2-flash.c deleted file mode 100644 index 85bdece6ab3..00000000000 --- a/drivers/mtd/maps/dbox2-flash.c +++ /dev/null @@ -1,123 +0,0 @@ -/* - * D-Box 2 flash driver - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/errno.h> - -/* partition_info gives details on the logical partitions that the split the - * single flash device into. If the size if zero we use up to the end of the - * device. */ -static struct mtd_partition partition_info[]= { - { - .name = "BR bootloader", - .size = 128 * 1024, - .offset = 0, - .mask_flags = MTD_WRITEABLE - }, - { - .name = "FLFS (U-Boot)", - .size = 128 * 1024, - .offset = MTDPART_OFS_APPEND, - .mask_flags = 0 - }, - { - .name = "Root (SquashFS)", - .size = 7040 * 1024, - .offset = MTDPART_OFS_APPEND, - .mask_flags = 0 - }, - { - .name = "var (JFFS2)", - .size = 896 * 1024, - .offset = MTDPART_OFS_APPEND, - .mask_flags = 0 - }, - { - .name = "Flash without bootloader", - .size = MTDPART_SIZ_FULL, - .offset = 128 * 1024, - .mask_flags = 0 - }, - { - .name = "Complete Flash", - .size = MTDPART_SIZ_FULL, - .offset = 0, - .mask_flags = MTD_WRITEABLE - } -}; - -#define NUM_PARTITIONS ARRAY_SIZE(partition_info) - -#define WINDOW_ADDR 0x10000000 -#define WINDOW_SIZE 0x800000 - -static struct mtd_info *mymtd; - - -struct map_info dbox2_flash_map = { - .name = "D-Box 2 flash memory", - .size = WINDOW_SIZE, - .bankwidth = 4, - .phys = WINDOW_ADDR, -}; - -static int __init init_dbox2_flash(void) -{ - printk(KERN_NOTICE "D-Box 2 flash driver (size->0x%X mem->0x%X)\n", WINDOW_SIZE, WINDOW_ADDR); - dbox2_flash_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE); - - if (!dbox2_flash_map.virt) { - printk("Failed to ioremap\n"); - return -EIO; - } - simple_map_init(&dbox2_flash_map); - - // Probe for dual Intel 28F320 or dual AMD - mymtd = do_map_probe("cfi_probe", &dbox2_flash_map); - if (!mymtd) { - // Probe for single Intel 28F640 - dbox2_flash_map.bankwidth = 2; - - mymtd = do_map_probe("cfi_probe", &dbox2_flash_map); - } - - if (mymtd) { - mymtd->owner = THIS_MODULE; - - /* Create MTD devices for each partition. */ - mtd_device_register(mymtd, partition_info, NUM_PARTITIONS); - - return 0; - } - - iounmap((void *)dbox2_flash_map.virt); - return -ENXIO; -} - -static void __exit cleanup_dbox2_flash(void) -{ - if (mymtd) { - mtd_device_unregister(mymtd); - map_destroy(mymtd); - } - if (dbox2_flash_map.virt) { - iounmap((void *)dbox2_flash_map.virt); - dbox2_flash_map.virt = 0; - } -} - -module_init(init_dbox2_flash); -module_exit(cleanup_dbox2_flash); - - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kári DavÃðsson <kd@flaga.is>, Bastian Blank <waldi@tuxbox.org>, Alexander Wild <wild@te-elektronik.com>"); -MODULE_DESCRIPTION("MTD map driver for D-Box 2 board"); diff --git a/drivers/mtd/maps/dc21285.c b/drivers/mtd/maps/dc21285.c index 080f06053bd..f8a7dd14cee 100644 --- a/drivers/mtd/maps/dc21285.c +++ b/drivers/mtd/maps/dc21285.c @@ -143,9 +143,8 @@ static struct map_info dc21285_map = { .copy_from = dc21285_copy_from, }; - /* Partition stuff */ -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; static int __init init_dc21285(void) { diff --git a/drivers/mtd/maps/dilnetpc.c b/drivers/mtd/maps/dilnetpc.c deleted file mode 100644 index 3e393f0da82..00000000000 --- a/drivers/mtd/maps/dilnetpc.c +++ /dev/null @@ -1,496 +0,0 @@ -/* dilnetpc.c -- MTD map driver for SSV DIL/Net PC Boards "DNP" and "ADNP" - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA - * - * The DIL/Net PC is a tiny embedded PC board made by SSV Embedded Systems - * featuring the AMD Elan SC410 processor. There are two variants of this - * board: DNP/1486 and ADNP/1486. The DNP version has 2 megs of flash - * ROM (Intel 28F016S3) and 8 megs of DRAM, the ADNP version has 4 megs - * flash and 16 megs of RAM. - * For details, see http://www.ssv-embedded.de/ssv/pc104/p169.htm - * and http://www.ssv-embedded.de/ssv/pc104/p170.htm - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/string.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/mtd/concat.h> - -#include <asm/io.h> - -/* -** The DIL/NetPC keeps its BIOS in two distinct flash blocks. -** Destroying any of these blocks transforms the DNPC into -** a paperweight (albeit not a very useful one, considering -** it only weighs a few grams). -** -** Therefore, the BIOS blocks must never be erased or written to -** except by people who know exactly what they are doing (e.g. -** to install a BIOS update). These partitions are marked read-only -** by default, but can be made read/write by undefining -** DNPC_BIOS_BLOCKS_WRITEPROTECTED: -*/ -#define DNPC_BIOS_BLOCKS_WRITEPROTECTED - -/* -** The ID string (in ROM) is checked to determine whether we -** are running on a DNP/1486 or ADNP/1486 -*/ -#define BIOSID_BASE 0x000fe100 - -#define ID_DNPC "DNP1486" -#define ID_ADNP "ADNP1486" - -/* -** Address where the flash should appear in CPU space -*/ -#define FLASH_BASE 0x2000000 - -/* -** Chip Setup and Control (CSC) indexed register space -*/ -#define CSC_INDEX 0x22 -#define CSC_DATA 0x23 - -#define CSC_MMSWAR 0x30 /* MMS window C-F attributes register */ -#define CSC_MMSWDSR 0x31 /* MMS window C-F device select register */ - -#define CSC_RBWR 0xa7 /* GPIO Read-Back/Write Register B */ - -#define CSC_CR 0xd0 /* internal I/O device disable/Echo */ - /* Z-bus/configuration register */ - -#define CSC_PCCMDCR 0xf1 /* PC card mode and DMA control register */ - - -/* -** PC Card indexed register space: -*/ - -#define PCC_INDEX 0x3e0 -#define PCC_DATA 0x3e1 - -#define PCC_AWER_B 0x46 /* Socket B Address Window enable register */ -#define PCC_MWSAR_1_Lo 0x58 /* memory window 1 start address low register */ -#define PCC_MWSAR_1_Hi 0x59 /* memory window 1 start address high register */ -#define PCC_MWEAR_1_Lo 0x5A /* memory window 1 stop address low register */ -#define PCC_MWEAR_1_Hi 0x5B /* memory window 1 stop address high register */ -#define PCC_MWAOR_1_Lo 0x5C /* memory window 1 address offset low register */ -#define PCC_MWAOR_1_Hi 0x5D /* memory window 1 address offset high register */ - - -/* -** Access to SC4x0's Chip Setup and Control (CSC) -** and PC Card (PCC) indexed registers: -*/ -static inline void setcsc(int reg, unsigned char data) -{ - outb(reg, CSC_INDEX); - outb(data, CSC_DATA); -} - -static inline unsigned char getcsc(int reg) -{ - outb(reg, CSC_INDEX); - return(inb(CSC_DATA)); -} - -static inline void setpcc(int reg, unsigned char data) -{ - outb(reg, PCC_INDEX); - outb(data, PCC_DATA); -} - -static inline unsigned char getpcc(int reg) -{ - outb(reg, PCC_INDEX); - return(inb(PCC_DATA)); -} - - -/* -************************************************************ -** Enable access to DIL/NetPC's flash by mapping it into -** the SC4x0's MMS Window C. -************************************************************ -*/ -static void dnpc_map_flash(unsigned long flash_base, unsigned long flash_size) -{ - unsigned long flash_end = flash_base + flash_size - 1; - - /* - ** enable setup of MMS windows C-F: - */ - /* - enable PC Card indexed register space */ - setcsc(CSC_CR, getcsc(CSC_CR) | 0x2); - /* - set PC Card controller to operate in standard mode */ - setcsc(CSC_PCCMDCR, getcsc(CSC_PCCMDCR) & ~1); - - /* - ** Program base address and end address of window - ** where the flash ROM should appear in CPU address space - */ - setpcc(PCC_MWSAR_1_Lo, (flash_base >> 12) & 0xff); - setpcc(PCC_MWSAR_1_Hi, (flash_base >> 20) & 0x3f); - setpcc(PCC_MWEAR_1_Lo, (flash_end >> 12) & 0xff); - setpcc(PCC_MWEAR_1_Hi, (flash_end >> 20) & 0x3f); - - /* program offset of first flash location to appear in this window (0) */ - setpcc(PCC_MWAOR_1_Lo, ((0 - flash_base) >> 12) & 0xff); - setpcc(PCC_MWAOR_1_Hi, ((0 - flash_base)>> 20) & 0x3f); - - /* set attributes for MMS window C: non-cacheable, write-enabled */ - setcsc(CSC_MMSWAR, getcsc(CSC_MMSWAR) & ~0x11); - - /* select physical device ROMCS0 (i.e. flash) for MMS Window C */ - setcsc(CSC_MMSWDSR, getcsc(CSC_MMSWDSR) & ~0x03); - - /* enable memory window 1 */ - setpcc(PCC_AWER_B, getpcc(PCC_AWER_B) | 0x02); - - /* now disable PC Card indexed register space again */ - setcsc(CSC_CR, getcsc(CSC_CR) & ~0x2); -} - - -/* -************************************************************ -** Disable access to DIL/NetPC's flash by mapping it into -** the SC4x0's MMS Window C. -************************************************************ -*/ -static void dnpc_unmap_flash(void) -{ - /* - enable PC Card indexed register space */ - setcsc(CSC_CR, getcsc(CSC_CR) | 0x2); - - /* disable memory window 1 */ - setpcc(PCC_AWER_B, getpcc(PCC_AWER_B) & ~0x02); - - /* now disable PC Card indexed register space again */ - setcsc(CSC_CR, getcsc(CSC_CR) & ~0x2); -} - - - -/* -************************************************************ -** Enable/Disable VPP to write to flash -************************************************************ -*/ - -static DEFINE_SPINLOCK(dnpc_spin); -static int vpp_counter = 0; -/* -** This is what has to be done for the DNP board .. -*/ -static void dnp_set_vpp(struct map_info *not_used, int on) -{ - spin_lock_irq(&dnpc_spin); - - if (on) - { - if(++vpp_counter == 1) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) & ~0x4); - } - else - { - if(--vpp_counter == 0) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) | 0x4); - else - BUG_ON(vpp_counter < 0); - } - spin_unlock_irq(&dnpc_spin); -} - -/* -** .. and this the ADNP version: -*/ -static void adnp_set_vpp(struct map_info *not_used, int on) -{ - spin_lock_irq(&dnpc_spin); - - if (on) - { - if(++vpp_counter == 1) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) & ~0x8); - } - else - { - if(--vpp_counter == 0) - setcsc(CSC_RBWR, getcsc(CSC_RBWR) | 0x8); - else - BUG_ON(vpp_counter < 0); - } - spin_unlock_irq(&dnpc_spin); -} - - - -#define DNP_WINDOW_SIZE 0x00200000 /* DNP flash size is 2MiB */ -#define ADNP_WINDOW_SIZE 0x00400000 /* ADNP flash size is 4MiB */ -#define WINDOW_ADDR FLASH_BASE - -static struct map_info dnpc_map = { - .name = "ADNP Flash Bank", - .size = ADNP_WINDOW_SIZE, - .bankwidth = 1, - .set_vpp = adnp_set_vpp, - .phys = WINDOW_ADDR -}; - -/* -** The layout of the flash is somewhat "strange": -** -** 1. 960 KiB (15 blocks) : Space for ROM Bootloader and user data -** 2. 64 KiB (1 block) : System BIOS -** 3. 960 KiB (15 blocks) : User Data (DNP model) or -** 3. 3008 KiB (47 blocks) : User Data (ADNP model) -** 4. 64 KiB (1 block) : System BIOS Entry -*/ - -static struct mtd_partition partition_info[]= -{ - { - .name = "ADNP boot", - .offset = 0, - .size = 0xf0000, - }, - { - .name = "ADNP system BIOS", - .offset = MTDPART_OFS_NXTBLK, - .size = 0x10000, -#ifdef DNPC_BIOS_BLOCKS_WRITEPROTECTED - .mask_flags = MTD_WRITEABLE, -#endif - }, - { - .name = "ADNP file system", - .offset = MTDPART_OFS_NXTBLK, - .size = 0x2f0000, - }, - { - .name = "ADNP system BIOS entry", - .offset = MTDPART_OFS_NXTBLK, - .size = MTDPART_SIZ_FULL, -#ifdef DNPC_BIOS_BLOCKS_WRITEPROTECTED - .mask_flags = MTD_WRITEABLE, -#endif - }, -}; - -#define NUM_PARTITIONS ARRAY_SIZE(partition_info) - -static struct mtd_info *mymtd; -static struct mtd_info *lowlvl_parts[NUM_PARTITIONS]; -static struct mtd_info *merged_mtd; - -/* -** "Highlevel" partition info: -** -** Using the MTD concat layer, we can re-arrange partitions to our -** liking: we construct a virtual MTD device by concatenating the -** partitions, specifying the sequence such that the boot block -** is immediately followed by the filesystem block (i.e. the stupid -** system BIOS block is mapped to a different place). When re-partitioning -** this concatenated MTD device, we can set the boot block size to -** an arbitrary (though erase block aligned) value i.e. not one that -** is dictated by the flash's physical layout. We can thus set the -** boot block to be e.g. 64 KB (which is fully sufficient if we want -** to boot an etherboot image) or to -say- 1.5 MB if we want to boot -** a large kernel image. In all cases, the remainder of the flash -** is available as file system space. -*/ - -static struct mtd_partition higlvl_partition_info[]= -{ - { - .name = "ADNP boot block", - .offset = 0, - .size = CONFIG_MTD_DILNETPC_BOOTSIZE, - }, - { - .name = "ADNP file system space", - .offset = MTDPART_OFS_NXTBLK, - .size = ADNP_WINDOW_SIZE-CONFIG_MTD_DILNETPC_BOOTSIZE-0x20000, - }, - { - .name = "ADNP system BIOS + BIOS Entry", - .offset = MTDPART_OFS_NXTBLK, - .size = MTDPART_SIZ_FULL, -#ifdef DNPC_BIOS_BLOCKS_WRITEPROTECTED - .mask_flags = MTD_WRITEABLE, -#endif - }, -}; - -#define NUM_HIGHLVL_PARTITIONS ARRAY_SIZE(higlvl_partition_info) - - -static int dnp_adnp_probe(void) -{ - char *biosid, rc = -1; - - biosid = (char*)ioremap(BIOSID_BASE, 16); - if(biosid) - { - if(!strcmp(biosid, ID_DNPC)) - rc = 1; /* this is a DNPC */ - else if(!strcmp(biosid, ID_ADNP)) - rc = 0; /* this is a ADNPC */ - } - iounmap((void *)biosid); - return(rc); -} - - -static int __init init_dnpc(void) -{ - int is_dnp; - - /* - ** determine hardware (DNP/ADNP/invalid) - */ - if((is_dnp = dnp_adnp_probe()) < 0) - return -ENXIO; - - /* - ** Things are set up for ADNP by default - ** -> modify all that needs to be different for DNP - */ - if(is_dnp) - { /* - ** Adjust window size, select correct set_vpp function. - ** The partitioning scheme is identical on both DNP - ** and ADNP except for the size of the third partition. - */ - int i; - dnpc_map.size = DNP_WINDOW_SIZE; - dnpc_map.set_vpp = dnp_set_vpp; - partition_info[2].size = 0xf0000; - - /* - ** increment all string pointers so the leading 'A' gets skipped, - ** thus turning all occurrences of "ADNP ..." into "DNP ..." - */ - ++dnpc_map.name; - for(i = 0; i < NUM_PARTITIONS; i++) - ++partition_info[i].name; - higlvl_partition_info[1].size = DNP_WINDOW_SIZE - - CONFIG_MTD_DILNETPC_BOOTSIZE - 0x20000; - for(i = 0; i < NUM_HIGHLVL_PARTITIONS; i++) - ++higlvl_partition_info[i].name; - } - - printk(KERN_NOTICE "DIL/Net %s flash: 0x%lx at 0x%llx\n", - is_dnp ? "DNPC" : "ADNP", dnpc_map.size, (unsigned long long)dnpc_map.phys); - - dnpc_map.virt = ioremap_nocache(dnpc_map.phys, dnpc_map.size); - - dnpc_map_flash(dnpc_map.phys, dnpc_map.size); - - if (!dnpc_map.virt) { - printk("Failed to ioremap_nocache\n"); - return -EIO; - } - simple_map_init(&dnpc_map); - - printk("FLASH virtual address: 0x%p\n", dnpc_map.virt); - - mymtd = do_map_probe("jedec_probe", &dnpc_map); - - if (!mymtd) - mymtd = do_map_probe("cfi_probe", &dnpc_map); - - /* - ** If flash probes fail, try to make flashes accessible - ** at least as ROM. Ajust erasesize in this case since - ** the default one (128M) will break our partitioning - */ - if (!mymtd) - if((mymtd = do_map_probe("map_rom", &dnpc_map))) - mymtd->erasesize = 0x10000; - - if (!mymtd) { - iounmap(dnpc_map.virt); - return -ENXIO; - } - - mymtd->owner = THIS_MODULE; - - /* - ** Supply pointers to lowlvl_parts[] array to add_mtd_partitions() - ** -> add_mtd_partitions() will _not_ register MTD devices for - ** the partitions, but will instead store pointers to the MTD - ** objects it creates into our lowlvl_parts[] array. - ** NOTE: we arrange the pointers such that the sequence of the - ** partitions gets re-arranged: partition #2 follows - ** partition #0. - */ - partition_info[0].mtdp = &lowlvl_parts[0]; - partition_info[1].mtdp = &lowlvl_parts[2]; - partition_info[2].mtdp = &lowlvl_parts[1]; - partition_info[3].mtdp = &lowlvl_parts[3]; - - mtd_device_register(mymtd, partition_info, NUM_PARTITIONS); - - /* - ** now create a virtual MTD device by concatenating the for partitions - ** (in the sequence given by the lowlvl_parts[] array. - */ - merged_mtd = mtd_concat_create(lowlvl_parts, NUM_PARTITIONS, "(A)DNP Flash Concatenated"); - if(merged_mtd) - { /* - ** now partition the new device the way we want it. This time, - ** we do not supply mtd pointers in higlvl_partition_info, so - ** add_mtd_partitions() will register the devices. - */ - mtd_device_register(merged_mtd, higlvl_partition_info, - NUM_HIGHLVL_PARTITIONS); - } - - return 0; -} - -static void __exit cleanup_dnpc(void) -{ - if(merged_mtd) { - mtd_device_unregister(merged_mtd); - mtd_concat_destroy(merged_mtd); - } - - if (mymtd) { - mtd_device_unregister(mymtd); - map_destroy(mymtd); - } - if (dnpc_map.virt) { - iounmap(dnpc_map.virt); - dnpc_unmap_flash(); - dnpc_map.virt = NULL; - } -} - -module_init(init_dnpc); -module_exit(cleanup_dnpc); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Sysgo Real-Time Solutions GmbH"); -MODULE_DESCRIPTION("MTD map driver for SSV DIL/NetPC DNP & ADNP"); diff --git a/drivers/mtd/maps/dmv182.c b/drivers/mtd/maps/dmv182.c deleted file mode 100644 index 6538ac675e0..00000000000 --- a/drivers/mtd/maps/dmv182.c +++ /dev/null @@ -1,146 +0,0 @@ - -/* - * drivers/mtd/maps/dmv182.c - * - * Flash map driver for the Dy4 SVME182 board - * - * Copyright 2003-2004, TimeSys Corporation - * - * Based on the SVME181 flash map, by Tom Nelson, Dot4, Inc. for TimeSys Corp. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - */ - -#include <linux/module.h> -#include <linux/init.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <linux/errno.h> - -/* - * This driver currently handles only the 16MiB user flash bank 1 on the - * board. It does not provide access to bank 0 (contains the Dy4 FFW), bank 2 - * (VxWorks boot), or the optional 48MiB expansion flash. - * - * scott.wood@timesys.com: On the newer boards with 128MiB flash, it - * now supports the first 96MiB (the boot flash bank containing FFW - * is excluded). The VxWorks loader is in partition 1. - */ - -#define FLASH_BASE_ADDR 0xf0000000 -#define FLASH_BANK_SIZE (128*1024*1024) - -MODULE_AUTHOR("Scott Wood, TimeSys Corporation <scott.wood@timesys.com>"); -MODULE_DESCRIPTION("User-programmable flash device on the Dy4 SVME182 board"); -MODULE_LICENSE("GPL"); - -static struct map_info svme182_map = { - .name = "Dy4 SVME182", - .bankwidth = 32, - .size = 128 * 1024 * 1024 -}; - -#define BOOTIMAGE_PART_SIZE ((6*1024*1024)-RESERVED_PART_SIZE) - -// Allow 6MiB for the kernel -#define NEW_BOOTIMAGE_PART_SIZE (6 * 1024 * 1024) -// Allow 1MiB for the bootloader -#define NEW_BOOTLOADER_PART_SIZE (1024 * 1024) -// Use the remaining 9MiB at the end of flash for the RFS -#define NEW_RFS_PART_SIZE (0x01000000 - NEW_BOOTLOADER_PART_SIZE - \ - NEW_BOOTIMAGE_PART_SIZE) - -static struct mtd_partition svme182_partitions[] = { - // The Lower PABS is only 128KiB, but the partition code doesn't - // like partitions that don't end on the largest erase block - // size of the device, even if all of the erase blocks in the - // partition are small ones. The hardware should prevent - // writes to the actual PABS areas. - { - name: "Lower PABS and CPU 0 bootloader or kernel", - size: 6*1024*1024, - offset: 0, - }, - { - name: "Root Filesystem", - size: 10*1024*1024, - offset: MTDPART_OFS_NXTBLK - }, - { - name: "CPU1 Bootloader", - size: 1024*1024, - offset: MTDPART_OFS_NXTBLK, - }, - { - name: "Extra", - size: 110*1024*1024, - offset: MTDPART_OFS_NXTBLK - }, - { - name: "Foundation Firmware and Upper PABS", - size: 1024*1024, - offset: MTDPART_OFS_NXTBLK, - mask_flags: MTD_WRITEABLE // read-only - } -}; - -static struct mtd_info *this_mtd; - -static int __init init_svme182(void) -{ - struct mtd_partition *partitions; - int num_parts = ARRAY_SIZE(svme182_partitions); - - partitions = svme182_partitions; - - svme182_map.virt = ioremap(FLASH_BASE_ADDR, svme182_map.size); - - if (svme182_map.virt == 0) { - printk("Failed to ioremap FLASH memory area.\n"); - return -EIO; - } - - simple_map_init(&svme182_map); - - this_mtd = do_map_probe("cfi_probe", &svme182_map); - if (!this_mtd) - { - iounmap((void *)svme182_map.virt); - return -ENXIO; - } - - printk(KERN_NOTICE "SVME182 flash device: %dMiB at 0x%08x\n", - this_mtd->size >> 20, FLASH_BASE_ADDR); - - this_mtd->owner = THIS_MODULE; - mtd_device_register(this_mtd, partitions, num_parts); - - return 0; -} - -static void __exit cleanup_svme182(void) -{ - if (this_mtd) - { - mtd_device_unregister(this_mtd); - map_destroy(this_mtd); - } - - if (svme182_map.virt) - { - iounmap((void *)svme182_map.virt); - svme182_map.virt = 0; - } - - return; -} - -module_init(init_svme182); -module_exit(cleanup_svme182); diff --git a/drivers/mtd/maps/esb2rom.c b/drivers/mtd/maps/esb2rom.c index 08322b1c3e8..f784cf0caa1 100644 --- a/drivers/mtd/maps/esb2rom.c +++ b/drivers/mtd/maps/esb2rom.c @@ -144,8 +144,8 @@ static void esb2rom_cleanup(struct esb2rom_window *window) pci_dev_put(window->pdev); } -static int __devinit esb2rom_init_one(struct pci_dev *pdev, - const struct pci_device_id *ent) +static int esb2rom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; struct esb2rom_window *window = &esb2rom_window; @@ -378,13 +378,13 @@ static int __devinit esb2rom_init_one(struct pci_dev *pdev, return 0; } -static void __devexit esb2rom_remove_one (struct pci_dev *pdev) +static void esb2rom_remove_one(struct pci_dev *pdev) { struct esb2rom_window *window = &esb2rom_window; esb2rom_cleanup(window); } -static struct pci_device_id esb2rom_pci_tbl[] __devinitdata = { +static struct pci_device_id esb2rom_pci_tbl[] = { { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_0, PCI_ANY_ID, PCI_ANY_ID, }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_0, diff --git a/drivers/mtd/maps/fortunet.c b/drivers/mtd/maps/fortunet.c deleted file mode 100644 index 956e2e4f30e..00000000000 --- a/drivers/mtd/maps/fortunet.c +++ /dev/null @@ -1,277 +0,0 @@ -/* fortunet.c memory map - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/string.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/io.h> - -#define MAX_NUM_REGIONS 4 -#define MAX_NUM_PARTITIONS 8 - -#define DEF_WINDOW_ADDR_PHY 0x00000000 -#define DEF_WINDOW_SIZE 0x00800000 // 8 Mega Bytes - -#define MTD_FORTUNET_PK "MTD FortuNet: " - -#define MAX_NAME_SIZE 128 - -struct map_region -{ - int window_addr_physical; - int altbankwidth; - struct map_info map_info; - struct mtd_info *mymtd; - struct mtd_partition parts[MAX_NUM_PARTITIONS]; - char map_name[MAX_NAME_SIZE]; - char parts_name[MAX_NUM_PARTITIONS][MAX_NAME_SIZE]; -}; - -static struct map_region map_regions[MAX_NUM_REGIONS]; -static int map_regions_set[MAX_NUM_REGIONS] = {0,0,0,0}; -static int map_regions_parts[MAX_NUM_REGIONS] = {0,0,0,0}; - - - -struct map_info default_map = { - .size = DEF_WINDOW_SIZE, - .bankwidth = 4, -}; - -static char * __init get_string_option(char *dest,int dest_size,char *sor) -{ - if(!dest_size) - return sor; - dest_size--; - while(*sor) - { - if(*sor==',') - { - sor++; - break; - } - else if(*sor=='\"') - { - sor++; - while(*sor) - { - if(*sor=='\"') - { - sor++; - break; - } - *dest = *sor; - dest++; - sor++; - dest_size--; - if(!dest_size) - { - *dest = 0; - return sor; - } - } - } - else - { - *dest = *sor; - dest++; - sor++; - dest_size--; - if(!dest_size) - { - *dest = 0; - return sor; - } - } - } - *dest = 0; - return sor; -} - -static int __init MTD_New_Region(char *line) -{ - char string[MAX_NAME_SIZE]; - int params[6]; - get_options (get_string_option(string,sizeof(string),line),6,params); - if(params[0]<1) - { - printk(MTD_FORTUNET_PK "Bad parameters for MTD Region " - " name,region-number[,base,size,bankwidth,altbankwidth]\n"); - return 1; - } - if((params[1]<0)||(params[1]>=MAX_NUM_REGIONS)) - { - printk(MTD_FORTUNET_PK "Bad region index of %d only have 0..%u regions\n", - params[1],MAX_NUM_REGIONS-1); - return 1; - } - memset(&map_regions[params[1]],0,sizeof(map_regions[params[1]])); - memcpy(&map_regions[params[1]].map_info, - &default_map,sizeof(map_regions[params[1]].map_info)); - map_regions_set[params[1]] = 1; - map_regions[params[1]].window_addr_physical = DEF_WINDOW_ADDR_PHY; - map_regions[params[1]].altbankwidth = 2; - map_regions[params[1]].mymtd = NULL; - map_regions[params[1]].map_info.name = map_regions[params[1]].map_name; - strcpy(map_regions[params[1]].map_info.name,string); - if(params[0]>1) - { - map_regions[params[1]].window_addr_physical = params[2]; - } - if(params[0]>2) - { - map_regions[params[1]].map_info.size = params[3]; - } - if(params[0]>3) - { - map_regions[params[1]].map_info.bankwidth = params[4]; - } - if(params[0]>4) - { - map_regions[params[1]].altbankwidth = params[5]; - } - return 1; -} - -static int __init MTD_New_Partition(char *line) -{ - char string[MAX_NAME_SIZE]; - int params[4]; - get_options (get_string_option(string,sizeof(string),line),4,params); - if(params[0]<3) - { - printk(MTD_FORTUNET_PK "Bad parameters for MTD Partition " - " name,region-number,size,offset\n"); - return 1; - } - if((params[1]<0)||(params[1]>=MAX_NUM_REGIONS)) - { - printk(MTD_FORTUNET_PK "Bad region index of %d only have 0..%u regions\n", - params[1],MAX_NUM_REGIONS-1); - return 1; - } - if(map_regions_parts[params[1]]>=MAX_NUM_PARTITIONS) - { - printk(MTD_FORTUNET_PK "Out of space for partition in this region\n"); - return 1; - } - map_regions[params[1]].parts[map_regions_parts[params[1]]].name = - map_regions[params[1]]. parts_name[map_regions_parts[params[1]]]; - strcpy(map_regions[params[1]].parts[map_regions_parts[params[1]]].name,string); - map_regions[params[1]].parts[map_regions_parts[params[1]]].size = - params[2]; - map_regions[params[1]].parts[map_regions_parts[params[1]]].offset = - params[3]; - map_regions[params[1]].parts[map_regions_parts[params[1]]].mask_flags = 0; - map_regions_parts[params[1]]++; - return 1; -} - -__setup("MTD_Region=", MTD_New_Region); -__setup("MTD_Partition=", MTD_New_Partition); - -/* Backwards-spelling-compatibility */ -__setup("MTD_Partion=", MTD_New_Partition); - -static int __init init_fortunet(void) -{ - int ix,iy; - for(iy=ix=0;ix<MAX_NUM_REGIONS;ix++) - { - if(map_regions_parts[ix]&&(!map_regions_set[ix])) - { - printk(MTD_FORTUNET_PK "Region %d is not setup (Setting to default)\n", - ix); - memset(&map_regions[ix],0,sizeof(map_regions[ix])); - memcpy(&map_regions[ix].map_info,&default_map, - sizeof(map_regions[ix].map_info)); - map_regions_set[ix] = 1; - map_regions[ix].window_addr_physical = DEF_WINDOW_ADDR_PHY; - map_regions[ix].altbankwidth = 2; - map_regions[ix].mymtd = NULL; - map_regions[ix].map_info.name = map_regions[ix].map_name; - strcpy(map_regions[ix].map_info.name,"FORTUNET"); - } - if(map_regions_set[ix]) - { - iy++; - printk(KERN_NOTICE MTD_FORTUNET_PK "%s flash device at physically " - " address %x size %x\n", - map_regions[ix].map_info.name, - map_regions[ix].window_addr_physical, - map_regions[ix].map_info.size); - - map_regions[ix].map_info.phys = map_regions[ix].window_addr_physical, - - map_regions[ix].map_info.virt = - ioremap_nocache( - map_regions[ix].window_addr_physical, - map_regions[ix].map_info.size); - if(!map_regions[ix].map_info.virt) - { - int j = 0; - printk(MTD_FORTUNET_PK "%s flash failed to ioremap!\n", - map_regions[ix].map_info.name); - for (j = 0 ; j < ix; j++) - iounmap(map_regions[j].map_info.virt); - return -ENXIO; - } - simple_map_init(&map_regions[ix].map_info); - - printk(KERN_NOTICE MTD_FORTUNET_PK "%s flash is virtually at: %x\n", - map_regions[ix].map_info.name, - map_regions[ix].map_info.virt); - map_regions[ix].mymtd = do_map_probe("cfi_probe", - &map_regions[ix].map_info); - if((!map_regions[ix].mymtd)&&( - map_regions[ix].altbankwidth!=map_regions[ix].map_info.bankwidth)) - { - printk(KERN_NOTICE MTD_FORTUNET_PK "Trying alternate bankwidth " - "for %s flash.\n", - map_regions[ix].map_info.name); - map_regions[ix].map_info.bankwidth = - map_regions[ix].altbankwidth; - map_regions[ix].mymtd = do_map_probe("cfi_probe", - &map_regions[ix].map_info); - } - map_regions[ix].mymtd->owner = THIS_MODULE; - mtd_device_register(map_regions[ix].mymtd, - map_regions[ix].parts, - map_regions_parts[ix]); - } - } - if(iy) - return 0; - return -ENXIO; -} - -static void __exit cleanup_fortunet(void) -{ - int ix; - for(ix=0;ix<MAX_NUM_REGIONS;ix++) - { - if(map_regions_set[ix]) - { - if( map_regions[ix].mymtd ) - { - mtd_device_unregister(map_regions[ix].mymtd); - map_destroy( map_regions[ix].mymtd ); - } - iounmap((void *)map_regions[ix].map_info.virt); - } - } -} - -module_init(init_fortunet); -module_exit(cleanup_fortunet); - -MODULE_AUTHOR("FortuNet, Inc."); -MODULE_DESCRIPTION("MTD map driver for FortuNet boards"); diff --git a/drivers/mtd/maps/gpio-addr-flash.c b/drivers/mtd/maps/gpio-addr-flash.c index e4de96ba52b..a4c477b9fdd 100644 --- a/drivers/mtd/maps/gpio-addr-flash.c +++ b/drivers/mtd/maps/gpio-addr-flash.c @@ -14,7 +14,6 @@ */ #include <linux/gpio.h> -#include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> @@ -26,7 +25,8 @@ #include <linux/slab.h> #include <linux/types.h> -#define pr_devinit(fmt, args...) ({ static const __devinitconst char __fmt[] = fmt; printk(__fmt, ## args); }) +#define pr_devinit(fmt, args...) \ + ({ static const char __fmt[] = fmt; printk(__fmt, ## args); }) #define DRIVER_NAME "gpio-addr-flash" #define PFX DRIVER_NAME ": " @@ -142,7 +142,8 @@ static void gf_write(struct map_info *map, map_word d1, unsigned long ofs) * * See gf_copy_from() caveat. */ -static void gf_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) +static void gf_copy_to(struct map_info *map, unsigned long to, + const void *from, ssize_t len) { struct async_state *state = gf_map_info_to_state(map); @@ -155,7 +156,8 @@ static void gf_copy_to(struct map_info *map, unsigned long to, const void *from, memcpy_toio(map->virt + (to % state->win_size), from, len); } -static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; +static const char * const part_probe_types[] = { + "cmdlinepart", "RedBoot", NULL }; /** * gpio_flash_probe() - setup a mapping for a GPIO assisted flash @@ -185,7 +187,7 @@ static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; * ... * }; */ -static int __devinit gpio_flash_probe(struct platform_device *pdev) +static int gpio_flash_probe(struct platform_device *pdev) { size_t i, arr_size; struct physmap_flash_data *pdata; @@ -193,7 +195,7 @@ static int __devinit gpio_flash_probe(struct platform_device *pdev) struct resource *gpios; struct async_state *state; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); memory = platform_get_resource(pdev, IORESOURCE_MEM, 0); gpios = platform_get_resource(pdev, IORESOURCE_IRQ, 0); @@ -258,7 +260,7 @@ static int __devinit gpio_flash_probe(struct platform_device *pdev) return 0; } -static int __devexit gpio_flash_remove(struct platform_device *pdev) +static int gpio_flash_remove(struct platform_device *pdev) { struct async_state *state = platform_get_drvdata(pdev); size_t i = 0; @@ -273,7 +275,7 @@ static int __devexit gpio_flash_remove(struct platform_device *pdev) static struct platform_driver gpio_flash_driver = { .probe = gpio_flash_probe, - .remove = __devexit_p(gpio_flash_remove), + .remove = gpio_flash_remove, .driver = { .name = DRIVER_NAME, }, diff --git a/drivers/mtd/maps/h720x-flash.c b/drivers/mtd/maps/h720x-flash.c deleted file mode 100644 index 8ed6cb4529d..00000000000 --- a/drivers/mtd/maps/h720x-flash.c +++ /dev/null @@ -1,120 +0,0 @@ -/* - * Flash memory access on Hynix GMS30C7201/HMS30C7202 based - * evaluation boards - * - * (C) 2002 Jungjun Kim <jungjun.kim@hynix.com> - * 2003 Thomas Gleixner <tglx@linutronix.de> - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/errno.h> -#include <linux/slab.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <mach/hardware.h> -#include <asm/io.h> - -static struct mtd_info *mymtd; - -static struct map_info h720x_map = { - .name = "H720X", - .bankwidth = 4, - .size = H720X_FLASH_SIZE, - .phys = H720X_FLASH_PHYS, -}; - -static struct mtd_partition h720x_partitions[] = { - { - .name = "ArMon", - .size = 0x00080000, - .offset = 0, - .mask_flags = MTD_WRITEABLE - },{ - .name = "Env", - .size = 0x00040000, - .offset = 0x00080000, - .mask_flags = MTD_WRITEABLE - },{ - .name = "Kernel", - .size = 0x00180000, - .offset = 0x000c0000, - .mask_flags = MTD_WRITEABLE - },{ - .name = "Ramdisk", - .size = 0x00400000, - .offset = 0x00240000, - .mask_flags = MTD_WRITEABLE - },{ - .name = "jffs2", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND - } -}; - -#define NUM_PARTITIONS ARRAY_SIZE(h720x_partitions) - -/* - * Initialize FLASH support - */ -static int __init h720x_mtd_init(void) -{ - h720x_map.virt = ioremap(h720x_map.phys, h720x_map.size); - - if (!h720x_map.virt) { - printk(KERN_ERR "H720x-MTD: ioremap failed\n"); - return -EIO; - } - - simple_map_init(&h720x_map); - - // Probe for flash bankwidth 4 - printk (KERN_INFO "H720x-MTD probing 32bit FLASH\n"); - mymtd = do_map_probe("cfi_probe", &h720x_map); - if (!mymtd) { - printk (KERN_INFO "H720x-MTD probing 16bit FLASH\n"); - // Probe for bankwidth 2 - h720x_map.bankwidth = 2; - mymtd = do_map_probe("cfi_probe", &h720x_map); - } - - if (mymtd) { - mymtd->owner = THIS_MODULE; - - mtd_device_parse_register(mymtd, NULL, NULL, - h720x_partitions, NUM_PARTITIONS); - return 0; - } - - iounmap((void *)h720x_map.virt); - return -ENXIO; -} - -/* - * Cleanup - */ -static void __exit h720x_mtd_cleanup(void) -{ - - if (mymtd) { - mtd_device_unregister(mymtd); - map_destroy(mymtd); - } - - if (h720x_map.virt) { - iounmap((void *)h720x_map.virt); - h720x_map.virt = 0; - } -} - - -module_init(h720x_mtd_init); -module_exit(h720x_mtd_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); -MODULE_DESCRIPTION("MTD map driver for Hynix evaluation boards"); diff --git a/drivers/mtd/maps/ichxrom.c b/drivers/mtd/maps/ichxrom.c index 6689dcb3124..c7478e18f48 100644 --- a/drivers/mtd/maps/ichxrom.c +++ b/drivers/mtd/maps/ichxrom.c @@ -84,8 +84,8 @@ static void ichxrom_cleanup(struct ichxrom_window *window) } -static int __devinit ichxrom_init_one (struct pci_dev *pdev, - const struct pci_device_id *ent) +static int ichxrom_init_one(struct pci_dev *pdev, + const struct pci_device_id *ent) { static char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; struct ichxrom_window *window = &ichxrom_window; @@ -315,13 +315,13 @@ static int __devinit ichxrom_init_one (struct pci_dev *pdev, } -static void __devexit ichxrom_remove_one (struct pci_dev *pdev) +static void ichxrom_remove_one(struct pci_dev *pdev) { struct ichxrom_window *window = &ichxrom_window; ichxrom_cleanup(window); } -static struct pci_device_id ichxrom_pci_tbl[] __devinitdata = { +static struct pci_device_id ichxrom_pci_tbl[] = { { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_0, PCI_ANY_ID, PCI_ANY_ID, }, { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_0, diff --git a/drivers/mtd/maps/impa7.c b/drivers/mtd/maps/impa7.c index 834a06c56f5..15bbda03be6 100644 --- a/drivers/mtd/maps/impa7.c +++ b/drivers/mtd/maps/impa7.c @@ -24,14 +24,12 @@ #define NUM_FLASHBANKS 2 #define BUSWIDTH 4 -/* can be { "cfi_probe", "jedec_probe", "map_rom", NULL } */ -#define PROBETYPES { "jedec_probe", NULL } - #define MSG_PREFIX "impA7:" /* prefix for our printk()'s */ #define MTDID "impa7-%d" /* for mtdparts= partitioning */ static struct mtd_info *impa7_mtd[NUM_FLASHBANKS]; +static const char * const rom_probe_types[] = { "jedec_probe", NULL }; static struct map_info impa7_map[NUM_FLASHBANKS] = { { @@ -60,8 +58,7 @@ static struct mtd_partition partitions[] = static int __init init_impa7(void) { - static const char *rom_probe_types[] = PROBETYPES; - const char **type; + const char * const *type; int i; static struct { u_long addr; u_long size; } pt[NUM_FLASHBANKS] = { { WINDOW_ADDR0, WINDOW_SIZE0 }, @@ -82,7 +79,7 @@ static int __init init_impa7(void) } simple_map_init(&impa7_map[i]); - impa7_mtd[i] = 0; + impa7_mtd[i] = NULL; type = rom_probe_types; for(; !impa7_mtd[i] && *type; type++) { impa7_mtd[i] = do_map_probe(*type, &impa7_map[i]); @@ -94,9 +91,9 @@ static int __init init_impa7(void) mtd_device_parse_register(impa7_mtd[i], NULL, NULL, partitions, ARRAY_SIZE(partitions)); + } else { + iounmap((void __iomem *)impa7_map[i].virt); } - else - iounmap((void *)impa7_map[i].virt); } return devicesfound == 0 ? -ENXIO : 0; } @@ -108,8 +105,8 @@ static void __exit cleanup_impa7(void) if (impa7_mtd[i]) { mtd_device_unregister(impa7_mtd[i]); map_destroy(impa7_mtd[i]); - iounmap((void *)impa7_map[i].virt); - impa7_map[i].virt = 0; + iounmap((void __iomem *)impa7_map[i].virt); + impa7_map[i].virt = NULL; } } } diff --git a/drivers/mtd/maps/intel_vr_nor.c b/drivers/mtd/maps/intel_vr_nor.c index 93f03175c82..5ab71f0e1bc 100644 --- a/drivers/mtd/maps/intel_vr_nor.c +++ b/drivers/mtd/maps/intel_vr_nor.c @@ -31,7 +31,6 @@ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/pci.h> -#include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> #include <linux/mtd/partitions.h> @@ -63,28 +62,28 @@ struct vr_nor_mtd { #define TIMING_BYTE_EN (1 << 0) /* 8-bit vs 16-bit bus */ #define TIMING_MASK 0x3FFF0000 -static void __devexit vr_nor_destroy_partitions(struct vr_nor_mtd *p) +static void vr_nor_destroy_partitions(struct vr_nor_mtd *p) { mtd_device_unregister(p->info); } -static int __devinit vr_nor_init_partitions(struct vr_nor_mtd *p) +static int vr_nor_init_partitions(struct vr_nor_mtd *p) { /* register the flash bank */ /* partition the flash bank */ return mtd_device_parse_register(p->info, NULL, NULL, NULL, 0); } -static void __devexit vr_nor_destroy_mtd_setup(struct vr_nor_mtd *p) +static void vr_nor_destroy_mtd_setup(struct vr_nor_mtd *p) { map_destroy(p->info); } -static int __devinit vr_nor_mtd_setup(struct vr_nor_mtd *p) +static int vr_nor_mtd_setup(struct vr_nor_mtd *p) { - static const char *probe_types[] = + static const char * const probe_types[] = { "cfi_probe", "jedec_probe", NULL }; - const char **type; + const char * const *type; for (type = probe_types; !p->info && *type; type++) p->info = do_map_probe(*type, &p->map); @@ -96,7 +95,7 @@ static int __devinit vr_nor_mtd_setup(struct vr_nor_mtd *p) return 0; } -static void __devexit vr_nor_destroy_maps(struct vr_nor_mtd *p) +static void vr_nor_destroy_maps(struct vr_nor_mtd *p) { unsigned int exp_timing_cs0; @@ -116,7 +115,7 @@ static void __devexit vr_nor_destroy_maps(struct vr_nor_mtd *p) * Initialize the map_info structure and map the flash. * Returns 0 on success, nonzero otherwise. */ -static int __devinit vr_nor_init_maps(struct vr_nor_mtd *p) +static int vr_nor_init_maps(struct vr_nor_mtd *p) { unsigned long csr_phys, csr_len; unsigned long win_phys, win_len; @@ -176,11 +175,10 @@ static struct pci_device_id vr_nor_pci_ids[] = { {0,} }; -static void __devexit vr_nor_pci_remove(struct pci_dev *dev) +static void vr_nor_pci_remove(struct pci_dev *dev) { struct vr_nor_mtd *p = pci_get_drvdata(dev); - pci_set_drvdata(dev, NULL); vr_nor_destroy_partitions(p); vr_nor_destroy_mtd_setup(p); vr_nor_destroy_maps(p); @@ -189,8 +187,7 @@ static void __devexit vr_nor_pci_remove(struct pci_dev *dev) pci_disable_device(dev); } -static int __devinit -vr_nor_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +static int vr_nor_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct vr_nor_mtd *p = NULL; unsigned int exp_timing_cs0; @@ -256,7 +253,7 @@ vr_nor_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) static struct pci_driver vr_nor_pci_driver = { .name = DRV_NAME, .probe = vr_nor_pci_probe, - .remove = __devexit_p(vr_nor_pci_remove), + .remove = vr_nor_pci_remove, .id_table = vr_nor_pci_ids, }; diff --git a/drivers/mtd/maps/ixp2000.c b/drivers/mtd/maps/ixp2000.c deleted file mode 100644 index 4a41ced0f71..00000000000 --- a/drivers/mtd/maps/ixp2000.c +++ /dev/null @@ -1,253 +0,0 @@ -/* - * drivers/mtd/maps/ixp2000.c - * - * Mapping for the Intel XScale IXP2000 based systems - * - * Copyright (C) 2002 Intel Corp. - * Copyright (C) 2003-2004 MontaVista Software, Inc. - * - * Original Author: Naeem M Afzal <naeem.m.afzal@intel.com> - * Maintainer: Deepak Saxena <dsaxena@plexity.net> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/string.h> -#include <linux/slab.h> -#include <linux/ioport.h> -#include <linux/device.h> -#include <linux/platform_device.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/io.h> -#include <mach/hardware.h> -#include <asm/mach/flash.h> - -#include <linux/reboot.h> - -struct ixp2000_flash_info { - struct mtd_info *mtd; - struct map_info map; - struct resource *res; -}; - -static inline unsigned long flash_bank_setup(struct map_info *map, unsigned long ofs) -{ - unsigned long (*set_bank)(unsigned long) = - (unsigned long(*)(unsigned long))map->map_priv_2; - - return (set_bank ? set_bank(ofs) : ofs); -} - -#ifdef __ARMEB__ -/* - * Rev A0 and A1 of IXP2400 silicon have a broken addressing unit which - * causes the lower address bits to be XORed with 0x11 on 8 bit accesses - * and XORed with 0x10 on 16 bit accesses. See the spec update, erratum 44. - */ -static int erratum44_workaround = 0; - -static inline unsigned long address_fix8_write(unsigned long addr) -{ - if (erratum44_workaround) { - return (addr ^ 3); - } - return addr; -} -#else - -#define address_fix8_write(x) (x) -#endif - -static map_word ixp2000_flash_read8(struct map_info *map, unsigned long ofs) -{ - map_word val; - - val.x[0] = *((u8 *)(map->map_priv_1 + flash_bank_setup(map, ofs))); - return val; -} - -/* - * We can't use the standard memcpy due to the broken SlowPort - * address translation on rev A0 and A1 silicon and the fact that - * we have banked flash. - */ -static void ixp2000_flash_copy_from(struct map_info *map, void *to, - unsigned long from, ssize_t len) -{ - from = flash_bank_setup(map, from); - while(len--) - *(__u8 *) to++ = *(__u8 *)(map->map_priv_1 + from++); -} - -static void ixp2000_flash_write8(struct map_info *map, map_word d, unsigned long ofs) -{ - *(__u8 *) (address_fix8_write(map->map_priv_1 + - flash_bank_setup(map, ofs))) = d.x[0]; -} - -static void ixp2000_flash_copy_to(struct map_info *map, unsigned long to, - const void *from, ssize_t len) -{ - to = flash_bank_setup(map, to); - while(len--) { - unsigned long tmp = address_fix8_write(map->map_priv_1 + to++); - *(__u8 *)(tmp) = *(__u8 *)(from++); - } -} - - -static int ixp2000_flash_remove(struct platform_device *dev) -{ - struct flash_platform_data *plat = dev->dev.platform_data; - struct ixp2000_flash_info *info = platform_get_drvdata(dev); - - platform_set_drvdata(dev, NULL); - - if(!info) - return 0; - - if (info->mtd) { - mtd_device_unregister(info->mtd); - map_destroy(info->mtd); - } - if (info->map.map_priv_1) - iounmap((void *) info->map.map_priv_1); - - if (info->res) { - release_resource(info->res); - kfree(info->res); - } - - if (plat->exit) - plat->exit(); - - return 0; -} - - -static int ixp2000_flash_probe(struct platform_device *dev) -{ - static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; - struct ixp2000_flash_data *ixp_data = dev->dev.platform_data; - struct flash_platform_data *plat; - struct ixp2000_flash_info *info; - unsigned long window_size; - int err = -1; - - if (!ixp_data) - return -ENODEV; - - plat = ixp_data->platform_data; - if (!plat) - return -ENODEV; - - window_size = resource_size(dev->resource); - dev_info(&dev->dev, "Probe of IXP2000 flash(%d banks x %dMiB)\n", - ixp_data->nr_banks, ((u32)window_size >> 20)); - - if (plat->width != 1) { - dev_err(&dev->dev, "IXP2000 MTD map only supports 8-bit mode, asking for %d\n", - plat->width * 8); - return -EIO; - } - - info = kzalloc(sizeof(struct ixp2000_flash_info), GFP_KERNEL); - if(!info) { - err = -ENOMEM; - goto Error; - } - - platform_set_drvdata(dev, info); - - /* - * Tell the MTD layer we're not 1:1 mapped so that it does - * not attempt to do a direct access on us. - */ - info->map.phys = NO_XIP; - - info->map.size = ixp_data->nr_banks * window_size; - info->map.bankwidth = 1; - - /* - * map_priv_2 is used to store a ptr to the bank_setup routine - */ - info->map.map_priv_2 = (unsigned long) ixp_data->bank_setup; - - info->map.name = dev_name(&dev->dev); - info->map.read = ixp2000_flash_read8; - info->map.write = ixp2000_flash_write8; - info->map.copy_from = ixp2000_flash_copy_from; - info->map.copy_to = ixp2000_flash_copy_to; - - info->res = request_mem_region(dev->resource->start, - resource_size(dev->resource), - dev_name(&dev->dev)); - if (!info->res) { - dev_err(&dev->dev, "Could not reserve memory region\n"); - err = -ENOMEM; - goto Error; - } - - info->map.map_priv_1 = - (unsigned long)ioremap(dev->resource->start, - resource_size(dev->resource)); - if (!info->map.map_priv_1) { - dev_err(&dev->dev, "Failed to ioremap flash region\n"); - err = -EIO; - goto Error; - } - -#if defined(__ARMEB__) - /* - * Enable erratum 44 workaround for NPUs with broken slowport - */ - - erratum44_workaround = ixp2000_has_broken_slowport(); - dev_info(&dev->dev, "Erratum 44 workaround %s\n", - erratum44_workaround ? "enabled" : "disabled"); -#endif - - info->mtd = do_map_probe(plat->map_name, &info->map); - if (!info->mtd) { - dev_err(&dev->dev, "map_probe failed\n"); - err = -ENXIO; - goto Error; - } - info->mtd->owner = THIS_MODULE; - - err = mtd_device_parse_register(info->mtd, probes, NULL, NULL, 0); - if (err) - goto Error; - - return 0; - -Error: - ixp2000_flash_remove(dev); - return err; -} - -static struct platform_driver ixp2000_flash_driver = { - .probe = ixp2000_flash_probe, - .remove = ixp2000_flash_remove, - .driver = { - .name = "IXP2000-Flash", - .owner = THIS_MODULE, - }, -}; - -module_platform_driver(ixp2000_flash_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>"); -MODULE_ALIAS("platform:IXP2000-Flash"); diff --git a/drivers/mtd/maps/ixp4xx.c b/drivers/mtd/maps/ixp4xx.c index e864fc6c58f..6a589f1e288 100644 --- a/drivers/mtd/maps/ixp4xx.c +++ b/drivers/mtd/maps/ixp4xx.c @@ -13,9 +13,9 @@ * */ +#include <linux/err.h> #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/slab.h> @@ -148,15 +148,13 @@ struct ixp4xx_flash_info { struct resource *res; }; -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; static int ixp4xx_flash_remove(struct platform_device *dev) { - struct flash_platform_data *plat = dev->dev.platform_data; + struct flash_platform_data *plat = dev_get_platdata(&dev->dev); struct ixp4xx_flash_info *info = platform_get_drvdata(dev); - platform_set_drvdata(dev, NULL); - if(!info) return 0; @@ -164,13 +162,6 @@ static int ixp4xx_flash_remove(struct platform_device *dev) mtd_device_unregister(info->mtd); map_destroy(info->mtd); } - if (info->map.virt) - iounmap(info->map.virt); - - if (info->res) { - release_resource(info->res); - kfree(info->res); - } if (plat->exit) plat->exit(); @@ -180,7 +171,7 @@ static int ixp4xx_flash_remove(struct platform_device *dev) static int ixp4xx_flash_probe(struct platform_device *dev) { - struct flash_platform_data *plat = dev->dev.platform_data; + struct flash_platform_data *plat = dev_get_platdata(&dev->dev); struct ixp4xx_flash_info *info; struct mtd_part_parser_data ppdata = { .origin = dev->resource->start, @@ -196,7 +187,8 @@ static int ixp4xx_flash_probe(struct platform_device *dev) return err; } - info = kzalloc(sizeof(struct ixp4xx_flash_info), GFP_KERNEL); + info = devm_kzalloc(&dev->dev, sizeof(struct ixp4xx_flash_info), + GFP_KERNEL); if(!info) { err = -ENOMEM; goto Error; @@ -222,20 +214,9 @@ static int ixp4xx_flash_probe(struct platform_device *dev) info->map.write = ixp4xx_probe_write16; info->map.copy_from = ixp4xx_copy_from; - info->res = request_mem_region(dev->resource->start, - resource_size(dev->resource), - "IXP4XXFlash"); - if (!info->res) { - printk(KERN_ERR "IXP4XXFlash: Could not reserve memory region\n"); - err = -ENOMEM; - goto Error; - } - - info->map.virt = ioremap(dev->resource->start, - resource_size(dev->resource)); - if (!info->map.virt) { - printk(KERN_ERR "IXP4XXFlash: Failed to ioremap region\n"); - err = -EIO; + info->map.virt = devm_ioremap_resource(&dev->dev, dev->resource); + if (IS_ERR(info->map.virt)) { + err = PTR_ERR(info->map.virt); goto Error; } diff --git a/drivers/mtd/maps/lantiq-flash.c b/drivers/mtd/maps/lantiq-flash.c index c03456f1700..7aa682cd4d7 100644 --- a/drivers/mtd/maps/lantiq-flash.c +++ b/drivers/mtd/maps/lantiq-flash.c @@ -7,12 +7,12 @@ * Copyright (C) 2010 John Crispin <blogic@openwrt.org> */ +#include <linux/err.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/io.h> #include <linux/slab.h> -#include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> #include <linux/mtd/partitions.h> @@ -45,8 +45,7 @@ struct ltq_mtd { }; static const char ltq_map_name[] = "ltq_nor"; -static const char *ltq_probe_types[] __devinitconst = { - "cmdlinepart", "ofpart", NULL }; +static const char * const ltq_probe_types[] = { "cmdlinepart", "ofpart", NULL }; static map_word ltq_read16(struct map_info *map, unsigned long adr) @@ -109,7 +108,7 @@ ltq_copy_to(struct map_info *map, unsigned long to, spin_unlock_irqrestore(&ebu_lock, flags); } -static int __devinit +static int ltq_mtd_probe(struct platform_device *pdev) { struct mtd_part_parser_data ppdata; @@ -123,25 +122,28 @@ ltq_mtd_probe(struct platform_device *pdev) return -ENODEV; } - ltq_mtd = kzalloc(sizeof(struct ltq_mtd), GFP_KERNEL); + ltq_mtd = devm_kzalloc(&pdev->dev, sizeof(struct ltq_mtd), GFP_KERNEL); + if (!ltq_mtd) + return -ENOMEM; + platform_set_drvdata(pdev, ltq_mtd); ltq_mtd->res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!ltq_mtd->res) { dev_err(&pdev->dev, "failed to get memory resource\n"); - err = -ENOENT; - goto err_out; + return -ENOENT; } - ltq_mtd->map = kzalloc(sizeof(struct map_info), GFP_KERNEL); + ltq_mtd->map = devm_kzalloc(&pdev->dev, sizeof(struct map_info), + GFP_KERNEL); + if (!ltq_mtd->map) + return -ENOMEM; + ltq_mtd->map->phys = ltq_mtd->res->start; ltq_mtd->map->size = resource_size(ltq_mtd->res); - ltq_mtd->map->virt = devm_request_and_ioremap(&pdev->dev, ltq_mtd->res); - if (!ltq_mtd->map->virt) { - dev_err(&pdev->dev, "failed to remap mem resource\n"); - err = -EBUSY; - goto err_out; - } + ltq_mtd->map->virt = devm_ioremap_resource(&pdev->dev, ltq_mtd->res); + if (IS_ERR(ltq_mtd->map->virt)) + return PTR_ERR(ltq_mtd->map->virt); ltq_mtd->map->name = ltq_map_name; ltq_mtd->map->bankwidth = 2; @@ -156,8 +158,7 @@ ltq_mtd_probe(struct platform_device *pdev) if (!ltq_mtd->mtd) { dev_err(&pdev->dev, "probing failed\n"); - err = -ENXIO; - goto err_free; + return -ENXIO; } ltq_mtd->mtd->owner = THIS_MODULE; @@ -178,25 +179,17 @@ ltq_mtd_probe(struct platform_device *pdev) err_destroy: map_destroy(ltq_mtd->mtd); -err_free: - kfree(ltq_mtd->map); -err_out: - kfree(ltq_mtd); return err; } -static int __devexit +static int ltq_mtd_remove(struct platform_device *pdev) { struct ltq_mtd *ltq_mtd = platform_get_drvdata(pdev); - if (ltq_mtd) { - if (ltq_mtd->mtd) { - mtd_device_unregister(ltq_mtd->mtd); - map_destroy(ltq_mtd->mtd); - } - kfree(ltq_mtd->map); - kfree(ltq_mtd); + if (ltq_mtd && ltq_mtd->mtd) { + mtd_device_unregister(ltq_mtd->mtd); + map_destroy(ltq_mtd->mtd); } return 0; } @@ -209,7 +202,7 @@ MODULE_DEVICE_TABLE(of, ltq_mtd_match); static struct platform_driver ltq_mtd_driver = { .probe = ltq_mtd_probe, - .remove = __devexit_p(ltq_mtd_remove), + .remove = ltq_mtd_remove, .driver = { .name = "ltq-nor", .owner = THIS_MODULE, diff --git a/drivers/mtd/maps/latch-addr-flash.c b/drivers/mtd/maps/latch-addr-flash.c index 3c7ad17fca7..cadfbe05187 100644 --- a/drivers/mtd/maps/latch-addr-flash.c +++ b/drivers/mtd/maps/latch-addr-flash.c @@ -10,7 +10,6 @@ * kind, whether express or implied. */ -#include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mtd/mtd.h> @@ -102,9 +101,8 @@ static int latch_addr_flash_remove(struct platform_device *dev) info = platform_get_drvdata(dev); if (info == NULL) return 0; - platform_set_drvdata(dev, NULL); - latch_addr_data = dev->dev.platform_data; + latch_addr_data = dev_get_platdata(&dev->dev); if (info->mtd != NULL) { mtd_device_unregister(info->mtd); @@ -125,7 +123,7 @@ static int latch_addr_flash_remove(struct platform_device *dev) return 0; } -static int __devinit latch_addr_flash_probe(struct platform_device *dev) +static int latch_addr_flash_probe(struct platform_device *dev) { struct latch_addr_flash_data *latch_addr_data; struct latch_addr_flash_info *info; @@ -135,7 +133,7 @@ static int __devinit latch_addr_flash_probe(struct platform_device *dev) int chipsel; int err; - latch_addr_data = dev->dev.platform_data; + latch_addr_data = dev_get_platdata(&dev->dev); if (latch_addr_data == NULL) return -ENODEV; @@ -218,7 +216,7 @@ done: static struct platform_driver latch_addr_flash_driver = { .probe = latch_addr_flash_probe, - .remove = __devexit_p(latch_addr_flash_remove), + .remove = latch_addr_flash_remove, .driver = { .name = DRIVER_NAME, }, diff --git a/drivers/mtd/maps/mbx860.c b/drivers/mtd/maps/mbx860.c deleted file mode 100644 index 93fa56c3300..00000000000 --- a/drivers/mtd/maps/mbx860.c +++ /dev/null @@ -1,98 +0,0 @@ -/* - * Handle mapping of the flash on MBX860 boards - * - * Author: Anton Todorov - * Copyright: (C) 2001 Emness Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - - -#define WINDOW_ADDR 0xfe000000 -#define WINDOW_SIZE 0x00200000 - -/* Flash / Partition sizing */ -#define MAX_SIZE_KiB 8192 -#define BOOT_PARTITION_SIZE_KiB 512 -#define KERNEL_PARTITION_SIZE_KiB 5632 -#define APP_PARTITION_SIZE_KiB 2048 - -#define NUM_PARTITIONS 3 - -/* partition_info gives details on the logical partitions that the split the - * single flash device into. If the size if zero we use up to the end of the - * device. */ -static struct mtd_partition partition_info[]={ - { .name = "MBX flash BOOT partition", - .offset = 0, - .size = BOOT_PARTITION_SIZE_KiB*1024 }, - { .name = "MBX flash DATA partition", - .offset = BOOT_PARTITION_SIZE_KiB*1024, - .size = (KERNEL_PARTITION_SIZE_KiB)*1024 }, - { .name = "MBX flash APPLICATION partition", - .offset = (BOOT_PARTITION_SIZE_KiB+KERNEL_PARTITION_SIZE_KiB)*1024 } -}; - - -static struct mtd_info *mymtd; - -struct map_info mbx_map = { - .name = "MBX flash", - .size = WINDOW_SIZE, - .phys = WINDOW_ADDR, - .bankwidth = 4, -}; - -static int __init init_mbx(void) -{ - printk(KERN_NOTICE "Motorola MBX flash device: 0x%x at 0x%x\n", WINDOW_SIZE*4, WINDOW_ADDR); - mbx_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE * 4); - - if (!mbx_map.virt) { - printk("Failed to ioremap\n"); - return -EIO; - } - simple_map_init(&mbx_map); - - mymtd = do_map_probe("jedec_probe", &mbx_map); - if (mymtd) { - mymtd->owner = THIS_MODULE; - mtd_device_register(mymtd, NULL, 0); - mtd_device_register(mymtd, partition_info, NUM_PARTITIONS); - return 0; - } - - iounmap((void *)mbx_map.virt); - return -ENXIO; -} - -static void __exit cleanup_mbx(void) -{ - if (mymtd) { - mtd_device_unregister(mymtd); - map_destroy(mymtd); - } - if (mbx_map.virt) { - iounmap((void *)mbx_map.virt); - mbx_map.virt = 0; - } -} - -module_init(init_mbx); -module_exit(cleanup_mbx); - -MODULE_AUTHOR("Anton Todorov <a.todorov@emness.com>"); -MODULE_DESCRIPTION("MTD map driver for Motorola MBX860 board"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/octagon-5066.c b/drivers/mtd/maps/octagon-5066.c deleted file mode 100644 index 807ac2a2e68..00000000000 --- a/drivers/mtd/maps/octagon-5066.c +++ /dev/null @@ -1,246 +0,0 @@ -/* ###################################################################### - - Octagon 5066 MTD Driver. - - The Octagon 5066 is a SBC based on AMD's 586-WB running at 133 MHZ. It - comes with a builtin AMD 29F016 flash chip and a socketed EEPROM that - is replacable by flash. Both units are mapped through a multiplexer - into a 32k memory window at 0xe8000. The control register for the - multiplexing unit is located at IO 0x208 with a bit map of - 0-5 Page Selection in 32k increments - 6-7 Device selection: - 00 SSD off - 01 SSD 0 (Socket) - 10 SSD 1 (Flash chip) - 11 undefined - - On each SSD, the first 128k is reserved for use by the bios - (actually it IS the bios..) This only matters if you are booting off the - flash, you must not put a file system starting there. - - The driver tries to do a detection algorithm to guess what sort of devices - are plugged into the sockets. - - ##################################################################### */ - -#include <linux/module.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <asm/io.h> - -#include <linux/mtd/map.h> -#include <linux/mtd/mtd.h> - -#define WINDOW_START 0xe8000 -#define WINDOW_LENGTH 0x8000 -#define WINDOW_SHIFT 27 -#define WINDOW_MASK 0x7FFF -#define PAGE_IO 0x208 - -static volatile char page_n_dev = 0; -static unsigned long iomapadr; -static DEFINE_SPINLOCK(oct5066_spin); - -/* - * We use map_priv_1 to identify which device we are. - */ - -static void __oct5066_page(struct map_info *map, __u8 byte) -{ - outb(byte,PAGE_IO); - page_n_dev = byte; -} - -static inline void oct5066_page(struct map_info *map, unsigned long ofs) -{ - __u8 byte = map->map_priv_1 | (ofs >> WINDOW_SHIFT); - - if (page_n_dev != byte) - __oct5066_page(map, byte); -} - - -static map_word oct5066_read8(struct map_info *map, unsigned long ofs) -{ - map_word ret; - spin_lock(&oct5066_spin); - oct5066_page(map, ofs); - ret.x[0] = readb(iomapadr + (ofs & WINDOW_MASK)); - spin_unlock(&oct5066_spin); - return ret; -} - -static void oct5066_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (from & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(from & WINDOW_MASK); - - spin_lock(&oct5066_spin); - oct5066_page(map, from); - memcpy_fromio(to, iomapadr + from, thislen); - spin_unlock(&oct5066_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static void oct5066_write8(struct map_info *map, map_word d, unsigned long adr) -{ - spin_lock(&oct5066_spin); - oct5066_page(map, adr); - writeb(d.x[0], iomapadr + (adr & WINDOW_MASK)); - spin_unlock(&oct5066_spin); -} - -static void oct5066_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (to & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(to & WINDOW_MASK); - - spin_lock(&oct5066_spin); - oct5066_page(map, to); - memcpy_toio(iomapadr + to, from, thislen); - spin_unlock(&oct5066_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static struct map_info oct5066_map[2] = { - { - .name = "Octagon 5066 Socket", - .phys = NO_XIP, - .size = 512 * 1024, - .bankwidth = 1, - .read = oct5066_read8, - .copy_from = oct5066_copy_from, - .write = oct5066_write8, - .copy_to = oct5066_copy_to, - .map_priv_1 = 1<<6 - }, - { - .name = "Octagon 5066 Internal Flash", - .phys = NO_XIP, - .size = 2 * 1024 * 1024, - .bankwidth = 1, - .read = oct5066_read8, - .copy_from = oct5066_copy_from, - .write = oct5066_write8, - .copy_to = oct5066_copy_to, - .map_priv_1 = 2<<6 - } -}; - -static struct mtd_info *oct5066_mtd[2] = {NULL, NULL}; - -// OctProbe - Sense if this is an octagon card -// --------------------------------------------------------------------- -/* Perform a simple validity test, we map the window select SSD0 and - change pages while monitoring the window. A change in the window, - controlled by the PAGE_IO port is a functioning 5066 board. This will - fail if the thing in the socket is set to a uniform value. */ -static int __init OctProbe(void) -{ - unsigned int Base = (1 << 6); - unsigned long I; - unsigned long Values[10]; - for (I = 0; I != 20; I++) - { - outb(Base + (I%10),PAGE_IO); - if (I < 10) - { - // Record the value and check for uniqueness - Values[I%10] = readl(iomapadr); - if (I > 0 && Values[I%10] == Values[0]) - return -EAGAIN; - } - else - { - // Make sure we get the same values on the second pass - if (Values[I%10] != readl(iomapadr)) - return -EAGAIN; - } - } - return 0; -} - -void cleanup_oct5066(void) -{ - int i; - for (i=0; i<2; i++) { - if (oct5066_mtd[i]) { - mtd_device_unregister(oct5066_mtd[i]); - map_destroy(oct5066_mtd[i]); - } - } - iounmap((void *)iomapadr); - release_region(PAGE_IO, 1); -} - -static int __init init_oct5066(void) -{ - int i; - int ret = 0; - - // Do an autoprobe sequence - if (!request_region(PAGE_IO,1,"Octagon SSD")) { - printk(KERN_NOTICE "5066: Page Register in Use\n"); - return -EAGAIN; - } - iomapadr = (unsigned long)ioremap(WINDOW_START, WINDOW_LENGTH); - if (!iomapadr) { - printk(KERN_NOTICE "Failed to ioremap memory region\n"); - ret = -EIO; - goto out_rel; - } - if (OctProbe() != 0) { - printk(KERN_NOTICE "5066: Octagon Probe Failed, is this an Octagon 5066 SBC?\n"); - iounmap((void *)iomapadr); - ret = -EAGAIN; - goto out_unmap; - } - - // Print out our little header.. - printk("Octagon 5066 SSD IO:0x%x MEM:0x%x-0x%x\n",PAGE_IO,WINDOW_START, - WINDOW_START+WINDOW_LENGTH); - - for (i=0; i<2; i++) { - oct5066_mtd[i] = do_map_probe("cfi_probe", &oct5066_map[i]); - if (!oct5066_mtd[i]) - oct5066_mtd[i] = do_map_probe("jedec", &oct5066_map[i]); - if (!oct5066_mtd[i]) - oct5066_mtd[i] = do_map_probe("map_ram", &oct5066_map[i]); - if (!oct5066_mtd[i]) - oct5066_mtd[i] = do_map_probe("map_rom", &oct5066_map[i]); - if (oct5066_mtd[i]) { - oct5066_mtd[i]->owner = THIS_MODULE; - mtd_device_register(oct5066_mtd[i], NULL, 0); - } - } - - if (!oct5066_mtd[0] && !oct5066_mtd[1]) { - cleanup_oct5066(); - return -ENXIO; - } - - return 0; - - out_unmap: - iounmap((void *)iomapadr); - out_rel: - release_region(PAGE_IO, 1); - return ret; -} - -module_init(init_oct5066); -module_exit(cleanup_oct5066); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com>, David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("MTD map driver for Octagon 5066 Single Board Computer"); diff --git a/drivers/mtd/maps/pci.c b/drivers/mtd/maps/pci.c index f14ce0af763..eb0242e0b2d 100644 --- a/drivers/mtd/maps/pci.c +++ b/drivers/mtd/maps/pci.c @@ -14,7 +14,6 @@ #include <linux/module.h> #include <linux/kernel.h> #include <linux/pci.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> @@ -43,26 +42,14 @@ static map_word mtd_pci_read8(struct map_info *_map, unsigned long ofs) struct map_pci_info *map = (struct map_pci_info *)_map; map_word val; val.x[0]= readb(map->base + map->translate(map, ofs)); -// printk("read8 : %08lx => %02x\n", ofs, val.x[0]); return val; } -#if 0 -static map_word mtd_pci_read16(struct map_info *_map, unsigned long ofs) -{ - struct map_pci_info *map = (struct map_pci_info *)_map; - map_word val; - val.x[0] = readw(map->base + map->translate(map, ofs)); -// printk("read16: %08lx => %04x\n", ofs, val.x[0]); - return val; -} -#endif static map_word mtd_pci_read32(struct map_info *_map, unsigned long ofs) { struct map_pci_info *map = (struct map_pci_info *)_map; map_word val; val.x[0] = readl(map->base + map->translate(map, ofs)); -// printk("read32: %08lx => %08x\n", ofs, val.x[0]); return val; } @@ -75,22 +62,12 @@ static void mtd_pci_copyfrom(struct map_info *_map, void *to, unsigned long from static void mtd_pci_write8(struct map_info *_map, map_word val, unsigned long ofs) { struct map_pci_info *map = (struct map_pci_info *)_map; -// printk("write8 : %08lx <= %02x\n", ofs, val.x[0]); writeb(val.x[0], map->base + map->translate(map, ofs)); } -#if 0 -static void mtd_pci_write16(struct map_info *_map, map_word val, unsigned long ofs) -{ - struct map_pci_info *map = (struct map_pci_info *)_map; -// printk("write16: %08lx <= %04x\n", ofs, val.x[0]); - writew(val.x[0], map->base + map->translate(map, ofs)); -} -#endif static void mtd_pci_write32(struct map_info *_map, map_word val, unsigned long ofs) { struct map_pci_info *map = (struct map_pci_info *)_map; -// printk("write32: %08lx <= %08x\n", ofs, val.x[0]); writel(val.x[0], map->base + map->translate(map, ofs)); } @@ -275,8 +252,7 @@ static struct pci_device_id mtd_pci_ids[] = { * Generic code follows. */ -static int __devinit -mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +static int mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct mtd_pci_info *info = (struct mtd_pci_info *)id->driver_data; struct map_pci_info *map = NULL; @@ -306,8 +282,7 @@ mtd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) if (err) goto release; - /* tsk - do_map_probe should take const char * */ - mtd = do_map_probe((char *)info->map_name, &map->map); + mtd = do_map_probe(info->map_name, &map->map); err = -ENODEV; if (!mtd) goto release; @@ -330,8 +305,7 @@ out: return err; } -static void __devexit -mtd_pci_remove(struct pci_dev *dev) +static void mtd_pci_remove(struct pci_dev *dev) { struct mtd_info *mtd = pci_get_drvdata(dev); struct map_pci_info *map = mtd->priv; @@ -341,14 +315,13 @@ mtd_pci_remove(struct pci_dev *dev) map->exit(dev, map); kfree(map); - pci_set_drvdata(dev, NULL); pci_release_regions(dev); } static struct pci_driver mtd_pci_driver = { .name = "MTD PCI", .probe = mtd_pci_probe, - .remove = __devexit_p(mtd_pci_remove), + .remove = mtd_pci_remove, .id_table = mtd_pci_ids, }; @@ -358,4 +331,3 @@ MODULE_LICENSE("GPL"); MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>"); MODULE_DESCRIPTION("Generic PCI map driver"); MODULE_DEVICE_TABLE(pci, mtd_pci_ids); - diff --git a/drivers/mtd/maps/physmap.c b/drivers/mtd/maps/physmap.c index 21b0b713cac..f73cd461257 100644 --- a/drivers/mtd/maps/physmap.c +++ b/drivers/mtd/maps/physmap.c @@ -40,9 +40,8 @@ static int physmap_flash_remove(struct platform_device *dev) info = platform_get_drvdata(dev); if (info == NULL) return 0; - platform_set_drvdata(dev, NULL); - physmap_data = dev->dev.platform_data; + physmap_data = dev_get_platdata(&dev->dev); if (info->cmtd) { mtd_device_unregister(info->cmtd); @@ -69,7 +68,7 @@ static void physmap_set_vpp(struct map_info *map, int state) unsigned long flags; pdev = (struct platform_device *)map->map_priv_1; - physmap_data = pdev->dev.platform_data; + physmap_data = dev_get_platdata(&pdev->dev); if (!physmap_data->set_vpp) return; @@ -87,26 +86,23 @@ static void physmap_set_vpp(struct map_info *map, int state) spin_unlock_irqrestore(&info->vpp_lock, flags); } -static const char *rom_probe_types[] = { - "cfi_probe", - "jedec_probe", - "qinfo_probe", - "map_rom", - NULL }; -static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", "afs", - NULL }; +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "qinfo_probe", "map_rom", NULL }; + +static const char * const part_probe_types[] = { + "cmdlinepart", "RedBoot", "afs", NULL }; static int physmap_flash_probe(struct platform_device *dev) { struct physmap_flash_data *physmap_data; struct physmap_flash_info *info; - const char **probe_type; - const char **part_types; + const char * const *probe_type; + const char * const *part_types; int err = 0; int i; int devices_found = 0; - physmap_data = dev->dev.platform_data; + physmap_data = dev_get_platdata(&dev->dev); if (physmap_data == NULL) return -ENODEV; diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c index 2e6fb6831d5..217c25d7381 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of.c @@ -15,7 +15,6 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> @@ -68,23 +67,21 @@ static int of_flash_remove(struct platform_device *dev) kfree(info->list[i].res); } } - - kfree(info); - return 0; } +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "map_rom" }; + /* Helper function to handle probing of the obsolete "direct-mapped" * compatible binding, which has an extra "probe-type" property * describing the type of flash probe necessary. */ -static struct mtd_info * __devinit obsolete_probe(struct platform_device *dev, - struct map_info *map) +static struct mtd_info *obsolete_probe(struct platform_device *dev, + struct map_info *map) { struct device_node *dp = dev->dev.of_node; const char *of_probe; struct mtd_info *mtd; - static const char *rom_probe_types[] - = { "cfi_probe", "jedec_probe", "map_rom"}; int i; dev_warn(&dev->dev, "Device tree uses obsolete \"direct-mapped\" " @@ -114,9 +111,10 @@ static struct mtd_info * __devinit obsolete_probe(struct platform_device *dev, specifies the list of partition probers to use. If none is given then the default is use. These take precedence over other device tree information. */ -static const char *part_probe_types_def[] = { "cmdlinepart", "RedBoot", - "ofpart", "ofoldpart", NULL }; -static const char ** __devinit of_get_probes(struct device_node *dp) +static const char * const part_probe_types_def[] = { + "cmdlinepart", "RedBoot", "ofpart", "ofoldpart", NULL }; + +static const char * const *of_get_probes(struct device_node *dp) { const char *cp; int cplen; @@ -145,16 +143,16 @@ static const char ** __devinit of_get_probes(struct device_node *dp) return res; } -static void __devinit of_free_probes(const char **probes) +static void of_free_probes(const char * const *probes) { if (probes != part_probe_types_def) kfree(probes); } static struct of_device_id of_flash_match[]; -static int __devinit of_flash_probe(struct platform_device *dev) +static int of_flash_probe(struct platform_device *dev) { - const char **part_probe_types; + const char * const *part_probe_types; const struct of_device_id *match; struct device_node *dp = dev->dev.of_node; struct resource res; @@ -169,6 +167,8 @@ static int __devinit of_flash_probe(struct platform_device *dev) struct mtd_info **mtd_list = NULL; resource_size_t res_size; struct mtd_part_parser_data ppdata; + bool map_indirect; + const char *mtd_name = NULL; match = of_match_device(of_flash_match, &dev->dev); if (!match) @@ -177,6 +177,8 @@ static int __devinit of_flash_probe(struct platform_device *dev) reg_tuple_size = (of_n_addr_cells(dp) + of_n_size_cells(dp)) * sizeof(u32); + of_property_read_string(dp, "linux,mtd-name", &mtd_name); + /* * Get number of "reg" tuples. Scan for MTD devices on area's * described by each "reg" region. This makes it possible (including @@ -192,9 +194,12 @@ static int __devinit of_flash_probe(struct platform_device *dev) } count /= reg_tuple_size; + map_indirect = of_property_read_bool(dp, "no-unaligned-direct-access"); + err = -ENOMEM; - info = kzalloc(sizeof(struct of_flash) + - sizeof(struct of_flash_list) * count, GFP_KERNEL); + info = devm_kzalloc(&dev->dev, + sizeof(struct of_flash) + + sizeof(struct of_flash_list) * count, GFP_KERNEL); if (!info) goto err_flash_remove; @@ -231,10 +236,11 @@ static int __devinit of_flash_probe(struct platform_device *dev) goto err_out; } - info->list[i].map.name = dev_name(&dev->dev); + info->list[i].map.name = mtd_name ?: dev_name(&dev->dev); info->list[i].map.phys = res.start; info->list[i].map.size = res_size; info->list[i].map.bankwidth = be32_to_cpup(width); + info->list[i].map.device_node = dp; err = -ENOMEM; info->list[i].map.virt = ioremap(info->list[i].map.phys, @@ -247,6 +253,17 @@ static int __devinit of_flash_probe(struct platform_device *dev) simple_map_init(&info->list[i].map); + /* + * On some platforms (e.g. MPC5200) a direct 1:1 mapping + * may cause problems with JFFS2 usage, as the local bus (LPB) + * doesn't support unaligned accesses as implemented in the + * JFFS2 code via memcpy(). By setting NO_XIP, the + * flash will not be exposed directly to the MTD users + * (e.g. JFFS2) any more. + */ + if (map_indirect) + info->list[i].map.phys = NO_XIP; + if (probe_type) { info->list[i].mtd = do_map_probe(probe_type, &info->list[i].map); @@ -268,6 +285,7 @@ static int __devinit of_flash_probe(struct platform_device *dev) } err = 0; + info->cmtd = NULL; if (info->list_size == 1) { info->cmtd = info->list[0].mtd; } else if (info->list_size > 1) { @@ -276,9 +294,10 @@ static int __devinit of_flash_probe(struct platform_device *dev) */ info->cmtd = mtd_concat_create(mtd_list, info->list_size, dev_name(&dev->dev)); - if (info->cmtd == NULL) - err = -ENXIO; } + if (info->cmtd == NULL) + err = -ENXIO; + if (err) goto err_out; diff --git a/drivers/mtd/maps/pismo.c b/drivers/mtd/maps/pismo.c index 65bd1cd4d62..dc6df9abea0 100644 --- a/drivers/mtd/maps/pismo.c +++ b/drivers/mtd/maps/pismo.c @@ -58,7 +58,7 @@ static void pismo_set_vpp(struct platform_device *pdev, int on) pismo->vpp(pismo->vpp_data, on); } -static unsigned int __devinit pismo_width_to_bytes(unsigned int width) +static unsigned int pismo_width_to_bytes(unsigned int width) { width &= 15; if (width > 2) @@ -66,8 +66,8 @@ static unsigned int __devinit pismo_width_to_bytes(unsigned int width) return 1 << width; } -static int __devinit pismo_eeprom_read(struct i2c_client *client, void *buf, - u8 addr, size_t size) +static int pismo_eeprom_read(struct i2c_client *client, void *buf, u8 addr, + size_t size) { int ret; struct i2c_msg msg[] = { @@ -88,8 +88,9 @@ static int __devinit pismo_eeprom_read(struct i2c_client *client, void *buf, return ret == ARRAY_SIZE(msg) ? size : -EIO; } -static int __devinit pismo_add_device(struct pismo_data *pismo, int i, - struct pismo_mem *region, const char *name, void *pdata, size_t psize) +static int pismo_add_device(struct pismo_data *pismo, int i, + struct pismo_mem *region, const char *name, + void *pdata, size_t psize) { struct platform_device *dev; struct resource res = { }; @@ -129,8 +130,8 @@ static int __devinit pismo_add_device(struct pismo_data *pismo, int i, return ret; } -static int __devinit pismo_add_nor(struct pismo_data *pismo, int i, - struct pismo_mem *region) +static int pismo_add_nor(struct pismo_data *pismo, int i, + struct pismo_mem *region) { struct physmap_flash_data data = { .width = region->width, @@ -143,8 +144,8 @@ static int __devinit pismo_add_nor(struct pismo_data *pismo, int i, &data, sizeof(data)); } -static int __devinit pismo_add_sram(struct pismo_data *pismo, int i, - struct pismo_mem *region) +static int pismo_add_sram(struct pismo_data *pismo, int i, + struct pismo_mem *region) { struct platdata_mtd_ram data = { .bankwidth = region->width, @@ -154,8 +155,8 @@ static int __devinit pismo_add_sram(struct pismo_data *pismo, int i, &data, sizeof(data)); } -static void __devinit pismo_add_one(struct pismo_data *pismo, int i, - const struct pismo_cs_block *cs, phys_addr_t base) +static void pismo_add_one(struct pismo_data *pismo, int i, + const struct pismo_cs_block *cs, phys_addr_t base) { struct device *dev = &pismo->client->dev; struct pismo_mem region; @@ -197,7 +198,7 @@ static void __devinit pismo_add_one(struct pismo_data *pismo, int i, } } -static int __devexit pismo_remove(struct i2c_client *client) +static int pismo_remove(struct i2c_client *client) { struct pismo_data *pismo = i2c_get_clientdata(client); int i; @@ -210,8 +211,8 @@ static int __devexit pismo_remove(struct i2c_client *client) return 0; } -static int __devinit pismo_probe(struct i2c_client *client, - const struct i2c_device_id *id) +static int pismo_probe(struct i2c_client *client, + const struct i2c_device_id *id) { struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); struct pismo_pdata *pdata = client->dev.platform_data; @@ -267,7 +268,7 @@ static struct i2c_driver pismo_driver = { .owner = THIS_MODULE, }, .probe = pismo_probe, - .remove = __devexit_p(pismo_remove), + .remove = pismo_remove, .id_table = pismo_id, }; diff --git a/drivers/mtd/maps/plat-ram.c b/drivers/mtd/maps/plat-ram.c index 891558de3ec..d597e89f269 100644 --- a/drivers/mtd/maps/plat-ram.c +++ b/drivers/mtd/maps/plat-ram.c @@ -23,7 +23,6 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> @@ -55,7 +54,7 @@ struct platram_info { static inline struct platram_info *to_platram_info(struct platform_device *dev) { - return (struct platram_info *)platform_get_drvdata(dev); + return platform_get_drvdata(dev); } /* platram_setrw @@ -84,8 +83,6 @@ static int platram_remove(struct platform_device *pdev) { struct platram_info *info = to_platram_info(pdev); - platform_set_drvdata(pdev, NULL); - dev_dbg(&pdev->dev, "removing device\n"); if (info == NULL) @@ -130,17 +127,16 @@ static int platram_probe(struct platform_device *pdev) dev_dbg(&pdev->dev, "probe entered\n"); - if (pdev->dev.platform_data == NULL) { + if (dev_get_platdata(&pdev->dev) == NULL) { dev_err(&pdev->dev, "no platform data supplied\n"); err = -ENOENT; goto exit_error; } - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); info = kzalloc(sizeof(*info), GFP_KERNEL); if (info == NULL) { - dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; goto exit_error; } @@ -199,7 +195,7 @@ static int platram_probe(struct platform_device *pdev) * supplied by the platform_data struct */ if (pdata->map_probes) { - const char **map_probes = pdata->map_probes; + const char * const *map_probes = pdata->map_probes; for ( ; !info->mtd && *map_probes; map_probes++) info->mtd = do_map_probe(*map_probes , &info->map); @@ -219,7 +215,7 @@ static int platram_probe(struct platform_device *pdev) platram_setrw(info, PLATRAM_RW); - /* check to see if there are any available partitions, or wether + /* check to see if there are any available partitions, or whether * to add this device whole */ err = mtd_device_parse_register(info->mtd, pdata->probes, NULL, @@ -259,21 +255,7 @@ static struct platform_driver platram_driver = { }, }; -/* module init/exit */ - -static int __init platram_init(void) -{ - printk("Generic platform RAM MTD, (c) 2004 Simtec Electronics\n"); - return platform_driver_register(&platram_driver); -} - -static void __exit platram_exit(void) -{ - platform_driver_unregister(&platram_driver); -} - -module_init(platram_init); -module_exit(platram_exit); +module_platform_driver(platram_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); diff --git a/drivers/mtd/maps/pxa2xx-flash.c b/drivers/mtd/maps/pxa2xx-flash.c index 81884c27740..cb4d92eea9f 100644 --- a/drivers/mtd/maps/pxa2xx-flash.c +++ b/drivers/mtd/maps/pxa2xx-flash.c @@ -13,7 +13,6 @@ #include <linux/types.h> #include <linux/slab.h> #include <linux/kernel.h> -#include <linux/init.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> @@ -45,13 +44,11 @@ struct pxa2xx_flash_info { struct map_info map; }; +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; - - -static int __devinit pxa2xx_flash_probe(struct platform_device *pdev) +static int pxa2xx_flash_probe(struct platform_device *pdev) { - struct flash_platform_data *flash = pdev->dev.platform_data; + struct flash_platform_data *flash = dev_get_platdata(&pdev->dev); struct pxa2xx_flash_info *info; struct resource *res; @@ -63,7 +60,7 @@ static int __devinit pxa2xx_flash_probe(struct platform_device *pdev) if (!info) return -ENOMEM; - info->map.name = (char *) flash->name; + info->map.name = flash->name; info->map.bankwidth = flash->width; info->map.phys = res->start; info->map.size = resource_size(res); @@ -75,7 +72,7 @@ static int __devinit pxa2xx_flash_probe(struct platform_device *pdev) return -ENOMEM; } info->map.cached = - ioremap_cached(info->map.phys, info->map.size); + ioremap_cache(info->map.phys, info->map.size); if (!info->map.cached) printk(KERN_WARNING "Failed to ioremap cached %s\n", info->map.name); @@ -105,12 +102,10 @@ static int __devinit pxa2xx_flash_probe(struct platform_device *pdev) return 0; } -static int __devexit pxa2xx_flash_remove(struct platform_device *dev) +static int pxa2xx_flash_remove(struct platform_device *dev) { struct pxa2xx_flash_info *info = platform_get_drvdata(dev); - platform_set_drvdata(dev, NULL); - mtd_device_unregister(info->mtd); map_destroy(info->mtd); @@ -139,7 +134,7 @@ static struct platform_driver pxa2xx_flash_driver = { .owner = THIS_MODULE, }, .probe = pxa2xx_flash_probe, - .remove = __devexit_p(pxa2xx_flash_remove), + .remove = pxa2xx_flash_remove, .shutdown = pxa2xx_flash_shutdown, }; diff --git a/drivers/mtd/maps/rbtx4939-flash.c b/drivers/mtd/maps/rbtx4939-flash.c index 6f52e1f288b..146b6047ed2 100644 --- a/drivers/mtd/maps/rbtx4939-flash.c +++ b/drivers/mtd/maps/rbtx4939-flash.c @@ -13,7 +13,6 @@ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/platform_device.h> @@ -34,10 +33,9 @@ static int rbtx4939_flash_remove(struct platform_device *dev) info = platform_get_drvdata(dev); if (!info) return 0; - platform_set_drvdata(dev, NULL); if (info->mtd) { - struct rbtx4939_flash_data *pdata = dev->dev.platform_data; + struct rbtx4939_flash_data *pdata = dev_get_platdata(&dev->dev); mtd_device_unregister(info->mtd); map_destroy(info->mtd); @@ -45,18 +43,19 @@ static int rbtx4939_flash_remove(struct platform_device *dev) return 0; } -static const char *rom_probe_types[] = { "cfi_probe", "jedec_probe", NULL }; +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", NULL }; static int rbtx4939_flash_probe(struct platform_device *dev) { struct rbtx4939_flash_data *pdata; struct rbtx4939_flash_info *info; struct resource *res; - const char **probe_type; + const char * const *probe_type; int err = 0; unsigned long size; - pdata = dev->dev.platform_data; + pdata = dev_get_platdata(&dev->dev); if (!pdata) return -ENODEV; @@ -100,8 +99,6 @@ static int rbtx4939_flash_probe(struct platform_device *dev) goto err_out; } info->mtd->owner = THIS_MODULE; - if (err) - goto err_out; err = mtd_device_parse_register(info->mtd, NULL, NULL, pdata->parts, pdata->nr_parts); diff --git a/drivers/mtd/maps/rpxlite.c b/drivers/mtd/maps/rpxlite.c deleted file mode 100644 index ed88225bf66..00000000000 --- a/drivers/mtd/maps/rpxlite.c +++ /dev/null @@ -1,64 +0,0 @@ -/* - * Handle mapping of the flash on the RPX Lite and CLLF boards - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> - - -#define WINDOW_ADDR 0xfe000000 -#define WINDOW_SIZE 0x800000 - -static struct mtd_info *mymtd; - -static struct map_info rpxlite_map = { - .name = "RPX", - .size = WINDOW_SIZE, - .bankwidth = 4, - .phys = WINDOW_ADDR, -}; - -static int __init init_rpxlite(void) -{ - printk(KERN_NOTICE "RPX Lite or CLLF flash device: %x at %x\n", WINDOW_SIZE*4, WINDOW_ADDR); - rpxlite_map.virt = ioremap(WINDOW_ADDR, WINDOW_SIZE * 4); - - if (!rpxlite_map.virt) { - printk("Failed to ioremap\n"); - return -EIO; - } - simple_map_init(&rpxlite_map); - mymtd = do_map_probe("cfi_probe", &rpxlite_map); - if (mymtd) { - mymtd->owner = THIS_MODULE; - mtd_device_register(mymtd, NULL, 0); - return 0; - } - - iounmap((void *)rpxlite_map.virt); - return -ENXIO; -} - -static void __exit cleanup_rpxlite(void) -{ - if (mymtd) { - mtd_device_unregister(mymtd); - map_destroy(mymtd); - } - if (rpxlite_map.virt) { - iounmap((void *)rpxlite_map.virt); - rpxlite_map.virt = 0; - } -} - -module_init(init_rpxlite); -module_exit(cleanup_rpxlite); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Arnold Christensen <AKC@pel.dk>"); -MODULE_DESCRIPTION("MTD map driver for RPX Lite and CLLF boards"); diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c index a675bdbcb0f..8fc06bf111c 100644 --- a/drivers/mtd/maps/sa1100-flash.c +++ b/drivers/mtd/maps/sa1100-flash.c @@ -149,8 +149,8 @@ static void sa1100_destroy(struct sa_info *info, struct flash_platform_data *pla plat->exit(); } -static struct sa_info *__devinit -sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) +static struct sa_info *sa1100_setup_mtd(struct platform_device *pdev, + struct flash_platform_data *plat) { struct sa_info *info; int nr, size, i, ret = 0; @@ -244,11 +244,11 @@ sa1100_setup_mtd(struct platform_device *pdev, struct flash_platform_data *plat) return ERR_PTR(ret); } -static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; +static const char * const part_probes[] = { "cmdlinepart", "RedBoot", NULL }; -static int __devinit sa1100_mtd_probe(struct platform_device *pdev) +static int sa1100_mtd_probe(struct platform_device *pdev) { - struct flash_platform_data *plat = pdev->dev.platform_data; + struct flash_platform_data *plat = dev_get_platdata(&pdev->dev); struct sa_info *info; int err; @@ -277,9 +277,8 @@ static int __devinit sa1100_mtd_probe(struct platform_device *pdev) static int __exit sa1100_mtd_remove(struct platform_device *pdev) { struct sa_info *info = platform_get_drvdata(pdev); - struct flash_platform_data *plat = pdev->dev.platform_data; + struct flash_platform_data *plat = dev_get_platdata(&pdev->dev); - platform_set_drvdata(pdev, NULL); sa1100_destroy(info, plat); return 0; diff --git a/drivers/mtd/maps/sc520cdp.c b/drivers/mtd/maps/sc520cdp.c index 8fead8e46bc..093edd51bdc 100644 --- a/drivers/mtd/maps/sc520cdp.c +++ b/drivers/mtd/maps/sc520cdp.c @@ -183,7 +183,7 @@ static const struct sc520_par_table par_table[NUM_FLASH_BANKS] = static void sc520cdp_setup_par(void) { - volatile unsigned long __iomem *mmcr; + unsigned long __iomem *mmcr; unsigned long mmcr_val; int i, j; @@ -203,11 +203,11 @@ static void sc520cdp_setup_par(void) */ for(i = 0; i < NUM_FLASH_BANKS; i++) { /* for each par_table entry */ for(j = 0; j < NUM_SC520_PAR; j++) { /* for each PAR register */ - mmcr_val = mmcr[SC520_PAR(j)]; + mmcr_val = readl(&mmcr[SC520_PAR(j)]); /* if target device field matches, reprogram the PAR */ if((mmcr_val & SC520_PAR_TRGDEV) == par_table[i].trgdev) { - mmcr[SC520_PAR(j)] = par_table[i].new_par; + writel(par_table[i].new_par, &mmcr[SC520_PAR(j)]); break; } } diff --git a/drivers/mtd/maps/scb2_flash.c b/drivers/mtd/maps/scb2_flash.c index 9dcbc684abd..b7a22a612a4 100644 --- a/drivers/mtd/maps/scb2_flash.c +++ b/drivers/mtd/maps/scb2_flash.c @@ -47,7 +47,6 @@ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> -#include <linux/init.h> #include <asm/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> @@ -69,8 +68,7 @@ static struct map_info scb2_map = { }; static int region_fail; -static int __devinit -scb2_fixup_mtd(struct mtd_info *mtd) +static int scb2_fixup_mtd(struct mtd_info *mtd) { int i; int done = 0; @@ -133,8 +131,8 @@ scb2_fixup_mtd(struct mtd_info *mtd) /* CSB5's 'Function Control Register' has bits for decoding @ >= 0xffc00000 */ #define CSB5_FCR 0x41 #define CSB5_FCR_DECODE_ALL 0x0e -static int __devinit -scb2_flash_probe(struct pci_dev *dev, const struct pci_device_id *ent) +static int scb2_flash_probe(struct pci_dev *dev, + const struct pci_device_id *ent) { u8 reg; @@ -197,8 +195,7 @@ scb2_flash_probe(struct pci_dev *dev, const struct pci_device_id *ent) return 0; } -static void __devexit -scb2_flash_remove(struct pci_dev *dev) +static void scb2_flash_remove(struct pci_dev *dev) { if (!scb2_mtd) return; @@ -214,7 +211,6 @@ scb2_flash_remove(struct pci_dev *dev) if (!region_fail) release_mem_region(SCB2_ADDR, SCB2_WINDOW); - pci_set_drvdata(dev, NULL); } static struct pci_device_id scb2_flash_pci_ids[] = { @@ -231,7 +227,7 @@ static struct pci_driver scb2_flash_driver = { .name = "Intel SCB2 BIOS Flash", .id_table = scb2_flash_pci_ids, .probe = scb2_flash_probe, - .remove = __devexit_p(scb2_flash_remove), + .remove = scb2_flash_remove, }; module_pci_driver(scb2_flash_driver); diff --git a/drivers/mtd/maps/solutionengine.c b/drivers/mtd/maps/solutionengine.c index 9d900ada670..bb580bc1644 100644 --- a/drivers/mtd/maps/solutionengine.c +++ b/drivers/mtd/maps/solutionengine.c @@ -31,29 +31,7 @@ struct map_info soleng_flash_map = { .bankwidth = 4, }; -static const char *probes[] = { "RedBoot", "cmdlinepart", NULL }; - -#ifdef CONFIG_MTD_SUPERH_RESERVE -static struct mtd_partition superh_se_partitions[] = { - /* Reserved for boot code, read-only */ - { - .name = "flash_boot", - .offset = 0x00000000, - .size = CONFIG_MTD_SUPERH_RESERVE, - .mask_flags = MTD_WRITEABLE, - }, - /* All else is writable (e.g. JFFS) */ - { - .name = "Flash FS", - .offset = MTDPART_OFS_NXTBLK, - .size = MTDPART_SIZ_FULL, - } -}; -#define NUM_PARTITIONS ARRAY_SIZE(superh_se_partitions) -#else -#define superh_se_partitions NULL -#define NUM_PARTITIONS 0 -#endif /* CONFIG_MTD_SUPERH_RESERVE */ +static const char * const probes[] = { "RedBoot", "cmdlinepart", NULL }; static int __init init_soleng_maps(void) { @@ -92,8 +70,7 @@ static int __init init_soleng_maps(void) mtd_device_register(eprom_mtd, NULL, 0); } - mtd_device_parse_register(flash_mtd, probes, NULL, - superh_se_partitions, NUM_PARTITIONS); + mtd_device_parse_register(flash_mtd, probes, NULL, NULL, 0); return 0; } diff --git a/drivers/mtd/maps/sun_uflash.c b/drivers/mtd/maps/sun_uflash.c index 175e537b444..b6f1aac3510 100644 --- a/drivers/mtd/maps/sun_uflash.c +++ b/drivers/mtd/maps/sun_uflash.c @@ -11,7 +11,6 @@ #include <linux/module.h> #include <linux/fs.h> #include <linux/errno.h> -#include <linux/init.h> #include <linux/ioport.h> #include <linux/of.h> #include <linux/of_device.h> @@ -75,7 +74,7 @@ int uflash_devinit(struct platform_device *op, struct device_node *dp) up->name = of_get_property(dp, "model", NULL); if (up->name && 0 < strlen(up->name)) - up->map.name = (char *)up->name; + up->map.name = up->name; up->map.phys = op->resource[0].start; @@ -108,7 +107,7 @@ int uflash_devinit(struct platform_device *op, struct device_node *dp) return 0; } -static int __devinit uflash_probe(struct platform_device *op) +static int uflash_probe(struct platform_device *op) { struct device_node *dp = op->dev.of_node; @@ -121,7 +120,7 @@ static int __devinit uflash_probe(struct platform_device *op) return uflash_devinit(op, dp); } -static int __devexit uflash_remove(struct platform_device *op) +static int uflash_remove(struct platform_device *op) { struct uflash_dev *up = dev_get_drvdata(&op->dev); @@ -155,7 +154,7 @@ static struct platform_driver uflash_driver = { .of_match_table = uflash_match, }, .probe = uflash_probe, - .remove = __devexit_p(uflash_remove), + .remove = uflash_remove, }; module_platform_driver(uflash_driver); diff --git a/drivers/mtd/maps/tqm8xxl.c b/drivers/mtd/maps/tqm8xxl.c deleted file mode 100644 index d78587990e7..00000000000 --- a/drivers/mtd/maps/tqm8xxl.c +++ /dev/null @@ -1,249 +0,0 @@ -/* - * Handle mapping of the flash memory access routines - * on TQM8xxL based devices. - * - * based on rpxlite.c - * - * Copyright(C) 2001 Kirk Lee <kirk@hpc.ee.ntu.edu.tw> - * - * This code is GPLed - * - */ - -/* - * According to TQM8xxL hardware manual, TQM8xxL series have - * following flash memory organisations: - * | capacity | | chip type | | bank0 | | bank1 | - * 2MiB 512Kx16 2MiB 0 - * 4MiB 1Mx16 4MiB 0 - * 8MiB 1Mx16 4MiB 4MiB - * Thus, we choose CONFIG_MTD_CFI_I2 & CONFIG_MTD_CFI_B4 at - * kernel configuration. - */ -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/io.h> - -#define FLASH_ADDR 0x40000000 -#define FLASH_SIZE 0x00800000 -#define FLASH_BANK_MAX 4 - -// trivial struct to describe partition information -struct mtd_part_def -{ - int nums; - unsigned char *type; - struct mtd_partition* mtd_part; -}; - -//static struct mtd_info *mymtd; -static struct mtd_info* mtd_banks[FLASH_BANK_MAX]; -static struct map_info* map_banks[FLASH_BANK_MAX]; -static struct mtd_part_def part_banks[FLASH_BANK_MAX]; -static unsigned long num_banks; -static void __iomem *start_scan_addr; - -/* - * Here are partition information for all known TQM8xxL series devices. - * See include/linux/mtd/partitions.h for definition of the mtd_partition - * structure. - * - * The *_max_flash_size is the maximum possible mapped flash size which - * is not necessarily the actual flash size. It must correspond to the - * value specified in the mapping definition defined by the - * "struct map_desc *_io_desc" for the corresponding machine. - */ - -/* Currently, TQM8xxL has up to 8MiB flash */ -static unsigned long tqm8xxl_max_flash_size = 0x00800000; - -/* partition definition for first flash bank - * (cf. "drivers/char/flash_config.c") - */ -static struct mtd_partition tqm8xxl_partitions[] = { - { - .name = "ppcboot", - .offset = 0x00000000, - .size = 0x00020000, /* 128KB */ - .mask_flags = MTD_WRITEABLE, /* force read-only */ - }, - { - .name = "kernel", /* default kernel image */ - .offset = 0x00020000, - .size = 0x000e0000, - .mask_flags = MTD_WRITEABLE, /* force read-only */ - }, - { - .name = "user", - .offset = 0x00100000, - .size = 0x00100000, - }, - { - .name = "initrd", - .offset = 0x00200000, - .size = 0x00200000, - } -}; -/* partition definition for second flash bank */ -static struct mtd_partition tqm8xxl_fs_partitions[] = { - { - .name = "cramfs", - .offset = 0x00000000, - .size = 0x00200000, - }, - { - .name = "jffs", - .offset = 0x00200000, - .size = 0x00200000, - //.size = MTDPART_SIZ_FULL, - } -}; - -static int __init init_tqm_mtd(void) -{ - int idx = 0, ret = 0; - unsigned long flash_addr, flash_size, mtd_size = 0; - /* pointer to TQM8xxL board info data */ - bd_t *bd = (bd_t *)__res; - - flash_addr = bd->bi_flashstart; - flash_size = bd->bi_flashsize; - - //request maximum flash size address space - start_scan_addr = ioremap(flash_addr, flash_size); - if (!start_scan_addr) { - printk(KERN_WARNING "%s:Failed to ioremap address:0x%x\n", __func__, flash_addr); - return -EIO; - } - - for (idx = 0 ; idx < FLASH_BANK_MAX ; idx++) { - if(mtd_size >= flash_size) - break; - - printk(KERN_INFO "%s: chip probing count %d\n", __func__, idx); - - map_banks[idx] = kzalloc(sizeof(struct map_info), GFP_KERNEL); - if(map_banks[idx] == NULL) { - ret = -ENOMEM; - /* FIXME: What if some MTD devices were probed already? */ - goto error_mem; - } - - map_banks[idx]->name = kmalloc(16, GFP_KERNEL); - - if (!map_banks[idx]->name) { - ret = -ENOMEM; - /* FIXME: What if some MTD devices were probed already? */ - goto error_mem; - } - sprintf(map_banks[idx]->name, "TQM8xxL%d", idx); - - map_banks[idx]->size = flash_size; - map_banks[idx]->bankwidth = 4; - - simple_map_init(map_banks[idx]); - - map_banks[idx]->virt = start_scan_addr; - map_banks[idx]->phys = flash_addr; - /* FIXME: This looks utterly bogus, but I'm trying to - preserve the behaviour of the original (shown here)... - - map_banks[idx]->map_priv_1 = - start_scan_addr + ((idx > 0) ? - (mtd_banks[idx-1] ? mtd_banks[idx-1]->size : 0) : 0); - */ - - if (idx && mtd_banks[idx-1]) { - map_banks[idx]->virt += mtd_banks[idx-1]->size; - map_banks[idx]->phys += mtd_banks[idx-1]->size; - } - - //start to probe flash chips - mtd_banks[idx] = do_map_probe("cfi_probe", map_banks[idx]); - - if (mtd_banks[idx]) { - mtd_banks[idx]->owner = THIS_MODULE; - mtd_size += mtd_banks[idx]->size; - num_banks++; - - printk(KERN_INFO "%s: bank%d, name:%s, size:%dbytes \n", __func__, num_banks, - mtd_banks[idx]->name, mtd_banks[idx]->size); - } - } - - /* no supported flash chips found */ - if (!num_banks) { - printk(KERN_NOTICE "TQM8xxL: No support flash chips found!\n"); - ret = -ENXIO; - goto error_mem; - } - - /* - * Select Static partition definitions - */ - part_banks[0].mtd_part = tqm8xxl_partitions; - part_banks[0].type = "Static image"; - part_banks[0].nums = ARRAY_SIZE(tqm8xxl_partitions); - - part_banks[1].mtd_part = tqm8xxl_fs_partitions; - part_banks[1].type = "Static file system"; - part_banks[1].nums = ARRAY_SIZE(tqm8xxl_fs_partitions); - - for(idx = 0; idx < num_banks ; idx++) { - if (part_banks[idx].nums == 0) - printk(KERN_NOTICE "TQM flash%d: no partition info available, registering whole flash at once\n", idx); - else - printk(KERN_NOTICE "TQM flash%d: Using %s partition definition\n", - idx, part_banks[idx].type); - mtd_device_register(mtd_banks[idx], part_banks[idx].mtd_part, - part_banks[idx].nums); - } - return 0; -error_mem: - for(idx = 0 ; idx < FLASH_BANK_MAX ; idx++) { - if(map_banks[idx] != NULL) { - kfree(map_banks[idx]->name); - map_banks[idx]->name = NULL; - kfree(map_banks[idx]); - map_banks[idx] = NULL; - } - } -error: - iounmap(start_scan_addr); - return ret; -} - -static void __exit cleanup_tqm_mtd(void) -{ - unsigned int idx = 0; - for(idx = 0 ; idx < num_banks ; idx++) { - /* destroy mtd_info previously allocated */ - if (mtd_banks[idx]) { - mtd_device_unregister(mtd_banks[idx]); - map_destroy(mtd_banks[idx]); - } - /* release map_info not used anymore */ - kfree(map_banks[idx]->name); - kfree(map_banks[idx]); - } - - if (start_scan_addr) { - iounmap(start_scan_addr); - start_scan_addr = 0; - } -} - -module_init(init_tqm_mtd); -module_exit(cleanup_tqm_mtd); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kirk Lee <kirk@hpc.ee.ntu.edu.tw>"); -MODULE_DESCRIPTION("MTD map driver for TQM8xxL boards"); diff --git a/drivers/mtd/maps/tsunami_flash.c b/drivers/mtd/maps/tsunami_flash.c index 1de390e1c2f..da2cdb5fd6d 100644 --- a/drivers/mtd/maps/tsunami_flash.c +++ b/drivers/mtd/maps/tsunami_flash.c @@ -82,11 +82,12 @@ static void __exit cleanup_tsunami_flash(void) tsunami_flash_mtd = 0; } +static const char * const rom_probe_types[] = { + "cfi_probe", "jedec_probe", "map_rom", NULL }; static int __init init_tsunami_flash(void) { - static const char *rom_probe_types[] = { "cfi_probe", "jedec_probe", "map_rom", NULL }; - char **type; + const char * const *type; tsunami_tig_writeb(FLASH_ENABLE_BYTE, FLASH_ENABLE_PORT); diff --git a/drivers/mtd/maps/uclinux.c b/drivers/mtd/maps/uclinux.c index cfff454f628..c1af83db520 100644 --- a/drivers/mtd/maps/uclinux.c +++ b/drivers/mtd/maps/uclinux.c @@ -19,17 +19,30 @@ #include <linux/mtd/map.h> #include <linux/mtd/partitions.h> #include <asm/io.h> +#include <asm/sections.h> /****************************************************************************/ -extern char _ebss; +#ifdef CONFIG_MTD_ROM +#define MAP_NAME "rom" +#else +#define MAP_NAME "ram" +#endif + +/* + * Blackfin uses uclinux_ram_map during startup, so it must not be static. + * Provide a dummy declaration to make sparse happy. + */ +extern struct map_info uclinux_ram_map; struct map_info uclinux_ram_map = { - .name = "RAM", - .phys = (unsigned long)&_ebss, + .name = MAP_NAME, .size = 0, }; +static unsigned long physaddr = -1; +module_param(physaddr, ulong, S_IRUGO); + static struct mtd_info *uclinux_ram_mtdinfo; /****************************************************************************/ @@ -61,26 +74,37 @@ static int __init uclinux_mtd_init(void) struct map_info *mapp; mapp = &uclinux_ram_map; + + if (physaddr == -1) + mapp->phys = (resource_size_t)__bss_stop; + else + mapp->phys = physaddr; + if (!mapp->size) mapp->size = PAGE_ALIGN(ntohl(*((unsigned long *)(mapp->phys + 8)))); mapp->bankwidth = 4; - printk("uclinux[mtd]: RAM probe address=0x%x size=0x%x\n", + printk("uclinux[mtd]: probe address=0x%x size=0x%x\n", (int) mapp->phys, (int) mapp->size); - mapp->virt = ioremap_nocache(mapp->phys, mapp->size); + /* + * The filesystem is guaranteed to be in direct mapped memory. It is + * directly following the kernels own bss region. Following the same + * mechanism used by architectures setting up traditional initrds we + * use phys_to_virt to get the virtual address of its start. + */ + mapp->virt = phys_to_virt(mapp->phys); if (mapp->virt == 0) { - printk("uclinux[mtd]: ioremap_nocache() failed\n"); + printk("uclinux[mtd]: no virtual mapping?\n"); return(-EIO); } simple_map_init(mapp); - mtd = do_map_probe("map_ram", mapp); + mtd = do_map_probe("map_" MAP_NAME, mapp); if (!mtd) { printk("uclinux[mtd]: failed to find a mapping?\n"); - iounmap(mapp->virt); return(-ENXIO); } @@ -103,10 +127,8 @@ static void __exit uclinux_mtd_cleanup(void) map_destroy(uclinux_ram_mtdinfo); uclinux_ram_mtdinfo = NULL; } - if (uclinux_ram_map.virt) { - iounmap((void *) uclinux_ram_map.virt); + if (uclinux_ram_map.virt) uclinux_ram_map.virt = 0; - } } /****************************************************************************/ @@ -116,6 +138,6 @@ module_exit(uclinux_mtd_cleanup); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com>"); -MODULE_DESCRIPTION("Generic RAM based MTD for uClinux"); +MODULE_DESCRIPTION("Generic MTD for uClinux"); /****************************************************************************/ diff --git a/drivers/mtd/maps/vmax301.c b/drivers/mtd/maps/vmax301.c deleted file mode 100644 index 5e68de73eab..00000000000 --- a/drivers/mtd/maps/vmax301.c +++ /dev/null @@ -1,196 +0,0 @@ -/* ###################################################################### - - Tempustech VMAX SBC301 MTD Driver. - - The VMAx 301 is a SBC based on . It - comes with three builtin AMD 29F016B flash chips and a socket for SRAM or - more flash. Each unit has it's own 8k mapping into a settable region - (0xD8000). There are two 8k mappings for each MTD, the first is always set - to the lower 8k of the device the second is paged. Writing a 16 bit page - value to anywhere in the first 8k will cause the second 8k to page around. - - To boot the device a bios extension must be installed into the first 8k - of flash that is smart enough to copy itself down, page in the rest of - itself and begin executing. - - ##################################################################### */ - -#include <linux/module.h> -#include <linux/ioport.h> -#include <linux/init.h> -#include <linux/spinlock.h> -#include <asm/io.h> - -#include <linux/mtd/map.h> -#include <linux/mtd/mtd.h> - - -#define WINDOW_START 0xd8000 -#define WINDOW_LENGTH 0x2000 -#define WINDOW_SHIFT 25 -#define WINDOW_MASK 0x1FFF - -/* Actually we could use two spinlocks, but we'd have to have - more private space in the struct map_info. We lose a little - performance like this, but we'd probably lose more by having - the extra indirection from having one of the map->map_priv - fields pointing to yet another private struct. -*/ -static DEFINE_SPINLOCK(vmax301_spin); - -static void __vmax301_page(struct map_info *map, unsigned long page) -{ - writew(page, map->map_priv_2 - WINDOW_LENGTH); - map->map_priv_1 = page; -} - -static inline void vmax301_page(struct map_info *map, - unsigned long ofs) -{ - unsigned long page = (ofs >> WINDOW_SHIFT); - if (map->map_priv_1 != page) - __vmax301_page(map, page); -} - -static map_word vmax301_read8(struct map_info *map, unsigned long ofs) -{ - map_word ret; - spin_lock(&vmax301_spin); - vmax301_page(map, ofs); - ret.x[0] = readb(map->map_priv_2 + (ofs & WINDOW_MASK)); - spin_unlock(&vmax301_spin); - return ret; -} - -static void vmax301_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (from & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(from & WINDOW_MASK); - spin_lock(&vmax301_spin); - vmax301_page(map, from); - memcpy_fromio(to, map->map_priv_2 + from, thislen); - spin_unlock(&vmax301_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static void vmax301_write8(struct map_info *map, map_word d, unsigned long adr) -{ - spin_lock(&vmax301_spin); - vmax301_page(map, adr); - writeb(d.x[0], map->map_priv_2 + (adr & WINDOW_MASK)); - spin_unlock(&vmax301_spin); -} - -static void vmax301_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) -{ - while(len) { - unsigned long thislen = len; - if (len > (WINDOW_LENGTH - (to & WINDOW_MASK))) - thislen = WINDOW_LENGTH-(to & WINDOW_MASK); - - spin_lock(&vmax301_spin); - vmax301_page(map, to); - memcpy_toio(map->map_priv_2 + to, from, thislen); - spin_unlock(&vmax301_spin); - to += thislen; - from += thislen; - len -= thislen; - } -} - -static struct map_info vmax_map[2] = { - { - .name = "VMAX301 Internal Flash", - .phys = NO_XIP, - .size = 3*2*1024*1024, - .bankwidth = 1, - .read = vmax301_read8, - .copy_from = vmax301_copy_from, - .write = vmax301_write8, - .copy_to = vmax301_copy_to, - .map_priv_1 = WINDOW_START + WINDOW_LENGTH, - .map_priv_2 = 0xFFFFFFFF - }, - { - .name = "VMAX301 Socket", - .phys = NO_XIP, - .size = 0, - .bankwidth = 1, - .read = vmax301_read8, - .copy_from = vmax301_copy_from, - .write = vmax301_write8, - .copy_to = vmax301_copy_to, - .map_priv_1 = WINDOW_START + (3*WINDOW_LENGTH), - .map_priv_2 = 0xFFFFFFFF - } -}; - -static struct mtd_info *vmax_mtd[2] = {NULL, NULL}; - -static void __exit cleanup_vmax301(void) -{ - int i; - - for (i=0; i<2; i++) { - if (vmax_mtd[i]) { - mtd_device_unregister(vmax_mtd[i]); - map_destroy(vmax_mtd[i]); - } - } - iounmap((void *)vmax_map[0].map_priv_1 - WINDOW_START); -} - -static int __init init_vmax301(void) -{ - int i; - unsigned long iomapadr; - // Print out our little header.. - printk("Tempustech VMAX 301 MEM:0x%x-0x%x\n",WINDOW_START, - WINDOW_START+4*WINDOW_LENGTH); - - iomapadr = (unsigned long)ioremap(WINDOW_START, WINDOW_LENGTH*4); - if (!iomapadr) { - printk("Failed to ioremap memory region\n"); - return -EIO; - } - /* Put the address in the map's private data area. - We store the actual MTD IO address rather than the - address of the first half, because it's used more - often. - */ - vmax_map[0].map_priv_2 = iomapadr + WINDOW_START; - vmax_map[1].map_priv_2 = iomapadr + (3*WINDOW_START); - - for (i=0; i<2; i++) { - vmax_mtd[i] = do_map_probe("cfi_probe", &vmax_map[i]); - if (!vmax_mtd[i]) - vmax_mtd[i] = do_map_probe("jedec", &vmax_map[i]); - if (!vmax_mtd[i]) - vmax_mtd[i] = do_map_probe("map_ram", &vmax_map[i]); - if (!vmax_mtd[i]) - vmax_mtd[i] = do_map_probe("map_rom", &vmax_map[i]); - if (vmax_mtd[i]) { - vmax_mtd[i]->owner = THIS_MODULE; - mtd_device_register(vmax_mtd[i], NULL, 0); - } - } - - if (!vmax_mtd[0] && !vmax_mtd[1]) { - iounmap((void *)iomapadr); - return -ENXIO; - } - - return 0; -} - -module_init(init_vmax301); -module_exit(cleanup_vmax301); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("MTD map driver for Tempustech VMAX SBC301 board"); diff --git a/drivers/mtd/maps/vmu-flash.c b/drivers/mtd/maps/vmu-flash.c index 2e2b0945edc..6b223cfe92b 100644 --- a/drivers/mtd/maps/vmu-flash.c +++ b/drivers/mtd/maps/vmu-flash.c @@ -596,7 +596,7 @@ fail_name: } /* Handles very basic info about the flash, queries for details */ -static int __devinit vmu_connect(struct maple_device *mdev) +static int vmu_connect(struct maple_device *mdev) { unsigned long test_flash_data, basic_flash_data; int c, error; @@ -690,7 +690,7 @@ fail_nomem: return error; } -static void __devexit vmu_disconnect(struct maple_device *mdev) +static void vmu_disconnect(struct maple_device *mdev) { struct memcard *card; struct mdev_part *mpart; @@ -772,7 +772,7 @@ static void vmu_file_error(struct maple_device *mdev, void *recvbuf) } -static int __devinit probe_maple_vmu(struct device *dev) +static int probe_maple_vmu(struct device *dev) { int error; struct maple_device *mdev = to_maple_dev(dev); @@ -789,7 +789,7 @@ static int __devinit probe_maple_vmu(struct device *dev) return 0; } -static int __devexit remove_maple_vmu(struct device *dev) +static int remove_maple_vmu(struct device *dev) { struct maple_device *mdev = to_maple_dev(dev); @@ -802,7 +802,7 @@ static struct maple_driver vmu_flash_driver = { .drv = { .name = "Dreamcast_visual_memory", .probe = probe_maple_vmu, - .remove = __devexit_p(remove_maple_vmu), + .remove = remove_maple_vmu, }, }; diff --git a/drivers/mtd/maps/wr_sbc82xx_flash.c b/drivers/mtd/maps/wr_sbc82xx_flash.c deleted file mode 100644 index e7534c82f93..00000000000 --- a/drivers/mtd/maps/wr_sbc82xx_flash.c +++ /dev/null @@ -1,174 +0,0 @@ -/* - * Map for flash chips on Wind River PowerQUICC II SBC82xx board. - * - * Copyright (C) 2004 Red Hat, Inc. - * - * Author: David Woodhouse <dwmw2@infradead.org> - * - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <asm/io.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/immap_cpm2.h> - -static struct mtd_info *sbcmtd[3]; - -struct map_info sbc82xx_flash_map[3] = { - {.name = "Boot flash"}, - {.name = "Alternate boot flash"}, - {.name = "User flash"} -}; - -static struct mtd_partition smallflash_parts[] = { - { - .name = "space", - .size = 0x100000, - .offset = 0, - }, { - .name = "bootloader", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND, - } -}; - -static struct mtd_partition bigflash_parts[] = { - { - .name = "bootloader", - .size = 0x00100000, - .offset = 0, - }, { - .name = "file system", - .size = 0x01f00000, - .offset = MTDPART_OFS_APPEND, - }, { - .name = "boot config", - .size = 0x00100000, - .offset = MTDPART_OFS_APPEND, - }, { - .name = "space", - .size = 0x01f00000, - .offset = MTDPART_OFS_APPEND, - } -}; - -static const char *part_probes[] __initconst = {"cmdlinepart", "RedBoot", NULL}; - -#define init_sbc82xx_one_flash(map, br, or) \ -do { \ - (map).phys = (br & 1) ? (br & 0xffff8000) : 0; \ - (map).size = (br & 1) ? (~(or & 0xffff8000) + 1) : 0; \ - switch (br & 0x00001800) { \ - case 0x00000000: \ - case 0x00000800: (map).bankwidth = 1; break; \ - case 0x00001000: (map).bankwidth = 2; break; \ - case 0x00001800: (map).bankwidth = 4; break; \ - } \ -} while (0); - -static int __init init_sbc82xx_flash(void) -{ - volatile memctl_cpm2_t *mc = &cpm2_immr->im_memctl; - int bigflash; - int i; - -#ifdef CONFIG_SBC8560 - mc = ioremap(0xff700000 + 0x5000, sizeof(memctl_cpm2_t)); -#else - mc = &cpm2_immr->im_memctl; -#endif - - bigflash = 1; - if ((mc->memc_br0 & 0x00001800) == 0x00001800) - bigflash = 0; - - init_sbc82xx_one_flash(sbc82xx_flash_map[0], mc->memc_br0, mc->memc_or0); - init_sbc82xx_one_flash(sbc82xx_flash_map[1], mc->memc_br6, mc->memc_or6); - init_sbc82xx_one_flash(sbc82xx_flash_map[2], mc->memc_br1, mc->memc_or1); - -#ifdef CONFIG_SBC8560 - iounmap((void *) mc); -#endif - - for (i=0; i<3; i++) { - int8_t flashcs[3] = { 0, 6, 1 }; - int nr_parts; - struct mtd_partition *defparts; - - printk(KERN_NOTICE "PowerQUICC II %s (%ld MiB on CS%d", - sbc82xx_flash_map[i].name, - (sbc82xx_flash_map[i].size >> 20), - flashcs[i]); - if (!sbc82xx_flash_map[i].phys) { - /* We know it can't be at zero. */ - printk("): disabled by bootloader.\n"); - continue; - } - printk(" at %08lx)\n", sbc82xx_flash_map[i].phys); - - sbc82xx_flash_map[i].virt = ioremap(sbc82xx_flash_map[i].phys, - sbc82xx_flash_map[i].size); - - if (!sbc82xx_flash_map[i].virt) { - printk("Failed to ioremap\n"); - continue; - } - - simple_map_init(&sbc82xx_flash_map[i]); - - sbcmtd[i] = do_map_probe("cfi_probe", &sbc82xx_flash_map[i]); - - if (!sbcmtd[i]) - continue; - - sbcmtd[i]->owner = THIS_MODULE; - - /* No partitioning detected. Use default */ - if (i == 2) { - defparts = NULL; - nr_parts = 0; - } else if (i == bigflash) { - defparts = bigflash_parts; - nr_parts = ARRAY_SIZE(bigflash_parts); - } else { - defparts = smallflash_parts; - nr_parts = ARRAY_SIZE(smallflash_parts); - } - - mtd_device_parse_register(sbcmtd[i], part_probes, NULL, - defparts, nr_parts); - } - return 0; -} - -static void __exit cleanup_sbc82xx_flash(void) -{ - int i; - - for (i=0; i<3; i++) { - if (!sbcmtd[i]) - continue; - - mtd_device_unregister(sbcmtd[i]); - - map_destroy(sbcmtd[i]); - - iounmap((void *)sbc82xx_flash_map[i].virt); - sbc82xx_flash_map[i].virt = 0; - } -} - -module_init(init_sbc82xx_flash); -module_exit(cleanup_sbc82xx_flash); - - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("Flash map driver for WindRiver PowerQUICC II"); diff --git a/drivers/mtd/mtd_blkdevs.c b/drivers/mtd/mtd_blkdevs.c index f1f06715d4e..43e30992a36 100644 --- a/drivers/mtd/mtd_blkdevs.c +++ b/drivers/mtd/mtd_blkdevs.c @@ -30,9 +30,7 @@ #include <linux/blkpg.h> #include <linux/spinlock.h> #include <linux/hdreg.h> -#include <linux/init.h> #include <linux/mutex.h> -#include <linux/kthread.h> #include <asm/uaccess.h> #include "mtdcore.h" @@ -84,12 +82,14 @@ static int do_blktrans_request(struct mtd_blktrans_ops *tr, block = blk_rq_pos(req) << 9 >> tr->blkshift; nsect = blk_rq_cur_bytes(req) >> tr->blkshift; - - buf = req->buffer; + buf = bio_data(req->bio); if (req->cmd_type != REQ_TYPE_FS) return -EIO; + if (req->cmd_flags & REQ_FLUSH) + return tr->flush(dev); + if (blk_rq_pos(req) + blk_rq_cur_sectors(req) > get_capacity(req->rq_disk)) return -EIO; @@ -121,16 +121,14 @@ static int do_blktrans_request(struct mtd_blktrans_ops *tr, int mtd_blktrans_cease_background(struct mtd_blktrans_dev *dev) { - if (kthread_should_stop()) - return 1; - return dev->bg_stop; } EXPORT_SYMBOL_GPL(mtd_blktrans_cease_background); -static int mtd_blktrans_thread(void *arg) +static void mtd_blktrans_work(struct work_struct *work) { - struct mtd_blktrans_dev *dev = arg; + struct mtd_blktrans_dev *dev = + container_of(work, struct mtd_blktrans_dev, work); struct mtd_blktrans_ops *tr = dev->tr; struct request_queue *rq = dev->rq; struct request *req = NULL; @@ -138,7 +136,7 @@ static int mtd_blktrans_thread(void *arg) spin_lock_irq(rq->queue_lock); - while (!kthread_should_stop()) { + while (1) { int res; dev->bg_stop = false; @@ -156,15 +154,7 @@ static int mtd_blktrans_thread(void *arg) background_done = !dev->bg_stop; continue; } - set_current_state(TASK_INTERRUPTIBLE); - - if (kthread_should_stop()) - set_current_state(TASK_RUNNING); - - spin_unlock_irq(rq->queue_lock); - schedule(); - spin_lock_irq(rq->queue_lock); - continue; + break; } spin_unlock_irq(rq->queue_lock); @@ -185,8 +175,6 @@ static int mtd_blktrans_thread(void *arg) __blk_end_request_all(req, -EIO); spin_unlock_irq(rq->queue_lock); - - return 0; } static void mtd_blktrans_request(struct request_queue *rq) @@ -199,10 +187,8 @@ static void mtd_blktrans_request(struct request_queue *rq) if (!dev) while ((req = blk_fetch_request(rq)) != NULL) __blk_end_request_all(req, -ENODEV); - else { - dev->bg_stop = true; - wake_up_process(dev->thread); - } + else + queue_work(dev->wq, &dev->work); } static int blktrans_open(struct block_device *bdev, fmode_t mode) @@ -252,13 +238,12 @@ error_put: return ret; } -static int blktrans_release(struct gendisk *disk, fmode_t mode) +static void blktrans_release(struct gendisk *disk, fmode_t mode) { struct mtd_blktrans_dev *dev = blktrans_dev_get(disk); - int ret = 0; if (!dev) - return ret; + return; mutex_lock(&dev->lock); @@ -269,13 +254,13 @@ static int blktrans_release(struct gendisk *disk, fmode_t mode) module_put(dev->tr->owner); if (dev->mtd) { - ret = dev->tr->release ? dev->tr->release(dev) : 0; + if (dev->tr->release) + dev->tr->release(dev); __put_mtd_device(dev->mtd); } unlock: mutex_unlock(&dev->lock); blktrans_dev_put(dev); - return ret; } static int blktrans_getgeo(struct block_device *bdev, struct hd_geometry *geo) @@ -325,7 +310,7 @@ unlock: return ret; } -static const struct block_device_operations mtd_blktrans_ops = { +static const struct block_device_operations mtd_block_ops = { .owner = THIS_MODULE, .open = blktrans_open, .release = blktrans_release, @@ -401,7 +386,7 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) gd->private_data = new; gd->major = tr->major; gd->first_minor = (new->devnum) << tr->part_bits; - gd->fops = &mtd_blktrans_ops; + gd->fops = &mtd_block_ops; if (tr->part_bits) if (new->devnum < 26) @@ -425,6 +410,9 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) if (!new->rq) goto error3; + if (tr->flush) + blk_queue_flush(new->rq, REQ_FLUSH); + new->rq->queuedata = new; blk_queue_logical_block_size(new->rq, tr->blksize); @@ -437,14 +425,13 @@ int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new) gd->queue = new->rq; - /* Create processing thread */ - /* TODO: workqueue ? */ - new->thread = kthread_run(mtd_blktrans_thread, new, - "%s%d", tr->name, new->mtd->index); - if (IS_ERR(new->thread)) { - ret = PTR_ERR(new->thread); + /* Create processing workqueue */ + new->wq = alloc_workqueue("%s%d", 0, 0, + tr->name, new->mtd->index); + if (!new->wq) goto error4; - } + INIT_WORK(&new->work, mtd_blktrans_work); + gd->driverfs_dev = &new->mtd->dev; if (new->readonly) @@ -484,9 +471,8 @@ int del_mtd_blktrans_dev(struct mtd_blktrans_dev *old) /* Stop new requests to arrive */ del_gendisk(old->disk); - - /* Stop the thread */ - kthread_stop(old->thread); + /* Stop workqueue. This will perform any pending request. */ + destroy_workqueue(old->wq); /* Kill current requests */ spin_lock_irqsave(&old->queue_lock, flags); diff --git a/drivers/mtd/mtdblock.c b/drivers/mtd/mtdblock.c index 6c6d80736fa..485ea751c7f 100644 --- a/drivers/mtd/mtdblock.c +++ b/drivers/mtd/mtdblock.c @@ -32,6 +32,7 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/blktrans.h> #include <linux/mutex.h> +#include <linux/major.h> struct mtdblk_dev { @@ -308,7 +309,7 @@ static int mtdblock_open(struct mtd_blktrans_dev *mbd) return 0; } -static int mtdblock_release(struct mtd_blktrans_dev *mbd) +static void mtdblock_release(struct mtd_blktrans_dev *mbd) { struct mtdblk_dev *mtdblk = container_of(mbd, struct mtdblk_dev, mbd); @@ -333,8 +334,6 @@ static int mtdblock_release(struct mtd_blktrans_dev *mbd) mutex_unlock(&mtdblks_lock); pr_debug("ok\n"); - - return 0; } static int mtdblock_flush(struct mtd_blktrans_dev *dev) @@ -375,7 +374,7 @@ static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev) static struct mtd_blktrans_ops mtdblock_tr = { .name = "mtdblock", - .major = 31, + .major = MTD_BLOCK_MAJOR, .part_bits = 0, .blksize = 512, .open = mtdblock_open, diff --git a/drivers/mtd/mtdblock_ro.c b/drivers/mtd/mtdblock_ro.c index 92759a9d298..fb5dc89369d 100644 --- a/drivers/mtd/mtdblock_ro.c +++ b/drivers/mtd/mtdblock_ro.c @@ -24,6 +24,7 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/blktrans.h> #include <linux/module.h> +#include <linux/major.h> static int mtdblock_readsect(struct mtd_blktrans_dev *dev, unsigned long block, char *buf) @@ -70,7 +71,7 @@ static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev) static struct mtd_blktrans_ops mtdblock_tr = { .name = "mtdblock", - .major = 31, + .major = MTD_BLOCK_MAJOR, .part_bits = 0, .blksize = 512, .readsect = mtdblock_readsect, diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index f2f482bec57..a0f54e80670 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c @@ -32,12 +32,15 @@ #include <linux/mount.h> #include <linux/blkpg.h> #include <linux/magic.h> +#include <linux/major.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/map.h> #include <asm/uaccess.h> +#include "mtdcore.h" + static DEFINE_MUTEX(mtd_mutex); /* @@ -53,25 +56,7 @@ struct mtd_file_info { static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig) { struct mtd_file_info *mfi = file->private_data; - struct mtd_info *mtd = mfi->mtd; - - switch (orig) { - case SEEK_SET: - break; - case SEEK_CUR: - offset += file->f_pos; - break; - case SEEK_END: - offset += mtd->size; - break; - default: - return -EINVAL; - } - - if (offset >= 0 && offset <= mtd->size) - return file->f_pos = offset; - - return -EINVAL; + return fixed_size_llseek(file, offset, orig, mfi->mtd->size); } static int count; @@ -339,6 +324,15 @@ static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t c default: ret = mtd_write(mtd, *ppos, len, &retlen, kbuf); } + + /* + * Return -ENOSPC only if no data could be written at all. + * Otherwise just return the number of bytes that actually + * have been written. + */ + if ((ret == -ENOSPC) && (total_retlen)) + break; + if (!ret) { *ppos += retlen; total_retlen += retlen; @@ -365,37 +359,35 @@ static void mtdchar_erase_callback (struct erase_info *instr) wake_up((wait_queue_head_t *)instr->priv); } -#ifdef CONFIG_HAVE_MTD_OTP static int otp_select_filemode(struct mtd_file_info *mfi, int mode) { struct mtd_info *mtd = mfi->mtd; size_t retlen; - int ret = 0; - - /* - * Make a fake call to mtd_read_fact_prot_reg() to check if OTP - * operations are supported. - */ - if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) == -EOPNOTSUPP) - return -EOPNOTSUPP; switch (mode) { case MTD_OTP_FACTORY: + if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) == + -EOPNOTSUPP) + return -EOPNOTSUPP; + mfi->mode = MTD_FILE_MODE_OTP_FACTORY; break; case MTD_OTP_USER: + if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) == + -EOPNOTSUPP) + return -EOPNOTSUPP; + mfi->mode = MTD_FILE_MODE_OTP_USER; break; - default: - ret = -EINVAL; case MTD_OTP_OFF: + mfi->mode = MTD_FILE_MODE_NORMAL; break; + default: + return -EINVAL; } - return ret; + + return 0; } -#else -# define otp_select_filemode(f,m) -EOPNOTSUPP -#endif static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd, uint64_t start, uint32_t length, void __user *ptr, @@ -576,13 +568,18 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd, { struct mtd_write_req req; struct mtd_oob_ops ops; - void __user *usr_data, *usr_oob; + const void __user *usr_data, *usr_oob; int ret; - if (copy_from_user(&req, argp, sizeof(req)) || - !access_ok(VERIFY_READ, req.usr_data, req.len) || - !access_ok(VERIFY_READ, req.usr_oob, req.ooblen)) + if (copy_from_user(&req, argp, sizeof(req))) return -EFAULT; + + usr_data = (const void __user *)(uintptr_t)req.usr_data; + usr_oob = (const void __user *)(uintptr_t)req.usr_oob; + if (!access_ok(VERIFY_READ, usr_data, req.len) || + !access_ok(VERIFY_READ, usr_oob, req.ooblen)) + return -EFAULT; + if (!mtd->_write_oob) return -EOPNOTSUPP; @@ -591,10 +588,7 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd, ops.ooblen = (size_t)req.ooblen; ops.ooboffs = 0; - usr_data = (void __user *)(uintptr_t)req.usr_data; - usr_oob = (void __user *)(uintptr_t)req.usr_oob; - - if (req.usr_data) { + if (usr_data) { ops.datbuf = memdup_user(usr_data, ops.len); if (IS_ERR(ops.datbuf)) return PTR_ERR(ops.datbuf); @@ -602,7 +596,7 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd, ops.datbuf = NULL; } - if (req.usr_oob) { + if (usr_oob) { ops.oobbuf = memdup_user(usr_oob, ops.ooblen); if (IS_ERR(ops.oobbuf)) { kfree(ops.datbuf); @@ -888,7 +882,6 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) break; } -#ifdef CONFIG_HAVE_MTD_OTP case OTPSELECT: { int mode; @@ -907,25 +900,26 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) case OTPGETREGIONINFO: { struct otp_info *buf = kmalloc(4096, GFP_KERNEL); + size_t retlen; if (!buf) return -ENOMEM; switch (mfi->mode) { case MTD_FILE_MODE_OTP_FACTORY: - ret = mtd_get_fact_prot_info(mtd, buf, 4096); + ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf); break; case MTD_FILE_MODE_OTP_USER: - ret = mtd_get_user_prot_info(mtd, buf, 4096); + ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf); break; default: ret = -EINVAL; break; } - if (ret >= 0) { + if (!ret) { if (cmd == OTPGETREGIONCOUNT) { - int nbr = ret / sizeof(struct otp_info); + int nbr = retlen / sizeof(struct otp_info); ret = copy_to_user(argp, &nbr, sizeof(int)); } else - ret = copy_to_user(argp, buf, ret); + ret = copy_to_user(argp, buf, retlen); if (ret) ret = -EFAULT; } @@ -944,7 +938,6 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length); break; } -#endif /* This ioctl is being deprecated - it truncates the ECC layout */ case ECCGETLAYOUT: @@ -1119,7 +1112,7 @@ static unsigned long mtdchar_get_unmapped_area(struct file *file, return (unsigned long) -EINVAL; ret = mtd_get_unmapped_area(mtd, len, offset, flags); - return ret == -EOPNOTSUPP ? -ENOSYS : ret; + return ret == -EOPNOTSUPP ? -ENODEV : ret; } #endif @@ -1132,36 +1125,21 @@ static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma) struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; struct map_info *map = mtd->priv; - unsigned long start; - unsigned long off; - u32 len; - - if (mtd->type == MTD_RAM || mtd->type == MTD_ROM) { - off = vma->vm_pgoff << PAGE_SHIFT; - start = map->phys; - len = PAGE_ALIGN((start & ~PAGE_MASK) + map->size); - start &= PAGE_MASK; - if ((vma->vm_end - vma->vm_start + off) > len) - return -EINVAL; - - off += start; - vma->vm_pgoff = off >> PAGE_SHIFT; - vma->vm_flags |= VM_IO | VM_RESERVED; + /* This is broken because it assumes the MTD device is map-based + and that mtd->priv is a valid struct map_info. It should be + replaced with something that uses the mtd_get_unmapped_area() + operation properly. */ + if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) { #ifdef pgprot_noncached - if (file->f_flags & O_DSYNC || off >= __pa(high_memory)) + if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory)) vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); #endif - if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT, - vma->vm_end - vma->vm_start, - vma->vm_page_prot)) - return -EAGAIN; - - return 0; + return vm_iomap_memory(vma, map->phys, map->size); } - return -ENOSYS; + return -ENODEV; #else - return vma->vm_flags & VM_SHARED ? 0 : -ENOSYS; + return vma->vm_flags & VM_SHARED ? 0 : -EACCES; #endif } @@ -1198,24 +1176,27 @@ static struct file_system_type mtd_inodefs_type = { .mount = mtd_inodefs_mount, .kill_sb = kill_anon_super, }; +MODULE_ALIAS_FS("mtd_inodefs"); -static int __init init_mtdchar(void) +int __init init_mtdchar(void) { int ret; ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd", &mtd_fops); if (ret < 0) { - pr_notice("Can't allocate major number %d for " - "Memory Technology Devices.\n", MTD_CHAR_MAJOR); + pr_err("Can't allocate major number %d for MTD\n", + MTD_CHAR_MAJOR); return ret; } ret = register_filesystem(&mtd_inodefs_type); if (ret) { - pr_notice("Can't register mtd_inodefs filesystem: %d\n", ret); + pr_err("Can't register mtd_inodefs filesystem, error %d\n", + ret); goto err_unregister_chdev; } + return ret; err_unregister_chdev: @@ -1223,18 +1204,10 @@ err_unregister_chdev: return ret; } -static void __exit cleanup_mtdchar(void) +void __exit cleanup_mtdchar(void) { unregister_filesystem(&mtd_inodefs_type); __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd"); } -module_init(init_mtdchar); -module_exit(cleanup_mtdchar); - -MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); -MODULE_DESCRIPTION("Direct character-device access to MTD devices"); MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR); diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index 575730744fd..d201feeb3ca 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -36,11 +36,13 @@ #include <linux/idr.h> #include <linux/backing-dev.h> #include <linux/gfp.h> +#include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include "mtdcore.h" + /* * backing device capabilities for non-mappable devices (such as NAND flash) * - permits private mappings, copies are taken of the data @@ -96,11 +98,7 @@ EXPORT_SYMBOL_GPL(__mtd_next_device); static LIST_HEAD(mtd_notifiers); -#if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE) #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) -#else -#define MTD_DEVT(index) 0 -#endif /* REVISIT once MTD uses the driver model better, whoever allocates * the mtd_info will probably want to use the release() hook... @@ -159,6 +157,9 @@ static ssize_t mtd_type_show(struct device *dev, case MTD_UBIVOLUME: type = "ubi"; break; + case MTD_MLCNANDFLASH: + type = "mlc-nand"; + break; default: type = "unknown"; } @@ -287,6 +288,16 @@ static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, mtd_bitflip_threshold_show, mtd_bitflip_threshold_store); +static ssize_t mtd_ecc_step_size_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + + return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); + +} +static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); + static struct attribute *mtd_attrs[] = { &dev_attr_type.attr, &dev_attr_flags.attr, @@ -298,18 +309,11 @@ static struct attribute *mtd_attrs[] = { &dev_attr_numeraseregions.attr, &dev_attr_name.attr, &dev_attr_ecc_strength.attr, + &dev_attr_ecc_step_size.attr, &dev_attr_bitflip_threshold.attr, NULL, }; - -static struct attribute_group mtd_group = { - .attrs = mtd_attrs, -}; - -static const struct attribute_group *mtd_groups[] = { - &mtd_group, - NULL, -}; +ATTRIBUTE_GROUPS(mtd); static struct device_type mtd_devtype = { .name = "mtd", @@ -349,13 +353,8 @@ int add_mtd_device(struct mtd_info *mtd) BUG_ON(mtd->writesize == 0); mutex_lock(&mtd_table_mutex); - do { - if (!idr_pre_get(&mtd_idr, GFP_KERNEL)) - goto fail_locked; - error = idr_get_new(&mtd_idr, mtd, &i); - } while (error == -EAGAIN); - - if (error) + i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); + if (i < 0) goto fail_locked; mtd->index = i; @@ -497,7 +496,7 @@ out_error: * * Returns zero in case of success and a negative error code in case of failure. */ -int mtd_device_parse_register(struct mtd_info *mtd, const char **types, +int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, struct mtd_part_parser_data *parser_data, const struct mtd_partition *parts, int nr_parts) @@ -858,19 +857,40 @@ int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, } EXPORT_SYMBOL_GPL(mtd_panic_write); +int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) +{ + int ret_code; + ops->retlen = ops->oobretlen = 0; + if (!mtd->_read_oob) + return -EOPNOTSUPP; + /* + * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics + * similar to mtd->_read(), returning a non-negative integer + * representing max bitflips. In other cases, mtd->_read_oob() may + * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). + */ + ret_code = mtd->_read_oob(mtd, from, ops); + if (unlikely(ret_code < 0)) + return ret_code; + if (mtd->ecc_strength == 0) + return 0; /* device lacks ecc */ + return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; +} +EXPORT_SYMBOL_GPL(mtd_read_oob); + /* * Method to access the protection register area, present in some flash * devices. The user data is one time programmable but the factory data is read * only. */ -int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, - size_t len) +int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, + struct otp_info *buf) { if (!mtd->_get_fact_prot_info) return -EOPNOTSUPP; if (!len) return 0; - return mtd->_get_fact_prot_info(mtd, buf, len); + return mtd->_get_fact_prot_info(mtd, len, retlen, buf); } EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); @@ -886,14 +906,14 @@ int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, } EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); -int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf, - size_t len) +int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, + struct otp_info *buf) { if (!mtd->_get_user_prot_info) return -EOPNOTSUPP; if (!len) return 0; - return mtd->_get_user_prot_info(mtd, buf, len); + return mtd->_get_user_prot_info(mtd, len, retlen, buf); } EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); @@ -912,12 +932,22 @@ EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, u_char *buf) { + int ret; + *retlen = 0; if (!mtd->_write_user_prot_reg) return -EOPNOTSUPP; if (!len) return 0; - return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); + ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); + if (ret) + return ret; + + /* + * If no data could be written at all, we are out of memory and + * must return -ENOSPC. + */ + return (*retlen) ? 0 : -ENOSPC; } EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); @@ -1100,8 +1130,6 @@ EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); /*====================================================================*/ /* Support for /proc/mtd */ -static struct proc_dir_entry *proc_mtd; - static int mtd_proc_show(struct seq_file *m, void *v) { struct mtd_info *mtd; @@ -1139,7 +1167,7 @@ static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) ret = bdi_init(bdi); if (!ret) - ret = bdi_register(bdi, NULL, name); + ret = bdi_register(bdi, NULL, "%s", name); if (ret) bdi_destroy(bdi); @@ -1147,6 +1175,8 @@ static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) return ret; } +static struct proc_dir_entry *proc_mtd; + static int __init init_mtd(void) { int ret; @@ -1167,11 +1197,17 @@ static int __init init_mtd(void) if (ret) goto err_bdi3; -#ifdef CONFIG_PROC_FS proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); -#endif /* CONFIG_PROC_FS */ + + ret = init_mtdchar(); + if (ret) + goto out_procfs; + return 0; +out_procfs: + if (proc_mtd) + remove_proc_entry("mtd", NULL); err_bdi3: bdi_destroy(&mtd_bdi_ro_mappable); err_bdi2: @@ -1185,10 +1221,9 @@ err_reg: static void __exit cleanup_mtd(void) { -#ifdef CONFIG_PROC_FS + cleanup_mtdchar(); if (proc_mtd) - remove_proc_entry( "mtd", NULL); -#endif /* CONFIG_PROC_FS */ + remove_proc_entry("mtd", NULL); class_unregister(&mtd_class); bdi_destroy(&mtd_bdi_unmappable); bdi_destroy(&mtd_bdi_ro_mappable); diff --git a/drivers/mtd/mtdcore.h b/drivers/mtd/mtdcore.h index 961a3840854..7b0353399a1 100644 --- a/drivers/mtd/mtdcore.h +++ b/drivers/mtd/mtdcore.h @@ -1,23 +1,21 @@ -/* linux/drivers/mtd/mtdcore.h - * - * Header file for driver private mtdcore exports - * +/* + * These are exported solely for the purpose of mtd_blkdevs.c and mtdchar.c. + * You should not use them for _anything_ else. */ -/* These are exported solely for the purpose of mtd_blkdevs.c. You - should not use them for _anything_ else */ - extern struct mutex mtd_table_mutex; -extern struct mtd_info *__mtd_next_device(int i); -extern int add_mtd_device(struct mtd_info *mtd); -extern int del_mtd_device(struct mtd_info *mtd); -extern int add_mtd_partitions(struct mtd_info *, const struct mtd_partition *, - int); -extern int del_mtd_partitions(struct mtd_info *); -extern int parse_mtd_partitions(struct mtd_info *master, const char **types, - struct mtd_partition **pparts, - struct mtd_part_parser_data *data); +struct mtd_info *__mtd_next_device(int i); +int add_mtd_device(struct mtd_info *mtd); +int del_mtd_device(struct mtd_info *mtd); +int add_mtd_partitions(struct mtd_info *, const struct mtd_partition *, int); +int del_mtd_partitions(struct mtd_info *); +int parse_mtd_partitions(struct mtd_info *master, const char * const *types, + struct mtd_partition **pparts, + struct mtd_part_parser_data *data); + +int __init init_mtdchar(void); +void __exit cleanup_mtdchar(void); #define mtd_for_each_device(mtd) \ for ((mtd) = __mtd_next_device(0); \ diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c index 551e316e445..97bb8f6304d 100644 --- a/drivers/mtd/mtdoops.c +++ b/drivers/mtd/mtdoops.c @@ -169,14 +169,7 @@ static void mtdoops_workfunc_erase(struct work_struct *work) cxt->nextpage = 0; } - while (1) { - ret = mtd_block_isbad(mtd, cxt->nextpage * record_size); - if (!ret) - break; - if (ret < 0) { - printk(KERN_ERR "mtdoops: block_isbad failed, aborting\n"); - return; - } + while ((ret = mtd_block_isbad(mtd, cxt->nextpage * record_size)) > 0) { badblock: printk(KERN_WARNING "mtdoops: bad block at %08lx\n", cxt->nextpage * record_size); @@ -190,6 +183,11 @@ badblock: } } + if (ret < 0) { + printk(KERN_ERR "mtdoops: mtd_block_isbad failed, aborting\n"); + return; + } + for (j = 0, ret = -1; (j < 3) && (ret < 0); j++) ret = mtdoops_erase_block(cxt, cxt->nextpage * record_size); @@ -273,7 +271,7 @@ static void find_next_position(struct mtdoops_context *cxt) if (count[0] == 0xffffffff && count[1] == 0xffffffff) mark_page_unused(cxt, page); - if (count[0] == 0xffffffff) + if (count[0] == 0xffffffff || count[1] != MTDOOPS_KERNMSG_MAGIC) continue; if (maxcount == 0xffffffff) { maxcount = count[0]; @@ -291,14 +289,13 @@ static void find_next_position(struct mtdoops_context *cxt) } } if (maxcount == 0xffffffff) { - cxt->nextpage = 0; - cxt->nextcount = 1; - schedule_work(&cxt->work_erase); - return; + cxt->nextpage = cxt->oops_pages - 1; + cxt->nextcount = 0; + } + else { + cxt->nextpage = maxpos; + cxt->nextcount = maxcount; } - - cxt->nextpage = maxpos; - cxt->nextcount = maxcount; mtdoops_inc_counter(cxt); } @@ -387,8 +384,8 @@ static void mtdoops_notify_remove(struct mtd_info *mtd) printk(KERN_WARNING "mtdoops: could not unregister kmsg_dumper\n"); cxt->mtd = NULL; - flush_work_sync(&cxt->work_erase); - flush_work_sync(&cxt->work_write); + flush_work(&cxt->work_erase); + flush_work(&cxt->work_write); } diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index d518e4db8a0..1ca9aec141f 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -150,11 +150,12 @@ static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, retlen, buf); } -static int part_get_user_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { struct mtd_part *part = PART(mtd); - return part->master->_get_user_prot_info(part->master, buf, len); + return part->master->_get_user_prot_info(part->master, len, retlen, + buf); } static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, @@ -165,11 +166,12 @@ static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, retlen, buf); } -static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, - size_t len) +static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { struct mtd_part *part = PART(mtd); - return part->master->_get_fact_prot_info(part->master, buf, len); + return part->master->_get_fact_prot_info(part->master, len, retlen, + buf); } static int part_write(struct mtd_info *mtd, loff_t to, size_t len, @@ -516,6 +518,7 @@ static struct mtd_part *allocate_partition(struct mtd_info *master, } slave->mtd.ecclayout = master->ecclayout; + slave->mtd.ecc_step_size = master->ecc_step_size; slave->mtd.ecc_strength = master->ecc_strength; slave->mtd.bitflip_threshold = master->bitflip_threshold; @@ -533,7 +536,7 @@ out_register: return slave; } -int mtd_add_partition(struct mtd_info *master, char *name, +int mtd_add_partition(struct mtd_info *master, const char *name, long long offset, long long length) { struct mtd_partition part; @@ -671,22 +674,19 @@ static struct mtd_part_parser *get_partition_parser(const char *name) #define put_partition_parser(p) do { module_put((p)->owner); } while (0) -int register_mtd_parser(struct mtd_part_parser *p) +void register_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_add(&p->list, &part_parsers); spin_unlock(&part_parser_lock); - - return 0; } EXPORT_SYMBOL_GPL(register_mtd_parser); -int deregister_mtd_parser(struct mtd_part_parser *p) +void deregister_mtd_parser(struct mtd_part_parser *p) { spin_lock(&part_parser_lock); list_del(&p->list); spin_unlock(&part_parser_lock); - return 0; } EXPORT_SYMBOL_GPL(deregister_mtd_parser); @@ -694,7 +694,7 @@ EXPORT_SYMBOL_GPL(deregister_mtd_parser); * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you * are changing this array! */ -static const char *default_mtd_part_types[] = { +static const char * const default_mtd_part_types[] = { "cmdlinepart", "ofpart", NULL @@ -711,6 +711,8 @@ static const char *default_mtd_part_types[] = { * partition parsers, specified in @types. However, if @types is %NULL, then * the default list of parsers is used. The default list contains only the * "cmdlinepart" and "ofpart" parsers ATM. + * Note: If there are more then one parser in @types, the kernel only takes the + * partitions parsed out by the first parser. * * This function may return: * o a negative error code in case of failure @@ -718,7 +720,7 @@ static const char *default_mtd_part_types[] = { * o a positive number of found partitions, in which case on exit @pparts will * point to an array containing this number of &struct mtd_info objects. */ -int parse_mtd_partitions(struct mtd_info *master, const char **types, +int parse_mtd_partitions(struct mtd_info *master, const char *const *types, struct mtd_partition **pparts, struct mtd_part_parser_data *data) { @@ -735,16 +737,17 @@ int parse_mtd_partitions(struct mtd_info *master, const char **types, if (!parser) continue; ret = (*parser->parse_fn)(master, pparts, data); + put_partition_parser(parser); if (ret > 0) { printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", ret, parser->name, master->name); + break; } - put_partition_parser(parser); } return ret; } -int mtd_is_partition(struct mtd_info *mtd) +int mtd_is_partition(const struct mtd_info *mtd) { struct mtd_part *part; int ispart = 0; @@ -760,3 +763,13 @@ int mtd_is_partition(struct mtd_info *mtd) return ispart; } EXPORT_SYMBOL_GPL(mtd_is_partition); + +/* Returns the size of the entire flash chip */ +uint64_t mtd_get_device_size(const struct mtd_info *mtd) +{ + if (!mtd_is_partition(mtd)) + return mtd->size; + + return PART(mtd)->master->size; +} +EXPORT_SYMBOL_GPL(mtd_get_device_size); diff --git a/drivers/mtd/mtdsuper.c b/drivers/mtd/mtdsuper.c index 334da5f583c..20c02a3b741 100644 --- a/drivers/mtd/mtdsuper.c +++ b/drivers/mtd/mtdsuper.c @@ -17,6 +17,7 @@ #include <linux/export.h> #include <linux/ctype.h> #include <linux/slab.h> +#include <linux/major.h> /* * compare superblocks to see if they're equivalent diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c index c92f0f6bc13..8b33b26eb12 100644 --- a/drivers/mtd/mtdswap.c +++ b/drivers/mtd/mtdswap.c @@ -1425,7 +1425,7 @@ static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) return; while ((this_opt = strsep(&parts, ",")) != NULL) { - if (strict_strtoul(this_opt, 0, &part) < 0) + if (kstrtoul(this_opt, 0, &part) < 0) return; if (mtd->index == part) diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 31bb7e5b504..f1cf503517f 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -22,15 +22,6 @@ menuconfig MTD_NAND if MTD_NAND -config MTD_NAND_VERIFY_WRITE - bool "Verify NAND page writes" - help - This adds an extra check when data is written to the flash. The - NAND flash device internally checks only bits transitioning - from 1 to 0. There is a rare possibility that even though the - device thinks the write was successful, a bit could have been - flipped accidentally due to device wear or something else. - config MTD_NAND_BCH tristate select BCH @@ -50,32 +41,32 @@ config MTD_SM_COMMON tristate default n -config MTD_NAND_MUSEUM_IDS - bool "Enable chip ids for obsolete ancient NAND devices" - default n - help - Enable this option only when your board has first generation - NAND chips (page size 256 byte, erase size 4-8KiB). The IDs - of these chips were reused by later, larger chips. - -config MTD_NAND_AUTCPU12 - tristate "SmartMediaCard on autronix autcpu12 board" - depends on ARCH_AUTCPU12 - help - This enables the driver for the autronix autcpu12 board to - access the SmartMediaCard. - config MTD_NAND_DENALI - depends on PCI + tristate "Support Denali NAND controller" + depends on HAS_DMA + help + Enable support for the Denali NAND controller. This should be + combined with either the PCI or platform drivers to provide device + registration. + +config MTD_NAND_DENALI_PCI tristate "Support Denali NAND controller on Intel Moorestown" + depends on PCI && MTD_NAND_DENALI help Enable the driver for NAND flash on Intel Moorestown, using the Denali NAND controller core. - + +config MTD_NAND_DENALI_DT + tristate "Support Denali NAND controller as a DT device" + depends on HAVE_CLK && MTD_NAND_DENALI + help + Enable the driver for NAND flash on platforms using a Denali NAND + controller as a DT device. + config MTD_NAND_DENALI_SCRATCH_REG_ADDR hex "Denali NAND size scratch register address" default "0xFF108018" - depends on MTD_NAND_DENALI + depends on MTD_NAND_DENALI_PCI help Some platforms place the NAND chip size in a scratch register because (some versions of) the driver aren't able to automatically @@ -83,24 +74,12 @@ config MTD_NAND_DENALI_SCRATCH_REG_ADDR scratch register here to enable this feature. On Intel Moorestown boards, the scratch register is at 0xFF108018. -config MTD_NAND_H1900 - tristate "iPAQ H1900 flash" - depends on ARCH_PXA && BROKEN - help - This enables the driver for the iPAQ h1900 flash. - config MTD_NAND_GPIO tristate "GPIO NAND Flash driver" - depends on GENERIC_GPIO && ARM + depends on GPIOLIB help This enables a GPIO based NAND flash driver. -config MTD_NAND_SPIA - tristate "NAND Flash device on SPIA board" - depends on ARCH_P720T - help - If you had to ask, you don't have one. Say 'N'. - config MTD_NAND_AMS_DELTA tristate "NAND Flash device on Amstrad E3" depends on MACH_AMS_DELTA @@ -116,44 +95,16 @@ config MTD_NAND_OMAP2 platforms. config MTD_NAND_OMAP_BCH - depends on MTD_NAND && MTD_NAND_OMAP2 && ARCH_OMAP3 - bool "Enable support for hardware BCH error correction" + depends on MTD_NAND_OMAP2 + tristate "Support hardware based BCH error correction" default n select BCH - select BCH_CONST_PARAMS - help - Support for hardware BCH error correction. - -choice - prompt "BCH error correction capability" - depends on MTD_NAND_OMAP_BCH - -config MTD_NAND_OMAP_BCH8 - bool "8 bits / 512 bytes (recommended)" - help - Support correcting up to 8 bitflips per 512-byte block. - This will use 13 bytes of spare area per 512 bytes of page data. - This is the recommended mode, as 4-bit mode does not work - on some OMAP3 revisions, due to a hardware bug. - -config MTD_NAND_OMAP_BCH4 - bool "4 bits / 512 bytes" help - Support correcting up to 4 bitflips per 512-byte block. - This will use 7 bytes of spare area per 512 bytes of page data. - Note that this mode does not work on some OMAP3 revisions, due to a - hardware bug. Please check your OMAP datasheet before selecting this - mode. - -endchoice - -if MTD_NAND_OMAP_BCH -config BCH_CONST_M - default 13 -config BCH_CONST_T - default 4 if MTD_NAND_OMAP_BCH4 - default 8 if MTD_NAND_OMAP_BCH8 -endif + This config enables the ELM hardware engine, which can be used to + locate and correct errors when using BCH ECC scheme. This offloads + the cpu from doing ECC error searching and correction. However some + legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine + so they should not enable this config symbol. config MTD_NAND_IDS tristate @@ -209,22 +160,6 @@ config MTD_NAND_BF5XX_BOOTROM_ECC If unsure, say N. -config MTD_NAND_RTC_FROM4 - tristate "Renesas Flash ROM 4-slot interface board (FROM_BOARD4)" - depends on SH_SOLUTION_ENGINE - select REED_SOLOMON - select REED_SOLOMON_DEC8 - select BITREVERSE - help - This enables the driver for the Renesas Technology AG-AND - flash interface board (FROM_BOARD4) - -config MTD_NAND_PPCHAMELEONEVB - tristate "NAND Flash device on PPChameleonEVB board" - depends on PPCHAMELEONEVB && BROKEN - help - This enables the NAND flash driver on the PPChameleon EVB Board. - config MTD_NAND_S3C2410 tristate "NAND Flash support for Samsung S3C SoCs" depends on ARCH_S3C24XX || ARCH_S3C64XX @@ -267,25 +202,8 @@ config MTD_NAND_S3C2410_CLKSTOP when the is NAND chip selected or released, but will save approximately 5mA of power when there is nothing happening. -config MTD_NAND_BCM_UMI - tristate "NAND Flash support for BCM Reference Boards" - depends on ARCH_BCMRING - help - This enables the NAND flash controller on the BCM UMI block. - - No board specific support is done by this driver, each board - must advertise a platform_device for the driver to attach. - -config MTD_NAND_BCM_UMI_HWCS - bool "BCM UMI NAND Hardware CS" - depends on MTD_NAND_BCM_UMI - help - Enable the use of the BCM UMI block's internal CS using NAND. - This should only be used if you know the external NAND CS can toggle. - config MTD_NAND_DISKONCHIP - tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)" - depends on EXPERIMENTAL + tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)" depends on HAS_IOMEM select REED_SOLOMON select REED_SOLOMON_DEC16 @@ -355,8 +273,8 @@ config MTD_NAND_DISKONCHIP_BBTWRITE parameter "inftl_bbt_write=1". config MTD_NAND_DOCG4 - tristate "Support for DiskOnChip G4 (EXPERIMENTAL)" - depends on EXPERIMENTAL + tristate "Support for DiskOnChip G4" + depends on HAS_IOMEM select BCH select BITREVERSE help @@ -406,53 +324,35 @@ config MTD_NAND_ATMEL help Enables support for NAND Flash / Smart Media Card interface on Atmel AT91 and AVR32 processors. -choice - prompt "ECC management for NAND Flash / SmartMedia on AT91 / AVR32" - depends on MTD_NAND_ATMEL -config MTD_NAND_ATMEL_ECC_HW - bool "Hardware ECC" - depends on ARCH_AT91SAM9263 || ARCH_AT91SAM9260 || AVR32 +config MTD_NAND_PXA3xx + tristate "NAND support on PXA3xx and Armada 370/XP" + depends on PXA3xx || ARCH_MMP || PLAT_ORION help - Use hardware ECC instead of software ECC when the chip - supports it. - - The hardware ECC controller is capable of single bit error - correction and 2-bit random detection per page. - - NB : hardware and software ECC schemes are incompatible. - If you switch from one to another, you'll have to erase your - mtd partition. - - If unsure, say Y + This enables the driver for the NAND flash device found on + PXA3xx processors (NFCv1) and also on Armada 370/XP (NFCv2). -config MTD_NAND_ATMEL_ECC_SOFT - bool "Software ECC" +config MTD_NAND_SLC_LPC32XX + tristate "NXP LPC32xx SLC Controller" + depends on ARCH_LPC32XX help - Use software ECC. + Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell + chips) NAND controller. This is the default for the PHYTEC 3250 + reference board which contains a NAND256R3A2CZA6 chip. - NB : hardware and software ECC schemes are incompatible. - If you switch from one to another, you'll have to erase your - mtd partition. + Please check the actual NAND chip connected and its support + by the SLC NAND controller. -config MTD_NAND_ATMEL_ECC_NONE - bool "No ECC (testing only, DANGEROUS)" - depends on DEBUG_KERNEL +config MTD_NAND_MLC_LPC32XX + tristate "NXP LPC32xx MLC Controller" + depends on ARCH_LPC32XX help - No ECC will be used. - It's not a good idea and it should be reserved for testing - purpose only. + Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND + controller. This is the default for the WORK92105 controller + board. - If unsure, say N - -endchoice - -config MTD_NAND_PXA3xx - tristate "Support for NAND flash devices on PXA3xx" - depends on PXA3xx || ARCH_MMP - help - This enables the driver for the NAND flash device found on - PXA3xx processors + Please check the actual NAND chip connected and its support + by the MLC NAND controller. config MTD_NAND_CM_X270 tristate "Support for NAND Flash on CM-X270 modules" @@ -479,16 +379,24 @@ config MTD_NAND_NANDSIM MTD nand layer. config MTD_NAND_GPMI_NAND - bool "GPMI NAND Flash Controller driver" - depends on MTD_NAND && (SOC_IMX23 || SOC_IMX28 || SOC_IMX6Q) + tristate "GPMI NAND Flash Controller driver" + depends on MTD_NAND && MXS_DMA help - Enables NAND Flash support for IMX23 or IMX28. + Enables NAND Flash support for IMX23, IMX28 or IMX6. The GPMI controller is very powerful, with the help of BCH module, it can do the hardware ECC. The GPMI supports several NAND flashs at the same time. The GPMI may conflicts with other block, such as SD card. So pay attention to it when you enable the GPMI. +config MTD_NAND_BCM47XXNFLASH + tristate "Support for NAND flash on BCM4706 BCMA bus" + depends on BCMA_NFLASH + help + BCMA bus can have various flash memories attached, they are + registered by bcma as platform devices. This enables driver for + NAND flash memories. For now only BCM4706 is supported. + config MTD_NAND_PLATFORM tristate "Support for generic platform NAND driver" depends on HAS_IOMEM @@ -497,13 +405,6 @@ config MTD_NAND_PLATFORM devices. You will need to provide platform-specific functions via platform_data. -config MTD_ALAUDA - tristate "MTD driver for Olympus MAUSB-10 and Fujifilm DPC-R1" - depends on USB - help - These two (and possibly other) Alauda-based cardreaders for - SmartMedia and xD allow raw flash access. - config MTD_NAND_ORION tristate "NAND Flash support for Marvell Orion SoC" depends on PLAT_ORION @@ -527,6 +428,7 @@ config MTD_NAND_FSL_IFC tristate "NAND support for Freescale IFC controller" depends on MTD_NAND && FSL_SOC select FSL_IFC + select MEMORY help Various Freescale chips e.g P1010, include a NAND Flash machine with built-in hardware ECC capabilities. @@ -550,30 +452,26 @@ config MTD_NAND_MPC5121_NFC config MTD_NAND_MXC tristate "MXC NAND support" - depends on IMX_HAVE_PLATFORM_MXC_NAND + depends on ARCH_MXC help This enables the driver for the NAND flash controller on the MXC processors. -config MTD_NAND_NOMADIK - tristate "ST Nomadik 8815 NAND support" - depends on ARCH_NOMADIK - help - Driver for the NAND flash controller on the Nomadik, with ECC. - config MTD_NAND_SH_FLCTL tristate "Support for NAND on Renesas SuperH FLCTL" - depends on SUPERH || ARCH_SHMOBILE + depends on SUPERH || ARCH_SHMOBILE || COMPILE_TEST + depends on HAS_IOMEM + depends on HAS_DMA help Several Renesas SuperH CPU has FLCTL. This option enables support for NAND Flash using FLCTL. config MTD_NAND_DAVINCI - tristate "Support NAND on DaVinci SoC" - depends on ARCH_DAVINCI + tristate "Support NAND on DaVinci/Keystone SoC" + depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) help Enable the driver for NAND flash chips on Texas Instruments - DaVinci processors. + DaVinci/Keystone processors. config MTD_NAND_TXX9NDFMC tristate "NAND Flash support for TXx9 SoC" @@ -602,9 +500,17 @@ config MTD_NAND_JZ4740 config MTD_NAND_FSMC tristate "Support for NAND on ST Micros FSMC" - depends on PLAT_SPEAR || PLAT_NOMADIK || MACH_U300 + depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300 help Enables support for NAND Flash chips on the ST Microelectronics Flexible Static Memory Controller (FSMC) +config MTD_NAND_XWAY + tristate "Support for NAND on Lantiq XWAY SoC" + depends on LANTIQ && SOC_TYPE_XWAY + select MTD_NAND_PLATFORM + help + Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached + to the External Bus Unit (EBU). + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index d4b4d8739bd..542b5689eb6 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -9,20 +9,17 @@ obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o -obj-$(CONFIG_MTD_NAND_SPIA) += spia.o obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o -obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o obj-$(CONFIG_MTD_NAND_DENALI) += denali.o +obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o +obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o -obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o -obj-$(CONFIG_MTD_NAND_H1900) += h1910.o -obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o @@ -34,22 +31,23 @@ obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o -obj-$(CONFIG_MTD_ALAUDA) += alauda.o obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o +obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o +obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o -obj-$(CONFIG_MTD_NAND_NOMADIK) += nomadik_nand.o -obj-$(CONFIG_MTD_NAND_BCM_UMI) += bcm_umi_nand.o nand_bcm_umi.o obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o obj-$(CONFIG_MTD_NAND_RICOH) += r852.o obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ +obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ nand-objs := nand_base.o nand_bbt.o diff --git a/drivers/mtd/nand/alauda.c b/drivers/mtd/nand/alauda.c deleted file mode 100644 index 60a0dfdb080..00000000000 --- a/drivers/mtd/nand/alauda.c +++ /dev/null @@ -1,723 +0,0 @@ -/* - * MTD driver for Alauda chips - * - * Copyright (C) 2007 Joern Engel <joern@logfs.org> - * - * Based on drivers/usb/usb-skeleton.c which is: - * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com) - * and on drivers/usb/storage/alauda.c, which is: - * (c) 2005 Daniel Drake <dsd@gentoo.org> - * - * Idea and initial work by Arnd Bergmann <arnd@arndb.de> - */ -#include <linux/kernel.h> -#include <linux/errno.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/kref.h> -#include <linux/usb.h> -#include <linux/mutex.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand_ecc.h> - -/* Control commands */ -#define ALAUDA_GET_XD_MEDIA_STATUS 0x08 -#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a -#define ALAUDA_GET_XD_MEDIA_SIG 0x86 - -/* Common prefix */ -#define ALAUDA_BULK_CMD 0x40 - -/* The two ports */ -#define ALAUDA_PORT_XD 0x00 -#define ALAUDA_PORT_SM 0x01 - -/* Bulk commands */ -#define ALAUDA_BULK_READ_PAGE 0x84 -#define ALAUDA_BULK_READ_OOB 0x85 /* don't use, there's a chip bug */ -#define ALAUDA_BULK_READ_BLOCK 0x94 -#define ALAUDA_BULK_ERASE_BLOCK 0xa3 -#define ALAUDA_BULK_WRITE_PAGE 0xa4 -#define ALAUDA_BULK_WRITE_BLOCK 0xb4 -#define ALAUDA_BULK_RESET_MEDIA 0xe0 - -/* Address shifting */ -#define PBA_LO(pba) ((pba & 0xF) << 5) -#define PBA_HI(pba) (pba >> 3) -#define PBA_ZONE(pba) (pba >> 11) - -#define TIMEOUT HZ - -static const struct usb_device_id alauda_table[] = { - { USB_DEVICE(0x0584, 0x0008) }, /* Fujifilm DPC-R1 */ - { USB_DEVICE(0x07b4, 0x010a) }, /* Olympus MAUSB-10 */ - { } -}; -MODULE_DEVICE_TABLE(usb, alauda_table); - -struct alauda_card { - u8 id; /* id byte */ - u8 chipshift; /* 1<<chipshift total size */ - u8 pageshift; /* 1<<pageshift page size */ - u8 blockshift; /* 1<<blockshift block size */ -}; - -struct alauda { - struct usb_device *dev; - struct usb_interface *interface; - struct mtd_info *mtd; - struct alauda_card *card; - struct mutex card_mutex; - u32 pagemask; - u32 bytemask; - u32 blockmask; - unsigned int write_out; - unsigned int bulk_in; - unsigned int bulk_out; - u8 port; - struct kref kref; -}; - -static struct alauda_card alauda_card_ids[] = { - /* NAND flash */ - { 0x6e, 20, 8, 12}, /* 1 MB */ - { 0xe8, 20, 8, 12}, /* 1 MB */ - { 0xec, 20, 8, 12}, /* 1 MB */ - { 0x64, 21, 8, 12}, /* 2 MB */ - { 0xea, 21, 8, 12}, /* 2 MB */ - { 0x6b, 22, 9, 13}, /* 4 MB */ - { 0xe3, 22, 9, 13}, /* 4 MB */ - { 0xe5, 22, 9, 13}, /* 4 MB */ - { 0xe6, 23, 9, 13}, /* 8 MB */ - { 0x73, 24, 9, 14}, /* 16 MB */ - { 0x75, 25, 9, 14}, /* 32 MB */ - { 0x76, 26, 9, 14}, /* 64 MB */ - { 0x79, 27, 9, 14}, /* 128 MB */ - { 0x71, 28, 9, 14}, /* 256 MB */ - - /* MASK ROM */ - { 0x5d, 21, 9, 13}, /* 2 MB */ - { 0xd5, 22, 9, 13}, /* 4 MB */ - { 0xd6, 23, 9, 13}, /* 8 MB */ - { 0x57, 24, 9, 13}, /* 16 MB */ - { 0x58, 25, 9, 13}, /* 32 MB */ - { } -}; - -static struct alauda_card *get_card(u8 id) -{ - struct alauda_card *card; - - for (card = alauda_card_ids; card->id; card++) - if (card->id == id) - return card; - return NULL; -} - -static void alauda_delete(struct kref *kref) -{ - struct alauda *al = container_of(kref, struct alauda, kref); - - if (al->mtd) { - mtd_device_unregister(al->mtd); - kfree(al->mtd); - } - usb_put_dev(al->dev); - kfree(al); -} - -static int alauda_get_media_status(struct alauda *al, void *buf) -{ - int ret; - - mutex_lock(&al->card_mutex); - ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0), - ALAUDA_GET_XD_MEDIA_STATUS, 0xc0, 0, 1, buf, 2, HZ); - mutex_unlock(&al->card_mutex); - return ret; -} - -static int alauda_ack_media(struct alauda *al) -{ - int ret; - - mutex_lock(&al->card_mutex); - ret = usb_control_msg(al->dev, usb_sndctrlpipe(al->dev, 0), - ALAUDA_ACK_XD_MEDIA_CHANGE, 0x40, 0, 1, NULL, 0, HZ); - mutex_unlock(&al->card_mutex); - return ret; -} - -static int alauda_get_media_signatures(struct alauda *al, void *buf) -{ - int ret; - - mutex_lock(&al->card_mutex); - ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0), - ALAUDA_GET_XD_MEDIA_SIG, 0xc0, 0, 0, buf, 4, HZ); - mutex_unlock(&al->card_mutex); - return ret; -} - -static void alauda_reset(struct alauda *al) -{ - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_RESET_MEDIA, 0, 0, - 0, 0, 0, 0, al->port - }; - mutex_lock(&al->card_mutex); - usb_bulk_msg(al->dev, al->bulk_out, command, 9, NULL, HZ); - mutex_unlock(&al->card_mutex); -} - -static void correct_data(void *buf, void *read_ecc, - int *corrected, int *uncorrected) -{ - u8 calc_ecc[3]; - int err; - - nand_calculate_ecc(NULL, buf, calc_ecc); - err = nand_correct_data(NULL, buf, read_ecc, calc_ecc); - if (err) { - if (err > 0) - (*corrected)++; - else - (*uncorrected)++; - } -} - -struct alauda_sg_request { - struct urb *urb[3]; - struct completion comp; -}; - -static void alauda_complete(struct urb *urb) -{ - struct completion *comp = urb->context; - - if (comp) - complete(comp); -} - -static int __alauda_read_page(struct mtd_info *mtd, loff_t from, void *buf, - void *oob) -{ - struct alauda_sg_request sg; - struct alauda *al = mtd->priv; - u32 pba = from >> al->card->blockshift; - u32 page = (from >> al->card->pageshift) & al->pagemask; - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_READ_PAGE, PBA_HI(pba), - PBA_ZONE(pba), 0, PBA_LO(pba) + page, 1, 0, al->port - }; - int i, err; - - for (i=0; i<3; i++) - sg.urb[i] = NULL; - - err = -ENOMEM; - for (i=0; i<3; i++) { - sg.urb[i] = usb_alloc_urb(0, GFP_NOIO); - if (!sg.urb[i]) - goto out; - } - init_completion(&sg.comp); - usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, mtd->writesize, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[2], al->dev, al->bulk_in, oob, 16, - alauda_complete, &sg.comp); - - mutex_lock(&al->card_mutex); - for (i=0; i<3; i++) { - err = usb_submit_urb(sg.urb[i], GFP_NOIO); - if (err) - goto cancel; - } - if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) { - err = -ETIMEDOUT; -cancel: - for (i=0; i<3; i++) { - usb_kill_urb(sg.urb[i]); - } - } - mutex_unlock(&al->card_mutex); - -out: - usb_free_urb(sg.urb[0]); - usb_free_urb(sg.urb[1]); - usb_free_urb(sg.urb[2]); - return err; -} - -static int alauda_read_page(struct mtd_info *mtd, loff_t from, - void *buf, u8 *oob, int *corrected, int *uncorrected) -{ - int err; - - err = __alauda_read_page(mtd, from, buf, oob); - if (err) - return err; - correct_data(buf, oob+13, corrected, uncorrected); - correct_data(buf+256, oob+8, corrected, uncorrected); - return 0; -} - -static int alauda_write_page(struct mtd_info *mtd, loff_t to, void *buf, - void *oob) -{ - struct alauda_sg_request sg; - struct alauda *al = mtd->priv; - u32 pba = to >> al->card->blockshift; - u32 page = (to >> al->card->pageshift) & al->pagemask; - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_PAGE, PBA_HI(pba), - PBA_ZONE(pba), 0, PBA_LO(pba) + page, 32, 0, al->port - }; - int i, err; - - for (i=0; i<3; i++) - sg.urb[i] = NULL; - - err = -ENOMEM; - for (i=0; i<3; i++) { - sg.urb[i] = usb_alloc_urb(0, GFP_NOIO); - if (!sg.urb[i]) - goto out; - } - init_completion(&sg.comp); - usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[1], al->dev, al->write_out, buf,mtd->writesize, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[2], al->dev, al->write_out, oob, 16, - alauda_complete, &sg.comp); - - mutex_lock(&al->card_mutex); - for (i=0; i<3; i++) { - err = usb_submit_urb(sg.urb[i], GFP_NOIO); - if (err) - goto cancel; - } - if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) { - err = -ETIMEDOUT; -cancel: - for (i=0; i<3; i++) { - usb_kill_urb(sg.urb[i]); - } - } - mutex_unlock(&al->card_mutex); - -out: - usb_free_urb(sg.urb[0]); - usb_free_urb(sg.urb[1]); - usb_free_urb(sg.urb[2]); - return err; -} - -static int alauda_erase_block(struct mtd_info *mtd, loff_t ofs) -{ - struct alauda_sg_request sg; - struct alauda *al = mtd->priv; - u32 pba = ofs >> al->card->blockshift; - u8 command[] = { - ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), - PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, al->port - }; - u8 buf[2]; - int i, err; - - for (i=0; i<2; i++) - sg.urb[i] = NULL; - - err = -ENOMEM; - for (i=0; i<2; i++) { - sg.urb[i] = usb_alloc_urb(0, GFP_NOIO); - if (!sg.urb[i]) - goto out; - } - init_completion(&sg.comp); - usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9, - alauda_complete, NULL); - usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, 2, - alauda_complete, &sg.comp); - - mutex_lock(&al->card_mutex); - for (i=0; i<2; i++) { - err = usb_submit_urb(sg.urb[i], GFP_NOIO); - if (err) - goto cancel; - } - if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) { - err = -ETIMEDOUT; -cancel: - for (i=0; i<2; i++) { - usb_kill_urb(sg.urb[i]); - } - } - mutex_unlock(&al->card_mutex); - -out: - usb_free_urb(sg.urb[0]); - usb_free_urb(sg.urb[1]); - return err; -} - -static int alauda_read_oob(struct mtd_info *mtd, loff_t from, void *oob) -{ - static u8 ignore_buf[512]; /* write only */ - - return __alauda_read_page(mtd, from, ignore_buf, oob); -} - -static int alauda_isbad(struct mtd_info *mtd, loff_t ofs) -{ - u8 oob[16]; - int err; - - err = alauda_read_oob(mtd, ofs, oob); - if (err) - return err; - - /* A block is marked bad if two or more bits are zero */ - return hweight8(oob[5]) >= 7 ? 0 : 1; -} - -static int alauda_bounce_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - struct alauda *al = mtd->priv; - void *bounce_buf; - int err, corrected=0, uncorrected=0; - - bounce_buf = kmalloc(mtd->writesize, GFP_KERNEL); - if (!bounce_buf) - return -ENOMEM; - - *retlen = len; - while (len) { - u8 oob[16]; - size_t byte = from & al->bytemask; - size_t cplen = min(len, mtd->writesize - byte); - - err = alauda_read_page(mtd, from, bounce_buf, oob, - &corrected, &uncorrected); - if (err) - goto out; - - memcpy(buf, bounce_buf + byte, cplen); - buf += cplen; - from += cplen; - len -= cplen; - } - err = 0; - if (corrected) - err = 1; /* return max_bitflips per ecc step */ - if (uncorrected) - err = -EBADMSG; -out: - kfree(bounce_buf); - return err; -} - -static int alauda_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - struct alauda *al = mtd->priv; - int err, corrected=0, uncorrected=0; - - if ((from & al->bytemask) || (len & al->bytemask)) - return alauda_bounce_read(mtd, from, len, retlen, buf); - - *retlen = len; - while (len) { - u8 oob[16]; - - err = alauda_read_page(mtd, from, buf, oob, - &corrected, &uncorrected); - if (err) - return err; - - buf += mtd->writesize; - from += mtd->writesize; - len -= mtd->writesize; - } - err = 0; - if (corrected) - err = 1; /* return max_bitflips per ecc step */ - if (uncorrected) - err = -EBADMSG; - return err; -} - -static int alauda_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - struct alauda *al = mtd->priv; - int err; - - if ((to & al->bytemask) || (len & al->bytemask)) - return -EINVAL; - - *retlen = len; - while (len) { - u32 page = (to >> al->card->pageshift) & al->pagemask; - u8 oob[16] = { 'h', 'e', 'l', 'l', 'o', 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; - - /* don't write to bad blocks */ - if (page == 0) { - err = alauda_isbad(mtd, to); - if (err) { - return -EIO; - } - } - nand_calculate_ecc(mtd, buf, &oob[13]); - nand_calculate_ecc(mtd, buf+256, &oob[8]); - - err = alauda_write_page(mtd, to, (void*)buf, oob); - if (err) - return err; - - buf += mtd->writesize; - to += mtd->writesize; - len -= mtd->writesize; - } - return 0; -} - -static int __alauda_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - struct alauda *al = mtd->priv; - u32 ofs = instr->addr; - u32 len = instr->len; - int err; - - if ((ofs & al->blockmask) || (len & al->blockmask)) - return -EINVAL; - - while (len) { - /* don't erase bad blocks */ - err = alauda_isbad(mtd, ofs); - if (err > 0) - err = -EIO; - if (err < 0) - return err; - - err = alauda_erase_block(mtd, ofs); - if (err < 0) - return err; - - ofs += mtd->erasesize; - len -= mtd->erasesize; - } - return 0; -} - -static int alauda_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - int err; - - err = __alauda_erase(mtd, instr); - instr->state = err ? MTD_ERASE_FAILED : MTD_ERASE_DONE; - mtd_erase_callback(instr); - return err; -} - -static int alauda_init_media(struct alauda *al) -{ - u8 buf[4], *b0=buf, *b1=buf+1; - struct alauda_card *card; - struct mtd_info *mtd; - int err; - - mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); - if (!mtd) - return -ENOMEM; - - for (;;) { - err = alauda_get_media_status(al, buf); - if (err < 0) - goto error; - if (*b0 & 0x10) - break; - msleep(20); - } - - err = alauda_ack_media(al); - if (err) - goto error; - - msleep(10); - - err = alauda_get_media_status(al, buf); - if (err < 0) - goto error; - - if (*b0 != 0x14) { - /* media not ready */ - err = -EIO; - goto error; - } - err = alauda_get_media_signatures(al, buf); - if (err < 0) - goto error; - - card = get_card(*b1); - if (!card) { - printk(KERN_ERR"Alauda: unknown card id %02x\n", *b1); - err = -EIO; - goto error; - } - printk(KERN_INFO"pagesize=%x\nerasesize=%x\nsize=%xMiB\n", - 1<<card->pageshift, 1<<card->blockshift, - 1<<(card->chipshift-20)); - al->card = card; - al->pagemask = (1 << (card->blockshift - card->pageshift)) - 1; - al->bytemask = (1 << card->pageshift) - 1; - al->blockmask = (1 << card->blockshift) - 1; - - mtd->name = "alauda"; - mtd->size = 1<<card->chipshift; - mtd->erasesize = 1<<card->blockshift; - mtd->writesize = 1<<card->pageshift; - mtd->type = MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->_read = alauda_read; - mtd->_write = alauda_write; - mtd->_erase = alauda_erase; - mtd->_block_isbad = alauda_isbad; - mtd->priv = al; - mtd->owner = THIS_MODULE; - mtd->ecc_strength = 1; - - err = mtd_device_register(mtd, NULL, 0); - if (err) { - err = -ENFILE; - goto error; - } - - al->mtd = mtd; - alauda_reset(al); /* no clue whether this is necessary */ - return 0; -error: - kfree(mtd); - return err; -} - -static int alauda_check_media(struct alauda *al) -{ - u8 buf[2], *b0 = buf, *b1 = buf+1; - int err; - - err = alauda_get_media_status(al, buf); - if (err < 0) - return err; - - if ((*b1 & 0x01) == 0) { - /* door open */ - return -EIO; - } - if ((*b0 & 0x80) || ((*b0 & 0x1F) == 0x10)) { - /* no media ? */ - return -EIO; - } - if (*b0 & 0x08) { - /* media change ? */ - return alauda_init_media(al); - } - return 0; -} - -static int alauda_probe(struct usb_interface *interface, - const struct usb_device_id *id) -{ - struct alauda *al; - struct usb_host_interface *iface; - struct usb_endpoint_descriptor *ep, - *ep_in=NULL, *ep_out=NULL, *ep_wr=NULL; - int i, err = -ENOMEM; - - al = kzalloc(2*sizeof(*al), GFP_KERNEL); - if (!al) - goto error; - - kref_init(&al->kref); - usb_set_intfdata(interface, al); - - al->dev = usb_get_dev(interface_to_usbdev(interface)); - al->interface = interface; - - iface = interface->cur_altsetting; - for (i = 0; i < iface->desc.bNumEndpoints; ++i) { - ep = &iface->endpoint[i].desc; - - if (usb_endpoint_is_bulk_in(ep)) { - ep_in = ep; - } else if (usb_endpoint_is_bulk_out(ep)) { - if (i==0) - ep_wr = ep; - else - ep_out = ep; - } - } - err = -EIO; - if (!ep_wr || !ep_in || !ep_out) - goto error; - - al->write_out = usb_sndbulkpipe(al->dev, - usb_endpoint_num(ep_wr)); - al->bulk_in = usb_rcvbulkpipe(al->dev, - usb_endpoint_num(ep_in)); - al->bulk_out = usb_sndbulkpipe(al->dev, - usb_endpoint_num(ep_out)); - - /* second device is identical up to now */ - memcpy(al+1, al, sizeof(*al)); - - mutex_init(&al[0].card_mutex); - mutex_init(&al[1].card_mutex); - - al[0].port = ALAUDA_PORT_XD; - al[1].port = ALAUDA_PORT_SM; - - dev_info(&interface->dev, "alauda probed\n"); - alauda_check_media(al); - alauda_check_media(al+1); - - return 0; - -error: - if (al) - kref_put(&al->kref, alauda_delete); - return err; -} - -static void alauda_disconnect(struct usb_interface *interface) -{ - struct alauda *al; - - al = usb_get_intfdata(interface); - usb_set_intfdata(interface, NULL); - - /* FIXME: prevent more I/O from starting */ - - /* decrement our usage count */ - if (al) - kref_put(&al->kref, alauda_delete); - - dev_info(&interface->dev, "alauda gone"); -} - -static struct usb_driver alauda_driver = { - .name = "alauda", - .probe = alauda_probe, - .disconnect = alauda_disconnect, - .id_table = alauda_table, -}; - -module_usb_driver(alauda_driver); - -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index 861ca8f7e47..4936e9e0002 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c @@ -17,17 +17,20 @@ */ #include <linux/slab.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/gpio.h> +#include <linux/platform_data/gpio-omap.h> + #include <asm/io.h> -#include <mach/hardware.h> #include <asm/sizes.h> -#include <linux/gpio.h> -#include <plat/board-ams-delta.h> + +#include <mach/board-ams-delta.h> + +#include <mach/hardware.h> /* * MTD structure for E3 (Delta) @@ -103,18 +106,6 @@ static void ams_delta_read_buf(struct mtd_info *mtd, u_char *buf, int len) buf[i] = ams_delta_read_byte(mtd); } -static int ams_delta_verify_buf(struct mtd_info *mtd, const u_char *buf, - int len) -{ - int i; - - for (i=0; i<len; i++) - if (buf[i] != ams_delta_read_byte(mtd)) - return -EFAULT; - - return 0; -} - /* * Command control function * @@ -181,7 +172,7 @@ static const struct gpio _mandatory_gpio[] = { /* * Main initialization routine */ -static int __devinit ams_delta_init(struct platform_device *pdev) +static int ams_delta_init(struct platform_device *pdev) { struct nand_chip *this; struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); @@ -233,7 +224,6 @@ static int __devinit ams_delta_init(struct platform_device *pdev) this->read_byte = ams_delta_read_byte; this->write_buf = ams_delta_write_buf; this->read_buf = ams_delta_read_buf; - this->verify_buf = ams_delta_verify_buf; this->cmd_ctrl = ams_delta_hwcontrol; if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) { this->dev_ready = ams_delta_nand_ready; @@ -267,7 +257,6 @@ static int __devinit ams_delta_init(struct platform_device *pdev) out_mtd: gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); out_gpio: - platform_set_drvdata(pdev, NULL); gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB); iounmap(io_base); out_free: @@ -279,7 +268,7 @@ out_free: /* * Clean up routine */ -static int __devexit ams_delta_cleanup(struct platform_device *pdev) +static int ams_delta_cleanup(struct platform_device *pdev) { void __iomem *io_base = platform_get_drvdata(pdev); @@ -298,7 +287,7 @@ static int __devexit ams_delta_cleanup(struct platform_device *pdev) static struct platform_driver ams_delta_nand_driver = { .probe = ams_delta_init, - .remove = __devexit_p(ams_delta_cleanup), + .remove = ams_delta_cleanup, .driver = { .name = "ams-delta-nand", .owner = THIS_MODULE, diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index 97ac6712bb1..4ce181a35bc 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c @@ -1,20 +1,25 @@ /* - * Copyright (C) 2003 Rick Bronson + * Copyright © 2003 Rick Bronson * * Derived from drivers/mtd/nand/autcpu12.c - * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) + * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) * * Derived from drivers/mtd/spia.c - * Copyright (C) 2000 Steven J. Hill (sjhill@cotw.com) + * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) * * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 - * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright (C) 2007 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 * * Derived from Das U-Boot source code * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) - * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * + * Add Programmable Multibit ECC support for various AT91 SoC + * © Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -35,13 +40,13 @@ #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/gpio.h> +#include <linux/interrupt.h> #include <linux/io.h> #include <linux/platform_data/atmel.h> -#include <mach/cpu.h> - static int use_dma = 1; module_param(use_dma, int, 0); @@ -55,6 +60,7 @@ module_param(on_flash_bbt, int, 0); __raw_writel((value), add + ATMEL_ECC_##reg) #include "atmel_nand_ecc.h" /* Hardware ECC registers */ +#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */ /* oob layout for large page size * bad block info is on bytes 0 and 1 @@ -82,6 +88,23 @@ static struct nand_ecclayout atmel_oobinfo_small = { }, }; +struct atmel_nfc { + void __iomem *base_cmd_regs; + void __iomem *hsmc_regs; + void __iomem *sram_bank0; + dma_addr_t sram_bank0_phys; + bool use_nfc_sram; + bool write_by_sram; + + bool is_initialized; + struct completion comp_nfc; + + /* Point to the sram bank which include readed data via NFC */ + void __iomem *data_in_sram; + bool will_write_sram; +}; +static struct atmel_nfc nand_nfc; + struct atmel_nand_host { struct nand_chip nand_chip; struct mtd_info mtd; @@ -93,12 +116,39 @@ struct atmel_nand_host { struct completion comp; struct dma_chan *dma_chan; + + struct atmel_nfc *nfc; + + bool has_pmecc; + u8 pmecc_corr_cap; + u16 pmecc_sector_size; + u32 pmecc_lookup_table_offset; + u32 pmecc_lookup_table_offset_512; + u32 pmecc_lookup_table_offset_1024; + + int pmecc_bytes_per_sector; + int pmecc_sector_number; + int pmecc_degree; /* Degree of remainders */ + int pmecc_cw_len; /* Length of codeword */ + + void __iomem *pmerrloc_base; + void __iomem *pmecc_rom_base; + + /* lookup table for alpha_to and index_of */ + void __iomem *pmecc_alpha_to; + void __iomem *pmecc_index_of; + + /* data for pmecc computation */ + int16_t *pmecc_partial_syn; + int16_t *pmecc_si; + int16_t *pmecc_smu; /* Sigma table */ + int16_t *pmecc_lmu; /* polynomal order */ + int *pmecc_mu; + int *pmecc_dmu; + int *pmecc_delta; }; -static int cpu_has_dma(void) -{ - return cpu_is_at91sam9rl() || cpu_is_at91sam9g45(); -} +static struct nand_ecclayout atmel_pmecc_oobinfo; /* * Enable NAND. @@ -153,21 +203,103 @@ static int atmel_nand_device_ready(struct mtd_info *mtd) !!host->board.rdy_pin_active_low; } +/* Set up for hardware ready pin and enable pin. */ +static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + int res = 0; + + if (gpio_is_valid(host->board.rdy_pin)) { + res = devm_gpio_request(host->dev, + host->board.rdy_pin, "nand_rdy"); + if (res < 0) { + dev_err(host->dev, + "can't request rdy gpio %d\n", + host->board.rdy_pin); + return res; + } + + res = gpio_direction_input(host->board.rdy_pin); + if (res < 0) { + dev_err(host->dev, + "can't request input direction rdy gpio %d\n", + host->board.rdy_pin); + return res; + } + + chip->dev_ready = atmel_nand_device_ready; + } + + if (gpio_is_valid(host->board.enable_pin)) { + res = devm_gpio_request(host->dev, + host->board.enable_pin, "nand_enable"); + if (res < 0) { + dev_err(host->dev, + "can't request enable gpio %d\n", + host->board.enable_pin); + return res; + } + + res = gpio_direction_output(host->board.enable_pin, 1); + if (res < 0) { + dev_err(host->dev, + "can't request output direction enable gpio %d\n", + host->board.enable_pin); + return res; + } + } + + return res; +} + +static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u32 *t = trg; + const __iomem u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + *t++ = readl_relaxed(s++); +} + +static void memcpy32_toio(void __iomem *trg, const void *src, int size) +{ + int i; + u32 __iomem *t = trg; + const u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + writel_relaxed(*s++, t++); +} + /* * Minimal-overhead PIO for data access. */ static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; - __raw_readsb(nand_chip->IO_ADDR_R, buf, len); + if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { + memcpy32_fromio(buf, host->nfc->data_in_sram, len); + host->nfc->data_in_sram += len; + } else { + __raw_readsb(nand_chip->IO_ADDR_R, buf, len); + } } static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; - __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); + if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) { + memcpy32_fromio(buf, host->nfc->data_in_sram, len); + host->nfc->data_in_sram += len; + } else { + __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); + } } static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) @@ -189,6 +321,40 @@ static void dma_complete_func(void *completion) complete(completion); } +static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank) +{ + /* NFC only has two banks. Must be 0 or 1 */ + if (bank > 1) + return -EINVAL; + + if (bank) { + /* Only for a 2k-page or lower flash, NFC can handle 2 banks */ + if (host->mtd.writesize > 2048) + return -EINVAL; + nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1); + } else { + nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0); + } + + return 0; +} + +static uint nfc_get_sram_off(struct atmel_nand_host *host) +{ + if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) + return NFC_SRAM_BANK1_OFFSET; + else + return 0; +} + +static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host) +{ + if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1) + return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET; + else + return host->nfc->sram_bank0_phys; +} + static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, int is_read) { @@ -202,14 +368,14 @@ static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, void *p = buf; int err = -EIO; enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; + struct atmel_nfc *nfc = host->nfc; if (buf >= high_memory) goto err_buf; dma_dev = host->dma_chan->device; - flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP | - DMA_COMPL_SKIP_DEST_UNMAP; + flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; phys_addr = dma_map_single(dma_dev->dev, p, len, dir); if (dma_mapping_error(dma_dev->dev, phys_addr)) { @@ -218,11 +384,20 @@ static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, } if (is_read) { - dma_src_addr = host->io_phys; + if (nfc && nfc->data_in_sram) + dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram + - (nfc->sram_bank0 + nfc_get_sram_off(host))); + else + dma_src_addr = host->io_phys; + dma_dst_addr = phys_addr; } else { dma_src_addr = phys_addr; - dma_dst_addr = host->io_phys; + + if (nfc && nfc->write_by_sram) + dma_dst_addr = nfc_sram_phys(host); + else + dma_dst_addr = host->io_phys; } tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr, @@ -245,13 +420,17 @@ static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len, dma_async_issue_pending(host->dma_chan); wait_for_completion(&host->comp); + if (is_read && nfc && nfc->data_in_sram) + /* After read data from SRAM, need to increase the position */ + nfc->data_in_sram += len; + err = 0; err_dma: dma_unmap_single(dma_dev->dev, phys_addr, len, dir); err_buf: if (err != 0) - dev_warn(host->dev, "Fall back to CPU I/O\n"); + dev_dbg(host->dev, "Fall back to CPU I/O\n"); return err; } @@ -288,6 +467,772 @@ static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) } /* + * Return number of ecc bytes per sector according to sector size and + * correction capability + * + * Following table shows what at91 PMECC supported: + * Correction Capability Sector_512_bytes Sector_1024_bytes + * ===================== ================ ================= + * 2-bits 4-bytes 4-bytes + * 4-bits 7-bytes 7-bytes + * 8-bits 13-bytes 14-bytes + * 12-bits 20-bytes 21-bytes + * 24-bits 39-bytes 42-bytes + */ +static int pmecc_get_ecc_bytes(int cap, int sector_size) +{ + int m = 12 + sector_size / 512; + return (m * cap + 7) / 8; +} + +static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, + int oobsize, int ecc_len) +{ + int i; + + layout->eccbytes = ecc_len; + + /* ECC will occupy the last ecc_len bytes continuously */ + for (i = 0; i < ecc_len; i++) + layout->eccpos[i] = oobsize - ecc_len + i; + + layout->oobfree[0].offset = 2; + layout->oobfree[0].length = + oobsize - ecc_len - layout->oobfree[0].offset; +} + +static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) +{ + int table_size; + + table_size = host->pmecc_sector_size == 512 ? + PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024; + + return host->pmecc_rom_base + host->pmecc_lookup_table_offset + + table_size * sizeof(int16_t); +} + +static int pmecc_data_alloc(struct atmel_nand_host *host) +{ + const int cap = host->pmecc_corr_cap; + int size; + + size = (2 * cap + 1) * sizeof(int16_t); + host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_lmu = devm_kzalloc(host->dev, + (cap + 1) * sizeof(int16_t), GFP_KERNEL); + host->pmecc_smu = devm_kzalloc(host->dev, + (cap + 2) * size, GFP_KERNEL); + + size = (cap + 1) * sizeof(int); + host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL); + host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL); + + if (!host->pmecc_partial_syn || + !host->pmecc_si || + !host->pmecc_lmu || + !host->pmecc_smu || + !host->pmecc_mu || + !host->pmecc_dmu || + !host->pmecc_delta) + return -ENOMEM; + + return 0; +} + +static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i; + uint32_t value; + + /* Fill odd syndromes */ + for (i = 0; i < host->pmecc_corr_cap; i++) { + value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2); + if (i & 1) + value >>= 16; + value &= 0xffff; + host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; + } +} + +static void pmecc_substitute(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t *partial_syn = host->pmecc_partial_syn; + const int cap = host->pmecc_corr_cap; + int16_t *si; + int i, j; + + /* si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = host->pmecc_si; + + memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * cap; i += 2) { + for (j = 0; j < host->pmecc_degree; j++) { + if (partial_syn[i] & ((unsigned short)0x1 << j)) + si[i] = readw_relaxed(alpha_to + i * j) ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= cap; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + int16_t tmp; + + tmp = readw_relaxed(index_of + si[j]); + tmp = (tmp * 2) % host->pmecc_cw_len; + si[i] = readw_relaxed(alpha_to + tmp); + } + } + + return; +} + +static void pmecc_get_sigma(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + + int16_t *lmu = host->pmecc_lmu; + int16_t *si = host->pmecc_si; + int *mu = host->pmecc_mu; + int *dmu = host->pmecc_dmu; /* Discrepancy */ + int *delta = host->pmecc_delta; /* Delta order */ + int cw_len = host->pmecc_cw_len; + const int16_t cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int i, j, k; + uint32_t dmu_0_count, tmp; + int16_t *smu = host->pmecc_smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + memset(smu, 0, sizeof(int16_t) * num); + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + delta[0] = (mu[0] * 2 - lmu[0]) >> 1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + memset(&smu[num], 0, sizeof(int16_t) * num); + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + delta[1] = (mu[1] * 2 - lmu[1]) >> 1; + + /* Init the Sigma(x) last row */ + memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num); + + for (i = 1; i <= cap; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((cap - (lmu[i] >> 1) - 1) / 2); + if ((cap - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(cap + 1) * num + j] = + smu[i * num + j]; + + lmu[cap + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + int16_t a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + a = readw_relaxed(index_of + dmu[i]); + b = readw_relaxed(index_of + dmu[ro]); + c = readw_relaxed(index_of + smu[ro * num + k]); + tmp = a + (cw_len - b) + c; + a = readw_relaxed(alpha_to + tmp % cw_len); + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= cap) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + int16_t a, b, c; + a = readw_relaxed(index_of + + smu[(i + 1) * num + k]); + b = si[2 * (i - 1) + 3 - k]; + c = readw_relaxed(index_of + b); + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^ + dmu[i + 1]; + } + } + } + + return; +} + +static int pmecc_err_location(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + unsigned long end_time; + const int cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int sector_size = host->pmecc_sector_size; + int err_nbr = 0; /* number of error */ + int roots_nbr; /* number of roots */ + int i; + uint32_t val; + int16_t *smu = host->pmecc_smu; + + pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE); + + for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { + pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i, + smu[(cap + 1) * num + i]); + err_nbr++; + } + + val = (err_nbr - 1) << 16; + if (sector_size == 1024) + val |= 1; + + pmerrloc_writel(host->pmerrloc_base, ELCFG, val); + pmerrloc_writel(host->pmerrloc_base, ELEN, + sector_size * 8 + host->pmecc_degree * cap); + + end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); + while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) + & PMERRLOC_CALC_DONE)) { + if (unlikely(time_after(jiffies, end_time))) { + dev_err(host->dev, "PMECC: Timeout to calculate error location.\n"); + return -1; + } + cpu_relax(); + } + + roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR) + & PMERRLOC_ERR_NUM_MASK) >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) + return err_nbr - 1; + + /* Number of roots does not match the degree of smu + * unable to correct error */ + return -1; +} + +static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, + int sector_num, int extra_bytes, int err_nbr) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i = 0; + int byte_pos, bit_pos, sector_size, pos; + uint32_t tmp; + uint8_t err_byte; + + sector_size = host->pmecc_sector_size; + + while (err_nbr) { + tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1; + byte_pos = tmp / 8; + bit_pos = tmp % 8; + + if (byte_pos >= (sector_size + extra_bytes)) + BUG(); /* should never happen */ + + if (byte_pos < sector_size) { + err_byte = *(buf + byte_pos); + *(buf + byte_pos) ^= (1 << bit_pos); + + pos = sector_num * host->pmecc_sector_size + byte_pos; + dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, *(buf + byte_pos)); + } else { + /* Bit flip in OOB area */ + tmp = sector_num * host->pmecc_bytes_per_sector + + (byte_pos - sector_size); + err_byte = ecc[tmp]; + ecc[tmp] ^= (1 << bit_pos); + + pos = tmp + nand_chip->ecc.layout->eccpos[0]; + dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, ecc[tmp]); + } + + i++; + err_nbr--; + } + + return; +} + +static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, + u8 *ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + int i, err_nbr, eccbytes; + uint8_t *buf_pos; + int total_err = 0; + + eccbytes = nand_chip->ecc.bytes; + for (i = 0; i < eccbytes; i++) + if (ecc[i] != 0xff) + goto normal_check; + /* Erased page, return OK */ + return 0; + +normal_check: + for (i = 0; i < host->pmecc_sector_number; i++) { + err_nbr = 0; + if (pmecc_stat & 0x1) { + buf_pos = buf + i * host->pmecc_sector_size; + + pmecc_gen_syndrome(mtd, i); + pmecc_substitute(mtd); + pmecc_get_sigma(mtd); + + err_nbr = pmecc_err_location(mtd); + if (err_nbr == -1) { + dev_err(host->dev, "PMECC: Too many errors\n"); + mtd->ecc_stats.failed++; + return -EIO; + } else { + pmecc_correct_data(mtd, buf_pos, ecc, i, + host->pmecc_bytes_per_sector, err_nbr); + mtd->ecc_stats.corrected += err_nbr; + total_err += err_nbr; + } + } + pmecc_stat >>= 1; + } + + return total_err; +} + +static void pmecc_enable(struct atmel_nand_host *host, int ecc_op) +{ + u32 val; + + if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) { + dev_err(host->dev, "atmel_nand: wrong pmecc operation type!"); + return; + } + + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); + val = pmecc_readl_relaxed(host->ecc, CFG); + + if (ecc_op == NAND_ECC_READ) + pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP) + | PMECC_CFG_AUTO_ENABLE); + else + pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP) + & ~PMECC_CFG_AUTO_ENABLE); + + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA); +} + +static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + struct atmel_nand_host *host = chip->priv; + int eccsize = chip->ecc.size; + uint8_t *oob = chip->oob_poi; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint32_t stat; + unsigned long end_time; + int bitflips = 0; + + if (!host->nfc || !host->nfc->use_nfc_sram) + pmecc_enable(host, NAND_ECC_READ); + + chip->read_buf(mtd, buf, eccsize); + chip->read_buf(mtd, oob, mtd->oobsize); + + end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); + while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { + if (unlikely(time_after(jiffies, end_time))) { + dev_err(host->dev, "PMECC: Timeout to get error status.\n"); + return -EIO; + } + cpu_relax(); + } + + stat = pmecc_readl_relaxed(host->ecc, ISR); + if (stat != 0) { + bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]); + if (bitflips < 0) + /* uncorrectable errors */ + return 0; + } + + return bitflips; +} + +static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + struct atmel_nand_host *host = chip->priv; + uint32_t *eccpos = chip->ecc.layout->eccpos; + int i, j; + unsigned long end_time; + + if (!host->nfc || !host->nfc->write_by_sram) { + pmecc_enable(host, NAND_ECC_WRITE); + chip->write_buf(mtd, (u8 *)buf, mtd->writesize); + } + + end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS); + while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) { + if (unlikely(time_after(jiffies, end_time))) { + dev_err(host->dev, "PMECC: Timeout to get ECC value.\n"); + return -EIO; + } + cpu_relax(); + } + + for (i = 0; i < host->pmecc_sector_number; i++) { + for (j = 0; j < host->pmecc_bytes_per_sector; j++) { + int pos; + + pos = i * host->pmecc_bytes_per_sector + j; + chip->oob_poi[eccpos[pos]] = + pmecc_readb_ecc_relaxed(host->ecc, i, j); + } + } + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static void atmel_pmecc_core_init(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + uint32_t val = 0; + struct nand_ecclayout *ecc_layout; + + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); + + switch (host->pmecc_corr_cap) { + case 2: + val = PMECC_CFG_BCH_ERR2; + break; + case 4: + val = PMECC_CFG_BCH_ERR4; + break; + case 8: + val = PMECC_CFG_BCH_ERR8; + break; + case 12: + val = PMECC_CFG_BCH_ERR12; + break; + case 24: + val = PMECC_CFG_BCH_ERR24; + break; + } + + if (host->pmecc_sector_size == 512) + val |= PMECC_CFG_SECTOR512; + else if (host->pmecc_sector_size == 1024) + val |= PMECC_CFG_SECTOR1024; + + switch (host->pmecc_sector_number) { + case 1: + val |= PMECC_CFG_PAGE_1SECTOR; + break; + case 2: + val |= PMECC_CFG_PAGE_2SECTORS; + break; + case 4: + val |= PMECC_CFG_PAGE_4SECTORS; + break; + case 8: + val |= PMECC_CFG_PAGE_8SECTORS; + break; + } + + val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE + | PMECC_CFG_AUTO_DISABLE); + pmecc_writel(host->ecc, CFG, val); + + ecc_layout = nand_chip->ecc.layout; + pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1); + pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]); + pmecc_writel(host->ecc, EADDR, + ecc_layout->eccpos[ecc_layout->eccbytes - 1]); + /* See datasheet about PMECC Clock Control Register */ + pmecc_writel(host->ecc, CLK, 2); + pmecc_writel(host->ecc, IDR, 0xff); + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE); +} + +/* + * Get minimum ecc requirements from NAND. + * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function + * will set them according to minimum ecc requirement. Otherwise, use the + * value in DTS file. + * return 0 if success. otherwise return error code. + */ +static int pmecc_choose_ecc(struct atmel_nand_host *host, + int *cap, int *sector_size) +{ + /* Get minimum ECC requirements */ + if (host->nand_chip.ecc_strength_ds) { + *cap = host->nand_chip.ecc_strength_ds; + *sector_size = host->nand_chip.ecc_step_ds; + dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n", + *cap, *sector_size); + } else { + *cap = 2; + *sector_size = 512; + dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n"); + } + + /* If device tree doesn't specify, use NAND's minimum ECC parameters */ + if (host->pmecc_corr_cap == 0) { + /* use the most fitable ecc bits (the near bigger one ) */ + if (*cap <= 2) + host->pmecc_corr_cap = 2; + else if (*cap <= 4) + host->pmecc_corr_cap = 4; + else if (*cap <= 8) + host->pmecc_corr_cap = 8; + else if (*cap <= 12) + host->pmecc_corr_cap = 12; + else if (*cap <= 24) + host->pmecc_corr_cap = 24; + else + return -EINVAL; + } + if (host->pmecc_sector_size == 0) { + /* use the most fitable sector size (the near smaller one ) */ + if (*sector_size >= 1024) + host->pmecc_sector_size = 1024; + else if (*sector_size >= 512) + host->pmecc_sector_size = 512; + else + return -EINVAL; + } + return 0; +} + +static int atmel_pmecc_nand_init_params(struct platform_device *pdev, + struct atmel_nand_host *host) +{ + struct mtd_info *mtd = &host->mtd; + struct nand_chip *nand_chip = &host->nand_chip; + struct resource *regs, *regs_pmerr, *regs_rom; + int cap, sector_size, err_no; + + err_no = pmecc_choose_ecc(host, &cap, §or_size); + if (err_no) { + dev_err(host->dev, "The NAND flash's ECC requirement are not support!"); + return err_no; + } + + if (cap > host->pmecc_corr_cap || + sector_size != host->pmecc_sector_size) + dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n"); + + cap = host->pmecc_corr_cap; + sector_size = host->pmecc_sector_size; + host->pmecc_lookup_table_offset = (sector_size == 512) ? + host->pmecc_lookup_table_offset_512 : + host->pmecc_lookup_table_offset_1024; + + dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n", + cap, sector_size); + + regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!regs) { + dev_warn(host->dev, + "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n"); + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + host->ecc = devm_ioremap_resource(&pdev->dev, regs); + if (IS_ERR(host->ecc)) { + dev_err(host->dev, "ioremap failed\n"); + err_no = PTR_ERR(host->ecc); + goto err; + } + + regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2); + host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr); + if (IS_ERR(host->pmerrloc_base)) { + dev_err(host->dev, + "Can not get I/O resource for PMECC ERRLOC controller!\n"); + err_no = PTR_ERR(host->pmerrloc_base); + goto err; + } + + regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3); + host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom); + if (IS_ERR(host->pmecc_rom_base)) { + dev_err(host->dev, "Can not get I/O resource for ROM!\n"); + err_no = PTR_ERR(host->pmecc_rom_base); + goto err; + } + + /* ECC is calculated for the whole page (1 step) */ + nand_chip->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 2048: + host->pmecc_degree = (sector_size == 512) ? + PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; + host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; + host->pmecc_sector_number = mtd->writesize / sector_size; + host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( + cap, sector_size); + host->pmecc_alpha_to = pmecc_get_alpha_to(host); + host->pmecc_index_of = host->pmecc_rom_base + + host->pmecc_lookup_table_offset; + + nand_chip->ecc.steps = 1; + nand_chip->ecc.strength = cap; + nand_chip->ecc.bytes = host->pmecc_bytes_per_sector * + host->pmecc_sector_number; + if (nand_chip->ecc.bytes > mtd->oobsize - 2) { + dev_err(host->dev, "No room for ECC bytes\n"); + err_no = -EINVAL; + goto err; + } + pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, + mtd->oobsize, + nand_chip->ecc.bytes); + nand_chip->ecc.layout = &atmel_pmecc_oobinfo; + break; + case 512: + case 1024: + case 4096: + /* TODO */ + dev_warn(host->dev, + "Unsupported page size for PMECC, use Software ECC\n"); + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + /* Allocate data for PMECC computation */ + err_no = pmecc_data_alloc(host); + if (err_no) { + dev_err(host->dev, + "Cannot allocate memory for PMECC computation!\n"); + goto err; + } + + nand_chip->options |= NAND_NO_SUBPAGE_WRITE; + nand_chip->ecc.read_page = atmel_nand_pmecc_read_page; + nand_chip->ecc.write_page = atmel_nand_pmecc_write_page; + + atmel_pmecc_core_init(mtd); + + return 0; + +err: + return err_no; +} + +/* * Calculate HW ECC * * function called after a write @@ -346,10 +1291,9 @@ static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, * Workaround: Reset the parity registers before reading the * actual data. */ - if (cpu_is_at32ap7000()) { - struct atmel_nand_host *host = chip->priv; + struct atmel_nand_host *host = chip->priv; + if (host->board.need_reset_workaround) ecc_writel(host->ecc, CR, ATMEL_ECC_RST); - } /* read the page */ chip->read_buf(mtd, p, eccsize); @@ -470,21 +1414,21 @@ static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, */ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) { - if (cpu_is_at32ap7000()) { - struct nand_chip *nand_chip = mtd->priv; - struct atmel_nand_host *host = nand_chip->priv; + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + + if (host->board.need_reset_workaround) ecc_writel(host->ecc, CR, ATMEL_ECC_RST); - } } -#if defined(CONFIG_OF) -static int __devinit atmel_of_init_port(struct atmel_nand_host *host, - struct device_node *np) +static int atmel_of_init_port(struct atmel_nand_host *host, + struct device_node *np) { u32 val; + u32 offset[2]; int ecc_mode; struct atmel_nand_data *board = &host->board; - enum of_gpio_flags flags; + enum of_gpio_flags flags = 0; if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) { if (val >= 32) { @@ -508,6 +1452,8 @@ static int __devinit atmel_of_init_port(struct atmel_nand_host *host, board->on_flash_bbt = of_get_nand_on_flash_bbt(np); + board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma"); + if (of_get_nand_bus_width(np) == 16) board->bus_width_16 = 1; @@ -517,60 +1463,532 @@ static int __devinit atmel_of_init_port(struct atmel_nand_host *host, board->enable_pin = of_get_gpio(np, 1); board->det_pin = of_get_gpio(np, 2); + host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc"); + + /* load the nfc driver if there is */ + of_platform_populate(np, NULL, NULL, host->dev); + + if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc) + return 0; /* Not using PMECC */ + + /* use PMECC, get correction capability, sector size and lookup + * table offset. + * If correction bits and sector size are not specified, then find + * them from NAND ONFI parameters. + */ + if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) { + if ((val != 2) && (val != 4) && (val != 8) && (val != 12) && + (val != 24)) { + dev_err(host->dev, + "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n", + val); + return -EINVAL; + } + host->pmecc_corr_cap = (u8)val; + } + + if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) { + if ((val != 512) && (val != 1024)) { + dev_err(host->dev, + "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n", + val); + return -EINVAL; + } + host->pmecc_sector_size = (u16)val; + } + + if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset", + offset, 2) != 0) { + dev_err(host->dev, "Cannot get PMECC lookup table offset\n"); + return -EINVAL; + } + if (!offset[0] && !offset[1]) { + dev_err(host->dev, "Invalid PMECC lookup table offset\n"); + return -EINVAL; + } + host->pmecc_lookup_table_offset_512 = offset[0]; + host->pmecc_lookup_table_offset_1024 = offset[1]; + return 0; } -#else -static int __devinit atmel_of_init_port(struct atmel_nand_host *host, - struct device_node *np) + +static int atmel_hw_nand_init_params(struct platform_device *pdev, + struct atmel_nand_host *host) { - return -EINVAL; + struct mtd_info *mtd = &host->mtd; + struct nand_chip *nand_chip = &host->nand_chip; + struct resource *regs; + + regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!regs) { + dev_err(host->dev, + "Can't get I/O resource regs, use software ECC\n"); + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + host->ecc = devm_ioremap_resource(&pdev->dev, regs); + if (IS_ERR(host->ecc)) { + dev_err(host->dev, "ioremap failed\n"); + return PTR_ERR(host->ecc); + } + + /* ECC is calculated for the whole page (1 step) */ + nand_chip->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 512: + nand_chip->ecc.layout = &atmel_oobinfo_small; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); + break; + case 1024: + nand_chip->ecc.layout = &atmel_oobinfo_large; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); + break; + case 2048: + nand_chip->ecc.layout = &atmel_oobinfo_large; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); + break; + case 4096: + nand_chip->ecc.layout = &atmel_oobinfo_large; + ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); + break; + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand_chip->ecc.mode = NAND_ECC_SOFT; + return 0; + } + + /* set up for HW ECC */ + nand_chip->ecc.calculate = atmel_nand_calculate; + nand_chip->ecc.correct = atmel_nand_correct; + nand_chip->ecc.hwctl = atmel_nand_hwctl; + nand_chip->ecc.read_page = atmel_nand_read_page; + nand_chip->ecc.bytes = 4; + nand_chip->ecc.strength = 1; + + return 0; +} + +/* SMC interrupt service routine */ +static irqreturn_t hsmc_interrupt(int irq, void *dev_id) +{ + struct atmel_nand_host *host = dev_id; + u32 status, mask, pending; + irqreturn_t ret = IRQ_HANDLED; + + status = nfc_readl(host->nfc->hsmc_regs, SR); + mask = nfc_readl(host->nfc->hsmc_regs, IMR); + pending = status & mask; + + if (pending & NFC_SR_XFR_DONE) { + complete(&host->nfc->comp_nfc); + nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE); + } else if (pending & NFC_SR_RB_EDGE) { + complete(&host->nfc->comp_nfc); + nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE); + } else if (pending & NFC_SR_CMD_DONE) { + complete(&host->nfc->comp_nfc); + nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE); + } else { + ret = IRQ_NONE; + } + + return ret; } -#endif +/* NFC(Nand Flash Controller) related functions */ +static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag) +{ + unsigned long timeout; + init_completion(&host->nfc->comp_nfc); + + /* Enable interrupt that need to wait for */ + nfc_writel(host->nfc->hsmc_regs, IER, flag); + + timeout = wait_for_completion_timeout(&host->nfc->comp_nfc, + msecs_to_jiffies(NFC_TIME_OUT_MS)); + if (timeout) + return 0; + + /* Time out to wait for the interrupt */ + dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag); + return -ETIMEDOUT; +} + +static int nfc_send_command(struct atmel_nand_host *host, + unsigned int cmd, unsigned int addr, unsigned char cycle0) +{ + unsigned long timeout; + dev_dbg(host->dev, + "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n", + cmd, addr, cycle0); + + timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); + while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs) + & NFCADDR_CMD_NFCBUSY) { + if (time_after(jiffies, timeout)) { + dev_err(host->dev, + "Time out to wait CMD_NFCBUSY ready!\n"); + return -ETIMEDOUT; + } + } + nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0); + nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs); + return nfc_wait_interrupt(host, NFC_SR_CMD_DONE); +} + +static int nfc_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE)) + return 1; + return 0; +} + +static void nfc_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd->priv; + struct atmel_nand_host *host = nand_chip->priv; + + if (chip == -1) + nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE); + else + nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE); +} + +static int nfc_make_addr(struct mtd_info *mtd, int command, int column, + int page_addr, unsigned int *addr1234, unsigned int *cycle0) +{ + struct nand_chip *chip = mtd->priv; + + int acycle = 0; + unsigned char addr_bytes[8]; + int index = 0, bit_shift; + + BUG_ON(addr1234 == NULL || cycle0 == NULL); + + *cycle0 = 0; + *addr1234 = 0; + + if (column != -1) { + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + addr_bytes[acycle++] = column & 0xff; + if (mtd->writesize > 512) + addr_bytes[acycle++] = (column >> 8) & 0xff; + } + + if (page_addr != -1) { + addr_bytes[acycle++] = page_addr & 0xff; + addr_bytes[acycle++] = (page_addr >> 8) & 0xff; + if (chip->chipsize > (128 << 20)) + addr_bytes[acycle++] = (page_addr >> 16) & 0xff; + } + + if (acycle > 4) + *cycle0 = addr_bytes[index++]; + + for (bit_shift = 0; index < acycle; bit_shift += 8) + *addr1234 += addr_bytes[index++] << bit_shift; + + /* return acycle in cmd register */ + return acycle << NFCADDR_CMD_ACYCLE_BIT_POS; +} + +static void nfc_nand_command(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + unsigned long timeout; + unsigned int nfc_addr_cmd = 0; + + unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; + + /* Set default settings: no cmd2, no addr cycle. read from nand */ + unsigned int cmd2 = 0; + unsigned int vcmd2 = 0; + int acycle = NFCADDR_CMD_ACYCLE_NONE; + int csid = NFCADDR_CMD_CSID_3; + int dataen = NFCADDR_CMD_DATADIS; + int nfcwr = NFCADDR_CMD_NFCRD; + unsigned int addr1234 = 0; + unsigned int cycle0 = 0; + bool do_addr = true; + host->nfc->data_in_sram = NULL; + + dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n", + __func__, command, column, page_addr); + + switch (command) { + case NAND_CMD_RESET: + nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr; + nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); + udelay(chip->chip_delay); + + nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1); + timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS); + while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) { + if (time_after(jiffies, timeout)) { + dev_err(host->dev, + "Time out to wait status ready!\n"); + break; + } + } + return; + case NAND_CMD_STATUS: + do_addr = false; + break; + case NAND_CMD_PARAM: + case NAND_CMD_READID: + do_addr = false; + acycle = NFCADDR_CMD_ACYCLE_1; + if (column != -1) + addr1234 = column; + break; + case NAND_CMD_RNDOUT: + cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS; + vcmd2 = NFCADDR_CMD_VCMD2; + break; + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + if (command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; /* only READ0 is valid */ + cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS; + } + if (host->nfc->use_nfc_sram) { + /* Enable Data transfer to sram */ + dataen = NFCADDR_CMD_DATAEN; + + /* Need enable PMECC now, since NFC will transfer + * data in bus after sending nfc read command. + */ + if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) + pmecc_enable(host, NAND_ECC_READ); + } + + cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS; + vcmd2 = NFCADDR_CMD_VCMD2; + break; + /* For prgramming command, the cmd need set to write enable */ + case NAND_CMD_PAGEPROG: + case NAND_CMD_SEQIN: + case NAND_CMD_RNDIN: + nfcwr = NFCADDR_CMD_NFCWR; + if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN) + dataen = NFCADDR_CMD_DATAEN; + break; + default: + break; + } + + if (do_addr) + acycle = nfc_make_addr(mtd, command, column, page_addr, + &addr1234, &cycle0); + + nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr; + nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0); + + if (dataen == NFCADDR_CMD_DATAEN) + if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE)) + dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n"); + + /* + * Program and erase have their own busy handlers status, sequential + * in, and deplete1 need no delay. + */ + switch (command) { + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_RNDIN: + case NAND_CMD_STATUS: + case NAND_CMD_RNDOUT: + case NAND_CMD_SEQIN: + case NAND_CMD_READID: + return; + + case NAND_CMD_READ0: + if (dataen == NFCADDR_CMD_DATAEN) { + host->nfc->data_in_sram = host->nfc->sram_bank0 + + nfc_get_sram_off(host); + return; + } + /* fall through */ + default: + nfc_wait_interrupt(host, NFC_SR_RB_EDGE); + } +} + +static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offset, int data_len, const uint8_t *buf, + int oob_required, int page, int cached, int raw) +{ + int cfg, len; + int status = 0; + struct atmel_nand_host *host = chip->priv; + void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host); + + /* Subpage write is not supported */ + if (offset || (data_len < mtd->writesize)) + return -EINVAL; + + cfg = nfc_readl(host->nfc->hsmc_regs, CFG); + len = mtd->writesize; + + if (unlikely(raw)) { + len += mtd->oobsize; + nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE); + } else + nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE); + + /* Copy page data to sram that will write to nand via NFC */ + if (use_dma) { + if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0) + /* Fall back to use cpu copy */ + memcpy32_toio(sram, buf, len); + } else { + memcpy32_toio(sram, buf, len); + } + + if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) + /* + * When use NFC sram, need set up PMECC before send + * NAND_CMD_SEQIN command. Since when the nand command + * is sent, nfc will do transfer from sram and nand. + */ + pmecc_enable(host, NAND_ECC_WRITE); + + host->nfc->will_write_sram = true; + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + host->nfc->will_write_sram = false; + + if (likely(!raw)) + /* Need to write ecc into oob */ + status = chip->ecc.write_page(mtd, chip, buf, oob_required); + + if (status < 0) + return status; + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + + if ((status & NAND_STATUS_FAIL) && (chip->errstat)) + status = chip->errstat(mtd, chip, FL_WRITING, status, page); + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int nfc_sram_init(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct atmel_nand_host *host = chip->priv; + int res = 0; + + /* Initialize the NFC CFG register */ + unsigned int cfg_nfc = 0; + + /* set page size and oob layout */ + switch (mtd->writesize) { + case 512: + cfg_nfc = NFC_CFG_PAGESIZE_512; + break; + case 1024: + cfg_nfc = NFC_CFG_PAGESIZE_1024; + break; + case 2048: + cfg_nfc = NFC_CFG_PAGESIZE_2048; + break; + case 4096: + cfg_nfc = NFC_CFG_PAGESIZE_4096; + break; + case 8192: + cfg_nfc = NFC_CFG_PAGESIZE_8192; + break; + default: + dev_err(host->dev, "Unsupported page size for NFC.\n"); + res = -ENXIO; + return res; + } + + /* oob bytes size = (NFCSPARESIZE + 1) * 4 + * Max support spare size is 512 bytes. */ + cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS + & NFC_CFG_NFC_SPARESIZE); + /* default set a max timeout */ + cfg_nfc |= NFC_CFG_RSPARE | + NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL; + + nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc); + + host->nfc->will_write_sram = false; + nfc_set_sram_bank(host, 0); + + /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */ + if (host->nfc->write_by_sram) { + if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) || + chip->ecc.mode == NAND_ECC_NONE) + chip->write_page = nfc_sram_write_page; + else + host->nfc->write_by_sram = false; + } + + dev_info(host->dev, "Using NFC Sram read %s\n", + host->nfc->write_by_sram ? "and write" : ""); + return 0; +} + +static struct platform_driver atmel_nand_nfc_driver; /* * Probe for the NAND device. */ -static int __init atmel_nand_probe(struct platform_device *pdev) +static int atmel_nand_probe(struct platform_device *pdev) { struct atmel_nand_host *host; struct mtd_info *mtd; struct nand_chip *nand_chip; - struct resource *regs; struct resource *mem; struct mtd_part_parser_data ppdata = {}; - int res; - - mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!mem) { - printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n"); - return -ENXIO; - } + int res, irq; /* Allocate memory for the device structure (and zero it) */ - host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL); - if (!host) { - printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n"); + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) return -ENOMEM; - } - host->io_phys = (dma_addr_t)mem->start; + res = platform_driver_register(&atmel_nand_nfc_driver); + if (res) + dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n"); - host->io_base = ioremap(mem->start, resource_size(mem)); - if (host->io_base == NULL) { - printk(KERN_ERR "atmel_nand: ioremap failed\n"); - res = -EIO; + mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->io_base = devm_ioremap_resource(&pdev->dev, mem); + if (IS_ERR(host->io_base)) { + dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n"); + res = PTR_ERR(host->io_base); goto err_nand_ioremap; } + host->io_phys = (dma_addr_t)mem->start; mtd = &host->mtd; nand_chip = &host->nand_chip; host->dev = &pdev->dev; - if (pdev->dev.of_node) { + if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { + /* Only when CONFIG_OF is enabled of_node can be parsed */ res = atmel_of_init_port(host, pdev->dev.of_node); if (res) goto err_nand_ioremap; } else { - memcpy(&host->board, pdev->dev.platform_data, + memcpy(&host->board, dev_get_platdata(&pdev->dev), sizeof(struct atmel_nand_data)); } @@ -581,35 +1999,39 @@ static int __init atmel_nand_probe(struct platform_device *pdev) /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = host->io_base; nand_chip->IO_ADDR_W = host->io_base; - nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; - if (gpio_is_valid(host->board.rdy_pin)) - nand_chip->dev_ready = atmel_nand_device_ready; + if (nand_nfc.is_initialized) { + /* NFC driver is probed and initialized */ + host->nfc = &nand_nfc; - nand_chip->ecc.mode = host->board.ecc_mode; + nand_chip->select_chip = nfc_select_chip; + nand_chip->dev_ready = nfc_device_ready; + nand_chip->cmdfunc = nfc_nand_command; - regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); - if (!regs && nand_chip->ecc.mode == NAND_ECC_HW) { - printk(KERN_ERR "atmel_nand: can't get I/O resource " - "regs\nFalling back on software ECC\n"); - nand_chip->ecc.mode = NAND_ECC_SOFT; - } + /* Initialize the interrupt for NFC */ + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(host->dev, "Cannot get HSMC irq!\n"); + res = irq; + goto err_nand_ioremap; + } - if (nand_chip->ecc.mode == NAND_ECC_HW) { - host->ecc = ioremap(regs->start, resource_size(regs)); - if (host->ecc == NULL) { - printk(KERN_ERR "atmel_nand: ioremap failed\n"); - res = -EIO; - goto err_ecc_ioremap; + res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt, + 0, "hsmc", host); + if (res) { + dev_err(&pdev->dev, "Unable to request HSMC irq %d\n", + irq); + goto err_nand_ioremap; } - nand_chip->ecc.calculate = atmel_nand_calculate; - nand_chip->ecc.correct = atmel_nand_correct; - nand_chip->ecc.hwctl = atmel_nand_hwctl; - nand_chip->ecc.read_page = atmel_nand_read_page; - nand_chip->ecc.bytes = 4; - nand_chip->ecc.strength = 1; + } else { + res = atmel_nand_set_enable_ready_pins(mtd); + if (res) + goto err_nand_ioremap; + + nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl; } + nand_chip->ecc.mode = host->board.ecc_mode; nand_chip->chip_delay = 20; /* 20us command delay time */ if (host->board.bus_width_16) /* 16-bit bus width */ @@ -622,19 +2044,36 @@ static int __init atmel_nand_probe(struct platform_device *pdev) atmel_nand_enable(host); if (gpio_is_valid(host->board.det_pin)) { + res = devm_gpio_request(&pdev->dev, + host->board.det_pin, "nand_det"); + if (res < 0) { + dev_err(&pdev->dev, + "can't request det gpio %d\n", + host->board.det_pin); + goto err_no_card; + } + + res = gpio_direction_input(host->board.det_pin); + if (res < 0) { + dev_err(&pdev->dev, + "can't request input direction det gpio %d\n", + host->board.det_pin); + goto err_no_card; + } + if (gpio_get_value(host->board.det_pin)) { - printk(KERN_INFO "No SmartMedia card inserted.\n"); + dev_info(&pdev->dev, "No SmartMedia card inserted.\n"); res = -ENXIO; goto err_no_card; } } if (host->board.on_flash_bbt || on_flash_bbt) { - printk(KERN_INFO "atmel_nand: Use On Flash BBT\n"); + dev_info(&pdev->dev, "Use On Flash BBT\n"); nand_chip->bbt_options |= NAND_BBT_USE_FLASH; } - if (!cpu_has_dma()) + if (!host->board.has_dma) use_dma = 0; if (use_dma) { @@ -661,39 +2100,21 @@ static int __init atmel_nand_probe(struct platform_device *pdev) } if (nand_chip->ecc.mode == NAND_ECC_HW) { - /* ECC is calculated for the whole page (1 step) */ - nand_chip->ecc.size = mtd->writesize; - - /* set ECC page size and oob layout */ - switch (mtd->writesize) { - case 512: - nand_chip->ecc.layout = &atmel_oobinfo_small; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); - break; - case 1024: - nand_chip->ecc.layout = &atmel_oobinfo_large; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056); - break; - case 2048: - nand_chip->ecc.layout = &atmel_oobinfo_large; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112); - break; - case 4096: - nand_chip->ecc.layout = &atmel_oobinfo_large; - ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224); - break; - default: - /* page size not handled by HW ECC */ - /* switching back to soft ECC */ - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.calculate = NULL; - nand_chip->ecc.correct = NULL; - nand_chip->ecc.hwctl = NULL; - nand_chip->ecc.read_page = NULL; - nand_chip->ecc.postpad = 0; - nand_chip->ecc.prepad = 0; - nand_chip->ecc.bytes = 0; - break; + if (host->has_pmecc) + res = atmel_pmecc_nand_init_params(pdev, host); + else + res = atmel_hw_nand_init_params(pdev, host); + + if (res != 0) + goto err_hw_ecc; + } + + /* initialize the nfc configuration register */ + if (host->nfc && host->nfc->use_nfc_sram) { + res = nfc_sram_init(mtd); + if (res) { + host->nfc->use_nfc_sram = false; + dev_err(host->dev, "Disable use nfc sram for data transfer.\n"); } } @@ -711,25 +2132,22 @@ static int __init atmel_nand_probe(struct platform_device *pdev) return res; err_scan_tail: + if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); +err_hw_ecc: err_scan_ident: err_no_card: atmel_nand_disable(host); - platform_set_drvdata(pdev, NULL); if (host->dma_chan) dma_release_channel(host->dma_chan); - if (host->ecc) - iounmap(host->ecc); -err_ecc_ioremap: - iounmap(host->io_base); err_nand_ioremap: - kfree(host); return res; } /* * Remove a NAND device. */ -static int __exit atmel_nand_remove(struct platform_device *pdev) +static int atmel_nand_remove(struct platform_device *pdev) { struct atmel_nand_host *host = platform_get_drvdata(pdev); struct mtd_info *mtd = &host->mtd; @@ -738,29 +2156,82 @@ static int __exit atmel_nand_remove(struct platform_device *pdev) atmel_nand_disable(host); - if (host->ecc) - iounmap(host->ecc); + if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) { + pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE); + pmerrloc_writel(host->pmerrloc_base, ELDIS, + PMERRLOC_DISABLE); + } if (host->dma_chan) dma_release_channel(host->dma_chan); - iounmap(host->io_base); - kfree(host); + platform_driver_unregister(&atmel_nand_nfc_driver); return 0; } -#if defined(CONFIG_OF) static const struct of_device_id atmel_nand_dt_ids[] = { { .compatible = "atmel,at91rm9200-nand" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids); -#endif + +static int atmel_nand_nfc_probe(struct platform_device *pdev) +{ + struct atmel_nfc *nfc = &nand_nfc; + struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram; + + nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs); + if (IS_ERR(nfc->base_cmd_regs)) + return PTR_ERR(nfc->base_cmd_regs); + + nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); + nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs); + if (IS_ERR(nfc->hsmc_regs)) + return PTR_ERR(nfc->hsmc_regs); + + nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2); + if (nfc_sram) { + nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram); + if (IS_ERR(nfc->sram_bank0)) { + dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n", + PTR_ERR(nfc->sram_bank0)); + } else { + nfc->use_nfc_sram = true; + nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start; + + if (pdev->dev.of_node) + nfc->write_by_sram = of_property_read_bool( + pdev->dev.of_node, + "atmel,write-by-sram"); + } + } + + nfc->is_initialized = true; + dev_info(&pdev->dev, "NFC is probed.\n"); + return 0; +} + +static const struct of_device_id atmel_nand_nfc_match[] = { + { .compatible = "atmel,sama5d3-nfc" }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match); + +static struct platform_driver atmel_nand_nfc_driver = { + .driver = { + .name = "atmel_nand_nfc", + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(atmel_nand_nfc_match), + }, + .probe = atmel_nand_nfc_probe, +}; static struct platform_driver atmel_nand_driver = { - .remove = __exit_p(atmel_nand_remove), + .probe = atmel_nand_probe, + .remove = atmel_nand_remove, .driver = { .name = "atmel_nand", .owner = THIS_MODULE, @@ -768,20 +2239,7 @@ static struct platform_driver atmel_nand_driver = { }, }; -static int __init atmel_nand_init(void) -{ - return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe); -} - - -static void __exit atmel_nand_exit(void) -{ - platform_driver_unregister(&atmel_nand_driver); -} - - -module_init(atmel_nand_init); -module_exit(atmel_nand_exit); +module_platform_driver(atmel_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Rick Bronson"); diff --git a/drivers/mtd/nand/atmel_nand_ecc.h b/drivers/mtd/nand/atmel_nand_ecc.h index 578c776e135..8a1e9a68675 100644 --- a/drivers/mtd/nand/atmel_nand_ecc.h +++ b/drivers/mtd/nand/atmel_nand_ecc.h @@ -3,7 +3,7 @@ * Based on AT91SAM9260 datasheet revision B. * * Copyright (C) 2007 Andrew Victor - * Copyright (C) 2007 Atmel Corporation. + * Copyright (C) 2007 - 2012 Atmel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the @@ -36,4 +36,116 @@ #define ATMEL_ECC_NPR 0x10 /* NParity register */ #define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */ +/* PMECC Register Definitions */ +#define ATMEL_PMECC_CFG 0x000 /* Configuration Register */ +#define PMECC_CFG_BCH_ERR2 (0 << 0) +#define PMECC_CFG_BCH_ERR4 (1 << 0) +#define PMECC_CFG_BCH_ERR8 (2 << 0) +#define PMECC_CFG_BCH_ERR12 (3 << 0) +#define PMECC_CFG_BCH_ERR24 (4 << 0) + +#define PMECC_CFG_SECTOR512 (0 << 4) +#define PMECC_CFG_SECTOR1024 (1 << 4) + +#define PMECC_CFG_PAGE_1SECTOR (0 << 8) +#define PMECC_CFG_PAGE_2SECTORS (1 << 8) +#define PMECC_CFG_PAGE_4SECTORS (2 << 8) +#define PMECC_CFG_PAGE_8SECTORS (3 << 8) + +#define PMECC_CFG_READ_OP (0 << 12) +#define PMECC_CFG_WRITE_OP (1 << 12) + +#define PMECC_CFG_SPARE_ENABLE (1 << 16) +#define PMECC_CFG_SPARE_DISABLE (0 << 16) + +#define PMECC_CFG_AUTO_ENABLE (1 << 20) +#define PMECC_CFG_AUTO_DISABLE (0 << 20) + +#define ATMEL_PMECC_SAREA 0x004 /* Spare area size */ +#define ATMEL_PMECC_SADDR 0x008 /* PMECC starting address */ +#define ATMEL_PMECC_EADDR 0x00c /* PMECC ending address */ +#define ATMEL_PMECC_CLK 0x010 /* PMECC clock control */ +#define PMECC_CLK_133MHZ (2 << 0) + +#define ATMEL_PMECC_CTRL 0x014 /* PMECC control register */ +#define PMECC_CTRL_RST (1 << 0) +#define PMECC_CTRL_DATA (1 << 1) +#define PMECC_CTRL_USER (1 << 2) +#define PMECC_CTRL_ENABLE (1 << 4) +#define PMECC_CTRL_DISABLE (1 << 5) + +#define ATMEL_PMECC_SR 0x018 /* PMECC status register */ +#define PMECC_SR_BUSY (1 << 0) +#define PMECC_SR_ENABLE (1 << 4) + +#define ATMEL_PMECC_IER 0x01c /* PMECC interrupt enable */ +#define PMECC_IER_ENABLE (1 << 0) +#define ATMEL_PMECC_IDR 0x020 /* PMECC interrupt disable */ +#define PMECC_IER_DISABLE (1 << 0) +#define ATMEL_PMECC_IMR 0x024 /* PMECC interrupt mask */ +#define PMECC_IER_MASK (1 << 0) +#define ATMEL_PMECC_ISR 0x028 /* PMECC interrupt status */ +#define ATMEL_PMECC_ECCx 0x040 /* PMECC ECC x */ +#define ATMEL_PMECC_REMx 0x240 /* PMECC REM x */ + +/* PMERRLOC Register Definitions */ +#define ATMEL_PMERRLOC_ELCFG 0x000 /* Error location config */ +#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) +#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) +#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) + +#define ATMEL_PMERRLOC_ELPRIM 0x004 /* Error location primitive */ +#define ATMEL_PMERRLOC_ELEN 0x008 /* Error location enable */ +#define ATMEL_PMERRLOC_ELDIS 0x00c /* Error location disable */ +#define PMERRLOC_DISABLE (1 << 0) + +#define ATMEL_PMERRLOC_ELSR 0x010 /* Error location status */ +#define PMERRLOC_ELSR_BUSY (1 << 0) +#define ATMEL_PMERRLOC_ELIER 0x014 /* Error location int enable */ +#define ATMEL_PMERRLOC_ELIDR 0x018 /* Error location int disable */ +#define ATMEL_PMERRLOC_ELIMR 0x01c /* Error location int mask */ +#define ATMEL_PMERRLOC_ELISR 0x020 /* Error location int status */ +#define PMERRLOC_ERR_NUM_MASK (0x1f << 8) +#define PMERRLOC_CALC_DONE (1 << 0) +#define ATMEL_PMERRLOC_SIGMAx 0x028 /* Error location SIGMA x */ +#define ATMEL_PMERRLOC_ELx 0x08c /* Error location x */ + +/* Register access macros for PMECC */ +#define pmecc_readl_relaxed(addr, reg) \ + readl_relaxed((addr) + ATMEL_PMECC_##reg) + +#define pmecc_writel(addr, reg, value) \ + writel((value), (addr) + ATMEL_PMECC_##reg) + +#define pmecc_readb_ecc_relaxed(addr, sector, n) \ + readb_relaxed((addr) + ATMEL_PMECC_ECCx + ((sector) * 0x40) + (n)) + +#define pmecc_readl_rem_relaxed(addr, sector, n) \ + readl_relaxed((addr) + ATMEL_PMECC_REMx + ((sector) * 0x40) + ((n) * 4)) + +#define pmerrloc_readl_relaxed(addr, reg) \ + readl_relaxed((addr) + ATMEL_PMERRLOC_##reg) + +#define pmerrloc_writel(addr, reg, value) \ + writel((value), (addr) + ATMEL_PMERRLOC_##reg) + +#define pmerrloc_writel_sigma_relaxed(addr, n, value) \ + writel_relaxed((value), (addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) + +#define pmerrloc_readl_sigma_relaxed(addr, n) \ + readl_relaxed((addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4)) + +#define pmerrloc_readl_el_relaxed(addr, n) \ + readl_relaxed((addr) + ATMEL_PMERRLOC_ELx + ((n) * 4)) + +/* Galois field dimension */ +#define PMECC_GF_DIMENSION_13 13 +#define PMECC_GF_DIMENSION_14 14 + +#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 +#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 + +/* Time out value for reading PMECC status register */ +#define PMECC_MAX_TIMEOUT_MS 100 + #endif diff --git a/drivers/mtd/nand/atmel_nand_nfc.h b/drivers/mtd/nand/atmel_nand_nfc.h new file mode 100644 index 00000000000..4efd117cd3a --- /dev/null +++ b/drivers/mtd/nand/atmel_nand_nfc.h @@ -0,0 +1,98 @@ +/* + * Atmel Nand Flash Controller (NFC) - System peripherals regsters. + * Based on SAMA5D3 datasheet. + * + * © Copyright 2013 Atmel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + */ + +#ifndef ATMEL_NAND_NFC_H +#define ATMEL_NAND_NFC_H + +/* + * HSMC NFC registers + */ +#define ATMEL_HSMC_NFC_CFG 0x00 /* NFC Configuration Register */ +#define NFC_CFG_PAGESIZE (7 << 0) +#define NFC_CFG_PAGESIZE_512 (0 << 0) +#define NFC_CFG_PAGESIZE_1024 (1 << 0) +#define NFC_CFG_PAGESIZE_2048 (2 << 0) +#define NFC_CFG_PAGESIZE_4096 (3 << 0) +#define NFC_CFG_PAGESIZE_8192 (4 << 0) +#define NFC_CFG_WSPARE (1 << 8) +#define NFC_CFG_RSPARE (1 << 9) +#define NFC_CFG_NFC_DTOCYC (0xf << 16) +#define NFC_CFG_NFC_DTOMUL (0x7 << 20) +#define NFC_CFG_NFC_SPARESIZE (0x7f << 24) +#define NFC_CFG_NFC_SPARESIZE_BIT_POS 24 + +#define ATMEL_HSMC_NFC_CTRL 0x04 /* NFC Control Register */ +#define NFC_CTRL_ENABLE (1 << 0) +#define NFC_CTRL_DISABLE (1 << 1) + +#define ATMEL_HSMC_NFC_SR 0x08 /* NFC Status Register */ +#define NFC_SR_XFR_DONE (1 << 16) +#define NFC_SR_CMD_DONE (1 << 17) +#define NFC_SR_RB_EDGE (1 << 24) + +#define ATMEL_HSMC_NFC_IER 0x0c +#define ATMEL_HSMC_NFC_IDR 0x10 +#define ATMEL_HSMC_NFC_IMR 0x14 +#define ATMEL_HSMC_NFC_CYCLE0 0x18 /* NFC Address Cycle Zero */ +#define ATMEL_HSMC_NFC_ADDR_CYCLE0 (0xff) + +#define ATMEL_HSMC_NFC_BANK 0x1c /* NFC Bank Register */ +#define ATMEL_HSMC_NFC_BANK0 (0 << 0) +#define ATMEL_HSMC_NFC_BANK1 (1 << 0) + +#define nfc_writel(addr, reg, value) \ + writel((value), (addr) + ATMEL_HSMC_NFC_##reg) + +#define nfc_readl(addr, reg) \ + readl_relaxed((addr) + ATMEL_HSMC_NFC_##reg) + +/* + * NFC Address Command definitions + */ +#define NFCADDR_CMD_CMD1 (0xff << 2) /* Command for Cycle 1 */ +#define NFCADDR_CMD_CMD1_BIT_POS 2 +#define NFCADDR_CMD_CMD2 (0xff << 10) /* Command for Cycle 2 */ +#define NFCADDR_CMD_CMD2_BIT_POS 10 +#define NFCADDR_CMD_VCMD2 (0x1 << 18) /* Valid Cycle 2 Command */ +#define NFCADDR_CMD_ACYCLE (0x7 << 19) /* Number of Address required */ +#define NFCADDR_CMD_ACYCLE_NONE (0x0 << 19) +#define NFCADDR_CMD_ACYCLE_1 (0x1 << 19) +#define NFCADDR_CMD_ACYCLE_2 (0x2 << 19) +#define NFCADDR_CMD_ACYCLE_3 (0x3 << 19) +#define NFCADDR_CMD_ACYCLE_4 (0x4 << 19) +#define NFCADDR_CMD_ACYCLE_5 (0x5 << 19) +#define NFCADDR_CMD_ACYCLE_BIT_POS 19 +#define NFCADDR_CMD_CSID (0x7 << 22) /* Chip Select Identifier */ +#define NFCADDR_CMD_CSID_0 (0x0 << 22) +#define NFCADDR_CMD_CSID_1 (0x1 << 22) +#define NFCADDR_CMD_CSID_2 (0x2 << 22) +#define NFCADDR_CMD_CSID_3 (0x3 << 22) +#define NFCADDR_CMD_CSID_4 (0x4 << 22) +#define NFCADDR_CMD_CSID_5 (0x5 << 22) +#define NFCADDR_CMD_CSID_6 (0x6 << 22) +#define NFCADDR_CMD_CSID_7 (0x7 << 22) +#define NFCADDR_CMD_DATAEN (0x1 << 25) /* Data Transfer Enable */ +#define NFCADDR_CMD_DATADIS (0x0 << 25) /* Data Transfer Disable */ +#define NFCADDR_CMD_NFCRD (0x0 << 26) /* NFC Read Enable */ +#define NFCADDR_CMD_NFCWR (0x1 << 26) /* NFC Write Enable */ +#define NFCADDR_CMD_NFCBUSY (0x1 << 27) /* NFC Busy */ + +#define nfc_cmd_addr1234_writel(cmd, addr1234, nfc_base) \ + writel((addr1234), (cmd) + nfc_base) + +#define nfc_cmd_readl(bitstatus, nfc_base) \ + readl_relaxed((bitstatus) + nfc_base) + +#define NFC_TIME_OUT_MS 100 +#define NFC_SRAM_BANK1_OFFSET 0x1200 + +#endif diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c index 9f609d2dcf6..bc5c518828d 100644 --- a/drivers/mtd/nand/au1550nd.c +++ b/drivers/mtd/nand/au1550nd.c @@ -11,7 +11,6 @@ #include <linux/slab.h> #include <linux/gpio.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/mtd/mtd.h> @@ -141,28 +140,6 @@ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) } /** - * au_verify_buf - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - * - * verify function for 8bit buswidth - */ -static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd->priv; - - for (i = 0; i < len; i++) { - if (buf[i] != readb(this->IO_ADDR_R)) - return -EFAULT; - au_sync(); - } - - return 0; -} - -/** * au_write_buf16 - write buffer to chip * @mtd: MTD device structure * @buf: data buffer @@ -205,29 +182,6 @@ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) } } -/** - * au_verify_buf16 - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - * - * verify function for 16bit buswidth - */ -static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd->priv; - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) { - if (p[i] != readw(this->IO_ADDR_R)) - return -EFAULT; - au_sync(); - } - return 0; -} - /* Select the chip by setting nCE to low */ #define NAND_CTL_SETNCE 1 /* Deselect the chip by setting nCE to high */ @@ -353,7 +307,8 @@ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, i /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (this->options & NAND_BUSWIDTH_16) + if (this->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; ctx->write_byte(mtd, column); } @@ -427,7 +382,7 @@ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, i while(!this->dev_ready(mtd)); } -static int __devinit find_nand_cs(unsigned long nand_base) +static int find_nand_cs(unsigned long nand_base) { void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); @@ -448,7 +403,7 @@ static int __devinit find_nand_cs(unsigned long nand_base) return -ENODEV; } -static int __devinit au1550nd_probe(struct platform_device *pdev) +static int au1550nd_probe(struct platform_device *pdev) { struct au1550nd_platdata *pd; struct au1550nd_ctx *ctx; @@ -456,17 +411,15 @@ static int __devinit au1550nd_probe(struct platform_device *pdev) struct resource *r; int ret, cs; - pd = pdev->dev.platform_data; + pd = dev_get_platdata(&pdev->dev); if (!pd) { dev_err(&pdev->dev, "missing platform data\n"); return -ENODEV; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); - if (!ctx) { - dev_err(&pdev->dev, "no memory for NAND context\n"); + if (!ctx) return -ENOMEM; - } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { @@ -516,7 +469,6 @@ static int __devinit au1550nd_probe(struct platform_device *pdev) this->read_word = au_read_word; this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; - this->verify_buf = (pd->devwidth) ? au_verify_buf16 : au_verify_buf; ret = nand_scan(&ctx->info, 1); if (ret) { @@ -526,6 +478,8 @@ static int __devinit au1550nd_probe(struct platform_device *pdev) mtd_device_register(&ctx->info, pd->parts, pd->num_parts); + platform_set_drvdata(pdev, ctx); + return 0; out3: @@ -537,7 +491,7 @@ out1: return ret; } -static int __devexit au1550nd_remove(struct platform_device *pdev) +static int au1550nd_remove(struct platform_device *pdev) { struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); @@ -555,7 +509,7 @@ static struct platform_driver au1550nd_driver = { .owner = THIS_MODULE, }, .probe = au1550nd_probe, - .remove = __devexit_p(au1550nd_remove), + .remove = au1550nd_remove, }; module_platform_driver(au1550nd_driver); diff --git a/drivers/mtd/nand/autcpu12.c b/drivers/mtd/nand/autcpu12.c deleted file mode 100644 index 04769a49a7c..00000000000 --- a/drivers/mtd/nand/autcpu12.c +++ /dev/null @@ -1,237 +0,0 @@ -/* - * drivers/mtd/autcpu12.c - * - * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> - * - * Derived from drivers/mtd/spia.c - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * autronix autcpu12 board, which is a SmartMediaCard. It supports - * 16MiB, 32MiB and 64MiB cards. - * - * - * 02-12-2002 TG Cleanup of module params - * - * 02-20-2002 TG adjusted for different rd/wr address support - * added support for read device ready/busy line - * added page_cache - * - * 10-06-2002 TG 128K card support added - */ - -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <mach/hardware.h> -#include <asm/sizes.h> -#include <mach/autcpu12.h> - -/* - * MTD structure for AUTCPU12 board - */ -static struct mtd_info *autcpu12_mtd = NULL; -static void __iomem *autcpu12_fio_base; - -/* - * Define partitions for flash devices - */ -static struct mtd_partition partition_info16k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 8 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 8 * SZ_1M, - .size = 8 * SZ_1M }, -}; - -static struct mtd_partition partition_info32k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 8 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 8 * SZ_1M, - .size = 24 * SZ_1M }, -}; - -static struct mtd_partition partition_info64k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 16 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 16 * SZ_1M, - .size = 48 * SZ_1M }, -}; - -static struct mtd_partition partition_info128k[] = { - { .name = "AUTCPU12 flash partition 1", - .offset = 0, - .size = 16 * SZ_1M }, - { .name = "AUTCPU12 flash partition 2", - .offset = 16 * SZ_1M, - .size = 112 * SZ_1M }, -}; - -#define NUM_PARTITIONS16K 2 -#define NUM_PARTITIONS32K 2 -#define NUM_PARTITIONS64K 2 -#define NUM_PARTITIONS128K 2 -/* - * hardware specific access to control-lines - * - * ALE bit 4 autcpu12_pedr - * CLE bit 5 autcpu12_pedr - * NCE bit 0 fio_ctrl - * - */ -static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { - void __iomem *addr; - unsigned char bits; - - bits = clps_readb(AUTCPU12_SMC_PORT_OFFSET) & ~0x30; - bits |= (ctrl & NAND_CLE) << 4; - bits |= (ctrl & NAND_ALE) << 2; - clps_writeb(bits, AUTCPU12_SMC_PORT_OFFSET); - - addr = autcpu12_fio_base + AUTCPU12_SMC_SELECT_OFFSET; - writeb((readb(addr) & ~0x1) | (ctrl & NAND_NCE), addr); - } - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -/* - * read device ready pin - */ -int autcpu12_device_ready(struct mtd_info *mtd) -{ - return clps_readb(AUTCPU12_SMC_PORT_OFFSET) & AUTCPU12_SMC_RDY; -} - -/* - * Main initialization routine - */ -static int __init autcpu12_init(void) -{ - struct nand_chip *this; - int err = 0; - - /* Allocate memory for MTD device structure and private data */ - autcpu12_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), - GFP_KERNEL); - if (!autcpu12_mtd) { - printk("Unable to allocate AUTCPU12 NAND MTD device structure.\n"); - err = -ENOMEM; - goto out; - } - - /* map physical address */ - autcpu12_fio_base = ioremap(AUTCPU12_PHYS_SMC, SZ_1K); - if (!autcpu12_fio_base) { - printk("Ioremap autcpu12 SmartMedia Card failed\n"); - err = -EIO; - goto out_mtd; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&autcpu12_mtd[1]); - - /* Initialize structures */ - memset(autcpu12_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - autcpu12_mtd->priv = this; - autcpu12_mtd->owner = THIS_MODULE; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = autcpu12_fio_base; - this->IO_ADDR_W = autcpu12_fio_base; - this->cmd_ctrl = autcpu12_hwcontrol; - this->dev_ready = autcpu12_device_ready; - /* 20 us command delay time */ - this->chip_delay = 20; - this->ecc.mode = NAND_ECC_SOFT; - - /* Enable the following for a flash based bad block table */ - /* - this->bbt_options = NAND_BBT_USE_FLASH; - */ - this->bbt_options = NAND_BBT_USE_FLASH; - - /* Scan to find existence of the device */ - if (nand_scan(autcpu12_mtd, 1)) { - err = -ENXIO; - goto out_ior; - } - - /* Register the partitions */ - switch (autcpu12_mtd->size) { - case SZ_16M: - mtd_device_register(autcpu12_mtd, partition_info16k, - NUM_PARTITIONS16K); - break; - case SZ_32M: - mtd_device_register(autcpu12_mtd, partition_info32k, - NUM_PARTITIONS32K); - break; - case SZ_64M: - mtd_device_register(autcpu12_mtd, partition_info64k, - NUM_PARTITIONS64K); - break; - case SZ_128M: - mtd_device_register(autcpu12_mtd, partition_info128k, - NUM_PARTITIONS128K); - break; - default: - printk("Unsupported SmartMedia device\n"); - err = -ENXIO; - goto out_ior; - } - goto out; - - out_ior: - iounmap(autcpu12_fio_base); - out_mtd: - kfree(autcpu12_mtd); - out: - return err; -} - -module_init(autcpu12_init); - -/* - * Clean up routine - */ -static void __exit autcpu12_cleanup(void) -{ - /* Release resources, unregister device */ - nand_release(autcpu12_mtd); - - /* unmap physical address */ - iounmap(autcpu12_fio_base); - - /* Free the MTD device structure */ - kfree(autcpu12_mtd); -} - -module_exit(autcpu12_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); -MODULE_DESCRIPTION("Glue layer for SmartMediaCard on autronix autcpu12"); diff --git a/drivers/mtd/nand/bcm47xxnflash/Makefile b/drivers/mtd/nand/bcm47xxnflash/Makefile new file mode 100644 index 00000000000..f05b119e134 --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/Makefile @@ -0,0 +1,4 @@ +bcm47xxnflash-y += main.o +bcm47xxnflash-y += ops_bcm4706.o + +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash.o diff --git a/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h new file mode 100644 index 00000000000..c005a62330b --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h @@ -0,0 +1,26 @@ +#ifndef __BCM47XXNFLASH_H +#define __BCM47XXNFLASH_H + +#ifndef pr_fmt +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#endif + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> + +struct bcm47xxnflash { + struct bcma_drv_cc *cc; + + struct nand_chip nand_chip; + struct mtd_info mtd; + + unsigned curr_command; + int curr_page_addr; + int curr_column; + + u8 id_data[8]; +}; + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n); + +#endif /* BCM47XXNFLASH */ diff --git a/drivers/mtd/nand/bcm47xxnflash/main.c b/drivers/mtd/nand/bcm47xxnflash/main.c new file mode 100644 index 00000000000..10744591131 --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/main.c @@ -0,0 +1,80 @@ +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 RafaÅ‚ MiÅ‚ecki <zajec5@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include "bcm47xxnflash.h" + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/platform_device.h> +#include <linux/bcma/bcma.h> + +MODULE_DESCRIPTION("NAND flash driver for BCMA bus"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("RafaÅ‚ MiÅ‚ecki"); + +static const char *probes[] = { "bcm47xxpart", NULL }; + +static int bcm47xxnflash_probe(struct platform_device *pdev) +{ + struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); + struct bcm47xxnflash *b47n; + int err = 0; + + b47n = devm_kzalloc(&pdev->dev, sizeof(*b47n), GFP_KERNEL); + if (!b47n) + return -ENOMEM; + + b47n->nand_chip.priv = b47n; + b47n->mtd.owner = THIS_MODULE; + b47n->mtd.priv = &b47n->nand_chip; /* Required */ + b47n->cc = container_of(nflash, struct bcma_drv_cc, nflash); + + if (b47n->cc->core->bus->chipinfo.id == BCMA_CHIP_ID_BCM4706) { + err = bcm47xxnflash_ops_bcm4706_init(b47n); + } else { + pr_err("Device not supported\n"); + err = -ENOTSUPP; + } + if (err) { + pr_err("Initialization failed: %d\n", err); + return err; + } + + err = mtd_device_parse_register(&b47n->mtd, probes, NULL, NULL, 0); + if (err) { + pr_err("Failed to register MTD device: %d\n", err); + return err; + } + + return 0; +} + +static int bcm47xxnflash_remove(struct platform_device *pdev) +{ + struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); + + if (nflash->mtd) + mtd_device_unregister(nflash->mtd); + + return 0; +} + +static struct platform_driver bcm47xxnflash_driver = { + .probe = bcm47xxnflash_probe, + .remove = bcm47xxnflash_remove, + .driver = { + .name = "bcma_nflash", + .owner = THIS_MODULE, + }, +}; + +module_platform_driver(bcm47xxnflash_driver); diff --git a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c new file mode 100644 index 00000000000..b2ab373c9ee --- /dev/null +++ b/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c @@ -0,0 +1,413 @@ +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 RafaÅ‚ MiÅ‚ecki <zajec5@gmail.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include "bcm47xxnflash.h" + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/bcma/bcma.h> + +/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has + * shown ~1000 retries as maxiumum. */ +#define NFLASH_READY_RETRIES 10000 + +#define NFLASH_SECTOR_SIZE 512 + +#define NCTL_CMD0 0x00010000 +#define NCTL_CMD1W 0x00080000 +#define NCTL_READ 0x00100000 +#define NCTL_WRITE 0x00200000 +#define NCTL_SPECADDR 0x01000000 +#define NCTL_READY 0x04000000 +#define NCTL_ERR 0x08000000 +#define NCTL_CSA 0x40000000 +#define NCTL_START 0x80000000 + +/************************************************** + * Various helpers + **************************************************/ + +static inline u8 bcm47xxnflash_ops_bcm4706_ns_to_cycle(u16 ns, u16 clock) +{ + return ((ns * 1000 * clock) / 1000000) + 1; +} + +static int bcm47xxnflash_ops_bcm4706_ctl_cmd(struct bcma_drv_cc *cc, u32 code) +{ + int i = 0; + + bcma_cc_write32(cc, BCMA_CC_NFLASH_CTL, NCTL_START | code); + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (!(bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_START)) { + i = 0; + break; + } + } + if (i) { + pr_err("NFLASH control command not ready!\n"); + return -EBUSY; + } + return 0; +} + +static int bcm47xxnflash_ops_bcm4706_poll(struct bcma_drv_cc *cc) +{ + int i; + + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_READY) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & + BCMA_CC_NFLASH_CTL_ERR) { + pr_err("Error on polling\n"); + return -EBUSY; + } else { + return 0; + } + } + } + + pr_err("Polling timeout!\n"); + return -EBUSY; +} + +/************************************************** + * R/W + **************************************************/ + +static void bcm47xxnflash_ops_bcm4706_read(struct mtd_info *mtd, uint8_t *buf, + int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + + u32 ctlcode; + u32 *dest = (u32 *)buf; + int i; + int toread; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + while (len) { + /* We can read maximum of 0x200 bytes at once */ + toread = min(len, 0x200); + + /* Set page and column */ + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to read */ + ctlcode = NCTL_CSA | NCTL_CMD1W | 0x00040000 | 0x00020000 | + NCTL_CMD0; + ctlcode |= NAND_CMD_READSTART << 8; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) + return; + if (bcm47xxnflash_ops_bcm4706_poll(b47n->cc)) + return; + + /* Eventually read some data :) */ + for (i = 0; i < toread; i += 4, dest++) { + ctlcode = NCTL_CSA | 0x30000000 | NCTL_READ; + if (i == toread - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) + return; + *dest = bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA); + } + + b47n->curr_column += toread; + len -= toread; + } +} + +static void bcm47xxnflash_ops_bcm4706_write(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + struct bcma_drv_cc *cc = b47n->cc; + + u32 ctlcode; + const u32 *data = (u32 *)buf; + int i; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + for (i = 0; i < len; i += 4, data++) { + bcma_cc_write32(cc, BCMA_CC_NFLASH_DATA, *data); + + ctlcode = NCTL_CSA | 0x30000000 | NCTL_WRITE; + if (i == len - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) { + pr_err("%s ctl_cmd didn't work!\n", __func__); + return; + } + } + + b47n->curr_column += len; +} + +/************************************************** + * NAND chip ops + **************************************************/ + +/* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */ +static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd, + int chip) +{ + return; +} + +/* + * Default nand_command and nand_command_lp don't match BCM4706 hardware layout. + * For example, reading chip id is performed in a non-standard way. + * Setting column and page is also handled differently, we use a special + * registers of ChipCommon core. Hacking cmd_ctrl to understand and convert + * standard commands would be much more complicated. + */ +static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd, + unsigned command, int column, + int page_addr) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + struct bcma_drv_cc *cc = b47n->cc; + u32 ctlcode; + int i; + + if (column != -1) + b47n->curr_column = column; + if (page_addr != -1) + b47n->curr_page_addr = page_addr; + + switch (command) { + case NAND_CMD_RESET: + pr_warn("Chip reset not implemented yet\n"); + break; + case NAND_CMD_READID: + ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0; + ctlcode |= NAND_CMD_READID; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) { + pr_err("READID error\n"); + break; + } + + /* + * Reading is specific, last one has to go without NCTL_CSA + * bit. We don't know how many reads NAND subsystem is going + * to perform, so cache everything. + */ + for (i = 0; i < ARRAY_SIZE(b47n->id_data); i++) { + ctlcode = NCTL_CSA | NCTL_READ; + if (i == ARRAY_SIZE(b47n->id_data) - 1) + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) { + pr_err("READID error\n"); + break; + } + b47n->id_data[i] = + bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA) + & 0xFF; + } + + break; + case NAND_CMD_STATUS: + ctlcode = NCTL_CSA | NCTL_CMD0 | NAND_CMD_STATUS; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("STATUS command error\n"); + break; + case NAND_CMD_READ0: + break; + case NAND_CMD_READOOB: + if (page_addr != -1) + b47n->curr_column += mtd->writesize; + break; + case NAND_CMD_ERASE1: + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + ctlcode = 0x00040000 | NCTL_CMD1W | NCTL_CMD0 | + NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8); + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("ERASE1 failed\n"); + break; + case NAND_CMD_ERASE2: + break; + case NAND_CMD_SEQIN: + /* Set page and column */ + bcma_cc_write32(cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to write */ + ctlcode = 0x40000000 | 0x00040000 | 0x00020000 | 0x00010000; + ctlcode |= NAND_CMD_SEQIN; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("SEQIN failed\n"); + break; + case NAND_CMD_PAGEPROG: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, 0x00010000 | + NAND_CMD_PAGEPROG)) + pr_err("PAGEPROG failed\n"); + if (bcm47xxnflash_ops_bcm4706_poll(cc)) + pr_err("PAGEPROG not ready\n"); + break; + default: + pr_err("Command 0x%X unsupported\n", command); + break; + } + b47n->curr_command = command; +} + +static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + struct bcma_drv_cc *cc = b47n->cc; + u32 tmp = 0; + + switch (b47n->curr_command) { + case NAND_CMD_READID: + if (b47n->curr_column >= ARRAY_SIZE(b47n->id_data)) { + pr_err("Requested invalid id_data: %d\n", + b47n->curr_column); + return 0; + } + return b47n->id_data[b47n->curr_column++]; + case NAND_CMD_STATUS: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_READ)) + return 0; + return bcma_cc_read32(cc, BCMA_CC_NFLASH_DATA) & 0xff; + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(mtd, (u8 *)&tmp, 4); + return tmp & 0xFF; + } + + pr_err("Invalid command for byte read: 0x%X\n", b47n->curr_command); + return 0; +} + +static void bcm47xxnflash_ops_bcm4706_read_buf(struct mtd_info *mtd, + uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + + switch (b47n->curr_command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(mtd, buf, len); + return; + } + + pr_err("Invalid command for buf read: 0x%X\n", b47n->curr_command); +} + +static void bcm47xxnflash_ops_bcm4706_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv; + struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv; + + switch (b47n->curr_command) { + case NAND_CMD_SEQIN: + bcm47xxnflash_ops_bcm4706_write(mtd, buf, len); + return; + } + + pr_err("Invalid command for buf write: 0x%X\n", b47n->curr_command); +} + +/************************************************** + * Init + **************************************************/ + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n) +{ + int err; + u32 freq; + u16 clock; + u8 w0, w1, w2, w3, w4; + + unsigned long chipsize; /* MiB */ + u8 tbits, col_bits, col_size, row_bits, row_bsize; + u32 val; + + b47n->nand_chip.select_chip = bcm47xxnflash_ops_bcm4706_select_chip; + b47n->nand_chip.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc; + b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte; + b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf; + b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf; + b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH; + b47n->nand_chip.ecc.mode = NAND_ECC_NONE; /* TODO: implement ECC */ + + /* Enable NAND flash access */ + bcma_cc_set32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + BCMA_CC_4706_FLASHSCFG_NF1); + + /* Configure wait counters */ + if (b47n->cc->status & BCMA_CC_CHIPST_4706_PKG_OPTION) { + freq = 100000000; + } else { + freq = bcma_chipco_pll_read(b47n->cc, 4); + freq = (freq * 0xFFF) >> 3; + freq = (freq * 25000000) >> 3; + } + clock = freq / 1000000; + w0 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(15, clock); + w1 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(20, clock); + w2 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w3 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w4 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(100, clock); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_WAITCNT0, + (w4 << 24 | w3 << 18 | w2 << 12 | w1 << 6 | w0)); + + /* Scan NAND */ + err = nand_scan(&b47n->mtd, 1); + if (err) { + pr_err("Could not scan NAND flash: %d\n", err); + goto exit; + } + + /* Configure FLASH */ + chipsize = b47n->nand_chip.chipsize >> 20; + tbits = ffs(chipsize); /* find first bit set */ + if (!tbits || tbits != fls(chipsize)) { + pr_err("Invalid flash size: 0x%lX\n", chipsize); + err = -ENOTSUPP; + goto exit; + } + tbits += 19; /* Broadcom increases *index* by 20, we increase *pos* */ + + col_bits = b47n->nand_chip.page_shift + 1; + col_size = (col_bits + 7) / 8; + + row_bits = tbits - col_bits + 1; + row_bsize = (row_bits + 7) / 8; + + val = ((row_bsize - 1) << 6) | ((col_size - 1) << 4) | 2; + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_CONF, val); + +exit: + if (err) + bcma_cc_mask32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + ~BCMA_CC_4706_FLASHSCFG_NF1); + return err; +} diff --git a/drivers/mtd/nand/bcm_umi_bch.c b/drivers/mtd/nand/bcm_umi_bch.c deleted file mode 100644 index 5914bb32e00..00000000000 --- a/drivers/mtd/nand/bcm_umi_bch.c +++ /dev/null @@ -1,217 +0,0 @@ -/***************************************************************************** -* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ - -/* ---- Include Files ---------------------------------------------------- */ -#include "nand_bcm_umi.h" - -/* ---- External Variable Declarations ----------------------------------- */ -/* ---- External Function Prototypes ------------------------------------- */ -/* ---- Public Variables ------------------------------------------------- */ -/* ---- Private Constants and Types -------------------------------------- */ - -/* ---- Private Function Prototypes -------------------------------------- */ -static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int oob_required, int page); -static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, int oob_required); - -/* ---- Private Variables ------------------------------------------------ */ - -/* -** nand_hw_eccoob -** New oob placement block for use with hardware ecc generation. -*/ -static struct nand_ecclayout nand_hw_eccoob_512 = { - /* Reserve 5 for BI indicator */ - .oobfree = { -#if (NAND_ECC_NUM_BYTES > 3) - {.offset = 0, .length = 2} -#else - {.offset = 0, .length = 5}, - {.offset = 6, .length = 7} -#endif - } -}; - -/* -** We treat the OOB for a 2K page as if it were 4 512 byte oobs, -** except the BI is at byte 0. -*/ -static struct nand_ecclayout nand_hw_eccoob_2048 = { - /* Reserve 0 as BI indicator */ - .oobfree = { -#if (NAND_ECC_NUM_BYTES > 10) - {.offset = 1, .length = 2}, -#elif (NAND_ECC_NUM_BYTES > 7) - {.offset = 1, .length = 5}, - {.offset = 16, .length = 6}, - {.offset = 32, .length = 6}, - {.offset = 48, .length = 6} -#else - {.offset = 1, .length = 8}, - {.offset = 16, .length = 9}, - {.offset = 32, .length = 9}, - {.offset = 48, .length = 9} -#endif - } -}; - -/* We treat the OOB for a 4K page as if it were 8 512 byte oobs, - * except the BI is at byte 0. */ -static struct nand_ecclayout nand_hw_eccoob_4096 = { - /* Reserve 0 as BI indicator */ - .oobfree = { -#if (NAND_ECC_NUM_BYTES > 10) - {.offset = 1, .length = 2}, - {.offset = 16, .length = 3}, - {.offset = 32, .length = 3}, - {.offset = 48, .length = 3}, - {.offset = 64, .length = 3}, - {.offset = 80, .length = 3}, - {.offset = 96, .length = 3}, - {.offset = 112, .length = 3} -#else - {.offset = 1, .length = 5}, - {.offset = 16, .length = 6}, - {.offset = 32, .length = 6}, - {.offset = 48, .length = 6}, - {.offset = 64, .length = 6}, - {.offset = 80, .length = 6}, - {.offset = 96, .length = 6}, - {.offset = 112, .length = 6} -#endif - } -}; - -/* ---- Private Functions ------------------------------------------------ */ -/* ==== Public Functions ================================================= */ - -/**************************************************************************** -* -* bcm_umi_bch_read_page_hwecc - hardware ecc based page read function -* @mtd: mtd info structure -* @chip: nand chip info structure -* @buf: buffer to store read data -* @oob_required: caller expects OOB data read to chip->oob_poi -* -***************************************************************************/ -static int bcm_umi_bch_read_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t * buf, - int oob_required, int page) -{ - int sectorIdx = 0; - int eccsize = chip->ecc.size; - int eccsteps = chip->ecc.steps; - uint8_t *datap = buf; - uint8_t eccCalc[NAND_ECC_NUM_BYTES]; - int sectorOobSize = mtd->oobsize / eccsteps; - int stat; - unsigned int max_bitflips = 0; - - for (sectorIdx = 0; sectorIdx < eccsteps; - sectorIdx++, datap += eccsize) { - if (sectorIdx > 0) { - /* Seek to page location within sector */ - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, sectorIdx * eccsize, - -1); - } - - /* Enable hardware ECC before reading the buf */ - nand_bcm_umi_bch_enable_read_hwecc(); - - /* Read in data */ - bcm_umi_nand_read_buf(mtd, datap, eccsize); - - /* Pause hardware ECC after reading the buf */ - nand_bcm_umi_bch_pause_read_ecc_calc(); - - /* Read the OOB ECC */ - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, - mtd->writesize + sectorIdx * sectorOobSize, -1); - nand_bcm_umi_bch_read_oobEcc(mtd->writesize, eccCalc, - NAND_ECC_NUM_BYTES, - chip->oob_poi + - sectorIdx * sectorOobSize); - - /* Correct any ECC detected errors */ - stat = - nand_bcm_umi_bch_correct_page(datap, eccCalc, - NAND_ECC_NUM_BYTES); - - /* Update Stats */ - if (stat < 0) { -#if defined(NAND_BCM_UMI_DEBUG) - printk(KERN_WARNING "%s uncorr_err sectorIdx=%d\n", - __func__, sectorIdx); - printk(KERN_WARNING - "%s data %02x %02x %02x %02x " - "%02x %02x %02x %02x\n", - __func__, datap[0], datap[1], datap[2], datap[3], - datap[4], datap[5], datap[6], datap[7]); - printk(KERN_WARNING - "%s ecc %02x %02x %02x %02x " - "%02x %02x %02x %02x %02x %02x " - "%02x %02x %02x\n", - __func__, eccCalc[0], eccCalc[1], eccCalc[2], - eccCalc[3], eccCalc[4], eccCalc[5], eccCalc[6], - eccCalc[7], eccCalc[8], eccCalc[9], eccCalc[10], - eccCalc[11], eccCalc[12]); - BUG(); -#endif - mtd->ecc_stats.failed++; - } else { -#if defined(NAND_BCM_UMI_DEBUG) - if (stat > 0) { - printk(KERN_INFO - "%s %d correctable_errors detected\n", - __func__, stat); - } -#endif - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/**************************************************************************** -* -* bcm_umi_bch_write_page_hwecc - hardware ecc based page write function -* @mtd: mtd info structure -* @chip: nand chip info structure -* @buf: data buffer -* @oob_required: must write chip->oob_poi to OOB -* -***************************************************************************/ -static void bcm_umi_bch_write_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, int oob_required) -{ - int sectorIdx = 0; - int eccsize = chip->ecc.size; - int eccsteps = chip->ecc.steps; - const uint8_t *datap = buf; - uint8_t *oobp = chip->oob_poi; - int sectorOobSize = mtd->oobsize / eccsteps; - - for (sectorIdx = 0; sectorIdx < eccsteps; - sectorIdx++, datap += eccsize, oobp += sectorOobSize) { - /* Enable hardware ECC before writing the buf */ - nand_bcm_umi_bch_enable_write_hwecc(); - bcm_umi_nand_write_buf(mtd, datap, eccsize); - nand_bcm_umi_bch_write_oobEcc(mtd->writesize, oobp, - NAND_ECC_NUM_BYTES); - } - - bcm_umi_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); -} diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c deleted file mode 100644 index c855e7cd337..00000000000 --- a/drivers/mtd/nand/bcm_umi_nand.c +++ /dev/null @@ -1,555 +0,0 @@ -/***************************************************************************** -* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ - -/* ---- Include Files ---------------------------------------------------- */ -#include <linux/module.h> -#include <linux/types.h> -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/slab.h> -#include <linux/string.h> -#include <linux/ioport.h> -#include <linux/device.h> -#include <linux/delay.h> -#include <linux/err.h> -#include <linux/io.h> -#include <linux/platform_device.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/nand_ecc.h> -#include <linux/mtd/partitions.h> - -#include <asm/mach-types.h> - -#include <mach/reg_nand.h> -#include <mach/reg_umi.h> - -#include "nand_bcm_umi.h" - -#include <mach/memory_settings.h> - -#define USE_DMA 1 -#include <mach/dma.h> -#include <linux/dma-mapping.h> -#include <linux/completion.h> - -/* ---- External Variable Declarations ----------------------------------- */ -/* ---- External Function Prototypes ------------------------------------- */ -/* ---- Public Variables ------------------------------------------------- */ -/* ---- Private Constants and Types -------------------------------------- */ -static const __devinitconst char gBanner[] = KERN_INFO \ - "BCM UMI MTD NAND Driver: 1.00\n"; - -#if NAND_ECC_BCH -static uint8_t scan_ff_pattern[] = { 0xff }; - -static struct nand_bbt_descr largepage_bbt = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern -}; -#endif - -/* -** Preallocate a buffer to avoid having to do this every dma operation. -** This is the size of the preallocated coherent DMA buffer. -*/ -#if USE_DMA -#define DMA_MIN_BUFLEN 512 -#define DMA_MAX_BUFLEN PAGE_SIZE -#define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \ - ((len) > DMA_MAX_BUFLEN)) - -/* - * The current NAND data space goes from 0x80001900 to 0x80001FFF, - * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page - * size NAND flash. Need to break the DMA down to multiple 1Ks. - * - * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000 - */ -#define DMA_MAX_LEN 1024 - -#else /* !USE_DMA */ -#define DMA_MIN_BUFLEN 0 -#define DMA_MAX_BUFLEN 0 -#define USE_DIRECT_IO(len) 1 -#endif -/* ---- Private Function Prototypes -------------------------------------- */ -static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len); -static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, - int len); - -/* ---- Private Variables ------------------------------------------------ */ -static struct mtd_info *board_mtd; -static void __iomem *bcm_umi_io_base; -static void *virtPtr; -static dma_addr_t physPtr; -static struct completion nand_comp; - -/* ---- Private Functions ------------------------------------------------ */ -#if NAND_ECC_BCH -#include "bcm_umi_bch.c" -#else -#include "bcm_umi_hamming.c" -#endif - -#if USE_DMA - -/* Handler called when the DMA finishes. */ -static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData) -{ - complete(&nand_comp); -} - -static int nand_dma_init(void) -{ - int rc; - - rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM, - nand_dma_handler, NULL); - if (rc != 0) { - printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc); - return rc; - } - - virtPtr = - dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL); - if (virtPtr == NULL) { - printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n"); - return -ENOMEM; - } - - return 0; -} - -static void nand_dma_term(void) -{ - if (virtPtr != NULL) - dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr); -} - -static void nand_dma_read(void *buf, int len) -{ - int offset = 0; - int tmp_len = 0; - int len_left = len; - DMA_Handle_t hndl; - - if (virtPtr == NULL) - panic("nand_dma_read: virtPtr == NULL\n"); - - if ((void *)physPtr == NULL) - panic("nand_dma_read: physPtr == NULL\n"); - - hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); - if (hndl < 0) { - printk(KERN_ERR - "nand_dma_read: unable to allocate dma channel: %d\n", - (int)hndl); - panic("\n"); - } - - while (len_left > 0) { - if (len_left > DMA_MAX_LEN) { - tmp_len = DMA_MAX_LEN; - len_left -= DMA_MAX_LEN; - } else { - tmp_len = len_left; - len_left = 0; - } - - init_completion(&nand_comp); - dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR, - physPtr + offset, tmp_len); - wait_for_completion(&nand_comp); - - offset += tmp_len; - } - - dma_free_channel(hndl); - - if (buf != NULL) - memcpy(buf, virtPtr, len); -} - -static void nand_dma_write(const void *buf, int len) -{ - int offset = 0; - int tmp_len = 0; - int len_left = len; - DMA_Handle_t hndl; - - if (buf == NULL) - panic("nand_dma_write: buf == NULL\n"); - - if (virtPtr == NULL) - panic("nand_dma_write: virtPtr == NULL\n"); - - if ((void *)physPtr == NULL) - panic("nand_dma_write: physPtr == NULL\n"); - - memcpy(virtPtr, buf, len); - - - hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM); - if (hndl < 0) { - printk(KERN_ERR - "nand_dma_write: unable to allocate dma channel: %d\n", - (int)hndl); - panic("\n"); - } - - while (len_left > 0) { - if (len_left > DMA_MAX_LEN) { - tmp_len = DMA_MAX_LEN; - len_left -= DMA_MAX_LEN; - } else { - tmp_len = len_left; - len_left = 0; - } - - init_completion(&nand_comp); - dma_transfer_mem_to_mem(hndl, physPtr + offset, - REG_NAND_DATA_PADDR, tmp_len); - wait_for_completion(&nand_comp); - - offset += tmp_len; - } - - dma_free_channel(hndl); -} - -#endif - -static int nand_dev_ready(struct mtd_info *mtd) -{ - return nand_bcm_umi_dev_ready(); -} - -/**************************************************************************** -* -* bcm_umi_nand_inithw -* -* This routine does the necessary hardware (board-specific) -* initializations. This includes setting up the timings, etc. -* -***************************************************************************/ -int bcm_umi_nand_inithw(void) -{ - /* Configure nand timing parameters */ - REG_UMI_NAND_TCR &= ~0x7ffff; - REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR; - -#if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS) - /* enable software control of CS */ - REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL; -#endif - - /* keep NAND chip select asserted */ - REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED; - - REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16; - /* enable writes to flash */ - REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP; - - writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET); - nand_bcm_umi_wait_till_ready(); - -#if NAND_ECC_BCH - nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES); -#endif - - return 0; -} - -/* Used to turn latch the proper register for access. */ -static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - /* send command to hardware */ - struct nand_chip *chip = mtd->priv; - if (ctrl & NAND_CTRL_CHANGE) { - if (ctrl & NAND_CLE) { - chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET; - goto CMD; - } - if (ctrl & NAND_ALE) { - chip->IO_ADDR_W = - bcm_umi_io_base + REG_NAND_ADDR_OFFSET; - goto CMD; - } - chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; - } - -CMD: - /* Send command to chip directly */ - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf, - int len) -{ - if (USE_DIRECT_IO(len)) { - /* Do it the old way if the buffer is small or too large. - * Probably quicker than starting and checking dma. */ - int i; - struct nand_chip *this = mtd->priv; - - for (i = 0; i < len; i++) - writeb(buf[i], this->IO_ADDR_W); - } -#if USE_DMA - else - nand_dma_write(buf, len); -#endif -} - -static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len) -{ - if (USE_DIRECT_IO(len)) { - int i; - struct nand_chip *this = mtd->priv; - - for (i = 0; i < len; i++) - buf[i] = readb(this->IO_ADDR_R); - } -#if USE_DMA - else - nand_dma_read(buf, len); -#endif -} - -static uint8_t readbackbuf[NAND_MAX_PAGESIZE]; -static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, - int len) -{ - /* - * Try to readback page with ECC correction. This is necessary - * for MLC parts which may have permanently stuck bits. - */ - struct nand_chip *chip = mtd->priv; - int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0, 0); - if (ret < 0) - return -EFAULT; - else { - if (memcmp(readbackbuf, buf, len) == 0) - return 0; - - return -EFAULT; - } - return 0; -} - -static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) -{ - struct nand_chip *this; - struct resource *r; - int err = 0; - - printk(gBanner); - - /* Allocate memory for MTD device structure and private data */ - board_mtd = - kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), - GFP_KERNEL); - if (!board_mtd) { - printk(KERN_WARNING - "Unable to allocate NAND MTD device structure.\n"); - return -ENOMEM; - } - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - - if (!r) { - err = -ENXIO; - goto out_free; - } - - /* map physical address */ - bcm_umi_io_base = ioremap(r->start, resource_size(r)); - - if (!bcm_umi_io_base) { - printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n"); - err = -EIO; - goto out_free; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&board_mtd[1]); - - /* Initialize structures */ - memset((char *)board_mtd, 0, sizeof(struct mtd_info)); - memset((char *)this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - board_mtd->priv = this; - - /* Initialize the NAND hardware. */ - if (bcm_umi_nand_inithw() < 0) { - printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n"); - err = -EIO; - goto out_unmap; - } - - /* Set address of NAND IO lines */ - this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; - this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET; - - /* Set command delay time, see datasheet for correct value */ - this->chip_delay = 0; - /* Assign the device ready function, if available */ - this->dev_ready = nand_dev_ready; - this->options = 0; - - this->write_buf = bcm_umi_nand_write_buf; - this->read_buf = bcm_umi_nand_read_buf; - this->verify_buf = bcm_umi_nand_verify_buf; - - this->cmd_ctrl = bcm_umi_nand_hwcontrol; - this->ecc.mode = NAND_ECC_HW; - this->ecc.size = 512; - this->ecc.bytes = NAND_ECC_NUM_BYTES; -#if NAND_ECC_BCH - this->ecc.read_page = bcm_umi_bch_read_page_hwecc; - this->ecc.write_page = bcm_umi_bch_write_page_hwecc; -#else - this->ecc.correct = nand_correct_data512; - this->ecc.calculate = bcm_umi_hamming_get_hw_ecc; - this->ecc.hwctl = bcm_umi_hamming_enable_hwecc; -#endif - -#if USE_DMA - err = nand_dma_init(); - if (err != 0) - goto out_unmap; -#endif - - /* Figure out the size of the device that we have. - * We need to do this to figure out which ECC - * layout we'll be using. - */ - - err = nand_scan_ident(board_mtd, 1, NULL); - if (err) { - printk(KERN_ERR "nand_scan failed: %d\n", err); - goto out_unmap; - } - - /* Now that we know the nand size, we can setup the ECC layout */ - - switch (board_mtd->writesize) { /* writesize is the pagesize */ - case 4096: - this->ecc.layout = &nand_hw_eccoob_4096; - break; - case 2048: - this->ecc.layout = &nand_hw_eccoob_2048; - break; - case 512: - this->ecc.layout = &nand_hw_eccoob_512; - break; - default: - { - printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n", - board_mtd->writesize); - err = -EINVAL; - goto out_unmap; - } - } - -#if NAND_ECC_BCH - if (board_mtd->writesize > 512) { - if (this->bbt_options & NAND_BBT_USE_FLASH) - largepage_bbt.options = NAND_BBT_SCAN2NDPAGE; - this->badblock_pattern = &largepage_bbt; - } - - this->ecc.strength = 8; - -#endif - - /* Now finish off the scan, now that ecc.layout has been initialized. */ - - err = nand_scan_tail(board_mtd); - if (err) { - printk(KERN_ERR "nand_scan failed: %d\n", err); - goto out_unmap; - } - - /* Register the partitions */ - board_mtd->name = "bcm_umi-nand"; - mtd_device_parse_register(board_mtd, NULL, NULL, NULL, 0); - - /* Return happy */ - return 0; -out_unmap: - iounmap(bcm_umi_io_base); -out_free: - kfree(board_mtd); - return err; -} - -static int bcm_umi_nand_remove(struct platform_device *pdev) -{ -#if USE_DMA - nand_dma_term(); -#endif - - /* Release resources, unregister device */ - nand_release(board_mtd); - - /* unmap physical address */ - iounmap(bcm_umi_io_base); - - /* Free the MTD device structure */ - kfree(board_mtd); - - return 0; -} - -#ifdef CONFIG_PM -static int bcm_umi_nand_suspend(struct platform_device *pdev, - pm_message_t state) -{ - printk(KERN_ERR "MTD NAND suspend is being called\n"); - return 0; -} - -static int bcm_umi_nand_resume(struct platform_device *pdev) -{ - printk(KERN_ERR "MTD NAND resume is being called\n"); - return 0; -} -#else -#define bcm_umi_nand_suspend NULL -#define bcm_umi_nand_resume NULL -#endif - -static struct platform_driver nand_driver = { - .driver = { - .name = "bcm-nand", - .owner = THIS_MODULE, - }, - .probe = bcm_umi_nand_probe, - .remove = bcm_umi_nand_remove, - .suspend = bcm_umi_nand_suspend, - .resume = bcm_umi_nand_resume, -}; - -module_platform_driver(nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Broadcom"); -MODULE_DESCRIPTION("BCM UMI MTD NAND driver"); diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c index 3f1c18599cb..722898aea7a 100644 --- a/drivers/mtd/nand/bf5xx_nand.c +++ b/drivers/mtd/nand/bf5xx_nand.c @@ -37,7 +37,6 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> @@ -171,7 +170,7 @@ static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev) static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev) { - return pdev->dev.platform_data; + return dev_get_platdata(&pdev->dev); } /* @@ -566,11 +565,13 @@ static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip return 0; } -static void bf5xx_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required) +static int bf5xx_nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) { bf5xx_nand_write_buf(mtd, buf, mtd->writesize); bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } /* @@ -656,7 +657,7 @@ static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info) /* * Device management interface */ -static int __devinit bf5xx_nand_add_partition(struct bf5xx_nand_info *info) +static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info) { struct mtd_info *mtd = &info->mtd; struct mtd_partition *parts = info->platform->partitions; @@ -665,12 +666,10 @@ static int __devinit bf5xx_nand_add_partition(struct bf5xx_nand_info *info) return mtd_device_register(mtd, parts, nr); } -static int __devexit bf5xx_nand_remove(struct platform_device *pdev) +static int bf5xx_nand_remove(struct platform_device *pdev) { struct bf5xx_nand_info *info = to_nand_info(pdev); - platform_set_drvdata(pdev, NULL); - /* first thing we need to do is release all our mtds * and their partitions, then go through freeing the * resources used @@ -680,9 +679,6 @@ static int __devexit bf5xx_nand_remove(struct platform_device *pdev) peripheral_free_list(bfin_nfc_pin_req); bf5xx_nand_dma_remove(info); - /* free the common resources */ - kfree(info); - return 0; } @@ -723,7 +719,7 @@ static int bf5xx_nand_scan(struct mtd_info *mtd) * it can allocate all necessary resources then calls the * nand layer to look for devices */ -static int __devinit bf5xx_nand_probe(struct platform_device *pdev) +static int bf5xx_nand_probe(struct platform_device *pdev) { struct bf5xx_nand_platform *plat = to_nand_plat(pdev); struct bf5xx_nand_info *info = NULL; @@ -743,11 +739,10 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev) return -EFAULT; } - info = kzalloc(sizeof(*info), GFP_KERNEL); + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (info == NULL) { - dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; - goto out_err_kzalloc; + goto out_err; } platform_set_drvdata(pdev, info); @@ -792,7 +787,7 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev) /* initialise the hardware */ err = bf5xx_nand_hw_init(info); if (err) - goto out_err_hw_init; + goto out_err; /* setup hardware ECC data struct */ if (hardware_ecc) { @@ -829,10 +824,7 @@ static int __devinit bf5xx_nand_probe(struct platform_device *pdev) out_err_nand_scan: bf5xx_nand_dma_remove(info); -out_err_hw_init: - platform_set_drvdata(pdev, NULL); - kfree(info); -out_err_kzalloc: +out_err: peripheral_free_list(bfin_nfc_pin_req); return err; @@ -863,7 +855,7 @@ static int bf5xx_nand_resume(struct platform_device *dev) /* driver device registration */ static struct platform_driver bf5xx_nand_driver = { .probe = bf5xx_nand_probe, - .remove = __devexit_p(bf5xx_nand_remove), + .remove = bf5xx_nand_remove, .suspend = bf5xx_nand_suspend, .resume = bf5xx_nand_resume, .driver = { @@ -872,21 +864,7 @@ static struct platform_driver bf5xx_nand_driver = { }, }; -static int __init bf5xx_nand_init(void) -{ - printk(KERN_INFO "%s, Version %s (c) 2007 Analog Devices, Inc.\n", - DRV_DESC, DRV_VERSION); - - return platform_driver_register(&bf5xx_nand_driver); -} - -static void __exit bf5xx_nand_exit(void) -{ - platform_driver_unregister(&bf5xx_nand_driver); -} - -module_init(bf5xx_nand_init); -module_exit(bf5xx_nand_exit); +module_platform_driver(bf5xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR(DRV_AUTHOR); diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/cafe_nand.c index f3f6cfedd69..4e66726da9a 100644 --- a/drivers/mtd/nand/cafe_nand.c +++ b/drivers/mtd/nand/cafe_nand.c @@ -303,13 +303,7 @@ static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command, case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: - case NAND_CMD_DEPLETE1: case NAND_CMD_RNDOUT: - case NAND_CMD_STATUS_ERROR: - case NAND_CMD_STATUS_ERROR0: - case NAND_CMD_STATUS_ERROR1: - case NAND_CMD_STATUS_ERROR2: - case NAND_CMD_STATUS_ERROR3: cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); return; } @@ -377,7 +371,7 @@ static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, * @buf: buffer to store read data * @oob_required: caller expects OOB data read to chip->oob_poi * - * The hw generator calculates the error syndrome automatically. Therefor + * The hw generator calculates the error syndrome automatically. Therefore * we need a special oob layout and handling. */ static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, @@ -520,7 +514,7 @@ static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { }; -static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, +static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { @@ -531,20 +525,25 @@ static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd, /* Set up ECC autogeneration */ cafe->ctl2 |= (1<<30); + + return 0; } static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page, - int cached, int raw) + uint32_t offset, int data_len, const uint8_t *buf, + int oob_required, int page, int cached, int raw) { int status; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); if (unlikely(raw)) - chip->ecc.write_page_raw(mtd, chip, buf, oob_required); + status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required); else - chip->ecc.write_page(mtd, chip, buf, oob_required); + status = chip->ecc.write_page(mtd, chip, buf, oob_required); + + if (status < 0) + return status; /* * Cached progamming disabled for now, Not sure if its worth the @@ -571,13 +570,6 @@ static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, status = chip->waitfunc(mtd, chip); } -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE - /* Send command to read back the data */ - chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); - - if (chip->verify_buf(mtd, buf, mtd->writesize)) - return -EIO; -#endif return 0; } @@ -587,7 +579,7 @@ static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) } /* F_2[X]/(X**6+X+1) */ -static unsigned short __devinit gf64_mul(u8 a, u8 b) +static unsigned short gf64_mul(u8 a, u8 b) { u8 c; unsigned int i; @@ -606,7 +598,7 @@ static unsigned short __devinit gf64_mul(u8 a, u8 b) } /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ -static u16 __devinit gf4096_mul(u16 a, u16 b) +static u16 gf4096_mul(u16 a, u16 b) { u8 ah, al, bh, bl, ch, cl; @@ -621,20 +613,22 @@ static u16 __devinit gf4096_mul(u16 a, u16 b) return (ch << 6) ^ cl; } -static int __devinit cafe_mul(int x) +static int cafe_mul(int x) { if (x == 0) return 1; return gf4096_mul(x, 0xe01); } -static int __devinit cafe_nand_probe(struct pci_dev *pdev, +static int cafe_nand_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct mtd_info *mtd; struct cafe_priv *cafe; uint32_t ctrl; int err = 0; + int old_dma; + struct nand_buffers *nbuf; /* Very old versions shared the same PCI ident for all three functions on the chip. Verify the class too... */ @@ -648,10 +642,8 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, pci_set_master(pdev); mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL); - if (!mtd) { - dev_warn(&pdev->dev, "failed to alloc mtd_info\n"); + if (!mtd) return -ENOMEM; - } cafe = (void *)(&mtd[1]); mtd->dev.parent = &pdev->dev; @@ -665,13 +657,6 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, err = -ENOMEM; goto out_free_mtd; } - cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers), - &cafe->dmaaddr, GFP_KERNEL); - if (!cafe->dmabuf) { - err = -ENOMEM; - goto out_ior; - } - cafe->nand.buffers = (void *)cafe->dmabuf + 2112; cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); if (!cafe->rs) { @@ -731,7 +716,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, "CAFE NAND", mtd); if (err) { dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); - goto out_free_dma; + goto out_ior; } /* Disable master reset, enable NAND clock */ @@ -745,6 +730,32 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, cafe_writel(cafe, 0x7006, GLOBAL_CTRL); cafe_writel(cafe, 0x700a, GLOBAL_CTRL); + /* Enable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); + cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", + cafe_readl(cafe, GLOBAL_CTRL), + cafe_readl(cafe, GLOBAL_IRQ_MASK)); + + /* Do not use the DMA for the nand_scan_ident() */ + old_dma = usedma; + usedma = 0; + + /* Scan to find existence of the device */ + if (nand_scan_ident(mtd, 2, NULL)) { + err = -ENXIO; + goto out_irq; + } + + cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, + 2112 + sizeof(struct nand_buffers) + + mtd->writesize + mtd->oobsize, + &cafe->dmaaddr, GFP_KERNEL); + if (!cafe->dmabuf) { + err = -ENOMEM; + goto out_irq; + } + cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112; + /* Set up DMA address */ cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); if (sizeof(cafe->dmaaddr) > 4) @@ -756,16 +767,13 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); - /* Enable NAND IRQ in global IRQ mask register */ - cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); - cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", - cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK)); + /* this driver does not need the @ecccalc and @ecccode */ + nbuf->ecccalc = NULL; + nbuf->ecccode = NULL; + nbuf->databuf = (uint8_t *)(nbuf + 1); - /* Scan to find existence of the device */ - if (nand_scan_ident(mtd, 2, NULL)) { - err = -ENXIO; - goto out_irq; - } + /* Restore the DMA flag */ + usedma = old_dma; cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */ if (mtd->writesize == 2048) @@ -783,7 +791,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, } else { printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", mtd->writesize); - goto out_irq; + goto out_free_dma; } cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; cafe->nand.ecc.size = mtd->writesize; @@ -800,7 +808,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, err = nand_scan_tail(mtd); if (err) - goto out_irq; + goto out_free_dma; pci_set_drvdata(pdev, mtd); @@ -809,12 +817,15 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, goto out; + out_free_dma: + dma_free_coherent(&cafe->pdev->dev, + 2112 + sizeof(struct nand_buffers) + + mtd->writesize + mtd->oobsize, + cafe->dmabuf, cafe->dmaaddr); out_irq: /* Disable NAND IRQ in global IRQ mask register */ cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); free_irq(pdev->irq, mtd); - out_free_dma: - dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); out_ior: pci_iounmap(pdev, cafe->mmio); out_free_mtd: @@ -823,7 +834,7 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, return err; } -static void __devexit cafe_nand_remove(struct pci_dev *pdev) +static void cafe_nand_remove(struct pci_dev *pdev) { struct mtd_info *mtd = pci_get_drvdata(pdev); struct cafe_priv *cafe = mtd->priv; @@ -834,7 +845,10 @@ static void __devexit cafe_nand_remove(struct pci_dev *pdev) nand_release(mtd); free_rs(cafe->rs); pci_iounmap(pdev, cafe->mmio); - dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); + dma_free_coherent(&cafe->pdev->dev, + 2112 + sizeof(struct nand_buffers) + + mtd->writesize + mtd->oobsize, + cafe->dmabuf, cafe->dmaaddr); kfree(mtd); } @@ -889,7 +903,7 @@ static struct pci_driver cafe_nand_pci_driver = { .name = "CAFÉ NAND", .id_table = cafe_nand_tbl, .probe = cafe_nand_probe, - .remove = __devexit_p(cafe_nand_remove), + .remove = cafe_nand_remove, .resume = cafe_nand_resume, }; diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c index 1024bfc05c8..66ec95e6ca6 100644 --- a/drivers/mtd/nand/cmx270_nand.c +++ b/drivers/mtd/nand/cmx270_nand.c @@ -76,18 +76,6 @@ static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len) *buf++ = readl(this->IO_ADDR_R) >> 16; } -static int cmx270_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd->priv; - - for (i=0; i<len; i++) - if (buf[i] != (u_char)(readl(this->IO_ADDR_R) >> 16)) - return -EFAULT; - - return 0; -} - static inline void nand_cs_on(void) { gpio_set_value(GPIO_NAND_CS, 0); @@ -176,7 +164,6 @@ static int __init cmx270_init(void) sizeof(struct nand_chip), GFP_KERNEL); if (!cmx270_nand_mtd) { - pr_debug("Unable to allocate CM-X270 NAND MTD device structure.\n"); ret = -ENOMEM; goto err_kzalloc; } @@ -209,7 +196,6 @@ static int __init cmx270_init(void) this->read_byte = cmx270_read_byte; this->read_buf = cmx270_read_buf; this->write_buf = cmx270_write_buf; - this->verify_buf = cmx270_verify_buf; /* Scan to find existence of the device */ if (nand_scan (cmx270_nand_mtd, 1)) { diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c index adb6c3ef37f..88109d375ae 100644 --- a/drivers/mtd/nand/cs553x_nand.c +++ b/drivers/mtd/nand/cs553x_nand.c @@ -197,9 +197,8 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) } /* Allocate memory for MTD device structure and private data */ - new_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); + new_mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); if (!new_mtd) { - printk(KERN_WARNING "Unable to allocate CS553X NAND MTD device structure.\n"); err = -ENOMEM; goto out; } @@ -207,10 +206,6 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) /* Get pointer to private data */ this = (struct nand_chip *)(&new_mtd[1]); - /* Initialize structures */ - memset(new_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - /* Link the private data with the MTD structure */ new_mtd->priv = this; new_mtd->owner = THIS_MODULE; @@ -237,6 +232,7 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) this->ecc.hwctl = cs_enable_hwecc; this->ecc.calculate = cs_calculate_ecc; this->ecc.correct = nand_correct_data; + this->ecc.strength = 1; /* Enable the following for a flash based bad block table */ this->bbt_options = NAND_BBT_USE_FLASH; @@ -247,8 +243,6 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) goto out_ior; } - this->ecc.strength = 1; - new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); cs553x_mtd[cs] = new_mtd; diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c index d94b03c207a..b922c8efcf4 100644 --- a/drivers/mtd/nand/davinci_nand.c +++ b/drivers/mtd/nand/davinci_nand.c @@ -24,7 +24,6 @@ */ #include <linux/kernel.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/err.h> @@ -33,9 +32,12 @@ #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <linux/slab.h> +#include <linux/of_device.h> +#include <linux/of.h> +#include <linux/of_mtd.h> -#include <mach/nand.h> -#include <mach/aemif.h> +#include <linux/platform_data/mtd-davinci.h> +#include <linux/platform_data/mtd-davinci-aemif.h> /* * This is a device driver for the NAND flash controller found on the @@ -485,7 +487,7 @@ static int nand_davinci_dev_ready(struct mtd_info *mtd) * ten ECC bytes plus the manufacturer's bad block marker byte, and * and not overlapping the default BBT markers. */ -static struct nand_ecclayout hwecc4_small __initconst = { +static struct nand_ecclayout hwecc4_small = { .eccbytes = 10, .eccpos = { 0, 1, 2, 3, 4, /* offset 5 holds the badblock marker */ @@ -501,7 +503,7 @@ static struct nand_ecclayout hwecc4_small __initconst = { * storing ten ECC bytes plus the manufacturer's bad block marker byte, * and not overlapping the default BBT markers. */ -static struct nand_ecclayout hwecc4_2048 __initconst = { +static struct nand_ecclayout hwecc4_2048 = { .eccbytes = 40, .eccpos = { /* at the end of spare sector */ @@ -518,9 +520,88 @@ static struct nand_ecclayout hwecc4_2048 __initconst = { }, }; -static int __init nand_davinci_probe(struct platform_device *pdev) +#if defined(CONFIG_OF) +static const struct of_device_id davinci_nand_of_match[] = { + {.compatible = "ti,davinci-nand", }, + {.compatible = "ti,keystone-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, davinci_nand_of_match); + +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { + struct davinci_nand_pdata *pdata; + const char *mode; + u32 prop; + + pdata = devm_kzalloc(&pdev->dev, + sizeof(struct davinci_nand_pdata), + GFP_KERNEL); + pdev->dev.platform_data = pdata; + if (!pdata) + return ERR_PTR(-ENOMEM); + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-chipselect", &prop)) + pdev->id = prop; + else + return ERR_PTR(-EINVAL); + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-ale", &prop)) + pdata->mask_ale = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-cle", &prop)) + pdata->mask_cle = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-chipsel", &prop)) + pdata->mask_chipsel = prop; + if (!of_property_read_string(pdev->dev.of_node, + "nand-ecc-mode", &mode) || + !of_property_read_string(pdev->dev.of_node, + "ti,davinci-ecc-mode", &mode)) { + if (!strncmp("none", mode, 4)) + pdata->ecc_mode = NAND_ECC_NONE; + if (!strncmp("soft", mode, 4)) + pdata->ecc_mode = NAND_ECC_SOFT; + if (!strncmp("hw", mode, 2)) + pdata->ecc_mode = NAND_ECC_HW; + } + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-ecc-bits", &prop)) + pdata->ecc_bits = prop; + + prop = of_get_nand_bus_width(pdev->dev.of_node); + if (0 < prop || !of_property_read_u32(pdev->dev.of_node, + "ti,davinci-nand-buswidth", &prop)) + if (prop == 16) + pdata->options |= NAND_BUSWIDTH_16; + if (of_property_read_bool(pdev->dev.of_node, + "nand-on-flash-bbt") || + of_property_read_bool(pdev->dev.of_node, + "ti,davinci-nand-use-bbt")) + pdata->bbt_options = NAND_BBT_USE_FLASH; + + if (of_device_is_compatible(pdev->dev.of_node, + "ti,keystone-nand")) { + pdata->options |= NAND_NO_SUBPAGE_WRITE; + } + } + + return dev_get_platdata(&pdev->dev); +} +#else +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) { - struct davinci_nand_pdata *pdata = pdev->dev.platform_data; + return dev_get_platdata(&pdev->dev); +} +#endif + +static int nand_davinci_probe(struct platform_device *pdev) +{ + struct davinci_nand_pdata *pdata; struct davinci_nand_info *info; struct resource *res1; struct resource *res2; @@ -530,6 +611,10 @@ static int __init nand_davinci_probe(struct platform_device *pdev) uint32_t val; nand_ecc_modes_t ecc_mode; + pdata = nand_davinci_get_pdata(pdev); + if (IS_ERR(pdata)) + return PTR_ERR(pdata); + /* insist on board-specific configuration */ if (!pdata) return -ENODEV; @@ -538,12 +623,9 @@ static int __init nand_davinci_probe(struct platform_device *pdev) if (pdev->id < 0 || pdev->id > 3) return -ENODEV; - info = kzalloc(sizeof(*info), GFP_KERNEL); - if (!info) { - dev_err(&pdev->dev, "unable to allocate memory\n"); - ret = -ENOMEM; - goto err_nomem; - } + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; platform_set_drvdata(pdev, info); @@ -551,16 +633,23 @@ static int __init nand_davinci_probe(struct platform_device *pdev) res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res1 || !res2) { dev_err(&pdev->dev, "resource missing\n"); - ret = -EINVAL; - goto err_nomem; + return -EINVAL; } - vaddr = ioremap(res1->start, resource_size(res1)); - base = ioremap(res2->start, resource_size(res2)); - if (!vaddr || !base) { - dev_err(&pdev->dev, "ioremap failed\n"); - ret = -EINVAL; - goto err_ioremap; + vaddr = devm_ioremap_resource(&pdev->dev, res1); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + /* + * This registers range is used to setup NAND settings. In case with + * TI AEMIF driver, the same memory address range is requested already + * by AEMIF, so we cannot request it twice, just ioremap. + * The AEMIF and NAND drivers not use the same registers in this range. + */ + base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); + if (!base) { + dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); + return -EADDRNOTAVAIL; } info->dev = &pdev->dev; @@ -628,7 +717,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) spin_unlock_irq(&davinci_nand_lock); if (ret == -EBUSY) - goto err_ecc; + return ret; info->chip.ecc.calculate = nand_davinci_calculate_4bit; info->chip.ecc.correct = nand_davinci_correct_4bit; @@ -644,47 +733,24 @@ static int __init nand_davinci_probe(struct platform_device *pdev) info->chip.ecc.strength = pdata->ecc_bits; break; default: - ret = -EINVAL; - goto err_ecc; + return -EINVAL; } info->chip.ecc.mode = ecc_mode; - info->clk = clk_get(&pdev->dev, "aemif"); + info->clk = devm_clk_get(&pdev->dev, "aemif"); if (IS_ERR(info->clk)) { ret = PTR_ERR(info->clk); dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); - goto err_clk; + return ret; } - ret = clk_enable(info->clk); + ret = clk_prepare_enable(info->clk); if (ret < 0) { dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", ret); goto err_clk_enable; } - /* - * Setup Async configuration register in case we did not boot from - * NAND and so bootloader did not bother to set it up. - */ - val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4); - - /* Extended Wait is not valid and Select Strobe mode is not used */ - val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK); - if (info->chip.options & NAND_BUSWIDTH_16) - val |= 0x1; - - davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val); - - ret = 0; - if (info->timing) - ret = davinci_aemif_setup_timing(info->timing, info->base, - info->core_chipsel); - if (ret < 0) { - dev_dbg(&pdev->dev, "NAND timing values setup fail\n"); - goto err_timing; - } - spin_lock_irq(&davinci_nand_lock); /* put CSxNAND into NAND mode */ @@ -698,7 +764,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL); if (ret < 0) { dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); - goto err_scan; + goto err; } /* Update ECC layout if needed ... for 1-bit HW ECC, the default @@ -712,7 +778,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) if (!chunks || info->mtd.oobsize < 16) { dev_dbg(&pdev->dev, "too small\n"); ret = -EINVAL; - goto err_scan; + goto err; } /* For small page chips, preserve the manufacturer's @@ -743,7 +809,7 @@ static int __init nand_davinci_probe(struct platform_device *pdev) dev_warn(&pdev->dev, "no 4-bit ECC support yet " "for 4KiB-page NAND\n"); ret = -EIO; - goto err_scan; + goto err; syndrome_done: info->chip.ecc.layout = &info->ecclayout; @@ -751,13 +817,20 @@ syndrome_done: ret = nand_scan_tail(&info->mtd); if (ret < 0) - goto err_scan; + goto err; - ret = mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts, - pdata->nr_parts); + if (pdata->parts) + ret = mtd_device_parse_register(&info->mtd, NULL, NULL, + pdata->parts, pdata->nr_parts); + else { + struct mtd_part_parser_data ppdata; + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata, + NULL, 0); + } if (ret < 0) - goto err_scan; + goto err; val = davinci_nand_readl(info, NRCSR_OFFSET); dev_info(&pdev->dev, "controller rev. %d.%d\n", @@ -765,32 +838,18 @@ syndrome_done: return 0; -err_scan: -err_timing: - clk_disable(info->clk); +err: + clk_disable_unprepare(info->clk); err_clk_enable: - clk_put(info->clk); - spin_lock_irq(&davinci_nand_lock); if (ecc_mode == NAND_ECC_HW_SYNDROME) ecc4_busy = false; spin_unlock_irq(&davinci_nand_lock); - -err_ecc: -err_clk: -err_ioremap: - if (base) - iounmap(base); - if (vaddr) - iounmap(vaddr); - -err_nomem: - kfree(info); return ret; } -static int __exit nand_davinci_remove(struct platform_device *pdev) +static int nand_davinci_remove(struct platform_device *pdev) { struct davinci_nand_info *info = platform_get_drvdata(pdev); @@ -799,38 +858,25 @@ static int __exit nand_davinci_remove(struct platform_device *pdev) ecc4_busy = false; spin_unlock_irq(&davinci_nand_lock); - iounmap(info->base); - iounmap(info->vaddr); - nand_release(&info->mtd); - clk_disable(info->clk); - clk_put(info->clk); - - kfree(info); + clk_disable_unprepare(info->clk); return 0; } static struct platform_driver nand_davinci_driver = { - .remove = __exit_p(nand_davinci_remove), + .probe = nand_davinci_probe, + .remove = nand_davinci_remove, .driver = { .name = "davinci_nand", + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(davinci_nand_of_match), }, }; MODULE_ALIAS("platform:davinci_nand"); -static int __init nand_davinci_init(void) -{ - return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe); -} -module_init(nand_davinci_init); - -static void __exit nand_davinci_exit(void) -{ - platform_driver_unregister(&nand_davinci_driver); -} -module_exit(nand_davinci_exit); +module_platform_driver(nand_davinci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Texas Instruments"); diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index 0650aafa0dd..9f2012a3e76 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -16,14 +16,12 @@ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ - #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/wait.h> #include <linux/mutex.h> #include <linux/slab.h> -#include <linux/pci.h> #include <linux/mtd/mtd.h> #include <linux/module.h> @@ -89,13 +87,6 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." * format the bank into the proper bits for the controller */ #define BANK(x) ((x) << 24) -/* List of platforms this NAND controller has be integrated into */ -static const struct pci_device_id denali_pci_ids[] = { - { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, - { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, - { /* end: all zeroes */ } -}; - /* forward declarations */ static void clear_interrupts(struct denali_nand_info *denali); static uint32_t wait_for_irq(struct denali_nand_info *denali, @@ -134,7 +125,6 @@ static void reset_buf(struct denali_nand_info *denali) static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) { - BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); denali->buf.buf[denali->buf.tail++] = byte; } @@ -699,7 +689,7 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) if (comp_res == 0) { /* timeout */ - printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", + pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n", intr_status, irq_mask); intr_status = 0; @@ -906,7 +896,7 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) /* this function examines buffers to see if they contain data that * indicate that the buffer is part of an erased region of flash. */ -bool is_erased(uint8_t *buf, int len) +static bool is_erased(uint8_t *buf, int len) { int i = 0; for (i = 0; i < len; i++) @@ -1028,7 +1018,7 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op) /* writes a page. user specifies type, and this function handles the * configuration details. */ -static void write_page(struct mtd_info *mtd, struct nand_chip *chip, +static int write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, bool raw_xfer) { struct denali_nand_info *denali = mtd_to_denali(mtd); @@ -1078,6 +1068,8 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, denali_enable_dma(denali, false); dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE); + + return 0; } /* NAND core entry points */ @@ -1086,24 +1078,24 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip, * writing a page with ECC or without is similar, all the work is done * by write_page above. * */ -static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, +static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { /* for regular page writes, we let HW handle all the ECC * data written to the device. */ - write_page(mtd, chip, buf, false); + return write_page(mtd, chip, buf, false); } /* This is the callback that the NAND core calls to write a page without ECC. * raw access is similar to ECC page writes, so all the work is done in the * write_page() function above. */ -static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, +static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { /* for raw page writes, we want to disable ECC and simply write whatever data is in the buffer. */ - write_page(mtd, chip, buf, true); + return write_page(mtd, chip, buf, true); } static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, @@ -1241,7 +1233,7 @@ static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) return status; } -static void denali_erase(struct mtd_info *mtd, int page) +static int denali_erase(struct mtd_info *mtd, int page) { struct denali_nand_info *denali = mtd_to_denali(mtd); @@ -1258,8 +1250,7 @@ static void denali_erase(struct mtd_info *mtd, int page) irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP | INTR_STATUS__ERASE_FAIL); - denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ? - NAND_STATUS_FAIL : PASS; + return (irq_status & INTR_STATUS__ERASE_FAIL) ? NAND_STATUS_FAIL : PASS; } static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, @@ -1303,8 +1294,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, /* TODO: Read OOB data */ break; default: - printk(KERN_ERR ": unsupported command" - " received 0x%x\n", cmd); + pr_err(": unsupported command received 0x%x\n", cmd); break; } } @@ -1402,7 +1392,7 @@ static struct nand_bbt_descr bbt_mirror_descr = { }; /* initialize driver data structures */ -void denali_drv_init(struct denali_nand_info *denali) +static void denali_drv_init(struct denali_nand_info *denali) { denali->idx = 0; @@ -1423,107 +1413,40 @@ void denali_drv_init(struct denali_nand_info *denali) denali->irq_status = 0; } -/* driver entry point */ -static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +int denali_init(struct denali_nand_info *denali) { - int ret = -ENODEV; - resource_size_t csr_base, mem_base; - unsigned long csr_len, mem_len; - struct denali_nand_info *denali; - - denali = kzalloc(sizeof(*denali), GFP_KERNEL); - if (!denali) - return -ENOMEM; + int ret; - ret = pci_enable_device(dev); - if (ret) { - printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); - goto failed_alloc_memery; - } - - if (id->driver_data == INTEL_CE4100) { + if (denali->platform == INTEL_CE4100) { /* Due to a silicon limitation, we can only support * ONFI timing mode 1 and below. */ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { - printk(KERN_ERR "Intel CE4100 only supports" - " ONFI timing mode 1 or below\n"); - ret = -EINVAL; - goto failed_enable_dev; - } - denali->platform = INTEL_CE4100; - mem_base = pci_resource_start(dev, 0); - mem_len = pci_resource_len(dev, 1); - csr_base = pci_resource_start(dev, 1); - csr_len = pci_resource_len(dev, 1); - } else { - denali->platform = INTEL_MRST; - csr_base = pci_resource_start(dev, 0); - csr_len = pci_resource_len(dev, 0); - mem_base = pci_resource_start(dev, 1); - mem_len = pci_resource_len(dev, 1); - if (!mem_len) { - mem_base = csr_base + csr_len; - mem_len = csr_len; + pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n"); + return -EINVAL; } } - /* Is 32-bit DMA supported? */ - ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32)); - if (ret) { - printk(KERN_ERR "Spectra: no usable DMA configuration\n"); - goto failed_enable_dev; - } - denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf, - DENALI_BUF_SIZE, - DMA_BIDIRECTIONAL); - - if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) { - dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n"); - goto failed_enable_dev; - } - - pci_set_master(dev); - denali->dev = &dev->dev; - denali->mtd.dev.parent = &dev->dev; - - ret = pci_request_regions(dev, DENALI_NAND_NAME); - if (ret) { - printk(KERN_ERR "Spectra: Unable to request memory regions\n"); - goto failed_dma_map; - } - - denali->flash_reg = ioremap_nocache(csr_base, csr_len); - if (!denali->flash_reg) { - printk(KERN_ERR "Spectra: Unable to remap memory region\n"); - ret = -ENOMEM; - goto failed_req_regions; - } - - denali->flash_mem = ioremap_nocache(mem_base, mem_len); - if (!denali->flash_mem) { - printk(KERN_ERR "Spectra: ioremap_nocache failed!"); - ret = -ENOMEM; - goto failed_remap_reg; - } + /* allocate a temporary buffer for nand_scan_ident() */ + denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE, + GFP_DMA | GFP_KERNEL); + if (!denali->buf.buf) + return -ENOMEM; + denali->mtd.dev.parent = denali->dev; denali_hw_init(denali); denali_drv_init(denali); /* denali_isr register is done after all the hardware * initilization is finished*/ - if (request_irq(dev->irq, denali_isr, IRQF_SHARED, + if (request_irq(denali->irq, denali_isr, IRQF_SHARED, DENALI_NAND_NAME, denali)) { - printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); - ret = -ENODEV; - goto failed_remap_mem; + pr_err("Spectra: Unable to allocate IRQ\n"); + return -ENODEV; } /* now that our ISR is registered, we can enable interrupts */ denali_set_intr_modes(denali, true); - - pci_set_drvdata(dev, denali); - denali->mtd.name = "denali-nand"; denali->mtd.owner = THIS_MODULE; denali->mtd.priv = &denali->nand; @@ -1542,13 +1465,29 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) goto failed_req_irq; } - /* MTD supported page sizes vary by kernel. We validate our - * kernel supports the device here. - */ - if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) { - ret = -ENODEV; - printk(KERN_ERR "Spectra: device size not supported by this " - "version of MTD."); + /* allocate the right size buffer now */ + devm_kfree(denali->dev, denali->buf.buf); + denali->buf.buf = devm_kzalloc(denali->dev, + denali->mtd.writesize + denali->mtd.oobsize, + GFP_KERNEL); + if (!denali->buf.buf) { + ret = -ENOMEM; + goto failed_req_irq; + } + + /* Is 32-bit DMA supported? */ + ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32)); + if (ret) { + pr_err("Spectra: no usable DMA configuration\n"); + goto failed_req_irq; + } + + denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf, + denali->mtd.writesize + denali->mtd.oobsize, + DMA_BIDIRECTIONAL); + if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) { + dev_err(denali->dev, "Spectra: failed to map DMA buffer\n"); + ret = -EIO; goto failed_req_irq; } @@ -1588,7 +1527,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) * so just let controller do 15bit ECC for MLC and 8bit ECC for * SLC if possible. * */ - if (denali->nand.cellinfo & 0xc && + if (!nand_is_slc(&denali->nand) && (denali->mtd.oobsize > (denali->bbtskipbytes + ECC_15BITS * (denali->mtd.writesize / ECC_SECTOR_SIZE)))) { @@ -1600,8 +1539,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) } else if (denali->mtd.oobsize < (denali->bbtskipbytes + ECC_8BITS * (denali->mtd.writesize / ECC_SECTOR_SIZE))) { - printk(KERN_ERR "Your NAND chip OOB is not large enough to" - " contain 8bit ECC correction codes"); + pr_err("Your NAND chip OOB is not large enough to \ + contain 8bit ECC correction codes"); goto failed_req_irq; } else { denali->nand.ecc.strength = 8; @@ -1644,7 +1583,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) denali->nand.ecc.write_page_raw = denali_write_page_raw; denali->nand.ecc.read_oob = denali_read_oob; denali->nand.ecc.write_oob = denali_write_oob; - denali->nand.erase_cmd = denali_erase; + denali->nand.erase = denali_erase; if (nand_scan_tail(&denali->mtd)) { ret = -ENXIO; @@ -1653,56 +1592,25 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) ret = mtd_device_register(&denali->mtd, NULL, 0); if (ret) { - dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n", + dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n", ret); goto failed_req_irq; } return 0; failed_req_irq: - denali_irq_cleanup(dev->irq, denali); -failed_remap_mem: - iounmap(denali->flash_mem); -failed_remap_reg: - iounmap(denali->flash_reg); -failed_req_regions: - pci_release_regions(dev); -failed_dma_map: - dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE, - DMA_BIDIRECTIONAL); -failed_enable_dev: - pci_disable_device(dev); -failed_alloc_memery: - kfree(denali); + denali_irq_cleanup(denali->irq, denali); + return ret; } +EXPORT_SYMBOL(denali_init); /* driver exit point */ -static void denali_pci_remove(struct pci_dev *dev) +void denali_remove(struct denali_nand_info *denali) { - struct denali_nand_info *denali = pci_get_drvdata(dev); - - nand_release(&denali->mtd); - - denali_irq_cleanup(dev->irq, denali); - - iounmap(denali->flash_reg); - iounmap(denali->flash_mem); - pci_release_regions(dev); - pci_disable_device(dev); - dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE, - DMA_BIDIRECTIONAL); - pci_set_drvdata(dev, NULL); - kfree(denali); + denali_irq_cleanup(denali->irq, denali); + dma_unmap_single(denali->dev, denali->buf.dma_buf, + denali->mtd.writesize + denali->mtd.oobsize, + DMA_BIDIRECTIONAL); } - -MODULE_DEVICE_TABLE(pci, denali_pci_ids); - -static struct pci_driver denali_pci_driver = { - .name = DENALI_NAND_NAME, - .id_table = denali_pci_ids, - .probe = denali_pci_probe, - .remove = denali_pci_remove, -}; - -module_pci_driver(denali_pci_driver); +EXPORT_SYMBOL(denali_remove); diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h index fabb9d56b39..96681746242 100644 --- a/drivers/mtd/nand/denali.h +++ b/drivers/mtd/nand/denali.h @@ -455,17 +455,16 @@ #define ECC_SECTOR_SIZE 512 -#define DENALI_BUF_SIZE (NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) - struct nand_buf { int head; int tail; - uint8_t buf[DENALI_BUF_SIZE]; + uint8_t *buf; dma_addr_t dma_buf; }; #define INTEL_CE4100 1 #define INTEL_MRST 2 +#define DT 3 struct denali_nand_info { struct mtd_info mtd; @@ -487,6 +486,7 @@ struct denali_nand_info { uint32_t irq_status; int irq_debug_array[32]; int idx; + int irq; uint32_t devnum; /* represent how many nands connected */ uint32_t fwblks; /* represent how many blocks FW used */ @@ -496,4 +496,7 @@ struct denali_nand_info { uint32_t max_banks; }; +extern int denali_init(struct denali_nand_info *denali); +extern void denali_remove(struct denali_nand_info *denali); + #endif /*_LLD_NAND_*/ diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c new file mode 100644 index 00000000000..35cb17f5780 --- /dev/null +++ b/drivers/mtd/nand/denali_dt.c @@ -0,0 +1,132 @@ +/* + * NAND Flash Controller Device Driver for DT + * + * Copyright © 2011, Picochip. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/slab.h> + +#include "denali.h" + +struct denali_dt { + struct denali_nand_info denali; + struct clk *clk; +}; + +static const struct of_device_id denali_nand_dt_ids[] = { + { .compatible = "denali,denali-nand-dt" }, + { /* sentinel */ } + }; + +MODULE_DEVICE_TABLE(of, denali_nand_dt_ids); + +static u64 denali_dma_mask; + +static int denali_dt_probe(struct platform_device *ofdev) +{ + struct resource *denali_reg, *nand_data; + struct denali_dt *dt; + struct denali_nand_info *denali; + int ret; + const struct of_device_id *of_id; + + of_id = of_match_device(denali_nand_dt_ids, &ofdev->dev); + if (of_id) { + ofdev->id_entry = of_id->data; + } else { + pr_err("Failed to find the right device id.\n"); + return -ENOMEM; + } + + dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); + if (!dt) + return -ENOMEM; + denali = &dt->denali; + + denali->platform = DT; + denali->dev = &ofdev->dev; + denali->irq = platform_get_irq(ofdev, 0); + if (denali->irq < 0) { + dev_err(&ofdev->dev, "no irq defined\n"); + return denali->irq; + } + + denali_reg = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "denali_reg"); + denali->flash_reg = devm_ioremap_resource(&ofdev->dev, denali_reg); + if (IS_ERR(denali->flash_reg)) + return PTR_ERR(denali->flash_reg); + + nand_data = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "nand_data"); + denali->flash_mem = devm_ioremap_resource(&ofdev->dev, nand_data); + if (IS_ERR(denali->flash_mem)) + return PTR_ERR(denali->flash_mem); + + if (!of_property_read_u32(ofdev->dev.of_node, + "dma-mask", (u32 *)&denali_dma_mask)) { + denali->dev->dma_mask = &denali_dma_mask; + } else { + denali->dev->dma_mask = NULL; + } + + dt->clk = devm_clk_get(&ofdev->dev, NULL); + if (IS_ERR(dt->clk)) { + dev_err(&ofdev->dev, "no clk available\n"); + return PTR_ERR(dt->clk); + } + clk_prepare_enable(dt->clk); + + ret = denali_init(denali); + if (ret) + goto out_disable_clk; + + platform_set_drvdata(ofdev, dt); + return 0; + +out_disable_clk: + clk_disable_unprepare(dt->clk); + + return ret; +} + +static int denali_dt_remove(struct platform_device *ofdev) +{ + struct denali_dt *dt = platform_get_drvdata(ofdev); + + denali_remove(&dt->denali); + clk_disable(dt->clk); + + return 0; +} + +static struct platform_driver denali_dt_driver = { + .probe = denali_dt_probe, + .remove = denali_dt_remove, + .driver = { + .name = "denali-nand-dt", + .owner = THIS_MODULE, + .of_match_table = denali_nand_dt_ids, + }, +}; + +module_platform_driver(denali_dt_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jamie Iles"); +MODULE_DESCRIPTION("DT driver for Denali NAND controller"); diff --git a/drivers/mtd/nand/denali_pci.c b/drivers/mtd/nand/denali_pci.c new file mode 100644 index 00000000000..6e2f387b823 --- /dev/null +++ b/drivers/mtd/nand/denali_pci.c @@ -0,0 +1,142 @@ +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/slab.h> + +#include "denali.h" + +#define DENALI_NAND_NAME "denali-nand-pci" + +/* List of platforms this NAND controller has be integrated into */ +static const struct pci_device_id denali_pci_ids[] = { + { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, + { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, + { /* end: all zeroes */ } +}; +MODULE_DEVICE_TABLE(pci, denali_pci_ids); + +static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + int ret = -ENODEV; + resource_size_t csr_base, mem_base; + unsigned long csr_len, mem_len; + struct denali_nand_info *denali; + + denali = kzalloc(sizeof(*denali), GFP_KERNEL); + if (!denali) + return -ENOMEM; + + ret = pci_enable_device(dev); + if (ret) { + pr_err("Spectra: pci_enable_device failed.\n"); + goto failed_alloc_memery; + } + + if (id->driver_data == INTEL_CE4100) { + denali->platform = INTEL_CE4100; + mem_base = pci_resource_start(dev, 0); + mem_len = pci_resource_len(dev, 1); + csr_base = pci_resource_start(dev, 1); + csr_len = pci_resource_len(dev, 1); + } else { + denali->platform = INTEL_MRST; + csr_base = pci_resource_start(dev, 0); + csr_len = pci_resource_len(dev, 0); + mem_base = pci_resource_start(dev, 1); + mem_len = pci_resource_len(dev, 1); + if (!mem_len) { + mem_base = csr_base + csr_len; + mem_len = csr_len; + } + } + + pci_set_master(dev); + denali->dev = &dev->dev; + denali->irq = dev->irq; + + ret = pci_request_regions(dev, DENALI_NAND_NAME); + if (ret) { + pr_err("Spectra: Unable to request memory regions\n"); + goto failed_enable_dev; + } + + denali->flash_reg = ioremap_nocache(csr_base, csr_len); + if (!denali->flash_reg) { + pr_err("Spectra: Unable to remap memory region\n"); + ret = -ENOMEM; + goto failed_req_regions; + } + + denali->flash_mem = ioremap_nocache(mem_base, mem_len); + if (!denali->flash_mem) { + pr_err("Spectra: ioremap_nocache failed!"); + ret = -ENOMEM; + goto failed_remap_reg; + } + + ret = denali_init(denali); + if (ret) + goto failed_remap_mem; + + pci_set_drvdata(dev, denali); + + return 0; + +failed_remap_mem: + iounmap(denali->flash_mem); +failed_remap_reg: + iounmap(denali->flash_reg); +failed_req_regions: + pci_release_regions(dev); +failed_enable_dev: + pci_disable_device(dev); +failed_alloc_memery: + kfree(denali); + + return ret; +} + +/* driver exit point */ +static void denali_pci_remove(struct pci_dev *dev) +{ + struct denali_nand_info *denali = pci_get_drvdata(dev); + + denali_remove(denali); + iounmap(denali->flash_reg); + iounmap(denali->flash_mem); + pci_release_regions(dev); + pci_disable_device(dev); + kfree(denali); +} + +static struct pci_driver denali_pci_driver = { + .name = DENALI_NAND_NAME, + .id_table = denali_pci_ids, + .probe = denali_pci_probe, + .remove = denali_pci_remove, +}; + +static int denali_init_pci(void) +{ + return pci_register_driver(&denali_pci_driver); +} +module_init(denali_init_pci); + +static void denali_exit_pci(void) +{ + pci_unregister_driver(&denali_pci_driver); +} +module_exit(denali_exit_pci); diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c index e2ca067631c..f68a7bccecd 100644 --- a/drivers/mtd/nand/diskonchip.c +++ b/drivers/mtd/nand/diskonchip.c @@ -38,7 +38,7 @@ #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 #endif -static unsigned long __initdata doc_locations[] = { +static unsigned long doc_locations[] __initdata = { #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, @@ -46,15 +46,13 @@ static unsigned long __initdata doc_locations[] = { 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, -#else /* CONFIG_MTD_DOCPROBE_HIGH */ +#else 0xc8000, 0xca000, 0xcc000, 0xce000, 0xd0000, 0xd2000, 0xd4000, 0xd6000, 0xd8000, 0xda000, 0xdc000, 0xde000, 0xe0000, 0xe2000, 0xe4000, 0xe6000, 0xe8000, 0xea000, 0xec000, 0xee000, -#endif /* CONFIG_MTD_DOCPROBE_HIGH */ -#else -#warning Unknown architecture for DiskOnChip. No default probe locations defined +#endif #endif 0xffffffff }; @@ -376,19 +374,6 @@ static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) } } -static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - struct doc_priv *doc = this->priv; - void __iomem *docptr = doc->virtadr; - int i; - - for (i = 0; i < len; i++) - if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) - return -EFAULT; - return 0; -} - static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) { struct nand_chip *this = mtd->priv; @@ -526,26 +511,6 @@ static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) buf[i] = ReadDOC(docptr, LastDataRead); } -static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - struct doc_priv *doc = this->priv; - void __iomem *docptr = doc->virtadr; - int i; - - /* Start read pipeline */ - ReadDOC(docptr, ReadPipeInit); - - for (i = 0; i < len - 1; i++) - if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { - ReadDOC(docptr, LastDataRead); - return i; - } - if (buf[i] != ReadDOC(docptr, LastDataRead)) - return i; - return 0; -} - static u_char doc2001plus_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; @@ -610,33 +575,6 @@ static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) printk("\n"); } -static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - struct doc_priv *doc = this->priv; - void __iomem *docptr = doc->virtadr; - int i; - - if (debug) - printk("verifybuf of %d bytes: ", len); - - /* Start read pipeline */ - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - - for (i = 0; i < len - 2; i++) - if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { - ReadDOC(docptr, Mplus_LastDataRead); - ReadDOC(docptr, Mplus_LastDataRead); - return i; - } - if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead)) - return len - 2; - if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead)) - return len - 1; - return 0; -} - static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *this = mtd->priv; @@ -760,7 +698,8 @@ static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int colu /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (this->options & NAND_BUSWIDTH_16) + if (this->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; WriteDOC(column, docptr, Mplus_FlashAddress); } @@ -1120,7 +1059,6 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { - printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); return 0; } if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) @@ -1228,7 +1166,6 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { - printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); return 0; } @@ -1432,7 +1369,6 @@ static inline int __init doc2000_init(struct mtd_info *mtd) this->read_byte = doc2000_read_byte; this->write_buf = doc2000_writebuf; this->read_buf = doc2000_readbuf; - this->verify_buf = doc2000_verifybuf; this->scan_bbt = nftl_scan_bbt; doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; @@ -1449,7 +1385,6 @@ static inline int __init doc2001_init(struct mtd_info *mtd) this->read_byte = doc2001_read_byte; this->write_buf = doc2001_writebuf; this->read_buf = doc2001_readbuf; - this->verify_buf = doc2001_verifybuf; ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); @@ -1480,7 +1415,6 @@ static inline int __init doc2001plus_init(struct mtd_info *mtd) this->read_byte = doc2001plus_read_byte; this->write_buf = doc2001plus_writebuf; this->read_buf = doc2001plus_readbuf; - this->verify_buf = doc2001plus_verifybuf; this->scan_bbt = inftl_scan_bbt; this->cmd_ctrl = NULL; this->select_chip = doc2001plus_select_chip; @@ -1505,10 +1439,13 @@ static int __init doc_probe(unsigned long physadr) int reg, len, numchips; int ret = 0; + if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) + return -EBUSY; virtadr = ioremap(physadr, DOC_IOREMAP_LEN); if (!virtadr) { printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); - return -EIO; + ret = -EIO; + goto error_ioremap; } /* It's not possible to cleanly detect the DiskOnChip - the @@ -1626,7 +1563,6 @@ static int __init doc_probe(unsigned long physadr) sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); mtd = kzalloc(len, GFP_KERNEL); if (!mtd) { - printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); ret = -ENOMEM; goto fail; } @@ -1694,6 +1630,10 @@ static int __init doc_probe(unsigned long physadr) WriteDOC(save_control, virtadr, DOCControl); fail: iounmap(virtadr); + +error_ioremap: + release_mem_region(physadr, DOC_IOREMAP_LEN); + return ret; } @@ -1710,6 +1650,7 @@ static void release_nanddoc(void) nextmtd = doc->nextdoc; nand_release(mtd); iounmap(doc->virtadr); + release_mem_region(doc->physadr, DOC_IOREMAP_LEN); kfree(mtd); } } diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/docg4.c index a225e49a562..ce24637e14f 100644 --- a/drivers/mtd/nand/docg4.c +++ b/drivers/mtd/nand/docg4.c @@ -44,6 +44,26 @@ #include <linux/mtd/nand.h> #include <linux/bch.h> #include <linux/bitrev.h> +#include <linux/jiffies.h> + +/* + * In "reliable mode" consecutive 2k pages are used in parallel (in some + * fashion) to store the same data. The data can be read back from the + * even-numbered pages in the normal manner; odd-numbered pages will appear to + * contain junk. Systems that boot from the docg4 typically write the secondary + * program loader (SPL) code in this mode. The SPL is loaded by the initial + * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped + * to the reset vector address). This module parameter enables you to use this + * driver to write the SPL. When in this mode, no more than 2k of data can be + * written at a time, because the addresses do not increment in the normal + * manner, and the starting offset must be within an even-numbered 2k region; + * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800, + * 0x1a00, ... Reliable mode is a special case and should not be used unless + * you know what you're doing. + */ +static bool reliable_mode; +module_param(reliable_mode, bool, 0); +MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode"); /* * You'll want to ignore badblocks if you're reading a partition that contains @@ -113,6 +133,7 @@ struct docg4_priv { #define DOCG4_SEQ_PAGEWRITE 0x16 #define DOCG4_SEQ_PAGEPROG 0x1e #define DOCG4_SEQ_BLOCKERASE 0x24 +#define DOCG4_SEQ_SETMODE 0x45 /* DOC_FLASHCOMMAND register commands */ #define DOCG4_CMD_PAGE_READ 0x00 @@ -122,6 +143,8 @@ struct docg4_priv { #define DOC_CMD_PROG_BLOCK_ADDR 0x60 #define DOCG4_CMD_PAGEWRITE 0x80 #define DOC_CMD_PROG_CYCLE2 0x10 +#define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */ +#define DOC_CMD_RELIABLE_MODE 0x22 #define DOC_CMD_RESET 0xff /* DOC_POWERMODE register bits */ @@ -190,17 +213,20 @@ struct docg4_priv { #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */ #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */ +#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */ /* - * Oob bytes 0 - 6 are available to the user. - * Byte 7 is hamming ecc for first 7 bytes. Bytes 8 - 14 are hw-generated ecc. + * Bytes 0, 1 are used as badblock marker. + * Bytes 2 - 6 are available to the user. + * Byte 7 is hamming ecc for first 7 oob bytes only. + * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14. * Byte 15 (the last) is used by the driver as a "page written" flag. */ static struct nand_ecclayout docg4_oobinfo = { .eccbytes = 9, .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, - .oobavail = 7, - .oobfree = { {0, 7} } + .oobavail = 5, + .oobfree = { {.offset = 2, .length = 5} } }; /* @@ -244,7 +270,7 @@ static int poll_status(struct docg4_priv *doc) */ uint16_t flash_status; - unsigned int timeo; + unsigned long timeo; void __iomem *docptr = doc->virtadr; dev_dbg(doc->dev, "%s...\n", __func__); @@ -252,22 +278,18 @@ static int poll_status(struct docg4_priv *doc) /* hardware quirk requires reading twice initially */ flash_status = readw(docptr + DOC_FLASHCONTROL); - timeo = 1000; + timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */ do { cpu_relax(); flash_status = readb(docptr + DOC_FLASHCONTROL); - } while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo); + } while (!(flash_status & DOC_CTRL_FLASHREADY) && + time_before(jiffies, timeo)); - - if (!timeo) { + if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) { dev_err(doc->dev, "%s: timed out!\n", __func__); return NAND_STATUS_FAIL; } - if (unlikely(timeo < 50)) - dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n", - __func__, timeo); - return 0; } @@ -378,9 +400,9 @@ static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) * bit flips(s) are not reported in stats. */ - if (doc->oob_buf[15]) { + if (nand->oob_poi[15]) { int bit, numsetbits = 0; - unsigned long written_flag = doc->oob_buf[15]; + unsigned long written_flag = nand->oob_poi[15]; for_each_set_bit(bit, &written_flag, 8) numsetbits++; if (numsetbits > 4) { /* assume blank */ @@ -428,7 +450,7 @@ static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) /* if error within oob area preceeding ecc bytes... */ if (errpos[i] > DOCG4_PAGE_SIZE * 8) change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, - (unsigned long *)doc->oob_buf); + (unsigned long *)nand->oob_poi); else /* error in page data */ change_bit(errpos[i], (unsigned long *)buf); @@ -469,7 +491,7 @@ static uint8_t docg4_read_byte(struct mtd_info *mtd) return status; } - dev_warn(doc->dev, "unexpectd call to read_byte()\n"); + dev_warn(doc->dev, "unexpected call to read_byte()\n"); return 0; } @@ -611,6 +633,14 @@ static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) dev_dbg(doc->dev, "docg4: %s: g4 addr: %x\n", __func__, docg4_addr); sequence_reset(mtd); + + if (unlikely(reliable_mode)) { + writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND); + writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + } + writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); write_nop(docptr); @@ -691,6 +721,15 @@ static void docg4_command(struct mtd_info *mtd, unsigned command, int column, break; case NAND_CMD_SEQIN: + if (unlikely(reliable_mode)) { + uint16_t g4_page = g4_addr >> 16; + + /* writes to odd-numbered 2k pages are invalid */ + if (g4_page & 0x01) + dev_warn(doc->dev, + "invalid reliable mode address\n"); + } + write_page_prologue(mtd, g4_addr); /* hack for deferred write of oob bytes */ @@ -748,18 +787,12 @@ static int read_page(struct mtd_info *mtd, struct nand_chip *nand, docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ - /* - * Diskonchips read oob immediately after a page read. Mtd - * infrastructure issues a separate command for reading oob after the - * page is read. So we save the oob bytes in a local buffer and just - * copy it if the next command reads oob from the same page. - */ - + /* this device always reads oob after page data */ /* first 14 oob bytes read from I/O reg */ - docg4_read_buf(mtd, doc->oob_buf, 14); + docg4_read_buf(mtd, nand->oob_poi, 14); /* last 2 read from another reg */ - buf16 = (uint16_t *)(doc->oob_buf + 14); + buf16 = (uint16_t *)(nand->oob_poi + 14); *buf16 = readw(docptr + DOCG4_MYSTERY_REG); write_nop(docptr); @@ -782,6 +815,8 @@ static int read_page(struct mtd_info *mtd, struct nand_chip *nand, } writew(0, docptr + DOC_DATAEND); + if (bits_corrected == -EBADMSG) /* uncorrectable errors */ + return 0; return bits_corrected; } @@ -807,21 +842,6 @@ static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, dev_dbg(doc->dev, "%s: page %x\n", __func__, page); - /* - * Oob bytes are read as part of a normal page read. If the previous - * nand command was a read of the page whose oob is now being read, just - * copy the oob bytes that we saved in a local buffer and avoid a - * separate oob read. - */ - if (doc->last_command.command == NAND_CMD_READ0 && - doc->last_command.page == page) { - memcpy(nand->oob_poi, doc->oob_buf, 16); - return 0; - } - - /* - * Separate read of oob data only. - */ docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); @@ -852,7 +872,7 @@ static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, return 0; } -static void docg4_erase_block(struct mtd_info *mtd, int page) +static int docg4_erase_block(struct mtd_info *mtd, int page) { struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; @@ -896,9 +916,11 @@ static void docg4_erase_block(struct mtd_info *mtd, int page) write_nop(docptr); poll_status(doc); write_nop(docptr); + + return nand->waitfunc(mtd, nand); } -static void write_page(struct mtd_info *mtd, struct nand_chip *nand, +static int write_page(struct mtd_info *mtd, struct nand_chip *nand, const uint8_t *buf, bool use_ecc) { struct docg4_priv *doc = nand->priv; @@ -950,15 +972,17 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *nand, write_nop(docptr); writew(0, docptr + DOC_DATAEND); write_nop(docptr); + + return 0; } -static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, +static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, const uint8_t *buf, int oob_required) { return write_page(mtd, nand, buf, false); } -static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, +static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, const uint8_t *buf, int oob_required) { return write_page(mtd, nand, buf, true); @@ -996,16 +1020,15 @@ static int __init read_factory_bbt(struct mtd_info *mtd) struct docg4_priv *doc = nand->priv; uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); uint8_t *buf; - int i, block, status; + int i, block; + __u32 eccfailed_stats = mtd->ecc_stats.failed; buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); if (buf == NULL) return -ENOMEM; read_page_prologue(mtd, g4_addr); - status = docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); - if (status) - goto exit; + docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); /* * If no memory-based bbt was created, exit. This will happen if module @@ -1017,6 +1040,20 @@ static int __init read_factory_bbt(struct mtd_info *mtd) if (nand->bbt == NULL) /* no memory-based bbt */ goto exit; + if (mtd->ecc_stats.failed > eccfailed_stats) { + /* + * Whoops, an ecc failure ocurred reading the factory bbt. + * It is stored redundantly, so we get another chance. + */ + eccfailed_stats = mtd->ecc_stats.failed; + docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE); + if (mtd->ecc_stats.failed > eccfailed_stats) { + dev_warn(doc->dev, + "The factory bbt could not be read!\n"); + goto exit; + } + } + /* * Parse factory bbt and update memory-based bbt. Factory bbt format is * simple: one bit per block, block numbers increase left to right (msb @@ -1036,7 +1073,7 @@ static int __init read_factory_bbt(struct mtd_info *mtd) } exit: kfree(buf); - return status; + return 0; } static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) @@ -1055,7 +1092,6 @@ static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; struct nand_bbt_descr *bbtd = nand->badblock_pattern; - int block = (int)(ofs >> nand->bbt_erase_shift); int page = (int)(ofs >> nand->page_shift); uint32_t g4_addr = mtd_to_docg4_address(page, 0); @@ -1070,9 +1106,6 @@ static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) if (buf == NULL) return -ENOMEM; - /* update bbt in memory */ - nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2); - /* write bit-wise negation of pattern to oob buffer */ memset(nand->oob_poi, 0xff, mtd->oobsize); for (i = 0; i < bbtd->len; i++) @@ -1082,8 +1115,6 @@ static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) write_page_prologue(mtd, g4_addr); docg4_write_page(mtd, nand, buf, 1); ret = pageprog(mtd); - if (!ret) - mtd->ecc_stats.badblocks++; kfree(buf); @@ -1207,8 +1238,7 @@ static void __init init_mtd_structs(struct mtd_info *mtd) nand->block_markbad = docg4_block_markbad; nand->read_buf = docg4_read_buf; nand->write_buf = docg4_write_buf16; - nand->scan_bbt = nand_default_bbt; - nand->erase_cmd = docg4_erase_block; + nand->erase = docg4_erase_block; nand->ecc.read_page = docg4_read_page; nand->ecc.write_page = docg4_write_page; nand->ecc.read_page_raw = docg4_read_page_raw; @@ -1330,7 +1360,6 @@ static int __init probe_docg4(struct platform_device *pdev) struct nand_chip *nand = mtd->priv; struct docg4_priv *doc = nand->priv; nand_release(mtd); /* deletes partitions and mtd devices */ - platform_set_drvdata(pdev, NULL); free_bch(doc->bch); kfree(mtd); } @@ -1342,7 +1371,6 @@ static int __exit cleanup_docg4(struct platform_device *pdev) { struct docg4_priv *doc = platform_get_drvdata(pdev); nand_release(doc->mtd); - platform_set_drvdata(pdev, NULL); free_bch(doc->bch); kfree(doc->mtd); iounmap(doc->virtadr); @@ -1359,18 +1387,7 @@ static struct platform_driver docg4_driver = { .remove = __exit_p(cleanup_docg4), }; -static int __init docg4_init(void) -{ - return platform_driver_probe(&docg4_driver, probe_docg4); -} - -static void __exit docg4_exit(void) -{ - platform_driver_unregister(&docg4_driver); -} - -module_init(docg4_init); -module_exit(docg4_exit); +module_platform_driver_probe(docg4_driver, probe_docg4); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mike Dunn"); diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c index 78429380611..545a5c002f0 100644 --- a/drivers/mtd/nand/fsl_elbc_nand.c +++ b/drivers/mtd/nand/fsl_elbc_nand.c @@ -24,10 +24,10 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> @@ -109,20 +109,6 @@ static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { }; /* - * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset - * 1, so we have to adjust bad block pattern. This pattern should be used for - * x8 chips only. So far hardware does not support x16 chips anyway. - */ -static u8 scan_ff_pattern[] = { 0xff, }; - -static struct nand_bbt_descr largepage_memorybased = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern, -}; - -/* * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, * interfere with ECC positions, that's why we implement our own descriptors. * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. @@ -614,41 +600,6 @@ static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) len, avail); } -/* - * Verify buffer against the FCM Controller Data Buffer - */ -static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *chip = mtd->priv; - struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - int i; - - if (len < 0) { - dev_err(priv->dev, "write_buf of %d bytes", len); - return -EINVAL; - } - - if ((unsigned int)len > - elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) { - dev_err(priv->dev, - "verify_buf beyond end of buffer " - "(%d requested, %u available)\n", - len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index); - - elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes; - return -EINVAL; - } - - for (i = 0; i < len; i++) - if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i]) - != buf[i]) - break; - - elbc_fcm_ctrl->index += len; - return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO; -} - /* This function is called after Program and Erase Operations to * check for success or failure. */ @@ -699,8 +650,6 @@ static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) chip->page_shift); dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", chip->phys_erase_shift); - dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n", - chip->ecclayout); dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", chip->ecc.mode); dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", @@ -734,7 +683,6 @@ static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) chip->ecc.layout = (priv->fmr & FMR_ECCM) ? &fsl_elbc_oob_lp_eccm1 : &fsl_elbc_oob_lp_eccm0; - chip->badblock_pattern = &largepage_memorybased; } } else { dev_err(priv->dev, @@ -766,11 +714,26 @@ static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip, /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ -static void fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, +static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { fsl_elbc_write_buf(mtd, buf, mtd->writesize); fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offset, uint32_t data_len, + const uint8_t *buf, int oob_required) +{ + fsl_elbc_write_buf(mtd, buf, mtd->writesize); + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) @@ -796,7 +759,6 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) chip->read_byte = fsl_elbc_read_byte; chip->write_buf = fsl_elbc_write_buf; chip->read_buf = fsl_elbc_read_buf; - chip->verify_buf = fsl_elbc_verify_buf; chip->select_chip = fsl_elbc_select_chip; chip->cmdfunc = fsl_elbc_cmdfunc; chip->waitfunc = fsl_elbc_wait; @@ -805,7 +767,6 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) chip->bbt_md = &bbt_mirror_descr; /* set up nand options */ - chip->options = NAND_NO_READRDY; chip->bbt_options = NAND_BBT_USE_FLASH; chip->controller = &elbc_fcm_ctrl->controller; @@ -813,6 +774,7 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) chip->ecc.read_page = fsl_elbc_read_page; chip->ecc.write_page = fsl_elbc_write_page; + chip->ecc.write_subpage = fsl_elbc_write_subpage; /* If CS Base Register selects full hardware ECC then use it */ if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == @@ -849,7 +811,7 @@ static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) static DEFINE_MUTEX(fsl_elbc_nand_mutex); -static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev) +static int fsl_elbc_nand_probe(struct platform_device *pdev) { struct fsl_lbc_regs __iomem *lbc; struct fsl_elbc_mtd *priv; @@ -898,7 +860,6 @@ static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev) if (!fsl_lbc_ctrl_dev->nand) { elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL); if (!elbc_fcm_ctrl) { - dev_err(dev, "failed to allocate memory\n"); mutex_unlock(&fsl_elbc_nand_mutex); ret = -ENOMEM; goto err; @@ -916,7 +877,8 @@ static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev) elbc_fcm_ctrl->chips[bank] = priv; priv->bank = bank; priv->ctrl = fsl_lbc_ctrl_dev; - priv->dev = dev; + priv->dev = &pdev->dev; + dev_set_drvdata(priv->dev, priv); priv->vbase = ioremap(res.start, resource_size(&res)); if (!priv->vbase) { @@ -925,7 +887,7 @@ static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev) goto err; } - priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); + priv->mtd.name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); if (!priv->mtd.name) { ret = -ENOMEM; goto err; @@ -963,11 +925,10 @@ err: static int fsl_elbc_nand_remove(struct platform_device *pdev) { - int i; struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; - for (i = 0; i < MAX_BANKS; i++) - if (elbc_fcm_ctrl->chips[i]) - fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]); + struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev); + + fsl_elbc_chip_remove(priv); mutex_lock(&fsl_elbc_nand_mutex); elbc_fcm_ctrl->counter--; diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c index 9602c1b7e27..2338124dd05 100644 --- a/drivers/mtd/nand/fsl_ifc_nand.c +++ b/drivers/mtd/nand/fsl_ifc_nand.c @@ -22,15 +22,16 @@ #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> +#include <linux/of_address.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> #include <linux/mtd/nand_ecc.h> -#include <asm/fsl_ifc.h> +#include <linux/fsl_ifc.h> +#define FSL_IFC_V1_1_0 0x01010000 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ #define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait @@ -55,7 +56,7 @@ struct fsl_ifc_nand_ctrl { struct nand_hw_control controller; struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; - u8 __iomem *addr; /* Address of assigned IFC buffer */ + void __iomem *addr; /* Address of assigned IFC buffer */ unsigned int page; /* Last page written to / read from */ unsigned int read_bytes;/* Number of bytes read during command */ unsigned int column; /* Saved column from SEQIN */ @@ -134,6 +135,69 @@ static struct nand_ecclayout oob_4096_ecc8 = { .oobfree = { {2, 6}, {136, 82} }, }; +/* 8192-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_8192_ecc4 = { + .eccbytes = 128, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + }, + .oobfree = { {2, 6}, {136, 208} }, +}; + +/* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */ +static struct nand_ecclayout oob_8192_ecc8 = { + .eccbytes = 256, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + 136, 137, 138, 139, 140, 141, 142, 143, + 144, 145, 146, 147, 148, 149, 150, 151, + 152, 153, 154, 155, 156, 157, 158, 159, + 160, 161, 162, 163, 164, 165, 166, 167, + 168, 169, 170, 171, 172, 173, 174, 175, + 176, 177, 178, 179, 180, 181, 182, 183, + 184, 185, 186, 187, 188, 189, 190, 191, + 192, 193, 194, 195, 196, 197, 198, 199, + 200, 201, 202, 203, 204, 205, 206, 207, + 208, 209, 210, 211, 212, 213, 214, 215, + 216, 217, 218, 219, 220, 221, 222, 223, + 224, 225, 226, 227, 228, 229, 230, 231, + 232, 233, 234, 235, 236, 237, 238, 239, + 240, 241, 242, 243, 244, 245, 246, 247, + 248, 249, 250, 251, 252, 253, 254, 255, + 256, 257, 258, 259, 260, 261, 262, 263, + }, + .oobfree = { {2, 6}, {264, 80} }, +}; /* * Generic flash bbt descriptors @@ -175,8 +239,8 @@ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) ifc_nand_ctrl->page = page_addr; /* Program ROW0/COL0 */ - out_be32(&ifc->ifc_nand.row0, page_addr); - out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); + iowrite32be(page_addr, &ifc->ifc_nand.row0); + iowrite32be((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); buf_num = page_addr & priv->bufnum_mask; @@ -193,7 +257,7 @@ static int is_blank(struct mtd_info *mtd, unsigned int bufnum) struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); - u32 __iomem *mainarea = (u32 *)addr; + u32 __iomem *mainarea = (u32 __iomem *)addr; u8 __iomem *oob = addr + mtd->writesize; int i; @@ -238,18 +302,19 @@ static void fsl_ifc_run_command(struct mtd_info *mtd) int i; /* set the chip select for NAND Transaction */ - out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT); + iowrite32be(priv->bank << IFC_NAND_CSEL_SHIFT, + &ifc->ifc_nand.nand_csel); dev_vdbg(priv->dev, "%s: fir0=%08x fcr0=%08x\n", __func__, - in_be32(&ifc->ifc_nand.nand_fir0), - in_be32(&ifc->ifc_nand.nand_fcr0)); + ioread32be(&ifc->ifc_nand.nand_fir0), + ioread32be(&ifc->ifc_nand.nand_fcr0)); ctrl->nand_stat = 0; /* start read/write seq */ - out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); + iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); /* wait for command complete flag or timeout */ wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, @@ -272,7 +337,7 @@ static void fsl_ifc_run_command(struct mtd_info *mtd) int sector_end = sector + chip->ecc.steps - 1; for (i = sector / 4; i <= sector_end / 4; i++) - eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); + eccstat[i] = ioread32be(&ifc->ifc_nand.nand_eccstat[i]); for (i = sector; i <= sector_end; i++) { errors = check_read_ecc(mtd, ctrl, eccstat, i); @@ -312,31 +377,33 @@ static void fsl_ifc_do_read(struct nand_chip *chip, /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ if (mtd->writesize > 512) { - out_be32(&ifc->ifc_nand.nand_fir0, - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | - (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | - (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); - out_be32(&ifc->ifc_nand.nand_fir1, 0x0); - - out_be32(&ifc->ifc_nand.nand_fcr0, - (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | - (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); + + iowrite32be((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); } else { - out_be32(&ifc->ifc_nand.nand_fir0, - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | - (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); - out_be32(&ifc->ifc_nand.nand_fir1, 0x0); + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(0x0, &ifc->ifc_nand.nand_fir1); if (oob) - out_be32(&ifc->ifc_nand.nand_fcr0, - NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); + iowrite32be(NAND_CMD_READOOB << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); else - out_be32(&ifc->ifc_nand.nand_fcr0, - NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); + iowrite32be(NAND_CMD_READ0 << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); } } @@ -356,7 +423,7 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, switch (command) { /* READ0 read the entire buffer to use hardware ECC. */ case NAND_CMD_READ0: - out_be32(&ifc->ifc_nand.nand_fbcr, 0); + iowrite32be(0, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, 0, page_addr, 0); ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; @@ -371,7 +438,7 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* READOOB reads only the OOB because no ECC is performed. */ case NAND_CMD_READOOB: - out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); + iowrite32be(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, column, page_addr, 1); ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; @@ -387,19 +454,19 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, if (command == NAND_CMD_PARAM) timing = IFC_FIR_OP_RBCD; - out_be32(&ifc->ifc_nand.nand_fir0, - (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | - (timing << IFC_NAND_FIR0_OP2_SHIFT)); - out_be32(&ifc->ifc_nand.nand_fcr0, - command << IFC_NAND_FCR0_CMD0_SHIFT); - out_be32(&ifc->ifc_nand.row3, column); + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (timing << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(command << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(column, &ifc->ifc_nand.row3); /* * although currently it's 8 bytes for READID, we always read * the maximum 256 bytes(for PARAM) */ - out_be32(&ifc->ifc_nand.nand_fbcr, 256); + iowrite32be(256, &ifc->ifc_nand.nand_fbcr); ifc_nand_ctrl->read_bytes = 256; set_addr(mtd, 0, 0, 0); @@ -414,16 +481,16 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* ERASE2 uses the block and page address from ERASE1 */ case NAND_CMD_ERASE2: - out_be32(&ifc->ifc_nand.nand_fir0, - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); - out_be32(&ifc->ifc_nand.nand_fcr0, - (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | - (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); + iowrite32be((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); - out_be32(&ifc->ifc_nand.nand_fbcr, 0); + iowrite32be(0, &ifc->ifc_nand.nand_fbcr); ifc_nand_ctrl->read_bytes = 0; fsl_ifc_run_command(mtd); return; @@ -437,28 +504,44 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, if (mtd->writesize > 512) { nand_fcr0 = (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | - (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); + (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); - out_be32(&ifc->ifc_nand.nand_fir0, + iowrite32be( (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | - (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT)); + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be( + (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_RDSTAT << + IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), + &ifc->ifc_nand.nand_fir1); } else { nand_fcr0 = ((NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT) | (NAND_CMD_SEQIN << - IFC_NAND_FCR0_CMD2_SHIFT)); + IFC_NAND_FCR0_CMD2_SHIFT) | + (NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD3_SHIFT)); - out_be32(&ifc->ifc_nand.nand_fir0, - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | - (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); - out_be32(&ifc->ifc_nand.nand_fir1, - (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT)); + iowrite32be( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be( + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_RDSTAT << + IFC_NAND_FIR1_OP7_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), + &ifc->ifc_nand.nand_fir1); if (column >= mtd->writesize) nand_fcr0 |= @@ -473,7 +556,7 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, column -= mtd->writesize; ifc_nand_ctrl->oob = 1; } - out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); + iowrite32be(nand_fcr0, &ifc->ifc_nand.nand_fcr0); set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); return; } @@ -481,10 +564,11 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: { if (ifc_nand_ctrl->oob) { - out_be32(&ifc->ifc_nand.nand_fbcr, - ifc_nand_ctrl->index - ifc_nand_ctrl->column); + iowrite32be(ifc_nand_ctrl->index - + ifc_nand_ctrl->column, + &ifc->ifc_nand.nand_fbcr); } else { - out_be32(&ifc->ifc_nand.nand_fbcr, 0); + iowrite32be(0, &ifc->ifc_nand.nand_fbcr); } fsl_ifc_run_command(mtd); @@ -492,12 +576,12 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, } case NAND_CMD_STATUS: - out_be32(&ifc->ifc_nand.nand_fir0, - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); - out_be32(&ifc->ifc_nand.nand_fcr0, - NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); - out_be32(&ifc->ifc_nand.nand_fbcr, 1); + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(1, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, 0, 0, 0); ifc_nand_ctrl->read_bytes = 1; @@ -507,14 +591,17 @@ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, * The chip always seems to report that it is * write-protected, even when it is not. */ - setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); + if (chip->options & NAND_BUSWIDTH_16) + setbits16(ifc_nand_ctrl->addr, NAND_STATUS_WP); + else + setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); return; case NAND_CMD_RESET: - out_be32(&ifc->ifc_nand.nand_fir0, - IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); - out_be32(&ifc->ifc_nand.nand_fcr0, - NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); + iowrite32be(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); fsl_ifc_run_command(mtd); return; @@ -552,7 +639,7 @@ static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) len = bufsize - ifc_nand_ctrl->index; } - memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len); + memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); ifc_nand_ctrl->index += len; } @@ -564,13 +651,16 @@ static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; + unsigned int offset; /* * If there are still bytes in the IFC buffer, then use the * next byte. */ - if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) - return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]); + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + offset = ifc_nand_ctrl->index++; + return in_8(ifc_nand_ctrl->addr + offset); + } dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); return ERR_BYTE; @@ -591,8 +681,7 @@ static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) * next byte. */ if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { - data = in_be16((uint16_t *)&ifc_nand_ctrl-> - addr[ifc_nand_ctrl->index]); + data = in_be16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); ifc_nand_ctrl->index += 2; return (uint8_t) data; } @@ -617,7 +706,7 @@ static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) avail = min((unsigned int)len, ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); - memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail); + memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); ifc_nand_ctrl->index += avail; if (len > avail) @@ -627,46 +716,6 @@ static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) } /* - * Verify buffer against the IFC Controller Data Buffer - */ -static int fsl_ifc_verify_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - struct nand_chip *chip = mtd->priv; - struct fsl_ifc_mtd *priv = chip->priv; - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; - int i; - - if (len < 0) { - dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len); - return -EINVAL; - } - - if ((unsigned int)len > nctrl->read_bytes - nctrl->index) { - dev_err(priv->dev, - "%s: beyond end of buffer (%d requested, %u available)\n", - __func__, len, nctrl->read_bytes - nctrl->index); - - nctrl->index = nctrl->read_bytes; - return -EINVAL; - } - - for (i = 0; i < len; i++) - if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i]) - break; - - nctrl->index += len; - - if (i != len) - return -EIO; - if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) - return -EIO; - - return 0; -} - -/* * This function is called after Program and Erase Operations to * check for success or failure. */ @@ -678,18 +727,18 @@ static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) u32 nand_fsr; /* Use READ_STATUS command, but wait for the device to be ready */ - out_be32(&ifc->ifc_nand.nand_fir0, - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); - out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << - IFC_NAND_FCR0_CMD0_SHIFT); - out_be32(&ifc->ifc_nand.nand_fbcr, 1); + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(1, &ifc->ifc_nand.nand_fbcr); set_addr(mtd, 0, 0, 0); ifc_nand_ctrl->read_bytes = 1; fsl_ifc_run_command(mtd); - nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr); + nand_fsr = ioread32be(&ifc->ifc_nand.nand_fsr); /* * The chip always seems to report that it is @@ -721,11 +770,13 @@ static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ -static void fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, +static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { fsl_ifc_write_buf(mtd, buf, mtd->writesize); fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) @@ -749,8 +800,6 @@ static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) chip->page_shift); dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, chip->phys_erase_shift); - dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__, - chip->ecclayout); dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, chip->ecc.mode); dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, @@ -773,13 +822,62 @@ static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) return 0; } +static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + uint32_t csor = 0, csor_8k = 0, csor_ext = 0; + uint32_t cs = priv->bank; + + /* Save CSOR and CSOR_ext */ + csor = ioread32be(&ifc->csor_cs[cs].csor); + csor_ext = ioread32be(&ifc->csor_cs[cs].csor_ext); + + /* chage PageSize 8K and SpareSize 1K*/ + csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; + iowrite32be(csor_8k, &ifc->csor_cs[cs].csor); + iowrite32be(0x0000400, &ifc->csor_cs[cs].csor_ext); + + /* READID */ + iowrite32be((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + iowrite32be(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + iowrite32be(0x0, &ifc->ifc_nand.row3); + + iowrite32be(0x0, &ifc->ifc_nand.nand_fbcr); + + /* Program ROW0/COL0 */ + iowrite32be(0x0, &ifc->ifc_nand.row0); + iowrite32be(0x0, &ifc->ifc_nand.col0); + + /* set the chip select for NAND Transaction */ + iowrite32be(cs << IFC_NAND_CSEL_SHIFT, &ifc->ifc_nand.nand_csel); + + /* start read seq */ + iowrite32be(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + IFC_TIMEOUT_MSECS * HZ/1000); + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); + + /* Restore CSOR and CSOR_ext */ + iowrite32be(csor, &ifc->csor_cs[cs].csor); + iowrite32be(csor_ext, &ifc->csor_cs[cs].csor_ext); +} + static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) { struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_regs __iomem *ifc = ctrl->regs; struct nand_chip *chip = &priv->chip; struct nand_ecclayout *layout; - u32 csor; + u32 csor, ver; /* Fill in fsl_ifc_mtd structure */ priv->mtd.priv = chip; @@ -787,14 +885,13 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) /* fill in nand_chip structure */ /* set up function call table */ - if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) + if ((ioread32be(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) chip->read_byte = fsl_ifc_read_byte16; else chip->read_byte = fsl_ifc_read_byte; chip->write_buf = fsl_ifc_write_buf; chip->read_buf = fsl_ifc_read_buf; - chip->verify_buf = fsl_ifc_verify_buf; chip->select_chip = fsl_ifc_select_chip; chip->cmdfunc = fsl_ifc_cmdfunc; chip->waitfunc = fsl_ifc_wait; @@ -802,14 +899,13 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; - out_be32(&ifc->ifc_nand.ncfgr, 0x0); + iowrite32be(0x0, &ifc->ifc_nand.ncfgr); /* set up nand options */ - chip->options = NAND_NO_READRDY; chip->bbt_options = NAND_BBT_USE_FLASH; + chip->options = NAND_NO_SUBPAGE_WRITE; - - if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { + if (ioread32be(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { chip->read_byte = fsl_ifc_read_byte16; chip->options |= NAND_BUSWIDTH_16; } else { @@ -822,7 +918,7 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) chip->ecc.read_page = fsl_ifc_read_page; chip->ecc.write_page = fsl_ifc_write_page; - csor = in_be32(&ifc->csor_cs[priv->bank].csor); + csor = ioread32be(&ifc->csor_cs[priv->bank].csor); /* Hardware generates ECC per 512 Bytes */ chip->ecc.size = 512; @@ -856,11 +952,25 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) } else { layout = &oob_4096_ecc8; chip->ecc.bytes = 16; + chip->ecc.strength = 8; } priv->bufnum_mask = 1; break; + case CSOR_NAND_PGS_8K: + if ((csor & CSOR_NAND_ECC_MODE_MASK) == + CSOR_NAND_ECC_MODE_4) { + layout = &oob_8192_ecc4; + } else { + layout = &oob_8192_ecc8; + chip->ecc.bytes = 16; + chip->ecc.strength = 8; + } + + priv->bufnum_mask = 0; + break; + default: dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); return -ENODEV; @@ -874,6 +984,10 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) chip->ecc.mode = NAND_ECC_SOFT; } + ver = ioread32be(&ifc->ifc_rev); + if (ver == FSL_IFC_V1_1_0) + fsl_ifc_sram_init(priv); + return 0; } @@ -887,8 +1001,6 @@ static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) iounmap(priv->vbase); ifc_nand_ctrl->chips[priv->bank] = NULL; - dev_set_drvdata(priv->dev, NULL); - kfree(priv); return 0; } @@ -896,7 +1008,7 @@ static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, phys_addr_t addr) { - u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr); + u32 cspr = ioread32be(&ifc->cspr_cs[bank].cspr); if (!(cspr & CSPR_V)) return 0; @@ -908,7 +1020,7 @@ static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, static DEFINE_MUTEX(fsl_ifc_nand_mutex); -static int __devinit fsl_ifc_nand_probe(struct platform_device *dev) +static int fsl_ifc_nand_probe(struct platform_device *dev) { struct fsl_ifc_regs __iomem *ifc; struct fsl_ifc_mtd *priv; @@ -952,7 +1064,6 @@ static int __devinit fsl_ifc_nand_probe(struct platform_device *dev) if (!fsl_ifc_ctrl_dev->nand) { ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); if (!ifc_nand_ctrl) { - dev_err(&dev->dev, "failed to allocate memory\n"); mutex_unlock(&fsl_ifc_nand_mutex); return -ENOMEM; } @@ -983,18 +1094,17 @@ static int __devinit fsl_ifc_nand_probe(struct platform_device *dev) dev_set_drvdata(priv->dev, priv); - out_be32(&ifc->ifc_nand.nand_evter_en, - IFC_NAND_EVTER_EN_OPC_EN | - IFC_NAND_EVTER_EN_FTOER_EN | - IFC_NAND_EVTER_EN_WPER_EN); + iowrite32be(IFC_NAND_EVTER_EN_OPC_EN | + IFC_NAND_EVTER_EN_FTOER_EN | + IFC_NAND_EVTER_EN_WPER_EN, + &ifc->ifc_nand.nand_evter_en); /* enable NAND Machine Interrupts */ - out_be32(&ifc->ifc_nand.nand_evter_intr_en, - IFC_NAND_EVTER_INTR_OPCIR_EN | - IFC_NAND_EVTER_INTR_FTOERIR_EN | - IFC_NAND_EVTER_INTR_WPERIR_EN); - - priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); + iowrite32be(IFC_NAND_EVTER_INTR_OPCIR_EN | + IFC_NAND_EVTER_INTR_FTOERIR_EN | + IFC_NAND_EVTER_INTR_WPERIR_EN, + &ifc->ifc_nand.nand_evter_intr_en); + priv->mtd.name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); if (!priv->mtd.name) { ret = -ENOMEM; goto err; @@ -1064,25 +1174,7 @@ static struct platform_driver fsl_ifc_nand_driver = { .remove = fsl_ifc_nand_remove, }; -static int __init fsl_ifc_nand_init(void) -{ - int ret; - - ret = platform_driver_register(&fsl_ifc_nand_driver); - if (ret) - printk(KERN_ERR "fsl-ifc: Failed to register platform" - "driver\n"); - - return ret; -} - -static void __exit fsl_ifc_nand_exit(void) -{ - platform_driver_unregister(&fsl_ifc_nand_driver); -} - -module_init(fsl_ifc_nand_init); -module_exit(fsl_ifc_nand_exit); +module_platform_driver(fsl_ifc_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Freescale"); diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/fsl_upm.c index 45df542b9c6..4d203e84e8c 100644 --- a/drivers/mtd/nand/fsl_upm.c +++ b/drivers/mtd/nand/fsl_upm.c @@ -18,6 +18,7 @@ #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> #include <linux/mtd/mtd.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/of_gpio.h> #include <linux/io.h> @@ -152,9 +153,9 @@ static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) fun_wait_rnb(fun); } -static int __devinit fun_chip_init(struct fsl_upm_nand *fun, - const struct device_node *upm_np, - const struct resource *io_res) +static int fun_chip_init(struct fsl_upm_nand *fun, + const struct device_node *upm_np, + const struct resource *io_res) { int ret; struct device_node *flash_np; @@ -201,7 +202,7 @@ err: return ret; } -static int __devinit fun_probe(struct platform_device *ofdev) +static int fun_probe(struct platform_device *ofdev) { struct fsl_upm_nand *fun; struct resource io_res; @@ -318,7 +319,7 @@ err1: return ret; } -static int __devexit fun_remove(struct platform_device *ofdev) +static int fun_remove(struct platform_device *ofdev) { struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); int i; @@ -350,7 +351,7 @@ static struct platform_driver of_fun_driver = { .of_match_table = of_fun_match, }, .probe = fun_probe, - .remove = __devexit_p(fun_remove), + .remove = fun_remove, }; module_platform_driver(of_fun_driver); diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c index 38d26240d8b..1550692973d 100644 --- a/drivers/mtd/nand/fsmc_nand.c +++ b/drivers/mtd/nand/fsmc_nand.c @@ -361,7 +361,7 @@ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) struct nand_chip *this = mtd->priv; struct fsmc_nand_data *host = container_of(mtd, struct fsmc_nand_data, mtd); - void *__iomem *regs = host->regs_va; + void __iomem *regs = host->regs_va; unsigned int bank = host->bank; if (ctrl & NAND_CTRL_CHANGE) { @@ -383,13 +383,13 @@ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) pc |= FSMC_ENABLE; else pc &= ~FSMC_ENABLE; - writel(pc, FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); } mb(); if (cmd != NAND_CMD_NONE) - writeb(cmd, this->IO_ADDR_W); + writeb_relaxed(cmd, this->IO_ADDR_W); } /* @@ -426,14 +426,18 @@ static void fsmc_nand_setup(void __iomem *regs, uint32_t bank, tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; if (busw) - writel(value | FSMC_DEVWID_16, FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(value | FSMC_DEVWID_16, + FSMC_NAND_REG(regs, bank, PC)); else - writel(value | FSMC_DEVWID_8, FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(value | FSMC_DEVWID_8, + FSMC_NAND_REG(regs, bank, PC)); - writel(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, FSMC_NAND_REG(regs, bank, PC)); - writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, COMM)); - writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, ATTRIB)); + writel_relaxed(thiz | thold | twait | tset, + FSMC_NAND_REG(regs, bank, COMM)); + writel_relaxed(thiz | thold | twait | tset, + FSMC_NAND_REG(regs, bank, ATTRIB)); } /* @@ -446,11 +450,11 @@ static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) void __iomem *regs = host->regs_va; uint32_t bank = host->bank; - writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, FSMC_NAND_REG(regs, bank, PC)); - writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, FSMC_NAND_REG(regs, bank, PC)); - writel(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, FSMC_NAND_REG(regs, bank, PC)); } @@ -470,7 +474,7 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; do { - if (readl(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) + if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) break; else cond_resched(); @@ -481,25 +485,25 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, return -ETIMEDOUT; } - ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1)); + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); ecc[3] = (uint8_t) (ecc_tmp >> 24); - ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC2)); + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); ecc[4] = (uint8_t) (ecc_tmp >> 0); ecc[5] = (uint8_t) (ecc_tmp >> 8); ecc[6] = (uint8_t) (ecc_tmp >> 16); ecc[7] = (uint8_t) (ecc_tmp >> 24); - ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC3)); + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); ecc[8] = (uint8_t) (ecc_tmp >> 0); ecc[9] = (uint8_t) (ecc_tmp >> 8); ecc[10] = (uint8_t) (ecc_tmp >> 16); ecc[11] = (uint8_t) (ecc_tmp >> 24); - ecc_tmp = readl(FSMC_NAND_REG(regs, bank, STS)); + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); ecc[12] = (uint8_t) (ecc_tmp >> 16); return 0; @@ -519,7 +523,7 @@ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, uint32_t bank = host->bank; uint32_t ecc_tmp; - ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1)); + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); @@ -572,20 +576,17 @@ static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, if (direction == DMA_TO_DEVICE) { dma_src = dma_addr; dma_dst = host->data_pa; - flags |= DMA_COMPL_SRC_UNMAP_SINGLE | DMA_COMPL_SKIP_DEST_UNMAP; } else { dma_src = host->data_pa; dma_dst = dma_addr; - flags |= DMA_COMPL_DEST_UNMAP_SINGLE | DMA_COMPL_SKIP_SRC_UNMAP; } tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); - if (!tx) { dev_err(host->dev, "device_prep_dma_memcpy error\n"); - dma_unmap_single(dma_dev->dev, dma_addr, len, direction); - return -EIO; + ret = -EIO; + goto unmap_dma; } tx->callback = dma_complete; @@ -595,21 +596,28 @@ static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, ret = dma_submit_error(cookie); if (ret) { dev_err(host->dev, "dma_submit_error %d\n", cookie); - return ret; + goto unmap_dma; } dma_async_issue_pending(chan); ret = - wait_for_completion_interruptible_timeout(&host->dma_access_complete, + wait_for_completion_timeout(&host->dma_access_complete, msecs_to_jiffies(3000)); if (ret <= 0) { chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); dev_err(host->dev, "wait_for_completion_timeout\n"); - return ret ? ret : -ETIMEDOUT; + if (!ret) + ret = -ETIMEDOUT; + goto unmap_dma; } - return 0; + ret = 0; + +unmap_dma: + dma_unmap_single(dma_dev->dev, dma_addr, len, direction); + + return ret; } /* @@ -628,10 +636,10 @@ static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) uint32_t *p = (uint32_t *)buf; len = len >> 2; for (i = 0; i < len; i++) - writel(p[i], chip->IO_ADDR_W); + writel_relaxed(p[i], chip->IO_ADDR_W); } else { for (i = 0; i < len; i++) - writeb(buf[i], chip->IO_ADDR_W); + writeb_relaxed(buf[i], chip->IO_ADDR_W); } } @@ -651,10 +659,10 @@ static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) uint32_t *p = (uint32_t *)buf; len = len >> 2; for (i = 0; i < len; i++) - p[i] = readl(chip->IO_ADDR_R); + p[i] = readl_relaxed(chip->IO_ADDR_R); } else { for (i = 0; i < len; i++) - buf[i] = readb(chip->IO_ADDR_R); + buf[i] = readb_relaxed(chip->IO_ADDR_R); } } @@ -783,7 +791,7 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, uint32_t num_err, i; uint32_t ecc1, ecc2, ecc3, ecc4; - num_err = (readl(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; + num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; /* no bit flipping */ if (likely(num_err == 0)) @@ -826,10 +834,10 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, * uint64_t array and error offset indexes are populated in err_idx * array */ - ecc1 = readl(FSMC_NAND_REG(regs, bank, ECC1)); - ecc2 = readl(FSMC_NAND_REG(regs, bank, ECC2)); - ecc3 = readl(FSMC_NAND_REG(regs, bank, ECC3)); - ecc4 = readl(FSMC_NAND_REG(regs, bank, STS)); + ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); + ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); + ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); err_idx[0] = (ecc1 >> 0) & 0x1FFF; err_idx[1] = (ecc1 >> 13) & 0x1FFF; @@ -860,8 +868,8 @@ static bool filter(struct dma_chan *chan, void *slave) } #ifdef CONFIG_OF -static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev, - struct device_node *np) +static int fsmc_nand_probe_config_dt(struct platform_device *pdev, + struct device_node *np) { struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); u32 val; @@ -876,16 +884,30 @@ static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev, return -EINVAL; } } - of_property_read_u32(np, "st,ale-off", &pdata->ale_off); - of_property_read_u32(np, "st,cle-off", &pdata->cle_off); if (of_get_property(np, "nand-skip-bbtscan", NULL)) pdata->options = NAND_SKIP_BBTSCAN; + pdata->nand_timings = devm_kzalloc(&pdev->dev, + sizeof(*pdata->nand_timings), GFP_KERNEL); + if (!pdata->nand_timings) + return -ENOMEM; + of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings, + sizeof(*pdata->nand_timings)); + + /* Set default NAND bank to 0 */ + pdata->bank = 0; + if (!of_property_read_u32(np, "bank", &val)) { + if (val > 3) { + dev_err(&pdev->dev, "invalid bank %u\n", val); + return -EINVAL; + } + pdata->bank = val; + } return 0; } #else -static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev, - struct device_node *np) +static int fsmc_nand_probe_config_dt(struct platform_device *pdev, + struct device_node *np) { return -ENOSYS; } @@ -926,71 +948,30 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) /* Allocate memory for the device structure (and zero it) */ host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); - if (!host) { - dev_err(&pdev->dev, "failed to allocate device structure\n"); + if (!host) return -ENOMEM; - } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); - if (!res) - return -EINVAL; - - if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res), - pdev->name)) { - dev_err(&pdev->dev, "Failed to get memory data resourse\n"); - return -ENOENT; - } - + host->data_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->data_va)) + return PTR_ERR(host->data_va); + host->data_pa = (dma_addr_t)res->start; - host->data_va = devm_ioremap(&pdev->dev, res->start, - resource_size(res)); - if (!host->data_va) { - dev_err(&pdev->dev, "data ioremap failed\n"); - return -ENOMEM; - } - - if (!devm_request_mem_region(&pdev->dev, res->start + pdata->ale_off, - resource_size(res), pdev->name)) { - dev_err(&pdev->dev, "Failed to get memory ale resourse\n"); - return -ENOENT; - } - - host->addr_va = devm_ioremap(&pdev->dev, res->start + pdata->ale_off, - resource_size(res)); - if (!host->addr_va) { - dev_err(&pdev->dev, "ale ioremap failed\n"); - return -ENOMEM; - } - if (!devm_request_mem_region(&pdev->dev, res->start + pdata->cle_off, - resource_size(res), pdev->name)) { - dev_err(&pdev->dev, "Failed to get memory cle resourse\n"); - return -ENOENT; - } + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); + host->addr_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->addr_va)) + return PTR_ERR(host->addr_va); - host->cmd_va = devm_ioremap(&pdev->dev, res->start + pdata->cle_off, - resource_size(res)); - if (!host->cmd_va) { - dev_err(&pdev->dev, "ale ioremap failed\n"); - return -ENOMEM; - } + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); + host->cmd_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->cmd_va)) + return PTR_ERR(host->cmd_va); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); - if (!res) - return -EINVAL; - - if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res), - pdev->name)) { - dev_err(&pdev->dev, "Failed to get memory regs resourse\n"); - return -ENOENT; - } - - host->regs_va = devm_ioremap(&pdev->dev, res->start, - resource_size(res)); - if (!host->regs_va) { - dev_err(&pdev->dev, "regs ioremap failed\n"); - return -ENOMEM; - } + host->regs_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->regs_va)) + return PTR_ERR(host->regs_va); host->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { @@ -1123,8 +1104,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) host->ecc_place = &fsmc_ecc4_lp_place; break; default: - printk(KERN_WARNING "No oob scheme defined for " - "oobsize %d\n", mtd->oobsize); + dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", + mtd->oobsize); BUG(); } } else { @@ -1139,8 +1120,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) nand->ecc.layout = &fsmc_ecc1_128_layout; break; default: - printk(KERN_WARNING "No oob scheme defined for " - "oobsize %d\n", mtd->oobsize); + dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", + mtd->oobsize); BUG(); } } @@ -1193,8 +1174,6 @@ static int fsmc_nand_remove(struct platform_device *pdev) { struct fsmc_nand_data *host = platform_get_drvdata(pdev); - platform_set_drvdata(pdev, NULL); - if (host) { nand_release(&host->mtd); @@ -1209,7 +1188,7 @@ static int fsmc_nand_remove(struct platform_device *pdev) return 0; } -#ifdef CONFIG_PM +#ifdef CONFIG_PM_SLEEP static int fsmc_nand_suspend(struct device *dev) { struct fsmc_nand_data *host = dev_get_drvdata(dev); @@ -1229,13 +1208,14 @@ static int fsmc_nand_resume(struct device *dev) } return 0; } +#endif static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); -#endif #ifdef CONFIG_OF static const struct of_device_id fsmc_nand_id_table[] = { { .compatible = "st,spear600-fsmc-nand" }, + { .compatible = "stericsson,fsmc-nand" }, {} }; MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); @@ -1247,24 +1227,11 @@ static struct platform_driver fsmc_nand_driver = { .owner = THIS_MODULE, .name = "fsmc-nand", .of_match_table = of_match_ptr(fsmc_nand_id_table), -#ifdef CONFIG_PM .pm = &fsmc_nand_pm_ops, -#endif }, }; -static int __init fsmc_nand_init(void) -{ - return platform_driver_probe(&fsmc_nand_driver, - fsmc_nand_probe); -} -module_init(fsmc_nand_init); - -static void __exit fsmc_nand_exit(void) -{ - platform_driver_unregister(&fsmc_nand_driver); -} -module_exit(fsmc_nand_exit); +module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c index 27000a5f5f4..117ce333fdd 100644 --- a/drivers/mtd/nand/gpio.c +++ b/drivers/mtd/nand/gpio.c @@ -17,7 +17,7 @@ */ #include <linux/kernel.h> -#include <linux/init.h> +#include <linux/err.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/platform_device.h> @@ -86,91 +86,10 @@ static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) gpio_nand_dosync(gpiomtd); } -static void gpio_nand_writebuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - - writesb(this->IO_ADDR_W, buf, len); -} - -static void gpio_nand_readbuf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - - readsb(this->IO_ADDR_R, buf, len); -} - -static int gpio_nand_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - unsigned char read, *p = (unsigned char *) buf; - int i, err = 0; - - for (i = 0; i < len; i++) { - read = readb(this->IO_ADDR_R); - if (read != p[i]) { - pr_debug("%s: err at %d (read %04x vs %04x)\n", - __func__, i, read, p[i]); - err = -EFAULT; - } - } - return err; -} - -static void gpio_nand_writebuf16(struct mtd_info *mtd, const u_char *buf, - int len) -{ - struct nand_chip *this = mtd->priv; - - if (IS_ALIGNED((unsigned long)buf, 2)) { - writesw(this->IO_ADDR_W, buf, len>>1); - } else { - int i; - unsigned short *ptr = (unsigned short *)buf; - - for (i = 0; i < len; i += 2, ptr++) - writew(*ptr, this->IO_ADDR_W); - } -} - -static void gpio_nand_readbuf16(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd->priv; - - if (IS_ALIGNED((unsigned long)buf, 2)) { - readsw(this->IO_ADDR_R, buf, len>>1); - } else { - int i; - unsigned short *ptr = (unsigned short *)buf; - - for (i = 0; i < len; i += 2, ptr++) - *ptr = readw(this->IO_ADDR_R); - } -} - -static int gpio_nand_verifybuf16(struct mtd_info *mtd, const u_char *buf, - int len) -{ - struct nand_chip *this = mtd->priv; - unsigned short read, *p = (unsigned short *) buf; - int i, err = 0; - len >>= 1; - - for (i = 0; i < len; i++) { - read = readw(this->IO_ADDR_R); - if (read != p[i]) { - pr_debug("%s: err at %d (read %04x vs %04x)\n", - __func__, i, read, p[i]); - err = -EFAULT; - } - } - return err; -} - - static int gpio_nand_devready(struct mtd_info *mtd) { struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); + return gpio_get_value(gpiomtd->plat.gpio_rdy); } @@ -186,6 +105,9 @@ static int gpio_nand_get_config_of(const struct device *dev, { u32 val; + if (!dev->of_node) + return -ENODEV; + if (!of_property_read_u32(dev->of_node, "bank-width", &val)) { if (val == 2) { plat->options |= NAND_BUSWIDTH_16; @@ -209,13 +131,17 @@ static int gpio_nand_get_config_of(const struct device *dev, static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev) { - struct resource *r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL); + struct resource *r; u64 addr; - if (!r || of_property_read_u64(pdev->dev.of_node, + if (of_property_read_u64(pdev->dev.of_node, "gpio-control-nand,io-sync-reg", &addr)) return NULL; + r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL); + if (!r) + return NULL; + r->start = addr; r->end = r->start + 0x3; r->flags = IORESOURCE_MEM; @@ -223,7 +149,6 @@ static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev) return r; } #else /* CONFIG_OF */ -#define gpio_nand_id_table NULL static inline int gpio_nand_get_config_of(const struct device *dev, struct gpio_nand_platdata *plat) { @@ -245,8 +170,8 @@ static inline int gpio_nand_get_config(const struct device *dev, if (!ret) return ret; - if (dev->platform_data) { - memcpy(plat, dev->platform_data, sizeof(*plat)); + if (dev_get_platdata(dev)) { + memcpy(plat, dev_get_platdata(dev), sizeof(*plat)); return 0; } @@ -264,146 +189,98 @@ gpio_nand_get_io_sync(struct platform_device *pdev) return platform_get_resource(pdev, IORESOURCE_MEM, 1); } -static int __devexit gpio_nand_remove(struct platform_device *dev) +static int gpio_nand_remove(struct platform_device *pdev) { - struct gpiomtd *gpiomtd = platform_get_drvdata(dev); - struct resource *res; + struct gpiomtd *gpiomtd = platform_get_drvdata(pdev); nand_release(&gpiomtd->mtd_info); - res = gpio_nand_get_io_sync(dev); - iounmap(gpiomtd->io_sync); - if (res) - release_mem_region(res->start, resource_size(res)); - - res = platform_get_resource(dev, IORESOURCE_MEM, 0); - iounmap(gpiomtd->nand_chip.IO_ADDR_R); - release_mem_region(res->start, resource_size(res)); - if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) gpio_set_value(gpiomtd->plat.gpio_nwp, 0); gpio_set_value(gpiomtd->plat.gpio_nce, 1); - gpio_free(gpiomtd->plat.gpio_cle); - gpio_free(gpiomtd->plat.gpio_ale); - gpio_free(gpiomtd->plat.gpio_nce); - if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) - gpio_free(gpiomtd->plat.gpio_nwp); - gpio_free(gpiomtd->plat.gpio_rdy); - - kfree(gpiomtd); - return 0; } -static void __iomem *request_and_remap(struct resource *res, size_t size, - const char *name, int *err) -{ - void __iomem *ptr; - - if (!request_mem_region(res->start, resource_size(res), name)) { - *err = -EBUSY; - return NULL; - } - - ptr = ioremap(res->start, size); - if (!ptr) { - release_mem_region(res->start, resource_size(res)); - *err = -ENOMEM; - } - return ptr; -} - -static int __devinit gpio_nand_probe(struct platform_device *dev) +static int gpio_nand_probe(struct platform_device *pdev) { struct gpiomtd *gpiomtd; - struct nand_chip *this; - struct resource *res0, *res1; + struct nand_chip *chip; + struct resource *res; struct mtd_part_parser_data ppdata = {}; int ret = 0; - if (!dev->dev.of_node && !dev->dev.platform_data) + if (!pdev->dev.of_node && !dev_get_platdata(&pdev->dev)) return -EINVAL; - res0 = platform_get_resource(dev, IORESOURCE_MEM, 0); - if (!res0) - return -EINVAL; - - gpiomtd = kzalloc(sizeof(*gpiomtd), GFP_KERNEL); - if (gpiomtd == NULL) { - dev_err(&dev->dev, "failed to create NAND MTD\n"); + gpiomtd = devm_kzalloc(&pdev->dev, sizeof(*gpiomtd), GFP_KERNEL); + if (!gpiomtd) return -ENOMEM; - } - this = &gpiomtd->nand_chip; - this->IO_ADDR_R = request_and_remap(res0, 2, "NAND", &ret); - if (!this->IO_ADDR_R) { - dev_err(&dev->dev, "unable to map NAND\n"); - goto err_map; - } + chip = &gpiomtd->nand_chip; - res1 = gpio_nand_get_io_sync(dev); - if (res1) { - gpiomtd->io_sync = request_and_remap(res1, 4, "NAND sync", &ret); - if (!gpiomtd->io_sync) { - dev_err(&dev->dev, "unable to map sync NAND\n"); - goto err_sync; - } + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(chip->IO_ADDR_R)) + return PTR_ERR(chip->IO_ADDR_R); + + res = gpio_nand_get_io_sync(pdev); + if (res) { + gpiomtd->io_sync = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(gpiomtd->io_sync)) + return PTR_ERR(gpiomtd->io_sync); } - ret = gpio_nand_get_config(&dev->dev, &gpiomtd->plat); + ret = gpio_nand_get_config(&pdev->dev, &gpiomtd->plat); if (ret) - goto err_nce; + return ret; - ret = gpio_request(gpiomtd->plat.gpio_nce, "NAND NCE"); + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce, "NAND NCE"); if (ret) - goto err_nce; + return ret; gpio_direction_output(gpiomtd->plat.gpio_nce, 1); + if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) { - ret = gpio_request(gpiomtd->plat.gpio_nwp, "NAND NWP"); + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nwp, + "NAND NWP"); if (ret) - goto err_nwp; - gpio_direction_output(gpiomtd->plat.gpio_nwp, 1); + return ret; } - ret = gpio_request(gpiomtd->plat.gpio_ale, "NAND ALE"); + + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_ale, "NAND ALE"); if (ret) - goto err_ale; + return ret; gpio_direction_output(gpiomtd->plat.gpio_ale, 0); - ret = gpio_request(gpiomtd->plat.gpio_cle, "NAND CLE"); + + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_cle, "NAND CLE"); if (ret) - goto err_cle; + return ret; gpio_direction_output(gpiomtd->plat.gpio_cle, 0); - ret = gpio_request(gpiomtd->plat.gpio_rdy, "NAND RDY"); - if (ret) - goto err_rdy; - gpio_direction_input(gpiomtd->plat.gpio_rdy); - - - this->IO_ADDR_W = this->IO_ADDR_R; - this->ecc.mode = NAND_ECC_SOFT; - this->options = gpiomtd->plat.options; - this->chip_delay = gpiomtd->plat.chip_delay; - - /* install our routines */ - this->cmd_ctrl = gpio_nand_cmd_ctrl; - this->dev_ready = gpio_nand_devready; - - if (this->options & NAND_BUSWIDTH_16) { - this->read_buf = gpio_nand_readbuf16; - this->write_buf = gpio_nand_writebuf16; - this->verify_buf = gpio_nand_verifybuf16; - } else { - this->read_buf = gpio_nand_readbuf; - this->write_buf = gpio_nand_writebuf; - this->verify_buf = gpio_nand_verifybuf; + + if (gpio_is_valid(gpiomtd->plat.gpio_rdy)) { + ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_rdy, + "NAND RDY"); + if (ret) + return ret; + gpio_direction_input(gpiomtd->plat.gpio_rdy); + chip->dev_ready = gpio_nand_devready; } - /* set the mtd private data for the nand driver */ - gpiomtd->mtd_info.priv = this; - gpiomtd->mtd_info.owner = THIS_MODULE; + chip->IO_ADDR_W = chip->IO_ADDR_R; + chip->ecc.mode = NAND_ECC_SOFT; + chip->options = gpiomtd->plat.options; + chip->chip_delay = gpiomtd->plat.chip_delay; + chip->cmd_ctrl = gpio_nand_cmd_ctrl; + + gpiomtd->mtd_info.priv = chip; + gpiomtd->mtd_info.owner = THIS_MODULE; + + platform_set_drvdata(pdev, gpiomtd); + + if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) + gpio_direction_output(gpiomtd->plat.gpio_nwp, 1); if (nand_scan(&gpiomtd->mtd_info, 1)) { - dev_err(&dev->dev, "no nand chips found?\n"); ret = -ENXIO; goto err_wp; } @@ -412,38 +289,17 @@ static int __devinit gpio_nand_probe(struct platform_device *dev) gpiomtd->plat.adjust_parts(&gpiomtd->plat, gpiomtd->mtd_info.size); - ppdata.of_node = dev->dev.of_node; + ppdata.of_node = pdev->dev.of_node; ret = mtd_device_parse_register(&gpiomtd->mtd_info, NULL, &ppdata, gpiomtd->plat.parts, gpiomtd->plat.num_parts); - if (ret) - goto err_wp; - platform_set_drvdata(dev, gpiomtd); - - return 0; + if (!ret) + return 0; err_wp: if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) gpio_set_value(gpiomtd->plat.gpio_nwp, 0); - gpio_free(gpiomtd->plat.gpio_rdy); -err_rdy: - gpio_free(gpiomtd->plat.gpio_cle); -err_cle: - gpio_free(gpiomtd->plat.gpio_ale); -err_ale: - if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) - gpio_free(gpiomtd->plat.gpio_nwp); -err_nwp: - gpio_free(gpiomtd->plat.gpio_nce); -err_nce: - iounmap(gpiomtd->io_sync); - if (res1) - release_mem_region(res1->start, resource_size(res1)); -err_sync: - iounmap(gpiomtd->nand_chip.IO_ADDR_R); - release_mem_region(res0->start, resource_size(res0)); -err_map: - kfree(gpiomtd); + return ret; } @@ -452,24 +308,12 @@ static struct platform_driver gpio_nand_driver = { .remove = gpio_nand_remove, .driver = { .name = "gpio-nand", - .of_match_table = gpio_nand_id_table, + .owner = THIS_MODULE, + .of_match_table = of_match_ptr(gpio_nand_id_table), }, }; -static int __init gpio_nand_init(void) -{ - printk(KERN_INFO "GPIO NAND driver, © 2004 Simtec Electronics\n"); - - return platform_driver_register(&gpio_nand_driver); -} - -static void __exit gpio_nand_exit(void) -{ - platform_driver_unregister(&gpio_nand_driver); -} - -module_init(gpio_nand_init); -module_exit(gpio_nand_exit); +module_platform_driver(gpio_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/gpmi-nand/bch-regs.h index a0924515c39..05bb91f2f4c 100644 --- a/drivers/mtd/nand/gpmi-nand/bch-regs.h +++ b/drivers/mtd/nand/gpmi-nand/bch-regs.h @@ -54,20 +54,30 @@ #define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11 #define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) #define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \ - (GPMI_IS_MX6Q(x) \ + (GPMI_IS_MX6(x) \ ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \ & MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \ : (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \ & BM_BCH_FLASH0LAYOUT0_ECC0) \ ) +#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) +#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \ + : 0 \ + ) + #define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 #define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) #define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ (0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) #define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \ - (GPMI_IS_MX6Q(x) \ + (GPMI_IS_MX6(x) \ ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ : ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ ) @@ -86,21 +96,33 @@ #define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11 #define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) #define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \ - (GPMI_IS_MX6Q(x) \ + (GPMI_IS_MX6(x) \ ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \ & MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \ : (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \ & BM_BCH_FLASH0LAYOUT1_ECCN) \ ) +#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) +#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \ + : 0 \ + ) + #define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 #define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) #define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ (0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) #define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \ - (GPMI_IS_MX6Q(x) \ + (GPMI_IS_MX6(x) \ ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ : ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ ) + +#define HW_BCH_VERSION 0x00000160 #endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c index a1f43329ad4..87e658ce23e 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c +++ b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c @@ -18,15 +18,15 @@ * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ -#include <linux/mtd/gpmi-nand.h> #include <linux/delay.h> #include <linux/clk.h> +#include <linux/slab.h> #include "gpmi-nand.h" #include "gpmi-regs.h" #include "bch-regs.h" -struct timing_threshod timing_default_threshold = { +static struct timing_threshod timing_default_threshold = { .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> BP_GPMI_TIMING0_DATA_SETUP), .internal_data_setup_in_ns = 0, @@ -124,18 +124,57 @@ error: return -ETIMEDOUT; } +static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) +{ + struct clk *clk; + int ret; + int i; + + for (i = 0; i < GPMI_CLK_MAX; i++) { + clk = this->resources.clock[i]; + if (!clk) + break; + + if (v) { + ret = clk_prepare_enable(clk); + if (ret) + goto err_clk; + } else { + clk_disable_unprepare(clk); + } + } + return 0; + +err_clk: + for (; i > 0; i--) + clk_disable_unprepare(this->resources.clock[i - 1]); + return ret; +} + +#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true) +#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false) + int gpmi_init(struct gpmi_nand_data *this) { struct resources *r = &this->resources; int ret; - ret = clk_prepare_enable(r->clock); + ret = gpmi_enable_clk(this); if (ret) goto err_out; ret = gpmi_reset_block(r->gpmi_regs, false); if (ret) goto err_out; + /* + * Reset BCH here, too. We got failures otherwise :( + * See later BCH reset for explanation of MX23 handling + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); + if (ret) + goto err_out; + + /* Choose NAND mode. */ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); @@ -149,7 +188,13 @@ int gpmi_init(struct gpmi_nand_data *this) /* Select BCH ECC. */ writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); - clk_disable_unprepare(r->clock); + /* + * Decouple the chip select from dma channel. We use dma0 for all + * the chips. + */ + writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + gpmi_disable_clk(this); return 0; err_out: return ret; @@ -163,25 +208,41 @@ void gpmi_dump_info(struct gpmi_nand_data *this) u32 reg; int i; - pr_err("Show GPMI registers :\n"); + dev_err(this->dev, "Show GPMI registers :\n"); for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { reg = readl(r->gpmi_regs + i * 0x10); - pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); } /* start to print out the BCH info */ - pr_err("BCH Geometry :\n"); - pr_err("GF length : %u\n", geo->gf_len); - pr_err("ECC Strength : %u\n", geo->ecc_strength); - pr_err("Page Size in Bytes : %u\n", geo->page_size); - pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size); - pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size); - pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count); - pr_err("Payload Size in Bytes : %u\n", geo->payload_size); - pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size); - pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset); - pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset); - pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset); + dev_err(this->dev, "Show BCH registers :\n"); + for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { + reg = readl(r->bch_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + dev_err(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset); } /* Configures the geometry for BCH. */ @@ -194,6 +255,7 @@ int bch_set_geometry(struct gpmi_nand_data *this) unsigned int metadata_size; unsigned int ecc_strength; unsigned int page_size; + unsigned int gf_len; int ret; if (common_nfc_set_geometry(this)) @@ -204,8 +266,9 @@ int bch_set_geometry(struct gpmi_nand_data *this) metadata_size = bch_geo->metadata_size; ecc_strength = bch_geo->ecc_strength >> 1; page_size = bch_geo->page_size; + gf_len = bch_geo->gf_len; - ret = clk_prepare_enable(r->clock); + ret = gpmi_enable_clk(this); if (ret) goto err_out; @@ -214,8 +277,8 @@ int bch_set_geometry(struct gpmi_nand_data *this) * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. * On the other hand, the MX28 needs the reset, because one case has been * seen where the BCH produced ECC errors constantly after 10000 - * consecutive reboots. The latter case has not been seen on the MX23 yet, - * still we don't know if it could happen there as well. + * consecutive reboots. The latter case has not been seen on the MX23 + * yet, still we don't know if it could happen there as well. */ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); if (ret) @@ -225,11 +288,13 @@ int bch_set_geometry(struct gpmi_nand_data *this) writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), r->bch_regs + HW_BCH_FLASH0LAYOUT0); writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), r->bch_regs + HW_BCH_FLASH0LAYOUT1); @@ -240,7 +305,7 @@ int bch_set_geometry(struct gpmi_nand_data *this) writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, r->bch_regs + HW_BCH_CTRL_SET); - clk_disable_unprepare(r->clock); + gpmi_disable_clk(this); return 0; err_out: return ret; @@ -263,6 +328,7 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, struct gpmi_nfc_hardware_timing *hw) { struct timing_threshod *nfc = &timing_default_threshold; + struct resources *r = &this->resources; struct nand_chip *nand = &this->nand; struct nand_timing target = this->timing; bool improved_timing_is_available; @@ -299,11 +365,12 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, improved_timing_is_available = (target.tREA_in_ns >= 0) && (target.tRLOH_in_ns >= 0) && - (target.tRHOH_in_ns >= 0) ; + (target.tRHOH_in_ns >= 0); /* Inspect the clock. */ + nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]); clock_frequency_in_hz = nfc->clock_frequency_in_hz; - clock_period_in_ns = 1000000000 / clock_frequency_in_hz; + clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; /* * The NFC quantizes setup and hold parameters in terms of clock cycles. @@ -698,17 +765,233 @@ return_results: hw->address_setup_in_cycles = address_setup_in_cycles; hw->use_half_periods = dll_use_half_periods; hw->sample_delay_factor = sample_delay_factor; + hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; + hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; /* Return success. */ return 0; } +/* + * <1> Firstly, we should know what's the GPMI-clock means. + * The GPMI-clock is the internal clock in the gpmi nand controller. + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. + * + * <2> Secondly, we should know what's the frequency on the nand chip pins. + * The frequency on the nand chip pins is derived from the GPMI-clock. + * We can get it from the following equation: + * + * F = G / (DS + DH) + * + * F : the frequency on the nand chip pins. + * G : the GPMI clock, such as 100MHz. + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD + * + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, + * the nand EDO(extended Data Out) timing could be applied. + * The GPMI implements a feedback read strobe to sample the read data. + * The feedback read strobe can be delayed to support the nand EDO timing + * where the read strobe may deasserts before the read data is valid, and + * read data is valid for some time after read strobe. + * + * The following figure illustrates some aspects of a NAND Flash read: + * + * |<---tREA---->| + * | | + * | | | + * |<--tRP-->| | + * | | | + * __ ___|__________________________________ + * RDN \________/ | + * | + * /---------\ + * Read Data --------------< >--------- + * \---------/ + * | | + * |<-D->| + * FeedbackRDN ________ ____________ + * \___________/ + * + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. + * + * + * <4> Now, we begin to describe how to compute the right RDN_DELAY. + * + * 4.1) From the aspect of the nand chip pins: + * Delay = (tREA + C - tRP) {1} + * + * tREA : the maximum read access time. From the ONFI nand standards, + * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4. + * Please check it in : www.onfi.org + * C : a constant for adjust the delay. default is 4. + * tRP : the read pulse width. + * Specified by the HW_GPMI_TIMING0:DATA_SETUP: + * tRP = (GPMI-clock-period) * DATA_SETUP + * + * 4.2) From the aspect of the GPMI nand controller: + * Delay = RDN_DELAY * 0.125 * RP {2} + * + * RP : the DLL reference period. + * if (GPMI-clock-period > DLL_THRETHOLD) + * RP = GPMI-clock-period / 2; + * else + * RP = GPMI-clock-period; + * + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD + * is 16ns, but in mx6q, we use 12ns. + * + * 4.3) since {1} equals {2}, we get: + * + * (tREA + 4 - tRP) * 8 + * RDN_DELAY = --------------------- {3} + * RP + * + * 4.4) We only support the fastest asynchronous mode of ONFI nand. + * For some ONFI nand, the mode 4 is the fastest mode; + * while for some ONFI nand, the mode 5 is the fastest mode. + * So we only support the mode 4 and mode 5. It is no need to + * support other modes. + */ +static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct resources *r = &this->resources; + unsigned long rate = clk_get_rate(r->clock[0]); + int mode = this->timing_mode; + int dll_threshold = this->devdata->max_chain_delay; + unsigned long delay; + unsigned long clk_period; + int t_rea; + int c = 4; + int t_rp; + int rp; + + /* + * [1] for GPMI_HW_GPMI_TIMING0: + * The async mode requires 40MHz for mode 4, 50MHz for mode 5. + * The GPMI can support 100MHz at most. So if we want to + * get the 40MHz or 50MHz, we have to set DS=1, DH=1. + * Set the ADDRESS_SETUP to 0 in mode 4. + */ + hw->data_setup_in_cycles = 1; + hw->data_hold_in_cycles = 1; + hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0); + + /* [2] for GPMI_HW_GPMI_TIMING1 */ + hw->device_busy_timeout = 0x9000; + + /* [3] for GPMI_HW_GPMI_CTRL1 */ + hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + + /* + * Enlarge 10 times for the numerator and denominator in {3}. + * This make us to get more accurate result. + */ + clk_period = NSEC_PER_SEC / (rate / 10); + dll_threshold *= 10; + t_rea = ((mode == 5) ? 16 : 20) * 10; + c *= 10; + + t_rp = clk_period * 1; /* DATA_SETUP is 1 */ + + if (clk_period > dll_threshold) { + hw->use_half_periods = 1; + rp = clk_period / 2; + } else { + hw->use_half_periods = 0; + rp = clk_period; + } + + /* + * Multiply the numerator with 10, we could do a round off: + * 7.8 round up to 8; 7.4 round down to 7. + */ + delay = (((t_rea + c - t_rp) * 8) * 10) / rp; + delay = (delay + 5) / 10; + + hw->sample_delay_factor = delay; +} + +static int enable_edo_mode(struct gpmi_nand_data *this, int mode) +{ + struct resources *r = &this->resources; + struct nand_chip *nand = &this->nand; + struct mtd_info *mtd = &this->mtd; + uint8_t *feature; + unsigned long rate; + int ret; + + feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL); + if (!feature) + return -ENOMEM; + + nand->select_chip(mtd, 0); + + /* [1] send SET FEATURE commond to NAND */ + feature[0] = mode; + ret = nand->onfi_set_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); + if (ret) + goto err_out; + + /* [2] send GET FEATURE command to double-check the timing mode */ + memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); + ret = nand->onfi_get_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); + if (ret || feature[0] != mode) + goto err_out; + + nand->select_chip(mtd, -1); + + /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */ + rate = (mode == 5) ? 100000000 : 80000000; + clk_set_rate(r->clock[0], rate); + + /* Let the gpmi_begin() re-compute the timing again. */ + this->flags &= ~GPMI_TIMING_INIT_OK; + + this->flags |= GPMI_ASYNC_EDO_ENABLED; + this->timing_mode = mode; + kfree(feature); + dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode); + return 0; + +err_out: + nand->select_chip(mtd, -1); + kfree(feature); + dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode); + return -EINVAL; +} + +int gpmi_extra_init(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + + /* Enable the asynchronous EDO feature. */ + if (GPMI_IS_MX6(this) && chip->onfi_version) { + int mode = onfi_get_async_timing_mode(chip); + + /* We only support the timing mode 4 and mode 5. */ + if (mode & ONFI_TIMING_MODE_5) + mode = 5; + else if (mode & ONFI_TIMING_MODE_4) + mode = 4; + else + return 0; + + return enable_edo_mode(this, mode); + } + return 0; +} + /* Begin the I/O */ void gpmi_begin(struct gpmi_nand_data *this) { struct resources *r = &this->resources; - struct timing_threshod *nfc = &timing_default_threshold; - unsigned char *gpmi_regs = r->gpmi_regs; + void __iomem *gpmi_regs = r->gpmi_regs; unsigned int clock_period_in_ns; uint32_t reg; unsigned int dll_wait_time_in_us; @@ -716,60 +999,66 @@ void gpmi_begin(struct gpmi_nand_data *this) int ret; /* Enable the clock. */ - ret = clk_prepare_enable(r->clock); + ret = gpmi_enable_clk(this); if (ret) { - pr_err("We failed in enable the clk\n"); + dev_err(this->dev, "We failed in enable the clk\n"); goto err_out; } - /* set ready/busy timeout */ - writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT, - gpmi_regs + HW_GPMI_TIMING1); - - /* Get the timing information we need. */ - nfc->clock_frequency_in_hz = clk_get_rate(r->clock); - clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz; + /* Only initialize the timing once */ + if (this->flags & GPMI_TIMING_INIT_OK) + return; + this->flags |= GPMI_TIMING_INIT_OK; - gpmi_nfc_compute_hardware_timing(this, &hw); + if (this->flags & GPMI_ASYNC_EDO_ENABLED) + gpmi_compute_edo_timing(this, &hw); + else + gpmi_nfc_compute_hardware_timing(this, &hw); - /* Set up all the simple timing parameters. */ + /* [1] Set HW_GPMI_TIMING0 */ reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | - BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ; + BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles); writel(reg, gpmi_regs + HW_GPMI_TIMING0); - /* - * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. - */ + /* [2] Set HW_GPMI_TIMING1 */ + writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout), + gpmi_regs + HW_GPMI_TIMING1); + + /* [3] The following code is to set the HW_GPMI_CTRL1. */ + + /* Set the WRN_DLY_SEL */ + writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel), + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); /* Clear out the DLL control fields. */ - writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR); - writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR); + reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD; + writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); /* If no sample delay is called for, return immediately. */ if (!hw.sample_delay_factor) return; - /* Configure the HALF_PERIOD flag. */ - if (hw.use_half_periods) - writel(BM_GPMI_CTRL1_HALF_PERIOD, - gpmi_regs + HW_GPMI_CTRL1_SET); + /* Set RDN_DELAY or HALF_PERIOD. */ + reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) + | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor); - /* Set the delay factor. */ - writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor), - gpmi_regs + HW_GPMI_CTRL1_SET); + writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); - /* Enable the DLL. */ + /* At last, we enable the DLL. */ writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); /* * After we enable the GPMI DLL, we have to wait 64 clock cycles before - * we can use the GPMI. - * - * Calculate the amount of time we need to wait, in microseconds. + * we can use the GPMI. Calculate the amount of time we need to wait, + * in microseconds. */ + clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]); dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; if (!dll_wait_time_in_us) @@ -784,8 +1073,7 @@ err_out: void gpmi_end(struct gpmi_nand_data *this) { - struct resources *r = &this->resources; - clk_disable_unprepare(r->clock); + gpmi_disable_clk(this); } /* Clears a BCH interrupt. */ @@ -805,12 +1093,19 @@ int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) if (GPMI_IS_MX23(this)) { mask = MX23_BM_GPMI_DEBUG_READY0 << chip; reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); - } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) { + } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { + /* + * In the imx6, all the ready/busy pins are bound + * together. So we only need to check chip 0. + */ + if (GPMI_IS_MX6(this)) + chip = 0; + /* MX28 shares the same R/B register as MX6Q. */ mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); reg = readl(r->gpmi_regs + HW_GPMI_STAT); } else - pr_err("unknow arch.\n"); + dev_err(this->dev, "unknow arch.\n"); return reg & mask; } @@ -841,10 +1136,8 @@ int gpmi_send_command(struct gpmi_nand_data *this) desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) { - pr_err("step 1 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ sgl = &this->cmd_sgl; @@ -854,11 +1147,8 @@ int gpmi_send_command(struct gpmi_nand_data *this) desc = dmaengine_prep_slave_sg(channel, sgl, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - - if (!desc) { - pr_err("step 2 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [3] submit the DMA */ set_dma_type(this, DMA_FOR_COMMAND); @@ -887,20 +1177,17 @@ int gpmi_send_data(struct gpmi_nand_data *this) pio[1] = 0; desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) { - pr_err("step 1 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [2] send DMA request */ prepare_data_dma(this, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) { - pr_err("step 2 error\n"); - return -1; - } + if (!desc) + return -EINVAL; + /* [3] submit the DMA */ set_dma_type(this, DMA_FOR_WRITE_DATA); return start_dma_without_bch_irq(this, desc); @@ -924,20 +1211,16 @@ int gpmi_read_data(struct gpmi_nand_data *this) desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) { - pr_err("step 1 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [2] : send DMA request */ prepare_data_dma(this, DMA_FROM_DEVICE); desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) { - pr_err("step 2 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [3] : submit the DMA */ set_dma_type(this, DMA_FOR_READ_DATA); @@ -982,10 +1265,9 @@ int gpmi_send_page(struct gpmi_nand_data *this, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, DMA_CTRL_ACK); - if (!desc) { - pr_err("step 2 error\n"); - return -1; - } + if (!desc) + return -EINVAL; + set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); return start_dma_with_bch_irq(this, desc); } @@ -1017,10 +1299,8 @@ int gpmi_read_page(struct gpmi_nand_data *this, desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, 2, DMA_TRANS_NONE, 0); - if (!desc) { - pr_err("step 1 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [2] Enable the BCH block and read. */ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; @@ -1047,10 +1327,8 @@ int gpmi_read_page(struct gpmi_nand_data *this, (struct scatterlist *)pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) { - pr_err("step 2 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [3] Disable the BCH block */ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; @@ -1068,10 +1346,8 @@ int gpmi_read_page(struct gpmi_nand_data *this, (struct scatterlist *)pio, 3, DMA_TRANS_NONE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) { - pr_err("step 3 error\n"); - return -1; - } + if (!desc) + return -EINVAL; /* [4] submit the DMA */ set_dma_type(this, DMA_FOR_READ_ECC_PAGE); diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c index a6cad5caba7..f638cd8077c 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c @@ -22,12 +22,17 @@ #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/module.h> -#include <linux/mtd/gpmi-nand.h> #include <linux/mtd/partitions.h> -#include <linux/pinctrl/consumer.h> #include <linux/of.h> #include <linux/of_device.h> +#include <linux/of_mtd.h> #include "gpmi-nand.h" +#include "bch-regs.h" + +/* Resource names for the GPMI NAND driver. */ +#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" +#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" +#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" /* add our owner bbt descriptor */ static uint8_t scan_ff_pattern[] = { 0xff }; @@ -38,13 +43,40 @@ static struct nand_bbt_descr gpmi_bbt_descr = { .pattern = scan_ff_pattern }; -/* We will use all the (page + OOB). */ +/* + * We may change the layout if we can get the ECC info from the datasheet, + * else we will use all the (page + OOB). + */ static struct nand_ecclayout gpmi_hw_ecclayout = { .eccbytes = 0, .eccpos = { 0, }, .oobfree = { {.offset = 0, .length = 0} } }; +static const struct gpmi_devdata gpmi_devdata_imx23 = { + .type = IS_MX23, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16, +}; + +static const struct gpmi_devdata gpmi_devdata_imx28 = { + .type = IS_MX28, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16, +}; + +static const struct gpmi_devdata gpmi_devdata_imx6q = { + .type = IS_MX6Q, + .bch_max_ecc_strength = 40, + .max_chain_delay = 12, +}; + +static const struct gpmi_devdata gpmi_devdata_imx6sx = { + .type = IS_MX6SX, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12, +}; + static irqreturn_t bch_irq(int irq, void *cookie) { struct gpmi_nand_data *this = cookie; @@ -85,7 +117,144 @@ static inline int get_ecc_strength(struct gpmi_nand_data *this) return round_down(ecc_strength, 2); } -int common_nfc_set_geometry(struct gpmi_nand_data *this) +static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + + /* Do the sanity check. */ + if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { + /* The mx23/mx28 only support the GF13. */ + if (geo->gf_len == 14) + return false; + } + return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; +} + +/* + * If we can get the ECC information from the nand chip, we do not + * need to calculate them ourselves. + * + * We may have available oob space in this case. + */ +static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = mtd->priv; + struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree; + unsigned int block_mark_bit_offset; + + if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) + return false; + + switch (chip->ecc_step_ds) { + case SZ_512: + geo->gf_len = 13; + break; + case SZ_1K: + geo->gf_len = 14; + break; + default: + dev_err(this->dev, + "unsupported nand chip. ecc bits : %d, ecc size : %d\n", + chip->ecc_strength_ds, chip->ecc_step_ds); + return false; + } + geo->ecc_chunk_size = chip->ecc_step_ds; + geo->ecc_strength = round_up(chip->ecc_strength_ds, 2); + if (!gpmi_check_ecc(this)) + return false; + + /* Keep the C >= O */ + if (geo->ecc_chunk_size < mtd->oobsize) { + dev_err(this->dev, + "unsupported nand chip. ecc size: %d, oob size : %d\n", + chip->ecc_step_ds, mtd->oobsize); + return false; + } + + /* The default value, see comment in the legacy_set_geometry(). */ + geo->metadata_size = 10; + + geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; + + /* + * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: + * + * | P | + * |<----------------------------------------------------->| + * | | + * | (Block Mark) | + * | P' | | | | + * |<-------------------------------------------->| D | | O' | + * | |<---->| |<--->| + * V V V V V + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * | M | data |E| data |E| data |E| data |E| | + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * ^ ^ + * | O | + * |<------------>| + * | | + * + * P : the page size for BCH module. + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * M : the metasize of per page. + * C : the ecc chunk size, aka the "data" above. + * P': the nand chip's page size. + * O : the nand chip's oob size. + * O': the free oob. + * + * The formula for P is : + * + * E * G * N + * P = ------------ + P' + M + * 8 + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * Please see the comment in legacy_set_geometry(). + * With the condition C >= O , we still can get same result. + * So the bit position of the physical block mark within the ECC-based + * view of the page is : + * (P' - D) * 8 + */ + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + + /* The available oob size we have. */ + if (geo->page_size < mtd->writesize + mtd->oobsize) { + of->offset = geo->page_size - mtd->writesize; + of->length = mtd->oobsize - of->offset; + } + + geo->payload_size = mtd->writesize; + + geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); + geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + + ALIGN(geo->ecc_chunk_count, 4); + + if (!this->swap_block_mark) + return true; + + /* For bit swap. */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return true; +} + +static int legacy_set_geometry(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct mtd_info *mtd = &this->mtd; @@ -103,17 +272,23 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this) /* The default for the length of Galois Field. */ geo->gf_len = 13; - /* The default for chunk size. There is no oobsize greater then 512. */ + /* The default for chunk size. */ geo->ecc_chunk_size = 512; - while (geo->ecc_chunk_size < mtd->oobsize) + while (geo->ecc_chunk_size < mtd->oobsize) { geo->ecc_chunk_size *= 2; /* keep C >= O */ + geo->gf_len = 14; + } geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; /* We use the same ECC strength for all chunks. */ geo->ecc_strength = get_ecc_strength(this); - if (!geo->ecc_strength) { - pr_err("We get a wrong ECC strength.\n"); + if (!gpmi_check_ecc(this)) { + dev_err(this->dev, + "We can not support this nand chip." + " Its required ecc strength(%d) is beyond our" + " capability(%d).\n", geo->ecc_strength, + this->devdata->bch_max_ecc_strength); return -EINVAL; } @@ -190,11 +365,18 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this) return 0; } -struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +int common_nfc_set_geometry(struct gpmi_nand_data *this) { - int chipnr = this->current_chip; + if (of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc") + && set_geometry_by_ecc_info(this)) + return 0; + return legacy_set_geometry(this); +} - return this->dma_chans[chipnr]; +struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +{ + /* We use the DMA channel 0 to access all the nand chips. */ + return this->dma_chans[0]; } /* Can we use the upper's buffer directly for DMA? */ @@ -203,25 +385,28 @@ void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) struct scatterlist *sgl = &this->data_sgl; int ret; - this->direct_dma_map_ok = true; - /* first try to map the upper buffer directly */ - sg_init_one(sgl, this->upper_buf, this->upper_len); - ret = dma_map_sg(this->dev, sgl, 1, dr); - if (ret == 0) { - /* We have to use our own DMA buffer. */ - sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE); - - if (dr == DMA_TO_DEVICE) - memcpy(this->data_buffer_dma, this->upper_buf, - this->upper_len); - + if (virt_addr_valid(this->upper_buf) && + !object_is_on_stack(this->upper_buf)) { + sg_init_one(sgl, this->upper_buf, this->upper_len); ret = dma_map_sg(this->dev, sgl, 1, dr); if (ret == 0) - pr_err("map failed.\n"); + goto map_fail; - this->direct_dma_map_ok = false; + this->direct_dma_map_ok = true; + return; } + +map_fail: + /* We have to use our own DMA buffer. */ + sg_init_one(sgl, this->data_buffer_dma, this->upper_len); + + if (dr == DMA_TO_DEVICE) + memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); + + dma_map_sg(this->dev, sgl, 1, dr); + + this->direct_dma_map_ok = false; } /* This will be called after the DMA operation is finished. */ @@ -230,8 +415,6 @@ static void dma_irq_callback(void *param) struct gpmi_nand_data *this = param; struct completion *dma_c = &this->dma_done; - complete(dma_c); - switch (this->dma_type) { case DMA_FOR_COMMAND: dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); @@ -254,8 +437,10 @@ static void dma_irq_callback(void *param) break; default: - pr_err("in wrong DMA operation.\n"); + dev_err(this->dev, "in wrong DMA operation.\n"); } + + complete(dma_c); } int start_dma_without_bch_irq(struct gpmi_nand_data *this, @@ -274,7 +459,8 @@ int start_dma_without_bch_irq(struct gpmi_nand_data *this, /* Wait for the interrupt from the DMA block. */ err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); if (!err) { - pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type); + dev_err(this->dev, "DMA timeout, last DMA :%d\n", + this->last_dma_type); gpmi_dump_info(this); return -ETIMEDOUT; } @@ -303,109 +489,55 @@ int start_dma_with_bch_irq(struct gpmi_nand_data *this, /* Wait for the interrupt from the BCH block. */ err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); if (!err) { - pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type); + dev_err(this->dev, "BCH timeout, last DMA :%d\n", + this->last_dma_type); gpmi_dump_info(this); return -ETIMEDOUT; } return 0; } -static int __devinit -acquire_register_block(struct gpmi_nand_data *this, const char *res_name) +static int acquire_register_block(struct gpmi_nand_data *this, + const char *res_name) { struct platform_device *pdev = this->pdev; struct resources *res = &this->resources; struct resource *r; - void *p; + void __iomem *p; r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); - if (!r) { - pr_err("Can't get resource for %s\n", res_name); - return -ENXIO; - } - - p = ioremap(r->start, resource_size(r)); - if (!p) { - pr_err("Can't remap %s\n", res_name); - return -ENOMEM; - } + p = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(p)) + return PTR_ERR(p); if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) res->gpmi_regs = p; else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) res->bch_regs = p; else - pr_err("unknown resource name : %s\n", res_name); + dev_err(this->dev, "unknown resource name : %s\n", res_name); return 0; } -static void release_register_block(struct gpmi_nand_data *this) -{ - struct resources *res = &this->resources; - if (res->gpmi_regs) - iounmap(res->gpmi_regs); - if (res->bch_regs) - iounmap(res->bch_regs); - res->gpmi_regs = NULL; - res->bch_regs = NULL; -} - -static int __devinit -acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) +static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) { struct platform_device *pdev = this->pdev; - struct resources *res = &this->resources; const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; struct resource *r; int err; r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); if (!r) { - pr_err("Can't get resource for %s\n", res_name); - return -ENXIO; + dev_err(this->dev, "Can't get resource for %s\n", res_name); + return -ENODEV; } - err = request_irq(r->start, irq_h, 0, res_name, this); - if (err) { - pr_err("Can't own %s\n", res_name); - return err; - } - - res->bch_low_interrupt = r->start; - res->bch_high_interrupt = r->end; - return 0; -} - -static void release_bch_irq(struct gpmi_nand_data *this) -{ - struct resources *res = &this->resources; - int i = res->bch_low_interrupt; - - for (; i <= res->bch_high_interrupt; i++) - free_irq(i, this); -} + err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); + if (err) + dev_err(this->dev, "error requesting BCH IRQ\n"); -static bool gpmi_dma_filter(struct dma_chan *chan, void *param) -{ - struct gpmi_nand_data *this = param; - int dma_channel = (int)this->private; - - if (!mxs_dma_is_apbh(chan)) - return false; - /* - * only catch the GPMI dma channels : - * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3 - * (These four channels share the same IRQ!) - * - * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7 - * (These eight channels share the same IRQ!) - */ - if (dma_channel == chan->chan_id) { - chan->private = &this->dma_data; - return true; - } - return false; + return err; } static void release_dma_channels(struct gpmi_nand_data *this) @@ -418,41 +550,15 @@ static void release_dma_channels(struct gpmi_nand_data *this) } } -static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) +static int acquire_dma_channels(struct gpmi_nand_data *this) { struct platform_device *pdev = this->pdev; - struct resource *r_dma; - struct device_node *dn; - int dma_channel; - unsigned int ret; struct dma_chan *dma_chan; - dma_cap_mask_t mask; - - /* dma channel, we only use the first one. */ - dn = pdev->dev.of_node; - ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel); - if (ret) { - pr_err("unable to get DMA channel from dt.\n"); - goto acquire_err; - } - this->private = (void *)dma_channel; - - /* gpmi dma interrupt */ - r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ, - GPMI_NAND_DMA_INTERRUPT_RES_NAME); - if (!r_dma) { - pr_err("Can't get resource for DMA\n"); - goto acquire_err; - } - this->dma_data.chan_irq = r_dma->start; /* request dma channel */ - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - - dma_chan = dma_request_channel(mask, gpmi_dma_filter, this); + dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); if (!dma_chan) { - pr_err("dma_request_channel failed.\n"); + dev_err(this->dev, "Failed to request DMA channel.\n"); goto acquire_err; } @@ -464,10 +570,61 @@ acquire_err: return -EINVAL; } -static int __devinit acquire_resources(struct gpmi_nand_data *this) +static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = { + "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", +}; + +static int gpmi_get_clks(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + char **extra_clks = NULL; + struct clk *clk; + int err, i; + + /* The main clock is stored in the first. */ + r->clock[0] = devm_clk_get(this->dev, "gpmi_io"); + if (IS_ERR(r->clock[0])) { + err = PTR_ERR(r->clock[0]); + goto err_clock; + } + + /* Get extra clocks */ + if (GPMI_IS_MX6(this)) + extra_clks = extra_clks_for_mx6q; + if (!extra_clks) + return 0; + + for (i = 1; i < GPMI_CLK_MAX; i++) { + if (extra_clks[i - 1] == NULL) + break; + + clk = devm_clk_get(this->dev, extra_clks[i - 1]); + if (IS_ERR(clk)) { + err = PTR_ERR(clk); + goto err_clock; + } + + r->clock[i] = clk; + } + + if (GPMI_IS_MX6(this)) + /* + * Set the default value for the gpmi clock. + * + * If you want to use the ONFI nand which is in the + * Synchronous Mode, you should change the clock as you need. + */ + clk_set_rate(r->clock[0], 22000000); + + return 0; + +err_clock: + dev_dbg(this->dev, "failed in finding the clocks.\n"); + return err; +} + +static int acquire_resources(struct gpmi_nand_data *this) { - struct resources *res = &this->resources; - struct pinctrl *pinctrl; int ret; ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); @@ -484,43 +641,25 @@ static int __devinit acquire_resources(struct gpmi_nand_data *this) ret = acquire_dma_channels(this); if (ret) - goto exit_dma_channels; - - pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev); - if (IS_ERR(pinctrl)) { - ret = PTR_ERR(pinctrl); - goto exit_pin; - } + goto exit_regs; - res->clock = clk_get(&this->pdev->dev, NULL); - if (IS_ERR(res->clock)) { - pr_err("can not get the clock\n"); - ret = -ENOENT; + ret = gpmi_get_clks(this); + if (ret) goto exit_clock; - } return 0; exit_clock: -exit_pin: release_dma_channels(this); -exit_dma_channels: - release_bch_irq(this); exit_regs: - release_register_block(this); return ret; } static void release_resources(struct gpmi_nand_data *this) { - struct resources *r = &this->resources; - - clk_put(r->clock); - release_register_block(this); - release_bch_irq(this); release_dma_channels(this); } -static int __devinit init_hardware(struct gpmi_nand_data *this) +static int init_hardware(struct gpmi_nand_data *this) { int ret; @@ -562,7 +701,7 @@ static int read_page_prepare(struct gpmi_nand_data *this, length, DMA_FROM_DEVICE); if (dma_mapping_error(dev, dest_phys)) { if (alt_size < length) { - pr_err("Alternate buffer is too small\n"); + dev_err(dev, "Alternate buffer is too small\n"); return -ENOMEM; } goto map_failed; @@ -612,7 +751,7 @@ static int send_page_prepare(struct gpmi_nand_data *this, DMA_TO_DEVICE); if (dma_mapping_error(dev, source_phys)) { if (alt_size < length) { - pr_err("Alternate buffer is too small\n"); + dev_err(dev, "Alternate buffer is too small\n"); return -ENOMEM; } goto map_failed; @@ -665,14 +804,23 @@ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct device *dev = this->dev; + struct mtd_info *mtd = &this->mtd; /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ - this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA); + this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); if (this->cmd_buffer == NULL) goto error_alloc; - /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ - this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA); + /* + * [2] Allocate a read/write data buffer. + * The gpmi_alloc_dma_buffer can be called twice. + * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer + * is called before the nand_scan_ident; and we allocate a buffer + * of the real NAND page size when the gpmi_alloc_dma_buffer is + * called after the nand_scan_ident. + */ + this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, + GFP_DMA | GFP_KERNEL); if (this->data_buffer_dma == NULL) goto error_alloc; @@ -700,7 +848,6 @@ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) error_alloc: gpmi_free_dma_buffer(this); - pr_err("allocate DMA buffer ret!!\n"); return -ENOMEM; } @@ -732,7 +879,8 @@ static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) ret = gpmi_send_command(this); if (ret) - pr_err("Chip: %u, Error %d\n", this->current_chip, ret); + dev_err(this->dev, "Chip: %u, Error %d\n", + this->current_chip, ret); this->command_length = 0; } @@ -763,7 +911,7 @@ static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; - pr_debug("len is %d\n", len); + dev_dbg(this->dev, "len is %d\n", len); this->upper_buf = buf; this->upper_len = len; @@ -775,7 +923,7 @@ static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; - pr_debug("len is %d\n", len); + dev_dbg(this->dev, "len is %d\n", len); this->upper_buf = (uint8_t *)buf; this->upper_len = len; @@ -851,17 +999,16 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, dma_addr_t auxiliary_phys; unsigned int i; unsigned char *status; - unsigned int failed; - unsigned int corrected; + unsigned int max_bitflips = 0; int ret; - pr_debug("page number is : %d\n", page); - ret = read_page_prepare(this, buf, mtd->writesize, + dev_dbg(this->dev, "page number is : %d\n", page); + ret = read_page_prepare(this, buf, nfc_geo->payload_size, this->payload_virt, this->payload_phys, nfc_geo->payload_size, &payload_virt, &payload_phys); if (ret) { - pr_err("Inadequate DMA buffer\n"); + dev_err(this->dev, "Inadequate DMA buffer\n"); ret = -ENOMEM; return ret; } @@ -870,41 +1017,31 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, /* go! */ ret = gpmi_read_page(this, payload_phys, auxiliary_phys); - read_page_end(this, buf, mtd->writesize, + read_page_end(this, buf, nfc_geo->payload_size, this->payload_virt, this->payload_phys, nfc_geo->payload_size, payload_virt, payload_phys); if (ret) { - pr_err("Error in ECC-based read: %d\n", ret); - goto exit_nfc; + dev_err(this->dev, "Error in ECC-based read: %d\n", ret); + return ret; } /* handle the block mark swapping */ block_mark_swapping(this, payload_virt, auxiliary_virt); /* Loop over status bytes, accumulating ECC status. */ - failed = 0; - corrected = 0; - status = auxiliary_virt + nfc_geo->auxiliary_status_offset; + status = auxiliary_virt + nfc_geo->auxiliary_status_offset; for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) continue; if (*status == STATUS_UNCORRECTABLE) { - failed++; + mtd->ecc_stats.failed++; continue; } - corrected += *status; - } - - /* - * Propagate ECC status to the owning MTD only when failed or - * corrected times nearly reaches our ECC correction threshold. - */ - if (failed || corrected >= (nfc_geo->ecc_strength - 1)) { - mtd->ecc_stats.failed += failed; - mtd->ecc_stats.corrected += corrected; + mtd->ecc_stats.corrected += *status; + max_bitflips = max_t(unsigned int, max_bitflips, *status); } if (oob_required) { @@ -922,15 +1059,99 @@ static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; } - read_page_swap_end(this, buf, mtd->writesize, + read_page_swap_end(this, buf, nfc_geo->payload_size, this->payload_virt, this->payload_phys, nfc_geo->payload_size, payload_virt, payload_phys); -exit_nfc: - return ret; + + return max_bitflips; +} + +/* Fake a virtual small page for the subpage read */ +static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offs, uint32_t len, uint8_t *buf, int page) +{ + struct gpmi_nand_data *this = chip->priv; + void __iomem *bch_regs = this->resources.bch_regs; + struct bch_geometry old_geo = this->bch_geometry; + struct bch_geometry *geo = &this->bch_geometry; + int size = chip->ecc.size; /* ECC chunk size */ + int meta, n, page_size; + u32 r1_old, r2_old, r1_new, r2_new; + unsigned int max_bitflips; + int first, last, marker_pos; + int ecc_parity_size; + int col = 0; + + /* The size of ECC parity */ + ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; + + /* Align it with the chunk size */ + first = offs / size; + last = (offs + len - 1) / size; + + /* + * Find the chunk which contains the Block Marker. If this chunk is + * in the range of [first, last], we have to read out the whole page. + * Why? since we had swapped the data at the position of Block Marker + * to the metadata which is bound with the chunk 0. + */ + marker_pos = geo->block_mark_byte_offset / size; + if (last >= marker_pos && first <= marker_pos) { + dev_dbg(this->dev, "page:%d, first:%d, last:%d, marker at:%d\n", + page, first, last, marker_pos); + return gpmi_ecc_read_page(mtd, chip, buf, 0, page); + } + + meta = geo->metadata_size; + if (first) { + col = meta + (size + ecc_parity_size) * first; + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1); + + meta = 0; + buf = buf + first * size; + } + + /* Save the old environment */ + r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); + r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* change the BCH registers and bch_geometry{} */ + n = last - first + 1; + page_size = meta + (size + ecc_parity_size) * n; + + r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | + BM_BCH_FLASH0LAYOUT0_META_SIZE); + r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); + writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); + + r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; + r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); + writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); + + geo->ecc_chunk_count = n; + geo->payload_size = n * size; + geo->page_size = page_size; + geo->auxiliary_status_offset = ALIGN(meta, 4); + + dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", + page, offs, len, col, first, n, page_size); + + /* Read the subpage now */ + this->swap_block_mark = false; + max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page); + + /* Restore */ + writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); + writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); + this->bch_geometry = old_geo; + this->swap_block_mark = true; + + return max_bitflips; } -static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, +static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { struct gpmi_nand_data *this = chip->priv; @@ -941,7 +1162,7 @@ static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, dma_addr_t auxiliary_phys; int ret; - pr_debug("ecc write page.\n"); + dev_dbg(this->dev, "ecc write page.\n"); if (this->swap_block_mark) { /* * If control arrives here, we're doing block mark swapping. @@ -971,8 +1192,8 @@ static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, nfc_geo->payload_size, &payload_virt, &payload_phys); if (ret) { - pr_err("Inadequate payload DMA buffer\n"); - return; + dev_err(this->dev, "Inadequate payload DMA buffer\n"); + return 0; } ret = send_page_prepare(this, @@ -981,7 +1202,7 @@ static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, nfc_geo->auxiliary_size, &auxiliary_virt, &auxiliary_phys); if (ret) { - pr_err("Inadequate auxiliary DMA buffer\n"); + dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); goto exit_auxiliary; } } @@ -989,7 +1210,7 @@ static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, /* Ask the NFC. */ ret = gpmi_send_page(this, payload_phys, auxiliary_phys); if (ret) - pr_err("Error in ECC-based write: %d\n", ret); + dev_err(this->dev, "Error in ECC-based write: %d\n", ret); if (!this->swap_block_mark) { send_page_end(this, chip->oob_poi, mtd->oobsize, @@ -1002,6 +1223,8 @@ exit_auxiliary: nfc_geo->payload_size, payload_virt, payload_phys); } + + return 0; } /* @@ -1064,6 +1287,9 @@ exit_auxiliary: * ECC-based or raw view of the page is implicit in which function it calls * (there is a similar pair of ECC-based/raw functions for writing). * + * FIXME: The following paragraph is incorrect, now that there exist + * ecc.read_oob_raw and ecc.write_oob_raw functions. + * * Since MTD assumes the OOB is not covered by ECC, there is no pair of * ECC-based/raw functions for reading or or writing the OOB. The fact that the * caller wants an ECC-based or raw view of the page is not propagated down to @@ -1074,7 +1300,7 @@ static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, { struct gpmi_nand_data *this = chip->priv; - pr_debug("page number is %d\n", page); + dev_dbg(this->dev, "page number is %d\n", page); /* clear the OOB buffer */ memset(chip->oob_poi, ~0, mtd->oobsize); @@ -1099,57 +1325,53 @@ static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, static int gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { - /* - * The BCH will use all the (page + oob). - * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob. - * But it can not stop some ioctls such MEMWRITEOOB which uses - * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit - * these ioctls too. - */ - return -EPERM; + struct nand_oobfree *of = mtd->ecclayout->oobfree; + int status = 0; + + /* Do we have available oob area? */ + if (!of->length) + return -EPERM; + + if (!nand_is_slc(chip)) + return -EPERM; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page); + chip->write_buf(mtd, chip->oob_poi + of->offset, of->length); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + return status & NAND_STATUS_FAIL ? -EIO : 0; } static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; struct gpmi_nand_data *this = chip->priv; - int block, ret = 0; + int ret = 0; uint8_t *block_mark; int column, page, status, chipnr; - /* Get block number */ - block = (int)(ofs >> chip->bbt_erase_shift); - if (chip->bbt) - chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + chipnr = (int)(ofs >> chip->chip_shift); + chip->select_chip(mtd, chipnr); - /* Do we have a flash based bad block table ? */ - if (chip->bbt_options & NAND_BBT_USE_FLASH) - ret = nand_update_bbt(mtd, ofs); - else { - chipnr = (int)(ofs >> chip->chip_shift); - chip->select_chip(mtd, chipnr); + column = this->swap_block_mark ? mtd->writesize : 0; - column = this->swap_block_mark ? mtd->writesize : 0; + /* Write the block mark. */ + block_mark = this->data_buffer_dma; + block_mark[0] = 0; /* bad block marker */ - /* Write the block mark. */ - block_mark = this->data_buffer_dma; - block_mark[0] = 0; /* bad block marker */ + /* Shift to get page */ + page = (int)(ofs >> chip->page_shift); - /* Shift to get page */ - page = (int)(ofs >> chip->page_shift); + chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); + chip->write_buf(mtd, block_mark, 1); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); - chip->write_buf(mtd, block_mark, 1); - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + ret = -EIO; - status = chip->waitfunc(mtd, chip); - if (status & NAND_STATUS_FAIL) - ret = -EIO; - - chip->select_chip(mtd, -1); - } - if (!ret) - mtd->ecc_stats.badblocks++; + chip->select_chip(mtd, -1); return ret; } @@ -1190,7 +1412,6 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) unsigned int search_area_size_in_strides; unsigned int stride; unsigned int page; - loff_t byte; uint8_t *buffer = chip->buffers->databuf; int saved_chip_number; int found_an_ncb_fingerprint = false; @@ -1207,9 +1428,8 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page and byte addresses. */ + /* Compute the page addresses. */ page = stride * rom_geo->stride_size_in_pages; - byte = page * mtd->writesize; dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); @@ -1251,7 +1471,6 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) unsigned int block; unsigned int stride; unsigned int page; - loff_t byte; uint8_t *buffer = chip->buffers->databuf; int saved_chip_number; int status; @@ -1294,15 +1513,13 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) /* Write the NCB fingerprint into the page buffer. */ memset(buffer, ~0, mtd->writesize); - memset(chip->oob_poi, ~0, mtd->oobsize); memcpy(buffer + 12, fingerprint, strlen(fingerprint)); /* Loop through the first search area, writing NCB fingerprints. */ dev_dbg(dev, "Writing NCB fingerprints...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page and byte addresses. */ + /* Compute the page addresses. */ page = stride * rom_geo->stride_size_in_pages; - byte = page * mtd->writesize; /* Write the first page of the current stride. */ dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); @@ -1410,7 +1627,7 @@ static int gpmi_set_geometry(struct gpmi_nand_data *this) /* Set up the NFC geometry which is used by BCH. */ ret = bch_set_geometry(this); if (ret) { - pr_err("set geometry ret : %d\n", ret); + dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); return ret; } @@ -1418,51 +1635,61 @@ static int gpmi_set_geometry(struct gpmi_nand_data *this) return gpmi_alloc_dma_buffer(this); } -static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this) +static void gpmi_nand_exit(struct gpmi_nand_data *this) +{ + nand_release(&this->mtd); + gpmi_free_dma_buffer(this); +} + +static int gpmi_init_last(struct gpmi_nand_data *this) { + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct bch_geometry *bch_geo = &this->bch_geometry; int ret; /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ - if (GPMI_IS_MX23(this)) - this->swap_block_mark = false; - else - this->swap_block_mark = true; + this->swap_block_mark = !GPMI_IS_MX23(this); /* Set up the medium geometry */ ret = gpmi_set_geometry(this); if (ret) return ret; - /* Adjust the ECC strength according to the chip. */ - this->nand.ecc.strength = this->bch_geometry.ecc_strength; - this->mtd.ecc_strength = this->bch_geometry.ecc_strength; + /* Init the nand_ecc_ctrl{} */ + ecc->read_page = gpmi_ecc_read_page; + ecc->write_page = gpmi_ecc_write_page; + ecc->read_oob = gpmi_ecc_read_oob; + ecc->write_oob = gpmi_ecc_write_oob; + ecc->mode = NAND_ECC_HW; + ecc->size = bch_geo->ecc_chunk_size; + ecc->strength = bch_geo->ecc_strength; + ecc->layout = &gpmi_hw_ecclayout; - /* NAND boot init, depends on the gpmi_set_geometry(). */ - return nand_boot_init(this); -} - -static int gpmi_scan_bbt(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd->priv; - struct gpmi_nand_data *this = chip->priv; - int ret; - - /* Prepare for the BBT scan. */ - ret = gpmi_pre_bbt_scan(this); - if (ret) - return ret; + /* + * We only enable the subpage read when: + * (1) the chip is imx6, and + * (2) the size of the ECC parity is byte aligned. + */ + if (GPMI_IS_MX6(this) && + ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { + ecc->read_subpage = gpmi_ecc_read_subpage; + chip->options |= NAND_SUBPAGE_READ; + } - /* use the default BBT implementation */ - return nand_default_bbt(mtd); -} + /* + * Can we enable the extra features? such as EDO or Sync mode. + * + * We do not check the return value now. That's means if we fail in + * enable the extra features, we still can run in the normal way. + */ + gpmi_extra_init(this); -void gpmi_nfc_exit(struct gpmi_nand_data *this) -{ - nand_release(&this->mtd); - gpmi_free_dma_buffer(this); + return 0; } -static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) +static int gpmi_nand_init(struct gpmi_nand_data *this) { struct mtd_info *mtd = &this->mtd; struct nand_chip *chip = &this->nand; @@ -1485,31 +1712,39 @@ static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) chip->read_byte = gpmi_read_byte; chip->read_buf = gpmi_read_buf; chip->write_buf = gpmi_write_buf; - chip->ecc.read_page = gpmi_ecc_read_page; - chip->ecc.write_page = gpmi_ecc_write_page; - chip->ecc.read_oob = gpmi_ecc_read_oob; - chip->ecc.write_oob = gpmi_ecc_write_oob; - chip->scan_bbt = gpmi_scan_bbt; chip->badblock_pattern = &gpmi_bbt_descr; chip->block_markbad = gpmi_block_markbad; chip->options |= NAND_NO_SUBPAGE_WRITE; - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.size = 1; - chip->ecc.strength = 8; - chip->ecc.layout = &gpmi_hw_ecclayout; + if (of_get_nand_on_flash_bbt(this->dev->of_node)) + chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; - /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ + /* + * Allocate a temporary DMA buffer for reading ID in the + * nand_scan_ident(). + */ this->bch_geometry.payload_size = 1024; this->bch_geometry.auxiliary_size = 128; ret = gpmi_alloc_dma_buffer(this); if (ret) goto err_out; - ret = nand_scan(mtd, 1); - if (ret) { - pr_err("Chip scan failed\n"); + ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL); + if (ret) + goto err_out; + + ret = gpmi_init_last(this); + if (ret) + goto err_out; + + chip->options |= NAND_SKIP_BBTSCAN; + ret = nand_scan_tail(mtd); + if (ret) goto err_out; - } + + ret = nand_boot_init(this); + if (ret) + goto err_out; + chip->scan_bbt(mtd); ppdata.of_node = this->pdev->dev.of_node; ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); @@ -1518,49 +1753,43 @@ static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) return 0; err_out: - gpmi_nfc_exit(this); + gpmi_nand_exit(this); return ret; } -static const struct platform_device_id gpmi_ids[] = { - { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, }, - { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, }, - { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, }, - {}, -}; - static const struct of_device_id gpmi_nand_id_table[] = { { .compatible = "fsl,imx23-gpmi-nand", - .data = (void *)&gpmi_ids[IS_MX23] + .data = (void *)&gpmi_devdata_imx23, }, { .compatible = "fsl,imx28-gpmi-nand", - .data = (void *)&gpmi_ids[IS_MX28] + .data = (void *)&gpmi_devdata_imx28, }, { .compatible = "fsl,imx6q-gpmi-nand", - .data = (void *)&gpmi_ids[IS_MX6Q] + .data = (void *)&gpmi_devdata_imx6q, + }, { + .compatible = "fsl,imx6sx-gpmi-nand", + .data = (void *)&gpmi_devdata_imx6sx, }, {} }; MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); -static int __devinit gpmi_nand_probe(struct platform_device *pdev) +static int gpmi_nand_probe(struct platform_device *pdev) { struct gpmi_nand_data *this; const struct of_device_id *of_id; int ret; + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); + if (!this) + return -ENOMEM; + of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); if (of_id) { - pdev->id_entry = of_id->data; + this->devdata = of_id->data; } else { - pr_err("Failed to find the right device id.\n"); - return -ENOMEM; - } - - this = kzalloc(sizeof(*this), GFP_KERNEL); - if (!this) { - pr_err("Failed to allocate per-device memory\n"); - return -ENOMEM; + dev_err(&pdev->dev, "Failed to find the right device id.\n"); + return -ENODEV; } platform_set_drvdata(pdev, this); @@ -1575,28 +1804,28 @@ static int __devinit gpmi_nand_probe(struct platform_device *pdev) if (ret) goto exit_nfc_init; - ret = gpmi_nfc_init(this); + ret = gpmi_nand_init(this); if (ret) goto exit_nfc_init; + dev_info(this->dev, "driver registered.\n"); + return 0; exit_nfc_init: release_resources(this); exit_acquire_resources: - platform_set_drvdata(pdev, NULL); - kfree(this); + dev_err(this->dev, "driver registration failed: %d\n", ret); + return ret; } -static int __exit gpmi_nand_remove(struct platform_device *pdev) +static int gpmi_nand_remove(struct platform_device *pdev) { struct gpmi_nand_data *this = platform_get_drvdata(pdev); - gpmi_nfc_exit(this); + gpmi_nand_exit(this); release_resources(this); - platform_set_drvdata(pdev, NULL); - kfree(this); return 0; } @@ -1606,29 +1835,9 @@ static struct platform_driver gpmi_nand_driver = { .of_match_table = gpmi_nand_id_table, }, .probe = gpmi_nand_probe, - .remove = __exit_p(gpmi_nand_remove), - .id_table = gpmi_ids, + .remove = gpmi_nand_remove, }; - -static int __init gpmi_nand_init(void) -{ - int err; - - err = platform_driver_register(&gpmi_nand_driver); - if (err == 0) - printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n"); - else - pr_err("i.MX GPMI NAND driver registration failed\n"); - return err; -} - -static void __exit gpmi_nand_exit(void) -{ - platform_driver_unregister(&gpmi_nand_driver); -} - -module_init(gpmi_nand_init); -module_exit(gpmi_nand_exit); +module_platform_driver(gpmi_nand_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h index ce5daa16092..32c6ba49f98 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h @@ -20,16 +20,15 @@ #include <linux/mtd/nand.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> -#include <linux/fsl/mxs-dma.h> +#include <linux/dmaengine.h> +#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ struct resources { - void *gpmi_regs; - void *bch_regs; - unsigned int bch_low_interrupt; - unsigned int bch_high_interrupt; + void __iomem *gpmi_regs; + void __iomem *bch_regs; unsigned int dma_low_channel; unsigned int dma_high_channel; - struct clk *clock; + struct clk *clock[GPMI_CLK_MAX]; }; /** @@ -120,17 +119,36 @@ struct nand_timing { int8_t tRHOH_in_ns; }; +enum gpmi_type { + IS_MX23, + IS_MX28, + IS_MX6Q, + IS_MX6SX +}; + +struct gpmi_devdata { + enum gpmi_type type; + int bch_max_ecc_strength; + int max_chain_delay; /* See the async EDO mode */ +}; + struct gpmi_nand_data { + /* flags */ +#define GPMI_ASYNC_EDO_ENABLED (1 << 0) +#define GPMI_TIMING_INIT_OK (1 << 1) + int flags; + const struct gpmi_devdata *devdata; + /* System Interface */ struct device *dev; struct platform_device *pdev; - struct gpmi_nand_platform_data *pdata; /* Resources */ struct resources resources; /* Flash Hardware */ struct nand_timing timing; + int timing_mode; /* BCH */ struct bch_geometry bch_geometry; @@ -174,7 +192,6 @@ struct gpmi_nand_data { /* DMA channels */ #define DMA_CHANS 8 struct dma_chan *dma_chans[DMA_CHANS]; - struct mxs_dma_data dma_data; enum dma_ops_type last_dma_type; enum dma_ops_type dma_type; struct completion dma_done; @@ -188,16 +205,28 @@ struct gpmi_nand_data { * @data_setup_in_cycles: The data setup time, in cycles. * @data_hold_in_cycles: The data hold time, in cycles. * @address_setup_in_cycles: The address setup time, in cycles. + * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, + * this value is the number of cycles multiplied + * by 4096. * @use_half_periods: Indicates the clock is running slowly, so the * NFC DLL should use half-periods. * @sample_delay_factor: The sample delay factor. + * @wrn_dly_sel: The delay on the GPMI write strobe. */ struct gpmi_nfc_hardware_timing { + /* for HW_GPMI_TIMING0 */ uint8_t data_setup_in_cycles; uint8_t data_hold_in_cycles; uint8_t address_setup_in_cycles; + + /* for HW_GPMI_TIMING1 */ + uint16_t device_busy_timeout; +#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ + + /* for HW_GPMI_CTRL1 */ bool use_half_periods; uint8_t sample_delay_factor; + uint8_t wrn_dly_sel; }; /** @@ -246,6 +275,7 @@ extern int start_dma_with_bch_irq(struct gpmi_nand_data *, /* GPMI-NAND helper function library */ extern int gpmi_init(struct gpmi_nand_data *); +extern int gpmi_extra_init(struct gpmi_nand_data *); extern void gpmi_clear_bch(struct gpmi_nand_data *); extern void gpmi_dump_info(struct gpmi_nand_data *); extern int bch_set_geometry(struct gpmi_nand_data *); @@ -265,11 +295,11 @@ extern int gpmi_read_page(struct gpmi_nand_data *, #define STATUS_ERASED 0xff #define STATUS_UNCORRECTABLE 0xfe -/* Use the platform_id to distinguish different Archs. */ -#define IS_MX23 0x0 -#define IS_MX28 0x1 -#define IS_MX6Q 0x2 -#define GPMI_IS_MX23(x) ((x)->pdev->id_entry->driver_data == IS_MX23) -#define GPMI_IS_MX28(x) ((x)->pdev->id_entry->driver_data == IS_MX28) -#define GPMI_IS_MX6Q(x) ((x)->pdev->id_entry->driver_data == IS_MX6Q) +/* Use the devdata to distinguish different Archs. */ +#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23) +#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28) +#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q) +#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX) + +#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x)) #endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h index 83431240e2f..82114cdc833 100644 --- a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h +++ b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h @@ -108,6 +108,18 @@ #define HW_GPMI_CTRL1_CLR 0x00000068 #define HW_GPMI_CTRL1_TOG 0x0000006c +#define BP_GPMI_CTRL1_DECOUPLE_CS 24 +#define BM_GPMI_CTRL1_DECOUPLE_CS (1 << BP_GPMI_CTRL1_DECOUPLE_CS) + +#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 +#define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) +#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ + (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) +#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 + #define BM_GPMI_CTRL1_BCH_MODE (1 << 18) #define BP_GPMI_CTRL1_DLL_ENABLE 17 @@ -154,6 +166,9 @@ #define HW_GPMI_TIMING1 0x00000080 #define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) +#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ + (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) #define HW_GPMI_TIMING2 0x00000090 #define HW_GPMI_DATA 0x000000a0 diff --git a/drivers/mtd/nand/h1910.c b/drivers/mtd/nand/h1910.c deleted file mode 100644 index 50166e93ba9..00000000000 --- a/drivers/mtd/nand/h1910.c +++ /dev/null @@ -1,167 +0,0 @@ -/* - * drivers/mtd/nand/h1910.c - * - * Copyright (C) 2003 Joshua Wise (joshua@joshuawise.com) - * - * Derived from drivers/mtd/nand/edb7312.c - * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) - * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * iPAQ h1910 board which utilizes the Samsung K9F2808 part. This is - * a 128Mibit (16MiB x 8 bits) NAND flash device. - */ - -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <mach/hardware.h> -#include <asm/sizes.h> -#include <mach/h1900-gpio.h> -#include <mach/ipaq.h> - -/* - * MTD structure for EDB7312 board - */ -static struct mtd_info *h1910_nand_mtd = NULL; - -/* - * Module stuff - */ - -/* - * Define static partitions for flash device - */ -static struct mtd_partition partition_info[] = { - {name:"h1910 NAND Flash", - offset:0, - size:16 * 1024 * 1024} -}; - -#define NUM_PARTITIONS 1 - -/* - * hardware specific access to control-lines - * - * NAND_NCE: bit 0 - don't care - * NAND_CLE: bit 1 - address bit 2 - * NAND_ALE: bit 2 - address bit 3 - */ -static void h1910_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W | ((ctrl & 0x6) << 1)); -} - -/* - * read device ready pin - */ -#if 0 -static int h1910_device_ready(struct mtd_info *mtd) -{ - return (GPLR(55) & GPIO_bit(55)); -} -#endif - -/* - * Main initialization routine - */ -static int __init h1910_init(void) -{ - struct nand_chip *this; - void __iomem *nandaddr; - - if (!machine_is_h1900()) - return -ENODEV; - - nandaddr = ioremap(0x08000000, 0x1000); - if (!nandaddr) { - printk("Failed to ioremap nand flash.\n"); - return -ENOMEM; - } - - /* Allocate memory for MTD device structure and private data */ - h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!h1910_nand_mtd) { - printk("Unable to allocate h1910 NAND MTD device structure.\n"); - iounmap((void *)nandaddr); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&h1910_nand_mtd[1]); - - /* Initialize structures */ - memset(h1910_nand_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - h1910_nand_mtd->priv = this; - h1910_nand_mtd->owner = THIS_MODULE; - - /* - * Enable VPEN - */ - GPSR(37) = GPIO_bit(37); - - /* insert callbacks */ - this->IO_ADDR_R = nandaddr; - this->IO_ADDR_W = nandaddr; - this->cmd_ctrl = h1910_hwcontrol; - this->dev_ready = NULL; /* unknown whether that was correct or not so we will just do it like this */ - /* 15 us command delay time */ - this->chip_delay = 50; - this->ecc.mode = NAND_ECC_SOFT; - - /* Scan to find existence of the device */ - if (nand_scan(h1910_nand_mtd, 1)) { - printk(KERN_NOTICE "No NAND device - returning -ENXIO\n"); - kfree(h1910_nand_mtd); - iounmap((void *)nandaddr); - return -ENXIO; - } - - /* Register the partitions */ - mtd_device_parse_register(h1910_nand_mtd, NULL, NULL, partition_info, - NUM_PARTITIONS); - - /* Return happy */ - return 0; -} - -module_init(h1910_init); - -/* - * Clean up routine - */ -static void __exit h1910_cleanup(void) -{ - struct nand_chip *this = (struct nand_chip *)&h1910_nand_mtd[1]; - - /* Release resources, unregister device */ - nand_release(h1910_nand_mtd); - - /* Release io resource */ - iounmap((void *)this->IO_ADDR_W); - - /* Free the MTD device structure */ - kfree(h1910_nand_mtd); -} - -module_exit(h1910_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Joshua Wise <joshua at joshuawise dot com>"); -MODULE_DESCRIPTION("NAND flash driver for iPAQ h1910"); diff --git a/drivers/mtd/nand/jz4740_nand.c b/drivers/mtd/nand/jz4740_nand.c index a6fa884ae49..a2c804de156 100644 --- a/drivers/mtd/nand/jz4740_nand.c +++ b/drivers/mtd/nand/jz4740_nand.c @@ -52,9 +52,10 @@ #define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1) #define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1) +#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa -#define JZ_NAND_MEM_ADDR_OFFSET 0x10000 #define JZ_NAND_MEM_CMD_OFFSET 0x08000 +#define JZ_NAND_MEM_ADDR_OFFSET 0x10000 struct jz_nand { struct mtd_info mtd; @@ -62,8 +63,11 @@ struct jz_nand { void __iomem *base; struct resource *mem; - void __iomem *bank_base; - struct resource *bank_mem; + unsigned char banks[JZ_NAND_NUM_BANKS]; + void __iomem *bank_base[JZ_NAND_NUM_BANKS]; + struct resource *bank_mem[JZ_NAND_NUM_BANKS]; + + int selected_bank; struct jz_nand_platform_data *pdata; bool is_reading; @@ -74,26 +78,50 @@ static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd) return container_of(mtd, struct jz_nand, mtd); } +static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + struct nand_chip *chip = mtd->priv; + uint32_t ctrl; + int banknr; + + ctrl = readl(nand->base + JZ_REG_NAND_CTRL); + ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK; + + if (chipnr == -1) { + banknr = -1; + } else { + banknr = nand->banks[chipnr] - 1; + chip->IO_ADDR_R = nand->bank_base[banknr]; + chip->IO_ADDR_W = nand->bank_base[banknr]; + } + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + + nand->selected_bank = banknr; +} + static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct jz_nand *nand = mtd_to_jz_nand(mtd); struct nand_chip *chip = mtd->priv; uint32_t reg; + void __iomem *bank_base = nand->bank_base[nand->selected_bank]; + + BUG_ON(nand->selected_bank < 0); if (ctrl & NAND_CTRL_CHANGE) { BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE)); if (ctrl & NAND_ALE) - chip->IO_ADDR_W = nand->bank_base + JZ_NAND_MEM_ADDR_OFFSET; + bank_base += JZ_NAND_MEM_ADDR_OFFSET; else if (ctrl & NAND_CLE) - chip->IO_ADDR_W = nand->bank_base + JZ_NAND_MEM_CMD_OFFSET; - else - chip->IO_ADDR_W = nand->bank_base; + bank_base += JZ_NAND_MEM_CMD_OFFSET; + chip->IO_ADDR_W = bank_base; reg = readl(nand->base + JZ_REG_NAND_CTRL); if (ctrl & NAND_NCE) - reg |= JZ_NAND_CTRL_ASSERT_CHIP(0); + reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); else - reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(0); + reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); writel(reg, nand->base + JZ_REG_NAND_CTRL); } if (dat != NAND_CMD_NONE) @@ -252,7 +280,7 @@ static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat, } static int jz_nand_ioremap_resource(struct platform_device *pdev, - const char *name, struct resource **res, void __iomem **base) + const char *name, struct resource **res, void *__iomem *base) { int ret; @@ -288,27 +316,112 @@ err: return ret; } -static int __devinit jz_nand_probe(struct platform_device *pdev) +static inline void jz_nand_iounmap_resource(struct resource *res, + void __iomem *base) +{ + iounmap(base); + release_mem_region(res->start, resource_size(res)); +} + +static int jz_nand_detect_bank(struct platform_device *pdev, + struct jz_nand *nand, unsigned char bank, + size_t chipnr, uint8_t *nand_maf_id, + uint8_t *nand_dev_id) +{ + int ret; + int gpio; + char gpio_name[9]; + char res_name[6]; + uint32_t ctrl; + struct mtd_info *mtd = &nand->mtd; + struct nand_chip *chip = &nand->chip; + + /* Request GPIO port. */ + gpio = JZ_GPIO_MEM_CS0 + bank - 1; + sprintf(gpio_name, "NAND CS%d", bank); + ret = gpio_request(gpio, gpio_name); + if (ret) { + dev_warn(&pdev->dev, + "Failed to request %s gpio %d: %d\n", + gpio_name, gpio, ret); + goto notfound_gpio; + } + + /* Request I/O resource. */ + sprintf(res_name, "bank%d", bank); + ret = jz_nand_ioremap_resource(pdev, res_name, + &nand->bank_mem[bank - 1], + &nand->bank_base[bank - 1]); + if (ret) + goto notfound_resource; + + /* Enable chip in bank. */ + jz_gpio_set_function(gpio, JZ_GPIO_FUNC_MEM_CS0); + ctrl = readl(nand->base + JZ_REG_NAND_CTRL); + ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1); + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + + if (chipnr == 0) { + /* Detect first chip. */ + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + goto notfound_id; + + /* Retrieve the IDs from the first chip. */ + chip->select_chip(mtd, 0); + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + *nand_maf_id = chip->read_byte(mtd); + *nand_dev_id = chip->read_byte(mtd); + } else { + /* Detect additional chip. */ + chip->select_chip(mtd, chipnr); + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); + if (*nand_maf_id != chip->read_byte(mtd) + || *nand_dev_id != chip->read_byte(mtd)) { + ret = -ENODEV; + goto notfound_id; + } + + /* Update size of the MTD. */ + chip->numchips++; + mtd->size += chip->chipsize; + } + + dev_info(&pdev->dev, "Found chip %i on bank %i\n", chipnr, bank); + return 0; + +notfound_id: + dev_info(&pdev->dev, "No chip found on bank %i\n", bank); + ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1)); + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + jz_gpio_set_function(gpio, JZ_GPIO_FUNC_NONE); + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); +notfound_resource: + gpio_free(gpio); +notfound_gpio: + return ret; +} + +static int jz_nand_probe(struct platform_device *pdev) { int ret; struct jz_nand *nand; struct nand_chip *chip; struct mtd_info *mtd; - struct jz_nand_platform_data *pdata = pdev->dev.platform_data; + struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + size_t chipnr, bank_idx; + uint8_t nand_maf_id = 0, nand_dev_id = 0; nand = kzalloc(sizeof(*nand), GFP_KERNEL); - if (!nand) { - dev_err(&pdev->dev, "Failed to allocate device structure.\n"); + if (!nand) return -ENOMEM; - } ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base); if (ret) goto err_free; - ret = jz_nand_ioremap_resource(pdev, "bank", &nand->bank_mem, - &nand->bank_base); - if (ret) - goto err_iounmap_mmio; if (pdata && gpio_is_valid(pdata->busy_gpio)) { ret = gpio_request(pdata->busy_gpio, "NAND busy pin"); @@ -316,7 +429,7 @@ static int __devinit jz_nand_probe(struct platform_device *pdev) dev_err(&pdev->dev, "Failed to request busy gpio %d: %d\n", pdata->busy_gpio, ret); - goto err_iounmap_mem; + goto err_iounmap_mmio; } } @@ -339,22 +452,51 @@ static int __devinit jz_nand_probe(struct platform_device *pdev) chip->chip_delay = 50; chip->cmd_ctrl = jz_nand_cmd_ctrl; + chip->select_chip = jz_nand_select_chip; if (pdata && gpio_is_valid(pdata->busy_gpio)) chip->dev_ready = jz_nand_dev_ready; - chip->IO_ADDR_R = nand->bank_base; - chip->IO_ADDR_W = nand->bank_base; - nand->pdata = pdata; platform_set_drvdata(pdev, nand); - writel(JZ_NAND_CTRL_ENABLE_CHIP(0), nand->base + JZ_REG_NAND_CTRL); - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) { - dev_err(&pdev->dev, "Failed to scan nand\n"); - goto err_gpio_free; + /* We are going to autodetect NAND chips in the banks specified in the + * platform data. Although nand_scan_ident() can detect multiple chips, + * it requires those chips to be numbered consecuitively, which is not + * always the case for external memory banks. And a fixed chip-to-bank + * mapping is not practical either, since for example Dingoo units + * produced at different times have NAND chips in different banks. + */ + chipnr = 0; + for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) { + unsigned char bank; + + /* If there is no platform data, look for NAND in bank 1, + * which is the most likely bank since it is the only one + * that can be booted from. + */ + bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1; + if (bank == 0) + break; + if (bank > JZ_NAND_NUM_BANKS) { + dev_warn(&pdev->dev, + "Skipping non-existing bank: %d\n", bank); + continue; + } + /* The detection routine will directly or indirectly call + * jz_nand_select_chip(), so nand->banks has to contain the + * bank we're checking. + */ + nand->banks[chipnr] = bank; + if (jz_nand_detect_bank(pdev, nand, bank, chipnr, + &nand_maf_id, &nand_dev_id) == 0) + chipnr++; + else + nand->banks[chipnr] = 0; + } + if (chipnr == 0) { + dev_err(&pdev->dev, "No NAND chips found\n"); + goto err_gpio_busy; } if (pdata && pdata->ident_callback) { @@ -364,8 +506,8 @@ static int __devinit jz_nand_probe(struct platform_device *pdev) ret = nand_scan_tail(mtd); if (ret) { - dev_err(&pdev->dev, "Failed to scan nand\n"); - goto err_gpio_free; + dev_err(&pdev->dev, "Failed to scan NAND\n"); + goto err_unclaim_banks; } ret = mtd_device_parse_register(mtd, NULL, NULL, @@ -382,34 +524,49 @@ static int __devinit jz_nand_probe(struct platform_device *pdev) return 0; err_nand_release: - nand_release(&nand->mtd); -err_gpio_free: - platform_set_drvdata(pdev, NULL); - gpio_free(pdata->busy_gpio); -err_iounmap_mem: - iounmap(nand->bank_base); + nand_release(mtd); +err_unclaim_banks: + while (chipnr--) { + unsigned char bank = nand->banks[chipnr]; + gpio_free(JZ_GPIO_MEM_CS0 + bank - 1); + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); + } + writel(0, nand->base + JZ_REG_NAND_CTRL); +err_gpio_busy: + if (pdata && gpio_is_valid(pdata->busy_gpio)) + gpio_free(pdata->busy_gpio); err_iounmap_mmio: - iounmap(nand->base); + jz_nand_iounmap_resource(nand->mem, nand->base); err_free: kfree(nand); return ret; } -static int __devexit jz_nand_remove(struct platform_device *pdev) +static int jz_nand_remove(struct platform_device *pdev) { struct jz_nand *nand = platform_get_drvdata(pdev); + struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + size_t i; nand_release(&nand->mtd); /* Deassert and disable all chips */ writel(0, nand->base + JZ_REG_NAND_CTRL); - iounmap(nand->bank_base); - release_mem_region(nand->bank_mem->start, resource_size(nand->bank_mem)); - iounmap(nand->base); - release_mem_region(nand->mem->start, resource_size(nand->mem)); + for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) { + unsigned char bank = nand->banks[i]; + if (bank != 0) { + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); + gpio_free(JZ_GPIO_MEM_CS0 + bank - 1); + } + } + if (pdata && gpio_is_valid(pdata->busy_gpio)) + gpio_free(pdata->busy_gpio); + + jz_nand_iounmap_resource(nand->mem, nand->base); - platform_set_drvdata(pdev, NULL); kfree(nand); return 0; @@ -417,7 +574,7 @@ static int __devexit jz_nand_remove(struct platform_device *pdev) static struct platform_driver jz_nand_driver = { .probe = jz_nand_probe, - .remove = __devexit_p(jz_nand_remove), + .remove = jz_nand_remove, .driver = { .name = "jz4740-nand", .owner = THIS_MODULE, diff --git a/drivers/mtd/nand/lpc32xx_mlc.c b/drivers/mtd/nand/lpc32xx_mlc.c new file mode 100644 index 00000000000..687478c9f09 --- /dev/null +++ b/drivers/mtd/nand/lpc32xx_mlc.c @@ -0,0 +1,896 @@ +/* + * Driver for NAND MLC Controller in LPC32xx + * + * Author: Roland Stigge <stigge@antcom.de> + * + * Copyright © 2011 WORK Microwave GmbH + * Copyright © 2011, 2012 Roland Stigge + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * + * NAND Flash Controller Operation: + * - Read: Auto Decode + * - Write: Auto Encode + * - Tested Page Sizes: 2048, 4096 + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/completion.h> +#include <linux/interrupt.h> +#include <linux/of.h> +#include <linux/of_mtd.h> +#include <linux/of_gpio.h> +#include <linux/mtd/lpc32xx_mlc.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/mtd/nand_ecc.h> + +#define DRV_NAME "lpc32xx_mlc" + +/********************************************************************** +* MLC NAND controller register offsets +**********************************************************************/ + +#define MLC_BUFF(x) (x + 0x00000) +#define MLC_DATA(x) (x + 0x08000) +#define MLC_CMD(x) (x + 0x10000) +#define MLC_ADDR(x) (x + 0x10004) +#define MLC_ECC_ENC_REG(x) (x + 0x10008) +#define MLC_ECC_DEC_REG(x) (x + 0x1000C) +#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) +#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) +#define MLC_RPR(x) (x + 0x10018) +#define MLC_WPR(x) (x + 0x1001C) +#define MLC_RUBP(x) (x + 0x10020) +#define MLC_ROBP(x) (x + 0x10024) +#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) +#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) +#define MLC_ICR(x) (x + 0x10030) +#define MLC_TIME_REG(x) (x + 0x10034) +#define MLC_IRQ_MR(x) (x + 0x10038) +#define MLC_IRQ_SR(x) (x + 0x1003C) +#define MLC_LOCK_PR(x) (x + 0x10044) +#define MLC_ISR(x) (x + 0x10048) +#define MLC_CEH(x) (x + 0x1004C) + +/********************************************************************** +* MLC_CMD bit definitions +**********************************************************************/ +#define MLCCMD_RESET 0xFF + +/********************************************************************** +* MLC_ICR bit definitions +**********************************************************************/ +#define MLCICR_WPROT (1 << 3) +#define MLCICR_LARGEBLOCK (1 << 2) +#define MLCICR_LONGADDR (1 << 1) +#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ + +/********************************************************************** +* MLC_TIME_REG bit definitions +**********************************************************************/ +#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) +#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) +#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) +#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) +#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) +#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) +#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) + +/********************************************************************** +* MLC_IRQ_MR and MLC_IRQ_SR bit definitions +**********************************************************************/ +#define MLCIRQ_NAND_READY (1 << 5) +#define MLCIRQ_CONTROLLER_READY (1 << 4) +#define MLCIRQ_DECODE_FAILURE (1 << 3) +#define MLCIRQ_DECODE_ERROR (1 << 2) +#define MLCIRQ_ECC_READY (1 << 1) +#define MLCIRQ_WRPROT_FAULT (1 << 0) + +/********************************************************************** +* MLC_LOCK_PR bit definitions +**********************************************************************/ +#define MLCLOCKPR_MAGIC 0xA25E + +/********************************************************************** +* MLC_ISR bit definitions +**********************************************************************/ +#define MLCISR_DECODER_FAILURE (1 << 6) +#define MLCISR_ERRORS ((1 << 4) | (1 << 5)) +#define MLCISR_ERRORS_DETECTED (1 << 3) +#define MLCISR_ECC_READY (1 << 2) +#define MLCISR_CONTROLLER_READY (1 << 1) +#define MLCISR_NAND_READY (1 << 0) + +/********************************************************************** +* MLC_CEH bit definitions +**********************************************************************/ +#define MLCCEH_NORMAL (1 << 0) + +struct lpc32xx_nand_cfg_mlc { + uint32_t tcea_delay; + uint32_t busy_delay; + uint32_t nand_ta; + uint32_t rd_high; + uint32_t rd_low; + uint32_t wr_high; + uint32_t wr_low; + int wp_gpio; + struct mtd_partition *parts; + unsigned num_parts; +}; + +static struct nand_ecclayout lpc32xx_nand_oob = { + .eccbytes = 40, + .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, + .oobfree = { + { .offset = 0, + .length = 6, }, + { .offset = 16, + .length = 6, }, + { .offset = 32, + .length = 6, }, + { .offset = 48, + .length = 6, }, + }, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_mlc_platform_data *pdata; + struct clk *clk; + struct mtd_info mtd; + void __iomem *io_base; + int irq; + struct lpc32xx_nand_cfg_mlc *ncfg; + struct completion comp_nand; + struct completion comp_controller; + uint32_t llptr; + /* + * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + dma_addr_t oob_buf_phy; + /* + * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + uint8_t *oob_buf; + /* Physical address of DMA base address */ + dma_addr_t io_base_phy; + + struct completion comp_dma; + struct dma_chan *dma_chan; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + uint8_t *dma_buf; + uint8_t *dummy_buf; + int mlcsubpages; /* number of 512bytes-subpages */ +}; + +/* + * Activate/Deactivate DMA Operation: + * + * Using the PL080 DMA Controller for transferring the 512 byte subpages + * instead of doing readl() / writel() in a loop slows it down significantly. + * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: + * + * - readl() of 128 x 32 bits in a loop: ~20us + * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us + * - DMA read of 512 bytes (32 bit, no bursts): ~100us + * + * This applies to the transfer itself. In the DMA case: only the + * wait_for_completion() (DMA setup _not_ included). + * + * Note that the 512 bytes subpage transfer is done directly from/to a + * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a + * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND + * controller transferring data between its internal buffer to/from the NAND + * chip.) + * + * Therefore, using the PL080 DMA is disabled by default, for now. + * + */ +static int use_dma; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset MLC controller */ + writel(MLCCMD_RESET, MLC_CMD(host->io_base)); + udelay(1000); + + /* Get base clock for MLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = 104000000; + + /* Unlock MLC_ICR + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Configure MLC Controller: Large Block, 5 Byte Address */ + tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; + writel(tmp, MLC_ICR(host->io_base)); + + /* Unlock MLC_TIME_REG + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Compute clock setup values, see LPC and NAND manual */ + tmp = 0; + tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); + tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); + tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); + tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); + tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); + tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); + tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); + writel(tmp, MLC_TIME_REG(host->io_base)); + + /* Enable IRQ for CONTROLLER_READY and NAND_READY */ + writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, + MLC_IRQ_MR(host->io_base)); + + /* Normal nCE operation: nCE controlled by controller */ + writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *nand_chip = mtd->priv; + struct lpc32xx_nand_host *host = nand_chip->priv; + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, MLC_CMD(host->io_base)); + else + writel(cmd, MLC_ADDR(host->io_base)); + } +} + +/* + * Read Device Ready (NAND device _and_ controller ready) + */ +static int lpc32xx_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct lpc32xx_nand_host *host = nand_chip->priv; + + if ((readb(MLC_ISR(host->io_base)) & + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) + return 1; + + return 0; +} + +static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) +{ + uint8_t sr; + + /* Clear interrupt flag by reading status */ + sr = readb(MLC_IRQ_SR(host->io_base)); + if (sr & MLCIRQ_NAND_READY) + complete(&host->comp_nand); + if (sr & MLCIRQ_CONTROLLER_READY) + complete(&host->comp_controller); + + return IRQ_HANDLED; +} + +static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = chip->priv; + + if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) + goto exit; + + wait_for_completion(&host->comp_nand); + + while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { + /* Seems to be delayed sometimes by controller */ + dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, + struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = chip->priv; + + if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) + goto exit; + + wait_for_completion(&host->comp_controller); + + while (!(readb(MLC_ISR(host->io_base)) & + MLCISR_CONTROLLER_READY)) { + dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + lpc32xx_waitfunc_nand(mtd, chip); + lpc32xx_waitfunc_controller(mtd, chip); + + return NAND_STATUS_READY; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 0); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 1); +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, + enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp_dma); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp_dma; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct lpc32xx_nand_host *host = chip->priv; + int i, j; + uint8_t *oobbuf = chip->oob_poi; + uint32_t mlc_isr; + int res; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->dma_buf; + dma_mapped = false; + } + + /* Writing Command and Address */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* For all sub-pages */ + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Auto Decode Command */ + writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(mtd, chip); + + /* Check ECC Error status */ + mlc_isr = readl(MLC_ISR(host->io_base)); + if (mlc_isr & MLCISR_DECODER_FAILURE) { + mtd->ecc_stats.failed++; + dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); + } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { + mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; + } + + /* Read 512 + 16 Bytes */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_DEV_TO_MEM); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + *((uint32_t *)(buf)) = + readl(MLC_BUFF(host->io_base)); + buf += 4; + } + } + for (j = 0; j < (16 >> 2); j++) { + *((uint32_t *)(oobbuf)) = + readl(MLC_BUFF(host->io_base)); + oobbuf += 4; + } + } + + if (use_dma && !dma_mapped) + memcpy(buf, dma_buf, mtd->writesize); + + return 0; +} + +static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + struct lpc32xx_nand_host *host = chip->priv; + const uint8_t *oobbuf = chip->oob_poi; + uint8_t *dma_buf = (uint8_t *)buf; + int res; + int i, j; + + if (use_dma && (void *)buf >= high_memory) { + dma_buf = host->dma_buf; + memcpy(dma_buf, buf, mtd->writesize); + } + + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Encode */ + writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); + + /* Write 512 + 6 Bytes to Buffer */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_MEM_TO_DEV); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + writel(*((uint32_t *)(buf)), + MLC_BUFF(host->io_base)); + buf += 4; + } + } + writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 4; + writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 12; + + /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ + writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(mtd, chip); + } + return 0; +} + +static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct lpc32xx_nand_host *host = chip->priv; + + /* Read whole page - necessary with MLC controller! */ + lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); + + return 0; +} + +static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ + return 0; +} + +/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ +static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) +{ + /* Always enabled! */ +} + +static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = &host->mtd; + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-mlc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + /* + * Set direction to a sensible value even if the dmaengine driver + * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x + * driver criticizes it as "alien transfer direction". + */ + host->dma_slave_config.direction = DMA_DEV_TO_MEM; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 128; + host->dma_slave_config.dst_maxburst = 128; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); + host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + goto out1; + } + + return 0; +out1: + dma_release_channel(host->dma_chan); + return -ENXIO; +} + +static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_mlc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); + of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); + of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); + of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); + of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); + of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); + of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); + + if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || + !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || + !ncfg->wr_low) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); + + return ncfg; +} + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct resource *rc; + int res; + struct mtd_part_parser_data ppdata = {}; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->io_base = devm_ioremap_resource(&pdev->dev, rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + host->io_base_phy = rc->start; + + mtd = &host->mtd; + nand_chip = &host->nand_chip; + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + if (host->ncfg->wp_gpio == -EPROBE_DEFER) + return -EPROBE_DEFER; + if (gpio_is_valid(host->ncfg->wp_gpio) && + gpio_request(host->ncfg->wp_gpio, "NAND WP")) { + dev_err(&pdev->dev, "GPIO not available\n"); + return -EBUSY; + } + lpc32xx_wp_disable(host); + + host->pdata = dev_get_platdata(&pdev->dev); + + nand_chip->priv = host; /* link the private data structures */ + mtd->priv = nand_chip; + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock initialization failure\n"); + res = -ENOENT; + goto err_exit1; + } + clk_enable(host->clk); + + nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; + nand_chip->dev_ready = lpc32xx_nand_device_ready; + nand_chip->chip_delay = 25; /* us */ + nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); + nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* Initialize function pointers */ + nand_chip->ecc.hwctl = lpc32xx_ecc_enable; + nand_chip->ecc.read_page_raw = lpc32xx_read_page; + nand_chip->ecc.read_page = lpc32xx_read_page; + nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; + nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; + nand_chip->ecc.write_oob = lpc32xx_write_oob; + nand_chip->ecc.read_oob = lpc32xx_read_oob; + nand_chip->ecc.strength = 4; + nand_chip->waitfunc = lpc32xx_waitfunc; + + nand_chip->options = NAND_NO_SUBPAGE_WRITE; + nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + nand_chip->bbt_td = &lpc32xx_nand_bbt; + nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; + + /* bitflip_threshold's default is defined as ecc_strength anyway. + * Unfortunately, it is set only later at add_mtd_device(). Meanwhile + * being 0, it causes bad block table scanning errors in + * nand_scan_tail(), so preparing it here. */ + mtd->bitflip_threshold = nand_chip->ecc.strength; + + if (use_dma) { + res = lpc32xx_dma_setup(host); + if (res) { + res = -EIO; + goto err_exit2; + } + } + + /* + * Scan to find existance of the device and + * Get the type of NAND device SMALL block or LARGE block + */ + if (nand_scan_ident(mtd, 1, NULL)) { + res = -ENXIO; + goto err_exit3; + } + + host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); + if (!host->dma_buf) { + res = -ENOMEM; + goto err_exit3; + } + + host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); + if (!host->dummy_buf) { + res = -ENOMEM; + goto err_exit3; + } + + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = mtd->writesize; + nand_chip->ecc.layout = &lpc32xx_nand_oob; + host->mlcsubpages = mtd->writesize / 512; + + /* initially clear interrupt status */ + readb(MLC_IRQ_SR(host->io_base)); + + init_completion(&host->comp_nand); + init_completion(&host->comp_controller); + + host->irq = platform_get_irq(pdev, 0); + if ((host->irq < 0) || (host->irq >= NR_IRQS)) { + dev_err(&pdev->dev, "failed to get platform irq\n"); + res = -EINVAL; + goto err_exit3; + } + + if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, + IRQF_TRIGGER_HIGH, DRV_NAME, host)) { + dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); + res = -ENXIO; + goto err_exit3; + } + + /* + * Fills out all the uninitialized function pointers with the defaults + * And scans for a bad block table if appropriate. + */ + if (nand_scan_tail(mtd)) { + res = -ENXIO; + goto err_exit4; + } + + mtd->name = DRV_NAME; + + ppdata.of_node = pdev->dev.of_node; + res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, + host->ncfg->num_parts); + if (!res) + return res; + + nand_release(mtd); + +err_exit4: + free_irq(host->irq, host); +err_exit3: + if (use_dma) + dma_release_channel(host->dma_chan); +err_exit2: + clk_disable(host->clk); + clk_put(host->clk); +err_exit1: + lpc32xx_wp_enable(host); + gpio_free(host->ncfg->wp_gpio); + + return res; +} + +/* + * Remove NAND device + */ +static int lpc32xx_nand_remove(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct mtd_info *mtd = &host->mtd; + + nand_release(mtd); + free_irq(host->irq, host); + if (use_dma) + dma_release_channel(host->dma_chan); + + clk_disable(host->clk); + clk_put(host->clk); + + lpc32xx_wp_enable(host); + gpio_free(host->ncfg->wp_gpio); + + return 0; +} + +#ifdef CONFIG_PM +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Re-enable NAND clock */ + clk_enable(host->clk); + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable(host->clk); + return 0; +} + +#else +#define lpc32xx_nand_resume NULL +#define lpc32xx_nand_suspend NULL +#endif + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-mlc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove = lpc32xx_nand_remove, + .resume = lpc32xx_nand_resume, + .suspend = lpc32xx_nand_suspend, + .driver = { + .name = DRV_NAME, + .owner = THIS_MODULE, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); diff --git a/drivers/mtd/nand/lpc32xx_slc.c b/drivers/mtd/nand/lpc32xx_slc.c new file mode 100644 index 00000000000..53a6742e3da --- /dev/null +++ b/drivers/mtd/nand/lpc32xx_slc.c @@ -0,0 +1,1018 @@ +/* + * NXP LPC32XX NAND SLC driver + * + * Authors: + * Kevin Wells <kevin.wells@nxp.com> + * Roland Stigge <stigge@antcom.de> + * + * Copyright © 2011 NXP Semiconductors + * Copyright © 2012 Roland Stigge + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/platform_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/gpio.h> +#include <linux/of.h> +#include <linux/of_mtd.h> +#include <linux/of_gpio.h> +#include <linux/mtd/lpc32xx_slc.h> + +#define LPC32XX_MODNAME "lpc32xx-nand" + +/********************************************************************** +* SLC NAND controller register offsets +**********************************************************************/ + +#define SLC_DATA(x) (x + 0x000) +#define SLC_ADDR(x) (x + 0x004) +#define SLC_CMD(x) (x + 0x008) +#define SLC_STOP(x) (x + 0x00C) +#define SLC_CTRL(x) (x + 0x010) +#define SLC_CFG(x) (x + 0x014) +#define SLC_STAT(x) (x + 0x018) +#define SLC_INT_STAT(x) (x + 0x01C) +#define SLC_IEN(x) (x + 0x020) +#define SLC_ISR(x) (x + 0x024) +#define SLC_ICR(x) (x + 0x028) +#define SLC_TAC(x) (x + 0x02C) +#define SLC_TC(x) (x + 0x030) +#define SLC_ECC(x) (x + 0x034) +#define SLC_DMA_DATA(x) (x + 0x038) + +/********************************************************************** +* slc_ctrl register definitions +**********************************************************************/ +#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ +#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ +#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ + +/********************************************************************** +* slc_cfg register definitions +**********************************************************************/ +#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ +#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ +#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ +#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ +#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ +#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ + +/********************************************************************** +* slc_stat register definitions +**********************************************************************/ +#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ +#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ +#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ + +/********************************************************************** +* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions +**********************************************************************/ +#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ +#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ + +/********************************************************************** +* slc_tac register definitions +**********************************************************************/ +/* Clock setting for RDY write sample wait time in 2*n clocks */ +#define SLCTAC_WDR(n) (((n) & 0xF) << 28) +/* Write pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24) +/* Write hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WHOLD(n) (((n) & 0xF) << 20) +/* Write setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WSETUP(n) (((n) & 0xF) << 16) +/* Clock setting for RDY read sample wait time in 2*n clocks */ +#define SLCTAC_RDR(n) (((n) & 0xF) << 12) +/* Read pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8) +/* Read hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RHOLD(n) (((n) & 0xF) << 4) +/* Read setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RSETUP(n) (((n) & 0xF) << 0) + +/********************************************************************** +* slc_ecc register definitions +**********************************************************************/ +/* ECC line party fetch macro */ +#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) +#define SLCECC_TO_COLPAR(n) ((n) & 0x3F) + +/* + * DMA requires storage space for the DMA local buffer and the hardware ECC + * storage area. The DMA local buffer is only used if DMA mapping fails + * during runtime. + */ +#define LPC32XX_DMA_DATA_SIZE 4096 +#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) + +/* Number of bytes used for ECC stored in NAND per 256 bytes */ +#define LPC32XX_SLC_DEV_ECC_BYTES 3 + +/* + * If the NAND base clock frequency can't be fetched, this frequency will be + * used instead as the base. This rate is used to setup the timing registers + * used for NAND accesses. + */ +#define LPC32XX_DEF_BUS_RATE 133250000 + +/* Milliseconds for DMA FIFO timeout (unlikely anyway) */ +#define LPC32XX_DMA_TIMEOUT 100 + +/* + * NAND ECC Layout for small page NAND devices + * Note: For large and huge page devices, the default layouts are used + */ +static struct nand_ecclayout lpc32xx_nand_oob_16 = { + .eccbytes = 6, + .eccpos = {10, 11, 12, 13, 14, 15}, + .oobfree = { + { .offset = 0, .length = 4 }, + { .offset = 6, .length = 4 }, + }, +}; + +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +/* + * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 + * Note: Large page devices used the default layout + */ +static struct nand_bbt_descr bbt_smallpage_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_smallpage_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/* + * NAND platform configuration structure + */ +struct lpc32xx_nand_cfg_slc { + uint32_t wdr_clks; + uint32_t wwidth; + uint32_t whold; + uint32_t wsetup; + uint32_t rdr_clks; + uint32_t rwidth; + uint32_t rhold; + uint32_t rsetup; + bool use_bbt; + int wp_gpio; + struct mtd_partition *parts; + unsigned num_parts; +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_slc_platform_data *pdata; + struct clk *clk; + struct mtd_info mtd; + void __iomem *io_base; + struct lpc32xx_nand_cfg_slc *ncfg; + + struct completion comp; + struct dma_chan *dma_chan; + uint32_t dma_buf_len; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + + /* + * DMA and CPU addresses of ECC work area and data buffer + */ + uint32_t *ecc_buf; + uint8_t *data_buf; + dma_addr_t io_base_dma; +}; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset SLC controller */ + writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); + udelay(1000); + + /* Basic setup */ + writel(0, SLC_CFG(host->io_base)); + writel(0, SLC_IEN(host->io_base)); + writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), + SLC_ICR(host->io_base)); + + /* Get base clock for SLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = LPC32XX_DEF_BUS_RATE; + + /* Compute clock setup values */ + tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | + SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) | + SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) | + SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) | + SLCTAC_RDR(host->ncfg->rdr_clks) | + SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) | + SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) | + SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup)); + writel(tmp, SLC_TAC(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + uint32_t tmp; + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + /* Does CE state need to be changed? */ + tmp = readl(SLC_CFG(host->io_base)); + if (ctrl & NAND_NCE) + tmp |= SLCCFG_CE_LOW; + else + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CFG(host->io_base)); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, SLC_CMD(host->io_base)); + else + writel(cmd, SLC_ADDR(host->io_base)); + } +} + +/* + * Read the Device Ready pin + */ +static int lpc32xx_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + int rdy = 0; + + if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) + rdy = 1; + + return rdy; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 0); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 1); +} + +/* + * Prepares SLC for transfers with H/W ECC enabled + */ +static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) +{ + /* Hardware ECC is enabled automatically in hardware as needed */ +} + +/* + * Calculates the ECC for the data + */ +static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, + const unsigned char *buf, + unsigned char *code) +{ + /* + * ECC is calculated automatically in hardware during syndrome read + * and write operations, so it doesn't need to be calculated here. + */ + return 0; +} + +/* + * Read a single byte from NAND device + */ +static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + return (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device read without ECC + */ +static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + /* Direct device read with no ECC */ + while (len-- > 0) + *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device write without ECC + */ +static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + + /* Direct device write with no ECC */ + while (len-- > 0) + writel((uint32_t)*buf++, SLC_DATA(host->io_base)); +} + +/* + * Read the OOB data from the device without ECC using FIFO method + */ +static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* + * Write the OOB data to the device without ECC using FIFO method + */ +static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + int status; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* Send command to program the OOB data */ + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +/* + * Fills in the ECC fields in the OOB buffer with the hardware generated ECC + */ +static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) +{ + int i; + + for (i = 0; i < (count * 3); i += 3) { + uint32_t ce = ecc[i / 3]; + ce = ~(ce << 2) & 0xFFFFFF; + spare[i + 2] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i + 1] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i] = (uint8_t)(ce & 0xFF); + } +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, + void *mem, int len, enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + host->dma_slave_config.direction = dir; + host->dma_slave_config.src_addr = dma; + host->dma_slave_config.dst_addr = dma; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 4; + host->dma_slave_config.dst_maxburst = 4; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + return -ENXIO; + } + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +/* + * DMA read/write transfers with ECC support + */ +static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, + int read) +{ + struct nand_chip *chip = mtd->priv; + struct lpc32xx_nand_host *host = chip->priv; + int i, status = 0; + unsigned long timeout; + int res; + enum dma_transfer_direction dir = + read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->data_buf; + dma_mapped = false; + if (!read) + memcpy(host->data_buf, buf, mtd->writesize); + } + + if (read) { + writel(readl(SLC_CFG(host->io_base)) | + SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); + } else { + writel((readl(SLC_CFG(host->io_base)) | + SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & + ~SLCCFG_DMA_DIR, + SLC_CFG(host->io_base)); + } + + /* Clear initial ECC */ + writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); + + /* Transfer size is data area only */ + writel(mtd->writesize, SLC_TC(host->io_base)); + + /* Start transfer in the NAND controller */ + writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + + for (i = 0; i < chip->ecc.steps; i++) { + /* Data */ + res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), + dma_buf + i * chip->ecc.size, + mtd->writesize / chip->ecc.steps, dir); + if (res) + return res; + + /* Always _read_ ECC */ + if (i == chip->ecc.steps - 1) + break; + if (!read) /* ECC availability delayed on write */ + udelay(10); + res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), + &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); + if (res) + return res; + } + + /* + * According to NXP, the DMA can be finished here, but the NAND + * controller may still have buffered data. After porting to using the + * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) + * appears to be always true, according to tests. Keeping the check for + * safety reasons for now. + */ + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { + dev_warn(mtd->dev.parent, "FIFO not empty!\n"); + timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); + while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && + time_before(jiffies, timeout)) + cpu_relax(); + if (!time_before(jiffies, timeout)) { + dev_err(mtd->dev.parent, "FIFO held data too long\n"); + status = -EIO; + } + } + + /* Read last calculated ECC value */ + if (!read) + udelay(10); + host->ecc_buf[chip->ecc.steps - 1] = + readl(SLC_ECC(host->io_base)); + + /* Flush DMA */ + dmaengine_terminate_all(host->dma_chan); + + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || + readl(SLC_TC(host->io_base))) { + /* Something is left in the FIFO, something is wrong */ + dev_err(mtd->dev.parent, "DMA FIFO failure\n"); + status = -EIO; + } + + /* Stop DMA & HW ECC */ + writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + writel(readl(SLC_CFG(host->io_base)) & + ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); + + if (!dma_mapped && read) + memcpy(buf, host->data_buf, mtd->writesize); + + return status; +} + +/* + * Read the data and OOB data from the device, use ECC correction with the + * data, disable ECC for the OOB data + */ +static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct lpc32xx_nand_host *host = chip->priv; + int stat, i, status; + uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; + + /* Issue read command */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* Read data and oob, calculate ECC */ + status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); + + /* Get OOB data */ + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* Convert to stored ECC format */ + lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); + + /* Pointer to ECC data retrieved from NAND spare area */ + oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0]; + + for (i = 0; i < chip->ecc.steps; i++) { + stat = chip->ecc.correct(mtd, buf, oobecc, + &tmpecc[i * chip->ecc.bytes]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + buf += chip->ecc.size; + oobecc += chip->ecc.bytes; + } + + return status; +} + +/* + * Read the data and OOB data from the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + /* Issue read command */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* Raw reads can just use the FIFO interface */ + chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* + * Write the data and OOB data to the device, use ECC with the data, + * disable ECC for the OOB data + */ +static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + struct lpc32xx_nand_host *host = chip->priv; + uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0]; + int error; + + /* Write data, calculate ECC on outbound data */ + error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); + if (error) + return error; + + /* + * The calculated ECC needs some manual work done to it before + * committing it to NAND. Process the calculated ECC and place + * the resultant values directly into the OOB buffer. */ + lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); + + /* Write ECC data to device */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +/* + * Write the data and OOB data to the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required) +{ + /* Raw writes can just use the FIFO interface */ + chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = &host->mtd; + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-slc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + return 0; +} + +static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_slc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); + of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); + of_property_read_u32(np, "nxp,whold", &ncfg->whold); + of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); + of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); + of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); + of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); + of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); + + if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || + !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || + !ncfg->rhold || !ncfg->rsetup) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + ncfg->use_bbt = of_get_nand_on_flash_bbt(np); + ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); + + return ncfg; +} + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource *rc; + struct mtd_part_parser_data ppdata = {}; + int res; + + rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (rc == NULL) { + dev_err(&pdev->dev, "No memory resource found for device\n"); + return -EBUSY; + } + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + host->io_base_dma = rc->start; + + host->io_base = devm_ioremap_resource(&pdev->dev, rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + if (host->ncfg->wp_gpio == -EPROBE_DEFER) + return -EPROBE_DEFER; + if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev, + host->ncfg->wp_gpio, "NAND WP")) { + dev_err(&pdev->dev, "GPIO not available\n"); + return -EBUSY; + } + lpc32xx_wp_disable(host); + + host->pdata = dev_get_platdata(&pdev->dev); + + mtd = &host->mtd; + chip = &host->nand_chip; + chip->priv = host; + mtd->priv = chip; + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock failure\n"); + res = -ENOENT; + goto err_exit1; + } + clk_enable(host->clk); + + /* Set NAND IO addresses and command/ready functions */ + chip->IO_ADDR_R = SLC_DATA(host->io_base); + chip->IO_ADDR_W = SLC_DATA(host->io_base); + chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; + chip->dev_ready = lpc32xx_nand_device_ready; + chip->chip_delay = 20; /* 20us command delay time */ + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* NAND callbacks for LPC32xx SLC hardware */ + chip->ecc.mode = NAND_ECC_HW_SYNDROME; + chip->read_byte = lpc32xx_nand_read_byte; + chip->read_buf = lpc32xx_nand_read_buf; + chip->write_buf = lpc32xx_nand_write_buf; + chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; + chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; + chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; + chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; + chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; + chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; + chip->ecc.calculate = lpc32xx_nand_ecc_calculate; + chip->ecc.correct = nand_correct_data; + chip->ecc.strength = 1; + chip->ecc.hwctl = lpc32xx_nand_ecc_enable; + + /* bitflip_threshold's default is defined as ecc_strength anyway. + * Unfortunately, it is set only later at add_mtd_device(). Meanwhile + * being 0, it causes bad block table scanning errors in + * nand_scan_tail(), so preparing it here already. */ + mtd->bitflip_threshold = chip->ecc.strength; + + /* + * Allocate a large enough buffer for a single huge page plus + * extra space for the spare area and ECC storage area + */ + host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; + host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, + GFP_KERNEL); + if (host->data_buf == NULL) { + res = -ENOMEM; + goto err_exit2; + } + + res = lpc32xx_nand_dma_setup(host); + if (res) { + res = -EIO; + goto err_exit2; + } + + /* Find NAND device */ + if (nand_scan_ident(mtd, 1, NULL)) { + res = -ENXIO; + goto err_exit3; + } + + /* OOB and ECC CPU and DMA work areas */ + host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); + + /* + * Small page FLASH has a unique OOB layout, but large and huge + * page FLASH use the standard layout. Small page FLASH uses a + * custom BBT marker layout. + */ + if (mtd->writesize <= 512) + chip->ecc.layout = &lpc32xx_nand_oob_16; + + /* These sizes remain the same regardless of page size */ + chip->ecc.size = 256; + chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; + chip->ecc.prepad = chip->ecc.postpad = 0; + + /* Avoid extra scan if using BBT, setup BBT support */ + if (host->ncfg->use_bbt) { + chip->bbt_options |= NAND_BBT_USE_FLASH; + + /* + * Use a custom BBT marker setup for small page FLASH that + * won't interfere with the ECC layout. Large and huge page + * FLASH use the standard layout. + */ + if (mtd->writesize <= 512) { + chip->bbt_td = &bbt_smallpage_main_descr; + chip->bbt_md = &bbt_smallpage_mirror_descr; + } + } + + /* + * Fills out all the uninitialized function pointers with the defaults + */ + if (nand_scan_tail(mtd)) { + res = -ENXIO; + goto err_exit3; + } + + mtd->name = "nxp_lpc3220_slc"; + ppdata.of_node = pdev->dev.of_node; + res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, + host->ncfg->num_parts); + if (!res) + return res; + + nand_release(mtd); + +err_exit3: + dma_release_channel(host->dma_chan); +err_exit2: + clk_disable(host->clk); +err_exit1: + lpc32xx_wp_enable(host); + + return res; +} + +/* + * Remove NAND device. + */ +static int lpc32xx_nand_remove(struct platform_device *pdev) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct mtd_info *mtd = &host->mtd; + + nand_release(mtd); + dma_release_channel(host->dma_chan); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + clk_disable(host->clk); + lpc32xx_wp_enable(host); + + return 0; +} + +#ifdef CONFIG_PM +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Re-enable NAND clock */ + clk_enable(host->clk); + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable(host->clk); + + return 0; +} + +#else +#define lpc32xx_nand_resume NULL +#define lpc32xx_nand_suspend NULL +#endif + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-slc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove = lpc32xx_nand_remove, + .resume = lpc32xx_nand_resume, + .suspend = lpc32xx_nand_suspend, + .driver = { + .name = LPC32XX_MODNAME, + .owner = THIS_MODULE, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>"); +MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/mpc5121_nfc.c index c259c24d798..e78841a2dcc 100644 --- a/drivers/mtd/nand/mpc5121_nfc.c +++ b/drivers/mtd/nand/mpc5121_nfc.c @@ -30,13 +30,14 @@ #include <linux/gfp.h> #include <linux/delay.h> #include <linux/err.h> -#include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/of_address.h> #include <linux/of_device.h> +#include <linux/of_irq.h> #include <linux/of_platform.h> #include <asm/mpc5121.h> @@ -506,27 +507,6 @@ static void mpc5121_nfc_write_buf(struct mtd_info *mtd, mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1); } -/* Compare buffer with NAND flash */ -static int mpc5121_nfc_verify_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - u_char tmp[256]; - uint bsize; - - while (len) { - bsize = min(len, 256); - mpc5121_nfc_read_buf(mtd, tmp, bsize); - - if (memcmp(buf, tmp, bsize)) - return 1; - - buf += bsize; - len -= bsize; - } - - return 0; -} - /* Read byte from NFC buffers */ static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd) { @@ -638,18 +618,17 @@ static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd) struct nand_chip *chip = mtd->priv; struct mpc5121_nfc_prv *prv = chip->priv; - if (prv->clk) { - clk_disable(prv->clk); - clk_put(prv->clk); - } + if (prv->clk) + clk_disable_unprepare(prv->clk); if (prv->csreg) iounmap(prv->csreg); } -static int __devinit mpc5121_nfc_probe(struct platform_device *op) +static int mpc5121_nfc_probe(struct platform_device *op) { struct device_node *rootnode, *dn = op->dev.of_node; + struct clk *clk; struct device *dev = &op->dev; struct mpc5121_nfc_prv *prv; struct resource res; @@ -673,10 +652,8 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) } prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL); - if (!prv) { - dev_err(dev, "Memory exhausted!\n"); + if (!prv) return -ENOMEM; - } mtd = &prv->mtd; chip = &prv->chip; @@ -732,7 +709,6 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) chip->read_word = mpc5121_nfc_read_word; chip->read_buf = mpc5121_nfc_read_buf; chip->write_buf = mpc5121_nfc_write_buf; - chip->verify_buf = mpc5121_nfc_verify_buf; chip->select_chip = mpc5121_nfc_select_chip; chip->bbt_options = NAND_BBT_USE_FLASH; chip->ecc.mode = NAND_ECC_SOFT; @@ -752,14 +728,18 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) of_node_put(rootnode); /* Enable NFC clock */ - prv->clk = clk_get(dev, "nfc_clk"); - if (IS_ERR(prv->clk)) { + clk = devm_clk_get(dev, "ipg"); + if (IS_ERR(clk)) { dev_err(dev, "Unable to acquire NFC clock!\n"); - retval = PTR_ERR(prv->clk); + retval = PTR_ERR(clk); goto error; } - - clk_enable(prv->clk); + retval = clk_prepare_enable(clk); + if (retval) { + dev_err(dev, "Unable to enable NFC clock!\n"); + goto error; + } + prv->clk = clk; /* Reset NAND Flash controller */ nfc_set(mtd, NFC_CONFIG1, NFC_RESET); @@ -803,7 +783,6 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) /* Detect NAND chips */ if (nand_scan(mtd, be32_to_cpup(chips_no))) { dev_err(dev, "NAND Flash not found !\n"); - devm_free_irq(dev, prv->irq, mtd); retval = -ENXIO; goto error; } @@ -828,7 +807,6 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) default: dev_err(dev, "Unsupported NAND flash!\n"); - devm_free_irq(dev, prv->irq, mtd); retval = -ENXIO; goto error; } @@ -839,7 +817,6 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) retval = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); if (retval) { dev_err(dev, "Error adding MTD device!\n"); - devm_free_irq(dev, prv->irq, mtd); goto error; } @@ -849,28 +826,25 @@ error: return retval; } -static int __devexit mpc5121_nfc_remove(struct platform_device *op) +static int mpc5121_nfc_remove(struct platform_device *op) { struct device *dev = &op->dev; struct mtd_info *mtd = dev_get_drvdata(dev); - struct nand_chip *chip = mtd->priv; - struct mpc5121_nfc_prv *prv = chip->priv; nand_release(mtd); - devm_free_irq(dev, prv->irq, mtd); mpc5121_nfc_free(dev, mtd); return 0; } -static struct of_device_id mpc5121_nfc_match[] __devinitdata = { +static struct of_device_id mpc5121_nfc_match[] = { { .compatible = "fsl,mpc5121-nfc", }, {}, }; static struct platform_driver mpc5121_nfc_driver = { .probe = mpc5121_nfc_probe, - .remove = __devexit_p(mpc5121_nfc_remove), + .remove = mpc5121_nfc_remove, .driver = { .name = DRV_NAME, .owner = THIS_MODULE, diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 6acc790c2fb..dba262bf766 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -32,20 +32,15 @@ #include <linux/io.h> #include <linux/irq.h> #include <linux/completion.h> +#include <linux/of.h> #include <linux/of_device.h> #include <linux/of_mtd.h> #include <asm/mach/flash.h> -#include <mach/mxc_nand.h> -#include <mach/hardware.h> +#include <linux/platform_data/mtd-mxc_nand.h> #define DRIVER_NAME "mxc_nand" -#define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35()) -#define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21()) -#define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53()) -#define nfc_is_v3() nfc_is_v3_2() - /* Addresses for NFC registers */ #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) @@ -122,7 +117,7 @@ #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) -#define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7) +#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) #define NFC_V3_CONFIG2_INT_MSK (1 << 15) #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) @@ -174,6 +169,7 @@ struct mxc_nand_devtype_data { int spare_len; int eccbytes; int eccsize; + int ppb_shift; }; struct mxc_nand_host { @@ -271,7 +267,8 @@ static struct nand_ecclayout nandv2_hw_eccoob_4k = { } }; -static const char *part_probes[] = { "RedBoot", "cmdlinepart", "ofpart", NULL }; +static const char * const part_probes[] = { + "cmdlinepart", "RedBoot", "ofpart", NULL }; static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) { @@ -399,7 +396,7 @@ static void wait_op_done(struct mxc_nand_host *host, int useirq) if (useirq) { if (!host->devtype_data->check_int(host)) { - INIT_COMPLETION(host->op_completion); + reinit_completion(&host->op_completion); irq_control(host, 1); wait_for_completion(&host->op_completion); } @@ -534,12 +531,23 @@ static void send_page_v1(struct mtd_info *mtd, unsigned int ops) static void send_read_id_v3(struct mxc_nand_host *host) { + struct nand_chip *this = &host->nand; + /* Read ID into main buffer */ writel(NFC_ID, NFC_V3_LAUNCH); wait_op_done(host, true); memcpy32_fromio(host->data_buf, host->main_area0, 16); + + if (this->options & NAND_BUSWIDTH_16) { + /* compress the ID info */ + host->data_buf[1] = host->data_buf[2]; + host->data_buf[2] = host->data_buf[4]; + host->data_buf[3] = host->data_buf[6]; + host->data_buf[4] = host->data_buf[8]; + host->data_buf[5] = host->data_buf[10]; + } } /* Request the NANDFC to perform a read of the NAND device ID. */ @@ -669,7 +677,6 @@ static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, ecc_stat >>= 4; } while (--no_subpages); - mtd->ecc_stats.corrected += ret; pr_debug("%d Symbol Correctable RS-ECC Error\n", ret); return ret; @@ -745,14 +752,6 @@ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) host->buf_start += n; } -/* Used by the upper layer to verify the data in NAND Flash - * with the data in the buf. */ -static int mxc_nand_verify_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - return -EFAULT; -} - /* This function is used by upper layer for select and * deselect of the NAND chip */ static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip) @@ -784,7 +783,7 @@ static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) if (chip == -1) { /* Disable the NFC clock */ if (host->clk_act) { - clk_disable(host->clk); + clk_disable_unprepare(host->clk); host->clk_act = 0; } return; @@ -792,7 +791,7 @@ static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) if (!host->clk_act) { /* Enable the NFC clock */ - clk_enable(host->clk); + clk_prepare_enable(host->clk); host->clk_act = 1; } @@ -1021,7 +1020,9 @@ static void preset_v3(struct mtd_info *mtd) } if (mtd->writesize) { - config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6); + config2 |= NFC_V3_CONFIG2_PPB( + ffs(mtd->erasesize / mtd->writesize) - 6, + host->devtype_data->ppb_shift); host->eccsize = get_eccsize(mtd); if (host->eccsize == 8) config2 |= NFC_V3_CONFIG2_ECC_MODE_8; @@ -1234,7 +1235,7 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { .eccsize = 0, }; -/* v3: i.MX51, i.MX53 */ +/* v3.2a: i.MX51 */ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { .preset = preset_v3, .send_cmd = send_cmd_v3, @@ -1258,8 +1259,83 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { .spare_len = 64, .eccbytes = 0, .eccsize = 0, + .ppb_shift = 7, +}; + +/* v3.2b: i.MX53 */ +static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { + .preset = preset_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ecclayout_512 = &nandv2_hw_eccoob_smallpage, + .ecclayout_2k = &nandv2_hw_eccoob_largepage, + .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */ + .select_chip = mxc_nand_select_chip_v1_v3, + .correct_data = mxc_nand_correct_data_v2_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 8, }; +static inline int is_imx21_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx21_nand_devtype_data; +} + +static inline int is_imx27_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx27_nand_devtype_data; +} + +static inline int is_imx25_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx25_nand_devtype_data; +} + +static inline int is_imx51_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx51_nand_devtype_data; +} + +static inline int is_imx53_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx53_nand_devtype_data; +} + +static struct platform_device_id mxcnd_devtype[] = { + { + .name = "imx21-nand", + .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data, + }, { + .name = "imx27-nand", + .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data, + }, { + .name = "imx25-nand", + .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data, + }, { + .name = "imx51-nand", + .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data, + }, { + .name = "imx53-nand", + .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data, + }, { + /* sentinel */ + } +}; +MODULE_DEVICE_TABLE(platform, mxcnd_devtype); + #ifdef CONFIG_OF_MTD static const struct of_device_id mxcnd_dt_ids[] = { { @@ -1274,6 +1350,9 @@ static const struct of_device_id mxcnd_dt_ids[] = { }, { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, + }, { + .compatible = "fsl,imx53-nand", + .data = &imx53_nand_devtype_data, }, { /* sentinel */ } }; @@ -1311,31 +1390,7 @@ static int __init mxcnd_probe_dt(struct mxc_nand_host *host) } #endif -static int __init mxcnd_probe_pdata(struct mxc_nand_host *host) -{ - struct mxc_nand_platform_data *pdata = host->dev->platform_data; - - if (!pdata) - return -ENODEV; - - host->pdata = *pdata; - - if (nfc_is_v1()) { - if (cpu_is_mx21()) - host->devtype_data = &imx21_nand_devtype_data; - else - host->devtype_data = &imx27_nand_devtype_data; - } else if (nfc_is_v21()) { - host->devtype_data = &imx25_nand_devtype_data; - } else if (nfc_is_v3_2()) { - host->devtype_data = &imx51_nand_devtype_data; - } else - BUG(); - - return 0; -} - -static int __init mxcnd_probe(struct platform_device *pdev) +static int mxcnd_probe(struct platform_device *pdev) { struct nand_chip *this; struct mtd_info *mtd; @@ -1344,12 +1399,15 @@ static int __init mxcnd_probe(struct platform_device *pdev) int err = 0; /* Allocate memory for MTD device structure and private data */ - host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE + - NAND_MAX_OOBSIZE, GFP_KERNEL); + host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), + GFP_KERNEL); if (!host) return -ENOMEM; - host->data_buf = (uint8_t *)(host + 1); + /* allocate a temporary buffer for the nand_scan_ident() */ + host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); + if (!host->data_buf) + return -ENOMEM; host->dev = &pdev->dev; /* structures must be linked */ @@ -1370,37 +1428,43 @@ static int __init mxcnd_probe(struct platform_device *pdev) this->read_word = mxc_nand_read_word; this->write_buf = mxc_nand_write_buf; this->read_buf = mxc_nand_read_buf; - this->verify_buf = mxc_nand_verify_buf; - host->clk = clk_get(&pdev->dev, "nfc"); - if (IS_ERR(host->clk)) { - err = PTR_ERR(host->clk); - goto eclk; + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) + return PTR_ERR(host->clk); + + err = mxcnd_probe_dt(host); + if (err > 0) { + struct mxc_nand_platform_data *pdata = + dev_get_platdata(&pdev->dev); + if (pdata) { + host->pdata = *pdata; + host->devtype_data = (struct mxc_nand_devtype_data *) + pdev->id_entry->driver_data; + } else { + err = -ENODEV; + } } + if (err < 0) + return err; - clk_prepare_enable(host->clk); - host->clk_act = 1; + if (host->devtype_data->needs_ip) { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->regs_ip = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->regs_ip)) + return PTR_ERR(host->regs_ip); - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) { - err = -ENODEV; - goto eres; + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); + } else { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); } - host->base = ioremap(res->start, resource_size(res)); - if (!host->base) { - err = -ENOMEM; - goto eres; - } + host->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->base)) + return PTR_ERR(host->base); host->main_area0 = host->base; - err = mxcnd_probe_dt(host); - if (err > 0) - err = mxcnd_probe_pdata(host); - if (err < 0) - goto eirq; - if (host->devtype_data->regs_offset) host->regs = host->base + host->devtype_data->regs_offset; host->spare0 = host->base + host->devtype_data->spare0_offset; @@ -1414,19 +1478,6 @@ static int __init mxcnd_probe(struct platform_device *pdev) this->ecc.size = 512; this->ecc.layout = host->devtype_data->ecclayout_512; - if (host->devtype_data->needs_ip) { - res = platform_get_resource(pdev, IORESOURCE_MEM, 1); - if (!res) { - err = -ENODEV; - goto eirq; - } - host->regs_ip = ioremap(res->start, resource_size(res)); - if (!host->regs_ip) { - err = -ENOMEM; - goto eirq; - } - } - if (host->pdata.hw_ecc) { this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; @@ -1450,6 +1501,8 @@ static int __init mxcnd_probe(struct platform_device *pdev) init_completion(&host->op_completion); host->irq = platform_get_irq(pdev, 0); + if (host->irq < 0) + return host->irq; /* * Use host->devtype_data->irq_control() here instead of irq_control() @@ -1458,9 +1511,15 @@ static int __init mxcnd_probe(struct platform_device *pdev) */ host->devtype_data->irq_control(host, 0); - err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host); + err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, + 0, DRIVER_NAME, host); + if (err) + return err; + + err = clk_prepare_enable(host->clk); if (err) - goto eirq; + return err; + host->clk_act = 1; /* * Now that we "own" the interrupt make sure the interrupt mask bit is @@ -1473,11 +1532,20 @@ static int __init mxcnd_probe(struct platform_device *pdev) } /* first scan to find the device and get the page size */ - if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) { + if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) { err = -ENXIO; goto escan; } + /* allocate the right size buffer now */ + devm_kfree(&pdev->dev, (void *)host->data_buf); + host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize, + GFP_KERNEL); + if (!host->data_buf) { + err = -ENOMEM; + goto escan; + } + /* Call preset again, with correct writesize this time */ host->devtype_data->preset(mtd); @@ -1487,7 +1555,7 @@ static int __init mxcnd_probe(struct platform_device *pdev) this->ecc.layout = host->devtype_data->ecclayout_4k; if (this->ecc.mode == NAND_ECC_HW) { - if (nfc_is_v1()) + if (is_imx21_nfc(host) || is_imx27_nfc(host)) this->ecc.strength = 1; else this->ecc.strength = (host->eccsize == 4) ? 4 : 8; @@ -1512,33 +1580,19 @@ static int __init mxcnd_probe(struct platform_device *pdev) return 0; escan: - free_irq(host->irq, host); -eirq: - if (host->regs_ip) - iounmap(host->regs_ip); - iounmap(host->base); -eres: - clk_put(host->clk); -eclk: - kfree(host); + if (host->clk_act) + clk_disable_unprepare(host->clk); return err; } -static int __devexit mxcnd_remove(struct platform_device *pdev) +static int mxcnd_remove(struct platform_device *pdev) { struct mxc_nand_host *host = platform_get_drvdata(pdev); - clk_put(host->clk); - - platform_set_drvdata(pdev, NULL); - nand_release(&host->mtd); - free_irq(host->irq, host); - if (host->regs_ip) - iounmap(host->regs_ip); - iounmap(host->base); - kfree(host); + if (host->clk_act) + clk_disable_unprepare(host->clk); return 0; } @@ -1549,22 +1603,11 @@ static struct platform_driver mxcnd_driver = { .owner = THIS_MODULE, .of_match_table = of_match_ptr(mxcnd_dt_ids), }, - .remove = __devexit_p(mxcnd_remove), + .id_table = mxcnd_devtype, + .probe = mxcnd_probe, + .remove = mxcnd_remove, }; - -static int __init mxc_nd_init(void) -{ - return platform_driver_probe(&mxcnd_driver, mxcnd_probe); -} - -static void __exit mxc_nd_cleanup(void) -{ - /* Unregister the device structure */ - platform_driver_unregister(&mxcnd_driver); -} - -module_init(mxc_nd_init); -module_exit(mxc_nd_cleanup); +module_platform_driver(mxcnd_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MXC NAND MTD driver"); diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index a11253a0fca..4f3e80c68a2 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -4,7 +4,6 @@ * Overview: * This is the generic MTD driver for NAND flash devices. It should be * capable of working with almost all NAND chips currently available. - * Basic support for AG-AND chips is provided. * * Additional technical information is available on * http://www.linux-mtd.infradead.org/doc/nand.html @@ -22,8 +21,6 @@ * Enable cached programming for 2k page size chips * Check, if mtd->ecctype should be set to MTD_ECC_HW * if we have HW ECC support. - * The AG-AND chips have nice features for speed improvement, - * which are not supported yet. Read / program 4 pages in one go. * BBT table is not serialized, has to be fixed * * This program is free software; you can redistribute it and/or modify @@ -32,12 +29,15 @@ * */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/module.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/slab.h> +#include <linux/mm.h> #include <linux/types.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> @@ -93,8 +93,7 @@ static struct nand_ecclayout nand_oob_128 = { .length = 78} } }; -static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, - int new_state); +static int nand_get_device(struct mtd_info *mtd, int new_state); static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); @@ -112,13 +111,13 @@ static int check_offs_len(struct mtd_info *mtd, int ret = 0; /* Start address must align on block boundary */ - if (ofs & ((1 << chip->phys_erase_shift) - 1)) { + if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { pr_debug("%s: unaligned address\n", __func__); ret = -EINVAL; } /* Length must align on block boundary */ - if (len & ((1 << chip->phys_erase_shift) - 1)) { + if (len & ((1ULL << chip->phys_erase_shift) - 1)) { pr_debug("%s: length not block aligned\n", __func__); ret = -EINVAL; } @@ -130,15 +129,12 @@ static int check_offs_len(struct mtd_info *mtd, * nand_release_device - [GENERIC] release chip * @mtd: MTD device structure * - * Deselect, release chip lock and wake up anyone waiting on the device. + * Release chip lock and wake up anyone waiting on the device. */ static void nand_release_device(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; - /* De-select the NAND device */ - chip->select_chip(mtd, -1); - /* Release the controller and the chip */ spin_lock(&chip->controller->lock); chip->controller->active = NULL; @@ -160,7 +156,7 @@ static uint8_t nand_read_byte(struct mtd_info *mtd) } /** - * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip + * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip * @mtd: MTD device structure * @@ -209,6 +205,51 @@ static void nand_select_chip(struct mtd_info *mtd, int chipnr) } /** + * nand_write_byte - [DEFAULT] write single byte to chip + * @mtd: MTD device structure + * @byte: value to write + * + * Default function to write a byte to I/O[7:0] + */ +static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) +{ + struct nand_chip *chip = mtd->priv; + + chip->write_buf(mtd, &byte, 1); +} + +/** + * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 + * @mtd: MTD device structure + * @byte: value to write + * + * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. + */ +static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) +{ + struct nand_chip *chip = mtd->priv; + uint16_t word = byte; + + /* + * It's not entirely clear what should happen to I/O[15:8] when writing + * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: + * + * When the host supports a 16-bit bus width, only data is + * transferred at the 16-bit width. All address and command line + * transfers shall use only the lower 8-bits of the data bus. During + * command transfers, the host may place any value on the upper + * 8-bits of the data bus. During address transfers, the host shall + * set the upper 8-bits of the data bus to 00h. + * + * One user of the write_byte callback is nand_onfi_set_features. The + * four parameters are specified to be written to I/O[7:0], but this is + * neither an address nor a command transfer. Let's assume a 0 on the + * upper I/O lines is OK. + */ + chip->write_buf(mtd, (uint8_t *)&word, 2); +} + +/** * nand_write_buf - [DEFAULT] write buffer to chip * @mtd: MTD device structure * @buf: data buffer @@ -218,11 +259,9 @@ static void nand_select_chip(struct mtd_info *mtd, int chipnr) */ static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { - int i; struct nand_chip *chip = mtd->priv; - for (i = 0; i < len; i++) - writeb(buf[i], chip->IO_ADDR_W); + iowrite8_rep(chip->IO_ADDR_W, buf, len); } /** @@ -235,30 +274,9 @@ static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) */ static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { - int i; - struct nand_chip *chip = mtd->priv; - - for (i = 0; i < len; i++) - buf[i] = readb(chip->IO_ADDR_R); -} - -/** - * nand_verify_buf - [DEFAULT] Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - * - * Default verify function for 8bit buswidth. - */ -static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - int i; struct nand_chip *chip = mtd->priv; - for (i = 0; i < len; i++) - if (buf[i] != readb(chip->IO_ADDR_R)) - return -EFAULT; - return 0; + ioread8_rep(chip->IO_ADDR_R, buf, len); } /** @@ -271,14 +289,10 @@ static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) */ static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { - int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - writew(p[i], chip->IO_ADDR_W); + iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); } /** @@ -291,35 +305,10 @@ static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) */ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) { - int i; - struct nand_chip *chip = mtd->priv; - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - p[i] = readw(chip->IO_ADDR_R); -} - -/** - * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - * - * Default verify function for 16bit buswidth. - */ -static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - int i; struct nand_chip *chip = mtd->priv; u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - if (p[i] != readw(chip->IO_ADDR_R)) - return -EFAULT; - return 0; + ioread16_rep(chip->IO_ADDR_R, p, len >> 1); } /** @@ -344,7 +333,7 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) if (getchip) { chipnr = (int)(ofs >> chip->chip_shift); - nand_get_device(chip, mtd, FL_READING); + nand_get_device(mtd, FL_READING); /* Select the NAND device */ chip->select_chip(mtd, chipnr); @@ -374,87 +363,97 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) i++; } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE)); - if (getchip) + if (getchip) { + chip->select_chip(mtd, -1); nand_release_device(mtd); + } return res; } /** - * nand_default_block_markbad - [DEFAULT] mark a block bad + * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker * @mtd: MTD device structure * @ofs: offset from device start * * This is the default implementation, which can be overridden by a hardware - * specific driver. We try operations in the following order, according to our - * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH): + * specific driver. It provides the details for writing a bad block marker to a + * block. + */ +static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; + uint8_t buf[2] = { 0, 0 }; + int ret = 0, res, i = 0; + + ops.datbuf = NULL; + ops.oobbuf = buf; + ops.ooboffs = chip->badblockpos; + if (chip->options & NAND_BUSWIDTH_16) { + ops.ooboffs &= ~0x01; + ops.len = ops.ooblen = 2; + } else { + ops.len = ops.ooblen = 1; + } + ops.mode = MTD_OPS_PLACE_OOB; + + /* Write to first/last page(s) if necessary */ + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) + ofs += mtd->erasesize - mtd->writesize; + do { + res = nand_do_write_oob(mtd, ofs, &ops); + if (!ret) + ret = res; + + i++; + ofs += mtd->writesize; + } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); + + return ret; +} + +/** + * nand_block_markbad_lowlevel - mark a block bad + * @mtd: MTD device structure + * @ofs: offset from device start + * + * This function performs the generic NAND bad block marking steps (i.e., bad + * block table(s) and/or marker(s)). We only allow the hardware driver to + * specify how to write bad block markers to OOB (chip->block_markbad). + * + * We try operations in the following order: * (1) erase the affected block, to allow OOB marker to be written cleanly - * (2) update in-memory BBT - * (3) write bad block marker to OOB area of affected block - * (4) update flash-based BBT - * Note that we retain the first error encountered in (3) or (4), finish the + * (2) write bad block marker to OOB area of affected block (unless flag + * NAND_BBT_NO_OOB_BBM is present) + * (3) update the BBT + * Note that we retain the first error encountered in (2) or (3), finish the * procedures, and dump the error in the end. */ -static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; - uint8_t buf[2] = { 0, 0 }; - int block, res, ret = 0, i = 0; - int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM); + int res, ret = 0; - if (write_oob) { + if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { struct erase_info einfo; /* Attempt erase before marking OOB */ memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = ofs; - einfo.len = 1 << chip->phys_erase_shift; + einfo.len = 1ULL << chip->phys_erase_shift; nand_erase_nand(mtd, &einfo, 0); - } - - /* Get block number */ - block = (int)(ofs >> chip->bbt_erase_shift); - /* Mark block bad in memory-based BBT */ - if (chip->bbt) - chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); - - /* Write bad block marker to OOB */ - if (write_oob) { - struct mtd_oob_ops ops; - loff_t wr_ofs = ofs; - - nand_get_device(chip, mtd, FL_WRITING); - - ops.datbuf = NULL; - ops.oobbuf = buf; - ops.ooboffs = chip->badblockpos; - if (chip->options & NAND_BUSWIDTH_16) { - ops.ooboffs &= ~0x01; - ops.len = ops.ooblen = 2; - } else { - ops.len = ops.ooblen = 1; - } - ops.mode = MTD_OPS_PLACE_OOB; - - /* Write to first/last page(s) if necessary */ - if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) - wr_ofs += mtd->erasesize - mtd->writesize; - do { - res = nand_do_write_oob(mtd, wr_ofs, &ops); - if (!ret) - ret = res; - - i++; - wr_ofs += mtd->writesize; - } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); + /* Write bad block marker to OOB */ + nand_get_device(mtd, FL_WRITING); + ret = chip->block_markbad(mtd, ofs); nand_release_device(mtd); } - /* Update flash-based bad block table */ - if (chip->bbt_options & NAND_BBT_USE_FLASH) { - res = nand_update_bbt(mtd, ofs); + /* Mark block bad in BBT */ + if (chip->bbt) { + res = nand_markbad_bbt(mtd, ofs); if (!ret) ret = res; } @@ -533,7 +532,7 @@ static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) void nand_wait_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; - unsigned long timeo = jiffies + 2; + unsigned long timeo = jiffies + msecs_to_jiffies(20); /* 400ms timeout */ if (in_interrupt() || oops_in_progress) @@ -558,7 +557,7 @@ EXPORT_SYMBOL_GPL(nand_wait_ready); * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This function is used for small page devices - * (256/512 Bytes per page). + * (512 Bytes per page). */ static void nand_command(struct mtd_info *mtd, unsigned int command, int column, int page_addr) @@ -591,7 +590,8 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16) + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; @@ -674,8 +674,7 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, } /* Command latch cycle */ - chip->cmd_ctrl(mtd, command & 0xff, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); if (column != -1 || page_addr != -1) { int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; @@ -683,7 +682,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16) + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; chip->cmd_ctrl(mtd, column, ctrl); ctrl &= ~NAND_CTRL_CHANGE; @@ -714,16 +714,6 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: - case NAND_CMD_DEPLETE1: - return; - - case NAND_CMD_STATUS_ERROR: - case NAND_CMD_STATUS_ERROR0: - case NAND_CMD_STATUS_ERROR1: - case NAND_CMD_STATUS_ERROR2: - case NAND_CMD_STATUS_ERROR3: - /* Read error status commands require only a short delay */ - udelay(chip->chip_delay); return; case NAND_CMD_RESET: @@ -791,15 +781,15 @@ static void panic_nand_get_device(struct nand_chip *chip, /** * nand_get_device - [GENERIC] Get chip for selected access - * @chip: the nand chip descriptor * @mtd: MTD device structure * @new_state: the state which is requested * * Get the device and lock it for exclusive access */ static int -nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) +nand_get_device(struct mtd_info *mtd, int new_state) { + struct nand_chip *chip = mtd->priv; spinlock_t *lock = &chip->controller->lock; wait_queue_head_t *wq = &chip->controller->wq; DECLARE_WAITQUEUE(wait, current); @@ -868,13 +858,8 @@ static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) { - unsigned long timeo = jiffies; int status, state = chip->state; - - if (state == FL_ERASING) - timeo += (HZ * 400) / 1000; - else - timeo += (HZ * 20) / 1000; + unsigned long timeo = (state == FL_ERASING ? 400 : 20); led_trigger_event(nand_led_trigger, LED_FULL); @@ -884,14 +869,12 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) */ ndelay(100); - if ((state == FL_ERASING) && (chip->options & NAND_IS_AND)) - chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); - else - chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); if (in_interrupt() || oops_in_progress) panic_nand_wait(mtd, chip, timeo); else { + timeo = jiffies + msecs_to_jiffies(timeo); while (time_before(jiffies, timeo)) { if (chip->dev_ready) { if (chip->dev_ready(mtd)) @@ -906,6 +889,8 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) led_trigger_event(nand_led_trigger, LED_OFF); status = (int)chip->read_byte(mtd); + /* This can happen if in case of timeout or buggy dev_ready */ + WARN_ON(!(status & NAND_STATUS_READY)); return status; } @@ -940,7 +925,7 @@ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, /* Call wait ready function */ status = chip->waitfunc(mtd, chip); /* See if device thinks it succeeded */ - if (status & 0x01) { + if (status & NAND_STATUS_FAIL) { pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; @@ -973,7 +958,7 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) if (ofs + len == mtd->size) len -= mtd->erasesize; - nand_get_device(chip, mtd, FL_UNLOCKING); + nand_get_device(mtd, FL_UNLOCKING); /* Shift to get chip number */ chipnr = ofs >> chip->chip_shift; @@ -991,6 +976,7 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ret = __nand_unlock(mtd, ofs, len, 0); out: + chip->select_chip(mtd, -1); nand_release_device(mtd); return ret; @@ -1022,7 +1008,7 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) if (check_offs_len(mtd, ofs, len)) ret = -EINVAL; - nand_get_device(chip, mtd, FL_LOCKING); + nand_get_device(mtd, FL_LOCKING); /* Shift to get chip number */ chipnr = ofs >> chip->chip_shift; @@ -1045,7 +1031,7 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) /* Call wait ready function */ status = chip->waitfunc(mtd, chip); /* See if device thinks it succeeded */ - if (status & 0x01) { + if (status & NAND_STATUS_FAIL) { pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; @@ -1055,6 +1041,7 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) ret = __nand_unlock(mtd, ofs, len, 0x1); out: + chip->select_chip(mtd, -1); nand_release_device(mtd); return ret; @@ -1170,15 +1157,17 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function + * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function * @mtd: mtd info structure * @chip: nand chip info structure * @data_offs: offset of requested data within the page * @readlen: data length * @bufpoi: buffer to store read data + * @page: page number to read */ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) + uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, + int page) { int start_step, end_step, num_steps; uint32_t *eccpos = chip->ecc.layout->eccpos; @@ -1186,13 +1175,14 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, int data_col_addr, i, gaps = 0; int datafrag_len, eccfrag_len, aligned_len, aligned_pos; int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; - int index = 0; + int index; unsigned int max_bitflips = 0; /* Column address within the page aligned to ECC size (256bytes) */ start_step = data_offs / chip->ecc.size; end_step = (data_offs + readlen - 1) / chip->ecc.size; num_steps = end_step - start_step + 1; + index = start_step * chip->ecc.bytes; /* Data size aligned to ECC ecc.size */ datafrag_len = num_steps * chip->ecc.size; @@ -1215,8 +1205,7 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, * ecc.pos. Let's make sure that there are no gaps in ECC positions. */ for (i = 0; i < eccfrag_len - 1; i++) { - if (eccpos[i + start_step * chip->ecc.bytes] + 1 != - eccpos[i + start_step * chip->ecc.bytes + 1]) { + if (eccpos[i + index] + 1 != eccpos[i + index + 1]) { gaps = 1; break; } @@ -1229,8 +1218,6 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, * Send the command to read the particular ECC bytes take care * about buswidth alignment in read_buf. */ - index = start_step * chip->ecc.bytes; - aligned_pos = eccpos[index] & ~(busw - 1); aligned_len = eccfrag_len; if (eccpos[index] & (busw - 1)) @@ -1471,6 +1458,30 @@ static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, } /** + * nand_setup_read_retry - [INTERN] Set the READ RETRY mode + * @mtd: MTD device structure + * @retry_mode: the retry mode to use + * + * Some vendors supply a special command to shift the Vt threshold, to be used + * when there are too many bitflips in a page (i.e., ECC error). After setting + * a new threshold, the host should retry reading the page. + */ +static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd->priv; + + pr_debug("setting READ RETRY mode %d\n", retry_mode); + + if (retry_mode >= chip->read_retries) + return -EINVAL; + + if (!chip->setup_read_retry) + return -EOPNOTSUPP; + + return chip->setup_read_retry(mtd, retry_mode); +} + +/** * nand_do_read_ops - [INTERN] Read data with ECC * @mtd: MTD device structure * @from: offset to read from @@ -1483,7 +1494,6 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, { int chipnr, page, realpage, col, bytes, aligned, oob_required; struct nand_chip *chip = mtd->priv; - struct mtd_ecc_stats stats; int ret = 0; uint32_t readlen = ops->len; uint32_t oobreadlen = ops->ooblen; @@ -1491,9 +1501,10 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, mtd->oobavail : mtd->oobsize; uint8_t *bufpoi, *oob, *buf; + int use_bufpoi; unsigned int max_bitflips = 0; - - stats = mtd->ecc_stats; + int retry_mode = 0; + bool ecc_fail = false; chipnr = (int)(from >> chip->chip_shift); chip->select_chip(mtd, chipnr); @@ -1508,13 +1519,27 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, oob_required = oob ? 1 : 0; while (1) { + unsigned int ecc_failures = mtd->ecc_stats.failed; + bytes = min(mtd->writesize - col, readlen); aligned = (bytes == mtd->writesize); + if (!aligned) + use_bufpoi = 1; + else if (chip->options & NAND_USE_BOUNCE_BUFFER) + use_bufpoi = !virt_addr_valid(buf); + else + use_bufpoi = 0; + /* Is the current page in the buffer? */ if (realpage != chip->pagebuf || oob) { - bufpoi = aligned ? buf : chip->buffers->databuf; + bufpoi = use_bufpoi ? chip->buffers->databuf : buf; + if (use_bufpoi && aligned) + pr_debug("%s: using read bounce buffer for buf@%p\n", + __func__, buf); + +read_retry: chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); /* @@ -1525,14 +1550,16 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, oob_required, page); - else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob) + else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && + !oob) ret = chip->ecc.read_subpage(mtd, chip, - col, bytes, bufpoi); + col, bytes, bufpoi, + page); else ret = chip->ecc.read_page(mtd, chip, bufpoi, oob_required, page); if (ret < 0) { - if (!aligned) + if (use_bufpoi) /* Invalidate page cache */ chip->pagebuf = -1; break; @@ -1541,9 +1568,9 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, max_bitflips = max_t(unsigned int, max_bitflips, ret); /* Transfer not aligned data */ - if (!aligned) { - if (!NAND_SUBPAGE_READ(chip) && !oob && - !(mtd->ecc_stats.failed - stats.failed) && + if (use_bufpoi) { + if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && + !(mtd->ecc_stats.failed - ecc_failures) && (ops->mode != MTD_OPS_RAW)) { chip->pagebuf = realpage; chip->pagebuf_bitflips = ret; @@ -1554,8 +1581,6 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, memcpy(buf, chip->buffers->databuf + col, bytes); } - buf += bytes; - if (unlikely(oob)) { int toread = min(oobreadlen, max_oobsize); @@ -1566,13 +1591,32 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, } } - if (!(chip->options & NAND_NO_READRDY)) { + if (chip->options & NAND_NEED_READRDY) { /* Apply delay or wait for ready/busy pin */ if (!chip->dev_ready) udelay(chip->chip_delay); else nand_wait_ready(mtd); } + + if (mtd->ecc_stats.failed - ecc_failures) { + if (retry_mode + 1 < chip->read_retries) { + retry_mode++; + ret = nand_setup_read_retry(mtd, + retry_mode); + if (ret < 0) + break; + + /* Reset failures; retry */ + mtd->ecc_stats.failed = ecc_failures; + goto read_retry; + } else { + /* No more retry modes; real failure */ + ecc_fail = true; + } + } + + buf += bytes; } else { memcpy(buf, chip->buffers->databuf + col, bytes); buf += bytes; @@ -1582,6 +1626,14 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, readlen -= bytes; + /* Reset to retry mode 0 */ + if (retry_mode) { + ret = nand_setup_read_retry(mtd, 0); + if (ret < 0) + break; + retry_mode = 0; + } + if (!readlen) break; @@ -1598,6 +1650,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, chip->select_chip(mtd, chipnr); } } + chip->select_chip(mtd, -1); ops->retlen = ops->len - (size_t) readlen; if (oob) @@ -1606,7 +1659,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, if (ret < 0) return ret; - if (mtd->ecc_stats.failed - stats.failed) + if (ecc_fail) return -EBADMSG; return max_bitflips; @@ -1625,15 +1678,14 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) { - struct nand_chip *chip = mtd->priv; struct mtd_oob_ops ops; int ret; - nand_get_device(chip, mtd, FL_READING); + nand_get_device(mtd, FL_READING); ops.len = len; ops.datbuf = buf; ops.oobbuf = NULL; - ops.mode = 0; + ops.mode = MTD_OPS_PLACE_OOB; ret = nand_do_read_ops(mtd, from, &ops); *retlen = ops.retlen; nand_release_device(mtd); @@ -1837,7 +1889,7 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, len = min(len, readlen); buf = nand_transfer_oob(chip, buf, ops, len); - if (!(chip->options & NAND_NO_READRDY)) { + if (chip->options & NAND_NEED_READRDY) { /* Apply delay or wait for ready/busy pin */ if (!chip->dev_ready) udelay(chip->chip_delay); @@ -1860,6 +1912,7 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, chip->select_chip(mtd, chipnr); } } + chip->select_chip(mtd, -1); ops->oobretlen = ops->ooblen - readlen; @@ -1883,7 +1936,6 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, static int nand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { - struct nand_chip *chip = mtd->priv; int ret = -ENOTSUPP; ops->retlen = 0; @@ -1895,7 +1947,7 @@ static int nand_read_oob(struct mtd_info *mtd, loff_t from, return -EINVAL; } - nand_get_device(chip, mtd, FL_READING); + nand_get_device(mtd, FL_READING); switch (ops->mode) { case MTD_OPS_PLACE_OOB: @@ -1927,12 +1979,14 @@ out: * * Not for syndrome calculating ECC controllers, which use a special oob layout. */ -static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, +static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { chip->write_buf(mtd, buf, mtd->writesize); if (oob_required) chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } /** @@ -1944,7 +1998,7 @@ static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, * * We need a special oob layout and handling even when ECC isn't checked. */ -static void nand_write_page_raw_syndrome(struct mtd_info *mtd, +static int nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { @@ -1962,7 +2016,7 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, oob += chip->ecc.prepad; } - chip->read_buf(mtd, oob, eccbytes); + chip->write_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { @@ -1974,6 +2028,8 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->write_buf(mtd, oob, size); + + return 0; } /** * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function @@ -1982,7 +2038,7 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB */ -static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, +static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { int i, eccsize = chip->ecc.size; @@ -1999,7 +2055,7 @@ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; - chip->ecc.write_page_raw(mtd, chip, buf, 1); + return chip->ecc.write_page_raw(mtd, chip, buf, 1); } /** @@ -2009,7 +2065,7 @@ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB */ -static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, +static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { int i, eccsize = chip->ecc.size; @@ -2029,8 +2085,72 @@ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, chip->oob_poi[eccpos[i]] = ecc_calc[i]; chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + + +/** + * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write + * @mtd: mtd info structure + * @chip: nand chip info structure + * @offset: column address of subpage within the page + * @data_len: data length + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + */ +static int nand_write_subpage_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint32_t offset, + uint32_t data_len, const uint8_t *buf, + int oob_required) +{ + uint8_t *oob_buf = chip->oob_poi; + uint8_t *ecc_calc = chip->buffers->ecccalc; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int ecc_steps = chip->ecc.steps; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint32_t start_step = offset / ecc_size; + uint32_t end_step = (offset + data_len - 1) / ecc_size; + int oob_bytes = mtd->oobsize / ecc_steps; + int step, i; + + for (step = 0; step < ecc_steps; step++) { + /* configure controller for WRITE access */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + /* write data (untouched subpages already masked by 0xFF) */ + chip->write_buf(mtd, buf, ecc_size); + + /* mask ECC of un-touched subpages by padding 0xFF */ + if ((step < start_step) || (step > end_step)) + memset(ecc_calc, 0xff, ecc_bytes); + else + chip->ecc.calculate(mtd, buf, ecc_calc); + + /* mask OOB of un-touched subpages by padding 0xFF */ + /* if oob_required, preserve OOB metadata of written subpage */ + if (!oob_required || (step < start_step) || (step > end_step)) + memset(oob_buf, 0xff, oob_bytes); + + buf += ecc_size; + ecc_calc += ecc_bytes; + oob_buf += oob_bytes; + } + + /* copy calculated ECC for whole page to chip->buffer->oob */ + /* this include masked-value(0xFF) for unwritten subpages */ + ecc_calc = chip->buffers->ecccalc; + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; + + /* write OOB buffer to NAND device */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } + /** * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write * @mtd: mtd info structure @@ -2041,7 +2161,7 @@ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, * The hw generator calculates the error syndrome automatically. Therefore we * need a special oob layout and handling. */ -static void nand_write_page_syndrome(struct mtd_info *mtd, +static int nand_write_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { @@ -2075,12 +2195,16 @@ static void nand_write_page_syndrome(struct mtd_info *mtd, i = mtd->oobsize - (oob - chip->oob_poi); if (i) chip->write_buf(mtd, oob, i); + + return 0; } /** * nand_write_page - [REPLACEABLE] write one page * @mtd: MTD device structure * @chip: NAND chip descriptor + * @offset: address offset within the page + * @data_len: length of actual data to be written * @buf: the data to write * @oob_required: must write chip->oob_poi to OOB * @page: page number to write @@ -2088,17 +2212,30 @@ static void nand_write_page_syndrome(struct mtd_info *mtd, * @raw: use _raw version of write_page */ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page, - int cached, int raw) + uint32_t offset, int data_len, const uint8_t *buf, + int oob_required, int page, int cached, int raw) { - int status; + int status, subpage; + + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && + chip->ecc.write_subpage) + subpage = offset || (data_len < mtd->writesize); + else + subpage = 0; chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); if (unlikely(raw)) - chip->ecc.write_page_raw(mtd, chip, buf, oob_required); + status = chip->ecc.write_page_raw(mtd, chip, buf, + oob_required); + else if (subpage) + status = chip->ecc.write_subpage(mtd, chip, offset, data_len, + buf, oob_required); else - chip->ecc.write_page(mtd, chip, buf, oob_required); + status = chip->ecc.write_page(mtd, chip, buf, oob_required); + + if (status < 0) + return status; /* * Cached progamming disabled for now. Not sure if it's worth the @@ -2106,7 +2243,7 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, */ cached = 0; - if (!cached || !(chip->options & NAND_CACHEPRG)) { + if (!cached || !NAND_HAS_CACHEPROG(chip)) { chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); @@ -2125,16 +2262,6 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, status = chip->waitfunc(mtd, chip); } -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE - /* Send command to read back the data */ - chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); - - if (chip->verify_buf(mtd, buf, mtd->writesize)) - return -EIO; - - /* Make sure the next page prog is preceded by a status read */ - chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); -#endif return 0; } @@ -2217,7 +2344,7 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, uint8_t *oob = ops->oobbuf; uint8_t *buf = ops->datbuf; - int ret, subpage; + int ret; int oob_required = oob ? 1 : 0; ops->retlen = 0; @@ -2232,17 +2359,15 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, } column = to & (mtd->writesize - 1); - subpage = column || (writelen & (mtd->writesize - 1)); - - if (subpage && oob) - return -EINVAL; chipnr = (int)(to >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* Check, if it is write protected */ - if (nand_check_wp(mtd)) - return -EIO; + if (nand_check_wp(mtd)) { + ret = -EIO; + goto err_out; + } realpage = (int)(to >> chip->page_shift); page = realpage & chip->pagemask; @@ -2254,18 +2379,32 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, chip->pagebuf = -1; /* Don't allow multipage oob writes with offset */ - if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) - return -EINVAL; + if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { + ret = -EINVAL; + goto err_out; + } while (1) { int bytes = mtd->writesize; int cached = writelen > bytes && page != blockmask; uint8_t *wbuf = buf; + int use_bufpoi; + int part_pagewr = (column || writelen < (mtd->writesize - 1)); - /* Partial page write? */ - if (unlikely(column || writelen < (mtd->writesize - 1))) { + if (part_pagewr) + use_bufpoi = 1; + else if (chip->options & NAND_USE_BOUNCE_BUFFER) + use_bufpoi = !virt_addr_valid(buf); + else + use_bufpoi = 0; + + /* Partial page write?, or need to use bounce buffer */ + if (use_bufpoi) { + pr_debug("%s: using write bounce buffer for buf@%p\n", + __func__, buf); cached = 0; - bytes = min_t(int, bytes - column, (int) writelen); + if (part_pagewr) + bytes = min_t(int, bytes - column, writelen); chip->pagebuf = -1; memset(chip->buffers->databuf, 0xff, mtd->writesize); memcpy(&chip->buffers->databuf[column], buf, bytes); @@ -2280,9 +2419,9 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, /* We still need to erase leftover OOB data */ memset(chip->oob_poi, 0xff, mtd->oobsize); } - - ret = chip->write_page(mtd, chip, wbuf, oob_required, page, - cached, (ops->mode == MTD_OPS_RAW)); + ret = chip->write_page(mtd, chip, column, bytes, wbuf, + oob_required, page, cached, + (ops->mode == MTD_OPS_RAW)); if (ret) break; @@ -2306,6 +2445,9 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, ops->retlen = ops->len - writelen; if (unlikely(oob)) ops->oobretlen = ops->ooblen; + +err_out: + chip->select_chip(mtd, -1); return ret; } @@ -2336,7 +2478,7 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, ops.len = len; ops.datbuf = (uint8_t *)buf; ops.oobbuf = NULL; - ops.mode = 0; + ops.mode = MTD_OPS_PLACE_OOB; ret = nand_do_write_ops(mtd, to, &ops); @@ -2357,15 +2499,14 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { - struct nand_chip *chip = mtd->priv; struct mtd_oob_ops ops; int ret; - nand_get_device(chip, mtd, FL_WRITING); + nand_get_device(mtd, FL_WRITING); ops.len = len; ops.datbuf = (uint8_t *)buf; ops.oobbuf = NULL; - ops.mode = 0; + ops.mode = MTD_OPS_PLACE_OOB; ret = nand_do_write_ops(mtd, to, &ops); *retlen = ops.retlen; nand_release_device(mtd); @@ -2432,8 +2573,10 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Check, if it is write protected */ - if (nand_check_wp(mtd)) + if (nand_check_wp(mtd)) { + chip->select_chip(mtd, -1); return -EROFS; + } /* Invalidate the page cache, if we write to the cached page */ if (page == chip->pagebuf) @@ -2446,6 +2589,8 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, else status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); + chip->select_chip(mtd, -1); + if (status) return status; @@ -2463,7 +2608,6 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, static int nand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { - struct nand_chip *chip = mtd->priv; int ret = -ENOTSUPP; ops->retlen = 0; @@ -2475,7 +2619,7 @@ static int nand_write_oob(struct mtd_info *mtd, loff_t to, return -EINVAL; } - nand_get_device(chip, mtd, FL_WRITING); + nand_get_device(mtd, FL_WRITING); switch (ops->mode) { case MTD_OPS_PLACE_OOB: @@ -2498,36 +2642,20 @@ out: } /** - * single_erase_cmd - [GENERIC] NAND standard block erase command function + * single_erase - [GENERIC] NAND standard block erase command function * @mtd: MTD device structure * @page: the page address of the block which will be erased * - * Standard erase command for NAND chips. + * Standard erase command for NAND chips. Returns NAND status. */ -static void single_erase_cmd(struct mtd_info *mtd, int page) +static int single_erase(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; /* Send commands to erase a block */ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); -} -/** - * multi_erase_cmd - [GENERIC] AND specific block erase command function - * @mtd: MTD device structure - * @page: the page address of the block which will be erased - * - * AND multi block erase command function. Erase 4 consecutive blocks. - */ -static void multi_erase_cmd(struct mtd_info *mtd, int page) -{ - struct nand_chip *chip = mtd->priv; - /* Send commands to erase a block */ - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++); - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); - chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + return chip->waitfunc(mtd, chip); } /** @@ -2542,7 +2670,6 @@ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) return nand_erase_nand(mtd, instr, 0); } -#define BBT_PAGE_MASK 0xffffff3f /** * nand_erase_nand - [INTERN] erase block(s) * @mtd: MTD device structure @@ -2556,8 +2683,6 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, { int page, status, pages_per_block, ret, chipnr; struct nand_chip *chip = mtd->priv; - loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0}; - unsigned int bbt_masked_page = 0xffffffff; loff_t len; pr_debug("%s: start = 0x%012llx, len = %llu\n", @@ -2568,7 +2693,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, return -EINVAL; /* Grab the lock and see if the device is available */ - nand_get_device(chip, mtd, FL_ERASING); + nand_get_device(mtd, FL_ERASING); /* Shift to get first page */ page = (int)(instr->addr >> chip->page_shift); @@ -2588,15 +2713,6 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, goto erase_exit; } - /* - * If BBT requires refresh, set the BBT page mask to see if the BBT - * should be rewritten. Otherwise the mask is set to 0xffffffff which - * can not be matched. This is also done when the bbt is actually - * erased to avoid recursive updates. - */ - if (chip->options & BBT_AUTO_REFRESH && !allowbbt) - bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; - /* Loop through the pages */ len = instr->len; @@ -2620,9 +2736,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, (page + pages_per_block)) chip->pagebuf = -1; - chip->erase_cmd(mtd, page & chip->pagemask); - - status = chip->waitfunc(mtd, chip); + status = chip->erase(mtd, page & chip->pagemask); /* * See if operation failed and additional status checks are @@ -2642,17 +2756,8 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, goto erase_exit; } - /* - * If BBT requires refresh, set the BBT rewrite flag to the - * page being erased. - */ - if (bbt_masked_page != 0xffffffff && - (page & BBT_PAGE_MASK) == bbt_masked_page) - rewrite_bbt[chipnr] = - ((loff_t)page << chip->page_shift); - /* Increment page address and decrement length */ - len -= (1 << chip->phys_erase_shift); + len -= (1ULL << chip->phys_erase_shift); page += pages_per_block; /* Check, if we cross a chip boundary */ @@ -2660,15 +2765,6 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, chipnr++; chip->select_chip(mtd, -1); chip->select_chip(mtd, chipnr); - - /* - * If BBT requires refresh and BBT-PERCHIP, set the BBT - * page mask to see if this BBT should be rewritten. - */ - if (bbt_masked_page != 0xffffffff && - (chip->bbt_td->options & NAND_BBT_PERCHIP)) - bbt_masked_page = chip->bbt_td->pages[chipnr] & - BBT_PAGE_MASK; } } instr->state = MTD_ERASE_DONE; @@ -2678,29 +2774,13 @@ erase_exit: ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; /* Deselect and wake up anyone waiting on the device */ + chip->select_chip(mtd, -1); nand_release_device(mtd); /* Do call back function */ if (!ret) mtd_erase_callback(instr); - /* - * If BBT requires refresh and erase was successful, rewrite any - * selected bad block tables. - */ - if (bbt_masked_page == 0xffffffff || ret) - return ret; - - for (chipnr = 0; chipnr < chip->numchips; chipnr++) { - if (!rewrite_bbt[chipnr]) - continue; - /* Update the BBT for chip */ - pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n", - __func__, chipnr, rewrite_bbt[chipnr], - chip->bbt_td->pages[chipnr]); - nand_update_bbt(mtd, rewrite_bbt[chipnr]); - } - /* Return more or less happy */ return ret; } @@ -2713,12 +2793,10 @@ erase_exit: */ static void nand_sync(struct mtd_info *mtd) { - struct nand_chip *chip = mtd->priv; - pr_debug("%s: called\n", __func__); /* Grab the lock and see if the device is available */ - nand_get_device(chip, mtd, FL_SYNCING); + nand_get_device(mtd, FL_SYNCING); /* Release it and go back */ nand_release_device(mtd); } @@ -2740,7 +2818,6 @@ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) */ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) { - struct nand_chip *chip = mtd->priv; int ret; ret = nand_block_isbad(mtd, ofs); @@ -2751,7 +2828,61 @@ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) return ret; } - return chip->block_markbad(mtd, ofs); + return nand_block_markbad_lowlevel(mtd, ofs); +} + +/** + * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + int status; + int i; + + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->write_byte(mtd, subfeature_param[i]); + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + return 0; +} + +/** + * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + int i; + + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + /* clear the sub feature parameters */ + memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN); + + chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + *subfeature_param++ = chip->read_byte(mtd); + return 0; } /** @@ -2760,9 +2891,7 @@ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) */ static int nand_suspend(struct mtd_info *mtd) { - struct nand_chip *chip = mtd->priv; - - return nand_get_device(chip, mtd, FL_PM_SUSPENDED); + return nand_get_device(mtd, FL_PM_SUSPENDED); } /** @@ -2797,7 +2926,15 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) if (!chip->select_chip) chip->select_chip = nand_select_chip; - if (!chip->read_byte) + + /* set for ONFI nand */ + if (!chip->onfi_set_features) + chip->onfi_set_features = nand_onfi_set_features; + if (!chip->onfi_get_features) + chip->onfi_get_features = nand_onfi_get_features; + + /* If called twice, pointers that depend on busw may need to be reset */ + if (!chip->read_byte || chip->read_byte == nand_read_byte) chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; if (!chip->read_word) chip->read_word = nand_read_word; @@ -2805,12 +2942,12 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) chip->block_bad = nand_block_bad; if (!chip->block_markbad) chip->block_markbad = nand_default_block_markbad; - if (!chip->write_buf) + if (!chip->write_buf || chip->write_buf == nand_write_buf) chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; - if (!chip->read_buf) + if (!chip->write_byte || chip->write_byte == nand_write_byte) + chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; + if (!chip->read_buf || chip->read_buf == nand_read_buf) chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; - if (!chip->verify_buf) - chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; if (!chip->scan_bbt) chip->scan_bbt = nand_default_bbt; @@ -2852,6 +2989,101 @@ static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) return crc; } +/* Parse the Extended Parameter Page. */ +static int nand_flash_detect_ext_param_page(struct mtd_info *mtd, + struct nand_chip *chip, struct nand_onfi_params *p) +{ + struct onfi_ext_param_page *ep; + struct onfi_ext_section *s; + struct onfi_ext_ecc_info *ecc; + uint8_t *cursor; + int ret = -EINVAL; + int len; + int i; + + len = le16_to_cpu(p->ext_param_page_length) * 16; + ep = kmalloc(len, GFP_KERNEL); + if (!ep) + return -ENOMEM; + + /* Send our own NAND_CMD_PARAM. */ + chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); + + /* Use the Change Read Column command to skip the ONFI param pages. */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, + sizeof(*p) * p->num_of_param_pages , -1); + + /* Read out the Extended Parameter Page. */ + chip->read_buf(mtd, (uint8_t *)ep, len); + if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) + != le16_to_cpu(ep->crc))) { + pr_debug("fail in the CRC.\n"); + goto ext_out; + } + + /* + * Check the signature. + * Do not strictly follow the ONFI spec, maybe changed in future. + */ + if (strncmp(ep->sig, "EPPS", 4)) { + pr_debug("The signature is invalid.\n"); + goto ext_out; + } + + /* find the ECC section. */ + cursor = (uint8_t *)(ep + 1); + for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { + s = ep->sections + i; + if (s->type == ONFI_SECTION_TYPE_2) + break; + cursor += s->length * 16; + } + if (i == ONFI_EXT_SECTION_MAX) { + pr_debug("We can not find the ECC section.\n"); + goto ext_out; + } + + /* get the info we want. */ + ecc = (struct onfi_ext_ecc_info *)cursor; + + if (!ecc->codeword_size) { + pr_debug("Invalid codeword size\n"); + goto ext_out; + } + + chip->ecc_strength_ds = ecc->ecc_bits; + chip->ecc_step_ds = 1 << ecc->codeword_size; + ret = 0; + +ext_out: + kfree(ep); + return ret; +} + +static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd->priv; + uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; + + return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, + feature); +} + +/* + * Configure chip properties from Micron vendor-specific ONFI table + */ +static void nand_onfi_detect_micron(struct nand_chip *chip, + struct nand_onfi_params *p) +{ + struct nand_onfi_vendor_micron *micron = (void *)p->vendor; + + if (le16_to_cpu(p->vendor_revision) < 1) + return; + + chip->read_retries = micron->read_retry_options; + chip->setup_read_retry = nand_setup_read_retry_micron; +} + /* * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. */ @@ -2859,7 +3091,7 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, int *busw) { struct nand_onfi_params *p = &chip->onfi_params; - int i; + int i, j; int val; /* Try ONFI for unknown chip or LP */ @@ -2870,16 +3102,18 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); for (i = 0; i < 3; i++) { - chip->read_buf(mtd, (uint8_t *)p, sizeof(*p)); + for (j = 0; j < sizeof(*p); j++) + ((uint8_t *)p)[j] = chip->read_byte(mtd); if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == le16_to_cpu(p->crc)) { - pr_info("ONFI param page %d valid\n", i); break; } } - if (i == 3) + if (i == 3) { + pr_err("Could not find valid ONFI parameter page; aborting\n"); return 0; + } /* Check version */ val = le16_to_cpu(p->revision); @@ -2893,11 +3127,9 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, chip->onfi_version = 20; else if (val & (1 << 1)) chip->onfi_version = 10; - else - chip->onfi_version = 0; if (!chip->onfi_version) { - pr_info("%s: unsupported ONFI version: %d\n", __func__, val); + pr_info("unsupported ONFI version: %d\n", val); return 0; } @@ -2905,34 +3137,450 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, sanitize_string(p->model, sizeof(p->model)); if (!mtd->name) mtd->name = p->model; + mtd->writesize = le32_to_cpu(p->byte_per_page); - mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize; + + /* + * pages_per_block and blocks_per_lun may not be a power-of-2 size + * (don't ask me who thought of this...). MTD assumes that these + * dimensions will be power-of-2, so just truncate the remaining area. + */ + mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize *= mtd->writesize; + mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); - chip->chipsize = le32_to_cpu(p->blocks_per_lun); + + /* See erasesize comment */ + chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; - *busw = 0; - if (le16_to_cpu(p->features) & 1) + chip->bits_per_cell = p->bits_per_cell; + + if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) *busw = NAND_BUSWIDTH_16; + else + *busw = 0; + + if (p->ecc_bits != 0xff) { + chip->ecc_strength_ds = p->ecc_bits; + chip->ecc_step_ds = 512; + } else if (chip->onfi_version >= 21 && + (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { + + /* + * The nand_flash_detect_ext_param_page() uses the + * Change Read Column command which maybe not supported + * by the chip->cmdfunc. So try to update the chip->cmdfunc + * now. We do not replace user supplied command function. + */ + if (mtd->writesize > 512 && chip->cmdfunc == nand_command) + chip->cmdfunc = nand_command_lp; + + /* The Extended Parameter Page is supported since ONFI 2.1. */ + if (nand_flash_detect_ext_param_page(mtd, chip, p)) + pr_warn("Failed to detect ONFI extended param page\n"); + } else { + pr_warn("Could not retrieve ONFI ECC requirements\n"); + } - chip->options &= ~NAND_CHIPOPTIONS_MSK; - chip->options |= NAND_NO_READRDY & NAND_CHIPOPTIONS_MSK; + if (p->jedec_id == NAND_MFR_MICRON) + nand_onfi_detect_micron(chip, p); - pr_info("ONFI flash detected\n"); return 1; } /* + * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. + */ +static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip, + int *busw) +{ + struct nand_jedec_params *p = &chip->jedec_params; + struct jedec_ecc_info *ecc; + int val; + int i, j; + + /* Try JEDEC for unknown chip or LP */ + chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1); + if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' || + chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' || + chip->read_byte(mtd) != 'C') + return 0; + + chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1); + for (i = 0; i < 3; i++) { + for (j = 0; j < sizeof(*p); j++) + ((uint8_t *)p)[j] = chip->read_byte(mtd); + + if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == + le16_to_cpu(p->crc)) + break; + } + + if (i == 3) { + pr_err("Could not find valid JEDEC parameter page; aborting\n"); + return 0; + } + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & (1 << 2)) + chip->jedec_version = 10; + else if (val & (1 << 1)) + chip->jedec_version = 1; /* vendor specific version */ + + if (!chip->jedec_version) { + pr_info("unsupported JEDEC version: %d\n", val); + return 0; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + if (!mtd->name) + mtd->name = p->model; + + mtd->writesize = le32_to_cpu(p->byte_per_page); + + /* Please reference to the comment for nand_flash_detect_onfi. */ + mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize *= mtd->writesize; + + mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); + + /* Please reference to the comment for nand_flash_detect_onfi. */ + chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); + chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; + chip->bits_per_cell = p->bits_per_cell; + + if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) + *busw = NAND_BUSWIDTH_16; + else + *busw = 0; + + /* ECC info */ + ecc = &p->ecc_info[0]; + + if (ecc->codeword_size >= 9) { + chip->ecc_strength_ds = ecc->ecc_bits; + chip->ecc_step_ds = 1 << ecc->codeword_size; + } else { + pr_warn("Invalid codeword size\n"); + } + + return 1; +} + +/* + * nand_id_has_period - Check if an ID string has a given wraparound period + * @id_data: the ID string + * @arrlen: the length of the @id_data array + * @period: the period of repitition + * + * Check if an ID string is repeated within a given sequence of bytes at + * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a + * period of 3). This is a helper function for nand_id_len(). Returns non-zero + * if the repetition has a period of @period; otherwise, returns zero. + */ +static int nand_id_has_period(u8 *id_data, int arrlen, int period) +{ + int i, j; + for (i = 0; i < period; i++) + for (j = i + period; j < arrlen; j += period) + if (id_data[i] != id_data[j]) + return 0; + return 1; +} + +/* + * nand_id_len - Get the length of an ID string returned by CMD_READID + * @id_data: the ID string + * @arrlen: the length of the @id_data array + + * Returns the length of the ID string, according to known wraparound/trailing + * zero patterns. If no pattern exists, returns the length of the array. + */ +static int nand_id_len(u8 *id_data, int arrlen) +{ + int last_nonzero, period; + + /* Find last non-zero byte */ + for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) + if (id_data[last_nonzero]) + break; + + /* All zeros */ + if (last_nonzero < 0) + return 0; + + /* Calculate wraparound period */ + for (period = 1; period < arrlen; period++) + if (nand_id_has_period(id_data, arrlen, period)) + break; + + /* There's a repeated pattern */ + if (period < arrlen) + return period; + + /* There are trailing zeros */ + if (last_nonzero < arrlen - 1) + return last_nonzero + 1; + + /* No pattern detected */ + return arrlen; +} + +/* Extract the bits of per cell from the 3rd byte of the extended ID */ +static int nand_get_bits_per_cell(u8 cellinfo) +{ + int bits; + + bits = cellinfo & NAND_CI_CELLTYPE_MSK; + bits >>= NAND_CI_CELLTYPE_SHIFT; + return bits + 1; +} + +/* + * Many new NAND share similar device ID codes, which represent the size of the + * chip. The rest of the parameters must be decoded according to generic or + * manufacturer-specific "extended ID" decoding patterns. + */ +static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip, + u8 id_data[8], int *busw) +{ + int extid, id_len; + /* The 3rd id byte holds MLC / multichip data */ + chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + /* The 4th id byte is the important one */ + extid = id_data[3]; + + id_len = nand_id_len(id_data, 8); + + /* + * Field definitions are in the following datasheets: + * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) + * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) + * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22) + * + * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung + * ID to decide what to do. + */ + if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG && + !nand_is_slc(chip) && id_data[5] != 0x00) { + /* Calc pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + switch (((extid >> 2) & 0x04) | (extid & 0x03)) { + case 1: + mtd->oobsize = 128; + break; + case 2: + mtd->oobsize = 218; + break; + case 3: + mtd->oobsize = 400; + break; + case 4: + mtd->oobsize = 436; + break; + case 5: + mtd->oobsize = 512; + break; + case 6: + mtd->oobsize = 640; + break; + case 7: + default: /* Other cases are "reserved" (unknown) */ + mtd->oobsize = 1024; + break; + } + extid >>= 2; + /* Calc blocksize */ + mtd->erasesize = (128 * 1024) << + (((extid >> 1) & 0x04) | (extid & 0x03)); + *busw = 0; + } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX && + !nand_is_slc(chip)) { + unsigned int tmp; + + /* Calc pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + switch (((extid >> 2) & 0x04) | (extid & 0x03)) { + case 0: + mtd->oobsize = 128; + break; + case 1: + mtd->oobsize = 224; + break; + case 2: + mtd->oobsize = 448; + break; + case 3: + mtd->oobsize = 64; + break; + case 4: + mtd->oobsize = 32; + break; + case 5: + mtd->oobsize = 16; + break; + default: + mtd->oobsize = 640; + break; + } + extid >>= 2; + /* Calc blocksize */ + tmp = ((extid >> 1) & 0x04) | (extid & 0x03); + if (tmp < 0x03) + mtd->erasesize = (128 * 1024) << tmp; + else if (tmp == 0x03) + mtd->erasesize = 768 * 1024; + else + mtd->erasesize = (64 * 1024) << tmp; + *busw = 0; + } else { + /* Calc pagesize */ + mtd->writesize = 1024 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + mtd->oobsize = (8 << (extid & 0x01)) * + (mtd->writesize >> 9); + extid >>= 2; + /* Calc blocksize. Blocksize is multiples of 64KiB */ + mtd->erasesize = (64 * 1024) << (extid & 0x03); + extid >>= 2; + /* Get buswidth information */ + *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; + + /* + * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per + * 512B page. For Toshiba SLC, we decode the 5th/6th byte as + * follows: + * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, + * 110b -> 24nm + * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC + */ + if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA && + nand_is_slc(chip) && + (id_data[5] & 0x7) == 0x6 /* 24nm */ && + !(id_data[4] & 0x80) /* !BENAND */) { + mtd->oobsize = 32 * mtd->writesize >> 9; + } + + } +} + +/* + * Old devices have chip data hardcoded in the device ID table. nand_decode_id + * decodes a matching ID table entry and assigns the MTD size parameters for + * the chip. + */ +static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, + struct nand_flash_dev *type, u8 id_data[8], + int *busw) +{ + int maf_id = id_data[0]; + + mtd->erasesize = type->erasesize; + mtd->writesize = type->pagesize; + mtd->oobsize = mtd->writesize / 32; + *busw = type->options & NAND_BUSWIDTH_16; + + /* All legacy ID NAND are small-page, SLC */ + chip->bits_per_cell = 1; + + /* + * Check for Spansion/AMD ID + repeating 5th, 6th byte since + * some Spansion chips have erasesize that conflicts with size + * listed in nand_ids table. + * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) + */ + if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 + && id_data[6] == 0x00 && id_data[7] == 0x00 + && mtd->writesize == 512) { + mtd->erasesize = 128 * 1024; + mtd->erasesize <<= ((id_data[3] & 0x03) << 1); + } +} + +/* + * Set the bad block marker/indicator (BBM/BBI) patterns according to some + * heuristic patterns using various detected parameters (e.g., manufacturer, + * page size, cell-type information). + */ +static void nand_decode_bbm_options(struct mtd_info *mtd, + struct nand_chip *chip, u8 id_data[8]) +{ + int maf_id = id_data[0]; + + /* Set the bad block position */ + if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) + chip->badblockpos = NAND_LARGE_BADBLOCK_POS; + else + chip->badblockpos = NAND_SMALL_BADBLOCK_POS; + + /* + * Bad block marker is stored in the last page of each block on Samsung + * and Hynix MLC devices; stored in first two pages of each block on + * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba, + * AMD/Spansion, and Macronix. All others scan only the first page. + */ + if (!nand_is_slc(chip) && + (maf_id == NAND_MFR_SAMSUNG || + maf_id == NAND_MFR_HYNIX)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else if ((nand_is_slc(chip) && + (maf_id == NAND_MFR_SAMSUNG || + maf_id == NAND_MFR_HYNIX || + maf_id == NAND_MFR_TOSHIBA || + maf_id == NAND_MFR_AMD || + maf_id == NAND_MFR_MACRONIX)) || + (mtd->writesize == 2048 && + maf_id == NAND_MFR_MICRON)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; +} + +static inline bool is_full_id_nand(struct nand_flash_dev *type) +{ + return type->id_len; +} + +static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip, + struct nand_flash_dev *type, u8 *id_data, int *busw) +{ + if (!strncmp(type->id, id_data, type->id_len)) { + mtd->writesize = type->pagesize; + mtd->erasesize = type->erasesize; + mtd->oobsize = type->oobsize; + + chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + chip->chipsize = (uint64_t)type->chipsize << 20; + chip->options |= type->options; + chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); + chip->ecc_step_ds = NAND_ECC_STEP(type); + + *busw = type->options & NAND_BUSWIDTH_16; + + if (!mtd->name) + mtd->name = type->name; + + return true; + } + return false; +} + +/* * Get the flash and manufacturer id and lookup if the type is supported. */ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, - int busw, int *maf_id, int *dev_id, struct nand_flash_dev *type) { + int busw; int i, maf_idx; u8 id_data[8]; - int ret; /* Select the device */ chip->select_chip(mtd, 0); @@ -2959,12 +3607,12 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); - for (i = 0; i < 2; i++) + /* Read entire ID string */ + for (i = 0; i < 8; i++) id_data[i] = chip->read_byte(mtd); if (id_data[0] != *maf_id || id_data[1] != *dev_id) { - pr_info("%s: second ID read did not match " - "%02x,%02x against %02x,%02x\n", __func__, + pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", *maf_id, *dev_id, id_data[0], id_data[1]); return ERR_PTR(-ENODEV); } @@ -2972,24 +3620,25 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, if (!type) type = nand_flash_ids; - for (; type->name != NULL; type++) - if (*dev_id == type->id) - break; + for (; type->name != NULL; type++) { + if (is_full_id_nand(type)) { + if (find_full_id_nand(mtd, chip, type, id_data, &busw)) + goto ident_done; + } else if (*dev_id == type->dev_id) { + break; + } + } chip->onfi_version = 0; if (!type->name || !type->pagesize) { - /* Check is chip is ONFI compliant */ - ret = nand_flash_detect_onfi(mtd, chip, &busw); - if (ret) + /* Check if the chip is ONFI compliant */ + if (nand_flash_detect_onfi(mtd, chip, &busw)) goto ident_done; - } - - chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); - - /* Read entire ID string */ - for (i = 0; i < 8; i++) - id_data[i] = chip->read_byte(mtd); + /* Check if the chip is JEDEC compliant */ + if (nand_flash_detect_jedec(mtd, chip, &busw)) + goto ident_done; + } if (!type->name) return ERR_PTR(-ENODEV); @@ -3003,86 +3652,13 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, /* Set the pagesize, oobsize, erasesize by the driver */ busw = chip->init_size(mtd, chip, id_data); } else if (!type->pagesize) { - int extid; - /* The 3rd id byte holds MLC / multichip data */ - chip->cellinfo = id_data[2]; - /* The 4th id byte is the important one */ - extid = id_data[3]; - - /* - * Field definitions are in the following datasheets: - * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) - * New style (6 byte ID): Samsung K9GBG08U0M (p.40) - * - * Check for wraparound + Samsung ID + nonzero 6th byte - * to decide what to do. - */ - if (id_data[0] == id_data[6] && id_data[1] == id_data[7] && - id_data[0] == NAND_MFR_SAMSUNG && - (chip->cellinfo & NAND_CI_CELLTYPE_MSK) && - id_data[5] != 0x00) { - /* Calc pagesize */ - mtd->writesize = 2048 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - switch (extid & 0x03) { - case 1: - mtd->oobsize = 128; - break; - case 2: - mtd->oobsize = 218; - break; - case 3: - mtd->oobsize = 400; - break; - default: - mtd->oobsize = 436; - break; - } - extid >>= 2; - /* Calc blocksize */ - mtd->erasesize = (128 * 1024) << - (((extid >> 1) & 0x04) | (extid & 0x03)); - busw = 0; - } else { - /* Calc pagesize */ - mtd->writesize = 1024 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - mtd->oobsize = (8 << (extid & 0x01)) * - (mtd->writesize >> 9); - extid >>= 2; - /* Calc blocksize. Blocksize is multiples of 64KiB */ - mtd->erasesize = (64 * 1024) << (extid & 0x03); - extid >>= 2; - /* Get buswidth information */ - busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; - } + /* Decode parameters from extended ID */ + nand_decode_ext_id(mtd, chip, id_data, &busw); } else { - /* - * Old devices have chip data hardcoded in the device id table. - */ - mtd->erasesize = type->erasesize; - mtd->writesize = type->pagesize; - mtd->oobsize = mtd->writesize / 32; - busw = type->options & NAND_BUSWIDTH_16; - - /* - * Check for Spansion/AMD ID + repeating 5th, 6th byte since - * some Spansion chips have erasesize that conflicts with size - * listed in nand_ids table. - * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) - */ - if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && - id_data[5] == 0x00 && id_data[6] == 0x00 && - id_data[7] == 0x00 && mtd->writesize == 512) { - mtd->erasesize = 128 * 1024; - mtd->erasesize <<= ((id_data[3] & 0x03) << 1); - } + nand_decode_id(mtd, chip, type, id_data, &busw); } - /* Get chip options, preserve non chip based options */ - chip->options &= ~NAND_CHIPOPTIONS_MSK; - chip->options |= type->options & NAND_CHIPOPTIONS_MSK; + /* Get chip options */ + chip->options |= type->options; /* * Check if chip is not a Samsung device. Do not clear the @@ -3098,20 +3674,26 @@ ident_done: break; } - /* - * Check, if buswidth is correct. Hardware drivers should set - * chip correct! - */ - if (busw != (chip->options & NAND_BUSWIDTH_16)) { - pr_info("NAND device: Manufacturer ID:" - " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, - *dev_id, nand_manuf_ids[maf_idx].name, mtd->name); - pr_warn("NAND bus width %d instead %d bit\n", + if (chip->options & NAND_BUSWIDTH_AUTO) { + WARN_ON(chip->options & NAND_BUSWIDTH_16); + chip->options |= busw; + nand_set_defaults(chip, busw); + } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { + /* + * Check, if buswidth is correct. Hardware drivers should set + * chip correct! + */ + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + *maf_id, *dev_id); + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name); + pr_warn("bus width %d instead %d bit\n", (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8); return ERR_PTR(-EINVAL); } + nand_decode_bbm_options(mtd, chip, id_data); + /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; /* Convert chipsize to number of pages per chip -1 */ @@ -3127,50 +3709,28 @@ ident_done: } chip->badblockbits = 8; - - /* Set the bad block position */ - if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16)) - chip->badblockpos = NAND_LARGE_BADBLOCK_POS; - else - chip->badblockpos = NAND_SMALL_BADBLOCK_POS; - - /* - * Bad block marker is stored in the last page of each block - * on Samsung and Hynix MLC devices; stored in first two pages - * of each block on Micron devices with 2KiB pages and on - * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix. - * All others scan only the first page. - */ - if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && - (*maf_id == NAND_MFR_SAMSUNG || - *maf_id == NAND_MFR_HYNIX)) - chip->bbt_options |= NAND_BBT_SCANLASTPAGE; - else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) && - (*maf_id == NAND_MFR_SAMSUNG || - *maf_id == NAND_MFR_HYNIX || - *maf_id == NAND_MFR_TOSHIBA || - *maf_id == NAND_MFR_AMD || - *maf_id == NAND_MFR_MACRONIX)) || - (mtd->writesize == 2048 && - *maf_id == NAND_MFR_MICRON)) - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; - - /* Check for AND chips with 4 page planes */ - if (chip->options & NAND_4PAGE_ARRAY) - chip->erase_cmd = multi_erase_cmd; - else - chip->erase_cmd = single_erase_cmd; + chip->erase = single_erase; /* Do not replace user supplied command function! */ if (mtd->writesize > 512 && chip->cmdfunc == nand_command) chip->cmdfunc = nand_command_lp; - pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s)," - " page size: %d, OOB size: %d\n", - *maf_id, *dev_id, nand_manuf_ids[maf_idx].name, - chip->onfi_version ? chip->onfi_params.model : type->name, - mtd->writesize, mtd->oobsize); + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + *maf_id, *dev_id); + + if (chip->onfi_version) + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, + chip->onfi_params.model); + else if (chip->jedec_version) + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, + chip->jedec_params.model); + else + pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, + type->name); + pr_info("%dMiB, %s, page size: %d, OOB size: %d\n", + (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", + mtd->writesize, mtd->oobsize); return type; } @@ -3188,18 +3748,16 @@ ident_done: int nand_scan_ident(struct mtd_info *mtd, int maxchips, struct nand_flash_dev *table) { - int i, busw, nand_maf_id, nand_dev_id; + int i, nand_maf_id, nand_dev_id; struct nand_chip *chip = mtd->priv; struct nand_flash_dev *type; - /* Get buswidth to select the correct functions */ - busw = chip->options & NAND_BUSWIDTH_16; /* Set the default functions */ - nand_set_defaults(chip, busw); + nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16); /* Read the flash type */ - type = nand_get_flash_type(mtd, chip, busw, - &nand_maf_id, &nand_dev_id, table); + type = nand_get_flash_type(mtd, chip, &nand_maf_id, + &nand_dev_id, table); if (IS_ERR(type)) { if (!(chip->options & NAND_SCAN_SILENT_NODEV)) @@ -3208,6 +3766,8 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, return PTR_ERR(type); } + chip->select_chip(mtd, -1); + /* Check for a chip array */ for (i = 1; i < maxchips; i++) { chip->select_chip(mtd, i); @@ -3217,11 +3777,14 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ if (nand_maf_id != chip->read_byte(mtd) || - nand_dev_id != chip->read_byte(mtd)) + nand_dev_id != chip->read_byte(mtd)) { + chip->select_chip(mtd, -1); break; + } + chip->select_chip(mtd, -1); } if (i > 1) - pr_info("%d NAND chips detected\n", i); + pr_info("%d chips detected\n", i); /* Store the number of chips and calc total size for mtd */ chip->numchips = i; @@ -3231,6 +3794,39 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, } EXPORT_SYMBOL(nand_scan_ident); +/* + * Check if the chip configuration meet the datasheet requirements. + + * If our configuration corrects A bits per B bytes and the minimum + * required correction level is X bits per Y bytes, then we must ensure + * both of the following are true: + * + * (1) A / B >= X / Y + * (2) A >= X + * + * Requirement (1) ensures we can correct for the required bitflip density. + * Requirement (2) ensures we can correct even when all bitflips are clumped + * in the same sector. + */ +static bool nand_ecc_strength_good(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int corr, ds_corr; + + if (ecc->size == 0 || chip->ecc_step_ds == 0) + /* Not enough information */ + return true; + + /* + * We get the number of corrected bits per page to compare + * the correction density. + */ + corr = (mtd->writesize * ecc->strength) / ecc->size; + ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; + + return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; +} /** * nand_scan_tail - [NAND Interface] Scan for the NAND device @@ -3244,15 +3840,27 @@ int nand_scan_tail(struct mtd_info *mtd) { int i; struct nand_chip *chip = mtd->priv; + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct nand_buffers *nbuf; /* New bad blocks should be marked in OOB, flash-based BBT, or both */ BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && !(chip->bbt_options & NAND_BBT_USE_FLASH)); - if (!(chip->options & NAND_OWN_BUFFERS)) - chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL); - if (!chip->buffers) - return -ENOMEM; + if (!(chip->options & NAND_OWN_BUFFERS)) { + nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize + + mtd->oobsize * 3, GFP_KERNEL); + if (!nbuf) + return -ENOMEM; + nbuf->ecccalc = (uint8_t *)(nbuf + 1); + nbuf->ecccode = nbuf->ecccalc + mtd->oobsize; + nbuf->databuf = nbuf->ecccode + mtd->oobsize; + + chip->buffers = nbuf; + } else { + if (!chip->buffers) + return -ENOMEM; + } /* Set the internal oob buffer location, just after the page data */ chip->oob_poi = chip->buffers->databuf + mtd->writesize; @@ -3260,19 +3868,19 @@ int nand_scan_tail(struct mtd_info *mtd) /* * If no default placement scheme is given, select an appropriate one. */ - if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) { + if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) { switch (mtd->oobsize) { case 8: - chip->ecc.layout = &nand_oob_8; + ecc->layout = &nand_oob_8; break; case 16: - chip->ecc.layout = &nand_oob_16; + ecc->layout = &nand_oob_16; break; case 64: - chip->ecc.layout = &nand_oob_64; + ecc->layout = &nand_oob_64; break; case 128: - chip->ecc.layout = &nand_oob_128; + ecc->layout = &nand_oob_128; break; default: pr_warn("No oob scheme defined for oobsize %d\n", @@ -3289,60 +3897,62 @@ int nand_scan_tail(struct mtd_info *mtd) * selected and we have 256 byte pagesize fallback to software ECC */ - switch (chip->ecc.mode) { + switch (ecc->mode) { case NAND_ECC_HW_OOB_FIRST: /* Similar to NAND_ECC_HW, but a separate read_page handle */ - if (!chip->ecc.calculate || !chip->ecc.correct || - !chip->ecc.hwctl) { + if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { pr_warn("No ECC functions supplied; " "hardware ECC not possible\n"); BUG(); } - if (!chip->ecc.read_page) - chip->ecc.read_page = nand_read_page_hwecc_oob_first; + if (!ecc->read_page) + ecc->read_page = nand_read_page_hwecc_oob_first; case NAND_ECC_HW: /* Use standard hwecc read page function? */ - if (!chip->ecc.read_page) - chip->ecc.read_page = nand_read_page_hwecc; - if (!chip->ecc.write_page) - chip->ecc.write_page = nand_write_page_hwecc; - if (!chip->ecc.read_page_raw) - chip->ecc.read_page_raw = nand_read_page_raw; - if (!chip->ecc.write_page_raw) - chip->ecc.write_page_raw = nand_write_page_raw; - if (!chip->ecc.read_oob) - chip->ecc.read_oob = nand_read_oob_std; - if (!chip->ecc.write_oob) - chip->ecc.write_oob = nand_write_oob_std; + if (!ecc->read_page) + ecc->read_page = nand_read_page_hwecc; + if (!ecc->write_page) + ecc->write_page = nand_write_page_hwecc; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_std; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_std; + if (!ecc->read_subpage) + ecc->read_subpage = nand_read_subpage; + if (!ecc->write_subpage) + ecc->write_subpage = nand_write_subpage_hwecc; case NAND_ECC_HW_SYNDROME: - if ((!chip->ecc.calculate || !chip->ecc.correct || - !chip->ecc.hwctl) && - (!chip->ecc.read_page || - chip->ecc.read_page == nand_read_page_hwecc || - !chip->ecc.write_page || - chip->ecc.write_page == nand_write_page_hwecc)) { + if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && + (!ecc->read_page || + ecc->read_page == nand_read_page_hwecc || + !ecc->write_page || + ecc->write_page == nand_write_page_hwecc)) { pr_warn("No ECC functions supplied; " "hardware ECC not possible\n"); BUG(); } /* Use standard syndrome read/write page function? */ - if (!chip->ecc.read_page) - chip->ecc.read_page = nand_read_page_syndrome; - if (!chip->ecc.write_page) - chip->ecc.write_page = nand_write_page_syndrome; - if (!chip->ecc.read_page_raw) - chip->ecc.read_page_raw = nand_read_page_raw_syndrome; - if (!chip->ecc.write_page_raw) - chip->ecc.write_page_raw = nand_write_page_raw_syndrome; - if (!chip->ecc.read_oob) - chip->ecc.read_oob = nand_read_oob_syndrome; - if (!chip->ecc.write_oob) - chip->ecc.write_oob = nand_write_oob_syndrome; - - if (mtd->writesize >= chip->ecc.size) { - if (!chip->ecc.strength) { + if (!ecc->read_page) + ecc->read_page = nand_read_page_syndrome; + if (!ecc->write_page) + ecc->write_page = nand_write_page_syndrome; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw_syndrome; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw_syndrome; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_syndrome; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_syndrome; + + if (mtd->writesize >= ecc->size) { + if (!ecc->strength) { pr_warn("Driver must set ecc.strength when using hardware ECC\n"); BUG(); } @@ -3350,112 +3960,112 @@ int nand_scan_tail(struct mtd_info *mtd) } pr_warn("%d byte HW ECC not possible on " "%d byte page size, fallback to SW ECC\n", - chip->ecc.size, mtd->writesize); - chip->ecc.mode = NAND_ECC_SOFT; + ecc->size, mtd->writesize); + ecc->mode = NAND_ECC_SOFT; case NAND_ECC_SOFT: - chip->ecc.calculate = nand_calculate_ecc; - chip->ecc.correct = nand_correct_data; - chip->ecc.read_page = nand_read_page_swecc; - chip->ecc.read_subpage = nand_read_subpage; - chip->ecc.write_page = nand_write_page_swecc; - chip->ecc.read_page_raw = nand_read_page_raw; - chip->ecc.write_page_raw = nand_write_page_raw; - chip->ecc.read_oob = nand_read_oob_std; - chip->ecc.write_oob = nand_write_oob_std; - if (!chip->ecc.size) - chip->ecc.size = 256; - chip->ecc.bytes = 3; - chip->ecc.strength = 1; + ecc->calculate = nand_calculate_ecc; + ecc->correct = nand_correct_data; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; + if (!ecc->size) + ecc->size = 256; + ecc->bytes = 3; + ecc->strength = 1; break; case NAND_ECC_SOFT_BCH: if (!mtd_nand_has_bch()) { - pr_warn("CONFIG_MTD_ECC_BCH not enabled\n"); + pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n"); BUG(); } - chip->ecc.calculate = nand_bch_calculate_ecc; - chip->ecc.correct = nand_bch_correct_data; - chip->ecc.read_page = nand_read_page_swecc; - chip->ecc.read_subpage = nand_read_subpage; - chip->ecc.write_page = nand_write_page_swecc; - chip->ecc.read_page_raw = nand_read_page_raw; - chip->ecc.write_page_raw = nand_write_page_raw; - chip->ecc.read_oob = nand_read_oob_std; - chip->ecc.write_oob = nand_write_oob_std; + ecc->calculate = nand_bch_calculate_ecc; + ecc->correct = nand_bch_correct_data; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; /* * Board driver should supply ecc.size and ecc.bytes values to * select how many bits are correctable; see nand_bch_init() * for details. Otherwise, default to 4 bits for large page * devices. */ - if (!chip->ecc.size && (mtd->oobsize >= 64)) { - chip->ecc.size = 512; - chip->ecc.bytes = 7; + if (!ecc->size && (mtd->oobsize >= 64)) { + ecc->size = 512; + ecc->bytes = 7; } - chip->ecc.priv = nand_bch_init(mtd, - chip->ecc.size, - chip->ecc.bytes, - &chip->ecc.layout); - if (!chip->ecc.priv) { + ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes, + &ecc->layout); + if (!ecc->priv) { pr_warn("BCH ECC initialization failed!\n"); BUG(); } - chip->ecc.strength = - chip->ecc.bytes * 8 / fls(8 * chip->ecc.size); + ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size); break; case NAND_ECC_NONE: pr_warn("NAND_ECC_NONE selected by board driver. " "This is not recommended!\n"); - chip->ecc.read_page = nand_read_page_raw; - chip->ecc.write_page = nand_write_page_raw; - chip->ecc.read_oob = nand_read_oob_std; - chip->ecc.read_page_raw = nand_read_page_raw; - chip->ecc.write_page_raw = nand_write_page_raw; - chip->ecc.write_oob = nand_write_oob_std; - chip->ecc.size = mtd->writesize; - chip->ecc.bytes = 0; - chip->ecc.strength = 0; + ecc->read_page = nand_read_page_raw; + ecc->write_page = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->write_oob = nand_write_oob_std; + ecc->size = mtd->writesize; + ecc->bytes = 0; + ecc->strength = 0; break; default: - pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode); + pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode); BUG(); } /* For many systems, the standard OOB write also works for raw */ - if (!chip->ecc.read_oob_raw) - chip->ecc.read_oob_raw = chip->ecc.read_oob; - if (!chip->ecc.write_oob_raw) - chip->ecc.write_oob_raw = chip->ecc.write_oob; + if (!ecc->read_oob_raw) + ecc->read_oob_raw = ecc->read_oob; + if (!ecc->write_oob_raw) + ecc->write_oob_raw = ecc->write_oob; /* * The number of bytes available for a client to place data into * the out of band area. */ - chip->ecc.layout->oobavail = 0; - for (i = 0; chip->ecc.layout->oobfree[i].length - && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++) - chip->ecc.layout->oobavail += - chip->ecc.layout->oobfree[i].length; - mtd->oobavail = chip->ecc.layout->oobavail; + ecc->layout->oobavail = 0; + for (i = 0; ecc->layout->oobfree[i].length + && i < ARRAY_SIZE(ecc->layout->oobfree); i++) + ecc->layout->oobavail += ecc->layout->oobfree[i].length; + mtd->oobavail = ecc->layout->oobavail; + + /* ECC sanity check: warn if it's too weak */ + if (!nand_ecc_strength_good(mtd)) + pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", + mtd->name); /* * Set the number of read / write steps for one page depending on ECC * mode. */ - chip->ecc.steps = mtd->writesize / chip->ecc.size; - if (chip->ecc.steps * chip->ecc.size != mtd->writesize) { + ecc->steps = mtd->writesize / ecc->size; + if (ecc->steps * ecc->size != mtd->writesize) { pr_warn("Invalid ECC parameters\n"); BUG(); } - chip->ecc.total = chip->ecc.steps * chip->ecc.bytes; + ecc->total = ecc->steps * ecc->bytes; /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ - if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && - !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { - switch (chip->ecc.steps) { + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { + switch (ecc->steps) { case 2: mtd->subpage_sft = 1; break; @@ -3471,14 +4081,23 @@ int nand_scan_tail(struct mtd_info *mtd) /* Initialize state */ chip->state = FL_READY; - /* De-select the device */ - chip->select_chip(mtd, -1); - /* Invalidate the pagebuffer reference */ chip->pagebuf = -1; + /* Large page NAND with SOFT_ECC should support subpage reads */ + switch (ecc->mode) { + case NAND_ECC_SOFT: + case NAND_ECC_SOFT_BCH: + if (chip->page_shift > 9) + chip->options |= NAND_SUBPAGE_READ; + break; + + default: + break; + } + /* Fill in remaining MTD driver data */ - mtd->type = MTD_NANDFLASH; + mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : MTD_CAP_NANDFLASH; mtd->_erase = nand_erase; @@ -3499,8 +4118,9 @@ int nand_scan_tail(struct mtd_info *mtd) mtd->writebufsize = mtd->writesize; /* propagate ecc info to mtd_info */ - mtd->ecclayout = chip->ecc.layout; - mtd->ecc_strength = chip->ecc.strength; + mtd->ecclayout = ecc->layout; + mtd->ecc_strength = ecc->strength; + mtd->ecc_step_size = ecc->size; /* * Initialize bitflip_threshold to its default prior scan_bbt() call. * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c index 30d1319ff06..7f0c3b4c2a4 100644 --- a/drivers/mtd/nand/nand_bbt.c +++ b/drivers/mtd/nand/nand_bbt.c @@ -4,7 +4,7 @@ * Overview: * Bad block table support for the NAND driver * - * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) + * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as @@ -22,7 +22,7 @@ * BBT on flash. If a BBT is found then the contents are read and the memory * based BBT is created. If a mirrored BBT is selected then the mirror is * searched too and the versions are compared. If the mirror has a greater - * version number than the mirror BBT is used to build the memory based BBT. + * version number, then the mirror BBT is used to build the memory based BBT. * If the tables are not versioned, then we "or" the bad block information. * If one of the BBTs is out of date or does not exist it is (re)created. * If no BBT exists at all then the device is scanned for factory marked @@ -62,21 +62,44 @@ #include <linux/slab.h> #include <linux/types.h> #include <linux/mtd/mtd.h> +#include <linux/mtd/bbm.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/vmalloc.h> #include <linux/export.h> +#include <linux/string.h> -static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) +#define BBT_BLOCK_GOOD 0x00 +#define BBT_BLOCK_WORN 0x01 +#define BBT_BLOCK_RESERVED 0x02 +#define BBT_BLOCK_FACTORY_BAD 0x03 + +#define BBT_ENTRY_MASK 0x03 +#define BBT_ENTRY_SHIFT 2 + +static int nand_update_bbt(struct mtd_info *mtd, loff_t offs); + +static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block) { - int ret; + uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT]; + entry >>= (block & BBT_ENTRY_MASK) * 2; + return entry & BBT_ENTRY_MASK; +} - ret = memcmp(buf, td->pattern, td->len); - if (!ret) - return ret; - return -1; +static inline void bbt_mark_entry(struct nand_chip *chip, int block, + uint8_t mark) +{ + uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2); + chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk; +} + +static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) +{ + if (memcmp(buf, td->pattern, td->len)) + return -1; + return 0; } /** @@ -87,38 +110,17 @@ static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) * @td: search pattern descriptor * * Check for a pattern at the given place. Used to search bad block tables and - * good / bad block identifiers. If the SCAN_EMPTY option is set then check, if - * all bytes except the pattern area contain 0xff. + * good / bad block identifiers. */ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) { - int i, end = 0; - uint8_t *p = buf; - if (td->options & NAND_BBT_NO_OOB) return check_pattern_no_oob(buf, td); - end = paglen + td->offs; - if (td->options & NAND_BBT_SCANEMPTY) { - for (i = 0; i < end; i++) { - if (p[i] != 0xff) - return -1; - } - } - p += end; - /* Compare the pattern */ - if (memcmp(p, td->pattern, td->len)) + if (memcmp(buf + paglen + td->offs, td->pattern, td->len)) return -1; - if (td->options & NAND_BBT_SCANEMPTY) { - p += td->len; - end += td->len; - for (i = end; i < len; i++) { - if (*p++ != 0xff) - return -1; - } - } return 0; } @@ -133,14 +135,9 @@ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_desc */ static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) { - int i; - uint8_t *p = buf; - /* Compare the pattern */ - for (i = 0; i < td->len; i++) { - if (p[td->offs + i] != td->pattern[i]) - return -1; - } + if (memcmp(buf + td->offs, td->pattern, td->len)) + return -1; return 0; } @@ -170,7 +167,7 @@ static u32 add_marker_len(struct nand_bbt_descr *td) * @page: the starting page * @num: the number of bbt descriptors to read * @td: the bbt describtion table - * @offs: offset in the memory table + * @offs: block number offset in the table * * Read the bad block table starting from page. */ @@ -220,14 +217,16 @@ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, /* Analyse data */ for (i = 0; i < len; i++) { uint8_t dat = buf[i]; - for (j = 0; j < 8; j += bits, act += 2) { + for (j = 0; j < 8; j += bits, act++) { uint8_t tmp = (dat >> j) & msk; if (tmp == msk) continue; if (reserved_block_code && (tmp == reserved_block_code)) { pr_info("nand_read_bbt: reserved block at 0x%012llx\n", - (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); - this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); + (loff_t)(offs + act) << + this->bbt_erase_shift); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_RESERVED); mtd->ecc_stats.bbtblocks++; continue; } @@ -236,12 +235,15 @@ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, * move this message to pr_debug. */ pr_info("nand_read_bbt: bad block at 0x%012llx\n", - (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); + (loff_t)(offs + act) << + this->bbt_erase_shift); /* Factory marked bad or worn out? */ if (tmp == 0) - this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_FACTORY_BAD); else - this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_WORN); mtd->ecc_stats.badblocks++; } } @@ -276,7 +278,7 @@ static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc td, offs); if (res) return res; - offs += this->chipsize >> (this->bbt_erase_shift + 2); + offs += this->chipsize >> this->bbt_erase_shift; } } else { res = read_bbt(mtd, buf, td->pages[0], @@ -288,7 +290,7 @@ static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc } /* BBT marker is in the first page, no OOB */ -static int scan_read_raw_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, +static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, struct nand_bbt_descr *td) { size_t retlen; @@ -301,14 +303,24 @@ static int scan_read_raw_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, return mtd_read(mtd, offs, len, &retlen, buf); } -/* Scan read raw data from flash */ -static int scan_read_raw_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, +/** + * scan_read_oob - [GENERIC] Scan data+OOB region to buffer + * @mtd: MTD device structure + * @buf: temporary buffer + * @offs: offset at which to scan + * @len: length of data region to read + * + * Scan read data from data+OOB. May traverse multiple pages, interleaving + * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" + * ECC condition (error or bitflip). May quit on the first (non-ECC) error. + */ +static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, size_t len) { struct mtd_oob_ops ops; - int res; + int res, ret = 0; - ops.mode = MTD_OPS_RAW; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; @@ -318,24 +330,27 @@ static int scan_read_raw_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, ops.oobbuf = buf + ops.len; res = mtd_read_oob(mtd, offs, &ops); - - if (res) - return res; + if (res) { + if (!mtd_is_bitflip_or_eccerr(res)) + return res; + else if (mtd_is_eccerr(res) || !ret) + ret = res; + } buf += mtd->oobsize + mtd->writesize; len -= mtd->writesize; offs += mtd->writesize; } - return 0; + return ret; } -static int scan_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t offs, +static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs, size_t len, struct nand_bbt_descr *td) { if (td->options & NAND_BBT_NO_OOB) - return scan_read_raw_data(mtd, buf, offs, td); + return scan_read_data(mtd, buf, offs, td); else - return scan_read_raw_oob(mtd, buf, offs, len); + return scan_read_oob(mtd, buf, offs, len); } /* Scan write data with oob to flash */ @@ -373,14 +388,14 @@ static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) * Read the bad block table(s) for all chips starting at a given page. We * assume that the bbt bits are in consecutive order. */ -static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, - struct nand_bbt_descr *td, struct nand_bbt_descr *md) +static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md) { struct nand_chip *this = mtd->priv; /* Read the primary version, if available */ if (td->options & NAND_BBT_VERSION) { - scan_read_raw(mtd, buf, (loff_t)td->pages[0] << this->page_shift, + scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift, mtd->writesize, td); td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; pr_info("Bad block table at page %d, version 0x%02X\n", @@ -389,37 +404,17 @@ static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, /* Read the mirror version, if available */ if (md && (md->options & NAND_BBT_VERSION)) { - scan_read_raw(mtd, buf, (loff_t)md->pages[0] << this->page_shift, - mtd->writesize, td); + scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift, + mtd->writesize, md); md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; pr_info("Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]); } - return 1; -} - -/* Scan a given block full */ -static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, - loff_t offs, uint8_t *buf, size_t readlen, - int scanlen, int len) -{ - int ret, j; - - ret = scan_read_raw_oob(mtd, buf, offs, readlen); - /* Ignore ECC errors when checking for BBM */ - if (ret && !mtd_is_bitflip_or_eccerr(ret)) - return ret; - - for (j = 0; j < len; j++, buf += scanlen) { - if (check_pattern(buf, scanlen, mtd->writesize, bd)) - return 1; - } - return 0; } /* Scan a given block partially */ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, - loff_t offs, uint8_t *buf, int len) + loff_t offs, uint8_t *buf, int numpages) { struct mtd_oob_ops ops; int j, ret; @@ -430,7 +425,7 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, ops.datbuf = NULL; ops.mode = MTD_OPS_PLACE_OOB; - for (j = 0; j < len; j++) { + for (j = 0; j < numpages; j++) { /* * Read the full oob until read_oob is fixed to handle single * byte reads for 16 bit buswidth. @@ -463,36 +458,19 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) { struct nand_chip *this = mtd->priv; - int i, numblocks, len, scanlen; + int i, numblocks, numpages; int startblock; loff_t from; - size_t readlen; pr_info("Scanning device for bad blocks\n"); - if (bd->options & NAND_BBT_SCANALLPAGES) - len = 1 << (this->bbt_erase_shift - this->page_shift); - else if (bd->options & NAND_BBT_SCAN2NDPAGE) - len = 2; + if (bd->options & NAND_BBT_SCAN2NDPAGE) + numpages = 2; else - len = 1; - - if (!(bd->options & NAND_BBT_SCANEMPTY)) { - /* We need only read few bytes from the OOB area */ - scanlen = 0; - readlen = bd->len; - } else { - /* Full page content should be read */ - scanlen = mtd->writesize + mtd->oobsize; - readlen = len * mtd->writesize; - } + numpages = 1; if (chip == -1) { - /* - * Note that numblocks is 2 * (real numblocks) here, see i+=2 - * below as it makes shifting and masking less painful - */ - numblocks = mtd->size >> (this->bbt_erase_shift - 1); + numblocks = mtd->size >> this->bbt_erase_shift; startblock = 0; from = 0; } else { @@ -501,37 +479,31 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, chip + 1, this->numchips); return -EINVAL; } - numblocks = this->chipsize >> (this->bbt_erase_shift - 1); + numblocks = this->chipsize >> this->bbt_erase_shift; startblock = chip * numblocks; numblocks += startblock; - from = (loff_t)startblock << (this->bbt_erase_shift - 1); + from = (loff_t)startblock << this->bbt_erase_shift; } if (this->bbt_options & NAND_BBT_SCANLASTPAGE) - from += mtd->erasesize - (mtd->writesize * len); + from += mtd->erasesize - (mtd->writesize * numpages); - for (i = startblock; i < numblocks;) { + for (i = startblock; i < numblocks; i++) { int ret; BUG_ON(bd->options & NAND_BBT_NO_OOB); - if (bd->options & NAND_BBT_SCANALLPAGES) - ret = scan_block_full(mtd, bd, from, buf, readlen, - scanlen, len); - else - ret = scan_block_fast(mtd, bd, from, buf, len); - + ret = scan_block_fast(mtd, bd, from, buf, numpages); if (ret < 0) return ret; if (ret) { - this->bbt[i >> 3] |= 0x03 << (i & 0x6); + bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD); pr_warn("Bad eraseblock %d at 0x%012llx\n", - i >> 1, (unsigned long long)from); + i, (unsigned long long)from); mtd->ecc_stats.badblocks++; } - i += 2; from += (1 << this->bbt_erase_shift); } return 0; @@ -556,7 +528,7 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr { struct nand_chip *this = mtd->priv; int i, chips; - int bits, startblock, block, dir; + int startblock, block, dir; int scanlen = mtd->writesize + mtd->oobsize; int bbtblocks; int blocktopage = this->bbt_erase_shift - this->page_shift; @@ -580,9 +552,6 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr bbtblocks = mtd->size >> this->bbt_erase_shift; } - /* Number of bits for each erase block in the bbt */ - bits = td->options & NAND_BBT_NRBITS_MSK; - for (i = 0; i < chips; i++) { /* Reset version information */ td->version[i] = 0; @@ -594,7 +563,7 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr loff_t offs = (loff_t)actblock << this->bbt_erase_shift; /* Read first page */ - scan_read_raw(mtd, buf, offs, mtd->writesize, td); + scan_read(mtd, buf, offs, mtd->writesize, td); if (!check_pattern(buf, scanlen, mtd->writesize, td)) { td->pages[i] = actblock << blocktopage; if (td->options & NAND_BBT_VERSION) { @@ -626,7 +595,9 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr * * Search and read the bad block table(s). */ -static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) +static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, + struct nand_bbt_descr *md) { /* Search the primary table */ search_bbt(mtd, buf, td); @@ -634,9 +605,6 @@ static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt /* Search the mirror table */ if (md) search_bbt(mtd, buf, md); - - /* Force result check */ - return 1; } /** @@ -655,9 +623,9 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, { struct nand_chip *this = mtd->priv; struct erase_info einfo; - int i, j, res, chip = 0; + int i, res, chip = 0; int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; - int nrchips, bbtoffs, pageoffs, ooboffs; + int nrchips, pageoffs, ooboffs; uint8_t msk[4]; uint8_t rcode = td->reserved_block_code; size_t retlen, len = 0; @@ -713,10 +681,9 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, for (i = 0; i < td->maxblocks; i++) { int block = startblock + dir * i; /* Check, if the block is bad */ - switch ((this->bbt[block >> 2] >> - (2 * (block & 0x03))) & 0x03) { - case 0x01: - case 0x03: + switch (bbt_get_entry(this, block)) { + case BBT_BLOCK_WORN: + case BBT_BLOCK_FACTORY_BAD: continue; } page = block << @@ -748,8 +715,6 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, default: return -EINVAL; } - bbtoffs = chip * (numblocks >> 2); - to = ((loff_t)page) << this->page_shift; /* Must we save the block contents? */ @@ -814,16 +779,12 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, buf[ooboffs + td->veroffs] = td->version[chip]; /* Walk through the memory table */ - for (i = 0; i < numblocks;) { + for (i = 0; i < numblocks; i++) { uint8_t dat; - dat = this->bbt[bbtoffs + (i >> 2)]; - for (j = 0; j < 4; j++, i++) { - int sftcnt = (i << (3 - sft)) & sftmsk; - /* Do not store the reserved bbt blocks! */ - buf[offs + (i >> sft)] &= - ~(msk[dat & 0x03] << sftcnt); - dat >>= 2; - } + int sftcnt = (i << (3 - sft)) & sftmsk; + dat = bbt_get_entry(this, chip * numblocks + i); + /* Do not store the reserved bbt blocks! */ + buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt); } memset(&einfo, 0, sizeof(einfo)); @@ -865,7 +826,6 @@ static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *b { struct nand_chip *this = mtd->priv; - bd->options &= ~NAND_BBT_SCANEMPTY; return create_bbt(mtd, this->buffers->databuf, bd, -1); } @@ -1009,7 +969,7 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, j, chips, block, nrblocks, update; - uint8_t oldval, newval; + uint8_t oldval; /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { @@ -1026,12 +986,12 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) if (td->pages[i] == -1) continue; block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); - block <<= 1; - oldval = this->bbt[(block >> 3)]; - newval = oldval | (0x2 << (block & 0x06)); - this->bbt[(block >> 3)] = newval; - if ((oldval != newval) && td->reserved_block_code) - nand_update_bbt(mtd, (loff_t)block << (this->bbt_erase_shift - 1)); + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if ((oldval != BBT_BLOCK_RESERVED) && + td->reserved_block_code) + nand_update_bbt(mtd, (loff_t)block << + this->bbt_erase_shift); continue; } update = 0; @@ -1039,14 +999,12 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) block = ((i + 1) * nrblocks) - td->maxblocks; else block = i * nrblocks; - block <<= 1; for (j = 0; j < td->maxblocks; j++) { - oldval = this->bbt[(block >> 3)]; - newval = oldval | (0x2 << (block & 0x06)); - this->bbt[(block >> 3)] = newval; - if (oldval != newval) + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if (oldval != BBT_BLOCK_RESERVED) update = 1; - block += 2; + block++; } /* * If we want reserved blocks to be recorded to flash, and some @@ -1054,7 +1012,8 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) * bbts. This should only happen once. */ if (update && td->reserved_block_code) - nand_update_bbt(mtd, (loff_t)(block - 2) << (this->bbt_erase_shift - 1)); + nand_update_bbt(mtd, (loff_t)(block - 1) << + this->bbt_erase_shift); } } @@ -1162,14 +1121,13 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) /* Is the bbt at a given page? */ if (td->options & NAND_BBT_ABSPAGE) { - res = read_abs_bbts(mtd, buf, td, md); + read_abs_bbts(mtd, buf, td, md); } else { /* Search the bad block table using a pattern in oob */ - res = search_read_bbts(mtd, buf, td, md); + search_read_bbts(mtd, buf, td, md); } - if (res) - res = check_create(mtd, buf, bd); + res = check_create(mtd, buf, bd); /* Prevent the bbt regions from erasing / writing */ mark_bbt_region(mtd, td); @@ -1181,13 +1139,13 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) } /** - * nand_update_bbt - [NAND Interface] update bad block table(s) + * nand_update_bbt - update bad block table(s) * @mtd: MTD device structure * @offs: the offset of the newly marked block * * The function updates the bad block table(s). */ -int nand_update_bbt(struct mtd_info *mtd, loff_t offs) +static int nand_update_bbt(struct mtd_info *mtd, loff_t offs) { struct nand_chip *this = mtd->priv; int len, res = 0; @@ -1241,15 +1199,6 @@ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) */ static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; -static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; - -static struct nand_bbt_descr agand_flashbased = { - .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, - .offs = 0x20, - .len = 6, - .pattern = scan_agand_pattern -}; - /* Generic flash bbt descriptors */ static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; @@ -1260,7 +1209,7 @@ static struct nand_bbt_descr bbt_main_descr = { .offs = 8, .len = 4, .veroffs = 12, - .maxblocks = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = bbt_pattern }; @@ -1270,27 +1219,27 @@ static struct nand_bbt_descr bbt_mirror_descr = { .offs = 8, .len = 4, .veroffs = 12, - .maxblocks = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = mirror_pattern }; -static struct nand_bbt_descr bbt_main_no_bbt_descr = { +static struct nand_bbt_descr bbt_main_no_oob_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | NAND_BBT_NO_OOB, .len = 4, .veroffs = 4, - .maxblocks = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = bbt_pattern }; -static struct nand_bbt_descr bbt_mirror_no_bbt_descr = { +static struct nand_bbt_descr bbt_mirror_no_oob_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | NAND_BBT_NO_OOB, .len = 4, .veroffs = 4, - .maxblocks = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, .pattern = mirror_pattern }; @@ -1333,30 +1282,15 @@ static int nand_create_badblock_pattern(struct nand_chip *this) int nand_default_bbt(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; - - /* - * Default for AG-AND. We must use a flash based bad block table as the - * devices have factory marked _good_ blocks. Erasing those blocks - * leads to loss of the good / bad information, so we _must_ store this - * information in a good / bad table during startup. - */ - if (this->options & NAND_IS_AND) { - /* Use the default pattern descriptors */ - if (!this->bbt_td) { - this->bbt_td = &bbt_main_descr; - this->bbt_md = &bbt_mirror_descr; - } - this->bbt_options |= NAND_BBT_USE_FLASH; - return nand_scan_bbt(mtd, &agand_flashbased); - } + int ret; /* Is a flash based bad block table requested? */ if (this->bbt_options & NAND_BBT_USE_FLASH) { /* Use the default pattern descriptors */ if (!this->bbt_td) { if (this->bbt_options & NAND_BBT_NO_OOB) { - this->bbt_td = &bbt_main_no_bbt_descr; - this->bbt_md = &bbt_mirror_no_bbt_descr; + this->bbt_td = &bbt_main_no_oob_descr; + this->bbt_md = &bbt_mirror_no_oob_descr; } else { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; @@ -1367,8 +1301,11 @@ int nand_default_bbt(struct mtd_info *mtd) this->bbt_md = NULL; } - if (!this->badblock_pattern) - nand_create_badblock_pattern(this); + if (!this->badblock_pattern) { + ret = nand_create_badblock_pattern(this); + if (ret) + return ret; + } return nand_scan_bbt(mtd, this->badblock_pattern); } @@ -1382,27 +1319,46 @@ int nand_default_bbt(struct mtd_info *mtd) int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) { struct nand_chip *this = mtd->priv; - int block; - uint8_t res; + int block, res; - /* Get block number * 2 */ - block = (int)(offs >> (this->bbt_erase_shift - 1)); - res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; + block = (int)(offs >> this->bbt_erase_shift); + res = bbt_get_entry(this, block); pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: " "(block %d) 0x%02x\n", - (unsigned int)offs, block >> 1, res); + (unsigned int)offs, block, res); - switch ((int)res) { - case 0x00: + switch (res) { + case BBT_BLOCK_GOOD: return 0; - case 0x01: + case BBT_BLOCK_WORN: return 1; - case 0x02: + case BBT_BLOCK_RESERVED: return allowbbt ? 0 : 1; } return 1; } +/** + * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT + * @mtd: MTD device structure + * @offs: offset of the bad block + */ +int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *this = mtd->priv; + int block, ret = 0; + + block = (int)(offs >> this->bbt_erase_shift); + + /* Mark bad block in memory */ + bbt_mark_entry(this, block, BBT_BLOCK_WORN); + + /* Update flash-based bad block table */ + if (this->bbt_options & NAND_BBT_USE_FLASH) + ret = nand_update_bbt(mtd, offs); + + return ret; +} + EXPORT_SYMBOL(nand_scan_bbt); -EXPORT_SYMBOL(nand_default_bbt); diff --git a/drivers/mtd/nand/nand_bcm_umi.c b/drivers/mtd/nand/nand_bcm_umi.c deleted file mode 100644 index 46a6bc9c4b7..00000000000 --- a/drivers/mtd/nand/nand_bcm_umi.c +++ /dev/null @@ -1,149 +0,0 @@ -/***************************************************************************** -* Copyright 2004 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ - -/* ---- Include Files ---------------------------------------------------- */ -#include <mach/reg_umi.h> -#include "nand_bcm_umi.h" -#ifdef BOOT0_BUILD -#include <uart.h> -#endif - -/* ---- External Variable Declarations ----------------------------------- */ -/* ---- External Function Prototypes ------------------------------------- */ -/* ---- Public Variables ------------------------------------------------- */ -/* ---- Private Constants and Types -------------------------------------- */ -/* ---- Private Function Prototypes -------------------------------------- */ -/* ---- Private Variables ------------------------------------------------ */ -/* ---- Private Functions ------------------------------------------------ */ - -#if NAND_ECC_BCH -/**************************************************************************** -* nand_bch_ecc_flip_bit - Routine to flip an errored bit -* -* PURPOSE: -* This is a helper routine that flips the bit (0 -> 1 or 1 -> 0) of the -* errored bit specified -* -* PARAMETERS: -* datap - Container that holds the 512 byte data -* errorLocation - Location of the bit that needs to be flipped -* -* RETURNS: -* None -****************************************************************************/ -static void nand_bcm_umi_bch_ecc_flip_bit(uint8_t *datap, int errorLocation) -{ - int locWithinAByte = (errorLocation & REG_UMI_BCH_ERR_LOC_BYTE) >> 0; - int locWithinAWord = (errorLocation & REG_UMI_BCH_ERR_LOC_WORD) >> 3; - int locWithinAPage = (errorLocation & REG_UMI_BCH_ERR_LOC_PAGE) >> 5; - - uint8_t errorByte = 0; - uint8_t byteMask = 1 << locWithinAByte; - - /* BCH uses big endian, need to change the location - * bits to little endian */ - locWithinAWord = 3 - locWithinAWord; - - errorByte = datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord]; - -#ifdef BOOT0_BUILD - puthexs("\nECC Correct Offset: ", - locWithinAPage * sizeof(uint32_t) + locWithinAWord); - puthexs(" errorByte:", errorByte); - puthex8(" Bit: ", locWithinAByte); -#endif - - if (errorByte & byteMask) { - /* bit needs to be cleared */ - errorByte &= ~byteMask; - } else { - /* bit needs to be set */ - errorByte |= byteMask; - } - - /* write back the value with the fixed bit */ - datap[locWithinAPage * sizeof(uint32_t) + locWithinAWord] = errorByte; -} - -/**************************************************************************** -* nand_correct_page_bch - Routine to correct bit errors when reading NAND -* -* PURPOSE: -* This routine reads the BCH registers to determine if there are any bit -* errors during the read of the last 512 bytes of data + ECC bytes. If -* errors exists, the routine fixes it. -* -* PARAMETERS: -* datap - Container that holds the 512 byte data -* -* RETURNS: -* 0 or greater = Number of errors corrected -* (No errors are found or errors have been fixed) -* -1 = Error(s) cannot be fixed -****************************************************************************/ -int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, - int numEccBytes) -{ - int numErrors; - int errorLocation; - int idx; - uint32_t regValue; - - /* wait for read ECC to be valid */ - regValue = nand_bcm_umi_bch_poll_read_ecc_calc(); - - /* - * read the control status register to determine if there - * are error'ed bits - * see if errors are correctible - */ - if ((regValue & REG_UMI_BCH_CTRL_STATUS_UNCORR_ERR) > 0) { - int i; - - for (i = 0; i < numEccBytes; i++) { - if (readEccData[i] != 0xff) { - /* errors cannot be fixed, return -1 */ - return -1; - } - } - /* If ECC is unprogrammed then we can't correct, - * assume everything OK */ - return 0; - } - - if ((regValue & REG_UMI_BCH_CTRL_STATUS_CORR_ERR) == 0) { - /* no errors */ - return 0; - } - - /* - * Fix errored bits by doing the following: - * 1. Read the number of errors in the control and status register - * 2. Read the error location registers that corresponds to the number - * of errors reported - * 3. Invert the bit in the data - */ - numErrors = (regValue & REG_UMI_BCH_CTRL_STATUS_NB_CORR_ERROR) >> 20; - - for (idx = 0; idx < numErrors; idx++) { - errorLocation = - REG_UMI_BCH_ERR_LOC_ADDR(idx) & REG_UMI_BCH_ERR_LOC_MASK; - - /* Flip bit */ - nand_bcm_umi_bch_ecc_flip_bit(datap, errorLocation); - } - /* Errors corrected */ - return numErrors; -} -#endif diff --git a/drivers/mtd/nand/nand_bcm_umi.h b/drivers/mtd/nand/nand_bcm_umi.h deleted file mode 100644 index 198b304d6f7..00000000000 --- a/drivers/mtd/nand/nand_bcm_umi.h +++ /dev/null @@ -1,337 +0,0 @@ -/***************************************************************************** -* Copyright 2003 - 2009 Broadcom Corporation. All rights reserved. -* -* Unless you and Broadcom execute a separate written software license -* agreement governing use of this software, this software is licensed to you -* under the terms of the GNU General Public License version 2, available at -* http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). -* -* Notwithstanding the above, under no circumstances may you combine this -* software in any way with any other Broadcom software provided under a -* license other than the GPL, without Broadcom's express prior written -* consent. -*****************************************************************************/ -#ifndef NAND_BCM_UMI_H -#define NAND_BCM_UMI_H - -/* ---- Include Files ---------------------------------------------------- */ -#include <mach/reg_umi.h> -#include <mach/reg_nand.h> -#include <cfg_global.h> - -/* ---- Constants and Types ---------------------------------------------- */ -#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING) -#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0) -#else -#define NAND_ECC_BCH 0 -#endif - -#define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13 - -#if NAND_ECC_BCH -#ifdef BOOT0_BUILD -#define NAND_ECC_NUM_BYTES 13 -#else -#define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES -#endif -#else -#define NAND_ECC_NUM_BYTES 3 -#endif - -#define NAND_DATA_ACCESS_SIZE 512 - -/* ---- Variable Externs ------------------------------------------ */ -/* ---- Function Prototypes --------------------------------------- */ -int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData, - int numEccBytes); - -/* Check in device is ready */ -static inline int nand_bcm_umi_dev_ready(void) -{ - return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY; -} - -/* Wait until device is ready */ -static inline void nand_bcm_umi_wait_till_ready(void) -{ - while (nand_bcm_umi_dev_ready() == 0) - ; -} - -/* Enable Hamming ECC */ -static inline void nand_bcm_umi_hamming_enable_hwecc(void) -{ - /* disable and reset ECC, 512 byte page */ - REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE | - REG_UMI_NAND_ECC_CSR_256BYTE); - /* enable ECC */ - REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE; -} - -#if NAND_ECC_BCH -/* BCH ECC specifics */ -#define ECC_BITS_PER_CORRECTABLE_BIT 13 - -/* Enable BCH Read ECC */ -static inline void nand_bcm_umi_bch_enable_read_hwecc(void) -{ - /* disable and reset ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; - /* Turn on ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; -} - -/* Enable BCH Write ECC */ -static inline void nand_bcm_umi_bch_enable_write_hwecc(void) -{ - /* disable and reset ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID; - /* Turn on ECC */ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN; -} - -/* Config number of BCH ECC bytes */ -static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes) -{ - uint32_t nValue; - uint32_t tValue; - uint32_t kValue; - uint32_t numBits = numEccBytes * 8; - - /* disable and reset ECC */ - REG_UMI_BCH_CTRL_STATUS = - REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID | - REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID; - - /* Every correctible bit requires 13 ECC bits */ - tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT); - - /* Total data in number of bits for generating and computing BCH ECC */ - nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8; - - /* K parameter is used internally. K = N - (T * 13) */ - kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT); - - /* Write the settings */ - REG_UMI_BCH_N = nValue; - REG_UMI_BCH_T = tValue; - REG_UMI_BCH_K = kValue; -} - -/* Pause during ECC read calculation to skip bytes in OOB */ -static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void) -{ - REG_UMI_BCH_CTRL_STATUS = - REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN | - REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC; -} - -/* Resume during ECC read calculation after skipping bytes in OOB */ -static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void) -{ - REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN; -} - -/* Poll read ECC calc to check when hardware completes */ -static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void) -{ - uint32_t regVal; - - do { - /* wait for ECC to be valid */ - regVal = REG_UMI_BCH_CTRL_STATUS; - } while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0); - - return regVal; -} - -/* Poll write ECC calc to check when hardware completes */ -static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void) -{ - /* wait for ECC to be valid */ - while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID) - == 0) - ; -} - -/* Read the OOB and ECC, for kernel write OOB to a buffer */ -#if defined(__KERNEL__) && !defined(STANDALONE) -static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, - uint8_t *eccCalc, int numEccBytes, uint8_t *oobp) -#else -static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize, - uint8_t *eccCalc, int numEccBytes) -#endif -{ - int eccPos = 0; - int numToRead = 16; /* There are 16 bytes per sector in the OOB */ - - /* ECC is already paused when this function is called */ - if (pageSize != NAND_DATA_ACCESS_SIZE) { - /* skip BI */ -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp++ = REG_NAND_DATA8; -#else - REG_NAND_DATA8; -#endif - numToRead--; - } - - while (numToRead > numEccBytes) { - /* skip free oob region */ -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp++ = REG_NAND_DATA8; -#else - REG_NAND_DATA8; -#endif - numToRead--; - } - - if (pageSize == NAND_DATA_ACCESS_SIZE) { - /* read ECC bytes before BI */ - nand_bcm_umi_bch_resume_read_ecc_calc(); - - while (numToRead > 11) { -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp = REG_NAND_DATA8; - eccCalc[eccPos++] = *oobp; - oobp++; -#else - eccCalc[eccPos++] = REG_NAND_DATA8; -#endif - numToRead--; - } - - nand_bcm_umi_bch_pause_read_ecc_calc(); - - if (numToRead == 11) { - /* read BI */ -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp++ = REG_NAND_DATA8; -#else - REG_NAND_DATA8; -#endif - numToRead--; - } - - } - /* read ECC bytes */ - nand_bcm_umi_bch_resume_read_ecc_calc(); - while (numToRead) { -#if defined(__KERNEL__) && !defined(STANDALONE) - *oobp = REG_NAND_DATA8; - eccCalc[eccPos++] = *oobp; - oobp++; -#else - eccCalc[eccPos++] = REG_NAND_DATA8; -#endif - numToRead--; - } -} - -/* Helper function to write ECC */ -static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos, - uint8_t *oobp, uint8_t eccVal) -{ - if (eccBytePos <= numEccBytes) - *oobp = eccVal; -} - -/* Write OOB with ECC */ -static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize, - uint8_t *oobp, int numEccBytes) -{ - uint32_t eccVal = 0xffffffff; - - /* wait for write ECC to be valid */ - nand_bcm_umi_bch_poll_write_ecc_calc(); - - /* - ** Get the hardware ecc from the 32-bit result registers. - ** Read after 512 byte accesses. Format B3B2B1B0 - ** where B3 = ecc3, etc. - */ - - if (pageSize == NAND_DATA_ACCESS_SIZE) { - /* Now fill in the ECC bytes */ - if (numEccBytes >= 13) - eccVal = REG_UMI_BCH_WR_ECC_3; - - /* Usually we skip CM in oob[0,1] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0], - (eccVal >> 16) & 0xff); - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1], - (eccVal >> 8) & 0xff); - - /* Write ECC in oob[2,3,4] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2], - eccVal & 0xff); /* ECC 12 */ - - if (numEccBytes >= 9) - eccVal = REG_UMI_BCH_WR_ECC_2; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3], - (eccVal >> 24) & 0xff); /* ECC11 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4], - (eccVal >> 16) & 0xff); /* ECC10 */ - - /* Always Skip BI in oob[5] */ - } else { - /* Always Skip BI in oob[0] */ - - /* Now fill in the ECC bytes */ - if (numEccBytes >= 13) - eccVal = REG_UMI_BCH_WR_ECC_3; - - /* Usually skip CM in oob[1,2] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1], - (eccVal >> 16) & 0xff); - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2], - (eccVal >> 8) & 0xff); - - /* Write ECC in oob[3-15] */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3], - eccVal & 0xff); /* ECC12 */ - - if (numEccBytes >= 9) - eccVal = REG_UMI_BCH_WR_ECC_2; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4], - (eccVal >> 24) & 0xff); /* ECC11 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5], - (eccVal >> 16) & 0xff); /* ECC10 */ - } - - /* Fill in the remainder of ECC locations */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6], - (eccVal >> 8) & 0xff); /* ECC9 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7], - eccVal & 0xff); /* ECC8 */ - - if (numEccBytes >= 5) - eccVal = REG_UMI_BCH_WR_ECC_1; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8], - (eccVal >> 24) & 0xff); /* ECC7 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9], - (eccVal >> 16) & 0xff); /* ECC6 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10], - (eccVal >> 8) & 0xff); /* ECC5 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11], - eccVal & 0xff); /* ECC4 */ - - if (numEccBytes >= 1) - eccVal = REG_UMI_BCH_WR_ECC_0; - - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12], - (eccVal >> 24) & 0xff); /* ECC3 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13], - (eccVal >> 16) & 0xff); /* ECC2 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14], - (eccVal >> 8) & 0xff); /* ECC1 */ - NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15], - eccVal & 0xff); /* ECC0 */ -} -#endif - -#endif /* NAND_BCM_UMI_H */ diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c index b7cfe0d3712..97c4c0216c9 100644 --- a/drivers/mtd/nand/nand_ecc.c +++ b/drivers/mtd/nand/nand_ecc.c @@ -55,8 +55,7 @@ struct mtd_info; #define MODULE_AUTHOR(x) /* x */ #define MODULE_DESCRIPTION(x) /* x */ -#define printk printf -#define KERN_ERR "" +#define pr_err printf #endif /* @@ -507,7 +506,7 @@ int __nand_correct_data(unsigned char *buf, if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) return 1; /* error in ECC data; no action needed */ - printk(KERN_ERR "uncorrectable error : "); + pr_err("%s: uncorrectable ECC error\n", __func__); return -1; } EXPORT_SYMBOL(__nand_correct_data); diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c index 621b70b7a15..3d7c89fc103 100644 --- a/drivers/mtd/nand/nand_ids.c +++ b/drivers/mtd/nand/nand_ids.c @@ -10,161 +10,156 @@ */ #include <linux/module.h> #include <linux/mtd/nand.h> +#include <linux/sizes.h> + +#define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS +#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) + +#define SP_OPTIONS NAND_NEED_READRDY +#define SP_OPTIONS16 (SP_OPTIONS | NAND_BUSWIDTH_16) + /* -* Chip ID list -* -* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size, -* options -* -* Pagesize; 0, 256, 512 -* 0 get this information from the extended chip ID -+ 256 256 Byte page size -* 512 512 Byte page size -*/ + * The chip ID list: + * name, device ID, page size, chip size in MiB, eraseblock size, options + * + * If page size and eraseblock size are 0, the sizes are taken from the + * extended chip ID. + */ struct nand_flash_dev nand_flash_ids[] = { - -#ifdef CONFIG_MTD_NAND_MUSEUM_IDS - {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0}, - {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0}, - {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0}, - {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0}, - {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0}, - {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0}, - {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0}, - {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0}, - {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0}, - {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0}, - - {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0}, - {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0}, - {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, - {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, -#endif - - {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0}, - {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0}, - {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0}, - {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0}, - {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0}, - {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0}, - {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0}, - {"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0}, - {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0}, - {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - {"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16}, - - {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0}, + /* + * Some incompatible NAND chips share device ID's and so must be + * listed by full ID. We list them first so that we can easily identify + * the most specific match. + */ + {"TC58NVG2S0F 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} }, + SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG3S0F 8G 3.3V 8-bit", + { .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} }, + SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG5D2 32G 3.3V 8-bit", + { .id = {0x98, 0xd7, 0x94, 0x32, 0x76, 0x56, 0x09, 0x00} }, + SZ_8K, SZ_4K, SZ_1M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"TC58NVG6D2 64G 3.3V 8-bit", + { .id = {0x98, 0xde, 0x94, 0x82, 0x76, 0x56, 0x04, 0x20} }, + SZ_8K, SZ_8K, SZ_2M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"SDTNRGAMA 64G 3.3V 8-bit", + { .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} }, + SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) }, + + LEGACY_ID_NAND("NAND 4MiB 5V 8-bit", 0x6B, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE5, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xD6, 8, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xE6, 8, SZ_8K, SP_OPTIONS), + + LEGACY_ID_NAND("NAND 16MiB 1,8V 8-bit", 0x33, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 3,3V 8-bit", 0x73, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 1,8V 16-bit", 0x43, 16, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 16MiB 3,3V 16-bit", 0x53, 16, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 32MiB 1,8V 8-bit", 0x35, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 3,3V 8-bit", 0x75, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 1,8V 16-bit", 0x45, 32, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 32MiB 3,3V 16-bit", 0x55, 32, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 64MiB 1,8V 8-bit", 0x36, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 3,3V 8-bit", 0x76, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 1,8V 16-bit", 0x46, 64, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 64MiB 3,3V 16-bit", 0x56, 64, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x78, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x39, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 3,3V 8-bit", 0x79, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x72, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x49, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x74, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x59, 128, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 256MiB 3,3V 8-bit", 0x71, 256, SZ_16K, SP_OPTIONS), /* - * These are the new chips with large page size. The pagesize and the - * erasesize is determined from the extended id bytes + * These are the new chips with large page size. Their page size and + * eraseblock size are determined from the extended ID bytes. */ -#define LP_OPTIONS (NAND_SAMSUNG_LP_OPTIONS | NAND_NO_READRDY) -#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) /* 512 Megabit */ - {"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS}, - {"NAND 64MiB 1,8V 8-bit", 0xA0, 0, 64, 0, LP_OPTIONS}, - {"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS}, - {"NAND 64MiB 3,3V 8-bit", 0xD0, 0, 64, 0, LP_OPTIONS}, - {"NAND 64MiB 3,3V 8-bit", 0xF0, 0, 64, 0, LP_OPTIONS}, - {"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16}, - {"NAND 64MiB 1,8V 16-bit", 0xB0, 0, 64, 0, LP_OPTIONS16}, - {"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16}, - {"NAND 64MiB 3,3V 16-bit", 0xC0, 0, 64, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xD0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB0, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC0, 64, LP_OPTIONS16), /* 1 Gigabit */ - {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS}, - {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS}, - {"NAND 128MiB 3,3V 8-bit", 0xD1, 0, 128, 0, LP_OPTIONS}, - {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16}, - {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16}, - {"NAND 128MiB 1,8V 16-bit", 0xAD, 0, 128, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 128MiB 1,8V 8-bit", 0xA1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xF1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xD1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xB1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 16-bit", 0xC1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xAD, 128, LP_OPTIONS16), /* 2 Gigabit */ - {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS}, - {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS}, - {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16}, - {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 256MiB 1,8V 8-bit", 0xAA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 8-bit", 0xDA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 1,8V 16-bit", 0xBA, 256, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 16-bit", 0xCA, 256, LP_OPTIONS16), /* 4 Gigabit */ - {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS}, - {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS}, - {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16}, - {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 512MiB 1,8V 8-bit", 0xAC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 8-bit", 0xDC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 1,8V 16-bit", 0xBC, 512, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 16-bit", 0xCC, 512, LP_OPTIONS16), /* 8 Gigabit */ - {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS}, - {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS}, - {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16}, - {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 1GiB 1,8V 8-bit", 0xA3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 8-bit", 0xD3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 1,8V 16-bit", 0xB3, 1024, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 16-bit", 0xC3, 1024, LP_OPTIONS16), /* 16 Gigabit */ - {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS}, - {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS}, - {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16}, - {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 2GiB 1,8V 8-bit", 0xA5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 8-bit", 0xD5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 1,8V 16-bit", 0xB5, 2048, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 16-bit", 0xC5, 2048, LP_OPTIONS16), /* 32 Gigabit */ - {"NAND 4GiB 1,8V 8-bit", 0xA7, 0, 4096, 0, LP_OPTIONS}, - {"NAND 4GiB 3,3V 8-bit", 0xD7, 0, 4096, 0, LP_OPTIONS}, - {"NAND 4GiB 1,8V 16-bit", 0xB7, 0, 4096, 0, LP_OPTIONS16}, - {"NAND 4GiB 3,3V 16-bit", 0xC7, 0, 4096, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 4GiB 1,8V 8-bit", 0xA7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 8-bit", 0xD7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 1,8V 16-bit", 0xB7, 4096, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 16-bit", 0xC7, 4096, LP_OPTIONS16), /* 64 Gigabit */ - {"NAND 8GiB 1,8V 8-bit", 0xAE, 0, 8192, 0, LP_OPTIONS}, - {"NAND 8GiB 3,3V 8-bit", 0xDE, 0, 8192, 0, LP_OPTIONS}, - {"NAND 8GiB 1,8V 16-bit", 0xBE, 0, 8192, 0, LP_OPTIONS16}, - {"NAND 8GiB 3,3V 16-bit", 0xCE, 0, 8192, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 8GiB 1,8V 8-bit", 0xAE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 8-bit", 0xDE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 1,8V 16-bit", 0xBE, 8192, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 16-bit", 0xCE, 8192, LP_OPTIONS16), /* 128 Gigabit */ - {"NAND 16GiB 1,8V 8-bit", 0x1A, 0, 16384, 0, LP_OPTIONS}, - {"NAND 16GiB 3,3V 8-bit", 0x3A, 0, 16384, 0, LP_OPTIONS}, - {"NAND 16GiB 1,8V 16-bit", 0x2A, 0, 16384, 0, LP_OPTIONS16}, - {"NAND 16GiB 3,3V 16-bit", 0x4A, 0, 16384, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 16GiB 1,8V 8-bit", 0x1A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 8-bit", 0x3A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 1,8V 16-bit", 0x2A, 16384, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 16-bit", 0x4A, 16384, LP_OPTIONS16), /* 256 Gigabit */ - {"NAND 32GiB 1,8V 8-bit", 0x1C, 0, 32768, 0, LP_OPTIONS}, - {"NAND 32GiB 3,3V 8-bit", 0x3C, 0, 32768, 0, LP_OPTIONS}, - {"NAND 32GiB 1,8V 16-bit", 0x2C, 0, 32768, 0, LP_OPTIONS16}, - {"NAND 32GiB 3,3V 16-bit", 0x4C, 0, 32768, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 32GiB 1,8V 8-bit", 0x1C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 8-bit", 0x3C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 1,8V 16-bit", 0x2C, 32768, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 16-bit", 0x4C, 32768, LP_OPTIONS16), /* 512 Gigabit */ - {"NAND 64GiB 1,8V 8-bit", 0x1E, 0, 65536, 0, LP_OPTIONS}, - {"NAND 64GiB 3,3V 8-bit", 0x3E, 0, 65536, 0, LP_OPTIONS}, - {"NAND 64GiB 1,8V 16-bit", 0x2E, 0, 65536, 0, LP_OPTIONS16}, - {"NAND 64GiB 3,3V 16-bit", 0x4E, 0, 65536, 0, LP_OPTIONS16}, + EXTENDED_ID_NAND("NAND 64GiB 1,8V 8-bit", 0x1E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 8-bit", 0x3E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 1,8V 16-bit", 0x2E, 65536, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 16-bit", 0x4E, 65536, LP_OPTIONS16), - /* - * Renesas AND 1 Gigabit. Those chips do not support extended id and - * have a strange page/block layout ! The chosen minimum erasesize is - * 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page - * planes 1 block = 2 pages, but due to plane arrangement the blocks - * 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7 Anyway JFFS2 would - * increase the eraseblock size so we chose a combined one which can be - * erased in one go There are more speed improvements for reads and - * writes possible, but not implemented now - */ - {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, - NAND_IS_AND | NAND_NO_READRDY | NAND_4PAGE_ARRAY | BBT_AUTO_REFRESH}, - - {NULL,} + {NULL} }; -/* -* Manufacturer ID list -*/ +/* Manufacturer IDs */ struct nand_manufacturers nand_manuf_ids[] = { {NAND_MFR_TOSHIBA, "Toshiba"}, {NAND_MFR_SAMSUNG, "Samsung"}, @@ -174,8 +169,11 @@ struct nand_manufacturers nand_manuf_ids[] = { {NAND_MFR_STMICRO, "ST Micro"}, {NAND_MFR_HYNIX, "Hynix"}, {NAND_MFR_MICRON, "Micron"}, - {NAND_MFR_AMD, "AMD"}, + {NAND_MFR_AMD, "AMD/Spansion"}, {NAND_MFR_MACRONIX, "Macronix"}, + {NAND_MFR_EON, "Eon"}, + {NAND_MFR_SANDISK, "SanDisk"}, + {NAND_MFR_INTEL, "Intel"}, {0x0, "Unknown"} }; diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index cf0cd314681..4f0d83648e5 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c @@ -42,6 +42,8 @@ #include <linux/sched.h> #include <linux/fs.h> #include <linux/pagemap.h> +#include <linux/seq_file.h> +#include <linux/debugfs.h> /* Default simulator parameters values */ #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ @@ -105,7 +107,6 @@ static char *weakblocks = NULL; static char *weakpages = NULL; static unsigned int bitflips = 0; static char *gravepages = NULL; -static unsigned int rptwear = 0; static unsigned int overridesize = 0; static char *cache_file = NULL; static unsigned int bbt; @@ -130,7 +131,6 @@ module_param(weakblocks, charp, 0400); module_param(weakpages, charp, 0400); module_param(bitflips, uint, 0400); module_param(gravepages, charp, 0400); -module_param(rptwear, uint, 0400); module_param(overridesize, uint, 0400); module_param(cache_file, charp, 0400); module_param(bbt, uint, 0400); @@ -162,7 +162,6 @@ MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (z MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" " separated by commas e.g. 1401:2 means page 1401" " can be read only twice before failing"); -MODULE_PARM_DESC(rptwear, "Number of erases between reporting wear, if not zero"); MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " "The size is specified in erase blocks and as the exponent of a power of two" " e.g. 5 means a size of 32 erase blocks"); @@ -206,7 +205,7 @@ MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " /* Calculate the page offset in flash RAM image by (row, column) address */ #define NS_RAW_OFFSET(ns) \ - (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column) + (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) /* Calculate the OOB offset in flash RAM image by (row, column) address */ #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) @@ -219,7 +218,6 @@ MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ #define STATE_CMD_STATUS 0x00000007 /* read status */ -#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */ #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ #define STATE_CMD_READID 0x0000000A /* read ID */ #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ @@ -264,14 +262,13 @@ MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " #define NS_OPER_STATES 6 /* Maximum number of states in operation */ #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ -#define OPT_PAGE256 0x00000001 /* 256-byte page chips */ #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */ #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ -#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */ +#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ /* Remove action bits from state */ #define NS_STATE(x) ((x) & ~ACTION_MASK) @@ -286,6 +283,11 @@ MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ #define NS_MAX_HELD_PAGES 16 +struct nandsim_debug_info { + struct dentry *dfs_root; + struct dentry *dfs_wear_report; +}; + /* * A union to represent flash memory contents and flash buffer. */ @@ -334,7 +336,6 @@ struct nandsim { uint pgsec; /* number of pages per sector */ uint secshift; /* bits number in sector size */ uint pgshift; /* bits number in page size */ - uint oobshift; /* bits number in OOB size */ uint pgaddrbytes; /* bytes per page address */ uint secaddrbytes; /* bytes per sector address */ uint idbytes; /* the number ID bytes that this chip outputs */ @@ -361,10 +362,12 @@ struct nandsim { /* Fields needed when using a cache file */ struct file *cfile; /* Open file */ - unsigned char *pages_written; /* Which pages have been written */ + unsigned long *pages_written; /* Which pages have been written */ void *file_buf; struct page *held_pages[NS_MAX_HELD_PAGES]; int held_cnt; + + struct nandsim_debug_info dbg; }; /* @@ -400,8 +403,6 @@ static struct nandsim_operations { {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, /* Read status */ {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, - /* Read multi-plane status */ - {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}}, /* Read ID */ {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, /* Large page devices read page */ @@ -442,12 +443,122 @@ static LIST_HEAD(grave_pages); static unsigned long *erase_block_wear = NULL; static unsigned int wear_eb_count = 0; static unsigned long total_wear = 0; -static unsigned int rptwear_cnt = 0; /* MTD structure for NAND controller */ static struct mtd_info *nsmtd; -static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; +static int nandsim_debugfs_show(struct seq_file *m, void *private) +{ + unsigned long wmin = -1, wmax = 0, avg; + unsigned long deciles[10], decile_max[10], tot = 0; + unsigned int i; + + /* Calc wear stats */ + for (i = 0; i < wear_eb_count; ++i) { + unsigned long wear = erase_block_wear[i]; + if (wear < wmin) + wmin = wear; + if (wear > wmax) + wmax = wear; + tot += wear; + } + + for (i = 0; i < 9; ++i) { + deciles[i] = 0; + decile_max[i] = (wmax * (i + 1) + 5) / 10; + } + deciles[9] = 0; + decile_max[9] = wmax; + for (i = 0; i < wear_eb_count; ++i) { + int d; + unsigned long wear = erase_block_wear[i]; + for (d = 0; d < 10; ++d) + if (wear <= decile_max[d]) { + deciles[d] += 1; + break; + } + } + avg = tot / wear_eb_count; + + /* Output wear report */ + seq_printf(m, "Total numbers of erases: %lu\n", tot); + seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); + seq_printf(m, "Average number of erases: %lu\n", avg); + seq_printf(m, "Maximum number of erases: %lu\n", wmax); + seq_printf(m, "Minimum number of erases: %lu\n", wmin); + for (i = 0; i < 10; ++i) { + unsigned long from = (i ? decile_max[i - 1] + 1 : 0); + if (from > decile_max[i]) + continue; + seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", + from, + decile_max[i], + deciles[i]); + } + + return 0; +} + +static int nandsim_debugfs_open(struct inode *inode, struct file *file) +{ + return single_open(file, nandsim_debugfs_show, inode->i_private); +} + +static const struct file_operations dfs_fops = { + .open = nandsim_debugfs_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +/** + * nandsim_debugfs_create - initialize debugfs + * @dev: nandsim device description object + * + * This function creates all debugfs files for UBI device @ubi. Returns zero in + * case of success and a negative error code in case of failure. + */ +static int nandsim_debugfs_create(struct nandsim *dev) +{ + struct nandsim_debug_info *dbg = &dev->dbg; + struct dentry *dent; + int err; + + if (!IS_ENABLED(CONFIG_DEBUG_FS)) + return 0; + + dent = debugfs_create_dir("nandsim", NULL); + if (IS_ERR_OR_NULL(dent)) { + int err = dent ? -ENODEV : PTR_ERR(dent); + + NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n", + err); + return err; + } + dbg->dfs_root = dent; + + dent = debugfs_create_file("wear_report", S_IRUSR, + dbg->dfs_root, dev, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dbg->dfs_wear_report = dent; + + return 0; + +out_remove: + debugfs_remove_recursive(dbg->dfs_root); + err = dent ? PTR_ERR(dent) : -ENODEV; + return err; +} + +/** + * nandsim_debugfs_remove - destroy all debugfs files + */ +static void nandsim_debugfs_remove(struct nandsim *ns) +{ + if (IS_ENABLED(CONFIG_DEBUG_FS)) + debugfs_remove_recursive(ns->dbg.dfs_root); +} /* * Allocate array of page pointers, create slab allocation for an array @@ -464,17 +575,18 @@ static int alloc_device(struct nandsim *ns) cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); if (IS_ERR(cfile)) return PTR_ERR(cfile); - if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) { + if (!(cfile->f_mode & FMODE_CAN_READ)) { NS_ERR("alloc_device: cache file not readable\n"); err = -EINVAL; goto err_close; } - if (!cfile->f_op->write && !cfile->f_op->aio_write) { + if (!(cfile->f_mode & FMODE_CAN_WRITE)) { NS_ERR("alloc_device: cache file not writeable\n"); err = -EINVAL; goto err_close; } - ns->pages_written = vzalloc(ns->geom.pgnum); + ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) * + sizeof(unsigned long)); if (!ns->pages_written) { NS_ERR("alloc_device: unable to allocate pages written array\n"); err = -ENOMEM; @@ -541,9 +653,7 @@ static void free_device(struct nandsim *ns) static char *get_partition_name(int i) { - char buf[64]; - sprintf(buf, "NAND simulator partition %d", i); - return kstrdup(buf, GFP_KERNEL); + return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); } /* @@ -578,15 +688,11 @@ static int init_nandsim(struct mtd_info *mtd) ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; ns->geom.secshift = ffs(ns->geom.secsz) - 1; ns->geom.pgshift = chip->page_shift; - ns->geom.oobshift = ffs(ns->geom.oobsz) - 1; ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; ns->options = 0; - if (ns->geom.pgsz == 256) { - ns->options |= OPT_PAGE256; - } - else if (ns->geom.pgsz == 512) { + if (ns->geom.pgsz == 512) { ns->options |= OPT_PAGE512; if (ns->busw == 8) ns->options |= OPT_PAGE512_8BIT; @@ -652,12 +758,6 @@ static int init_nandsim(struct mtd_info *mtd) ns->nbparts += 1; } - /* Detect how many ID bytes the NAND chip outputs */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (second_id_byte != nand_flash_ids[i].id) - continue; - } - if (ns->busw == 16) NS_WARN("16-bit flashes support wasn't tested\n"); @@ -671,7 +771,7 @@ static int init_nandsim(struct mtd_info *mtd) printk("bus width: %u\n", ns->busw); printk("bits in sector size: %u\n", ns->geom.secshift); printk("bits in page size: %u\n", ns->geom.pgshift); - printk("bits in OOB size: %u\n", ns->geom.oobshift); + printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); printk("flash size with OOB: %llu KiB\n", (unsigned long long)ns->geom.totszoob >> 10); printk("page address bytes: %u\n", ns->geom.pgaddrbytes); @@ -913,8 +1013,6 @@ static int setup_wear_reporting(struct mtd_info *mtd) { size_t mem; - if (!rptwear) - return 0; wear_eb_count = div_u64(mtd->size, mtd->erasesize); mem = wear_eb_count * sizeof(unsigned long); if (mem / sizeof(unsigned long) != wear_eb_count) { @@ -931,64 +1029,18 @@ static int setup_wear_reporting(struct mtd_info *mtd) static void update_wear(unsigned int erase_block_no) { - unsigned long wmin = -1, wmax = 0, avg; - unsigned long deciles[10], decile_max[10], tot = 0; - unsigned int i; - if (!erase_block_wear) return; total_wear += 1; + /* + * TODO: Notify this through a debugfs entry, + * instead of showing an error message. + */ if (total_wear == 0) NS_ERR("Erase counter total overflow\n"); erase_block_wear[erase_block_no] += 1; if (erase_block_wear[erase_block_no] == 0) NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); - rptwear_cnt += 1; - if (rptwear_cnt < rptwear) - return; - rptwear_cnt = 0; - /* Calc wear stats */ - for (i = 0; i < wear_eb_count; ++i) { - unsigned long wear = erase_block_wear[i]; - if (wear < wmin) - wmin = wear; - if (wear > wmax) - wmax = wear; - tot += wear; - } - for (i = 0; i < 9; ++i) { - deciles[i] = 0; - decile_max[i] = (wmax * (i + 1) + 5) / 10; - } - deciles[9] = 0; - decile_max[9] = wmax; - for (i = 0; i < wear_eb_count; ++i) { - int d; - unsigned long wear = erase_block_wear[i]; - for (d = 0; d < 10; ++d) - if (wear <= decile_max[d]) { - deciles[d] += 1; - break; - } - } - avg = tot / wear_eb_count; - /* Output wear report */ - NS_INFO("*** Wear Report ***\n"); - NS_INFO("Total numbers of erases: %lu\n", tot); - NS_INFO("Number of erase blocks: %u\n", wear_eb_count); - NS_INFO("Average number of erases: %lu\n", avg); - NS_INFO("Maximum number of erases: %lu\n", wmax); - NS_INFO("Minimum number of erases: %lu\n", wmin); - for (i = 0; i < 10; ++i) { - unsigned long from = (i ? decile_max[i - 1] + 1 : 0); - if (from > decile_max[i]) - continue; - NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n", - from, - decile_max[i], - deciles[i]); - } - NS_INFO("*** End of Wear Report ***\n"); } /* @@ -1011,8 +1063,6 @@ static char *get_state_name(uint32_t state) return "STATE_CMD_ERASE1"; case STATE_CMD_STATUS: return "STATE_CMD_STATUS"; - case STATE_CMD_STATUS_M: - return "STATE_CMD_STATUS_M"; case STATE_CMD_SEQIN: return "STATE_CMD_SEQIN"; case STATE_CMD_READID: @@ -1077,7 +1127,6 @@ static int check_command(int cmd) case NAND_CMD_RNDOUTSTART: return 0; - case NAND_CMD_STATUS_MULTI: default: return 1; } @@ -1103,8 +1152,6 @@ static uint32_t get_state_by_command(unsigned command) return STATE_CMD_ERASE1; case NAND_CMD_STATUS: return STATE_CMD_STATUS; - case NAND_CMD_STATUS_MULTI: - return STATE_CMD_STATUS_M; case NAND_CMD_SEQIN: return STATE_CMD_SEQIN; case NAND_CMD_READID: @@ -1340,40 +1387,32 @@ static void clear_memalloc(int memalloc) current->flags &= ~PF_MEMALLOC; } -static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) +static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) { - mm_segment_t old_fs; ssize_t tx; int err, memalloc; - err = get_pages(ns, file, count, *pos); + err = get_pages(ns, file, count, pos); if (err) return err; - old_fs = get_fs(); - set_fs(get_ds()); memalloc = set_memalloc(); - tx = vfs_read(file, (char __user *)buf, count, pos); + tx = kernel_read(file, pos, buf, count); clear_memalloc(memalloc); - set_fs(old_fs); put_pages(ns); return tx; } -static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) +static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) { - mm_segment_t old_fs; ssize_t tx; int err, memalloc; - err = get_pages(ns, file, count, *pos); + err = get_pages(ns, file, count, pos); if (err) return err; - old_fs = get_fs(); - set_fs(get_ds()); memalloc = set_memalloc(); - tx = vfs_write(file, (char __user *)buf, count, pos); + tx = kernel_write(file, buf, count, pos); clear_memalloc(memalloc); - set_fs(old_fs); put_pages(ns); return tx; } @@ -1394,29 +1433,26 @@ static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; } -int do_read_error(struct nandsim *ns, int num) +static int do_read_error(struct nandsim *ns, int num) { unsigned int page_no = ns->regs.row; if (read_error(page_no)) { - int i; - memset(ns->buf.byte, 0xFF, num); - for (i = 0; i < num; ++i) - ns->buf.byte[i] = random32(); + prandom_bytes(ns->buf.byte, num); NS_WARN("simulating read error in page %u\n", page_no); return 1; } return 0; } -void do_bit_flips(struct nandsim *ns, int num) +static void do_bit_flips(struct nandsim *ns, int num) { - if (bitflips && random32() < (1 << 22)) { + if (bitflips && prandom_u32() < (1 << 22)) { int flips = 1; if (bitflips > 1) - flips = (random32() % (int) bitflips) + 1; + flips = (prandom_u32() % (int) bitflips) + 1; while (flips--) { - int pos = random32() % (num * 8); + int pos = prandom_u32() % (num * 8); ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); NS_WARN("read_page: flipping bit %d in page %d " "reading from %d ecc: corrected=%u failed=%u\n", @@ -1434,7 +1470,7 @@ static void read_page(struct nandsim *ns, int num) union ns_mem *mypage; if (ns->cfile) { - if (!ns->pages_written[ns->regs.row]) { + if (!test_bit(ns->regs.row, ns->pages_written)) { NS_DBG("read_page: page %d not written\n", ns->regs.row); memset(ns->buf.byte, 0xFF, num); } else { @@ -1445,8 +1481,8 @@ static void read_page(struct nandsim *ns, int num) ns->regs.row, ns->regs.column + ns->regs.off); if (do_read_error(ns, num)) return; - pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; - tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos); + pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); if (tx != num) { NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); return; @@ -1480,9 +1516,9 @@ static void erase_sector(struct nandsim *ns) if (ns->cfile) { for (i = 0; i < ns->geom.pgsec; i++) - if (ns->pages_written[ns->regs.row + i]) { + if (__test_and_clear_bit(ns->regs.row + i, + ns->pages_written)) { NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); - ns->pages_written[ns->regs.row + i] = 0; } return; } @@ -1508,20 +1544,19 @@ static int prog_page(struct nandsim *ns, int num) u_char *pg_off; if (ns->cfile) { - loff_t off, pos; + loff_t off; ssize_t tx; int all; NS_DBG("prog_page: writing page %d\n", ns->regs.row); pg_off = ns->file_buf + ns->regs.column + ns->regs.off; - off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; - if (!ns->pages_written[ns->regs.row]) { + off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + if (!test_bit(ns->regs.row, ns->pages_written)) { all = 1; memset(ns->file_buf, 0xff, ns->geom.pgszoob); } else { all = 0; - pos = off; - tx = read_file(ns, ns->cfile, pg_off, num, &pos); + tx = read_file(ns, ns->cfile, pg_off, num, off); if (tx != num) { NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; @@ -1530,16 +1565,15 @@ static int prog_page(struct nandsim *ns, int num) for (i = 0; i < num; i++) pg_off[i] &= ns->buf.byte[i]; if (all) { - pos = (loff_t)ns->regs.row * ns->geom.pgszoob; - tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos); + loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; + tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); if (tx != ns->geom.pgszoob) { NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; } - ns->pages_written[ns->regs.row] = 1; + __set_bit(ns->regs.row, ns->pages_written); } else { - pos = off; - tx = write_file(ns, ns->cfile, pg_off, num, &pos); + tx = write_file(ns, ns->cfile, pg_off, num, off); if (tx != num) { NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; @@ -2189,19 +2223,6 @@ static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) return; } -static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); - - if (!memcmp(buf, &ns_verify_buf[0], len)) { - NS_DBG("verify_buf: the buffer is OK\n"); - return 0; - } else { - NS_DBG("verify_buf: the buffer is wrong\n"); - return -EFAULT; - } -} - /* * Module initialization function */ @@ -2236,7 +2257,6 @@ static int __init ns_init_module(void) chip->dev_ready = ns_device_ready; chip->write_buf = ns_nand_write_buf; chip->read_buf = ns_nand_read_buf; - chip->verify_buf = ns_nand_verify_buf; chip->read_word = ns_nand_read_word; chip->ecc.mode = NAND_ECC_SOFT; /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ @@ -2265,7 +2285,7 @@ static int __init ns_init_module(void) nand->geom.idbytes = 2; nand->regs.status = NS_STATUS_OK(nand); nand->nxstate = STATE_UNKNOWN; - nand->options |= OPT_PAGE256; /* temporary value */ + nand->options |= OPT_PAGE512; /* temporary value */ nand->ids[0] = first_id_byte; nand->ids[1] = second_id_byte; nand->ids[2] = third_id_byte; @@ -2333,6 +2353,7 @@ static int __init ns_init_module(void) uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; if (new_size >> overridesize != nsmtd->erasesize) { NS_ERR("overridesize is too big\n"); + retval = -EINVAL; goto err_exit; } /* N.B. This relies on nand_scan not doing anything with the size before we change it */ @@ -2345,10 +2366,13 @@ static int __init ns_init_module(void) if ((retval = setup_wear_reporting(nsmtd)) != 0) goto err_exit; + if ((retval = nandsim_debugfs_create(nand)) != 0) + goto err_exit; + if ((retval = init_nandsim(nsmtd)) != 0) goto err_exit; - if ((retval = nand_default_bbt(nsmtd)) != 0) + if ((retval = chip->scan_bbt(nsmtd)) != 0) goto err_exit; if ((retval = parse_badblocks(nand, nsmtd)) != 0) @@ -2384,6 +2408,7 @@ static void __exit ns_cleanup_module(void) struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv; int i; + nandsim_debugfs_remove(ns); free_nandsim(ns); /* Free nandsim private resources */ nand_release(nsmtd); /* Unregister driver */ for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c index 2b6f632cf27..69eaba690a9 100644 --- a/drivers/mtd/nand/ndfc.c +++ b/drivers/mtd/nand/ndfc.c @@ -30,6 +30,7 @@ #include <linux/mtd/ndfc.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <asm/io.h> @@ -140,18 +141,6 @@ static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); } -static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd->priv; - struct ndfc_controller *ndfc = chip->priv; - uint32_t *p = (uint32_t *) buf; - - for(;len > 0; len -= 4) - if (*p++ != in_be32(ndfc->ndfcbase + NDFC_DATA)) - return -EFAULT; - return 0; -} - /* * Initialize chip structure */ @@ -172,7 +161,6 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc, chip->controller = &ndfc->ndfc_control; chip->read_buf = ndfc_read_buf; chip->write_buf = ndfc_write_buf; - chip->verify_buf = ndfc_verify_buf; chip->ecc.correct = nand_correct_data; chip->ecc.hwctl = ndfc_enable_hwecc; chip->ecc.calculate = ndfc_calculate_ecc; @@ -210,7 +198,7 @@ err: return ret; } -static int __devinit ndfc_probe(struct platform_device *ofdev) +static int ndfc_probe(struct platform_device *ofdev) { struct ndfc_controller *ndfc; const __be32 *reg; @@ -269,7 +257,7 @@ static int __devinit ndfc_probe(struct platform_device *ofdev) return 0; } -static int __devexit ndfc_remove(struct platform_device *ofdev) +static int ndfc_remove(struct platform_device *ofdev) { struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); @@ -292,7 +280,7 @@ static struct platform_driver ndfc_driver = { .of_match_table = ndfc_match, }, .probe = ndfc_probe, - .remove = __devexit_p(ndfc_remove), + .remove = ndfc_remove, }; module_platform_driver(ndfc_driver); diff --git a/drivers/mtd/nand/nomadik_nand.c b/drivers/mtd/nand/nomadik_nand.c deleted file mode 100644 index a86aa812ca1..00000000000 --- a/drivers/mtd/nand/nomadik_nand.c +++ /dev/null @@ -1,235 +0,0 @@ -/* - * drivers/mtd/nand/nomadik_nand.c - * - * Overview: - * Driver for on-board NAND flash on Nomadik Platforms - * - * Copyright © 2007 STMicroelectronics Pvt. Ltd. - * Author: Sachin Verma <sachin.verma@st.com> - * - * Copyright © 2009 Alessandro Rubini - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - */ - -#include <linux/init.h> -#include <linux/module.h> -#include <linux/types.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/nand_ecc.h> -#include <linux/platform_device.h> -#include <linux/mtd/partitions.h> -#include <linux/io.h> -#include <linux/slab.h> -#include <mach/nand.h> -#include <mach/fsmc.h> - -#include <mtd/mtd-abi.h> - -struct nomadik_nand_host { - struct mtd_info mtd; - struct nand_chip nand; - void __iomem *data_va; - void __iomem *cmd_va; - void __iomem *addr_va; - struct nand_bbt_descr *bbt_desc; -}; - -static struct nand_ecclayout nomadik_ecc_layout = { - .eccbytes = 3 * 4, - .eccpos = { /* each subpage has 16 bytes: pos 2,3,4 hosts ECC */ - 0x02, 0x03, 0x04, - 0x12, 0x13, 0x14, - 0x22, 0x23, 0x24, - 0x32, 0x33, 0x34}, - /* let's keep bytes 5,6,7 for us, just in case we change ECC algo */ - .oobfree = { {0x08, 0x08}, {0x18, 0x08}, {0x28, 0x08}, {0x38, 0x08} }, -}; - -static void nomadik_ecc_control(struct mtd_info *mtd, int mode) -{ - /* No need to enable hw ecc, it's on by default */ -} - -static void nomadik_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *nand = mtd->priv; - struct nomadik_nand_host *host = nand->priv; - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, host->cmd_va); - else - writeb(cmd, host->addr_va); -} - -static int nomadik_nand_probe(struct platform_device *pdev) -{ - struct nomadik_nand_platform_data *pdata = pdev->dev.platform_data; - struct nomadik_nand_host *host; - struct mtd_info *mtd; - struct nand_chip *nand; - struct resource *res; - int ret = 0; - - /* Allocate memory for the device structure (and zero it) */ - host = kzalloc(sizeof(struct nomadik_nand_host), GFP_KERNEL); - if (!host) { - dev_err(&pdev->dev, "Failed to allocate device structure.\n"); - return -ENOMEM; - } - - /* Call the client's init function, if any */ - if (pdata->init) - ret = pdata->init(); - if (ret < 0) { - dev_err(&pdev->dev, "Init function failed\n"); - goto err; - } - - /* ioremap three regions */ - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); - if (!res) { - ret = -EIO; - goto err_unmap; - } - host->addr_va = ioremap(res->start, resource_size(res)); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); - if (!res) { - ret = -EIO; - goto err_unmap; - } - host->data_va = ioremap(res->start, resource_size(res)); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); - if (!res) { - ret = -EIO; - goto err_unmap; - } - host->cmd_va = ioremap(res->start, resource_size(res)); - - if (!host->addr_va || !host->data_va || !host->cmd_va) { - ret = -ENOMEM; - goto err_unmap; - } - - /* Link all private pointers */ - mtd = &host->mtd; - nand = &host->nand; - mtd->priv = nand; - nand->priv = host; - - host->mtd.owner = THIS_MODULE; - nand->IO_ADDR_R = host->data_va; - nand->IO_ADDR_W = host->data_va; - nand->cmd_ctrl = nomadik_cmd_ctrl; - - /* - * This stanza declares ECC_HW but uses soft routines. It's because - * HW claims to make the calculation but not the correction. However, - * I haven't managed to get the desired data out of it until now. - */ - nand->ecc.mode = NAND_ECC_SOFT; - nand->ecc.layout = &nomadik_ecc_layout; - nand->ecc.hwctl = nomadik_ecc_control; - nand->ecc.size = 512; - nand->ecc.bytes = 3; - - nand->options = pdata->options; - - /* - * Scan to find existence of the device - */ - if (nand_scan(&host->mtd, 1)) { - ret = -ENXIO; - goto err_unmap; - } - - mtd_device_register(&host->mtd, pdata->parts, pdata->nparts); - - platform_set_drvdata(pdev, host); - return 0; - - err_unmap: - if (host->cmd_va) - iounmap(host->cmd_va); - if (host->data_va) - iounmap(host->data_va); - if (host->addr_va) - iounmap(host->addr_va); - err: - kfree(host); - return ret; -} - -/* - * Clean up routine - */ -static int nomadik_nand_remove(struct platform_device *pdev) -{ - struct nomadik_nand_host *host = platform_get_drvdata(pdev); - struct nomadik_nand_platform_data *pdata = pdev->dev.platform_data; - - if (pdata->exit) - pdata->exit(); - - if (host) { - nand_release(&host->mtd); - iounmap(host->cmd_va); - iounmap(host->data_va); - iounmap(host->addr_va); - kfree(host); - } - return 0; -} - -static int nomadik_nand_suspend(struct device *dev) -{ - struct nomadik_nand_host *host = dev_get_drvdata(dev); - int ret = 0; - if (host) - ret = mtd_suspend(&host->mtd); - return ret; -} - -static int nomadik_nand_resume(struct device *dev) -{ - struct nomadik_nand_host *host = dev_get_drvdata(dev); - if (host) - mtd_resume(&host->mtd); - return 0; -} - -static const struct dev_pm_ops nomadik_nand_pm_ops = { - .suspend = nomadik_nand_suspend, - .resume = nomadik_nand_resume, -}; - -static struct platform_driver nomadik_nand_driver = { - .probe = nomadik_nand_probe, - .remove = nomadik_nand_remove, - .driver = { - .owner = THIS_MODULE, - .name = "nomadik_nand", - .pm = &nomadik_nand_pm_ops, - }, -}; - -module_platform_driver(nomadik_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("ST Microelectronics (sachin.verma@st.com)"); -MODULE_DESCRIPTION("NAND driver for Nomadik Platform"); diff --git a/drivers/mtd/nand/nuc900_nand.c b/drivers/mtd/nand/nuc900_nand.c index 8febe46e110..e8a5fffd6ab 100644 --- a/drivers/mtd/nand/nuc900_nand.c +++ b/drivers/mtd/nand/nuc900_nand.c @@ -10,7 +10,6 @@ */ #include <linux/slab.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/io.h> @@ -112,22 +111,6 @@ static void nuc900_nand_write_buf(struct mtd_info *mtd, write_data_reg(nand, buf[i]); } -static int nuc900_verify_buf(struct mtd_info *mtd, - const unsigned char *buf, int len) -{ - int i; - struct nuc900_nand *nand; - - nand = container_of(mtd, struct nuc900_nand, mtd); - - for (i = 0; i < len; i++) { - if (buf[i] != (unsigned char)read_data_reg(nand)) - return -EFAULT; - } - - return 0; -} - static int nuc900_check_rb(struct nuc900_nand *nand) { unsigned int val; @@ -168,7 +151,8 @@ static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command, if (column != -1 || page_addr != -1) { if (column != -1) { - if (chip->options & NAND_BUSWIDTH_16) + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) column >>= 1; write_addr_reg(nand, column); write_addr_reg(nand, column >> 8 | ENDADDR); @@ -193,15 +177,6 @@ static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command, case NAND_CMD_SEQIN: case NAND_CMD_RNDIN: case NAND_CMD_STATUS: - case NAND_CMD_DEPLETE1: - return; - - case NAND_CMD_STATUS_ERROR: - case NAND_CMD_STATUS_ERROR0: - case NAND_CMD_STATUS_ERROR1: - case NAND_CMD_STATUS_ERROR2: - case NAND_CMD_STATUS_ERROR3: - udelay(chip->chip_delay); return; case NAND_CMD_RESET: @@ -250,7 +225,7 @@ static void nuc900_nand_enable(struct nuc900_nand *nand) val = __raw_readl(nand->reg + REG_FMICSR); if (!(val & NAND_EN)) - __raw_writel(val | NAND_EN, REG_FMICSR); + __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR); val = __raw_readl(nand->reg + REG_SMCSR); @@ -262,16 +237,14 @@ static void nuc900_nand_enable(struct nuc900_nand *nand) spin_unlock(&nand->lock); } -static int __devinit nuc900_nand_probe(struct platform_device *pdev) +static int nuc900_nand_probe(struct platform_device *pdev) { struct nuc900_nand *nuc900_nand; struct nand_chip *chip; - int retval; struct resource *res; - retval = 0; - - nuc900_nand = kzalloc(sizeof(struct nuc900_nand), GFP_KERNEL); + nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand), + GFP_KERNEL); if (!nuc900_nand) return -ENOMEM; chip = &(nuc900_nand->chip); @@ -280,11 +253,9 @@ static int __devinit nuc900_nand_probe(struct platform_device *pdev) nuc900_nand->mtd.owner = THIS_MODULE; spin_lock_init(&nuc900_nand->lock); - nuc900_nand->clk = clk_get(&pdev->dev, NULL); - if (IS_ERR(nuc900_nand->clk)) { - retval = -ENOENT; - goto fail1; - } + nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(nuc900_nand->clk)) + return -ENOENT; clk_enable(nuc900_nand->clk); chip->cmdfunc = nuc900_nand_command_lp; @@ -292,72 +263,41 @@ static int __devinit nuc900_nand_probe(struct platform_device *pdev) chip->read_byte = nuc900_nand_read_byte; chip->write_buf = nuc900_nand_write_buf; chip->read_buf = nuc900_nand_read_buf; - chip->verify_buf = nuc900_verify_buf; chip->chip_delay = 50; chip->options = 0; chip->ecc.mode = NAND_ECC_SOFT; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) { - retval = -ENXIO; - goto fail1; - } - - if (!request_mem_region(res->start, resource_size(res), pdev->name)) { - retval = -EBUSY; - goto fail1; - } - - nuc900_nand->reg = ioremap(res->start, resource_size(res)); - if (!nuc900_nand->reg) { - retval = -ENOMEM; - goto fail2; - } + nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nuc900_nand->reg)) + return PTR_ERR(nuc900_nand->reg); nuc900_nand_enable(nuc900_nand); - if (nand_scan(&(nuc900_nand->mtd), 1)) { - retval = -ENXIO; - goto fail3; - } + if (nand_scan(&(nuc900_nand->mtd), 1)) + return -ENXIO; mtd_device_register(&(nuc900_nand->mtd), partitions, ARRAY_SIZE(partitions)); platform_set_drvdata(pdev, nuc900_nand); - return retval; - -fail3: iounmap(nuc900_nand->reg); -fail2: release_mem_region(res->start, resource_size(res)); -fail1: kfree(nuc900_nand); - return retval; + return 0; } -static int __devexit nuc900_nand_remove(struct platform_device *pdev) +static int nuc900_nand_remove(struct platform_device *pdev) { struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev); - struct resource *res; nand_release(&nuc900_nand->mtd); - iounmap(nuc900_nand->reg); - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - release_mem_region(res->start, resource_size(res)); - clk_disable(nuc900_nand->clk); - clk_put(nuc900_nand->clk); - - kfree(nuc900_nand); - - platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver nuc900_nand_driver = { .probe = nuc900_nand_probe, - .remove = __devexit_p(nuc900_nand_remove), + .remove = nuc900_nand_remove, .driver = { .name = "nuc900-fmi", .owner = THIS_MODULE, diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index d7f681d0c9b..f0ed92e210a 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -9,6 +9,7 @@ */ #include <linux/platform_device.h> +#include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/module.h> @@ -18,16 +19,16 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/omap-dma.h> #include <linux/io.h> #include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_device.h> -#ifdef CONFIG_MTD_NAND_OMAP_BCH -#include <linux/bch.h> -#endif +#include <linux/mtd/nand_bch.h> +#include <linux/platform_data/elm.h> -#include <plat/dma.h> -#include <plat/gpmc.h> -#include <plat/nand.h> +#include <linux/platform_data/mtd-nand-omap2.h> #define DRIVER_NAME "omap2-nand" #define OMAP_NAND_TIMEOUT_MS 5000 @@ -99,19 +100,54 @@ #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) +#define PREFETCH_CONFIG1_CS_SHIFT 24 +#define ECC_CONFIG_CS_SHIFT 1 +#define CS_MASK 0x7 +#define ENABLE_PREFETCH (0x1 << 7) +#define DMA_MPU_MODE_SHIFT 2 +#define ECCSIZE0_SHIFT 12 +#define ECCSIZE1_SHIFT 22 +#define ECC1RESULTSIZE 0x1 +#define ECCCLEAR 0x100 +#define ECC1 0x1 +#define PREFETCH_FIFOTHRESHOLD_MAX 0x40 +#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) +#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) +#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) +#define STATUS_BUFF_EMPTY 0x00000001 + +#define OMAP24XX_DMA_GPMC 4 + +#define SECTOR_BYTES 512 +/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ +#define BCH4_BIT_PAD 4 + +/* GPMC ecc engine settings for read */ +#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ +#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ +#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ +#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ +#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ + +/* GPMC ecc engine settings for write */ +#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ +#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ +#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ + +#define BADBLOCK_MARKER_LENGTH 2 + +#ifdef CONFIG_MTD_NAND_OMAP_BCH +static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, + 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, + 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, + 0x07, 0x0e}; +static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, + 0xac, 0x6b, 0xff, 0x99, 0x7b}; +static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; +#endif + /* oob info generated runtime depending on ecc algorithm and layout selected */ static struct nand_ecclayout omap_oobinfo; -/* Define some generic bad / good block scan pattern which are used - * while scanning a device for factory marked good / bad blocks - */ -static uint8_t scan_ff_pattern[] = { 0xff }; -static struct nand_bbt_descr bb_descrip_flashbased = { - .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern, -}; - struct omap_nand_info { struct nand_hw_control controller; @@ -122,23 +158,81 @@ struct omap_nand_info { int gpmc_cs; unsigned long phys_base; + enum omap_ecc ecc_opt; struct completion comp; - int dma_ch; - int gpmc_irq; + struct dma_chan *dma; + int gpmc_irq_fifo; + int gpmc_irq_count; enum { OMAP_NAND_IO_READ = 0, /* read */ OMAP_NAND_IO_WRITE, /* write */ } iomode; u_char *buf; int buf_len; - -#ifdef CONFIG_MTD_NAND_OMAP_BCH - struct bch_control *bch; - struct nand_ecclayout ecclayout; -#endif + struct gpmc_nand_regs reg; + /* fields specific for BCHx_HW ECC scheme */ + struct device *elm_dev; + struct device_node *of_node; }; /** + * omap_prefetch_enable - configures and starts prefetch transfer + * @cs: cs (chip select) number + * @fifo_th: fifo threshold to be used for read/ write + * @dma_mode: dma mode enable (1) or disable (0) + * @u32_count: number of bytes to be transferred + * @is_write: prefetch read(0) or write post(1) mode + */ +static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, + unsigned int u32_count, int is_write, struct omap_nand_info *info) +{ + u32 val; + + if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) + return -1; + + if (readl(info->reg.gpmc_prefetch_control)) + return -EBUSY; + + /* Set the amount of bytes to be prefetched */ + writel(u32_count, info->reg.gpmc_prefetch_config2); + + /* Set dma/mpu mode, the prefetch read / post write and + * enable the engine. Set which cs is has requested for. + */ + val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | + PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | + (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write)); + writel(val, info->reg.gpmc_prefetch_config1); + + /* Start the prefetch engine */ + writel(0x1, info->reg.gpmc_prefetch_control); + + return 0; +} + +/** + * omap_prefetch_reset - disables and stops the prefetch engine + */ +static int omap_prefetch_reset(int cs, struct omap_nand_info *info) +{ + u32 config1; + + /* check if the same module/cs is trying to reset */ + config1 = readl(info->reg.gpmc_prefetch_config1); + if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) + return -EINVAL; + + /* Stop the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_control); + + /* Reset/disable the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_config1); + + return 0; +} + +/** * omap_hwcontrol - hardware specific access to control-lines * @mtd: MTD device structure * @cmd: command to device @@ -156,13 +250,13 @@ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) if (cmd != NAND_CMD_NONE) { if (ctrl & NAND_CLE) - gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd); + writeb(cmd, info->reg.gpmc_nand_command); else if (ctrl & NAND_ALE) - gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd); + writeb(cmd, info->reg.gpmc_nand_address); else /* NAND_NCE */ - gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd); + writeb(cmd, info->reg.gpmc_nand_data); } } @@ -196,7 +290,8 @@ static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) iowrite8(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { - status = gpmc_read_status(GPMC_STATUS_BUFFER); + status = readl(info->reg.gpmc_status) & + STATUS_BUFF_EMPTY; } while (!status); } } @@ -233,7 +328,8 @@ static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) iowrite16(*p++, info->nand.IO_ADDR_W); /* wait until buffer is available for write */ do { - status = gpmc_read_status(GPMC_STATUS_BUFFER); + status = readl(info->reg.gpmc_status) & + STATUS_BUFF_EMPTY; } while (!status); } } @@ -263,8 +359,8 @@ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) } /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) @@ -273,14 +369,15 @@ static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) omap_read_buf8(mtd, (u_char *)p, len); } else { do { - r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); + r_count = readl(info->reg.gpmc_prefetch_status); + r_count = PREFETCH_STATUS_FIFO_CNT(r_count); r_count = r_count >> 2; ioread32_rep(info->nand.IO_ADDR_R, p, r_count); p += r_count; len -= r_count << 2; } while (len); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); } } @@ -299,6 +396,7 @@ static void omap_write_buf_pref(struct mtd_info *mtd, int i = 0, ret = 0; u16 *p = (u16 *)buf; unsigned long tim, limit; + u32 val; /* take care of subpage writes */ if (len % 2 != 0) { @@ -308,8 +406,8 @@ static void omap_write_buf_pref(struct mtd_info *mtd, } /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); if (ret) { /* PFPW engine is busy, use cpu copy method */ if (info->nand.options & NAND_BUSWIDTH_16) @@ -318,7 +416,8 @@ static void omap_write_buf_pref(struct mtd_info *mtd, omap_write_buf8(mtd, (u_char *)p, len); } else { while (len) { - w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); + w_count = readl(info->reg.gpmc_prefetch_status); + w_count = PREFETCH_STATUS_FIFO_CNT(w_count); w_count = w_count >> 1; for (i = 0; (i < w_count) && len; i++, len -= 2) iowrite16(*p++, info->nand.IO_ADDR_W); @@ -327,27 +426,28 @@ static void omap_write_buf_pref(struct mtd_info *mtd, tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) + do { cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); } } /* - * omap_nand_dma_cb: callback on the completion of dma transfer - * @lch: logical channel - * @ch_satuts: channel status + * omap_nand_dma_callback: callback on the completion of dma transfer * @data: pointer to completion data structure */ -static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) +static void omap_nand_dma_callback(void *data) { complete((struct completion *) data); } /* - * omap_nand_dma_transfer: configer and start dma transfer + * omap_nand_dma_transfer: configure and start dma transfer * @mtd: MTD device structure * @addr: virtual address in RAM of source/destination * @len: number of data bytes to be transferred @@ -358,17 +458,14 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); + struct dma_async_tx_descriptor *tx; enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; - dma_addr_t dma_addr; - int ret; + struct scatterlist sg; unsigned long tim, limit; - - /* The fifo depth is 64 bytes max. - * But configure the FIFO-threahold to 32 to get a sync at each frame - * and frame length is 32 bytes. - */ - int buf_len = len >> 6; + unsigned n; + int ret; + u32 val; if (addr >= high_memory) { struct page *p1; @@ -382,56 +479,53 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); } - dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir); - if (dma_mapping_error(&info->pdev->dev, dma_addr)) { + sg_init_one(&sg, addr, len); + n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); + if (n == 0) { dev_err(&info->pdev->dev, "Couldn't DMA map a %d byte buffer\n", len); goto out_copy; } - if (is_write) { - omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, - info->phys_base, 0, 0); - omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, - dma_addr, 0, 0); - omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, - 0x10, buf_len, OMAP_DMA_SYNC_FRAME, - OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC); - } else { - omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, - info->phys_base, 0, 0); - omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, - dma_addr, 0, 0); - omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32, - 0x10, buf_len, OMAP_DMA_SYNC_FRAME, - OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC); - } + tx = dmaengine_prep_slave_sg(info->dma, &sg, n, + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!tx) + goto out_copy_unmap; + + tx->callback = omap_nand_dma_callback; + tx->callback_param = &info->comp; + dmaengine_submit(tx); + /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy_unmap; init_completion(&info->comp); - - omap_start_dma(info->dma_ch); + dma_async_issue_pending(info->dma); /* setup and start DMA using dma_addr */ wait_for_completion(&info->comp); tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) + + do { cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); - dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); return 0; out_copy_unmap: - dma_unmap_single(&info->pdev->dev, dma_addr, len, dir); + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); out_copy: if (info->nand.options & NAND_BUSWIDTH_16) is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) @@ -474,7 +568,7 @@ static void omap_write_buf_dma_pref(struct mtd_info *mtd, } /* - * omap_nand_irq - GMPC irq handler + * omap_nand_irq - GPMC irq handler * @this_irq: gpmc irq number * @dev: omap_nand_info structure pointer is passed here */ @@ -482,13 +576,12 @@ static irqreturn_t omap_nand_irq(int this_irq, void *dev) { struct omap_nand_info *info = (struct omap_nand_info *) dev; u32 bytes; - u32 irq_stat; - irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS); - bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT); + bytes = readl(info->reg.gpmc_prefetch_status); + bytes = PREFETCH_STATUS_FIFO_CNT(bytes); bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ - if (irq_stat & 0x2) + if (this_irq == info->gpmc_irq_count) goto done; if (info->buf_len && (info->buf_len < bytes)) @@ -505,20 +598,17 @@ static irqreturn_t omap_nand_irq(int this_irq, void *dev) (u32 *)info->buf, bytes >> 2); info->buf = info->buf + bytes; - if (irq_stat & 0x2) + if (this_irq == info->gpmc_irq_count) goto done; } - gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); return IRQ_HANDLED; done: complete(&info->comp); - /* disable irq */ - gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0); - /* clear status */ - gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat); + disable_irq_nosync(info->gpmc_irq_fifo); + disable_irq_nosync(info->gpmc_irq_count); return IRQ_HANDLED; } @@ -545,22 +635,22 @@ static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) init_completion(&info->comp); /* configure and start prefetch transfer */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0); + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy; info->buf_len = len; - /* enable irq */ - gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, - (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); /* waiting for read to complete */ wait_for_completion(&info->comp); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); return; out_copy: @@ -583,6 +673,7 @@ static void omap_write_buf_irq_pref(struct mtd_info *mtd, struct omap_nand_info, mtd); int ret = 0; unsigned long tim, limit; + u32 val; if (len <= mtd->oobsize) { omap_write_buf_pref(mtd, buf, len); @@ -594,27 +685,31 @@ static void omap_write_buf_irq_pref(struct mtd_info *mtd, init_completion(&info->comp); /* configure and start prefetch transfer : size=24 */ - ret = gpmc_prefetch_enable(info->gpmc_cs, - (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1); + ret = omap_prefetch_enable(info->gpmc_cs, + (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); if (ret) /* PFPW engine is busy, use cpu copy method */ goto out_copy; info->buf_len = len; - /* enable irq */ - gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, - (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT)); + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); /* waiting for write to complete */ wait_for_completion(&info->comp); + /* wait for data to flushed-out before reset the prefetch */ tim = 0; limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit)) + do { + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); cpu_relax(); + } while (val && (tim++ < limit)); /* disable and stop the PFPW engine */ - gpmc_prefetch_reset(info->gpmc_cs); + omap_prefetch_reset(info->gpmc_cs, info); return; out_copy: @@ -625,27 +720,6 @@ out_copy: } /** - * omap_verify_buf - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - */ -static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) -{ - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - u16 *p = (u16 *) buf; - - len >>= 1; - while (len--) { - if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) - return -EFAULT; - } - - return 0; -} - -/** * gen_true_ecc - This function will generate true ECC value * @ecc_buf: buffer to store ecc code * @@ -854,7 +928,20 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code); + u32 val; + + val = readl(info->reg.gpmc_ecc_config); + if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs) + return -EINVAL; + + /* read ecc result */ + val = readl(info->reg.gpmc_ecc1_result); + *ecc_code++ = val; /* P128e, ..., P1e */ + *ecc_code++ = val >> 16; /* P128o, ..., P1o */ + /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ + *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); + + return 0; } /** @@ -868,8 +955,34 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) mtd); struct nand_chip *chip = mtd->priv; unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + u32 val; - gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size); + /* clear ecc and enable bits */ + val = ECCCLEAR | ECC1; + writel(val, info->reg.gpmc_ecc_control); + + /* program ecc and result sizes */ + val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | + ECC1RESULTSIZE); + writel(val, info->reg.gpmc_ecc_size_config); + + switch (mode) { + case NAND_ECC_READ: + case NAND_ECC_WRITE: + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); + break; + case NAND_ECC_READSYN: + writel(ECCCLEAR, info->reg.gpmc_ecc_control); + break; + default: + dev_info(&info->pdev->dev, + "error: unrecognized Mode[%d]!\n", mode); + break; + } + + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); + writel(val, info->reg.gpmc_ecc_config); } /** @@ -893,20 +1006,19 @@ static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) int status, state = this->state; if (state == FL_ERASING) - timeo += (HZ * 400) / 1000; + timeo += msecs_to_jiffies(400); else - timeo += (HZ * 20) / 1000; + timeo += msecs_to_jiffies(20); - gpmc_nand_write(info->gpmc_cs, - GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF)); + writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); while (time_before(jiffies, timeo)) { - status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA); + status = readb(info->reg.gpmc_nand_data); if (status & NAND_STATUS_READY) break; cond_resched(); } - status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA); + status = readb(info->reg.gpmc_nand_data); return status; } @@ -920,258 +1032,618 @@ static int omap_dev_ready(struct mtd_info *mtd) struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - val = gpmc_read_status(GPMC_GET_IRQ_STATUS); + val = readl(info->reg.gpmc_status); + if ((val & 0x100) == 0x100) { - /* Clear IRQ Interrupt */ - val |= 0x100; - val &= ~(0x0); - gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val); + return 1; } else { - unsigned int cnt = 0; - while (cnt++ < 0x1FF) { - if ((val & 0x100) == 0x100) - return 0; - val = gpmc_read_status(GPMC_GET_IRQ_STATUS); - } + return 0; } - - return 1; } -#ifdef CONFIG_MTD_NAND_OMAP_BCH - /** - * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction + * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation * @mtd: MTD device structure * @mode: Read/Write mode + * + * When using BCH, sector size is hardcoded to 512 bytes. + * Using wrapping mode 6 both for reading and writing if ELM module not uses + * for error correction. + * On writing, + * eccsize0 = 0 (no additional protected byte in spare area) + * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) */ -static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode) +static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode) { - int nerrors; - unsigned int dev_width; + unsigned int bch_type; + unsigned int dev_width, nsectors; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); + enum omap_ecc ecc_opt = info->ecc_opt; struct nand_chip *chip = mtd->priv; + u32 val, wr_mode; + unsigned int ecc_size1, ecc_size0; + + /* GPMC configurations for calculating ECC */ + switch (ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + bch_type = 0; + nsectors = 1; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH4_CODE_HW: + bch_type = 0; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH4R_ECC_SIZE0; + ecc_size1 = BCH4R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + bch_type = 1; + nsectors = 1; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW: + bch_type = 1; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH8R_ECC_SIZE0; + ecc_size1 = BCH8R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH16_CODE_HW: + bch_type = 0x2; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = 0x01; + ecc_size0 = 52; /* ECC bits in nibbles per sector */ + ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ + } else { + wr_mode = 0x01; + ecc_size0 = 0; /* extra bits in nibbles per sector */ + ecc_size1 = 52; /* OOB bits in nibbles per sector */ + } + break; + default: + return; + } + + writel(ECC1, info->reg.gpmc_ecc_control); + + /* Configure ecc size for BCH */ + val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); + writel(val, info->reg.gpmc_ecc_size_config); - nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4; dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; - /* - * Program GPMC to perform correction on one 512-byte sector at a time. - * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and - * gives a slight (5%) performance gain (but requires additional code). - */ - (void)gpmc_enable_hwecc_bch(info->gpmc_cs, mode, dev_width, 1, nerrors); -} -/** - * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - */ -static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - return gpmc_calculate_ecc_bch4(info->gpmc_cs, dat, ecc_code); -} + /* BCH configuration */ + val = ((1 << 16) | /* enable BCH */ + (bch_type << 12) | /* BCH4/BCH8/BCH16 */ + (wr_mode << 8) | /* wrap mode */ + (dev_width << 7) | /* bus width */ + (((nsectors-1) & 0x7) << 4) | /* number of sectors */ + (info->gpmc_cs << 1) | /* ECC CS */ + (0x1)); /* enable ECC */ -/** - * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - */ -static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - return gpmc_calculate_ecc_bch8(info->gpmc_cs, dat, ecc_code); + writel(val, info->reg.gpmc_ecc_config); + + /* Clear ecc and enable bits */ + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); } +static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; +static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, + 0x97, 0x79, 0xe5, 0x24, 0xb5}; + /** - * omap3_correct_data_bch - Decode received data and correct errors - * @mtd: MTD device structure - * @data: page data - * @read_ecc: ecc read from nand flash - * @calc_ecc: ecc read from HW ECC registers + * omap_calculate_ecc_bch - Generate bytes of ECC bytes + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * + * Support calculating of BCH4/8 ecc vectors for the page */ -static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data, - u_char *read_ecc, u_char *calc_ecc) +static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc) { - int i, count; - /* cannot correct more than 8 errors */ - unsigned int errloc[8]; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); + int eccbytes = info->nand.ecc.bytes; + struct gpmc_nand_regs *gpmc_regs = &info->reg; + u8 *ecc_code; + unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4; + u32 val; + int i, j; + + nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; + for (i = 0; i < nsectors; i++) { + ecc_code = ecc_calc; + switch (info->ecc_opt) { + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); + bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); + *ecc_code++ = (bch_val4 & 0xFF); + *ecc_code++ = ((bch_val3 >> 24) & 0xFF); + *ecc_code++ = ((bch_val3 >> 16) & 0xFF); + *ecc_code++ = ((bch_val3 >> 8) & 0xFF); + *ecc_code++ = (bch_val3 & 0xFF); + *ecc_code++ = ((bch_val2 >> 24) & 0xFF); + *ecc_code++ = ((bch_val2 >> 16) & 0xFF); + *ecc_code++ = ((bch_val2 >> 8) & 0xFF); + *ecc_code++ = (bch_val2 & 0xFF); + *ecc_code++ = ((bch_val1 >> 24) & 0xFF); + *ecc_code++ = ((bch_val1 >> 16) & 0xFF); + *ecc_code++ = ((bch_val1 >> 8) & 0xFF); + *ecc_code++ = (bch_val1 & 0xFF); + break; + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH4_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + *ecc_code++ = ((bch_val2 >> 12) & 0xFF); + *ecc_code++ = ((bch_val2 >> 4) & 0xFF); + *ecc_code++ = ((bch_val2 & 0xF) << 4) | + ((bch_val1 >> 28) & 0xF); + *ecc_code++ = ((bch_val1 >> 20) & 0xFF); + *ecc_code++ = ((bch_val1 >> 12) & 0xFF); + *ecc_code++ = ((bch_val1 >> 4) & 0xFF); + *ecc_code++ = ((bch_val1 & 0xF) << 4); + break; + case OMAP_ECC_BCH16_CODE_HW: + val = readl(gpmc_regs->gpmc_bch_result6[i]); + ecc_code[0] = ((val >> 8) & 0xFF); + ecc_code[1] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result5[i]); + ecc_code[2] = ((val >> 24) & 0xFF); + ecc_code[3] = ((val >> 16) & 0xFF); + ecc_code[4] = ((val >> 8) & 0xFF); + ecc_code[5] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result4[i]); + ecc_code[6] = ((val >> 24) & 0xFF); + ecc_code[7] = ((val >> 16) & 0xFF); + ecc_code[8] = ((val >> 8) & 0xFF); + ecc_code[9] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result3[i]); + ecc_code[10] = ((val >> 24) & 0xFF); + ecc_code[11] = ((val >> 16) & 0xFF); + ecc_code[12] = ((val >> 8) & 0xFF); + ecc_code[13] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result2[i]); + ecc_code[14] = ((val >> 24) & 0xFF); + ecc_code[15] = ((val >> 16) & 0xFF); + ecc_code[16] = ((val >> 8) & 0xFF); + ecc_code[17] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result1[i]); + ecc_code[18] = ((val >> 24) & 0xFF); + ecc_code[19] = ((val >> 16) & 0xFF); + ecc_code[20] = ((val >> 8) & 0xFF); + ecc_code[21] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result0[i]); + ecc_code[22] = ((val >> 24) & 0xFF); + ecc_code[23] = ((val >> 16) & 0xFF); + ecc_code[24] = ((val >> 8) & 0xFF); + ecc_code[25] = ((val >> 0) & 0xFF); + break; + default: + return -EINVAL; + } - count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL, - errloc); - if (count > 0) { - /* correct errors */ - for (i = 0; i < count; i++) { - /* correct data only, not ecc bytes */ - if (errloc[i] < 8*512) - data[errloc[i]/8] ^= 1 << (errloc[i] & 7); - pr_debug("corrected bitflip %u\n", errloc[i]); + /* ECC scheme specific syndrome customizations */ + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch4_polynomial[j]; + break; + case OMAP_ECC_BCH4_CODE_HW: + /* Set 8th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch8_polynomial[j]; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* Set 14th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH16_CODE_HW: + break; + default: + return -EINVAL; } - } else if (count < 0) { - pr_err("ecc unrecoverable error\n"); + + ecc_calc += eccbytes; } - return count; + + return 0; } +#ifdef CONFIG_MTD_NAND_OMAP_BCH /** - * omap3_free_bch - Release BCH ecc resources - * @mtd: MTD device structure + * erased_sector_bitflips - count bit flips + * @data: data sector buffer + * @oob: oob buffer + * @info: omap_nand_info + * + * Check the bit flips in erased page falls below correctable level. + * If falls below, report the page as erased with correctable bit + * flip, else report as uncorrectable page. */ -static void omap3_free_bch(struct mtd_info *mtd) +static int erased_sector_bitflips(u_char *data, u_char *oob, + struct omap_nand_info *info) { - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - if (info->bch) { - free_bch(info->bch); - info->bch = NULL; + int flip_bits = 0, i; + + for (i = 0; i < info->nand.ecc.size; i++) { + flip_bits += hweight8(~data[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + for (i = 0; i < info->nand.ecc.bytes - 1; i++) { + flip_bits += hweight8(~oob[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + /* + * Bit flips falls in correctable level. + * Fill data area with 0xFF + */ + if (flip_bits) { + memset(data, 0xFF, info->nand.ecc.size); + memset(oob, 0xFF, info->nand.ecc.bytes); } + + return flip_bits; } /** - * omap3_init_bch - Initialize BCH ECC - * @mtd: MTD device structure - * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW) + * omap_elm_correct_data - corrects page data area in case error reported + * @mtd: MTD device structure + * @data: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + * + * Calculated ecc vector reported as zero in case of non-error pages. + * In case of non-zero ecc vector, first filter out erased-pages, and + * then process data via ELM to detect bit-flips. */ -static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) +static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, + u_char *read_ecc, u_char *calc_ecc) { - int ret, max_errors; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); -#ifdef CONFIG_MTD_NAND_OMAP_BCH8 - const int hw_errors = 8; -#else - const int hw_errors = 4; -#endif - info->bch = NULL; - - max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4; - if (max_errors != hw_errors) { - pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported", - max_errors, hw_errors); - goto fail; + mtd); + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int eccsteps = info->nand.ecc.steps; + int i , j, stat = 0; + int eccflag, actual_eccbytes; + struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; + u_char *ecc_vec = calc_ecc; + u_char *spare_ecc = read_ecc; + u_char *erased_ecc_vec; + u_char *buf; + int bitflip_count; + bool is_error_reported = false; + u32 bit_pos, byte_pos, error_max, pos; + int err; + + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* omit 7th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch4_vector; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* omit 14th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch8_vector; + break; + case OMAP_ECC_BCH16_CODE_HW: + actual_eccbytes = ecc->bytes; + erased_ecc_vec = bch16_vector; + break; + default: + pr_err("invalid driver configuration\n"); + return -EINVAL; } - /* initialize GPMC BCH engine */ - ret = gpmc_init_hwecc_bch(info->gpmc_cs, 1, max_errors); - if (ret) - goto fail; + /* Initialize elm error vector to zero */ + memset(err_vec, 0, sizeof(err_vec)); - /* software bch library is only used to detect and locate errors */ - info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */); - if (!info->bch) - goto fail; + for (i = 0; i < eccsteps ; i++) { + eccflag = 0; /* initialize eccflag */ - info->nand.ecc.size = 512; - info->nand.ecc.hwctl = omap3_enable_hwecc_bch; - info->nand.ecc.correct = omap3_correct_data_bch; - info->nand.ecc.mode = NAND_ECC_HW; + /* + * Check any error reported, + * In case of error, non zero ecc reported. + */ + for (j = 0; j < actual_eccbytes; j++) { + if (calc_ecc[j] != 0) { + eccflag = 1; /* non zero ecc, error present */ + break; + } + } - /* - * The number of corrected errors in an ecc block that will trigger - * block scrubbing defaults to the ecc strength (4 or 8). - * Set mtd->bitflip_threshold here to define a custom threshold. - */ + if (eccflag == 1) { + if (memcmp(calc_ecc, erased_ecc_vec, + actual_eccbytes) == 0) { + /* + * calc_ecc[] matches pattern for ECC(all 0xff) + * so this is definitely an erased-page + */ + } else { + buf = &data[info->nand.ecc.size * i]; + /* + * count number of 0-bits in read_buf. + * This check can be removed once a similar + * check is introduced in generic NAND driver + */ + bitflip_count = erased_sector_bitflips( + buf, read_ecc, info); + if (bitflip_count) { + /* + * number of 0-bits within ECC limits + * So this may be an erased-page + */ + stat += bitflip_count; + } else { + /* + * Too many 0-bits. It may be a + * - programmed-page, OR + * - erased-page with many bit-flips + * So this page requires check by ELM + */ + err_vec[i].error_reported = true; + is_error_reported = true; + } + } + } - if (max_errors == 8) { - info->nand.ecc.strength = 8; - info->nand.ecc.bytes = 13; - info->nand.ecc.calculate = omap3_calculate_ecc_bch8; - } else { - info->nand.ecc.strength = 4; - info->nand.ecc.bytes = 7; - info->nand.ecc.calculate = omap3_calculate_ecc_bch4; + /* Update the ecc vector */ + calc_ecc += ecc->bytes; + read_ecc += ecc->bytes; } - pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors); - return 0; -fail: - omap3_free_bch(mtd); - return -1; + /* Check if any error reported */ + if (!is_error_reported) + return stat; + + /* Decode BCH error using ELM module */ + elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); + + err = 0; + for (i = 0; i < eccsteps; i++) { + if (err_vec[i].error_uncorrectable) { + pr_err("nand: uncorrectable bit-flips found\n"); + err = -EBADMSG; + } else if (err_vec[i].error_reported) { + for (j = 0; j < err_vec[i].error_count; j++) { + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* Add 4 bits to take care of padding */ + pos = err_vec[i].error_loc[j] + + BCH4_BIT_PAD; + break; + case OMAP_ECC_BCH8_CODE_HW: + case OMAP_ECC_BCH16_CODE_HW: + pos = err_vec[i].error_loc[j]; + break; + default: + return -EINVAL; + } + error_max = (ecc->size + actual_eccbytes) * 8; + /* Calculate bit position of error */ + bit_pos = pos % 8; + + /* Calculate byte position of error */ + byte_pos = (error_max - pos - 1) / 8; + + if (pos < error_max) { + if (byte_pos < 512) { + pr_debug("bitflip@dat[%d]=%x\n", + byte_pos, data[byte_pos]); + data[byte_pos] ^= 1 << bit_pos; + } else { + pr_debug("bitflip@oob[%d]=%x\n", + (byte_pos - 512), + spare_ecc[byte_pos - 512]); + spare_ecc[byte_pos - 512] ^= + 1 << bit_pos; + } + } else { + pr_err("invalid bit-flip @ %d:%d\n", + byte_pos, bit_pos); + err = -EBADMSG; + } + } + } + + /* Update number of correctable errors */ + stat += err_vec[i].error_count; + + /* Update page data with sector size */ + data += ecc->size; + spare_ecc += ecc->bytes; + } + + return (err) ? err : stat; } /** - * omap3_init_bch_tail - Build an oob layout for BCH ECC correction. - * @mtd: MTD device structure + * omap_write_page_bch - BCH ecc based write page function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * Custom write page method evolved to support multi sector writing in one shot */ -static int omap3_init_bch_tail(struct mtd_info *mtd) +static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) { - int i, steps; - struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, - mtd); - struct nand_ecclayout *layout = &info->ecclayout; + int i; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint32_t *eccpos = chip->ecc.layout->eccpos; - /* build oob layout */ - steps = mtd->writesize/info->nand.ecc.size; - layout->eccbytes = steps*info->nand.ecc.bytes; + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - /* do not bother creating special oob layouts for small page devices */ - if (mtd->oobsize < 64) { - pr_err("BCH ecc is not supported on small page devices\n"); - goto fail; - } - - /* reserve 2 bytes for bad block marker */ - if (layout->eccbytes+2 > mtd->oobsize) { - pr_err("no oob layout available for oobsize %d eccbytes %u\n", - mtd->oobsize, layout->eccbytes); - goto fail; - } + /* Write data */ + chip->write_buf(mtd, buf, mtd->writesize); - /* put ecc bytes at oob tail */ - for (i = 0; i < layout->eccbytes; i++) - layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; + /* Update ecc vector from GPMC result registers */ + chip->ecc.calculate(mtd, buf, &ecc_calc[0]); - layout->oobfree[0].offset = 2; - layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; - info->nand.ecc.layout = layout; + for (i = 0; i < chip->ecc.total; i++) + chip->oob_poi[eccpos[i]] = ecc_calc[i]; - if (!(info->nand.options & NAND_BUSWIDTH_16)) - info->nand.badblock_pattern = &bb_descrip_flashbased; + /* Write ecc vector to OOB area */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; -fail: - omap3_free_bch(mtd); - return -1; } -#else -static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) -{ - pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n"); - return -1; -} -static int omap3_init_bch_tail(struct mtd_info *mtd) +/** + * omap_read_page_bch - BCH ecc based page read function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module + * used for error correction. + * Custom method evolved to support ELM error correction & multi sector + * reading. On reading page data area is read along with OOB data with + * ecc engine enabled. ecc vector updated after read of OOB data. + * For non error pages ecc vector reported as zero. + */ +static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) { - return -1; + uint8_t *ecc_calc = chip->buffers->ecccalc; + uint8_t *ecc_code = chip->buffers->ecccode; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *oob = &chip->oob_poi[eccpos[0]]; + uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0]; + int stat; + unsigned int max_bitflips = 0; + + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + /* Read data */ + chip->read_buf(mtd, buf, mtd->writesize); + + /* Read oob bytes */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); + chip->read_buf(mtd, oob, chip->ecc.total); + + /* Calculate ecc bytes */ + chip->ecc.calculate(mtd, buf, ecc_calc); + + memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total); + + stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + return max_bitflips; } -static void omap3_free_bch(struct mtd_info *mtd) + +/** + * is_elm_present - checks for presence of ELM module by scanning DT nodes + * @omap_nand_info: NAND device structure containing platform data + * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16 + */ +static int is_elm_present(struct omap_nand_info *info, + struct device_node *elm_node, enum bch_ecc bch_type) { + struct platform_device *pdev; + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int err; + /* check whether elm-id is passed via DT */ + if (!elm_node) { + pr_err("nand: error: ELM DT node not found\n"); + return -ENODEV; + } + pdev = of_find_device_by_node(elm_node); + /* check whether ELM device is registered */ + if (!pdev) { + pr_err("nand: error: ELM device not found\n"); + return -ENODEV; + } + /* ELM module available, now configure it */ + info->elm_dev = &pdev->dev; + err = elm_config(info->elm_dev, bch_type, + (info->mtd.writesize / ecc->size), ecc->size, ecc->bytes); + + return err; } -#endif /* CONFIG_MTD_NAND_OMAP_BCH */ +#endif /* CONFIG_MTD_NAND_ECC_BCH */ -static int __devinit omap_nand_probe(struct platform_device *pdev) +static int omap_nand_probe(struct platform_device *pdev) { struct omap_nand_info *info; struct omap_nand_platform_data *pdata; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct nand_ecclayout *ecclayout; int err; - int i, offset; - - pdata = pdev->dev.platform_data; + int i; + dma_cap_mask_t mask; + unsigned sig; + unsigned oob_index; + struct resource *res; + struct mtd_part_parser_data ppdata = {}; + + pdata = dev_get_platdata(&pdev->dev); if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } - info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); + info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), + GFP_KERNEL); if (!info) return -ENOMEM; @@ -1180,209 +1652,413 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); - info->pdev = pdev; - + info->pdev = pdev; info->gpmc_cs = pdata->cs; - info->phys_base = pdata->phys_base; + info->reg = pdata->reg; + info->of_node = pdata->of_node; + info->ecc_opt = pdata->ecc_opt; + mtd = &info->mtd; + mtd->priv = &info->nand; + mtd->name = dev_name(&pdev->dev); + mtd->owner = THIS_MODULE; + nand_chip = &info->nand; + nand_chip->ecc.priv = NULL; + nand_chip->options |= NAND_SKIP_BBTSCAN; - info->mtd.priv = &info->nand; - info->mtd.name = dev_name(&pdev->dev); - info->mtd.owner = THIS_MODULE; - - info->nand.options = pdata->devsize; - info->nand.options |= NAND_SKIP_BBTSCAN; - - /* NAND write protect off */ - gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0); - - if (!request_mem_region(info->phys_base, NAND_IO_SIZE, - pdev->dev.driver->name)) { - err = -EBUSY; - goto out_free_info; - } + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nand_chip->IO_ADDR_R)) + return PTR_ERR(nand_chip->IO_ADDR_R); - info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); - if (!info->nand.IO_ADDR_R) { - err = -ENOMEM; - goto out_release_mem_region; - } + info->phys_base = res->start; - info->nand.controller = &info->controller; + nand_chip->controller = &info->controller; - info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; - info->nand.cmd_ctrl = omap_hwcontrol; + nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R; + nand_chip->cmd_ctrl = omap_hwcontrol; /* * If RDY/BSY line is connected to OMAP then use the omap ready - * funcrtion and the generic nand_wait function which reads the status - * register after monitoring the RDY/BSY line.Otherwise use a standard + * function and the generic nand_wait function which reads the status + * register after monitoring the RDY/BSY line. Otherwise use a standard * chip delay which is slightly more than tR (AC Timing) of the NAND * device and read status register until you get a failure or success */ if (pdata->dev_ready) { - info->nand.dev_ready = omap_dev_ready; - info->nand.chip_delay = 0; + nand_chip->dev_ready = omap_dev_ready; + nand_chip->chip_delay = 0; } else { - info->nand.waitfunc = omap_wait; - info->nand.chip_delay = 50; + nand_chip->waitfunc = omap_wait; + nand_chip->chip_delay = 50; + } + + /* scan NAND device connected to chip controller */ + nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16; + if (nand_scan_ident(mtd, 1, NULL)) { + pr_err("nand device scan failed, may be bus-width mismatch\n"); + err = -ENXIO; + goto return_error; + } + + /* check for small page devices */ + if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) { + pr_err("small page devices are not supported\n"); + err = -EINVAL; + goto return_error; } + /* re-populate low-level callbacks based on xfer modes */ switch (pdata->xfer_type) { case NAND_OMAP_PREFETCH_POLLED: - info->nand.read_buf = omap_read_buf_pref; - info->nand.write_buf = omap_write_buf_pref; + nand_chip->read_buf = omap_read_buf_pref; + nand_chip->write_buf = omap_write_buf_pref; break; case NAND_OMAP_POLLED: - if (info->nand.options & NAND_BUSWIDTH_16) { - info->nand.read_buf = omap_read_buf16; - info->nand.write_buf = omap_write_buf16; - } else { - info->nand.read_buf = omap_read_buf8; - info->nand.write_buf = omap_write_buf8; - } + /* Use nand_base defaults for {read,write}_buf */ break; case NAND_OMAP_PREFETCH_DMA: - err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND", - omap_nand_dma_cb, &info->comp, &info->dma_ch); - if (err < 0) { - info->dma_ch = -1; - dev_err(&pdev->dev, "DMA request failed!\n"); - goto out_release_mem_region; + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + sig = OMAP24XX_DMA_GPMC; + info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig); + if (!info->dma) { + dev_err(&pdev->dev, "DMA engine request failed\n"); + err = -ENXIO; + goto return_error; } else { - omap_set_dma_dest_burst_mode(info->dma_ch, - OMAP_DMA_DATA_BURST_16); - omap_set_dma_src_burst_mode(info->dma_ch, - OMAP_DMA_DATA_BURST_16); - - info->nand.read_buf = omap_read_buf_dma_pref; - info->nand.write_buf = omap_write_buf_dma_pref; + struct dma_slave_config cfg; + + memset(&cfg, 0, sizeof(cfg)); + cfg.src_addr = info->phys_base; + cfg.dst_addr = info->phys_base; + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.src_maxburst = 16; + cfg.dst_maxburst = 16; + err = dmaengine_slave_config(info->dma, &cfg); + if (err) { + dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", + err); + goto return_error; + } + nand_chip->read_buf = omap_read_buf_dma_pref; + nand_chip->write_buf = omap_write_buf_dma_pref; } break; case NAND_OMAP_PREFETCH_IRQ: - err = request_irq(pdata->gpmc_irq, - omap_nand_irq, IRQF_SHARED, "gpmc-nand", info); + info->gpmc_irq_fifo = platform_get_irq(pdev, 0); + if (info->gpmc_irq_fifo <= 0) { + dev_err(&pdev->dev, "error getting fifo irq\n"); + err = -ENODEV; + goto return_error; + } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-fifo", info); if (err) { dev_err(&pdev->dev, "requesting irq(%d) error:%d", - pdata->gpmc_irq, err); - goto out_release_mem_region; - } else { - info->gpmc_irq = pdata->gpmc_irq; - info->nand.read_buf = omap_read_buf_irq_pref; - info->nand.write_buf = omap_write_buf_irq_pref; + info->gpmc_irq_fifo, err); + info->gpmc_irq_fifo = 0; + goto return_error; + } + + info->gpmc_irq_count = platform_get_irq(pdev, 1); + if (info->gpmc_irq_count <= 0) { + dev_err(&pdev->dev, "error getting count irq\n"); + err = -ENODEV; + goto return_error; + } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_count, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-count", info); + if (err) { + dev_err(&pdev->dev, "requesting irq(%d) error:%d", + info->gpmc_irq_count, err); + info->gpmc_irq_count = 0; + goto return_error; } + + nand_chip->read_buf = omap_read_buf_irq_pref; + nand_chip->write_buf = omap_write_buf_irq_pref; + break; default: dev_err(&pdev->dev, "xfer_type(%d) not supported!\n", pdata->xfer_type); err = -EINVAL; - goto out_release_mem_region; + goto return_error; } - info->nand.verify_buf = omap_verify_buf; - - /* selsect the ecc type */ - if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) - info->nand.ecc.mode = NAND_ECC_SOFT; - else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || - (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) { - info->nand.ecc.bytes = 3; - info->nand.ecc.size = 512; - info->nand.ecc.strength = 1; - info->nand.ecc.calculate = omap_calculate_ecc; - info->nand.ecc.hwctl = omap_enable_hwecc; - info->nand.ecc.correct = omap_correct_data; - info->nand.ecc.mode = NAND_ECC_HW; - } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || - (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { - err = omap3_init_bch(&info->mtd, pdata->ecc_opt); - if (err) { + /* populate MTD interface based on ECC scheme */ + nand_chip->ecc.layout = &omap_oobinfo; + ecclayout = &omap_oobinfo; + switch (info->ecc_opt) { + case OMAP_ECC_HAM1_CODE_HW: + pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.bytes = 3; + nand_chip->ecc.size = 512; + nand_chip->ecc.strength = 1; + nand_chip->ecc.calculate = omap_calculate_ecc; + nand_chip->ecc.hwctl = omap_enable_hwecc; + nand_chip->ecc.correct = omap_correct_data; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + if (nand_chip->options & NAND_BUSWIDTH_16) + oob_index = BADBLOCK_MARKER_LENGTH; + else + oob_index = 1; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* no reserved-marker in ecclayout for this ecc-scheme */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; + + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: +#ifdef CONFIG_MTD_NAND_ECC_BCH + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 7; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) { + ecclayout->eccpos[i] = oob_index; + if (((i + 1) % nand_chip->ecc.bytes) == 0) + oob_index++; + } + /* include reserved-marker in ecclayout->oobfree calculation */ + ecclayout->oobfree->offset = 1 + + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd, + nand_chip->ecc.size, + nand_chip->ecc.bytes, + &nand_chip->ecc.layout); + if (!nand_chip->ecc.priv) { + pr_err("nand: error: unable to use s/w BCH library\n"); err = -EINVAL; - goto out_release_mem_region; } - } + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif - /* DIP switches on some boards change between 8 and 16 bit - * bus widths for flash. Try the other width if the first try fails. - */ - if (nand_scan_ident(&info->mtd, 1, NULL)) { - info->nand.options ^= NAND_BUSWIDTH_16; - if (nand_scan_ident(&info->mtd, 1, NULL)) { - err = -ENXIO; - goto out_release_mem_region; + case OMAP_ECC_BCH4_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 7 + 1; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* This ECC scheme requires ELM H/W block */ + if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) { + pr_err("nand: error: could not initialize ELM\n"); + err = -ENODEV; + goto return_error; } - } - - /* rom code layout */ - if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) { + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif - if (info->nand.options & NAND_BUSWIDTH_16) - offset = 2; - else { - offset = 1; - info->nand.badblock_pattern = &bb_descrip_flashbased; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: +#ifdef CONFIG_MTD_NAND_ECC_BCH + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 13; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) { + ecclayout->eccpos[i] = oob_index; + if (((i + 1) % nand_chip->ecc.bytes) == 0) + oob_index++; } - omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16); - for (i = 0; i < omap_oobinfo.eccbytes; i++) - omap_oobinfo.eccpos[i] = i+offset; - - omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes; - omap_oobinfo.oobfree->length = info->mtd.oobsize - - (offset + omap_oobinfo.eccbytes); - - info->nand.ecc.layout = &omap_oobinfo; - } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || - (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { - /* build OOB layout for BCH ECC correction */ - err = omap3_init_bch_tail(&info->mtd); - if (err) { + /* include reserved-marker in ecclayout->oobfree calculation */ + ecclayout->oobfree->offset = 1 + + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd, + nand_chip->ecc.size, + nand_chip->ecc.bytes, + &nand_chip->ecc.layout); + if (!nand_chip->ecc.priv) { + pr_err("nand: error: unable to use s/w BCH library\n"); err = -EINVAL; - goto out_release_mem_region; + goto return_error; + } + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + + case OMAP_ECC_BCH8_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 13 + 1; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* This ECC scheme requires ELM H/W block */ + err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC); + if (err < 0) { + pr_err("nand: error: could not initialize ELM\n"); + goto return_error; + } + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + + case OMAP_ECC_BCH16_CODE_HW: +#ifdef CONFIG_MTD_NAND_OMAP_BCH + pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 26; + nand_chip->ecc.strength = 16; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + /* This ECC scheme requires ELM H/W block */ + err = is_elm_present(info, pdata->elm_of_node, BCH16_ECC); + if (err < 0) { + pr_err("ELM is required for this ECC scheme\n"); + goto return_error; } + /* define ECC layout */ + ecclayout->eccbytes = nand_chip->ecc.bytes * + (mtd->writesize / + nand_chip->ecc.size); + oob_index = BADBLOCK_MARKER_LENGTH; + for (i = 0; i < ecclayout->eccbytes; i++, oob_index++) + ecclayout->eccpos[i] = oob_index; + /* reserved marker already included in ecclayout->eccbytes */ + ecclayout->oobfree->offset = + ecclayout->eccpos[ecclayout->eccbytes - 1] + 1; + break; +#else + pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + err = -EINVAL; + goto return_error; +#endif + default: + pr_err("nand: error: invalid or unsupported ECC scheme\n"); + err = -EINVAL; + goto return_error; + } + + /* all OOB bytes from oobfree->offset till end off OOB are free */ + ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset; + /* check if NAND device's OOB is enough to store ECC signatures */ + if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) { + pr_err("not enough OOB bytes required = %d, available=%d\n", + ecclayout->eccbytes, mtd->oobsize); + err = -EINVAL; + goto return_error; } /* second phase scan */ - if (nand_scan_tail(&info->mtd)) { + if (nand_scan_tail(mtd)) { err = -ENXIO; - goto out_release_mem_region; + goto return_error; } - mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts, + ppdata.of_node = pdata->of_node; + mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts, pdata->nr_parts); - platform_set_drvdata(pdev, &info->mtd); + platform_set_drvdata(pdev, mtd); return 0; -out_release_mem_region: - release_mem_region(info->phys_base, NAND_IO_SIZE); -out_free_info: - kfree(info); - +return_error: + if (info->dma) + dma_release_channel(info->dma); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } return err; } static int omap_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); + struct nand_chip *nand_chip = mtd->priv; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); - omap3_free_bch(&info->mtd); - - platform_set_drvdata(pdev, NULL); - if (info->dma_ch != -1) - omap_free_dma(info->dma_ch); - - if (info->gpmc_irq) - free_irq(info->gpmc_irq, info); - - /* Release NAND device, its internal structures and partitions */ - nand_release(&info->mtd); - iounmap(info->nand.IO_ADDR_R); - kfree(&info->mtd); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } + if (info->dma) + dma_release_channel(info->dma); + nand_release(mtd); return 0; } diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c index 513dc88a05c..471b4df3a5a 100644 --- a/drivers/mtd/nand/orion_nand.c +++ b/drivers/mtd/nand/orion_nand.c @@ -21,8 +21,7 @@ #include <linux/err.h> #include <asm/io.h> #include <asm/sizes.h> -#include <mach/hardware.h> -#include <plat/orion_nand.h> +#include <linux/platform_data/mtd-orion_nand.h> static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { @@ -88,7 +87,6 @@ static int __init orion_nand_probe(struct platform_device *pdev) nc = kzalloc(sizeof(struct nand_chip) + sizeof(struct mtd_info), GFP_KERNEL); if (!nc) { - printk(KERN_ERR "orion_nand: failed to allocate device structure.\n"); ret = -ENOMEM; goto no_res; } @@ -102,7 +100,7 @@ static int __init orion_nand_probe(struct platform_device *pdev) io_base = ioremap(res->start, resource_size(res)); if (!io_base) { - printk(KERN_ERR "orion_nand: ioremap failed\n"); + dev_err(&pdev->dev, "ioremap failed\n"); ret = -EIO; goto no_res; } @@ -111,7 +109,6 @@ static int __init orion_nand_probe(struct platform_device *pdev) board = devm_kzalloc(&pdev->dev, sizeof(struct orion_nand_data), GFP_KERNEL); if (!board) { - printk(KERN_ERR "orion_nand: failed to allocate board structure.\n"); ret = -ENOMEM; goto no_res; } @@ -131,8 +128,9 @@ static int __init orion_nand_probe(struct platform_device *pdev) if (!of_property_read_u32(pdev->dev.of_node, "chip-delay", &val)) board->chip_delay = (u8)val; - } else - board = pdev->dev.platform_data; + } else { + board = dev_get_platdata(&pdev->dev); + } mtd->priv = nc; mtd->owner = THIS_MODULE; @@ -183,7 +181,10 @@ static int __init orion_nand_probe(struct platform_device *pdev) return 0; no_dev: - platform_set_drvdata(pdev, NULL); + if (!IS_ERR(clk)) { + clk_disable_unprepare(clk); + clk_put(clk); + } iounmap(io_base); no_res: kfree(nc); @@ -191,7 +192,7 @@ no_res: return ret; } -static int __devexit orion_nand_remove(struct platform_device *pdev) +static int orion_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); struct nand_chip *nc = mtd->priv; @@ -213,14 +214,14 @@ static int __devexit orion_nand_remove(struct platform_device *pdev) } #ifdef CONFIG_OF -static struct of_device_id orion_nand_of_match_table[] = { - { .compatible = "mrvl,orion-nand", }, +static const struct of_device_id orion_nand_of_match_table[] = { + { .compatible = "marvell,orion-nand", }, {}, }; #endif static struct platform_driver orion_nand_driver = { - .remove = __devexit_p(orion_nand_remove), + .remove = orion_nand_remove, .driver = { .name = "orion_nand", .owner = THIS_MODULE, @@ -228,18 +229,7 @@ static struct platform_driver orion_nand_driver = { }, }; -static int __init orion_nand_init(void) -{ - return platform_driver_probe(&orion_nand_driver, orion_nand_probe); -} - -static void __exit orion_nand_exit(void) -{ - platform_driver_unregister(&orion_nand_driver); -} - -module_init(orion_nand_init); -module_exit(orion_nand_exit); +module_platform_driver_probe(orion_nand_driver, orion_nand_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Tzachi Perelstein"); diff --git a/drivers/mtd/nand/pasemi_nand.c b/drivers/mtd/nand/pasemi_nand.c index 1440e51cedc..2c98f9da747 100644 --- a/drivers/mtd/nand/pasemi_nand.c +++ b/drivers/mtd/nand/pasemi_nand.c @@ -23,11 +23,12 @@ #undef DEBUG #include <linux/slab.h> -#include <linux/init.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> +#include <linux/of_address.h> +#include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pci.h> @@ -89,7 +90,7 @@ int pasemi_device_ready(struct mtd_info *mtd) return !!(inl(lpcctl) & LBICTRL_LPCCTL_NR); } -static int __devinit pasemi_nand_probe(struct platform_device *ofdev) +static int pasemi_nand_probe(struct platform_device *ofdev) { struct pci_dev *pdev; struct device_node *np = ofdev->dev.of_node; @@ -184,7 +185,7 @@ static int __devinit pasemi_nand_probe(struct platform_device *ofdev) return err; } -static int __devexit pasemi_nand_remove(struct platform_device *ofdev) +static int pasemi_nand_remove(struct platform_device *ofdev) { struct nand_chip *chip; @@ -221,7 +222,7 @@ MODULE_DEVICE_TABLE(of, pasemi_nand_match); static struct platform_driver pasemi_nand_driver = { .driver = { - .name = (char*)driver_name, + .name = driver_name, .owner = THIS_MODULE, .of_match_table = pasemi_nand_match, }, diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/plat_nand.c index 1bcb5204042..0b068a5c0bf 100644 --- a/drivers/mtd/nand/plat_nand.c +++ b/drivers/mtd/nand/plat_nand.c @@ -9,6 +9,7 @@ * */ +#include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/platform_device.h> @@ -28,44 +29,35 @@ static const char *part_probe_types[] = { "cmdlinepart", NULL }; /* * Probe for the NAND device. */ -static int __devinit plat_nand_probe(struct platform_device *pdev) +static int plat_nand_probe(struct platform_device *pdev) { - struct platform_nand_data *pdata = pdev->dev.platform_data; + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); struct mtd_part_parser_data ppdata; struct plat_nand_data *data; struct resource *res; const char **part_types; int err = 0; + if (!pdata) { + dev_err(&pdev->dev, "platform_nand_data is missing\n"); + return -EINVAL; + } + if (pdata->chip.nr_chips < 1) { dev_err(&pdev->dev, "invalid number of chips specified\n"); return -EINVAL; } - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) - return -ENXIO; - /* Allocate memory for the device structure (and zero it) */ - data = kzalloc(sizeof(struct plat_nand_data), GFP_KERNEL); - if (!data) { - dev_err(&pdev->dev, "failed to allocate device structure.\n"); + data = devm_kzalloc(&pdev->dev, sizeof(struct plat_nand_data), + GFP_KERNEL); + if (!data) return -ENOMEM; - } - if (!request_mem_region(res->start, resource_size(res), - dev_name(&pdev->dev))) { - dev_err(&pdev->dev, "request_mem_region failed\n"); - err = -EBUSY; - goto out_free; - } - - data->io_base = ioremap(res->start, resource_size(res)); - if (data->io_base == NULL) { - dev_err(&pdev->dev, "ioremap failed\n"); - err = -EIO; - goto out_release_io; - } + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + data->io_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(data->io_base)) + return PTR_ERR(data->io_base); data->chip.priv = &data; data->mtd.priv = &data->chip; @@ -117,32 +109,20 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) out: if (pdata->ctrl.remove) pdata->ctrl.remove(pdev); - platform_set_drvdata(pdev, NULL); - iounmap(data->io_base); -out_release_io: - release_mem_region(res->start, resource_size(res)); -out_free: - kfree(data); return err; } /* * Remove a NAND device. */ -static int __devexit plat_nand_remove(struct platform_device *pdev) +static int plat_nand_remove(struct platform_device *pdev) { struct plat_nand_data *data = platform_get_drvdata(pdev); - struct platform_nand_data *pdata = pdev->dev.platform_data; - struct resource *res; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); nand_release(&data->mtd); if (pdata->ctrl.remove) pdata->ctrl.remove(pdev); - iounmap(data->io_base); - release_mem_region(res->start, resource_size(res)); - kfree(data); return 0; } @@ -155,7 +135,7 @@ MODULE_DEVICE_TABLE(of, plat_nand_match); static struct platform_driver plat_nand_driver = { .probe = plat_nand_probe, - .remove = __devexit_p(plat_nand_remove), + .remove = plat_nand_remove, .driver = { .name = "gen_nand", .owner = THIS_MODULE, diff --git a/drivers/mtd/nand/ppchameleonevb.c b/drivers/mtd/nand/ppchameleonevb.c deleted file mode 100644 index 0ddd90e5788..00000000000 --- a/drivers/mtd/nand/ppchameleonevb.c +++ /dev/null @@ -1,403 +0,0 @@ -/* - * drivers/mtd/nand/ppchameleonevb.c - * - * Copyright (C) 2003 DAVE Srl (info@wawnet.biz) - * - * Derived from drivers/mtd/nand/edb7312.c - * - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash devices found on the - * PPChameleon/PPChameleonEVB system. - * PPChameleon options (autodetected): - * - BA model: no NAND - * - ME model: 32MB (Samsung K9F5608U0B) - * - HI model: 128MB (Samsung K9F1G08UOM) - * PPChameleonEVB options: - * - 32MB (Samsung K9F5608U0B) - */ - -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <platforms/PPChameleonEVB.h> - -#undef USE_READY_BUSY_PIN -#define USE_READY_BUSY_PIN -/* see datasheets (tR) */ -#define NAND_BIG_DELAY_US 25 -#define NAND_SMALL_DELAY_US 10 - -/* handy sizes */ -#define SZ_4M 0x00400000 -#define NAND_SMALL_SIZE 0x02000000 -#define NAND_MTD_NAME "ppchameleon-nand" -#define NAND_EVB_MTD_NAME "ppchameleonevb-nand" - -/* GPIO pins used to drive NAND chip mounted on processor module */ -#define NAND_nCE_GPIO_PIN (0x80000000 >> 1) -#define NAND_CLE_GPIO_PIN (0x80000000 >> 2) -#define NAND_ALE_GPIO_PIN (0x80000000 >> 3) -#define NAND_RB_GPIO_PIN (0x80000000 >> 4) -/* GPIO pins used to drive NAND chip mounted on EVB */ -#define NAND_EVB_nCE_GPIO_PIN (0x80000000 >> 14) -#define NAND_EVB_CLE_GPIO_PIN (0x80000000 >> 15) -#define NAND_EVB_ALE_GPIO_PIN (0x80000000 >> 16) -#define NAND_EVB_RB_GPIO_PIN (0x80000000 >> 31) - -/* - * MTD structure for PPChameleonEVB board - */ -static struct mtd_info *ppchameleon_mtd = NULL; -static struct mtd_info *ppchameleonevb_mtd = NULL; - -/* - * Module stuff - */ -static unsigned long ppchameleon_fio_pbase = CFG_NAND0_PADDR; -static unsigned long ppchameleonevb_fio_pbase = CFG_NAND1_PADDR; - -#ifdef MODULE -module_param(ppchameleon_fio_pbase, ulong, 0); -module_param(ppchameleonevb_fio_pbase, ulong, 0); -#else -__setup("ppchameleon_fio_pbase=", ppchameleon_fio_pbase); -__setup("ppchameleonevb_fio_pbase=", ppchameleonevb_fio_pbase); -#endif - -/* - * Define static partitions for flash devices - */ -static struct mtd_partition partition_info_hi[] = { - { .name = "PPChameleon HI Nand Flash", - .offset = 0, - .size = 128 * 1024 * 1024 - } -}; - -static struct mtd_partition partition_info_me[] = { - { .name = "PPChameleon ME Nand Flash", - .offset = 0, - .size = 32 * 1024 * 1024 - } -}; - -static struct mtd_partition partition_info_evb[] = { - { .name = "PPChameleonEVB Nand Flash", - .offset = 0, - .size = 32 * 1024 * 1024 - } -}; - -#define NUM_PARTITIONS 1 - -/* - * hardware specific access to control-lines - */ -static void ppchameleon_hwcontrol(struct mtd_info *mtdinfo, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { -#error Missing headerfiles. No way to fix this. -tglx - switch (cmd) { - case NAND_CTL_SETCLE: - MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_CLRCLE: - MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_SETALE: - MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_CLRALE: - MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_SETNCE: - MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND0_PADDR); - break; - case NAND_CTL_CLRNCE: - MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND0_PADDR); - break; - } - } - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -static void ppchameleonevb_hwcontrol(struct mtd_info *mtdinfo, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { -#error Missing headerfiles. No way to fix this. -tglx - switch (cmd) { - case NAND_CTL_SETCLE: - MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_CLRCLE: - MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_SETALE: - MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_CLRALE: - MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_SETNCE: - MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND1_PADDR); - break; - case NAND_CTL_CLRNCE: - MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND1_PADDR); - break; - } - } - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -#ifdef USE_READY_BUSY_PIN -/* - * read device ready pin - */ -static int ppchameleon_device_ready(struct mtd_info *minfo) -{ - if (in_be32((volatile unsigned *)GPIO0_IR) & NAND_RB_GPIO_PIN) - return 1; - return 0; -} - -static int ppchameleonevb_device_ready(struct mtd_info *minfo) -{ - if (in_be32((volatile unsigned *)GPIO0_IR) & NAND_EVB_RB_GPIO_PIN) - return 1; - return 0; -} -#endif - -/* - * Main initialization routine - */ -static int __init ppchameleonevb_init(void) -{ - struct nand_chip *this; - void __iomem *ppchameleon_fio_base; - void __iomem *ppchameleonevb_fio_base; - - /********************************* - * Processor module NAND (if any) * - *********************************/ - /* Allocate memory for MTD device structure and private data */ - ppchameleon_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!ppchameleon_mtd) { - printk("Unable to allocate PPChameleon NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* map physical address */ - ppchameleon_fio_base = ioremap(ppchameleon_fio_pbase, SZ_4M); - if (!ppchameleon_fio_base) { - printk("ioremap PPChameleon NAND flash failed\n"); - kfree(ppchameleon_mtd); - return -EIO; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&ppchameleon_mtd[1]); - - /* Initialize structures */ - memset(ppchameleon_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - ppchameleon_mtd->priv = this; - ppchameleon_mtd->owner = THIS_MODULE; - - /* Initialize GPIOs */ - /* Pin mapping for NAND chip */ - /* - CE GPIO_01 - CLE GPIO_02 - ALE GPIO_03 - R/B GPIO_04 - */ - /* output select */ - out_be32((volatile unsigned *)GPIO0_OSRH, in_be32((volatile unsigned *)GPIO0_OSRH) & 0xC0FFFFFF); - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xC0FFFFFF); - /* enable output driver */ - out_be32((volatile unsigned *)GPIO0_TCR, - in_be32((volatile unsigned *)GPIO0_TCR) | NAND_nCE_GPIO_PIN | NAND_CLE_GPIO_PIN | NAND_ALE_GPIO_PIN); -#ifdef USE_READY_BUSY_PIN - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xFF3FFFFF); - /* high-impedecence */ - out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) & (~NAND_RB_GPIO_PIN)); - /* input select */ - out_be32((volatile unsigned *)GPIO0_ISR1H, - (in_be32((volatile unsigned *)GPIO0_ISR1H) & 0xFF3FFFFF) | 0x00400000); -#endif - - /* insert callbacks */ - this->IO_ADDR_R = ppchameleon_fio_base; - this->IO_ADDR_W = ppchameleon_fio_base; - this->cmd_ctrl = ppchameleon_hwcontrol; -#ifdef USE_READY_BUSY_PIN - this->dev_ready = ppchameleon_device_ready; -#endif - this->chip_delay = NAND_BIG_DELAY_US; - /* ECC mode */ - this->ecc.mode = NAND_ECC_SOFT; - - /* Scan to find existence of the device (it could not be mounted) */ - if (nand_scan(ppchameleon_mtd, 1)) { - iounmap((void *)ppchameleon_fio_base); - ppchameleon_fio_base = NULL; - kfree(ppchameleon_mtd); - goto nand_evb_init; - } -#ifndef USE_READY_BUSY_PIN - /* Adjust delay if necessary */ - if (ppchameleon_mtd->size == NAND_SMALL_SIZE) - this->chip_delay = NAND_SMALL_DELAY_US; -#endif - - ppchameleon_mtd->name = "ppchameleon-nand"; - - /* Register the partitions */ - mtd_device_parse_register(ppchameleon_mtd, NULL, NULL, - ppchameleon_mtd->size == NAND_SMALL_SIZE ? - partition_info_me : partition_info_hi, - NUM_PARTITIONS); - - nand_evb_init: - /**************************** - * EVB NAND (always present) * - ****************************/ - /* Allocate memory for MTD device structure and private data */ - ppchameleonevb_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!ppchameleonevb_mtd) { - printk("Unable to allocate PPChameleonEVB NAND MTD device structure.\n"); - if (ppchameleon_fio_base) - iounmap(ppchameleon_fio_base); - return -ENOMEM; - } - - /* map physical address */ - ppchameleonevb_fio_base = ioremap(ppchameleonevb_fio_pbase, SZ_4M); - if (!ppchameleonevb_fio_base) { - printk("ioremap PPChameleonEVB NAND flash failed\n"); - kfree(ppchameleonevb_mtd); - if (ppchameleon_fio_base) - iounmap(ppchameleon_fio_base); - return -EIO; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&ppchameleonevb_mtd[1]); - - /* Initialize structures */ - memset(ppchameleonevb_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - ppchameleonevb_mtd->priv = this; - - /* Initialize GPIOs */ - /* Pin mapping for NAND chip */ - /* - CE GPIO_14 - CLE GPIO_15 - ALE GPIO_16 - R/B GPIO_31 - */ - /* output select */ - out_be32((volatile unsigned *)GPIO0_OSRH, in_be32((volatile unsigned *)GPIO0_OSRH) & 0xFFFFFFF0); - out_be32((volatile unsigned *)GPIO0_OSRL, in_be32((volatile unsigned *)GPIO0_OSRL) & 0x3FFFFFFF); - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRH, in_be32((volatile unsigned *)GPIO0_TSRH) & 0xFFFFFFF0); - out_be32((volatile unsigned *)GPIO0_TSRL, in_be32((volatile unsigned *)GPIO0_TSRL) & 0x3FFFFFFF); - /* enable output driver */ - out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN | - NAND_EVB_CLE_GPIO_PIN | NAND_EVB_ALE_GPIO_PIN); -#ifdef USE_READY_BUSY_PIN - /* three-state select */ - out_be32((volatile unsigned *)GPIO0_TSRL, in_be32((volatile unsigned *)GPIO0_TSRL) & 0xFFFFFFFC); - /* high-impedecence */ - out_be32((volatile unsigned *)GPIO0_TCR, in_be32((volatile unsigned *)GPIO0_TCR) & (~NAND_EVB_RB_GPIO_PIN)); - /* input select */ - out_be32((volatile unsigned *)GPIO0_ISR1L, - (in_be32((volatile unsigned *)GPIO0_ISR1L) & 0xFFFFFFFC) | 0x00000001); -#endif - - /* insert callbacks */ - this->IO_ADDR_R = ppchameleonevb_fio_base; - this->IO_ADDR_W = ppchameleonevb_fio_base; - this->cmd_ctrl = ppchameleonevb_hwcontrol; -#ifdef USE_READY_BUSY_PIN - this->dev_ready = ppchameleonevb_device_ready; -#endif - this->chip_delay = NAND_SMALL_DELAY_US; - - /* ECC mode */ - this->ecc.mode = NAND_ECC_SOFT; - - /* Scan to find existence of the device */ - if (nand_scan(ppchameleonevb_mtd, 1)) { - iounmap((void *)ppchameleonevb_fio_base); - kfree(ppchameleonevb_mtd); - if (ppchameleon_fio_base) - iounmap(ppchameleon_fio_base); - return -ENXIO; - } - - ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME; - - /* Register the partitions */ - mtd_device_parse_register(ppchameleonevb_mtd, NULL, NULL, - ppchameleon_mtd->size == NAND_SMALL_SIZE ? - partition_info_me : partition_info_hi, - NUM_PARTITIONS); - - /* Return happy */ - return 0; -} - -module_init(ppchameleonevb_init); - -/* - * Clean up routine - */ -static void __exit ppchameleonevb_cleanup(void) -{ - struct nand_chip *this; - - /* Release resources, unregister device(s) */ - nand_release(ppchameleon_mtd); - nand_release(ppchameleonevb_mtd); - - /* Release iomaps */ - this = (struct nand_chip *) &ppchameleon_mtd[1]; - iounmap((void *) this->IO_ADDR_R); - this = (struct nand_chip *) &ppchameleonevb_mtd[1]; - iounmap((void *) this->IO_ADDR_R); - - /* Free the MTD device structure */ - kfree (ppchameleon_mtd); - kfree (ppchameleonevb_mtd); -} -module_exit(ppchameleonevb_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("DAVE Srl <support-ppchameleon@dave-tech.it>"); -MODULE_DESCRIPTION("MTD map driver for DAVE Srl PPChameleonEVB board"); diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index 252aaefcacf..96b0b1d27df 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c @@ -7,6 +7,8 @@ * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. + * + * See Documentation/mtd/nand/pxa3xx-nand.txt for more details. */ #include <linux/kernel.h> @@ -22,14 +24,31 @@ #include <linux/io.h> #include <linux/irq.h> #include <linux/slab.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> + +#if defined(CONFIG_ARCH_PXA) || defined(CONFIG_ARCH_MMP) +#define ARCH_HAS_DMA +#endif +#ifdef ARCH_HAS_DMA #include <mach/dma.h> -#include <plat/pxa3xx_nand.h> +#endif + +#include <linux/platform_data/mtd-nand-pxa3xx.h> #define CHIP_DELAY_TIMEOUT (2 * HZ/10) #define NAND_STOP_DELAY (2 * HZ/50) #define PAGE_CHUNK_SIZE (2048) +/* + * Define a buffer size for the initial command that detects the flash device: + * STATUS, READID and PARAM. The largest of these is the PARAM command, + * needing 256 bytes. + */ +#define INIT_BUFFER_SIZE 256 + /* registers and bit definitions */ #define NDCR (0x00) /* Control register */ #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */ @@ -38,6 +57,7 @@ #define NDPCR (0x18) /* Page Count Register */ #define NDBDR0 (0x1C) /* Bad Block Register 0 */ #define NDBDR1 (0x20) /* Bad Block Register 1 */ +#define NDECCCTRL (0x28) /* ECC control */ #define NDDB (0x40) /* Data Buffer */ #define NDCB0 (0x48) /* Command Buffer0 */ #define NDCB1 (0x4C) /* Command Buffer1 */ @@ -64,6 +84,9 @@ #define NDCR_INT_MASK (0xFFF) #define NDSR_MASK (0xfff) +#define NDSR_ERR_CNT_OFF (16) +#define NDSR_ERR_CNT_MASK (0x1f) +#define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK) #define NDSR_RDY (0x1 << 12) #define NDSR_FLASH_RDY (0x1 << 11) #define NDSR_CS0_PAGED (0x1 << 10) @@ -72,15 +95,18 @@ #define NDSR_CS1_CMDD (0x1 << 7) #define NDSR_CS0_BBD (0x1 << 6) #define NDSR_CS1_BBD (0x1 << 5) -#define NDSR_DBERR (0x1 << 4) -#define NDSR_SBERR (0x1 << 3) +#define NDSR_UNCORERR (0x1 << 4) +#define NDSR_CORERR (0x1 << 3) #define NDSR_WRDREQ (0x1 << 2) #define NDSR_RDDREQ (0x1 << 1) #define NDSR_WRCMDREQ (0x1) +#define NDCB0_LEN_OVRD (0x1 << 28) #define NDCB0_ST_ROW_EN (0x1 << 26) #define NDCB0_AUTO_RS (0x1 << 25) #define NDCB0_CSEL (0x1 << 24) +#define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29) +#define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK) #define NDCB0_CMD_TYPE_MASK (0x7 << 21) #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) #define NDCB0_NC (0x1 << 20) @@ -91,21 +117,29 @@ #define NDCB0_CMD1_MASK (0xff) #define NDCB0_ADDR_CYC_SHIFT (16) +#define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */ +#define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */ +#define EXT_CMD_TYPE_READ 4 /* Read */ +#define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */ +#define EXT_CMD_TYPE_FINAL 3 /* Final command */ +#define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */ +#define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */ + /* macros for registers read/write */ #define nand_writel(info, off, val) \ - __raw_writel((val), (info)->mmio_base + (off)) + writel_relaxed((val), (info)->mmio_base + (off)) #define nand_readl(info, off) \ - __raw_readl((info)->mmio_base + (off)) + readl_relaxed((info)->mmio_base + (off)) /* error code and state */ enum { ERR_NONE = 0, ERR_DMABUSERR = -1, ERR_SENDCMD = -2, - ERR_DBERR = -3, + ERR_UNCORERR = -3, ERR_BBERR = -4, - ERR_SBERR = -5, + ERR_CORERR = -5, }; enum { @@ -121,14 +155,17 @@ enum { STATE_READY, }; +enum pxa3xx_nand_variant { + PXA3XX_NAND_VARIANT_PXA, + PXA3XX_NAND_VARIANT_ARMADA370, +}; + struct pxa3xx_nand_host { struct nand_chip chip; - struct pxa3xx_nand_cmdset *cmdset; struct mtd_info *mtd; void *info_data; /* page size of attached chip */ - unsigned int page_size; int use_ecc; int cs; @@ -137,10 +174,6 @@ struct pxa3xx_nand_host { unsigned int row_addr_cycles; size_t read_id_bytes; - /* cached register value */ - uint32_t reg_ndcr; - uint32_t ndtr0cs0; - uint32_t ndtr1cs0; }; struct pxa3xx_nand_info { @@ -150,10 +183,13 @@ struct pxa3xx_nand_info { struct clk *clk; void __iomem *mmio_base; unsigned long mmio_phys; - struct completion cmd_complete; + struct completion cmd_complete, dev_ready; unsigned int buf_start; unsigned int buf_count; + unsigned int buf_size; + unsigned int data_buff_pos; + unsigned int oob_buff_pos; /* DMA information */ int drcmr_dat; @@ -169,43 +205,44 @@ struct pxa3xx_nand_info { struct pxa3xx_nand_host *host[NUM_CHIP_SELECT]; unsigned int state; + /* + * This driver supports NFCv1 (as found in PXA SoC) + * and NFCv2 (as found in Armada 370/XP SoC). + */ + enum pxa3xx_nand_variant variant; + int cs; int use_ecc; /* use HW ECC ? */ + int ecc_bch; /* using BCH ECC? */ int use_dma; /* use DMA ? */ - int is_ready; + int use_spare; /* use spare ? */ + int need_wait; - unsigned int page_size; /* page size of attached chip */ - unsigned int data_size; /* data size in FIFO */ + unsigned int data_size; /* data to be read from FIFO */ + unsigned int chunk_size; /* split commands chunk size */ unsigned int oob_size; + unsigned int spare_size; + unsigned int ecc_size; + unsigned int ecc_err_cnt; + unsigned int max_bitflips; int retcode; + /* cached register value */ + uint32_t reg_ndcr; + uint32_t ndtr0cs0; + uint32_t ndtr1cs0; + /* generated NDCBx register values */ uint32_t ndcb0; uint32_t ndcb1; uint32_t ndcb2; + uint32_t ndcb3; }; static bool use_dma = 1; module_param(use_dma, bool, 0444); MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW"); -/* - * Default NAND flash controller configuration setup by the - * bootloader. This configuration is used only when pdata->keep_config is set - */ -static struct pxa3xx_nand_cmdset default_cmdset = { - .read1 = 0x3000, - .read2 = 0x0050, - .program = 0x1080, - .read_status = 0x0070, - .read_id = 0x0090, - .erase = 0xD060, - .reset = 0x00FF, - .lock = 0x002A, - .unlock = 0x2423, - .lock_status = 0x007A, -}; - static struct pxa3xx_nand_timing timing[] = { { 40, 80, 60, 100, 80, 100, 90000, 400, 40, }, { 10, 0, 20, 40, 30, 40, 11123, 110, 10, }, @@ -225,11 +262,67 @@ static struct pxa3xx_nand_flash builtin_flash_types[] = { { "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] }, }; +static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; +static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_mirror_pattern +}; + +static struct nand_ecclayout ecc_layout_2KB_bch4bit = { + .eccbytes = 32, + .eccpos = { + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63}, + .oobfree = { {2, 30} } +}; + +static struct nand_ecclayout ecc_layout_4KB_bch4bit = { + .eccbytes = 64, + .eccpos = { + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127}, + /* Bootrom looks in bytes 0 & 5 for bad blocks */ + .oobfree = { {6, 26}, { 64, 32} } +}; + +static struct nand_ecclayout ecc_layout_4KB_bch8bit = { + .eccbytes = 128, + .eccpos = { + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63}, + .oobfree = { } +}; + /* Define a default flash type setting serve as flash detecting only */ #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0]) -const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL}; - #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) #define NDTR0_tWH(c) (min((c), 7) << 11) @@ -244,6 +337,29 @@ const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL}; /* convert nano-seconds to nand flash controller clock cycles */ #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) +static const struct of_device_id pxa3xx_nand_dt_ids[] = { + { + .compatible = "marvell,pxa3xx-nand", + .data = (void *)PXA3XX_NAND_VARIANT_PXA, + }, + { + .compatible = "marvell,armada370-nand", + .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370, + }, + {} +}; +MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids); + +static enum pxa3xx_nand_variant +pxa3xx_nand_get_variant(struct platform_device *pdev) +{ + const struct of_device_id *of_id = + of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); + if (!of_id) + return PXA3XX_NAND_VARIANT_PXA; + return (enum pxa3xx_nand_variant)of_id->data; +} + static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, const struct pxa3xx_nand_timing *t) { @@ -262,31 +378,29 @@ static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); - host->ndtr0cs0 = ndtr0; - host->ndtr1cs0 = ndtr1; + info->ndtr0cs0 = ndtr0; + info->ndtr1cs0 = ndtr1; nand_writel(info, NDTR0CS0, ndtr0); nand_writel(info, NDTR1CS0, ndtr1); } -static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info) +/* + * Set the data and OOB size, depending on the selected + * spare and ECC configuration. + * Only applicable to READ0, READOOB and PAGEPROG commands. + */ +static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info, + struct mtd_info *mtd) { - struct pxa3xx_nand_host *host = info->host[info->cs]; - int oob_enable = host->reg_ndcr & NDCR_SPARE_EN; + int oob_enable = info->reg_ndcr & NDCR_SPARE_EN; - info->data_size = host->page_size; - if (!oob_enable) { - info->oob_size = 0; + info->data_size = mtd->writesize; + if (!oob_enable) return; - } - switch (host->page_size) { - case 2048: - info->oob_size = (info->use_ecc) ? 40 : 64; - break; - case 512: - info->oob_size = (info->use_ecc) ? 8 : 16; - break; - } + info->oob_size = info->spare_size; + if (!info->use_ecc) + info->oob_size += info->ecc_size; } /** @@ -297,12 +411,30 @@ static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info) */ static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) { - struct pxa3xx_nand_host *host = info->host[info->cs]; uint32_t ndcr; - ndcr = host->reg_ndcr; - ndcr |= info->use_ecc ? NDCR_ECC_EN : 0; - ndcr |= info->use_dma ? NDCR_DMA_EN : 0; + ndcr = info->reg_ndcr; + + if (info->use_ecc) { + ndcr |= NDCR_ECC_EN; + if (info->ecc_bch) + nand_writel(info, NDECCCTRL, 0x1); + } else { + ndcr &= ~NDCR_ECC_EN; + if (info->ecc_bch) + nand_writel(info, NDECCCTRL, 0x0); + } + + if (info->use_dma) + ndcr |= NDCR_DMA_EN; + else + ndcr &= ~NDCR_DMA_EN; + + if (info->use_spare) + ndcr |= NDCR_SPARE_EN; + else + ndcr &= ~NDCR_SPARE_EN; + ndcr |= NDCR_ND_RUN; /* clear status bits and run */ @@ -331,7 +463,8 @@ static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) nand_writel(info, NDSR, NDSR_MASK); } -static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) +static void __maybe_unused +enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; @@ -349,28 +482,42 @@ static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) static void handle_data_pio(struct pxa3xx_nand_info *info) { + unsigned int do_bytes = min(info->data_size, info->chunk_size); + switch (info->state) { case STATE_PIO_WRITING: - __raw_writesl(info->mmio_base + NDDB, info->data_buff, - DIV_ROUND_UP(info->data_size, 4)); + __raw_writesl(info->mmio_base + NDDB, + info->data_buff + info->data_buff_pos, + DIV_ROUND_UP(do_bytes, 4)); + if (info->oob_size > 0) - __raw_writesl(info->mmio_base + NDDB, info->oob_buff, - DIV_ROUND_UP(info->oob_size, 4)); + __raw_writesl(info->mmio_base + NDDB, + info->oob_buff + info->oob_buff_pos, + DIV_ROUND_UP(info->oob_size, 4)); break; case STATE_PIO_READING: - __raw_readsl(info->mmio_base + NDDB, info->data_buff, - DIV_ROUND_UP(info->data_size, 4)); + __raw_readsl(info->mmio_base + NDDB, + info->data_buff + info->data_buff_pos, + DIV_ROUND_UP(do_bytes, 4)); + if (info->oob_size > 0) - __raw_readsl(info->mmio_base + NDDB, info->oob_buff, - DIV_ROUND_UP(info->oob_size, 4)); + __raw_readsl(info->mmio_base + NDDB, + info->oob_buff + info->oob_buff_pos, + DIV_ROUND_UP(info->oob_size, 4)); break; default: dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, info->state); BUG(); } + + /* Update buffer pointers for multi-page read/write */ + info->data_buff_pos += do_bytes; + info->oob_buff_pos += info->oob_size; + info->data_size -= do_bytes; } +#ifdef ARCH_HAS_DMA static void start_data_dma(struct pxa3xx_nand_info *info) { struct pxa_dma_desc *desc = info->data_desc; @@ -417,11 +564,15 @@ static void pxa3xx_nand_data_dma_irq(int channel, void *data) enable_int(info, NDCR_INT_MASK); nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); } +#else +static void start_data_dma(struct pxa3xx_nand_info *info) +{} +#endif static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) { struct pxa3xx_nand_info *info = devid; - unsigned int status, is_completed = 0; + unsigned int status, is_completed = 0, is_ready = 0; unsigned int ready, cmd_done; if (info->cs == 0) { @@ -434,10 +585,25 @@ static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) status = nand_readl(info, NDSR); - if (status & NDSR_DBERR) - info->retcode = ERR_DBERR; - if (status & NDSR_SBERR) - info->retcode = ERR_SBERR; + if (status & NDSR_UNCORERR) + info->retcode = ERR_UNCORERR; + if (status & NDSR_CORERR) { + info->retcode = ERR_CORERR; + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 && + info->ecc_bch) + info->ecc_err_cnt = NDSR_ERR_CNT(status); + else + info->ecc_err_cnt = 1; + + /* + * Each chunk composing a page is corrected independently, + * and we need to store maximum number of corrected bitflips + * to return it to the MTD layer in ecc.read_page(). + */ + info->max_bitflips = max_t(unsigned int, + info->max_bitflips, + info->ecc_err_cnt); + } if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { /* whether use dma to transfer data */ if (info->use_dma) { @@ -457,23 +623,38 @@ static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) is_completed = 1; } if (status & ready) { - info->is_ready = 1; info->state = STATE_READY; + is_ready = 1; } if (status & NDSR_WRCMDREQ) { nand_writel(info, NDSR, NDSR_WRCMDREQ); status &= ~NDSR_WRCMDREQ; info->state = STATE_CMD_HANDLE; + + /* + * Command buffer registers NDCB{0-2} (and optionally NDCB3) + * must be loaded by writing directly either 12 or 16 + * bytes directly to NDCB0, four bytes at a time. + * + * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored + * but each NDCBx register can be read. + */ nand_writel(info, NDCB0, info->ndcb0); nand_writel(info, NDCB0, info->ndcb1); nand_writel(info, NDCB0, info->ndcb2); + + /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */ + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) + nand_writel(info, NDCB0, info->ndcb3); } /* clear NDSR to let the controller exit the IRQ */ nand_writel(info, NDSR, status); if (is_completed) complete(&info->cmd_complete); + if (is_ready) + complete(&info->dev_ready); NORMAL_IRQ_EXIT: return IRQ_HANDLED; } @@ -486,40 +667,53 @@ static inline int is_buf_blank(uint8_t *buf, size_t len) return 1; } -static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, - uint16_t column, int page_addr) +static void set_command_address(struct pxa3xx_nand_info *info, + unsigned int page_size, uint16_t column, int page_addr) { - uint16_t cmd; - int addr_cycle, exec_cmd; - struct pxa3xx_nand_host *host; - struct mtd_info *mtd; + /* small page addr setting */ + if (page_size < PAGE_CHUNK_SIZE) { + info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) + | (column & 0xFF); - host = info->host[info->cs]; - mtd = host->mtd; - addr_cycle = 0; - exec_cmd = 1; + info->ndcb2 = 0; + } else { + info->ndcb1 = ((page_addr & 0xFFFF) << 16) + | (column & 0xFFFF); + + if (page_addr & 0xFF0000) + info->ndcb2 = (page_addr & 0xFF0000) >> 16; + else + info->ndcb2 = 0; + } +} + +static void prepare_start_command(struct pxa3xx_nand_info *info, int command) +{ + struct pxa3xx_nand_host *host = info->host[info->cs]; + struct mtd_info *mtd = host->mtd; /* reset data and oob column point to handle data */ info->buf_start = 0; info->buf_count = 0; info->oob_size = 0; + info->data_buff_pos = 0; + info->oob_buff_pos = 0; info->use_ecc = 0; - info->is_ready = 0; + info->use_spare = 1; info->retcode = ERR_NONE; - if (info->cs != 0) - info->ndcb0 = NDCB0_CSEL; - else - info->ndcb0 = 0; + info->ecc_err_cnt = 0; + info->ndcb3 = 0; + info->need_wait = 0; switch (command) { case NAND_CMD_READ0: case NAND_CMD_PAGEPROG: info->use_ecc = 1; case NAND_CMD_READOOB: - pxa3xx_set_datasize(info); + pxa3xx_set_datasize(info, mtd); break; - case NAND_CMD_SEQIN: - exec_cmd = 0; + case NAND_CMD_PARAM: + info->use_spare = 0; break; default: info->ndcb1 = 0; @@ -527,48 +721,90 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, break; } + /* + * If we are about to issue a read command, or about to set + * the write address, then clean the data buffer. + */ + if (command == NAND_CMD_READ0 || + command == NAND_CMD_READOOB || + command == NAND_CMD_SEQIN) { + + info->buf_count = mtd->writesize + mtd->oobsize; + memset(info->data_buff, 0xFF, info->buf_count); + } + +} + +static int prepare_set_command(struct pxa3xx_nand_info *info, int command, + int ext_cmd_type, uint16_t column, int page_addr) +{ + int addr_cycle, exec_cmd; + struct pxa3xx_nand_host *host; + struct mtd_info *mtd; + + host = info->host[info->cs]; + mtd = host->mtd; + addr_cycle = 0; + exec_cmd = 1; + + if (info->cs != 0) + info->ndcb0 = NDCB0_CSEL; + else + info->ndcb0 = 0; + + if (command == NAND_CMD_SEQIN) + exec_cmd = 0; + addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles + host->col_addr_cycles); switch (command) { case NAND_CMD_READOOB: case NAND_CMD_READ0: - cmd = host->cmdset->read1; + info->buf_start = column; + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | addr_cycle + | NAND_CMD_READ0; + if (command == NAND_CMD_READOOB) - info->buf_start = mtd->writesize + column; - else - info->buf_start = column; + info->buf_start += mtd->writesize; - if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) - info->ndcb0 |= NDCB0_CMD_TYPE(0) - | addr_cycle - | (cmd & NDCB0_CMD1_MASK); - else - info->ndcb0 |= NDCB0_CMD_TYPE(0) - | NDCB0_DBC - | addr_cycle - | cmd; + /* + * Multiple page read needs an 'extended command type' field, + * which is either naked-read or last-read according to the + * state. + */ + if (mtd->writesize == PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8); + } else if (mtd->writesize > PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) + | NDCB0_LEN_OVRD + | NDCB0_EXT_CMD_TYPE(ext_cmd_type); + info->ndcb3 = info->chunk_size + + info->oob_size; + } + + set_command_address(info, mtd->writesize, column, page_addr); + break; case NAND_CMD_SEQIN: - /* small page addr setting */ - if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) { - info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) - | (column & 0xFF); - info->ndcb2 = 0; - } else { - info->ndcb1 = ((page_addr & 0xFFFF) << 16) - | (column & 0xFFFF); + info->buf_start = column; + set_command_address(info, mtd->writesize, 0, page_addr); - if (page_addr & 0xFF0000) - info->ndcb2 = (page_addr & 0xFF0000) >> 16; - else - info->ndcb2 = 0; + /* + * Multiple page programming needs to execute the initial + * SEQIN command that sets the page address. + */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_EXT_CMD_TYPE(ext_cmd_type) + | addr_cycle + | command; + /* No data transfer in this case */ + info->data_size = 0; + exec_cmd = 1; } - - info->buf_count = mtd->writesize + mtd->oobsize; - memset(info->data_buff, 0xFF, info->buf_count); - break; case NAND_CMD_PAGEPROG: @@ -578,49 +814,85 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, break; } - cmd = host->cmdset->program; - info->ndcb0 |= NDCB0_CMD_TYPE(0x1) - | NDCB0_AUTO_RS - | NDCB0_ST_ROW_EN - | NDCB0_DBC - | cmd - | addr_cycle; + /* Second command setting for large pages */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + /* + * Multiple page write uses the 'extended command' + * field. This can be used to issue a command dispatch + * or a naked-write depending on the current stage. + */ + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_LEN_OVRD + | NDCB0_EXT_CMD_TYPE(ext_cmd_type); + info->ndcb3 = info->chunk_size + + info->oob_size; + + /* + * This is the command dispatch that completes a chunked + * page program operation. + */ + if (info->data_size == 0) { + info->ndcb0 = NDCB0_CMD_TYPE(0x1) + | NDCB0_EXT_CMD_TYPE(ext_cmd_type) + | command; + info->ndcb1 = 0; + info->ndcb2 = 0; + info->ndcb3 = 0; + } + } else { + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_AUTO_RS + | NDCB0_ST_ROW_EN + | NDCB0_DBC + | (NAND_CMD_PAGEPROG << 8) + | NAND_CMD_SEQIN + | addr_cycle; + } + break; + + case NAND_CMD_PARAM: + info->buf_count = 256; + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | NDCB0_ADDR_CYC(1) + | NDCB0_LEN_OVRD + | command; + info->ndcb1 = (column & 0xFF); + info->ndcb3 = 256; + info->data_size = 256; break; case NAND_CMD_READID: - cmd = host->cmdset->read_id; info->buf_count = host->read_id_bytes; info->ndcb0 |= NDCB0_CMD_TYPE(3) | NDCB0_ADDR_CYC(1) - | cmd; + | command; + info->ndcb1 = (column & 0xFF); info->data_size = 8; break; case NAND_CMD_STATUS: - cmd = host->cmdset->read_status; info->buf_count = 1; info->ndcb0 |= NDCB0_CMD_TYPE(4) | NDCB0_ADDR_CYC(1) - | cmd; + | command; info->data_size = 8; break; case NAND_CMD_ERASE1: - cmd = host->cmdset->erase; info->ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS | NDCB0_ADDR_CYC(3) | NDCB0_DBC - | cmd; + | (NAND_CMD_ERASE2 << 8) + | NAND_CMD_ERASE1; info->ndcb1 = page_addr; info->ndcb2 = 0; break; case NAND_CMD_RESET: - cmd = host->cmdset->reset; info->ndcb0 |= NDCB0_CMD_TYPE(5) - | cmd; + | command; break; @@ -638,8 +910,8 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, return exec_cmd; } -static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, - int column, int page_addr) +static void nand_cmdfunc(struct mtd_info *mtd, unsigned command, + int column, int page_addr) { struct pxa3xx_nand_host *host = mtd->priv; struct pxa3xx_nand_info *info = host->info_data; @@ -650,7 +922,7 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, * "byte" address into a "word" address appropriate * for indexing a word-oriented device */ - if (host->reg_ndcr & NDCR_DWIDTH_M) + if (info->reg_ndcr & NDCR_DWIDTH_M) column /= 2; /* @@ -660,14 +932,19 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, */ if (info->cs != host->cs) { info->cs = host->cs; - nand_writel(info, NDTR0CS0, host->ndtr0cs0); - nand_writel(info, NDTR1CS0, host->ndtr1cs0); + nand_writel(info, NDTR0CS0, info->ndtr0cs0); + nand_writel(info, NDTR1CS0, info->ndtr1cs0); } + prepare_start_command(info, command); + info->state = STATE_PREPARED; - exec_cmd = prepare_command_pool(info, command, column, page_addr); + exec_cmd = prepare_set_command(info, command, 0, column, page_addr); + if (exec_cmd) { init_completion(&info->cmd_complete); + init_completion(&info->dev_ready); + info->need_wait = 1; pxa3xx_nand_start(info); ret = wait_for_completion_timeout(&info->cmd_complete, @@ -681,11 +958,124 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, info->state = STATE_IDLE; } -static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, +static void nand_cmdfunc_extended(struct mtd_info *mtd, + const unsigned command, + int column, int page_addr) +{ + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; + int ret, exec_cmd, ext_cmd_type; + + /* + * if this is a x16 device then convert the input + * "byte" address into a "word" address appropriate + * for indexing a word-oriented device + */ + if (info->reg_ndcr & NDCR_DWIDTH_M) + column /= 2; + + /* + * There may be different NAND chip hooked to + * different chip select, so check whether + * chip select has been changed, if yes, reset the timing + */ + if (info->cs != host->cs) { + info->cs = host->cs; + nand_writel(info, NDTR0CS0, info->ndtr0cs0); + nand_writel(info, NDTR1CS0, info->ndtr1cs0); + } + + /* Select the extended command for the first command */ + switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + ext_cmd_type = EXT_CMD_TYPE_MONO; + break; + case NAND_CMD_SEQIN: + ext_cmd_type = EXT_CMD_TYPE_DISPATCH; + break; + case NAND_CMD_PAGEPROG: + ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; + break; + default: + ext_cmd_type = 0; + break; + } + + prepare_start_command(info, command); + + /* + * Prepare the "is ready" completion before starting a command + * transaction sequence. If the command is not executed the + * completion will be completed, see below. + * + * We can do that inside the loop because the command variable + * is invariant and thus so is the exec_cmd. + */ + info->need_wait = 1; + init_completion(&info->dev_ready); + do { + info->state = STATE_PREPARED; + exec_cmd = prepare_set_command(info, command, ext_cmd_type, + column, page_addr); + if (!exec_cmd) { + info->need_wait = 0; + complete(&info->dev_ready); + break; + } + + init_completion(&info->cmd_complete); + pxa3xx_nand_start(info); + + ret = wait_for_completion_timeout(&info->cmd_complete, + CHIP_DELAY_TIMEOUT); + if (!ret) { + dev_err(&info->pdev->dev, "Wait time out!!!\n"); + /* Stop State Machine for next command cycle */ + pxa3xx_nand_stop(info); + break; + } + + /* Check if the sequence is complete */ + if (info->data_size == 0 && command != NAND_CMD_PAGEPROG) + break; + + /* + * After a splitted program command sequence has issued + * the command dispatch, the command sequence is complete. + */ + if (info->data_size == 0 && + command == NAND_CMD_PAGEPROG && + ext_cmd_type == EXT_CMD_TYPE_DISPATCH) + break; + + if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) { + /* Last read: issue a 'last naked read' */ + if (info->data_size == info->chunk_size) + ext_cmd_type = EXT_CMD_TYPE_LAST_RW; + else + ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; + + /* + * If a splitted program command has no more data to transfer, + * the command dispatch must be issued to complete. + */ + } else if (command == NAND_CMD_PAGEPROG && + info->data_size == 0) { + ext_cmd_type = EXT_CMD_TYPE_DISPATCH; + } + } while (1); + + info->state = STATE_IDLE; +} + +static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { chip->write_buf(mtd, buf, mtd->writesize); chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; } static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, @@ -698,20 +1088,14 @@ static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, chip->read_buf(mtd, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - if (info->retcode == ERR_SBERR) { - switch (info->use_ecc) { - case 1: - mtd->ecc_stats.corrected++; - break; - case 0: - default: - break; - } - } else if (info->retcode == ERR_DBERR) { + if (info->retcode == ERR_CORERR && info->use_ecc) { + mtd->ecc_stats.corrected += info->ecc_err_cnt; + + } else if (info->retcode == ERR_UNCORERR) { /* * for blank page (all 0xff), HW will calculate its ECC as * 0, which is different from the ECC information within - * OOB, ignore such double bit errors + * OOB, ignore such uncorrectable errors */ if (is_buf_blank(buf, mtd->writesize)) info->retcode = ERR_NONE; @@ -719,7 +1103,7 @@ static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, mtd->ecc_stats.failed++; } - return 0; + return info->max_bitflips; } static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) @@ -769,12 +1153,6 @@ static void pxa3xx_nand_write_buf(struct mtd_info *mtd, info->buf_start += real_len; } -static int pxa3xx_nand_verify_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - return 0; -} - static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) { return; @@ -784,28 +1162,34 @@ static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) { struct pxa3xx_nand_host *host = mtd->priv; struct pxa3xx_nand_info *info = host->info_data; + int ret; + + if (info->need_wait) { + ret = wait_for_completion_timeout(&info->dev_ready, + CHIP_DELAY_TIMEOUT); + info->need_wait = 0; + if (!ret) { + dev_err(&info->pdev->dev, "Ready time out!!!\n"); + return NAND_STATUS_FAIL; + } + } /* pxa3xx_nand_send_command has waited for command complete */ if (this->state == FL_WRITING || this->state == FL_ERASING) { if (info->retcode == ERR_NONE) return 0; - else { - /* - * any error make it return 0x01 which will tell - * the caller the erase and write fail - */ - return 0x01; - } + else + return NAND_STATUS_FAIL; } - return 0; + return NAND_STATUS_READY; } static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_flash *f) { struct platform_device *pdev = info->pdev; - struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); struct pxa3xx_nand_host *host = info->host[info->cs]; uint32_t ndcr = 0x0; /* enable all interrupts */ @@ -820,8 +1204,6 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, } /* calculate flash information */ - host->cmdset = &default_cmdset; - host->page_size = f->page_size; host->read_id_bytes = (f->page_size == 2048) ? 4 : 2; /* calculate addressing information */ @@ -842,7 +1224,7 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes); ndcr |= NDCR_SPARE_EN; /* enable spare by default */ - host->reg_ndcr = ndcr; + info->reg_ndcr = ndcr; pxa3xx_nand_set_timing(host, f->timing); return 0; @@ -858,41 +1240,35 @@ static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) uint32_t ndcr = nand_readl(info, NDCR); if (ndcr & NDCR_PAGE_SZ) { - host->page_size = 2048; + /* Controller's FIFO size */ + info->chunk_size = 2048; host->read_id_bytes = 4; } else { - host->page_size = 512; + info->chunk_size = 512; host->read_id_bytes = 2; } - host->reg_ndcr = ndcr & ~NDCR_INT_MASK; - host->cmdset = &default_cmdset; - - host->ndtr0cs0 = nand_readl(info, NDTR0CS0); - host->ndtr1cs0 = nand_readl(info, NDTR1CS0); - + /* Set an initial chunk size */ + info->reg_ndcr = ndcr & ~NDCR_INT_MASK; + info->ndtr0cs0 = nand_readl(info, NDTR0CS0); + info->ndtr1cs0 = nand_readl(info, NDTR1CS0); return 0; } -/* the maximum possible buffer size for large page with OOB data - * is: 2048 + 64 = 2112 bytes, allocate a page here for both the - * data buffer and the DMA descriptor - */ -#define MAX_BUFF_SIZE PAGE_SIZE - +#ifdef ARCH_HAS_DMA static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) { struct platform_device *pdev = info->pdev; - int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc); + int data_desc_offset = info->buf_size - sizeof(struct pxa_dma_desc); if (use_dma == 0) { - info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL); + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); if (info->data_buff == NULL) return -ENOMEM; return 0; } - info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE, + info->data_buff = dma_alloc_coherent(&pdev->dev, info->buf_size, &info->data_buff_phys, GFP_KERNEL); if (info->data_buff == NULL) { dev_err(&pdev->dev, "failed to allocate dma buffer\n"); @@ -906,29 +1282,134 @@ static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) pxa3xx_nand_data_dma_irq, info); if (info->data_dma_ch < 0) { dev_err(&pdev->dev, "failed to request data dma\n"); - dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE, + dma_free_coherent(&pdev->dev, info->buf_size, info->data_buff, info->data_buff_phys); return info->data_dma_ch; } + /* + * Now that DMA buffers are allocated we turn on + * DMA proper for I/O operations. + */ + info->use_dma = 1; + return 0; +} + +static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) +{ + struct platform_device *pdev = info->pdev; + if (info->use_dma) { + pxa_free_dma(info->data_dma_ch); + dma_free_coherent(&pdev->dev, info->buf_size, + info->data_buff, info->data_buff_phys); + } else { + kfree(info->data_buff); + } +} +#else +static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) +{ + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); + if (info->data_buff == NULL) + return -ENOMEM; return 0; } +static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) +{ + kfree(info->data_buff); +} +#endif + static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info) { struct mtd_info *mtd; + struct nand_chip *chip; int ret; + mtd = info->host[info->cs]->mtd; + chip = mtd->priv; + /* use the common timing to make a try */ ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]); if (ret) return ret; - pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0); - if (info->is_ready) - return 0; + chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0); + ret = chip->waitfunc(mtd, chip); + if (ret & NAND_STATUS_FAIL) + return -ENODEV; + + return 0; +} - return -ENODEV; +static int pxa_ecc_init(struct pxa3xx_nand_info *info, + struct nand_ecc_ctrl *ecc, + int strength, int ecc_stepsize, int page_size) +{ + if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) { + info->chunk_size = 2048; + info->spare_size = 40; + info->ecc_size = 24; + ecc->mode = NAND_ECC_HW; + ecc->size = 512; + ecc->strength = 1; + + } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) { + info->chunk_size = 512; + info->spare_size = 8; + info->ecc_size = 8; + ecc->mode = NAND_ECC_HW; + ecc->size = 512; + ecc->strength = 1; + + /* + * Required ECC: 4-bit correction per 512 bytes + * Select: 16-bit correction per 2048 bytes + */ + } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) { + info->ecc_bch = 1; + info->chunk_size = 2048; + info->spare_size = 32; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + ecc->layout = &ecc_layout_2KB_bch4bit; + ecc->strength = 16; + + } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) { + info->ecc_bch = 1; + info->chunk_size = 2048; + info->spare_size = 32; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + ecc->layout = &ecc_layout_4KB_bch4bit; + ecc->strength = 16; + + /* + * Required ECC: 8-bit correction per 512 bytes + * Select: 16-bit correction per 1024 bytes + */ + } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) { + info->ecc_bch = 1; + info->chunk_size = 1024; + info->spare_size = 0; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + ecc->layout = &ecc_layout_4KB_bch8bit; + ecc->strength = 16; + } else { + dev_err(&info->pdev->dev, + "ECC strength %d at page size %d is not supported\n", + strength, page_size); + return -ENODEV; + } + + dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n", + ecc->strength, ecc->size); + return 0; } static int pxa3xx_nand_scan(struct mtd_info *mtd) @@ -936,13 +1417,14 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd) struct pxa3xx_nand_host *host = mtd->priv; struct pxa3xx_nand_info *info = host->info_data; struct platform_device *pdev = info->pdev; - struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL; const struct pxa3xx_nand_flash *f = NULL; struct nand_chip *chip = mtd->priv; uint32_t id = -1; uint64_t chipsize; int i, ret, num; + uint16_t ecc_strength, ecc_step; if (pdata->keep_config && !pxa3xx_nand_detect_config(info)) goto KEEP_CONFIG; @@ -991,7 +1473,7 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd) } pxa3xx_flash_ids[0].name = f->name; - pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff; + pxa3xx_flash_ids[0].dev_id = (f->chip_id >> 8) & 0xffff; pxa3xx_flash_ids[0].pagesize = f->page_size; chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size; pxa3xx_flash_ids[0].chipsize = chipsize >> 20; @@ -1001,29 +1483,81 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd) pxa3xx_flash_ids[1].name = NULL; def = pxa3xx_flash_ids; KEEP_CONFIG: - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.size = host->page_size; - chip->ecc.strength = 1; - - chip->options |= NAND_NO_READRDY; - if (host->reg_ndcr & NDCR_DWIDTH_M) + if (info->reg_ndcr & NDCR_DWIDTH_M) chip->options |= NAND_BUSWIDTH_16; + /* Device detection must be done with ECC disabled */ + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) + nand_writel(info, NDECCCTRL, 0x0); + if (nand_scan_ident(mtd, 1, def)) return -ENODEV; + + if (pdata->flash_bbt) { + /* + * We'll use a bad block table stored in-flash and don't + * allow writing the bad block marker to the flash. + */ + chip->bbt_options |= NAND_BBT_USE_FLASH | + NAND_BBT_NO_OOB_BBM; + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } + + /* + * If the page size is bigger than the FIFO size, let's check + * we are given the right variant and then switch to the extended + * (aka splitted) command handling, + */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) { + chip->cmdfunc = nand_cmdfunc_extended; + } else { + dev_err(&info->pdev->dev, + "unsupported page size on this variant\n"); + return -ENODEV; + } + } + + if (pdata->ecc_strength && pdata->ecc_step_size) { + ecc_strength = pdata->ecc_strength; + ecc_step = pdata->ecc_step_size; + } else { + ecc_strength = chip->ecc_strength_ds; + ecc_step = chip->ecc_step_ds; + } + + /* Set default ECC strength requirements on non-ONFI devices */ + if (ecc_strength < 1 && ecc_step < 1) { + ecc_strength = 1; + ecc_step = 512; + } + + ret = pxa_ecc_init(info, &chip->ecc, ecc_strength, + ecc_step, mtd->writesize); + if (ret) + return ret; + /* calculate addressing information */ if (mtd->writesize >= 2048) host->col_addr_cycles = 2; else host->col_addr_cycles = 1; + /* release the initial buffer */ + kfree(info->data_buff); + + /* allocate the real data + oob buffer */ + info->buf_size = mtd->writesize + mtd->oobsize; + ret = pxa3xx_nand_init_buff(info); + if (ret) + return ret; info->oob_buff = info->data_buff + mtd->writesize; + if ((mtd->size >> chip->page_shift) > 65536) host->row_addr_cycles = 3; else host->row_addr_cycles = 2; - - mtd->name = mtd_names[0]; return nand_scan_tail(mtd); } @@ -1032,20 +1566,19 @@ static int alloc_nand_resource(struct platform_device *pdev) struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; struct pxa3xx_nand_host *host; - struct nand_chip *chip; + struct nand_chip *chip = NULL; struct mtd_info *mtd; struct resource *r; int ret, irq, cs; - pdata = pdev->dev.platform_data; - info = kzalloc(sizeof(*info) + (sizeof(*mtd) + - sizeof(*host)) * pdata->num_cs, GFP_KERNEL); - if (!info) { - dev_err(&pdev->dev, "failed to allocate memory\n"); + pdata = dev_get_platdata(&pdev->dev); + info = devm_kzalloc(&pdev->dev, sizeof(*info) + (sizeof(*mtd) + + sizeof(*host)) * pdata->num_cs, GFP_KERNEL); + if (!info) return -ENOMEM; - } info->pdev = pdev; + info->variant = pxa3xx_nand_get_variant(pdev); for (cs = 0; cs < pdata->num_cs; cs++) { mtd = (struct mtd_info *)((unsigned int)&info[1] + (sizeof(*mtd) + sizeof(*host)) * cs); @@ -1063,78 +1596,83 @@ static int alloc_nand_resource(struct platform_device *pdev) chip->controller = &info->controller; chip->waitfunc = pxa3xx_nand_waitfunc; chip->select_chip = pxa3xx_nand_select_chip; - chip->cmdfunc = pxa3xx_nand_cmdfunc; chip->read_word = pxa3xx_nand_read_word; chip->read_byte = pxa3xx_nand_read_byte; chip->read_buf = pxa3xx_nand_read_buf; chip->write_buf = pxa3xx_nand_write_buf; - chip->verify_buf = pxa3xx_nand_verify_buf; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->cmdfunc = nand_cmdfunc; } spin_lock_init(&chip->controller->lock); init_waitqueue_head(&chip->controller->wq); - info->clk = clk_get(&pdev->dev, NULL); + info->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get nand clock\n"); - ret = PTR_ERR(info->clk); - goto fail_free_mtd; + return PTR_ERR(info->clk); } - clk_enable(info->clk); - - r = platform_get_resource(pdev, IORESOURCE_DMA, 0); - if (r == NULL) { - dev_err(&pdev->dev, "no resource defined for data DMA\n"); - ret = -ENXIO; - goto fail_put_clk; - } - info->drcmr_dat = r->start; + ret = clk_prepare_enable(info->clk); + if (ret < 0) + return ret; - r = platform_get_resource(pdev, IORESOURCE_DMA, 1); - if (r == NULL) { - dev_err(&pdev->dev, "no resource defined for command DMA\n"); - ret = -ENXIO; - goto fail_put_clk; + if (use_dma) { + /* + * This is a dirty hack to make this driver work from + * devicetree bindings. It can be removed once we have + * a prober DMA controller framework for DT. + */ + if (pdev->dev.of_node && + of_machine_is_compatible("marvell,pxa3xx")) { + info->drcmr_dat = 97; + info->drcmr_cmd = 99; + } else { + r = platform_get_resource(pdev, IORESOURCE_DMA, 0); + if (r == NULL) { + dev_err(&pdev->dev, + "no resource defined for data DMA\n"); + ret = -ENXIO; + goto fail_disable_clk; + } + info->drcmr_dat = r->start; + + r = platform_get_resource(pdev, IORESOURCE_DMA, 1); + if (r == NULL) { + dev_err(&pdev->dev, + "no resource defined for cmd DMA\n"); + ret = -ENXIO; + goto fail_disable_clk; + } + info->drcmr_cmd = r->start; + } } - info->drcmr_cmd = r->start; irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no IRQ resource defined\n"); ret = -ENXIO; - goto fail_put_clk; + goto fail_disable_clk; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (r == NULL) { - dev_err(&pdev->dev, "no IO memory resource defined\n"); - ret = -ENODEV; - goto fail_put_clk; - } - - r = request_mem_region(r->start, resource_size(r), pdev->name); - if (r == NULL) { - dev_err(&pdev->dev, "failed to request memory resource\n"); - ret = -EBUSY; - goto fail_put_clk; - } - - info->mmio_base = ioremap(r->start, resource_size(r)); - if (info->mmio_base == NULL) { - dev_err(&pdev->dev, "ioremap() failed\n"); - ret = -ENODEV; - goto fail_free_res; + info->mmio_base = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(info->mmio_base)) { + ret = PTR_ERR(info->mmio_base); + goto fail_disable_clk; } info->mmio_phys = r->start; - ret = pxa3xx_nand_init_buff(info); - if (ret) - goto fail_free_io; + /* Allocate a buffer to allow flash detection */ + info->buf_size = INIT_BUFFER_SIZE; + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); + if (info->data_buff == NULL) { + ret = -ENOMEM; + goto fail_disable_clk; + } /* initialize all interrupts to be disabled */ disable_int(info, NDSR_MASK); - ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED, - pdev->name, info); + ret = request_irq(irq, pxa3xx_nand_irq, 0, pdev->name, info); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ\n"); goto fail_free_buf; @@ -1146,21 +1684,9 @@ static int alloc_nand_resource(struct platform_device *pdev) fail_free_buf: free_irq(irq, info); - if (use_dma) { - pxa_free_dma(info->data_dma_ch); - dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE, - info->data_buff, info->data_buff_phys); - } else - kfree(info->data_buff); -fail_free_io: - iounmap(info->mmio_base); -fail_free_res: - release_mem_region(r->start, resource_size(r)); -fail_put_clk: - clk_disable(info->clk); - clk_put(info->clk); -fail_free_mtd: - kfree(info); + kfree(info->data_buff); +fail_disable_clk: + clk_disable_unprepare(info->clk); return ret; } @@ -1168,45 +1694,78 @@ static int pxa3xx_nand_remove(struct platform_device *pdev) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); struct pxa3xx_nand_platform_data *pdata; - struct resource *r; int irq, cs; if (!info) return 0; - pdata = pdev->dev.platform_data; - platform_set_drvdata(pdev, NULL); + pdata = dev_get_platdata(&pdev->dev); irq = platform_get_irq(pdev, 0); if (irq >= 0) free_irq(irq, info); - if (use_dma) { - pxa_free_dma(info->data_dma_ch); - dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE, - info->data_buff, info->data_buff_phys); - } else - kfree(info->data_buff); - - iounmap(info->mmio_base); - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - release_mem_region(r->start, resource_size(r)); + pxa3xx_nand_free_buff(info); - clk_disable(info->clk); - clk_put(info->clk); + clk_disable_unprepare(info->clk); for (cs = 0; cs < pdata->num_cs; cs++) nand_release(info->host[cs]->mtd); - kfree(info); + return 0; +} + +static int pxa3xx_nand_probe_dt(struct platform_device *pdev) +{ + struct pxa3xx_nand_platform_data *pdata; + struct device_node *np = pdev->dev.of_node; + const struct of_device_id *of_id = + of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); + + if (!of_id) + return 0; + + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) + return -ENOMEM; + + if (of_get_property(np, "marvell,nand-enable-arbiter", NULL)) + pdata->enable_arbiter = 1; + if (of_get_property(np, "marvell,nand-keep-config", NULL)) + pdata->keep_config = 1; + of_property_read_u32(np, "num-cs", &pdata->num_cs); + pdata->flash_bbt = of_get_nand_on_flash_bbt(np); + + pdata->ecc_strength = of_get_nand_ecc_strength(np); + if (pdata->ecc_strength < 0) + pdata->ecc_strength = 0; + + pdata->ecc_step_size = of_get_nand_ecc_step_size(np); + if (pdata->ecc_step_size < 0) + pdata->ecc_step_size = 0; + + pdev->dev.platform_data = pdata; + return 0; } static int pxa3xx_nand_probe(struct platform_device *pdev) { struct pxa3xx_nand_platform_data *pdata; + struct mtd_part_parser_data ppdata = {}; struct pxa3xx_nand_info *info; int ret, cs, probe_success; - pdata = pdev->dev.platform_data; +#ifndef ARCH_HAS_DMA + if (use_dma) { + use_dma = 0; + dev_warn(&pdev->dev, + "This platform can't do DMA on this device\n"); + } +#endif + ret = pxa3xx_nand_probe_dt(pdev); + if (ret) + return ret; + + pdata = dev_get_platdata(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "no platform data defined\n"); return -ENODEV; @@ -1221,16 +1780,25 @@ static int pxa3xx_nand_probe(struct platform_device *pdev) info = platform_get_drvdata(pdev); probe_success = 0; for (cs = 0; cs < pdata->num_cs; cs++) { + struct mtd_info *mtd = info->host[cs]->mtd; + + /* + * The mtd name matches the one used in 'mtdparts' kernel + * parameter. This name cannot be changed or otherwise + * user's mtd partitions configuration would get broken. + */ + mtd->name = "pxa3xx_nand-0"; info->cs = cs; - ret = pxa3xx_nand_scan(info->host[cs]->mtd); + ret = pxa3xx_nand_scan(mtd); if (ret) { dev_warn(&pdev->dev, "failed to scan nand at cs %d\n", cs); continue; } - ret = mtd_device_parse_register(info->host[cs]->mtd, NULL, - NULL, pdata->parts[cs], + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(mtd, NULL, + &ppdata, pdata->parts[cs], pdata->nr_parts[cs]); if (!ret) probe_success = 1; @@ -1252,7 +1820,7 @@ static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state) struct mtd_info *mtd; int cs; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); if (info->state) { dev_err(&pdev->dev, "driver busy, state = %d\n", info->state); return -EAGAIN; @@ -1273,7 +1841,7 @@ static int pxa3xx_nand_resume(struct platform_device *pdev) struct mtd_info *mtd; int cs; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); /* We don't want to handle interrupt without calling mtd routine */ disable_int(info, NDCR_INT_MASK); @@ -1306,6 +1874,7 @@ static int pxa3xx_nand_resume(struct platform_device *pdev) static struct platform_driver pxa3xx_nand_driver = { .driver = { .name = "pxa3xx-nand", + .of_match_table = pxa3xx_nand_dt_ids, }, .probe = pxa3xx_nand_probe, .remove = pxa3xx_nand_remove, diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/r852.c index 8cb627751c9..baea83f4dea 100644 --- a/drivers/mtd/nand/r852.c +++ b/drivers/mtd/nand/r852.c @@ -181,7 +181,7 @@ static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read) /* Set dma direction */ dev->dma_dir = do_read; dev->dma_stage = 1; - INIT_COMPLETION(dev->dma_done); + reinit_completion(&dev->dma_done); dbg_verbose("doing dma %s ", do_read ? "read" : "write"); @@ -229,7 +229,7 @@ static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read) /* * Program data lines of the nand chip to send data to it */ -void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct r852_device *dev = r852_get_dev(mtd); uint32_t reg; @@ -245,7 +245,7 @@ void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) } /* write DWORD chinks - faster */ - while (len) { + while (len >= 4) { reg = buf[0] | buf[1] << 8 | buf[2] << 16 | buf[3] << 24; r852_write_reg_dword(dev, R852_DATALINE, reg); buf += 4; @@ -254,14 +254,16 @@ void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) } /* write rest */ - while (len) + while (len > 0) { r852_write_reg(dev, R852_DATALINE, *buf++); + len--; + } } /* * Read data lines of the nand chip to retrieve data */ -void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +static void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct r852_device *dev = r852_get_dev(mtd); uint32_t reg; @@ -309,31 +311,10 @@ static uint8_t r852_read_byte(struct mtd_info *mtd) return r852_read_reg(dev, R852_DATALINE); } - -/* - * Readback the buffer to verify it - */ -int r852_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct r852_device *dev = r852_get_dev(mtd); - - /* We can't be sure about anything here... */ - if (dev->card_unstable) - return -1; - - /* This will never happen, unless you wired up a nand chip - with > 512 bytes page size to the reader */ - if (len > SM_SECTOR_SIZE) - return 0; - - r852_read_buf(mtd, dev->tmp_buffer, len); - return memcmp(buf, dev->tmp_buffer, len); -} - /* * Control several chip lines & send commands */ -void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) +static void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct r852_device *dev = r852_get_dev(mtd); @@ -378,7 +359,7 @@ void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) * Wait till card is ready. * based on nand_wait, but returns errors on DMA error */ -int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) +static int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct r852_device *dev = chip->priv; @@ -407,7 +388,7 @@ int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) * Check if card is ready */ -int r852_ready(struct mtd_info *mtd) +static int r852_ready(struct mtd_info *mtd) { struct r852_device *dev = r852_get_dev(mtd); return !(r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_BUSY); @@ -418,7 +399,7 @@ int r852_ready(struct mtd_info *mtd) * Set ECC engine mode */ -void r852_ecc_hwctl(struct mtd_info *mtd, int mode) +static void r852_ecc_hwctl(struct mtd_info *mtd, int mode) { struct r852_device *dev = r852_get_dev(mtd); @@ -450,7 +431,7 @@ void r852_ecc_hwctl(struct mtd_info *mtd, int mode) * Calculate ECC, only used for writes */ -int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, +static int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) { struct r852_device *dev = r852_get_dev(mtd); @@ -482,7 +463,7 @@ int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, * Correct the data using ECC, hw did almost everything for us */ -int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat, +static int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { uint16_t ecc_reg; @@ -550,7 +531,7 @@ static int r852_read_oob(struct mtd_info *mtd, struct nand_chip *chip, * Start the nand engine */ -void r852_engine_enable(struct r852_device *dev) +static void r852_engine_enable(struct r852_device *dev) { if (r852_read_reg_dword(dev, R852_HW) & R852_HW_UNKNOWN) { r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); @@ -568,7 +549,7 @@ void r852_engine_enable(struct r852_device *dev) * Stop the nand engine */ -void r852_engine_disable(struct r852_device *dev) +static void r852_engine_disable(struct r852_device *dev) { r852_write_reg_dword(dev, R852_HW, 0); r852_write_reg(dev, R852_CTL, R852_CTL_RESET); @@ -578,7 +559,7 @@ void r852_engine_disable(struct r852_device *dev) * Test if card is present */ -void r852_card_update_present(struct r852_device *dev) +static void r852_card_update_present(struct r852_device *dev) { unsigned long flags; uint8_t reg; @@ -593,7 +574,7 @@ void r852_card_update_present(struct r852_device *dev) * Update card detection IRQ state according to current card state * which is read in r852_card_update_present */ -void r852_update_card_detect(struct r852_device *dev) +static void r852_update_card_detect(struct r852_device *dev) { int card_detect_reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); dev->card_unstable = 0; @@ -607,8 +588,8 @@ void r852_update_card_detect(struct r852_device *dev) r852_write_reg(dev, R852_CARD_IRQ_ENABLE, card_detect_reg); } -ssize_t r852_media_type_show(struct device *sys_dev, - struct device_attribute *attr, char *buf) +static ssize_t r852_media_type_show(struct device *sys_dev, + struct device_attribute *attr, char *buf) { struct mtd_info *mtd = container_of(sys_dev, struct mtd_info, dev); struct r852_device *dev = r852_get_dev(mtd); @@ -618,11 +599,11 @@ ssize_t r852_media_type_show(struct device *sys_dev, return strlen(data); } -DEVICE_ATTR(media_type, S_IRUGO, r852_media_type_show, NULL); +static DEVICE_ATTR(media_type, S_IRUGO, r852_media_type_show, NULL); /* Detect properties of card in slot */ -void r852_update_media_status(struct r852_device *dev) +static void r852_update_media_status(struct r852_device *dev) { uint8_t reg; unsigned long flags; @@ -651,7 +632,7 @@ void r852_update_media_status(struct r852_device *dev) * Register the nand device * Called when the card is detected */ -int r852_register_nand_device(struct r852_device *dev) +static int r852_register_nand_device(struct r852_device *dev) { dev->mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); @@ -689,7 +670,7 @@ error1: * Unregister the card */ -void r852_unregister_nand_device(struct r852_device *dev) +static void r852_unregister_nand_device(struct r852_device *dev) { if (!dev->card_registred) return; @@ -703,7 +684,7 @@ void r852_unregister_nand_device(struct r852_device *dev) } /* Card state updater */ -void r852_card_detect_work(struct work_struct *work) +static void r852_card_detect_work(struct work_struct *work) { struct r852_device *dev = container_of(work, struct r852_device, card_detect_work.work); @@ -842,7 +823,7 @@ out: return ret; } -int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) +static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { int error; struct nand_chip *chip; @@ -882,7 +863,6 @@ int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) chip->read_byte = r852_read_byte; chip->read_buf = r852_read_buf; chip->write_buf = r852_write_buf; - chip->verify_buf = r852_verify_buf; /* ecc */ chip->ecc.mode = NAND_ECC_HW_SYNDROME; @@ -983,7 +963,7 @@ error1: return error; } -void r852_remove(struct pci_dev *pci_dev) +static void r852_remove(struct pci_dev *pci_dev) { struct r852_device *dev = pci_get_drvdata(pci_dev); @@ -1014,7 +994,7 @@ void r852_remove(struct pci_dev *pci_dev) pci_disable_device(pci_dev); } -void r852_shutdown(struct pci_dev *pci_dev) +static void r852_shutdown(struct pci_dev *pci_dev) { struct r852_device *dev = pci_get_drvdata(pci_dev); @@ -1024,7 +1004,7 @@ void r852_shutdown(struct pci_dev *pci_dev) pci_disable_device(pci_dev); } -#ifdef CONFIG_PM +#ifdef CONFIG_PM_SLEEP static int r852_suspend(struct device *device) { struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); @@ -1077,9 +1057,6 @@ static int r852_resume(struct device *device) r852_update_card_detect(dev); return 0; } -#else -#define r852_suspend NULL -#define r852_resume NULL #endif static const struct pci_device_id r852_pci_id_tbl[] = { diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c deleted file mode 100644 index e55b5cfbe14..00000000000 --- a/drivers/mtd/nand/rtc_from4.c +++ /dev/null @@ -1,624 +0,0 @@ -/* - * drivers/mtd/nand/rtc_from4.c - * - * Copyright (C) 2004 Red Hat, Inc. - * - * Derived from drivers/mtd/nand/spia.c - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the AG-AND flash device found on the - * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), - * which utilizes the Renesas HN29V1G91T-30 part. - * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. - */ - -#include <linux/delay.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/rslib.h> -#include <linux/bitrev.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> - -/* - * MTD structure for Renesas board - */ -static struct mtd_info *rtc_from4_mtd = NULL; - -#define RTC_FROM4_MAX_CHIPS 2 - -/* HS77x9 processor register defines */ -#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) -#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) -#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) -#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) -#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) -#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) -#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) - -/* - * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) - */ -/* Address where flash is mapped */ -#define RTC_FROM4_FIO_BASE 0x14000000 - -/* CLE and ALE are tied to address lines 5 & 4, respectively */ -#define RTC_FROM4_CLE (1 << 5) -#define RTC_FROM4_ALE (1 << 4) - -/* address lines A24-A22 used for chip selection */ -#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) -#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) -#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) -/* mask address lines A24-A22 used for chip selection */ -#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) - -/* FPGA status register for checking device ready (bit zero) */ -#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) -#define RTC_FROM4_DEVICE_READY 0x0001 - -/* FPGA Reed-Solomon ECC Control register */ - -#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) -#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) -#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) -#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) - -/* FPGA Reed-Solomon ECC code base */ -#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) -#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) - -/* FPGA Reed-Solomon ECC check register */ -#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) -#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) - -#define ERR_STAT_ECC_AVAILABLE 0x20 - -/* Undefine for software ECC */ -#define RTC_FROM4_HWECC 1 - -/* Define as 1 for no virtual erase blocks (in JFFS2) */ -#define RTC_FROM4_NO_VIRTBLOCKS 0 - -/* - * Module stuff - */ -static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE); - -static const struct mtd_partition partition_info[] = { - { - .name = "Renesas flash partition 1", - .offset = 0, - .size = MTDPART_SIZ_FULL}, -}; - -#define NUM_PARTITIONS 1 - -/* - * hardware specific flash bbt decriptors - * Note: this is to allow debugging by disabling - * NAND_BBT_CREATE and/or NAND_BBT_WRITE - * - */ -static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; -static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; - -static struct nand_bbt_descr rtc_from4_bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 40, - .len = 4, - .veroffs = 44, - .maxblocks = 4, - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 40, - .len = 4, - .veroffs = 44, - .maxblocks = 4, - .pattern = mirror_pattern -}; - -#ifdef RTC_FROM4_HWECC - -/* the Reed Solomon control structure */ -static struct rs_control *rs_decoder; - -/* - * hardware specific Out Of Band information - */ -static struct nand_ecclayout rtc_from4_nand_oobinfo = { - .eccbytes = 32, - .eccpos = { - 0, 1, 2, 3, 4, 5, 6, 7, - 8, 9, 10, 11, 12, 13, 14, 15, - 16, 17, 18, 19, 20, 21, 22, 23, - 24, 25, 26, 27, 28, 29, 30, 31}, - .oobfree = {{32, 32}} -}; - -#endif - -/* - * rtc_from4_hwcontrol - hardware specific access to control-lines - * @mtd: MTD device structure - * @cmd: hardware control command - * - * Address lines (A5 and A4) are used to control Command and Address Latch - * Enable on this board, so set the read/write address appropriately. - * - * Chip Enable is also controlled by the Chip Select (CS5) and - * Address lines (A24-A22), so no action is required here. - * - */ -static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = (mtd->priv); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE); - else - writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE); -} - -/* - * rtc_from4_nand_select_chip - hardware specific chip select - * @mtd: MTD device structure - * @chip: Chip to select (0 == slot 3, 1 == slot 4) - * - * The chip select is based on address lines A24-A22. - * This driver uses flash slots 3 and 4 (A23-A22). - * - */ -static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd->priv; - - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); - - switch (chip) { - - case 0: /* select slot 3 chip */ - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); - break; - case 1: /* select slot 4 chip */ - this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); - this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); - break; - - } -} - -/* - * rtc_from4_nand_device_ready - hardware specific ready/busy check - * @mtd: MTD device structure - * - * This board provides the Ready/Busy state in the status register - * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. - * - */ -static int rtc_from4_nand_device_ready(struct mtd_info *mtd) -{ - unsigned short status; - - status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); - - return (status & RTC_FROM4_DEVICE_READY); - -} - -/* - * deplete - code to perform device recovery in case there was a power loss - * @mtd: MTD device structure - * @chip: Chip to select (0 == slot 3, 1 == slot 4) - * - * If there was a sudden loss of power during an erase operation, a - * "device recovery" operation must be performed when power is restored - * to ensure correct operation. This routine performs the required steps - * for the requested chip. - * - * See page 86 of the data sheet for details. - * - */ -static void deplete(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd->priv; - - /* wait until device is ready */ - while (!this->dev_ready(mtd)) ; - - this->select_chip(mtd, chip); - - /* Send the commands for device recovery, phase 1 */ - this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000); - this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); - - /* Send the commands for device recovery, phase 2 */ - this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004); - this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1); - -} - -#ifdef RTC_FROM4_HWECC -/* - * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function - * @mtd: MTD device structure - * @mode: I/O mode; read or write - * - * enable hardware ECC for data read or write - * - */ -static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) -{ - volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); - unsigned short status; - - switch (mode) { - case NAND_ECC_READ: - status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E; - - *rs_ecc_ctl = status; - break; - - case NAND_ECC_READSYN: - status = 0x00; - - *rs_ecc_ctl = status; - break; - - case NAND_ECC_WRITE: - status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E; - - *rs_ecc_ctl = status; - break; - - default: - BUG(); - break; - } - -} - -/* - * rtc_from4_calculate_ecc - hardware specific code to read ECC code - * @mtd: MTD device structure - * @dat: buffer containing the data to generate ECC codes - * @ecc_code ECC codes calculated - * - * The ECC code is calculated by the FPGA. All we have to do is read the values - * from the FPGA registers. - * - * Note: We read from the inverted registers, since data is inverted before - * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code - * - */ -static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) -{ - volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); - unsigned short value; - int i; - - for (i = 0; i < 8; i++) { - value = *rs_eccn; - ecc_code[i] = (unsigned char)value; - rs_eccn++; - } - ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ -} - -/* - * rtc_from4_correct_data - hardware specific code to correct data using ECC code - * @mtd: MTD device structure - * @buf: buffer containing the data to generate ECC codes - * @ecc1 ECC codes read - * @ecc2 ECC codes calculated - * - * The FPGA tells us fast, if there's an error or not. If no, we go back happy - * else we read the ecc results from the fpga and call the rs library to decode - * and hopefully correct the error. - * - */ -static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) -{ - int i, j, res; - unsigned short status; - uint16_t par[6], syn[6]; - uint8_t ecc[8]; - volatile unsigned short *rs_ecc; - - status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); - - if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { - return 0; - } - - /* Read the syndrome pattern from the FPGA and correct the bitorder */ - rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); - for (i = 0; i < 8; i++) { - ecc[i] = bitrev8(*rs_ecc); - rs_ecc++; - } - - /* convert into 6 10bit syndrome fields */ - par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)]; - par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)]; - par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)]; - par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)]; - par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)]; - par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0); - - /* Convert to computable syndrome */ - for (i = 0; i < 6; i++) { - syn[i] = par[0]; - for (j = 1; j < 6; j++) - if (par[j] != rs_decoder->nn) - syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; - - /* Convert to index form */ - syn[i] = rs_decoder->index_of[syn[i]]; - } - - /* Let the library code do its magic. */ - res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL); - if (res > 0) { - pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); - } - return res; -} - -/** - * rtc_from4_errstat - perform additional error status checks - * @mtd: MTD device structure - * @this: NAND chip structure - * @state: state or the operation - * @status: status code returned from read status - * @page: startpage inside the chip, must be called with (page & this->pagemask) - * - * Perform additional error status checks on erase and write failures - * to determine if errors are correctable. For this device, correctable - * 1-bit errors on erase and write are considered acceptable. - * - * note: see pages 34..37 of data sheet for details. - * - */ -static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, - int state, int status, int page) -{ - int er_stat = 0; - int rtn, retlen; - size_t len; - uint8_t *buf; - int i; - - this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1); - - if (state == FL_ERASING) { - - for (i = 0; i < 4; i++) { - if (!(status & 1 << (i + 1))) - continue; - this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), - -1, -1); - rtn = this->read_byte(mtd); - this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); - - /* err_ecc_not_avail */ - if (!(rtn & ERR_STAT_ECC_AVAILABLE)) - er_stat |= 1 << (i + 1); - } - - } else if (state == FL_WRITING) { - - unsigned long corrected = mtd->ecc_stats.corrected; - - /* single bank write logic */ - this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1); - rtn = this->read_byte(mtd); - this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); - - if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { - /* err_ecc_not_avail */ - er_stat |= 1 << 1; - goto out; - } - - len = mtd->writesize; - buf = kmalloc(len, GFP_KERNEL); - if (!buf) { - er_stat = 1; - goto out; - } - - /* recovery read */ - rtn = nand_do_read(mtd, page, len, &retlen, buf); - - /* if read failed or > 1-bit error corrected */ - if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) - er_stat |= 1 << 1; - kfree(buf); - } -out: - rtn = status; - if (er_stat == 0) { /* if ECC is available */ - rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */ - } - - return rtn; -} -#endif - -/* - * Main initialization routine - */ -static int __init rtc_from4_init(void) -{ - struct nand_chip *this; - unsigned short bcr1, bcr2, wcr2; - int i; - int ret; - - /* Allocate memory for MTD device structure and private data */ - rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!rtc_from4_mtd) { - printk("Unable to allocate Renesas NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&rtc_from4_mtd[1]); - - /* Initialize structures */ - memset(rtc_from4_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - rtc_from4_mtd->priv = this; - rtc_from4_mtd->owner = THIS_MODULE; - - /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ - bcr1 = *SH77X9_BCR1 & ~0x0002; - bcr1 |= 0x0002; - *SH77X9_BCR1 = bcr1; - - /* set */ - bcr2 = *SH77X9_BCR2 & ~0x0c00; - bcr2 |= 0x0800; - *SH77X9_BCR2 = bcr2; - - /* set area 5 wait states */ - wcr2 = *SH77X9_WCR2 & ~0x1c00; - wcr2 |= 0x1c00; - *SH77X9_WCR2 = wcr2; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = rtc_from4_fio_base; - this->IO_ADDR_W = rtc_from4_fio_base; - /* Set address of hardware control function */ - this->cmd_ctrl = rtc_from4_hwcontrol; - /* Set address of chip select function */ - this->select_chip = rtc_from4_nand_select_chip; - /* command delay time (in us) */ - this->chip_delay = 100; - /* return the status of the Ready/Busy line */ - this->dev_ready = rtc_from4_nand_device_ready; - -#ifdef RTC_FROM4_HWECC - printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); - - this->ecc.mode = NAND_ECC_HW_SYNDROME; - this->ecc.size = 512; - this->ecc.bytes = 8; - this->ecc.strength = 3; - /* return the status of extra status and ECC checks */ - this->errstat = rtc_from4_errstat; - /* set the nand_oobinfo to support FPGA H/W error detection */ - this->ecc.layout = &rtc_from4_nand_oobinfo; - this->ecc.hwctl = rtc_from4_enable_hwecc; - this->ecc.calculate = rtc_from4_calculate_ecc; - this->ecc.correct = rtc_from4_correct_data; - - /* We could create the decoder on demand, if memory is a concern. - * This way we have it handy, if an error happens - * - * Symbolsize is 10 (bits) - * Primitve polynomial is x^10+x^3+1 - * first consecutive root is 0 - * primitve element to generate roots = 1 - * generator polinomial degree = 6 - */ - rs_decoder = init_rs(10, 0x409, 0, 1, 6); - if (!rs_decoder) { - printk(KERN_ERR "Could not create a RS decoder\n"); - ret = -ENOMEM; - goto err_1; - } -#else - printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); - - this->ecc.mode = NAND_ECC_SOFT; -#endif - - /* set the bad block tables to support debugging */ - this->bbt_td = &rtc_from4_bbt_main_descr; - this->bbt_md = &rtc_from4_bbt_mirror_descr; - - /* Scan to find existence of the device */ - if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { - ret = -ENXIO; - goto err_2; - } - - /* Perform 'device recovery' for each chip in case there was a power loss. */ - for (i = 0; i < this->numchips; i++) { - deplete(rtc_from4_mtd, i); - } - -#if RTC_FROM4_NO_VIRTBLOCKS - /* use a smaller erase block to minimize wasted space when a block is bad */ - /* note: this uses eight times as much RAM as using the default and makes */ - /* mounts take four times as long. */ - rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS; -#endif - - /* Register the partitions */ - ret = mtd_device_register(rtc_from4_mtd, partition_info, - NUM_PARTITIONS); - if (ret) - goto err_3; - - /* Return happy */ - return 0; -err_3: - nand_release(rtc_from4_mtd); -err_2: - free_rs(rs_decoder); -err_1: - kfree(rtc_from4_mtd); - return ret; -} - -module_init(rtc_from4_init); - -/* - * Clean up routine - */ -static void __exit rtc_from4_cleanup(void) -{ - /* Release resource, unregister partitions */ - nand_release(rtc_from4_mtd); - - /* Free the MTD device structure */ - kfree(rtc_from4_mtd); - -#ifdef RTC_FROM4_HWECC - /* Free the reed solomon resources */ - if (rs_decoder) { - free_rs(rs_decoder); - } -#endif -} - -module_exit(rtc_from4_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); -MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c index 91121f33f74..79acbb8691b 100644 --- a/drivers/mtd/nand/s3c2410.c +++ b/drivers/mtd/nand/s3c2410.c @@ -21,15 +21,17 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ +#define pr_fmt(fmt) "nand-s3c2410: " fmt + #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG #define DEBUG #endif #include <linux/module.h> #include <linux/types.h> -#include <linux/init.h> #include <linux/kernel.h> #include <linux/string.h> +#include <linux/io.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/delay.h> @@ -43,23 +45,42 @@ #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> -#include <asm/io.h> - -#include <plat/regs-nand.h> -#include <plat/nand.h> - -#ifdef CONFIG_MTD_NAND_S3C2410_HWECC -static int hardware_ecc = 1; -#else -static int hardware_ecc = 0; -#endif - -#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP -static const int clock_stop = 1; -#else -static const int clock_stop = 0; -#endif - +#include <linux/platform_data/mtd-nand-s3c2410.h> + +#define S3C2410_NFREG(x) (x) + +#define S3C2410_NFCONF S3C2410_NFREG(0x00) +#define S3C2410_NFCMD S3C2410_NFREG(0x04) +#define S3C2410_NFADDR S3C2410_NFREG(0x08) +#define S3C2410_NFDATA S3C2410_NFREG(0x0C) +#define S3C2410_NFSTAT S3C2410_NFREG(0x10) +#define S3C2410_NFECC S3C2410_NFREG(0x14) +#define S3C2440_NFCONT S3C2410_NFREG(0x04) +#define S3C2440_NFCMD S3C2410_NFREG(0x08) +#define S3C2440_NFADDR S3C2410_NFREG(0x0C) +#define S3C2440_NFDATA S3C2410_NFREG(0x10) +#define S3C2440_NFSTAT S3C2410_NFREG(0x20) +#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) +#define S3C2412_NFSTAT S3C2410_NFREG(0x28) +#define S3C2412_NFMECC0 S3C2410_NFREG(0x34) +#define S3C2410_NFCONF_EN (1<<15) +#define S3C2410_NFCONF_INITECC (1<<12) +#define S3C2410_NFCONF_nFCE (1<<11) +#define S3C2410_NFCONF_TACLS(x) ((x)<<8) +#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) +#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) +#define S3C2410_NFSTAT_BUSY (1<<0) +#define S3C2440_NFCONF_TACLS(x) ((x)<<12) +#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) +#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) +#define S3C2440_NFCONT_INITECC (1<<4) +#define S3C2440_NFCONT_nFCE (1<<1) +#define S3C2440_NFCONT_ENABLE (1<<0) +#define S3C2440_NFSTAT_READY (1<<0) +#define S3C2412_NFCONF_NANDBOOT (1<<31) +#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) +#define S3C2412_NFCONT_nFCE0 (1<<1) +#define S3C2412_NFSTAT_READY (1<<0) /* new oob placement block for use with hardware ecc generation */ @@ -109,9 +130,8 @@ enum s3c_nand_clk_state { * @mtds: An array of MTD instances on this controoler. * @platform: The platform data for this board. * @device: The platform device we bound to. - * @area: The IO area resource that came from request_mem_region(). * @clk: The clock resource for this controller. - * @regs: The area mapped for the hardware registers described by @area. + * @regs: The area mapped for the hardware registers. * @sel_reg: Pointer to the register controlling the NAND selection. * @sel_bit: The bit in @sel_reg to select the NAND chip. * @mtd_count: The number of MTDs created from this controller. @@ -128,7 +148,6 @@ struct s3c2410_nand_info { /* device info */ struct device *device; - struct resource *area; struct clk *clk; void __iomem *regs; void __iomem *sel_reg; @@ -164,12 +183,16 @@ static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) { - return dev->dev.platform_data; + return dev_get_platdata(&dev->dev); } static inline int allow_clk_suspend(struct s3c2410_nand_info *info) { - return clock_stop; +#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP + return 1; +#else + return 0; +#endif } /** @@ -215,7 +238,8 @@ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) pr_debug("result %d from %ld, %d\n", result, clk, wanted); if (result > max) { - printk("%d ns is too big for current clock rate %ld\n", wanted, clk); + pr_err("%d ns is too big for current clock rate %ld\n", + wanted, clk); return -1; } @@ -225,7 +249,7 @@ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) return result; } -#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) +#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) /* controller setup */ @@ -268,7 +292,8 @@ static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) } dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", - tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); + tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), + twrph1, to_ns(twrph1, clkrate)); switch (info->cpu_type) { case TYPE_S3C2410: @@ -325,13 +350,13 @@ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) if (ret < 0) return ret; - switch (info->cpu_type) { - case TYPE_S3C2410: + switch (info->cpu_type) { + case TYPE_S3C2410: default: break; - case TYPE_S3C2440: - case TYPE_S3C2412: + case TYPE_S3C2440: + case TYPE_S3C2412: /* enable the controller and de-assert nFCE */ writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); @@ -450,6 +475,7 @@ static int s3c2412_nand_devready(struct mtd_info *mtd) /* ECC handling functions */ +#ifdef CONFIG_MTD_NAND_S3C2410_HWECC static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { @@ -463,10 +489,8 @@ static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, diff1 = read_ecc[1] ^ calc_ecc[1]; diff2 = read_ecc[2] ^ calc_ecc[2]; - pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n", - __func__, - read_ecc[0], read_ecc[1], read_ecc[2], - calc_ecc[0], calc_ecc[1], calc_ecc[2], + pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", + __func__, 3, read_ecc, 3, calc_ecc, diff0, diff1, diff2); if (diff0 == 0 && diff1 == 0 && diff2 == 0) @@ -546,7 +570,8 @@ static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) unsigned long ctrl; ctrl = readl(info->regs + S3C2440_NFCONT); - writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); + writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, + info->regs + S3C2440_NFCONT); } static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) @@ -558,7 +583,8 @@ static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); } -static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); @@ -566,13 +592,13 @@ static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); - pr_debug("%s: returning ecc %02x%02x%02x\n", __func__, - ecc_code[0], ecc_code[1], ecc_code[2]); + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); return 0; } -static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); @@ -581,12 +607,13 @@ static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u ecc_code[1] = ecc >> 8; ecc_code[2] = ecc >> 16; - pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]); + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); return 0; } -static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); @@ -599,6 +626,7 @@ static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u return 0; } +#endif /* over-ride the standard functions for a little more speed. We can * use read/write block to move the data buffers to/from the controller @@ -625,13 +653,15 @@ static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) } } -static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, + int len) { struct nand_chip *this = mtd->priv; writesb(this->IO_ADDR_W, buf, len); } -static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, + int len) { struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); @@ -675,7 +705,8 @@ static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) CPUFREQ_TRANSITION_NOTIFIER); } -static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) +static inline void +s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) { cpufreq_unregister_notifier(&info->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); @@ -687,7 +718,8 @@ static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) return 0; } -static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) +static inline void +s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) { } #endif @@ -698,8 +730,6 @@ static int s3c24xx_nand_remove(struct platform_device *pdev) { struct s3c2410_nand_info *info = to_nand_info(pdev); - platform_set_drvdata(pdev, NULL); - if (info == NULL) return 0; @@ -717,29 +747,12 @@ static int s3c24xx_nand_remove(struct platform_device *pdev) pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); nand_release(&ptr->mtd); } - - kfree(info->mtds); } /* free the common resources */ - if (!IS_ERR(info->clk)) { + if (!IS_ERR(info->clk)) s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); - clk_put(info->clk); - } - - if (info->regs != NULL) { - iounmap(info->regs); - info->regs = NULL; - } - - if (info->area != NULL) { - release_resource(info->area); - kfree(info->area); - info->area = NULL; - } - - kfree(info); return 0; } @@ -748,11 +761,14 @@ static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *mtd, struct s3c2410_nand_set *set) { - if (set) + if (set) { mtd->mtd.name = set->name; - return mtd_device_parse_register(&mtd->mtd, NULL, NULL, + return mtd_device_parse_register(&mtd->mtd, NULL, NULL, set->partitions, set->nr_partitions); + } + + return -ENODEV; } /** @@ -810,7 +826,7 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, dev_info(info->device, "System booted from NAND\n"); break; - } + } chip->IO_ADDR_R = chip->IO_ADDR_W; @@ -819,32 +835,31 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, nmtd->mtd.owner = THIS_MODULE; nmtd->set = set; - if (hardware_ecc) { +#ifdef CONFIG_MTD_NAND_S3C2410_HWECC + chip->ecc.calculate = s3c2410_nand_calculate_ecc; + chip->ecc.correct = s3c2410_nand_correct_data; + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.strength = 1; + + switch (info->cpu_type) { + case TYPE_S3C2410: + chip->ecc.hwctl = s3c2410_nand_enable_hwecc; chip->ecc.calculate = s3c2410_nand_calculate_ecc; - chip->ecc.correct = s3c2410_nand_correct_data; - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.strength = 1; - - switch (info->cpu_type) { - case TYPE_S3C2410: - chip->ecc.hwctl = s3c2410_nand_enable_hwecc; - chip->ecc.calculate = s3c2410_nand_calculate_ecc; - break; - - case TYPE_S3C2412: - chip->ecc.hwctl = s3c2412_nand_enable_hwecc; - chip->ecc.calculate = s3c2412_nand_calculate_ecc; - break; - - case TYPE_S3C2440: - chip->ecc.hwctl = s3c2440_nand_enable_hwecc; - chip->ecc.calculate = s3c2440_nand_calculate_ecc; - break; + break; - } - } else { - chip->ecc.mode = NAND_ECC_SOFT; + case TYPE_S3C2412: + chip->ecc.hwctl = s3c2412_nand_enable_hwecc; + chip->ecc.calculate = s3c2412_nand_calculate_ecc; + break; + + case TYPE_S3C2440: + chip->ecc.hwctl = s3c2440_nand_enable_hwecc; + chip->ecc.calculate = s3c2440_nand_calculate_ecc; + break; } +#else + chip->ecc.mode = NAND_ECC_SOFT; +#endif if (set->ecc_layout != NULL) chip->ecc.layout = set->ecc_layout; @@ -898,7 +913,7 @@ static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, if (chip->ecc.mode != NAND_ECC_HW) return; - /* change the behaviour depending on wether we are using + /* change the behaviour depending on whether we are using * the large or small page nand device */ if (chip->page_shift > 10) { @@ -921,7 +936,7 @@ static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info, static int s3c24xx_nand_probe(struct platform_device *pdev) { struct s3c2410_platform_nand *plat = to_nand_plat(pdev); - enum s3c_cpu_type cpu_type; + enum s3c_cpu_type cpu_type; struct s3c2410_nand_info *info; struct s3c2410_nand_mtd *nmtd; struct s3c2410_nand_set *sets; @@ -935,9 +950,8 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) pr_debug("s3c2410_nand_probe(%p)\n", pdev); - info = kzalloc(sizeof(*info), GFP_KERNEL); + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (info == NULL) { - dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; goto exit_error; } @@ -949,7 +963,7 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) /* get the clock source and enable it */ - info->clk = clk_get(&pdev->dev, "nand"); + info->clk = devm_clk_get(&pdev->dev, "nand"); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); err = -ENOENT; @@ -961,25 +975,16 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) /* allocate and map the resource */ /* currently we assume we have the one resource */ - res = pdev->resource; + res = pdev->resource; size = resource_size(res); - info->area = request_mem_region(res->start, size, pdev->name); - - if (info->area == NULL) { - dev_err(&pdev->dev, "cannot reserve register region\n"); - err = -ENOENT; - goto exit_error; - } - - info->device = &pdev->dev; - info->platform = plat; - info->regs = ioremap(res->start, size); - info->cpu_type = cpu_type; + info->device = &pdev->dev; + info->platform = plat; + info->cpu_type = cpu_type; - if (info->regs == NULL) { - dev_err(&pdev->dev, "cannot reserve register region\n"); - err = -EIO; + info->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(info->regs)) { + err = PTR_ERR(info->regs); goto exit_error; } @@ -999,9 +1004,8 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) /* allocate our information */ size = nr_sets * sizeof(*info->mtds); - info->mtds = kzalloc(size, GFP_KERNEL); + info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); if (info->mtds == NULL) { - dev_err(&pdev->dev, "failed to allocate mtd storage\n"); err = -ENOMEM; goto exit_error; } @@ -1011,7 +1015,8 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) nmtd = info->mtds; for (setno = 0; setno < nr_sets; setno++, nmtd++) { - pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); + pr_debug("initialising set %d (%p, info %p)\n", + setno, nmtd, info); s3c2410_nand_init_chip(info, nmtd, sets); @@ -1134,20 +1139,7 @@ static struct platform_driver s3c24xx_nand_driver = { }, }; -static int __init s3c2410_nand_init(void) -{ - printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n"); - - return platform_driver_register(&s3c24xx_nand_driver); -} - -static void __exit s3c2410_nand_exit(void) -{ - platform_driver_unregister(&s3c24xx_nand_driver); -} - -module_init(s3c2410_nand_init); -module_exit(s3c2410_nand_exit); +module_platform_driver(s3c24xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c index aa9b8a5e0b8..c0670237e7a 100644 --- a/drivers/mtd/nand/sh_flctl.c +++ b/drivers/mtd/nand/sh_flctl.c @@ -23,11 +23,20 @@ #include <linux/module.h> #include <linux/kernel.h> +#include <linux/completion.h> #include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> #include <linux/io.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/of_mtd.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> +#include <linux/sh_dma.h> #include <linux/slab.h> +#include <linux/string.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> @@ -43,11 +52,17 @@ static struct nand_ecclayout flctl_4secc_oob_16 = { }; static struct nand_ecclayout flctl_4secc_oob_64 = { - .eccbytes = 10, - .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57}, + .eccbytes = 4 * 10, + .eccpos = { + 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, .oobfree = { - {.offset = 60, - . length = 4} }, + {.offset = 2, .length = 4}, + {.offset = 16, .length = 6}, + {.offset = 32, .length = 6}, + {.offset = 48, .length = 6} }, }; static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; @@ -61,15 +76,15 @@ static struct nand_bbt_descr flctl_4secc_smallpage = { static struct nand_bbt_descr flctl_4secc_largepage = { .options = NAND_BBT_SCAN2NDPAGE, - .offs = 58, + .offs = 0, .len = 2, .pattern = scan_ff_pattern, }; static void empty_fifo(struct sh_flctl *flctl) { - writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */ - writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */ + writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); } static void start_translation(struct sh_flctl *flctl) @@ -98,6 +113,84 @@ static void wait_completion(struct sh_flctl *flctl) writeb(0x0, FLTRCR(flctl)); } +static void flctl_dma_complete(void *param) +{ + struct sh_flctl *flctl = param; + + complete(&flctl->dma_complete); +} + +static void flctl_release_dma(struct sh_flctl *flctl) +{ + if (flctl->chan_fifo0_rx) { + dma_release_channel(flctl->chan_fifo0_rx); + flctl->chan_fifo0_rx = NULL; + } + if (flctl->chan_fifo0_tx) { + dma_release_channel(flctl->chan_fifo0_tx); + flctl->chan_fifo0_tx = NULL; + } +} + +static void flctl_setup_dma(struct sh_flctl *flctl) +{ + dma_cap_mask_t mask; + struct dma_slave_config cfg; + struct platform_device *pdev = flctl->pdev; + struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); + int ret; + + if (!pdata) + return; + + if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) + return; + + /* We can only either use DMA for both Tx and Rx or not use it at all */ + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + + flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_tx); + dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, + flctl->chan_fifo0_tx); + + if (!flctl->chan_fifo0_tx) + return; + + memset(&cfg, 0, sizeof(cfg)); + cfg.slave_id = pdata->slave_id_fifo0_tx; + cfg.direction = DMA_MEM_TO_DEV; + cfg.dst_addr = (dma_addr_t)FLDTFIFO(flctl); + cfg.src_addr = 0; + ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); + if (ret < 0) + goto err; + + flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_rx); + dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, + flctl->chan_fifo0_rx); + + if (!flctl->chan_fifo0_rx) + goto err; + + cfg.slave_id = pdata->slave_id_fifo0_rx; + cfg.direction = DMA_DEV_TO_MEM; + cfg.dst_addr = 0; + cfg.src_addr = (dma_addr_t)FLDTFIFO(flctl); + ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); + if (ret < 0) + goto err; + + init_completion(&flctl->dma_complete); + + return; + +err: + flctl_release_dma(flctl); +} + static void set_addr(struct mtd_info *mtd, int column, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); @@ -158,27 +251,56 @@ static void wait_wfifo_ready(struct sh_flctl *flctl) timeout_error(flctl, __func__); } -static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number) +static enum flctl_ecc_res_t wait_recfifo_ready + (struct sh_flctl *flctl, int sector_number) { uint32_t timeout = LOOP_TIMEOUT_MAX; - int checked[4]; void __iomem *ecc_reg[4]; int i; + int state = FL_SUCCESS; uint32_t data, size; - memset(checked, 0, sizeof(checked)); - + /* + * First this loops checks in FLDTCNTR if we are ready to read out the + * oob data. This is the case if either all went fine without errors or + * if the bottom part of the loop corrected the errors or marked them as + * uncorrectable and the controller is given time to push the data into + * the FIFO. + */ while (timeout--) { + /* check if all is ok and we can read out the OOB */ size = readl(FLDTCNTR(flctl)) >> 24; - if (size & 0xFF) - return 0; /* success */ + if ((size & 0xFF) == 4) + return state; + + /* check if a correction code has been calculated */ + if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { + /* + * either we wait for the fifo to be filled or a + * correction pattern is being generated + */ + udelay(1); + continue; + } - if (readl(FL4ECCCR(flctl)) & _4ECCFA) - return 1; /* can't correct */ + /* check for an uncorrectable error */ + if (readl(FL4ECCCR(flctl)) & _4ECCFA) { + /* check if we face a non-empty page */ + for (i = 0; i < 512; i++) { + if (flctl->done_buff[i] != 0xff) { + state = FL_ERROR; /* can't correct */ + break; + } + } - udelay(1); - if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) + if (state == FL_SUCCESS) + dev_dbg(&flctl->pdev->dev, + "reading empty sector %d, ecc error ignored\n", + sector_number); + + writel(0, FL4ECCCR(flctl)); continue; + } /* start error correction */ ecc_reg[0] = FL4ECCRESULT0(flctl); @@ -187,28 +309,26 @@ static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number) ecc_reg[3] = FL4ECCRESULT3(flctl); for (i = 0; i < 3; i++) { + uint8_t org; + unsigned int index; + data = readl(ecc_reg[i]); - if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) { - uint8_t org; - int index; - - if (flctl->page_size) - index = (512 * sector_number) + - (data >> 16); - else - index = data >> 16; - - org = flctl->done_buff[index]; - flctl->done_buff[index] = org ^ (data & 0xFF); - checked[i] = 1; - } - } + if (flctl->page_size) + index = (512 * sector_number) + + (data >> 16); + else + index = data >> 16; + + org = flctl->done_buff[index]; + flctl->done_buff[index] = org ^ (data & 0xFF); + } + state = FL_REPAIRABLE; writel(0, FL4ECCCR(flctl)); } timeout_error(flctl, __func__); - return 1; /* timeout */ + return FL_TIMEOUT; /* timeout */ } static void wait_wecfifo_ready(struct sh_flctl *flctl) @@ -226,6 +346,70 @@ static void wait_wecfifo_ready(struct sh_flctl *flctl) timeout_error(flctl, __func__); } +static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, + int len, enum dma_data_direction dir) +{ + struct dma_async_tx_descriptor *desc = NULL; + struct dma_chan *chan; + enum dma_transfer_direction tr_dir; + dma_addr_t dma_addr; + dma_cookie_t cookie = -EINVAL; + uint32_t reg; + int ret; + + if (dir == DMA_FROM_DEVICE) { + chan = flctl->chan_fifo0_rx; + tr_dir = DMA_DEV_TO_MEM; + } else { + chan = flctl->chan_fifo0_tx; + tr_dir = DMA_MEM_TO_DEV; + } + + dma_addr = dma_map_single(chan->device->dev, buf, len, dir); + + if (dma_addr) + desc = dmaengine_prep_slave_single(chan, dma_addr, len, + tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + + if (desc) { + reg = readl(FLINTDMACR(flctl)); + reg |= DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + desc->callback = flctl_dma_complete; + desc->callback_param = flctl; + cookie = dmaengine_submit(desc); + + dma_async_issue_pending(chan); + } else { + /* DMA failed, fall back to PIO */ + flctl_release_dma(flctl); + dev_warn(&flctl->pdev->dev, + "DMA failed, falling back to PIO\n"); + ret = -EIO; + goto out; + } + + ret = + wait_for_completion_timeout(&flctl->dma_complete, + msecs_to_jiffies(3000)); + + if (ret <= 0) { + chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); + dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); + } + +out: + reg = readl(FLINTDMACR(flctl)); + reg &= ~DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + dma_unmap_single(chan->device->dev, dma_addr, len, dir); + + /* ret > 0 is success */ + return ret; +} + static void read_datareg(struct sh_flctl *flctl, int offset) { unsigned long data; @@ -241,43 +425,77 @@ static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) { int i, len_4align; unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; - void *fifo_addr = (void *)FLDTFIFO(flctl); len_4align = (rlen + 3) / 4; + /* initiate DMA transfer */ + if (flctl->chan_fifo0_rx && rlen >= 32 && + flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0) + goto convert; /* DMA success */ + + /* do polling transfer */ for (i = 0; i < len_4align; i++) { wait_rfifo_ready(flctl); - buf[i] = readl(fifo_addr); - buf[i] = be32_to_cpu(buf[i]); + buf[i] = readl(FLDTFIFO(flctl)); } + +convert: + for (i = 0; i < len_4align; i++) + buf[i] = be32_to_cpu(buf[i]); } -static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector) +static enum flctl_ecc_res_t read_ecfiforeg + (struct sh_flctl *flctl, uint8_t *buff, int sector) { int i; + enum flctl_ecc_res_t res; unsigned long *ecc_buf = (unsigned long *)buff; - void *fifo_addr = (void *)FLECFIFO(flctl); - for (i = 0; i < 4; i++) { - if (wait_recfifo_ready(flctl , sector)) - return 1; - ecc_buf[i] = readl(fifo_addr); - ecc_buf[i] = be32_to_cpu(ecc_buf[i]); + res = wait_recfifo_ready(flctl , sector); + + if (res != FL_ERROR) { + for (i = 0; i < 4; i++) { + ecc_buf[i] = readl(FLECFIFO(flctl)); + ecc_buf[i] = be32_to_cpu(ecc_buf[i]); + } } - return 0; + return res; } -static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) +static void write_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) { int i, len_4align; - unsigned long *data = (unsigned long *)&flctl->done_buff[offset]; - void *fifo_addr = (void *)FLDTFIFO(flctl); + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; len_4align = (rlen + 3) / 4; for (i = 0; i < len_4align; i++) { wait_wfifo_ready(flctl); - writel(cpu_to_be32(data[i]), fifo_addr); + writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); + } +} + +static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + + for (i = 0; i < len_4align; i++) + buf[i] = cpu_to_be32(buf[i]); + + /* initiate DMA transfer */ + if (flctl->chan_fifo0_tx && rlen >= 32 && + flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0) + return; /* DMA success */ + + /* do polling transfer */ + for (i = 0; i < len_4align; i++) { + wait_wecfifo_ready(flctl); + writel(buf[i], FLECFIFO(flctl)); } } @@ -346,73 +564,65 @@ static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_va static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { - int i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - struct sh_flctl *flctl = mtd_to_flctl(mtd); - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->read_buf(mtd, p, eccsize); - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - if (flctl->hwecc_cant_correct[i]) - mtd->ecc_stats.failed++; - else - mtd->ecc_stats.corrected += 0; /* FIXME */ - } - + chip->read_buf(mtd, buf, mtd->writesize); + if (oob_required) + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } -static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, +static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { - int i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - const uint8_t *p = buf; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->write_buf(mtd, p, eccsize); + chip->write_buf(mtd, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; } static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); int sector, page_sectors; + enum flctl_ecc_res_t ecc_result; - if (flctl->page_size) - page_sectors = 4; - else - page_sectors = 1; - - writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, - FLCMNCR(flctl)); + page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_READ0, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); - for (sector = 0; sector < page_sectors; sector++) { - int ret; + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, + FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); - empty_fifo(flctl); - writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); - writel(page_addr << 2 | sector, FLADR(flctl)); + empty_fifo(flctl); + start_translation(flctl); - start_translation(flctl); + for (sector = 0; sector < page_sectors; sector++) { read_fiforeg(flctl, 512, 512 * sector); - ret = read_ecfiforeg(flctl, + ecc_result = read_ecfiforeg(flctl, &flctl->done_buff[mtd->writesize + 16 * sector], sector); - if (ret) - flctl->hwecc_cant_correct[sector] = 1; - - writel(0x0, FL4ECCCR(flctl)); - wait_completion(flctl); + switch (ecc_result) { + case FL_REPAIRABLE: + dev_info(&flctl->pdev->dev, + "applied ecc on page 0x%x", page_addr); + flctl->mtd.ecc_stats.corrected++; + break; + case FL_ERROR: + dev_warn(&flctl->pdev->dev, + "page 0x%x contains corrupted data\n", + page_addr); + flctl->mtd.ecc_stats.failed++; + break; + default: + ; + } } + + wait_completion(flctl); + writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), FLCMNCR(flctl)); } @@ -420,30 +630,20 @@ static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) static void execmd_read_oob(struct mtd_info *mtd, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_sectors = flctl->page_size ? 4 : 1; + int i; set_cmd_regs(mtd, NAND_CMD_READ0, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); empty_fifo(flctl); - if (flctl->page_size) { - int i; - /* In case that the page size is 2k */ - for (i = 0; i < 16 * 3; i++) - flctl->done_buff[i] = 0xFF; - - set_addr(mtd, 3 * 528 + 512, page_addr); - writel(16, FLDTCNTR(flctl)); - start_translation(flctl); - read_fiforeg(flctl, 16, 16 * 3); - wait_completion(flctl); - } else { - /* In case that the page size is 512b */ - set_addr(mtd, 512, page_addr); + for (i = 0; i < page_sectors; i++) { + set_addr(mtd, (512 + 16) * i + 512 , page_addr); writel(16, FLDTCNTR(flctl)); start_translation(flctl); - read_fiforeg(flctl, 16, 0); + read_fiforeg(flctl, 16, 16 * i); wait_completion(flctl); } } @@ -451,34 +651,26 @@ static void execmd_read_oob(struct mtd_info *mtd, int page_addr) static void execmd_write_page_sector(struct mtd_info *mtd) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - int i, page_addr = flctl->seqin_page_addr; + int page_addr = flctl->seqin_page_addr; int sector, page_sectors; - if (flctl->page_size) - page_sectors = 4; - else - page_sectors = 1; - - writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); + page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_PAGEPROG, (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); - for (sector = 0; sector < page_sectors; sector++) { - empty_fifo(flctl); - writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl)); - writel(page_addr << 2 | sector, FLADR(flctl)); + empty_fifo(flctl); + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); + start_translation(flctl); - start_translation(flctl); + for (sector = 0; sector < page_sectors; sector++) { write_fiforeg(flctl, 512, 512 * sector); - - for (i = 0; i < 4; i++) { - wait_wecfifo_ready(flctl); /* wait for write ready */ - writel(0xFFFFFFFF, FLECFIFO(flctl)); - } - wait_completion(flctl); + write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); } + wait_completion(flctl); writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); } @@ -488,18 +680,12 @@ static void execmd_write_oob(struct mtd_info *mtd) int page_addr = flctl->seqin_page_addr; int sector, page_sectors; - if (flctl->page_size) { - sector = 3; - page_sectors = 4; - } else { - sector = 0; - page_sectors = 1; - } + page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_PAGEPROG, (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); - for (; sector < page_sectors; sector++) { + for (sector = 0; sector < page_sectors; sector++) { empty_fifo(flctl); set_addr(mtd, sector * 528 + 512, page_addr); writel(16, FLDTCNTR(flctl)); /* set read size */ @@ -710,7 +896,9 @@ static void flctl_select_chip(struct mtd_info *mtd, int chipnr) if (!flctl->qos_request) { ret = dev_pm_qos_add_request(&flctl->pdev->dev, - &flctl->pm_qos, 100); + &flctl->pm_qos, + DEV_PM_QOS_RESUME_LATENCY, + 100); if (ret < 0) dev_err(&flctl->pdev->dev, "PM QoS request failed: %d\n", ret); @@ -731,52 +919,36 @@ static void flctl_select_chip(struct mtd_info *mtd, int chipnr) static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - int i, index = flctl->index; - for (i = 0; i < len; i++) - flctl->done_buff[index + i] = buf[i]; + memcpy(&flctl->done_buff[flctl->index], buf, len); flctl->index += len; } static uint8_t flctl_read_byte(struct mtd_info *mtd) { struct sh_flctl *flctl = mtd_to_flctl(mtd); - int index = flctl->index; uint8_t data; - data = flctl->done_buff[index]; + data = flctl->done_buff[flctl->index]; flctl->index++; return data; } static uint16_t flctl_read_word(struct mtd_info *mtd) { - struct sh_flctl *flctl = mtd_to_flctl(mtd); - int index = flctl->index; - uint16_t data; - uint16_t *buf = (uint16_t *)&flctl->done_buff[index]; + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index]; - data = *buf; - flctl->index += 2; - return data; + flctl->index += 2; + return *buf; } static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { - int i; - - for (i = 0; i < len; i++) - buf[i] = flctl_read_byte(mtd); -} - -static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; + struct sh_flctl *flctl = mtd_to_flctl(mtd); - for (i = 0; i < len; i++) - if (buf[i] != flctl_read_byte(mtd)) - return -EFAULT; - return 0; + memcpy(buf, &flctl->done_buff[flctl->index], len); + flctl->index += len; } static int flctl_chip_init_tail(struct mtd_info *mtd) @@ -831,7 +1003,7 @@ static int flctl_chip_init_tail(struct mtd_info *mtd) chip->ecc.mode = NAND_ECC_HW; /* 4 symbols ECC enabled */ - flctl->flcmncr_base |= _4ECCEN | ECCPOS2 | ECCPOS_02; + flctl->flcmncr_base |= _4ECCEN; } else { chip->ecc.mode = NAND_ECC_SOFT; } @@ -839,37 +1011,114 @@ static int flctl_chip_init_tail(struct mtd_info *mtd) return 0; } -static int __devinit flctl_probe(struct platform_device *pdev) +static irqreturn_t flctl_handle_flste(int irq, void *dev_id) +{ + struct sh_flctl *flctl = dev_id; + + dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); + + return IRQ_HANDLED; +} + +struct flctl_soc_config { + unsigned long flcmncr_val; + unsigned has_hwecc:1; + unsigned use_holden:1; +}; + +static struct flctl_soc_config flctl_sh7372_config = { + .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, + .has_hwecc = 1, + .use_holden = 1, +}; + +static const struct of_device_id of_flctl_match[] = { + { .compatible = "renesas,shmobile-flctl-sh7372", + .data = &flctl_sh7372_config }, + {}, +}; +MODULE_DEVICE_TABLE(of, of_flctl_match); + +static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) +{ + const struct of_device_id *match; + struct flctl_soc_config *config; + struct sh_flctl_platform_data *pdata; + struct device_node *dn = dev->of_node; + int ret; + + match = of_match_device(of_flctl_match, dev); + if (match) + config = (struct flctl_soc_config *)match->data; + else { + dev_err(dev, "%s: no OF configuration attached\n", __func__); + return NULL; + } + + pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), + GFP_KERNEL); + if (!pdata) + return NULL; + + /* set SoC specific options */ + pdata->flcmncr_val = config->flcmncr_val; + pdata->has_hwecc = config->has_hwecc; + pdata->use_holden = config->use_holden; + + /* parse user defined options */ + ret = of_get_nand_bus_width(dn); + if (ret == 16) + pdata->flcmncr_val |= SEL_16BIT; + else if (ret != 8) { + dev_err(dev, "%s: invalid bus width\n", __func__); + return NULL; + } + + return pdata; +} + +static int flctl_probe(struct platform_device *pdev) { struct resource *res; struct sh_flctl *flctl; struct mtd_info *flctl_mtd; struct nand_chip *nand; struct sh_flctl_platform_data *pdata; - int ret = -ENXIO; - - pdata = pdev->dev.platform_data; - if (pdata == NULL) { - dev_err(&pdev->dev, "no platform data defined\n"); - return -EINVAL; - } + int ret; + int irq; + struct mtd_part_parser_data ppdata = {}; - flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL); - if (!flctl) { - dev_err(&pdev->dev, "failed to allocate driver data\n"); + flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); + if (!flctl) return -ENOMEM; - } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) { - dev_err(&pdev->dev, "failed to get I/O memory\n"); - goto err_iomap; + flctl->reg = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(flctl->reg)) + return PTR_ERR(flctl->reg); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(&pdev->dev, "failed to get flste irq data\n"); + return -ENXIO; } - flctl->reg = ioremap(res->start, resource_size(res)); - if (flctl->reg == NULL) { - dev_err(&pdev->dev, "failed to remap I/O memory\n"); - goto err_iomap; + ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, + "flste", flctl); + if (ret) { + dev_err(&pdev->dev, "request interrupt failed.\n"); + return ret; + } + + if (pdev->dev.of_node) + pdata = flctl_parse_dt(&pdev->dev); + else + pdata = dev_get_platdata(&pdev->dev); + + if (!pdata) { + dev_err(&pdev->dev, "no setup data defined\n"); + return -EINVAL; } platform_set_drvdata(pdev, flctl); @@ -877,9 +1126,10 @@ static int __devinit flctl_probe(struct platform_device *pdev) nand = &flctl->chip; flctl_mtd->priv = nand; flctl->pdev = pdev; - flctl->flcmncr_base = pdata->flcmncr_val; flctl->hwecc = pdata->has_hwecc; flctl->holden = pdata->use_holden; + flctl->flcmncr_base = pdata->flcmncr_val; + flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; /* Set address of hardware control function */ /* 20 us command delay time */ @@ -888,7 +1138,6 @@ static int __devinit flctl_probe(struct platform_device *pdev) nand->read_byte = flctl_read_byte; nand->write_buf = flctl_write_buf; nand->read_buf = flctl_read_buf; - nand->verify_buf = flctl_verify_buf; nand->select_chip = flctl_select_chip; nand->cmdfunc = flctl_cmdfunc; @@ -900,6 +1149,8 @@ static int __devinit flctl_probe(struct platform_device *pdev) pm_runtime_enable(&pdev->dev); pm_runtime_resume(&pdev->dev); + flctl_setup_dma(flctl); + ret = nand_scan_ident(flctl_mtd, 1, NULL); if (ret) goto err_chip; @@ -912,24 +1163,25 @@ static int __devinit flctl_probe(struct platform_device *pdev) if (ret) goto err_chip; - mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); + ppdata.of_node = pdev->dev.of_node; + ret = mtd_device_parse_register(flctl_mtd, NULL, &ppdata, pdata->parts, + pdata->nr_parts); return 0; err_chip: + flctl_release_dma(flctl); pm_runtime_disable(&pdev->dev); -err_iomap: - kfree(flctl); return ret; } -static int __devexit flctl_remove(struct platform_device *pdev) +static int flctl_remove(struct platform_device *pdev) { struct sh_flctl *flctl = platform_get_drvdata(pdev); + flctl_release_dma(flctl); nand_release(&flctl->mtd); pm_runtime_disable(&pdev->dev); - kfree(flctl); return 0; } @@ -939,21 +1191,11 @@ static struct platform_driver flctl_driver = { .driver = { .name = "sh_flctl", .owner = THIS_MODULE, + .of_match_table = of_match_ptr(of_flctl_match), }, }; -static int __init flctl_nand_init(void) -{ - return platform_driver_probe(&flctl_driver, flctl_probe); -} - -static void __exit flctl_nand_cleanup(void) -{ - platform_driver_unregister(&flctl_driver); -} - -module_init(flctl_nand_init); -module_exit(flctl_nand_cleanup); +module_platform_driver_probe(flctl_driver, flctl_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Yoshihiro Shimoda"); diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c index 3421e3762a5..e81059b5838 100644 --- a/drivers/mtd/nand/sharpsl.c +++ b/drivers/mtd/nand/sharpsl.c @@ -106,13 +106,13 @@ static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, /* * Main initialization routine */ -static int __devinit sharpsl_nand_probe(struct platform_device *pdev) +static int sharpsl_nand_probe(struct platform_device *pdev) { struct nand_chip *this; struct resource *r; int err = 0; struct sharpsl_nand *sharpsl; - struct sharpsl_nand_platform_data *data = pdev->dev.platform_data; + struct sharpsl_nand_platform_data *data = dev_get_platdata(&pdev->dev); if (!data) { dev_err(&pdev->dev, "no platform data!\n"); @@ -121,10 +121,8 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) /* Allocate memory for MTD device structure and private data */ sharpsl = kzalloc(sizeof(struct sharpsl_nand), GFP_KERNEL); - if (!sharpsl) { - printk("Unable to allocate SharpSL NAND MTD device structure.\n"); + if (!sharpsl) return -ENOMEM; - } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { @@ -136,7 +134,7 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) /* map physical address */ sharpsl->io = ioremap(r->start, resource_size(r)); if (!sharpsl->io) { - printk("ioremap to access Sharp SL NAND chip failed\n"); + dev_err(&pdev->dev, "ioremap to access Sharp SL NAND chip failed\n"); err = -EIO; goto err_ioremap; } @@ -194,7 +192,6 @@ err_add: nand_release(&sharpsl->mtd); err_scan: - platform_set_drvdata(pdev, NULL); iounmap(sharpsl->io); err_ioremap: err_get_res: @@ -205,15 +202,13 @@ err_get_res: /* * Clean up routine */ -static int __devexit sharpsl_nand_remove(struct platform_device *pdev) +static int sharpsl_nand_remove(struct platform_device *pdev) { struct sharpsl_nand *sharpsl = platform_get_drvdata(pdev); /* Release resources, unregister device */ nand_release(&sharpsl->mtd); - platform_set_drvdata(pdev, NULL); - iounmap(sharpsl->io); /* Free the MTD device structure */ @@ -228,7 +223,7 @@ static struct platform_driver sharpsl_nand_driver = { .owner = THIS_MODULE, }, .probe = sharpsl_nand_probe, - .remove = __devexit_p(sharpsl_nand_remove), + .remove = sharpsl_nand_remove, }; module_platform_driver(sharpsl_nand_driver); diff --git a/drivers/mtd/nand/sm_common.c b/drivers/mtd/nand/sm_common.c index 082bcdcd6bc..e06b5e5d328 100644 --- a/drivers/mtd/nand/sm_common.c +++ b/drivers/mtd/nand/sm_common.c @@ -9,6 +9,7 @@ #include <linux/kernel.h> #include <linux/mtd/nand.h> #include <linux/module.h> +#include <linux/sizes.h> #include "sm_common.h" static struct nand_ecclayout nand_oob_sm = { @@ -41,7 +42,7 @@ static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct mtd_oob_ops ops; struct sm_oob oob; - int ret, error = 0; + int ret; memset(&oob, -1, SM_OOB_SIZE); oob.block_status = 0x0F; @@ -60,51 +61,43 @@ static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs) printk(KERN_NOTICE "sm_common: can't mark sector at %i as bad\n", (int)ofs); - error = -EIO; - } else - mtd->ecc_stats.badblocks++; + return -EIO; + } - return error; + return 0; } - static struct nand_flash_dev nand_smartmedia_flash_ids[] = { - {"SmartMedia 1MiB 5V", 0x6e, 256, 1, 0x1000, 0}, - {"SmartMedia 1MiB 3,3V", 0xe8, 256, 1, 0x1000, 0}, - {"SmartMedia 1MiB 3,3V", 0xec, 256, 1, 0x1000, 0}, - {"SmartMedia 2MiB 3,3V", 0xea, 256, 2, 0x1000, 0}, - {"SmartMedia 2MiB 5V", 0x64, 256, 2, 0x1000, 0}, - {"SmartMedia 2MiB 3,3V ROM", 0x5d, 512, 2, 0x2000, NAND_ROM}, - {"SmartMedia 4MiB 3,3V", 0xe3, 512, 4, 0x2000, 0}, - {"SmartMedia 4MiB 3,3/5V", 0xe5, 512, 4, 0x2000, 0}, - {"SmartMedia 4MiB 5V", 0x6b, 512, 4, 0x2000, 0}, - {"SmartMedia 4MiB 3,3V ROM", 0xd5, 512, 4, 0x2000, NAND_ROM}, - {"SmartMedia 8MiB 3,3V", 0xe6, 512, 8, 0x2000, 0}, - {"SmartMedia 8MiB 3,3V ROM", 0xd6, 512, 8, 0x2000, NAND_ROM}, - {"SmartMedia 16MiB 3,3V", 0x73, 512, 16, 0x4000, 0}, - {"SmartMedia 16MiB 3,3V ROM", 0x57, 512, 16, 0x4000, NAND_ROM}, - {"SmartMedia 32MiB 3,3V", 0x75, 512, 32, 0x4000, 0}, - {"SmartMedia 32MiB 3,3V ROM", 0x58, 512, 32, 0x4000, NAND_ROM}, - {"SmartMedia 64MiB 3,3V", 0x76, 512, 64, 0x4000, 0}, - {"SmartMedia 64MiB 3,3V ROM", 0xd9, 512, 64, 0x4000, NAND_ROM}, - {"SmartMedia 128MiB 3,3V", 0x79, 512, 128, 0x4000, 0}, - {"SmartMedia 128MiB 3,3V ROM", 0xda, 512, 128, 0x4000, NAND_ROM}, - {"SmartMedia 256MiB 3,3V", 0x71, 512, 256, 0x4000 }, - {"SmartMedia 256MiB 3,3V ROM", 0x5b, 512, 256, 0x4000, NAND_ROM}, - {NULL,} + LEGACY_ID_NAND("SmartMedia 2MiB 3,3V ROM", 0x5d, 2, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V", 0xe3, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3/5V", 0xe5, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 5V", 0x6b, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V ROM", 0xd5, 4, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V", 0xe6, 8, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V ROM", 0xd6, 8, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V ROM", 0x57, 16, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V ROM", 0x58, 32, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V ROM", 0xd9, 64, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V ROM", 0xda, 128, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 256MiB 3, 3V", 0x71, 256, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 256MiB 3,3V ROM", 0x5b, 256, SZ_16K, NAND_ROM), + {NULL} }; static struct nand_flash_dev nand_xd_flash_ids[] = { - - {"xD 16MiB 3,3V", 0x73, 512, 16, 0x4000, 0}, - {"xD 32MiB 3,3V", 0x75, 512, 32, 0x4000, 0}, - {"xD 64MiB 3,3V", 0x76, 512, 64, 0x4000, 0}, - {"xD 128MiB 3,3V", 0x79, 512, 128, 0x4000, 0}, - {"xD 256MiB 3,3V", 0x71, 512, 256, 0x4000, NAND_BROKEN_XD}, - {"xD 512MiB 3,3V", 0xdc, 512, 512, 0x4000, NAND_BROKEN_XD}, - {"xD 1GiB 3,3V", 0xd3, 512, 1024, 0x4000, NAND_BROKEN_XD}, - {"xD 2GiB 3,3V", 0xd5, 512, 2048, 0x4000, NAND_BROKEN_XD}, - {NULL,} + LEGACY_ID_NAND("xD 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("xD 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("xD 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("xD 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("xD 256MiB 3,3V", 0x71, 256, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 512MiB 3,3V", 0xdc, 512, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 1GiB 3,3V", 0xd3, 1024, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 2GiB 3,3V", 0xd5, 2048, SZ_16K, NAND_BROKEN_XD), + {NULL} }; int sm_register_device(struct mtd_info *mtd, int smartmedia) diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/socrates_nand.c index e02b08bcf0c..fe8058a4505 100644 --- a/drivers/mtd/nand/socrates_nand.c +++ b/drivers/mtd/nand/socrates_nand.c @@ -15,6 +15,7 @@ #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/partitions.h> +#include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/io.h> @@ -98,24 +99,6 @@ static uint16_t socrates_nand_read_word(struct mtd_info *mtd) return word; } -/** - * socrates_nand_verify_buf - Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare - */ -static int socrates_nand_verify_buf(struct mtd_info *mtd, const u8 *buf, - int len) -{ - int i; - - for (i = 0; i < len; i++) { - if (buf[i] != socrates_nand_read_byte(mtd)) - return -EFAULT; - } - return 0; -} - /* * Hardware specific access to control-lines */ @@ -158,7 +141,7 @@ static int socrates_nand_device_ready(struct mtd_info *mtd) /* * Probe for the NAND device. */ -static int __devinit socrates_nand_probe(struct platform_device *ofdev) +static int socrates_nand_probe(struct platform_device *ofdev) { struct socrates_nand_host *host; struct mtd_info *mtd; @@ -167,17 +150,13 @@ static int __devinit socrates_nand_probe(struct platform_device *ofdev) struct mtd_part_parser_data ppdata; /* Allocate memory for the device structure (and zero it) */ - host = kzalloc(sizeof(struct socrates_nand_host), GFP_KERNEL); - if (!host) { - printk(KERN_ERR - "socrates_nand: failed to allocate device structure.\n"); + host = devm_kzalloc(&ofdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) return -ENOMEM; - } host->io_base = of_iomap(ofdev->dev.of_node, 0); if (host->io_base == NULL) { - printk(KERN_ERR "socrates_nand: ioremap failed\n"); - kfree(host); + dev_err(&ofdev->dev, "ioremap failed\n"); return -EIO; } @@ -201,7 +180,6 @@ static int __devinit socrates_nand_probe(struct platform_device *ofdev) nand_chip->read_word = socrates_nand_read_word; nand_chip->write_buf = socrates_nand_write_buf; nand_chip->read_buf = socrates_nand_read_buf; - nand_chip->verify_buf = socrates_nand_verify_buf; nand_chip->dev_ready = socrates_nand_device_ready; nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ @@ -230,25 +208,21 @@ static int __devinit socrates_nand_probe(struct platform_device *ofdev) nand_release(mtd); out: - dev_set_drvdata(&ofdev->dev, NULL); iounmap(host->io_base); - kfree(host); return res; } /* * Remove a NAND device. */ -static int __devexit socrates_nand_remove(struct platform_device *ofdev) +static int socrates_nand_remove(struct platform_device *ofdev) { struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev); struct mtd_info *mtd = &host->mtd; nand_release(mtd); - dev_set_drvdata(&ofdev->dev, NULL); iounmap(host->io_base); - kfree(host); return 0; } @@ -270,7 +244,7 @@ static struct platform_driver socrates_nand_driver = { .of_match_table = socrates_nand_match, }, .probe = socrates_nand_probe, - .remove = __devexit_p(socrates_nand_remove), + .remove = socrates_nand_remove, }; module_platform_driver(socrates_nand_driver); diff --git a/drivers/mtd/nand/spia.c b/drivers/mtd/nand/spia.c deleted file mode 100644 index bef76cd7c24..00000000000 --- a/drivers/mtd/nand/spia.c +++ /dev/null @@ -1,176 +0,0 @@ -/* - * drivers/mtd/nand/spia.c - * - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * - * - * 10-29-2001 TG change to support hardwarespecific access - * to controllines (due to change in nand.c) - * page_cache added - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * SPIA board which utilizes the Toshiba TC58V64AFT part. This is - * a 64Mibit (8MiB x 8 bits) NAND flash device. - */ - -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> - -/* - * MTD structure for SPIA board - */ -static struct mtd_info *spia_mtd = NULL; - -/* - * Values specific to the SPIA board (used with EP7212 processor) - */ -#define SPIA_IO_BASE 0xd0000000 /* Start of EP7212 IO address space */ -#define SPIA_FIO_BASE 0xf0000000 /* Address where flash is mapped */ -#define SPIA_PEDR 0x0080 /* - * IO offset to Port E data register - * where the CLE, ALE and NCE pins - * are wired to. - */ -#define SPIA_PEDDR 0x00c0 /* - * IO offset to Port E data direction - * register so we can control the IO - * lines. - */ - -/* - * Module stuff - */ - -static int spia_io_base = SPIA_IO_BASE; -static int spia_fio_base = SPIA_FIO_BASE; -static int spia_pedr = SPIA_PEDR; -static int spia_peddr = SPIA_PEDDR; - -module_param(spia_io_base, int, 0); -module_param(spia_fio_base, int, 0); -module_param(spia_pedr, int, 0); -module_param(spia_peddr, int, 0); - -/* - * Define partitions for flash device - */ -static const struct mtd_partition partition_info[] = { - { - .name = "SPIA flash partition 1", - .offset = 0, - .size = 2 * 1024 * 1024}, - { - .name = "SPIA flash partition 2", - .offset = 2 * 1024 * 1024, - .size = 6 * 1024 * 1024} -}; - -#define NUM_PARTITIONS 2 - -/* - * hardware specific access to control-lines - * - * ctrl: - * NAND_CNE: bit 0 -> bit 2 - * NAND_CLE: bit 1 -> bit 0 - * NAND_ALE: bit 2 -> bit 1 - */ -static void spia_hwcontrol(struct mtd_info *mtd, int cmd) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { - void __iomem *addr = spia_io_base + spia_pedr; - unsigned char bits; - - bits = (ctrl & NAND_CNE) << 2; - bits |= (ctrl & NAND_CLE | NAND_ALE) >> 1; - writeb((readb(addr) & ~0x7) | bits, addr); - } - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -/* - * Main initialization routine - */ -static int __init spia_init(void) -{ - struct nand_chip *this; - - /* Allocate memory for MTD device structure and private data */ - spia_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!spia_mtd) { - printk("Unable to allocate SPIA NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&spia_mtd[1]); - - /* Initialize structures */ - memset(spia_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - spia_mtd->priv = this; - spia_mtd->owner = THIS_MODULE; - - /* - * Set GPIO Port E control register so that the pins are configured - * to be outputs for controlling the NAND flash. - */ - (*(volatile unsigned char *)(spia_io_base + spia_peddr)) = 0x07; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = (void __iomem *)spia_fio_base; - this->IO_ADDR_W = (void __iomem *)spia_fio_base; - /* Set address of hardware control function */ - this->cmd_ctrl = spia_hwcontrol; - /* 15 us command delay time */ - this->chip_delay = 15; - - /* Scan to find existence of the device */ - if (nand_scan(spia_mtd, 1)) { - kfree(spia_mtd); - return -ENXIO; - } - - /* Register the partitions */ - mtd_device_register(spia_mtd, partition_info, NUM_PARTITIONS); - - /* Return happy */ - return 0; -} - -module_init(spia_init); - -/* - * Clean up routine - */ -static void __exit spia_cleanup(void) -{ - /* Release resources, unregister device */ - nand_release(spia_mtd); - - /* Free the MTD device structure */ - kfree(spia_mtd); -} - -module_exit(spia_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com"); -MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on SPIA board"); diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/tmio_nand.c index 5aa518081c5..fb8fd35fa66 100644 --- a/drivers/mtd/nand/tmio_nand.c +++ b/drivers/mtd/nand/tmio_nand.c @@ -256,18 +256,6 @@ static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); } -static int -tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - u16 *p = (u16 *) buf; - - for (len >>= 1; len; len--) - if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA)) - return -EFAULT; - return 0; -} - static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct tmio_nand *tmio = mtd_to_tmio(mtd); @@ -369,7 +357,7 @@ static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio) static int tmio_probe(struct platform_device *dev) { - struct tmio_nand_data *data = dev->dev.platform_data; + struct tmio_nand_data *data = dev_get_platdata(&dev->dev); struct resource *fcr = platform_get_resource(dev, IORESOURCE_MEM, 0); struct resource *ccr = platform_get_resource(dev, @@ -383,11 +371,9 @@ static int tmio_probe(struct platform_device *dev) if (data == NULL) dev_warn(&dev->dev, "NULL platform data!\n"); - tmio = kzalloc(sizeof *tmio, GFP_KERNEL); - if (!tmio) { - retval = -ENOMEM; - goto err_kzalloc; - } + tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL); + if (!tmio) + return -ENOMEM; tmio->dev = dev; @@ -397,22 +383,18 @@ static int tmio_probe(struct platform_device *dev) mtd->priv = nand_chip; mtd->name = "tmio-nand"; - tmio->ccr = ioremap(ccr->start, resource_size(ccr)); - if (!tmio->ccr) { - retval = -EIO; - goto err_iomap_ccr; - } + tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr)); + if (!tmio->ccr) + return -EIO; tmio->fcr_base = fcr->start & 0xfffff; - tmio->fcr = ioremap(fcr->start, resource_size(fcr)); - if (!tmio->fcr) { - retval = -EIO; - goto err_iomap_fcr; - } + tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr)); + if (!tmio->fcr) + return -EIO; retval = tmio_hw_init(dev, tmio); if (retval) - goto err_hwinit; + return retval; /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = tmio->fcr; @@ -424,7 +406,6 @@ static int tmio_probe(struct platform_device *dev) nand_chip->read_byte = tmio_nand_read_byte; nand_chip->write_buf = tmio_nand_write_buf; nand_chip->read_buf = tmio_nand_read_buf; - nand_chip->verify_buf = tmio_nand_verify_buf; /* set eccmode using hardware ECC */ nand_chip->ecc.mode = NAND_ECC_HW; @@ -441,8 +422,8 @@ static int tmio_probe(struct platform_device *dev) /* 15 us command delay time */ nand_chip->chip_delay = 15; - retval = request_irq(irq, &tmio_irq, - IRQF_DISABLED, dev_name(&dev->dev), tmio); + retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0, + dev_name(&dev->dev), tmio); if (retval) { dev_err(&dev->dev, "request_irq error %d\n", retval); goto err_irq; @@ -454,7 +435,7 @@ static int tmio_probe(struct platform_device *dev) /* Scan to find existence of the device */ if (nand_scan(mtd, 1)) { retval = -ENODEV; - goto err_scan; + goto err_irq; } /* Register the partitions */ retval = mtd_device_parse_register(mtd, NULL, NULL, @@ -465,18 +446,8 @@ static int tmio_probe(struct platform_device *dev) nand_release(mtd); -err_scan: - if (tmio->irq) - free_irq(tmio->irq, tmio); err_irq: tmio_hw_stop(dev, tmio); -err_hwinit: - iounmap(tmio->fcr); -err_iomap_fcr: - iounmap(tmio->ccr); -err_iomap_ccr: - kfree(tmio); -err_kzalloc: return retval; } @@ -485,12 +456,7 @@ static int tmio_remove(struct platform_device *dev) struct tmio_nand *tmio = platform_get_drvdata(dev); nand_release(&tmio->mtd); - if (tmio->irq) - free_irq(tmio->irq, tmio); tmio_hw_stop(dev, tmio); - iounmap(tmio->fcr); - iounmap(tmio->ccr); - kfree(tmio); return 0; } diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/txx9ndfmc.c index 26398dcf21c..c1622a5ba81 100644 --- a/drivers/mtd/nand/txx9ndfmc.c +++ b/drivers/mtd/nand/txx9ndfmc.c @@ -9,6 +9,7 @@ * (C) Copyright TOSHIBA CORPORATION 2004-2007 * All Rights Reserved. */ +#include <linux/err.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> @@ -86,7 +87,7 @@ static struct platform_device *mtd_to_platdev(struct mtd_info *mtd) static void __iomem *ndregaddr(struct platform_device *dev, unsigned int reg) { struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); return drvdata->base + (reg << plat->shift); } @@ -131,25 +132,13 @@ static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) *buf++ = __raw_readl(ndfdtr); } -static int txx9ndfmc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); - - while (len--) - if (*buf++ != (uint8_t)__raw_readl(ndfdtr)) - return -EFAULT; - return 0; -} - static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *chip = mtd->priv; struct txx9ndfmc_priv *txx9_priv = chip->priv; struct platform_device *dev = txx9_priv->dev; - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); if (ctrl & NAND_CTRL_CHANGE) { u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); @@ -236,7 +225,7 @@ static void txx9ndfmc_enable_hwecc(struct mtd_info *mtd, int mode) static void txx9ndfmc_initialize(struct platform_device *dev) { - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); int tmout = 100; @@ -285,22 +274,20 @@ static int txx9ndfmc_nand_scan(struct mtd_info *mtd) static int __init txx9ndfmc_probe(struct platform_device *dev) { - struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); int hold, spw; int i; struct txx9ndfmc_drvdata *drvdata; unsigned long gbusclk = plat->gbus_clock; struct resource *res; - res = platform_get_resource(dev, IORESOURCE_MEM, 0); - if (!res) - return -ENODEV; drvdata = devm_kzalloc(&dev->dev, sizeof(*drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; - drvdata->base = devm_request_and_ioremap(&dev->dev, res); - if (!drvdata->base) - return -EBUSY; + res = platform_get_resource(dev, IORESOURCE_MEM, 0); + drvdata->base = devm_ioremap_resource(&dev->dev, res); + if (IS_ERR(drvdata->base)) + return PTR_ERR(drvdata->base); hold = plat->hold ?: 20; /* tDH */ spw = plat->spw ?: 90; /* max(tREADID, tWP, tRP) */ @@ -332,11 +319,8 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) continue; txx9_priv = kzalloc(sizeof(struct txx9ndfmc_priv), GFP_KERNEL); - if (!txx9_priv) { - dev_err(&dev->dev, "Unable to allocate " - "TXx9 NDFMC MTD device structure.\n"); + if (!txx9_priv) continue; - } chip = &txx9_priv->chip; mtd = &txx9_priv->mtd; mtd->owner = THIS_MODULE; @@ -346,7 +330,6 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) chip->read_byte = txx9ndfmc_read_byte; chip->read_buf = txx9ndfmc_read_buf; chip->write_buf = txx9ndfmc_write_buf; - chip->verify_buf = txx9ndfmc_verify_buf; chip->cmd_ctrl = txx9ndfmc_cmd_ctrl; chip->dev_ready = txx9ndfmc_dev_ready; chip->ecc.calculate = txx9ndfmc_calculate_ecc; @@ -399,7 +382,6 @@ static int __exit txx9ndfmc_remove(struct platform_device *dev) struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); int i; - platform_set_drvdata(dev, NULL); if (!drvdata) return 0; for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { @@ -439,18 +421,7 @@ static struct platform_driver txx9ndfmc_driver = { }, }; -static int __init txx9ndfmc_init(void) -{ - return platform_driver_probe(&txx9ndfmc_driver, txx9ndfmc_probe); -} - -static void __exit txx9ndfmc_exit(void) -{ - platform_driver_unregister(&txx9ndfmc_driver); -} - -module_init(txx9ndfmc_init); -module_exit(txx9ndfmc_exit); +module_platform_driver_probe(txx9ndfmc_driver, txx9ndfmc_probe); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("TXx9 SoC NAND flash controller driver"); diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/xway_nand.c new file mode 100644 index 00000000000..3f81dc8f214 --- /dev/null +++ b/drivers/mtd/nand/xway_nand.c @@ -0,0 +1,201 @@ +/* + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * Copyright © 2012 John Crispin <blogic@openwrt.org> + */ + +#include <linux/mtd/nand.h> +#include <linux/of_gpio.h> +#include <linux/of_platform.h> + +#include <lantiq_soc.h> + +/* nand registers */ +#define EBU_ADDSEL1 0x24 +#define EBU_NAND_CON 0xB0 +#define EBU_NAND_WAIT 0xB4 +#define EBU_NAND_ECC0 0xB8 +#define EBU_NAND_ECC_AC 0xBC + +/* nand commands */ +#define NAND_CMD_ALE (1 << 2) +#define NAND_CMD_CLE (1 << 3) +#define NAND_CMD_CS (1 << 4) +#define NAND_WRITE_CMD_RESET 0xff +#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) +#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) +#define NAND_WRITE_DATA (NAND_CMD_CS) +#define NAND_READ_DATA (NAND_CMD_CS) +#define NAND_WAIT_WR_C (1 << 3) +#define NAND_WAIT_RD (0x1) + +/* we need to tel the ebu which addr we mapped the nand to */ +#define ADDSEL1_MASK(x) (x << 4) +#define ADDSEL1_REGEN 1 + +/* we need to tell the EBU that we have nand attached and set it up properly */ +#define BUSCON1_SETUP (1 << 22) +#define BUSCON1_BCGEN_RES (0x3 << 12) +#define BUSCON1_WAITWRC2 (2 << 8) +#define BUSCON1_WAITRDC2 (2 << 6) +#define BUSCON1_HOLDC1 (1 << 4) +#define BUSCON1_RECOVC1 (1 << 2) +#define BUSCON1_CMULT4 1 + +#define NAND_CON_CE (1 << 20) +#define NAND_CON_OUT_CS1 (1 << 10) +#define NAND_CON_IN_CS1 (1 << 8) +#define NAND_CON_PRE_P (1 << 7) +#define NAND_CON_WP_P (1 << 6) +#define NAND_CON_SE_P (1 << 5) +#define NAND_CON_CS_P (1 << 4) +#define NAND_CON_CSMUX (1 << 1) +#define NAND_CON_NANDM 1 + +static void xway_reset_chip(struct nand_chip *chip) +{ + unsigned long nandaddr = (unsigned long) chip->IO_ADDR_W; + unsigned long flags; + + nandaddr &= ~NAND_WRITE_ADDR; + nandaddr |= NAND_WRITE_CMD; + + /* finish with a reset */ + spin_lock_irqsave(&ebu_lock, flags); + writeb(NAND_WRITE_CMD_RESET, (void __iomem *) nandaddr); + while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) + ; + spin_unlock_irqrestore(&ebu_lock, flags); +} + +static void xway_select_chip(struct mtd_info *mtd, int chip) +{ + + switch (chip) { + case -1: + ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); + ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); + break; + case 0: + ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); + ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); + break; + default: + BUG(); + } +} + +static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd->priv; + unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; + unsigned long flags; + + if (ctrl & NAND_CTRL_CHANGE) { + nandaddr &= ~(NAND_WRITE_CMD | NAND_WRITE_ADDR); + if (ctrl & NAND_CLE) + nandaddr |= NAND_WRITE_CMD; + else + nandaddr |= NAND_WRITE_ADDR; + this->IO_ADDR_W = (void __iomem *) nandaddr; + } + + if (cmd != NAND_CMD_NONE) { + spin_lock_irqsave(&ebu_lock, flags); + writeb(cmd, this->IO_ADDR_W); + while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) + ; + spin_unlock_irqrestore(&ebu_lock, flags); + } +} + +static int xway_dev_ready(struct mtd_info *mtd) +{ + return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; +} + +static unsigned char xway_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + unsigned long nandaddr = (unsigned long) this->IO_ADDR_R; + unsigned long flags; + int ret; + + spin_lock_irqsave(&ebu_lock, flags); + ret = ltq_r8((void __iomem *)(nandaddr + NAND_READ_DATA)); + spin_unlock_irqrestore(&ebu_lock, flags); + + return ret; +} + +static int xway_nand_probe(struct platform_device *pdev) +{ + struct nand_chip *this = platform_get_drvdata(pdev); + unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; + const __be32 *cs = of_get_property(pdev->dev.of_node, + "lantiq,cs", NULL); + u32 cs_flag = 0; + + /* load our CS from the DT. Either we find a valid 1 or default to 0 */ + if (cs && (*cs == 1)) + cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; + + /* setup the EBU to run in NAND mode on our base addr */ + ltq_ebu_w32(CPHYSADDR(nandaddr) + | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); + + ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 + | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 + | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); + + ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P + | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P + | cs_flag, EBU_NAND_CON); + + /* finish with a reset */ + xway_reset_chip(this); + + return 0; +} + +/* allow users to override the partition in DT using the cmdline */ +static const char *part_probes[] = { "cmdlinepart", "ofpart", NULL }; + +static struct platform_nand_data xway_nand_data = { + .chip = { + .nr_chips = 1, + .chip_delay = 30, + .part_probe_types = part_probes, + }, + .ctrl = { + .probe = xway_nand_probe, + .cmd_ctrl = xway_cmd_ctrl, + .dev_ready = xway_dev_ready, + .select_chip = xway_select_chip, + .read_byte = xway_read_byte, + } +}; + +/* + * Try to find the node inside the DT. If it is available attach out + * platform_nand_data + */ +static int __init xway_register_nand(void) +{ + struct device_node *node; + struct platform_device *pdev; + + node = of_find_compatible_node(NULL, NULL, "lantiq,nand-xway"); + if (!node) + return -ENOENT; + pdev = of_find_device_by_node(node); + if (!pdev) + return -EINVAL; + pdev->dev.platform_data = &xway_nand_data; + of_node_put(node); + return 0; +} + +subsys_initcall(xway_register_nand); diff --git a/drivers/mtd/nftlcore.c b/drivers/mtd/nftlcore.c index c5f4ebf4b38..46f27de018c 100644 --- a/drivers/mtd/nftlcore.c +++ b/drivers/mtd/nftlcore.c @@ -50,7 +50,7 @@ static void nftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) struct NFTLrecord *nftl; unsigned long temp; - if (mtd->type != MTD_NANDFLASH || mtd->size > UINT_MAX) + if (!mtd_type_is_nand(mtd) || mtd->size > UINT_MAX) return; /* OK, this is moderately ugly. But probably safe. Alternatives? */ if (memcmp(mtd->name, "DiskOnChip", 10)) diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c index 64be8f0848b..aa26c32e1bc 100644 --- a/drivers/mtd/ofpart.c +++ b/drivers/mtd/ofpart.c @@ -20,6 +20,11 @@ #include <linux/slab.h> #include <linux/mtd/partitions.h> +static bool node_has_compatible(struct device_node *pp) +{ + return of_get_property(pp, "compatible", NULL); +} + static int parse_ofpart_partitions(struct mtd_info *master, struct mtd_partition **pparts, struct mtd_part_parser_data *data) @@ -38,10 +43,13 @@ static int parse_ofpart_partitions(struct mtd_info *master, return 0; /* First count the subnodes */ - pp = NULL; nr_parts = 0; - while ((pp = of_get_next_child(node, pp))) + for_each_child_of_node(node, pp) { + if (node_has_compatible(pp)) + continue; + nr_parts++; + } if (nr_parts == 0) return 0; @@ -50,11 +58,14 @@ static int parse_ofpart_partitions(struct mtd_info *master, if (!*pparts) return -ENOMEM; - pp = NULL; i = 0; - while ((pp = of_get_next_child(node, pp))) { + for_each_child_of_node(node, pp) { const __be32 *reg; int len; + int a_cells, s_cells; + + if (node_has_compatible(pp)) + continue; reg = of_get_property(pp, "reg", &len); if (!reg) { @@ -62,16 +73,21 @@ static int parse_ofpart_partitions(struct mtd_info *master, continue; } - (*pparts)[i].offset = be32_to_cpu(reg[0]); - (*pparts)[i].size = be32_to_cpu(reg[1]); + a_cells = of_n_addr_cells(pp); + s_cells = of_n_size_cells(pp); + (*pparts)[i].offset = of_read_number(reg, a_cells); + (*pparts)[i].size = of_read_number(reg + a_cells, s_cells); partname = of_get_property(pp, "label", &len); if (!partname) partname = of_get_property(pp, "name", &len); - (*pparts)[i].name = (char *)partname; + (*pparts)[i].name = partname; if (of_get_property(pp, "read-only", &len)) - (*pparts)[i].mask_flags = MTD_WRITEABLE; + (*pparts)[i].mask_flags |= MTD_WRITEABLE; + + if (of_get_property(pp, "lock", &len)) + (*pparts)[i].mask_flags |= MTD_POWERUP_LOCK; i++; } @@ -121,7 +137,7 @@ static int parse_ofoldpart_partitions(struct mtd_info *master, nr_parts = plen / sizeof(part[0]); *pparts = kzalloc(nr_parts * sizeof(*(*pparts)), GFP_KERNEL); - if (!pparts) + if (!*pparts) return -ENOMEM; names = of_get_property(dp, "partition-names", &plen); @@ -136,7 +152,7 @@ static int parse_ofoldpart_partitions(struct mtd_info *master, if (names && (plen > 0)) { int len = strlen(names) + 1; - (*pparts)[i].name = (char *)names; + (*pparts)[i].name = names; plen -= len; names += len; } else { @@ -157,21 +173,19 @@ static struct mtd_part_parser ofoldpart_parser = { static int __init ofpart_parser_init(void) { - int rc; - rc = register_mtd_parser(&ofpart_parser); - if (rc) - goto out; - - rc = register_mtd_parser(&ofoldpart_parser); - if (!rc) - return 0; + register_mtd_parser(&ofpart_parser); + register_mtd_parser(&ofoldpart_parser); + return 0; +} +static void __exit ofpart_parser_exit(void) +{ + deregister_mtd_parser(&ofpart_parser); deregister_mtd_parser(&ofoldpart_parser); -out: - return rc; } module_init(ofpart_parser_init); +module_exit(ofpart_parser_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Parser for MTD partitioning information in device tree"); diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig index 91467bb0363..ab2607273e8 100644 --- a/drivers/mtd/onenand/Kconfig +++ b/drivers/mtd/onenand/Kconfig @@ -40,7 +40,6 @@ config MTD_ONENAND_SAMSUNG config MTD_ONENAND_OTP bool "OneNAND OTP Support" - select HAVE_MTD_OTP help One Block of the NAND Flash Array memory is reserved as a One-Time Programmable Block memory area. @@ -68,10 +67,4 @@ config MTD_ONENAND_2X_PROGRAM And more recent chips -config MTD_ONENAND_SIM - tristate "OneNAND simulator support" - help - The simulator may simulate various OneNAND flash chips for the - OneNAND MTD layer. - endif # MTD_ONENAND diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile index 2b7884c7577..9d6540e8b3d 100644 --- a/drivers/mtd/onenand/Makefile +++ b/drivers/mtd/onenand/Makefile @@ -10,7 +10,4 @@ obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o obj-$(CONFIG_MTD_ONENAND_SAMSUNG) += samsung.o -# Simulator -obj-$(CONFIG_MTD_ONENAND_SIM) += onenand_sim.o - onenand-objs = onenand_base.o onenand_bbt.o diff --git a/drivers/mtd/onenand/generic.c b/drivers/mtd/onenand/generic.c index 1c4f97c63e6..093c29ac1a1 100644 --- a/drivers/mtd/onenand/generic.c +++ b/drivers/mtd/onenand/generic.c @@ -13,7 +13,6 @@ */ #include <linux/module.h> -#include <linux/init.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/mtd/mtd.h> @@ -35,10 +34,10 @@ struct onenand_info { struct onenand_chip onenand; }; -static int __devinit generic_onenand_probe(struct platform_device *pdev) +static int generic_onenand_probe(struct platform_device *pdev) { struct onenand_info *info; - struct onenand_platform_data *pdata = pdev->dev.platform_data; + struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev); struct resource *res = pdev->resource; unsigned long size = resource_size(res); int err; @@ -58,7 +57,7 @@ static int __devinit generic_onenand_probe(struct platform_device *pdev) goto out_release_mem_region; } - info->onenand.mmcontrol = pdata ? pdata->mmcontrol : 0; + info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL; info->onenand.irq = platform_get_irq(pdev, 0); info->mtd.name = dev_name(&pdev->dev); @@ -88,14 +87,12 @@ out_free_info: return err; } -static int __devexit generic_onenand_remove(struct platform_device *pdev) +static int generic_onenand_remove(struct platform_device *pdev) { struct onenand_info *info = platform_get_drvdata(pdev); struct resource *res = pdev->resource; unsigned long size = resource_size(res); - platform_set_drvdata(pdev, NULL); - if (info) { onenand_release(&info->mtd); release_mem_region(res->start, size); @@ -112,7 +109,7 @@ static struct platform_driver generic_onenand_driver = { .owner = THIS_MODULE, }, .probe = generic_onenand_probe, - .remove = __devexit_p(generic_onenand_remove), + .remove = generic_onenand_remove, }; module_platform_driver(generic_onenand_driver); diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c index 398a8278384..d945473c388 100644 --- a/drivers/mtd/onenand/omap2.c +++ b/drivers/mtd/onenand/omap2.c @@ -25,7 +25,6 @@ #include <linux/device.h> #include <linux/module.h> -#include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/onenand.h> #include <linux/mtd/partitions.h> @@ -38,23 +37,20 @@ #include <linux/regulator/consumer.h> #include <asm/mach/flash.h> -#include <plat/gpmc.h> -#include <plat/onenand.h> +#include <linux/platform_data/mtd-onenand-omap2.h> #include <asm/gpio.h> -#include <plat/dma.h> - -#include <plat/board.h> +#include <linux/omap-dma.h> #define DRIVER_NAME "omap2-onenand" -#define ONENAND_IO_SIZE SZ_128K #define ONENAND_BUFRAM_SIZE (1024 * 5) struct omap2_onenand { struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; + unsigned int mem_size; int gpio_irq; struct mtd_info mtd; struct onenand_chip onenand; @@ -64,6 +60,7 @@ struct omap2_onenand { int freq; int (*setup)(void __iomem *base, int *freq_ptr); struct regulator *regulator; + u8 flags; }; static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data) @@ -156,12 +153,12 @@ static int omap2_onenand_wait(struct mtd_info *mtd, int state) if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { syscfg |= ONENAND_SYS_CFG1_IOBE; write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); - if (cpu_is_omap34xx()) + if (c->flags & ONENAND_IN_OMAP34XX) /* Add a delay to let GPIO settle */ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); } - INIT_COMPLETION(c->irq_done); + reinit_completion(&c->irq_done); if (c->gpio_irq) { result = gpio_get_value(c->gpio_irq); if (result == -1) { @@ -351,7 +348,7 @@ static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); timeout = jiffies + msecs_to_jiffies(20); @@ -422,7 +419,7 @@ static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); timeout = jiffies + msecs_to_jiffies(20); @@ -447,13 +444,19 @@ out_copy: #else -int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, - size_t count); +static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + return -ENOSYS; +} -int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, - const unsigned char *buffer, - int offset, size_t count); +static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) +{ + return -ENOSYS; +} #endif @@ -495,7 +498,7 @@ static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); wait_for_completion(&c->dma_done); @@ -540,7 +543,7 @@ static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, dma_dst, 0, 0); - INIT_COMPLETION(c->dma_done); + reinit_completion(&c->dma_done); omap_start_dma(c->dma_channel); wait_for_completion(&c->dma_done); @@ -551,40 +554,24 @@ static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, #else -int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, - size_t count); - -int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, - const unsigned char *buffer, - int offset, size_t count); - -#endif - -static struct platform_driver omap2_onenand_driver; - -static int __adjust_timing(struct device *dev, void *data) +static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) { - int ret = 0; - struct omap2_onenand *c; - - c = dev_get_drvdata(dev); - - BUG_ON(c->setup == NULL); - - /* DMA is not in use so this is all that is needed */ - /* Revisit for OMAP3! */ - ret = c->setup(c->onenand.base, &c->freq); - - return ret; + return -ENOSYS; } -int omap2_onenand_rephase(void) +static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) { - return driver_for_each_device(&omap2_onenand_driver.driver, NULL, - NULL, __adjust_timing); + return -ENOSYS; } +#endif + +static struct platform_driver omap2_onenand_driver; + static void omap2_onenand_shutdown(struct platform_device *pdev) { struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); @@ -620,14 +607,16 @@ static int omap2_onenand_disable(struct mtd_info *mtd) return ret; } -static int __devinit omap2_onenand_probe(struct platform_device *pdev) +static int omap2_onenand_probe(struct platform_device *pdev) { struct omap_onenand_platform_data *pdata; struct omap2_onenand *c; struct onenand_chip *this; int r; + struct resource *res; + struct mtd_part_parser_data ppdata = {}; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; @@ -639,6 +628,7 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) init_completion(&c->irq_done); init_completion(&c->dma_done); + c->flags = pdata->flags; c->gpmc_cs = pdata->cs; c->gpio_irq = pdata->gpio_irq; c->dma_channel = pdata->dma_channel; @@ -647,20 +637,24 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) c->gpio_irq = 0; } - r = gpmc_cs_request(c->gpmc_cs, ONENAND_IO_SIZE, &c->phys_base); - if (r < 0) { - dev_err(&pdev->dev, "Cannot request GPMC CS\n"); + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (res == NULL) { + r = -EINVAL; + dev_err(&pdev->dev, "error getting memory resource\n"); goto err_kfree; } - if (request_mem_region(c->phys_base, ONENAND_IO_SIZE, + c->phys_base = res->start; + c->mem_size = resource_size(res); + + if (request_mem_region(c->phys_base, c->mem_size, pdev->dev.driver->name) == NULL) { - dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, " - "size: 0x%x\n", c->phys_base, ONENAND_IO_SIZE); + dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, size: 0x%x\n", + c->phys_base, c->mem_size); r = -EBUSY; - goto err_free_cs; + goto err_kfree; } - c->onenand.base = ioremap(c->phys_base, ONENAND_IO_SIZE); + c->onenand.base = ioremap(c->phys_base, c->mem_size); if (c->onenand.base == NULL) { r = -ENOMEM; goto err_release_mem_region; @@ -725,7 +719,7 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) this = &c->onenand; if (c->dma_channel >= 0) { this->wait = omap2_onenand_wait; - if (cpu_is_omap34xx()) { + if (c->flags & ONENAND_IN_OMAP34XX) { this->read_bufferram = omap3_onenand_read_bufferram; this->write_bufferram = omap3_onenand_write_bufferram; } else { @@ -751,7 +745,8 @@ static int __devinit omap2_onenand_probe(struct platform_device *pdev) if ((r = onenand_scan(&c->mtd, 1)) < 0) goto err_release_regulator; - r = mtd_device_parse_register(&c->mtd, NULL, NULL, + ppdata.of_node = pdata->of_node; + r = mtd_device_parse_register(&c->mtd, NULL, &ppdata, pdata ? pdata->parts : NULL, pdata ? pdata->nr_parts : 0); if (r) @@ -776,16 +771,14 @@ err_release_gpio: err_iounmap: iounmap(c->onenand.base); err_release_mem_region: - release_mem_region(c->phys_base, ONENAND_IO_SIZE); -err_free_cs: - gpmc_cs_free(c->gpmc_cs); + release_mem_region(c->phys_base, c->mem_size); err_kfree: kfree(c); return r; } -static int __devexit omap2_onenand_remove(struct platform_device *pdev) +static int omap2_onenand_remove(struct platform_device *pdev) { struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); @@ -794,14 +787,12 @@ static int __devexit omap2_onenand_remove(struct platform_device *pdev) if (c->dma_channel != -1) omap_free_dma(c->dma_channel); omap2_onenand_shutdown(pdev); - platform_set_drvdata(pdev, NULL); if (c->gpio_irq) { free_irq(gpio_to_irq(c->gpio_irq), c); gpio_free(c->gpio_irq); } iounmap(c->onenand.base); - release_mem_region(c->phys_base, ONENAND_IO_SIZE); - gpmc_cs_free(c->gpmc_cs); + release_mem_region(c->phys_base, c->mem_size); kfree(c); return 0; @@ -809,7 +800,7 @@ static int __devexit omap2_onenand_remove(struct platform_device *pdev) static struct platform_driver omap2_onenand_driver = { .probe = omap2_onenand_probe, - .remove = __devexit_p(omap2_onenand_remove), + .remove = omap2_onenand_remove, .shutdown = omap2_onenand_shutdown, .driver = { .name = DRIVER_NAME, @@ -817,19 +808,7 @@ static struct platform_driver omap2_onenand_driver = { }, }; -static int __init omap2_onenand_init(void) -{ - printk(KERN_INFO "OneNAND driver initializing\n"); - return platform_driver_register(&omap2_onenand_driver); -} - -static void __exit omap2_onenand_exit(void) -{ - platform_driver_unregister(&omap2_onenand_driver); -} - -module_init(omap2_onenand_init); -module_exit(omap2_onenand_exit); +module_platform_driver(omap2_onenand_driver); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c index 7153e0d2710..635ee002769 100644 --- a/drivers/mtd/onenand/onenand_base.c +++ b/drivers/mtd/onenand/onenand_base.c @@ -24,7 +24,6 @@ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/slab.h> -#include <linux/init.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/interrupt.h> @@ -2556,10 +2555,6 @@ static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) { int ret; - /* Check for invalid offset */ - if (ofs > mtd->size) - return -EINVAL; - onenand_get_device(mtd, FL_READING); ret = onenand_block_isbad_nolock(mtd, ofs, 0); onenand_release_device(mtd); @@ -3242,20 +3237,17 @@ static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, /** * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info * @param mtd MTD device structure - * @param buf the databuffer to put/get data * @param len number of bytes to read + * @param retlen pointer to variable to store the number of read bytes + * @param buf the databuffer to put/get data * * Read factory OTP info. */ -static int onenand_get_fact_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { - size_t retlen; - int ret; - - ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY); - - return ret ? : retlen; + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_FACTORY); } /** @@ -3277,20 +3269,17 @@ static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, /** * onenand_get_user_prot_info - [MTD Interface] Read user OTP info * @param mtd MTD device structure - * @param buf the databuffer to put/get data + * @param retlen pointer to variable to store the number of read bytes * @param len number of bytes to read + * @param buf the databuffer to put/get data * * Read user OTP info. */ -static int onenand_get_user_prot_info(struct mtd_info *mtd, - struct otp_info *buf, size_t len) +static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) { - size_t retlen; - int ret; - - ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER); - - return ret ? : retlen; + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_USER); } /** @@ -3529,7 +3518,7 @@ static int flexonenand_get_boundary(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; unsigned die, bdry; - int ret, syscfg, locked; + int syscfg, locked; /* Disable ECC */ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); @@ -3540,7 +3529,7 @@ static int flexonenand_get_boundary(struct mtd_info *mtd) this->wait(mtd, FL_SYNCING); this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); - ret = this->wait(mtd, FL_READING); + this->wait(mtd, FL_READING); bdry = this->read_word(this->base + ONENAND_DATARAM); if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) @@ -3550,7 +3539,7 @@ static int flexonenand_get_boundary(struct mtd_info *mtd) this->boundary[die] = bdry & FLEXONENAND_PI_MASK; this->command(mtd, ONENAND_CMD_RESET, 0, 0); - ret = this->wait(mtd, FL_RESETING); + this->wait(mtd, FL_RESETING); printk(KERN_INFO "Die %d boundary: %d%s\n", die, this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); @@ -3694,7 +3683,7 @@ static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int * flexonenand_set_boundary - Writes the SLC boundary * @param mtd - mtd info structure */ -int flexonenand_set_boundary(struct mtd_info *mtd, int die, +static int flexonenand_set_boundary(struct mtd_info *mtd, int die, int boundary, int lock) { struct onenand_chip *this = mtd->priv; @@ -3734,7 +3723,7 @@ int flexonenand_set_boundary(struct mtd_info *mtd, int die, /* Check is boundary is locked */ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); - ret = this->wait(mtd, FL_READING); + this->wait(mtd, FL_READING); thisboundary = this->read_word(this->base + ONENAND_DATARAM); if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { @@ -3835,7 +3824,7 @@ static int onenand_chip_probe(struct mtd_info *mtd) static int onenand_probe(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; - int maf_id, dev_id, ver_id; + int dev_id, ver_id; int density; int ret; @@ -3843,8 +3832,7 @@ static int onenand_probe(struct mtd_info *mtd) if (ret) return ret; - /* Read manufacturer and device IDs from Register */ - maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); + /* Device and version IDs from Register */ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); @@ -4000,11 +3988,8 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) /* Allocate buffers, if necessary */ if (!this->page_buf) { this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); - if (!this->page_buf) { - printk(KERN_ERR "%s: Can't allocate page_buf\n", - __func__); + if (!this->page_buf) return -ENOMEM; - } #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); if (!this->verify_buf) { @@ -4017,8 +4002,6 @@ int onenand_scan(struct mtd_info *mtd, int maxchips) if (!this->oob_buf) { this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); if (!this->oob_buf) { - printk(KERN_ERR "%s: Can't allocate oob_buf\n", - __func__); if (this->options & ONENAND_PAGEBUF_ALLOC) { this->options &= ~ONENAND_PAGEBUF_ALLOC; kfree(this->page_buf); diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/onenand/onenand_bbt.c index 66fe3b7e785..08d0085f3e9 100644 --- a/drivers/mtd/onenand/onenand_bbt.c +++ b/drivers/mtd/onenand/onenand_bbt.c @@ -133,7 +133,6 @@ static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_desc { struct onenand_chip *this = mtd->priv; - bd->options &= ~NAND_BBT_SCANEMPTY; return create_bbt(mtd, this->page_buf, bd, -1); } diff --git a/drivers/mtd/onenand/onenand_sim.c b/drivers/mtd/onenand/onenand_sim.c deleted file mode 100644 index 85399e3accd..00000000000 --- a/drivers/mtd/onenand/onenand_sim.c +++ /dev/null @@ -1,564 +0,0 @@ -/* - * linux/drivers/mtd/onenand/onenand_sim.c - * - * The OneNAND simulator - * - * Copyright © 2005-2007 Samsung Electronics - * Kyungmin Park <kyungmin.park@samsung.com> - * - * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com> - * Flex-OneNAND simulator support - * Copyright (C) Samsung Electronics, 2008 - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include <linux/kernel.h> -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/init.h> -#include <linux/vmalloc.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/partitions.h> -#include <linux/mtd/onenand.h> - -#include <linux/io.h> - -#ifndef CONFIG_ONENAND_SIM_MANUFACTURER -#define CONFIG_ONENAND_SIM_MANUFACTURER 0xec -#endif - -#ifndef CONFIG_ONENAND_SIM_DEVICE_ID -#define CONFIG_ONENAND_SIM_DEVICE_ID 0x04 -#endif - -#define CONFIG_FLEXONENAND ((CONFIG_ONENAND_SIM_DEVICE_ID >> 9) & 1) - -#ifndef CONFIG_ONENAND_SIM_VERSION_ID -#define CONFIG_ONENAND_SIM_VERSION_ID 0x1e -#endif - -#ifndef CONFIG_ONENAND_SIM_TECHNOLOGY_ID -#define CONFIG_ONENAND_SIM_TECHNOLOGY_ID CONFIG_FLEXONENAND -#endif - -/* Initial boundary values for Flex-OneNAND Simulator */ -#ifndef CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY -#define CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY 0x01 -#endif - -#ifndef CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY -#define CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY 0x01 -#endif - -static int manuf_id = CONFIG_ONENAND_SIM_MANUFACTURER; -static int device_id = CONFIG_ONENAND_SIM_DEVICE_ID; -static int version_id = CONFIG_ONENAND_SIM_VERSION_ID; -static int technology_id = CONFIG_ONENAND_SIM_TECHNOLOGY_ID; -static int boundary[] = { - CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY, - CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY, -}; - -struct onenand_flash { - void __iomem *base; - void __iomem *data; -}; - -#define ONENAND_CORE(flash) (flash->data) -#define ONENAND_CORE_SPARE(flash, this, offset) \ - ((flash->data) + (this->chipsize) + (offset >> 5)) - -#define ONENAND_MAIN_AREA(this, offset) \ - (this->base + ONENAND_DATARAM + offset) - -#define ONENAND_SPARE_AREA(this, offset) \ - (this->base + ONENAND_SPARERAM + offset) - -#define ONENAND_GET_WP_STATUS(this) \ - (readw(this->base + ONENAND_REG_WP_STATUS)) - -#define ONENAND_SET_WP_STATUS(v, this) \ - (writew(v, this->base + ONENAND_REG_WP_STATUS)) - -/* It has all 0xff chars */ -#define MAX_ONENAND_PAGESIZE (4096 + 128) -static unsigned char *ffchars; - -#if CONFIG_FLEXONENAND -#define PARTITION_NAME "Flex-OneNAND simulator partition" -#else -#define PARTITION_NAME "OneNAND simulator partition" -#endif - -static struct mtd_partition os_partitions[] = { - { - .name = PARTITION_NAME, - .offset = 0, - .size = MTDPART_SIZ_FULL, - }, -}; - -/* - * OneNAND simulator mtd - */ -struct onenand_info { - struct mtd_info mtd; - struct mtd_partition *parts; - struct onenand_chip onenand; - struct onenand_flash flash; -}; - -static struct onenand_info *info; - -#define DPRINTK(format, args...) \ -do { \ - printk(KERN_DEBUG "%s[%d]: " format "\n", __func__, \ - __LINE__, ##args); \ -} while (0) - -/** - * onenand_lock_handle - Handle Lock scheme - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Send lock command to OneNAND device. - * The lock scheme depends on chip type. - */ -static void onenand_lock_handle(struct onenand_chip *this, int cmd) -{ - int block_lock_scheme; - int status; - - status = ONENAND_GET_WP_STATUS(this); - block_lock_scheme = !(this->options & ONENAND_HAS_CONT_LOCK); - - switch (cmd) { - case ONENAND_CMD_UNLOCK: - case ONENAND_CMD_UNLOCK_ALL: - if (block_lock_scheme) - ONENAND_SET_WP_STATUS(ONENAND_WP_US, this); - else - ONENAND_SET_WP_STATUS(status | ONENAND_WP_US, this); - break; - - case ONENAND_CMD_LOCK: - if (block_lock_scheme) - ONENAND_SET_WP_STATUS(ONENAND_WP_LS, this); - else - ONENAND_SET_WP_STATUS(status | ONENAND_WP_LS, this); - break; - - case ONENAND_CMD_LOCK_TIGHT: - if (block_lock_scheme) - ONENAND_SET_WP_STATUS(ONENAND_WP_LTS, this); - else - ONENAND_SET_WP_STATUS(status | ONENAND_WP_LTS, this); - break; - - default: - break; - } -} - -/** - * onenand_bootram_handle - Handle BootRAM area - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Emulate BootRAM area. It is possible to do basic operation using BootRAM. - */ -static void onenand_bootram_handle(struct onenand_chip *this, int cmd) -{ - switch (cmd) { - case ONENAND_CMD_READID: - writew(manuf_id, this->base); - writew(device_id, this->base + 2); - writew(version_id, this->base + 4); - break; - - default: - /* REVIST: Handle other commands */ - break; - } -} - -/** - * onenand_update_interrupt - Set interrupt register - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Update interrupt register. The status depends on command. - */ -static void onenand_update_interrupt(struct onenand_chip *this, int cmd) -{ - int interrupt = ONENAND_INT_MASTER; - - switch (cmd) { - case ONENAND_CMD_READ: - case ONENAND_CMD_READOOB: - interrupt |= ONENAND_INT_READ; - break; - - case ONENAND_CMD_PROG: - case ONENAND_CMD_PROGOOB: - interrupt |= ONENAND_INT_WRITE; - break; - - case ONENAND_CMD_ERASE: - interrupt |= ONENAND_INT_ERASE; - break; - - case ONENAND_CMD_RESET: - interrupt |= ONENAND_INT_RESET; - break; - - default: - break; - } - - writew(interrupt, this->base + ONENAND_REG_INTERRUPT); -} - -/** - * onenand_check_overwrite - Check if over-write happened - * @dest: The destination pointer - * @src: The source pointer - * @count: The length to be check - * - * Returns: 0 on same, otherwise 1 - * - * Compare the source with destination - */ -static int onenand_check_overwrite(void *dest, void *src, size_t count) -{ - unsigned int *s = (unsigned int *) src; - unsigned int *d = (unsigned int *) dest; - int i; - - count >>= 2; - for (i = 0; i < count; i++) - if ((*s++ ^ *d++) != 0) - return 1; - - return 0; -} - -/** - * onenand_data_handle - Handle OneNAND Core and DataRAM - * @this: OneNAND device structure - * @cmd: The command to be sent - * @dataram: Which dataram used - * @offset: The offset to OneNAND Core - * - * Copy data from OneNAND Core to DataRAM (read) - * Copy data from DataRAM to OneNAND Core (write) - * Erase the OneNAND Core (erase) - */ -static void onenand_data_handle(struct onenand_chip *this, int cmd, - int dataram, unsigned int offset) -{ - struct mtd_info *mtd = &info->mtd; - struct onenand_flash *flash = this->priv; - int main_offset, spare_offset, die = 0; - void __iomem *src; - void __iomem *dest; - unsigned int i; - static int pi_operation; - int erasesize, rgn; - - if (dataram) { - main_offset = mtd->writesize; - spare_offset = mtd->oobsize; - } else { - main_offset = 0; - spare_offset = 0; - } - - if (pi_operation) { - die = readw(this->base + ONENAND_REG_START_ADDRESS2); - die >>= ONENAND_DDP_SHIFT; - } - - switch (cmd) { - case FLEXONENAND_CMD_PI_ACCESS: - pi_operation = 1; - break; - - case ONENAND_CMD_RESET: - pi_operation = 0; - break; - - case ONENAND_CMD_READ: - src = ONENAND_CORE(flash) + offset; - dest = ONENAND_MAIN_AREA(this, main_offset); - if (pi_operation) { - writew(boundary[die], this->base + ONENAND_DATARAM); - break; - } - memcpy(dest, src, mtd->writesize); - /* Fall through */ - - case ONENAND_CMD_READOOB: - src = ONENAND_CORE_SPARE(flash, this, offset); - dest = ONENAND_SPARE_AREA(this, spare_offset); - memcpy(dest, src, mtd->oobsize); - break; - - case ONENAND_CMD_PROG: - src = ONENAND_MAIN_AREA(this, main_offset); - dest = ONENAND_CORE(flash) + offset; - if (pi_operation) { - boundary[die] = readw(this->base + ONENAND_DATARAM); - break; - } - /* To handle partial write */ - for (i = 0; i < (1 << mtd->subpage_sft); i++) { - int off = i * this->subpagesize; - if (!memcmp(src + off, ffchars, this->subpagesize)) - continue; - if (memcmp(dest + off, ffchars, this->subpagesize) && - onenand_check_overwrite(dest + off, src + off, this->subpagesize)) - printk(KERN_ERR "over-write happened at 0x%08x\n", offset); - memcpy(dest + off, src + off, this->subpagesize); - } - /* Fall through */ - - case ONENAND_CMD_PROGOOB: - src = ONENAND_SPARE_AREA(this, spare_offset); - /* Check all data is 0xff chars */ - if (!memcmp(src, ffchars, mtd->oobsize)) - break; - - dest = ONENAND_CORE_SPARE(flash, this, offset); - if (memcmp(dest, ffchars, mtd->oobsize) && - onenand_check_overwrite(dest, src, mtd->oobsize)) - printk(KERN_ERR "OOB: over-write happened at 0x%08x\n", - offset); - memcpy(dest, src, mtd->oobsize); - break; - - case ONENAND_CMD_ERASE: - if (pi_operation) - break; - - if (FLEXONENAND(this)) { - rgn = flexonenand_region(mtd, offset); - erasesize = mtd->eraseregions[rgn].erasesize; - } else - erasesize = mtd->erasesize; - - memset(ONENAND_CORE(flash) + offset, 0xff, erasesize); - memset(ONENAND_CORE_SPARE(flash, this, offset), 0xff, - (erasesize >> 5)); - break; - - default: - break; - } -} - -/** - * onenand_command_handle - Handle command - * @this: OneNAND device structure - * @cmd: The command to be sent - * - * Emulate OneNAND command. - */ -static void onenand_command_handle(struct onenand_chip *this, int cmd) -{ - unsigned long offset = 0; - int block = -1, page = -1, bufferram = -1; - int dataram = 0; - - switch (cmd) { - case ONENAND_CMD_UNLOCK: - case ONENAND_CMD_LOCK: - case ONENAND_CMD_LOCK_TIGHT: - case ONENAND_CMD_UNLOCK_ALL: - onenand_lock_handle(this, cmd); - break; - - case ONENAND_CMD_BUFFERRAM: - /* Do nothing */ - return; - - default: - block = (int) readw(this->base + ONENAND_REG_START_ADDRESS1); - if (block & (1 << ONENAND_DDP_SHIFT)) { - block &= ~(1 << ONENAND_DDP_SHIFT); - /* The half of chip block */ - block += this->chipsize >> (this->erase_shift + 1); - } - if (cmd == ONENAND_CMD_ERASE) - break; - - page = (int) readw(this->base + ONENAND_REG_START_ADDRESS8); - page = (page >> ONENAND_FPA_SHIFT); - bufferram = (int) readw(this->base + ONENAND_REG_START_BUFFER); - bufferram >>= ONENAND_BSA_SHIFT; - bufferram &= ONENAND_BSA_DATARAM1; - dataram = (bufferram == ONENAND_BSA_DATARAM1) ? 1 : 0; - break; - } - - if (block != -1) - offset = onenand_addr(this, block); - - if (page != -1) - offset += page << this->page_shift; - - onenand_data_handle(this, cmd, dataram, offset); - - onenand_update_interrupt(this, cmd); -} - -/** - * onenand_writew - [OneNAND Interface] Emulate write operation - * @value: value to write - * @addr: address to write - * - * Write OneNAND register with value - */ -static void onenand_writew(unsigned short value, void __iomem * addr) -{ - struct onenand_chip *this = info->mtd.priv; - - /* BootRAM handling */ - if (addr < this->base + ONENAND_DATARAM) { - onenand_bootram_handle(this, value); - return; - } - /* Command handling */ - if (addr == this->base + ONENAND_REG_COMMAND) - onenand_command_handle(this, value); - - writew(value, addr); -} - -/** - * flash_init - Initialize OneNAND simulator - * @flash: OneNAND simulator data strucutres - * - * Initialize OneNAND simulator. - */ -static int __init flash_init(struct onenand_flash *flash) -{ - int density, size; - int buffer_size; - - flash->base = kzalloc(131072, GFP_KERNEL); - if (!flash->base) { - printk(KERN_ERR "Unable to allocate base address.\n"); - return -ENOMEM; - } - - density = device_id >> ONENAND_DEVICE_DENSITY_SHIFT; - density &= ONENAND_DEVICE_DENSITY_MASK; - size = ((16 << 20) << density); - - ONENAND_CORE(flash) = vmalloc(size + (size >> 5)); - if (!ONENAND_CORE(flash)) { - printk(KERN_ERR "Unable to allocate nand core address.\n"); - kfree(flash->base); - return -ENOMEM; - } - - memset(ONENAND_CORE(flash), 0xff, size + (size >> 5)); - - /* Setup registers */ - writew(manuf_id, flash->base + ONENAND_REG_MANUFACTURER_ID); - writew(device_id, flash->base + ONENAND_REG_DEVICE_ID); - writew(version_id, flash->base + ONENAND_REG_VERSION_ID); - writew(technology_id, flash->base + ONENAND_REG_TECHNOLOGY); - - if (density < 2 && (!CONFIG_FLEXONENAND)) - buffer_size = 0x0400; /* 1KiB page */ - else - buffer_size = 0x0800; /* 2KiB page */ - writew(buffer_size, flash->base + ONENAND_REG_DATA_BUFFER_SIZE); - - return 0; -} - -/** - * flash_exit - Clean up OneNAND simulator - * @flash: OneNAND simulator data structures - * - * Clean up OneNAND simulator. - */ -static void flash_exit(struct onenand_flash *flash) -{ - vfree(ONENAND_CORE(flash)); - kfree(flash->base); -} - -static int __init onenand_sim_init(void) -{ - /* Allocate all 0xff chars pointer */ - ffchars = kmalloc(MAX_ONENAND_PAGESIZE, GFP_KERNEL); - if (!ffchars) { - printk(KERN_ERR "Unable to allocate ff chars.\n"); - return -ENOMEM; - } - memset(ffchars, 0xff, MAX_ONENAND_PAGESIZE); - - /* Allocate OneNAND simulator mtd pointer */ - info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL); - if (!info) { - printk(KERN_ERR "Unable to allocate core structures.\n"); - kfree(ffchars); - return -ENOMEM; - } - - /* Override write_word function */ - info->onenand.write_word = onenand_writew; - - if (flash_init(&info->flash)) { - printk(KERN_ERR "Unable to allocate flash.\n"); - kfree(ffchars); - kfree(info); - return -ENOMEM; - } - - info->parts = os_partitions; - - info->onenand.base = info->flash.base; - info->onenand.priv = &info->flash; - - info->mtd.name = "OneNAND simulator"; - info->mtd.priv = &info->onenand; - info->mtd.owner = THIS_MODULE; - - if (onenand_scan(&info->mtd, 1)) { - flash_exit(&info->flash); - kfree(ffchars); - kfree(info); - return -ENXIO; - } - - mtd_device_register(&info->mtd, info->parts, - ARRAY_SIZE(os_partitions)); - - return 0; -} - -static void __exit onenand_sim_exit(void) -{ - struct onenand_chip *this = info->mtd.priv; - struct onenand_flash *flash = this->priv; - - onenand_release(&info->mtd); - flash_exit(flash); - kfree(ffchars); - kfree(info); -} - -module_init(onenand_sim_init); -module_exit(onenand_sim_exit); - -MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); -MODULE_DESCRIPTION("The OneNAND flash simulator"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/onenand/samsung.c b/drivers/mtd/onenand/samsung.c index 8e4b3f2742b..efb819c3df2 100644 --- a/drivers/mtd/onenand/samsung.c +++ b/drivers/mtd/onenand/samsung.c @@ -23,11 +23,11 @@ #include <linux/mtd/partitions.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> +#include <linux/io.h> #include <asm/mach/flash.h> -#include <plat/regs-onenand.h> -#include <linux/io.h> +#include "samsung.h" enum soc_type { TYPE_S3C6400, @@ -537,9 +537,9 @@ static int onenand_write_bufferram(struct mtd_info *mtd, int area, return 0; } -static int (*s5pc110_dma_ops)(void *dst, void *src, size_t count, int direction); +static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction); -static int s5pc110_dma_poll(void *dst, void *src, size_t count, int direction) +static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction) { void __iomem *base = onenand->dma_addr; int status; @@ -605,7 +605,7 @@ static irqreturn_t s5pc110_onenand_irq(int irq, void *data) return IRQ_HANDLED; } -static int s5pc110_dma_irq(void *dst, void *src, size_t count, int direction) +static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction) { void __iomem *base = onenand->dma_addr; int status; @@ -686,7 +686,7 @@ static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count); goto normal; } - err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src, + err = s5pc110_dma_ops(dma_dst, dma_src, count, S5PC110_DMA_DIR_READ); if (page_dma) @@ -867,15 +867,13 @@ static int s3c_onenand_probe(struct platform_device *pdev) struct resource *r; int size, err; - pdata = pdev->dev.platform_data; + pdata = dev_get_platdata(&pdev->dev); /* No need to check pdata. the platform data is optional */ size = sizeof(struct mtd_info) + sizeof(struct onenand_chip); mtd = kzalloc(size, GFP_KERNEL); - if (!mtd) { - dev_err(&pdev->dev, "failed to allocate memory\n"); + if (!mtd) return -ENOMEM; - } onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL); if (!onenand) { @@ -1053,7 +1051,7 @@ onenand_fail: return err; } -static int __devexit s3c_onenand_remove(struct platform_device *pdev) +static int s3c_onenand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); @@ -1073,7 +1071,6 @@ static int __devexit s3c_onenand_remove(struct platform_device *pdev) release_mem_region(onenand->base_res->start, resource_size(onenand->base_res)); - platform_set_drvdata(pdev, NULL); kfree(onenand->oob_buf); kfree(onenand->page_buf); kfree(onenand); @@ -1130,7 +1127,7 @@ static struct platform_driver s3c_onenand_driver = { }, .id_table = s3c_onenand_driver_ids, .probe = s3c_onenand_probe, - .remove = __devexit_p(s3c_onenand_remove), + .remove = s3c_onenand_remove, }; module_platform_driver(s3c_onenand_driver); diff --git a/drivers/mtd/onenand/samsung.h b/drivers/mtd/onenand/samsung.h new file mode 100644 index 00000000000..9016dc0136a --- /dev/null +++ b/drivers/mtd/onenand/samsung.h @@ -0,0 +1,59 @@ +/* + * Copyright (C) 2008-2010 Samsung Electronics + * Kyungmin Park <kyungmin.park@samsung.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#ifndef __SAMSUNG_ONENAND_H__ +#define __SAMSUNG_ONENAND_H__ + +/* + * OneNAND Controller + */ +#define MEM_CFG_OFFSET 0x0000 +#define BURST_LEN_OFFSET 0x0010 +#define MEM_RESET_OFFSET 0x0020 +#define INT_ERR_STAT_OFFSET 0x0030 +#define INT_ERR_MASK_OFFSET 0x0040 +#define INT_ERR_ACK_OFFSET 0x0050 +#define ECC_ERR_STAT_OFFSET 0x0060 +#define MANUFACT_ID_OFFSET 0x0070 +#define DEVICE_ID_OFFSET 0x0080 +#define DATA_BUF_SIZE_OFFSET 0x0090 +#define BOOT_BUF_SIZE_OFFSET 0x00A0 +#define BUF_AMOUNT_OFFSET 0x00B0 +#define TECH_OFFSET 0x00C0 +#define FBA_WIDTH_OFFSET 0x00D0 +#define FPA_WIDTH_OFFSET 0x00E0 +#define FSA_WIDTH_OFFSET 0x00F0 +#define TRANS_SPARE_OFFSET 0x0140 +#define DBS_DFS_WIDTH_OFFSET 0x0160 +#define INT_PIN_ENABLE_OFFSET 0x01A0 +#define ACC_CLOCK_OFFSET 0x01C0 +#define FLASH_VER_ID_OFFSET 0x01F0 +#define FLASH_AUX_CNTRL_OFFSET 0x0300 /* s3c64xx only */ + +#define ONENAND_MEM_RESET_HOT 0x3 +#define ONENAND_MEM_RESET_COLD 0x2 +#define ONENAND_MEM_RESET_WARM 0x1 + +#define CACHE_OP_ERR (1 << 13) +#define RST_CMP (1 << 12) +#define RDY_ACT (1 << 11) +#define INT_ACT (1 << 10) +#define UNSUP_CMD (1 << 9) +#define LOCKED_BLK (1 << 8) +#define BLK_RW_CMP (1 << 7) +#define ERS_CMP (1 << 6) +#define PGM_CMP (1 << 5) +#define LOAD_CMP (1 << 4) +#define ERS_FAIL (1 << 3) +#define PGM_FAIL (1 << 2) +#define INT_TO (1 << 1) +#define LD_FAIL_ECC_ERR (1 << 0) + +#define TSRF (1 << 0) + +#endif diff --git a/drivers/mtd/redboot.c b/drivers/mtd/redboot.c index 580035c803d..5da911ebdf4 100644 --- a/drivers/mtd/redboot.c +++ b/drivers/mtd/redboot.c @@ -300,7 +300,8 @@ MODULE_ALIAS("RedBoot"); static int __init redboot_parser_init(void) { - return register_mtd_parser(&redboot_parser); + register_mtd_parser(&redboot_parser); + return 0; } static void __exit redboot_parser_exit(void) diff --git a/drivers/mtd/rfd_ftl.c b/drivers/mtd/rfd_ftl.c index 233b946e5d6..d1cbf26db2c 100644 --- a/drivers/mtd/rfd_ftl.c +++ b/drivers/mtd/rfd_ftl.c @@ -602,8 +602,7 @@ static int mark_sector_deleted(struct partition *part, u_long old_addr) if (rc) { printk(KERN_ERR PREFIX "error writing '%s' at " "0x%lx\n", part->mbd.mtd->name, addr); - if (rc) - goto err; + goto err; } if (block == part->current_block) part->header_cache[offset + HEADER_MAP_OFFSET] = del; @@ -675,8 +674,7 @@ static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, if (rc) { printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n", part->mbd.mtd->name, addr); - if (rc) - goto err; + goto err; } part->sector_map[sector] = addr; @@ -695,8 +693,7 @@ static int do_writesect(struct mtd_blktrans_dev *dev, u_long sector, char *buf, if (rc) { printk(KERN_ERR PREFIX "error writing '%s' at 0x%lx\n", part->mbd.mtd->name, addr); - if (rc) - goto err; + goto err; } block->used_sectors++; block->free_sectors--; diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c index 9e2dfd517aa..cf49c22673b 100644 --- a/drivers/mtd/sm_ftl.c +++ b/drivers/mtd/sm_ftl.c @@ -22,7 +22,7 @@ -struct workqueue_struct *cache_flush_workqueue; +static struct workqueue_struct *cache_flush_workqueue; static int cache_timeout = 1000; module_param(cache_timeout, int, S_IRUGO); @@ -41,7 +41,7 @@ struct sm_sysfs_attribute { int len; }; -ssize_t sm_attr_show(struct device *dev, struct device_attribute *attr, +static ssize_t sm_attr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sm_sysfs_attribute *sm_attr = @@ -54,20 +54,17 @@ ssize_t sm_attr_show(struct device *dev, struct device_attribute *attr, #define NUM_ATTRIBUTES 1 #define SM_CIS_VENDOR_OFFSET 0x59 -struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) +static struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) { struct attribute_group *attr_group; struct attribute **attributes; struct sm_sysfs_attribute *vendor_attribute; + char *vendor; - int vendor_len = strnlen(ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, - SM_SMALL_PAGE - SM_CIS_VENDOR_OFFSET); - - char *vendor = kmalloc(vendor_len, GFP_KERNEL); + vendor = kstrndup(ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, + SM_SMALL_PAGE - SM_CIS_VENDOR_OFFSET, GFP_KERNEL); if (!vendor) goto error1; - memcpy(vendor, ftl->cis_buffer + SM_CIS_VENDOR_OFFSET, vendor_len); - vendor[vendor_len] = 0; /* Initialize sysfs attributes */ vendor_attribute = @@ -78,7 +75,7 @@ struct attribute_group *sm_create_sysfs_attributes(struct sm_ftl *ftl) sysfs_attr_init(&vendor_attribute->dev_attr.attr); vendor_attribute->data = vendor; - vendor_attribute->len = vendor_len; + vendor_attribute->len = strlen(vendor); vendor_attribute->dev_attr.attr.name = "vendor"; vendor_attribute->dev_attr.attr.mode = S_IRUGO; vendor_attribute->dev_attr.show = sm_attr_show; @@ -107,7 +104,7 @@ error1: return NULL; } -void sm_delete_sysfs_attributes(struct sm_ftl *ftl) +static void sm_delete_sysfs_attributes(struct sm_ftl *ftl) { struct attribute **attributes = ftl->disk_attributes->attrs; int i; @@ -346,7 +343,6 @@ static int sm_write_sector(struct sm_ftl *ftl, ret = mtd_write_oob(mtd, sm_mkoffset(ftl, zone, block, boffset), &ops); /* Now we assume that hardware will catch write bitflip errors */ - /* If you are paranoid, use CONFIG_MTD_NAND_VERIFY_WRITE */ if (ret) { dbg("write to block %d at zone %d, failed with error %d", @@ -572,7 +568,7 @@ static const uint8_t cis_signature[] = { }; /* Find out media parameters. * This ideally has to be based on nand id, but for now device size is enough */ -int sm_get_media_info(struct sm_ftl *ftl, struct mtd_info *mtd) +static int sm_get_media_info(struct sm_ftl *ftl, struct mtd_info *mtd) { int i; int size_in_megs = mtd->size / (1024 * 1024); @@ -879,7 +875,7 @@ static int sm_init_zone(struct sm_ftl *ftl, int zone_num) } /* Get and automatically initialize an FTL mapping for one zone */ -struct ftl_zone *sm_get_zone(struct sm_ftl *ftl, int zone_num) +static struct ftl_zone *sm_get_zone(struct sm_ftl *ftl, int zone_num) { struct ftl_zone *zone; int error; @@ -900,7 +896,7 @@ struct ftl_zone *sm_get_zone(struct sm_ftl *ftl, int zone_num) /* ----------------- cache handling ------------------------------------------*/ /* Initialize the one block cache */ -void sm_cache_init(struct sm_ftl *ftl) +static void sm_cache_init(struct sm_ftl *ftl) { ftl->cache_data_invalid_bitmap = 0xFFFFFFFF; ftl->cache_clean = 1; @@ -910,7 +906,7 @@ void sm_cache_init(struct sm_ftl *ftl) } /* Put sector in one block cache */ -void sm_cache_put(struct sm_ftl *ftl, char *buffer, int boffset) +static void sm_cache_put(struct sm_ftl *ftl, char *buffer, int boffset) { memcpy(ftl->cache_data + boffset, buffer, SM_SECTOR_SIZE); clear_bit(boffset / SM_SECTOR_SIZE, &ftl->cache_data_invalid_bitmap); @@ -918,7 +914,7 @@ void sm_cache_put(struct sm_ftl *ftl, char *buffer, int boffset) } /* Read a sector from the cache */ -int sm_cache_get(struct sm_ftl *ftl, char *buffer, int boffset) +static int sm_cache_get(struct sm_ftl *ftl, char *buffer, int boffset) { if (test_bit(boffset / SM_SECTOR_SIZE, &ftl->cache_data_invalid_bitmap)) @@ -929,7 +925,7 @@ int sm_cache_get(struct sm_ftl *ftl, char *buffer, int boffset) } /* Write the cache to hardware */ -int sm_cache_flush(struct sm_ftl *ftl) +static int sm_cache_flush(struct sm_ftl *ftl) { struct ftl_zone *zone; @@ -1108,7 +1104,7 @@ static int sm_flush(struct mtd_blktrans_dev *dev) } /* outside interface: device is released */ -static int sm_release(struct mtd_blktrans_dev *dev) +static void sm_release(struct mtd_blktrans_dev *dev) { struct sm_ftl *ftl = dev->priv; @@ -1117,7 +1113,6 @@ static int sm_release(struct mtd_blktrans_dev *dev) cancel_work_sync(&ftl->flush_work); sm_cache_flush(ftl); mutex_unlock(&ftl->mutex); - return 0; } /* outside interface: get geometry */ @@ -1276,10 +1271,10 @@ static struct mtd_blktrans_ops sm_ftl_ops = { static __init int sm_module_init(void) { int error = 0; - cache_flush_workqueue = create_freezable_workqueue("smflush"); - if (IS_ERR(cache_flush_workqueue)) - return PTR_ERR(cache_flush_workqueue); + cache_flush_workqueue = create_freezable_workqueue("smflush"); + if (!cache_flush_workqueue) + return -ENOMEM; error = register_mtd_blktrans(&sm_ftl_ops); if (error) diff --git a/drivers/mtd/spi-nor/Kconfig b/drivers/mtd/spi-nor/Kconfig new file mode 100644 index 00000000000..f8acfa4310e --- /dev/null +++ b/drivers/mtd/spi-nor/Kconfig @@ -0,0 +1,17 @@ +menuconfig MTD_SPI_NOR + tristate "SPI-NOR device support" + depends on MTD + help + This is the framework for the SPI NOR which can be used by the SPI + device drivers and the SPI-NOR device driver. + +if MTD_SPI_NOR + +config SPI_FSL_QUADSPI + tristate "Freescale Quad SPI controller" + depends on ARCH_MXC + help + This enables support for the Quad SPI controller in master mode. + We only connect the NOR to this controller now. + +endif # MTD_SPI_NOR diff --git a/drivers/mtd/spi-nor/Makefile b/drivers/mtd/spi-nor/Makefile new file mode 100644 index 00000000000..6a7ce146224 --- /dev/null +++ b/drivers/mtd/spi-nor/Makefile @@ -0,0 +1,2 @@ +obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o +obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o diff --git a/drivers/mtd/spi-nor/fsl-quadspi.c b/drivers/mtd/spi-nor/fsl-quadspi.c new file mode 100644 index 00000000000..8d659a2888d --- /dev/null +++ b/drivers/mtd/spi-nor/fsl-quadspi.c @@ -0,0 +1,1009 @@ +/* + * Freescale QuadSPI driver. + * + * Copyright (C) 2013 Freescale Semiconductor, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/errno.h> +#include <linux/platform_device.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/timer.h> +#include <linux/jiffies.h> +#include <linux/completion.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> + +/* The registers */ +#define QUADSPI_MCR 0x00 +#define QUADSPI_MCR_RESERVED_SHIFT 16 +#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT) +#define QUADSPI_MCR_MDIS_SHIFT 14 +#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT) +#define QUADSPI_MCR_CLR_TXF_SHIFT 11 +#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT) +#define QUADSPI_MCR_CLR_RXF_SHIFT 10 +#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT) +#define QUADSPI_MCR_DDR_EN_SHIFT 7 +#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT) +#define QUADSPI_MCR_END_CFG_SHIFT 2 +#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT) +#define QUADSPI_MCR_SWRSTHD_SHIFT 1 +#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT) +#define QUADSPI_MCR_SWRSTSD_SHIFT 0 +#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT) + +#define QUADSPI_IPCR 0x08 +#define QUADSPI_IPCR_SEQID_SHIFT 24 +#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT) + +#define QUADSPI_BUF0CR 0x10 +#define QUADSPI_BUF1CR 0x14 +#define QUADSPI_BUF2CR 0x18 +#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe + +#define QUADSPI_BUF3CR 0x1c +#define QUADSPI_BUF3CR_ALLMST_SHIFT 31 +#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT) + +#define QUADSPI_BFGENCR 0x20 +#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16 +#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT)) +#define QUADSPI_BFGENCR_SEQID_SHIFT 12 +#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT) + +#define QUADSPI_BUF0IND 0x30 +#define QUADSPI_BUF1IND 0x34 +#define QUADSPI_BUF2IND 0x38 +#define QUADSPI_SFAR 0x100 + +#define QUADSPI_SMPR 0x108 +#define QUADSPI_SMPR_DDRSMP_SHIFT 16 +#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT) +#define QUADSPI_SMPR_FSDLY_SHIFT 6 +#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT) +#define QUADSPI_SMPR_FSPHS_SHIFT 5 +#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT) +#define QUADSPI_SMPR_HSENA_SHIFT 0 +#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT) + +#define QUADSPI_RBSR 0x10c +#define QUADSPI_RBSR_RDBFL_SHIFT 8 +#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT) + +#define QUADSPI_RBCT 0x110 +#define QUADSPI_RBCT_WMRK_MASK 0x1F +#define QUADSPI_RBCT_RXBRD_SHIFT 8 +#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT) + +#define QUADSPI_TBSR 0x150 +#define QUADSPI_TBDR 0x154 +#define QUADSPI_SR 0x15c +#define QUADSPI_SR_IP_ACC_SHIFT 1 +#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT) +#define QUADSPI_SR_AHB_ACC_SHIFT 2 +#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT) + +#define QUADSPI_FR 0x160 +#define QUADSPI_FR_TFF_MASK 0x1 + +#define QUADSPI_SFA1AD 0x180 +#define QUADSPI_SFA2AD 0x184 +#define QUADSPI_SFB1AD 0x188 +#define QUADSPI_SFB2AD 0x18c +#define QUADSPI_RBDR 0x200 + +#define QUADSPI_LUTKEY 0x300 +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 + +#define QUADSPI_LCKCR 0x304 +#define QUADSPI_LCKER_LOCK 0x1 +#define QUADSPI_LCKER_UNLOCK 0x2 + +#define QUADSPI_RSER 0x164 +#define QUADSPI_RSER_TFIE (0x1 << 0) + +#define QUADSPI_LUT_BASE 0x310 + +/* + * The definition of the LUT register shows below: + * + * --------------------------------------------------- + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | + * --------------------------------------------------- + */ +#define OPRND0_SHIFT 0 +#define PAD0_SHIFT 8 +#define INSTR0_SHIFT 10 +#define OPRND1_SHIFT 16 + +/* Instruction set for the LUT register. */ +#define LUT_STOP 0 +#define LUT_CMD 1 +#define LUT_ADDR 2 +#define LUT_DUMMY 3 +#define LUT_MODE 4 +#define LUT_MODE2 5 +#define LUT_MODE4 6 +#define LUT_READ 7 +#define LUT_WRITE 8 +#define LUT_JMP_ON_CS 9 +#define LUT_ADDR_DDR 10 +#define LUT_MODE_DDR 11 +#define LUT_MODE2_DDR 12 +#define LUT_MODE4_DDR 13 +#define LUT_READ_DDR 14 +#define LUT_WRITE_DDR 15 +#define LUT_DATA_LEARN 16 + +/* + * The PAD definitions for LUT register. + * + * The pad stands for the lines number of IO[0:3]. + * For example, the Quad read need four IO lines, so you should + * set LUT_PAD4 which means we use four IO lines. + */ +#define LUT_PAD1 0 +#define LUT_PAD2 1 +#define LUT_PAD4 2 + +/* Oprands for the LUT register. */ +#define ADDR24BIT 0x18 +#define ADDR32BIT 0x20 + +/* Macros for constructing the LUT register. */ +#define LUT0(ins, pad, opr) \ + (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \ + ((LUT_##ins) << INSTR0_SHIFT)) + +#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT) + +/* other macros for LUT register. */ +#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4) +#define QUADSPI_LUT_NUM 64 + +/* SEQID -- we can have 16 seqids at most. */ +#define SEQID_QUAD_READ 0 +#define SEQID_WREN 1 +#define SEQID_WRDI 2 +#define SEQID_RDSR 3 +#define SEQID_SE 4 +#define SEQID_CHIP_ERASE 5 +#define SEQID_PP 6 +#define SEQID_RDID 7 +#define SEQID_WRSR 8 +#define SEQID_RDCR 9 +#define SEQID_EN4B 10 +#define SEQID_BRWR 11 + +enum fsl_qspi_devtype { + FSL_QUADSPI_VYBRID, + FSL_QUADSPI_IMX6SX, +}; + +struct fsl_qspi_devtype_data { + enum fsl_qspi_devtype devtype; + int rxfifo; + int txfifo; +}; + +static struct fsl_qspi_devtype_data vybrid_data = { + .devtype = FSL_QUADSPI_VYBRID, + .rxfifo = 128, + .txfifo = 64 +}; + +static struct fsl_qspi_devtype_data imx6sx_data = { + .devtype = FSL_QUADSPI_IMX6SX, + .rxfifo = 128, + .txfifo = 512 +}; + +#define FSL_QSPI_MAX_CHIP 4 +struct fsl_qspi { + struct mtd_info mtd[FSL_QSPI_MAX_CHIP]; + struct spi_nor nor[FSL_QSPI_MAX_CHIP]; + void __iomem *iobase; + void __iomem *ahb_base; /* Used when read from AHB bus */ + u32 memmap_phy; + struct clk *clk, *clk_en; + struct device *dev; + struct completion c; + struct fsl_qspi_devtype_data *devtype_data; + u32 nor_size; + u32 nor_num; + u32 clk_rate; + unsigned int chip_base_addr; /* We may support two chips. */ +}; + +static inline int is_vybrid_qspi(struct fsl_qspi *q) +{ + return q->devtype_data->devtype == FSL_QUADSPI_VYBRID; +} + +static inline int is_imx6sx_qspi(struct fsl_qspi *q) +{ + return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX; +} + +/* + * An IC bug makes us to re-arrange the 32-bit data. + * The following chips, such as IMX6SLX, have fixed this bug. + */ +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) +{ + return is_vybrid_qspi(q) ? __swab32(a) : a; +} + +static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) +{ + writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); +} + +static inline void fsl_qspi_lock_lut(struct fsl_qspi *q) +{ + writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); +} + +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) +{ + struct fsl_qspi *q = dev_id; + u32 reg; + + /* clear interrupt */ + reg = readl(q->iobase + QUADSPI_FR); + writel(reg, q->iobase + QUADSPI_FR); + + if (reg & QUADSPI_FR_TFF_MASK) + complete(&q->c); + + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg); + return IRQ_HANDLED; +} + +static void fsl_qspi_init_lut(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + int rxfifo = q->devtype_data->rxfifo; + u32 lut_base; + u8 cmd, addrlen, dummy; + int i; + + fsl_qspi_unlock_lut(q); + + /* Clear all the LUT table */ + for (i = 0; i < QUADSPI_LUT_NUM; i++) + writel(0, base + QUADSPI_LUT_BASE + i * 4); + + /* Quad Read */ + lut_base = SEQID_QUAD_READ * 4; + + if (q->nor_size <= SZ_16M) { + cmd = SPINOR_OP_READ_1_1_4; + addrlen = ADDR24BIT; + dummy = 8; + } else { + /* use the 4-byte address */ + cmd = SPINOR_OP_READ_1_1_4; + addrlen = ADDR32BIT; + dummy = 8; + } + + writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo), + base + QUADSPI_LUT(lut_base + 1)); + + /* Write enable */ + lut_base = SEQID_WREN * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base)); + + /* Page Program */ + lut_base = SEQID_PP * 4; + + if (q->nor_size <= SZ_16M) { + cmd = SPINOR_OP_PP; + addrlen = ADDR24BIT; + } else { + /* use the 4-byte address */ + cmd = SPINOR_OP_PP; + addrlen = ADDR32BIT; + } + + writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1)); + + /* Read Status */ + lut_base = SEQID_RDSR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1), + base + QUADSPI_LUT(lut_base)); + + /* Erase a sector */ + lut_base = SEQID_SE * 4; + + if (q->nor_size <= SZ_16M) { + cmd = SPINOR_OP_SE; + addrlen = ADDR24BIT; + } else { + /* use the 4-byte address */ + cmd = SPINOR_OP_SE; + addrlen = ADDR32BIT; + } + + writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + + /* Erase the whole chip */ + lut_base = SEQID_CHIP_ERASE * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE), + base + QUADSPI_LUT(lut_base)); + + /* READ ID */ + lut_base = SEQID_RDID * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8), + base + QUADSPI_LUT(lut_base)); + + /* Write Register */ + lut_base = SEQID_WRSR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2), + base + QUADSPI_LUT(lut_base)); + + /* Read Configuration Register */ + lut_base = SEQID_RDCR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1), + base + QUADSPI_LUT(lut_base)); + + /* Write disable */ + lut_base = SEQID_WRDI * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base)); + + /* Enter 4 Byte Mode (Micron) */ + lut_base = SEQID_EN4B * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base)); + + /* Enter 4 Byte Mode (Spansion) */ + lut_base = SEQID_BRWR * 4; + writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base)); + + fsl_qspi_lock_lut(q); +} + +/* Get the SEQID for the command */ +static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) +{ + switch (cmd) { + case SPINOR_OP_READ_1_1_4: + return SEQID_QUAD_READ; + case SPINOR_OP_WREN: + return SEQID_WREN; + case SPINOR_OP_WRDI: + return SEQID_WRDI; + case SPINOR_OP_RDSR: + return SEQID_RDSR; + case SPINOR_OP_SE: + return SEQID_SE; + case SPINOR_OP_CHIP_ERASE: + return SEQID_CHIP_ERASE; + case SPINOR_OP_PP: + return SEQID_PP; + case SPINOR_OP_RDID: + return SEQID_RDID; + case SPINOR_OP_WRSR: + return SEQID_WRSR; + case SPINOR_OP_RDCR: + return SEQID_RDCR; + case SPINOR_OP_EN4B: + return SEQID_EN4B; + case SPINOR_OP_BRWR: + return SEQID_BRWR; + default: + dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); + break; + } + return -EINVAL; +} + +static int +fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len) +{ + void __iomem *base = q->iobase; + int seqid; + u32 reg, reg2; + int err; + + init_completion(&q->c); + dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n", + q->chip_base_addr, addr, len, cmd); + + /* save the reg */ + reg = readl(base + QUADSPI_MCR); + + writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR); + writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, + base + QUADSPI_RBCT); + writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR); + + do { + reg2 = readl(base + QUADSPI_SR); + if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) { + udelay(1); + dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2); + continue; + } + break; + } while (1); + + /* trigger the LUT now */ + seqid = fsl_qspi_get_seqid(q, cmd); + writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR); + + /* Wait for the interrupt. */ + err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)); + if (!err) { + dev_err(q->dev, + "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n", + cmd, addr, readl(base + QUADSPI_FR), + readl(base + QUADSPI_SR)); + err = -ETIMEDOUT; + } else { + err = 0; + } + + /* restore the MCR */ + writel(reg, base + QUADSPI_MCR); + + return err; +} + +/* Read out the data from the QUADSPI_RBDR buffer registers. */ +static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf) +{ + u32 tmp; + int i = 0; + + while (len > 0) { + tmp = readl(q->iobase + QUADSPI_RBDR + i * 4); + tmp = fsl_qspi_endian_xchg(q, tmp); + dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n", + q->chip_base_addr, tmp); + + if (len >= 4) { + *((u32 *)rxbuf) = tmp; + rxbuf += 4; + } else { + memcpy(rxbuf, &tmp, len); + break; + } + + len -= 4; + i++; + } +} + +/* + * If we have changed the content of the flash by writing or erasing, + * we need to invalidate the AHB buffer. If we do not do so, we may read out + * the wrong data. The spec tells us reset the AHB domain and Serial Flash + * domain at the same time. + */ +static inline void fsl_qspi_invalid(struct fsl_qspi *q) +{ + u32 reg; + + reg = readl(q->iobase + QUADSPI_MCR); + reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; + writel(reg, q->iobase + QUADSPI_MCR); + + /* + * The minimum delay : 1 AHB + 2 SFCK clocks. + * Delay 1 us is enough. + */ + udelay(1); + + reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); + writel(reg, q->iobase + QUADSPI_MCR); +} + +static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, + u8 opcode, unsigned int to, u32 *txbuf, + unsigned count, size_t *retlen) +{ + int ret, i, j; + u32 tmp; + + dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n", + q->chip_base_addr, to, count); + + /* clear the TX FIFO. */ + tmp = readl(q->iobase + QUADSPI_MCR); + writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR); + + /* fill the TX data to the FIFO */ + for (j = 0, i = ((count + 3) / 4); j < i; j++) { + tmp = fsl_qspi_endian_xchg(q, *txbuf); + writel(tmp, q->iobase + QUADSPI_TBDR); + txbuf++; + } + + /* Trigger it */ + ret = fsl_qspi_runcmd(q, opcode, to, count); + + if (ret == 0 && retlen) + *retlen += count; + + return ret; +} + +static void fsl_qspi_set_map_addr(struct fsl_qspi *q) +{ + int nor_size = q->nor_size; + void __iomem *base = q->iobase; + + writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD); + writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD); + writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD); + writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD); +} + +/* + * There are two different ways to read out the data from the flash: + * the "IP Command Read" and the "AHB Command Read". + * + * The IC guy suggests we use the "AHB Command Read" which is faster + * then the "IP Command Read". (What's more is that there is a bug in + * the "IP Command Read" in the Vybrid.) + * + * After we set up the registers for the "AHB Command Read", we can use + * the memcpy to read the data directly. A "missed" access to the buffer + * causes the controller to clear the buffer, and use the sequence pointed + * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. + */ +static void fsl_qspi_init_abh_read(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + int seqid; + + /* AHB configuration for access buffer 0/1/2 .*/ + writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR); + writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR); + writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR); + writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR); + + /* We only use the buffer3 */ + writel(0, base + QUADSPI_BUF0IND); + writel(0, base + QUADSPI_BUF1IND); + writel(0, base + QUADSPI_BUF2IND); + + /* Set the default lut sequence for AHB Read. */ + seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode); + writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT, + q->iobase + QUADSPI_BFGENCR); +} + +/* We use this function to do some basic init for spi_nor_scan(). */ +static int fsl_qspi_nor_setup(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + u32 reg; + int ret; + + /* the default frequency, we will change it in the future.*/ + ret = clk_set_rate(q->clk, 66000000); + if (ret) + return ret; + + /* Init the LUT table. */ + fsl_qspi_init_lut(q); + + /* Disable the module */ + writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, + base + QUADSPI_MCR); + + reg = readl(base + QUADSPI_SMPR); + writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK + | QUADSPI_SMPR_FSPHS_MASK + | QUADSPI_SMPR_HSENA_MASK + | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); + + /* Enable the module */ + writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, + base + QUADSPI_MCR); + + /* enable the interrupt */ + writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); + + return 0; +} + +static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) +{ + unsigned long rate = q->clk_rate; + int ret; + + if (is_imx6sx_qspi(q)) + rate *= 4; + + ret = clk_set_rate(q->clk, rate); + if (ret) + return ret; + + /* Init the LUT table again. */ + fsl_qspi_init_lut(q); + + /* Init for AHB read */ + fsl_qspi_init_abh_read(q); + + return 0; +} + +static struct of_device_id fsl_qspi_dt_ids[] = { + { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, }, + { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); + +static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor) +{ + q->chip_base_addr = q->nor_size * (nor - q->nor); +} + +static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) +{ + int ret; + struct fsl_qspi *q = nor->priv; + + ret = fsl_qspi_runcmd(q, opcode, 0, len); + if (ret) + return ret; + + fsl_qspi_read_data(q, len, buf); + return 0; +} + +static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len, + int write_enable) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + if (!buf) { + ret = fsl_qspi_runcmd(q, opcode, 0, 1); + if (ret) + return ret; + + if (opcode == SPINOR_OP_CHIP_ERASE) + fsl_qspi_invalid(q); + + } else if (len > 0) { + ret = fsl_qspi_nor_write(q, nor, opcode, 0, + (u32 *)buf, len, NULL); + } else { + dev_err(q->dev, "invalid cmd %d\n", opcode); + ret = -EINVAL; + } + + return ret; +} + +static void fsl_qspi_write(struct spi_nor *nor, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct fsl_qspi *q = nor->priv; + + fsl_qspi_nor_write(q, nor, nor->program_opcode, to, + (u32 *)buf, len, retlen); + + /* invalid the data in the AHB buffer. */ + fsl_qspi_invalid(q); +} + +static int fsl_qspi_read(struct spi_nor *nor, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + struct fsl_qspi *q = nor->priv; + u8 cmd = nor->read_opcode; + int ret; + + dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n", + cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len); + + /* Wait until the previous command is finished. */ + ret = nor->wait_till_ready(nor); + if (ret) + return ret; + + /* Read out the data directly from the AHB buffer.*/ + memcpy(buf, q->ahb_base + q->chip_base_addr + from, len); + + *retlen += len; + return 0; +} + +static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", + nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs); + + /* Wait until finished previous write command. */ + ret = nor->wait_till_ready(nor); + if (ret) + return ret; + + /* Send write enable, then erase commands. */ + ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); + if (ret) + return ret; + + ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); + if (ret) + return ret; + + fsl_qspi_invalid(q); + return 0; +} + +static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + ret = clk_enable(q->clk_en); + if (ret) + return ret; + + ret = clk_enable(q->clk); + if (ret) { + clk_disable(q->clk_en); + return ret; + } + + fsl_qspi_set_base_addr(q, nor); + return 0; +} + +static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct fsl_qspi *q = nor->priv; + + clk_disable(q->clk); + clk_disable(q->clk_en); +} + +static int fsl_qspi_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct mtd_part_parser_data ppdata; + struct device *dev = &pdev->dev; + struct fsl_qspi *q; + struct resource *res; + struct spi_nor *nor; + struct mtd_info *mtd; + int ret, i = 0; + bool has_second_chip = false; + const struct of_device_id *of_id = + of_match_device(fsl_qspi_dt_ids, &pdev->dev); + + q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL); + if (!q) + return -ENOMEM; + + q->nor_num = of_get_child_count(dev->of_node); + if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) + return -ENODEV; + + /* find the resources */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); + q->iobase = devm_ioremap_resource(dev, res); + if (IS_ERR(q->iobase)) { + ret = PTR_ERR(q->iobase); + goto map_failed; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + "QuadSPI-memory"); + q->ahb_base = devm_ioremap_resource(dev, res); + if (IS_ERR(q->ahb_base)) { + ret = PTR_ERR(q->ahb_base); + goto map_failed; + } + q->memmap_phy = res->start; + + /* find the clocks */ + q->clk_en = devm_clk_get(dev, "qspi_en"); + if (IS_ERR(q->clk_en)) { + ret = PTR_ERR(q->clk_en); + goto map_failed; + } + + q->clk = devm_clk_get(dev, "qspi"); + if (IS_ERR(q->clk)) { + ret = PTR_ERR(q->clk); + goto map_failed; + } + + ret = clk_prepare_enable(q->clk_en); + if (ret) { + dev_err(dev, "can not enable the qspi_en clock\n"); + goto map_failed; + } + + ret = clk_prepare_enable(q->clk); + if (ret) { + clk_disable_unprepare(q->clk_en); + dev_err(dev, "can not enable the qspi clock\n"); + goto map_failed; + } + + /* find the irq */ + ret = platform_get_irq(pdev, 0); + if (ret < 0) { + dev_err(dev, "failed to get the irq\n"); + goto irq_failed; + } + + ret = devm_request_irq(dev, ret, + fsl_qspi_irq_handler, 0, pdev->name, q); + if (ret) { + dev_err(dev, "failed to request irq.\n"); + goto irq_failed; + } + + q->dev = dev; + q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data; + platform_set_drvdata(pdev, q); + + ret = fsl_qspi_nor_setup(q); + if (ret) + goto irq_failed; + + if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) + has_second_chip = true; + + /* iterate the subnodes. */ + for_each_available_child_of_node(dev->of_node, np) { + const struct spi_device_id *id; + char modalias[40]; + + /* skip the holes */ + if (!has_second_chip) + i *= 2; + + nor = &q->nor[i]; + mtd = &q->mtd[i]; + + nor->mtd = mtd; + nor->dev = dev; + nor->priv = q; + mtd->priv = nor; + + /* fill the hooks */ + nor->read_reg = fsl_qspi_read_reg; + nor->write_reg = fsl_qspi_write_reg; + nor->read = fsl_qspi_read; + nor->write = fsl_qspi_write; + nor->erase = fsl_qspi_erase; + + nor->prepare = fsl_qspi_prep; + nor->unprepare = fsl_qspi_unprep; + + if (of_modalias_node(np, modalias, sizeof(modalias)) < 0) + goto map_failed; + + id = spi_nor_match_id(modalias); + if (!id) + goto map_failed; + + ret = of_property_read_u32(np, "spi-max-frequency", + &q->clk_rate); + if (ret < 0) + goto map_failed; + + /* set the chip address for READID */ + fsl_qspi_set_base_addr(q, nor); + + ret = spi_nor_scan(nor, id, SPI_NOR_QUAD); + if (ret) + goto map_failed; + + ppdata.of_node = np; + ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); + if (ret) + goto map_failed; + + /* Set the correct NOR size now. */ + if (q->nor_size == 0) { + q->nor_size = mtd->size; + + /* Map the SPI NOR to accessiable address */ + fsl_qspi_set_map_addr(q); + } + + /* + * The TX FIFO is 64 bytes in the Vybrid, but the Page Program + * may writes 265 bytes per time. The write is working in the + * unit of the TX FIFO, not in the unit of the SPI NOR's page + * size. + * + * So shrink the spi_nor->page_size if it is larger then the + * TX FIFO. + */ + if (nor->page_size > q->devtype_data->txfifo) + nor->page_size = q->devtype_data->txfifo; + + i++; + } + + /* finish the rest init. */ + ret = fsl_qspi_nor_setup_last(q); + if (ret) + goto last_init_failed; + + clk_disable(q->clk); + clk_disable(q->clk_en); + dev_info(dev, "QuadSPI SPI NOR flash driver\n"); + return 0; + +last_init_failed: + for (i = 0; i < q->nor_num; i++) + mtd_device_unregister(&q->mtd[i]); + +irq_failed: + clk_disable_unprepare(q->clk); + clk_disable_unprepare(q->clk_en); +map_failed: + dev_err(dev, "Freescale QuadSPI probe failed\n"); + return ret; +} + +static int fsl_qspi_remove(struct platform_device *pdev) +{ + struct fsl_qspi *q = platform_get_drvdata(pdev); + int i; + + for (i = 0; i < q->nor_num; i++) + mtd_device_unregister(&q->mtd[i]); + + /* disable the hardware */ + writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); + writel(0x0, q->iobase + QUADSPI_RSER); + + clk_unprepare(q->clk); + clk_unprepare(q->clk_en); + return 0; +} + +static struct platform_driver fsl_qspi_driver = { + .driver = { + .name = "fsl-quadspi", + .bus = &platform_bus_type, + .owner = THIS_MODULE, + .of_match_table = fsl_qspi_dt_ids, + }, + .probe = fsl_qspi_probe, + .remove = fsl_qspi_remove, +}; +module_platform_driver(fsl_qspi_driver); + +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); +MODULE_AUTHOR("Freescale Semiconductor Inc."); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/spi-nor/spi-nor.c b/drivers/mtd/spi-nor/spi-nor.c new file mode 100644 index 00000000000..c713c865671 --- /dev/null +++ b/drivers/mtd/spi-nor/spi-nor.c @@ -0,0 +1,1107 @@ +/* + * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with + * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c + * + * Copyright (C) 2005, Intec Automation Inc. + * Copyright (C) 2014, Freescale Semiconductor, Inc. + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/mutex.h> +#include <linux/math64.h> + +#include <linux/mtd/cfi.h> +#include <linux/mtd/mtd.h> +#include <linux/of_platform.h> +#include <linux/spi/flash.h> +#include <linux/mtd/spi-nor.h> + +/* Define max times to check status register before we give up. */ +#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ + +#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16) + +/* + * Read the status register, returning its value in the location + * Return the status register value. + * Returns negative if error occurred. + */ +static int read_sr(struct spi_nor *nor) +{ + int ret; + u8 val; + + ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); + if (ret < 0) { + pr_err("error %d reading SR\n", (int) ret); + return ret; + } + + return val; +} + +/* + * Read configuration register, returning its value in the + * location. Return the configuration register value. + * Returns negative if error occured. + */ +static int read_cr(struct spi_nor *nor) +{ + int ret; + u8 val; + + ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); + if (ret < 0) { + dev_err(nor->dev, "error %d reading CR\n", ret); + return ret; + } + + return val; +} + +/* + * Dummy Cycle calculation for different type of read. + * It can be used to support more commands with + * different dummy cycle requirements. + */ +static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) +{ + switch (nor->flash_read) { + case SPI_NOR_FAST: + case SPI_NOR_DUAL: + case SPI_NOR_QUAD: + return 1; + case SPI_NOR_NORMAL: + return 0; + } + return 0; +} + +/* + * Write status register 1 byte + * Returns negative if error occurred. + */ +static inline int write_sr(struct spi_nor *nor, u8 val) +{ + nor->cmd_buf[0] = val; + return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); +} + +/* + * Set write enable latch with Write Enable command. + * Returns negative if error occurred. + */ +static inline int write_enable(struct spi_nor *nor) +{ + return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); +} + +/* + * Send write disble instruction to the chip. + */ +static inline int write_disable(struct spi_nor *nor) +{ + return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0); +} + +static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) +{ + return mtd->priv; +} + +/* Enable/disable 4-byte addressing mode. */ +static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable) +{ + int status; + bool need_wren = false; + u8 cmd; + + switch (JEDEC_MFR(jedec_id)) { + case CFI_MFR_ST: /* Micron, actually */ + /* Some Micron need WREN command; all will accept it */ + need_wren = true; + case CFI_MFR_MACRONIX: + case 0xEF /* winbond */: + if (need_wren) + write_enable(nor); + + cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; + status = nor->write_reg(nor, cmd, NULL, 0, 0); + if (need_wren) + write_disable(nor); + + return status; + default: + /* Spansion style */ + nor->cmd_buf[0] = enable << 7; + return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0); + } +} + +static int spi_nor_wait_till_ready(struct spi_nor *nor) +{ + unsigned long deadline; + int sr; + + deadline = jiffies + MAX_READY_WAIT_JIFFIES; + + do { + cond_resched(); + + sr = read_sr(nor); + if (sr < 0) + break; + else if (!(sr & SR_WIP)) + return 0; + } while (!time_after_eq(jiffies, deadline)); + + return -ETIMEDOUT; +} + +/* + * Service routine to read status register until ready, or timeout occurs. + * Returns non-zero if error. + */ +static int wait_till_ready(struct spi_nor *nor) +{ + return nor->wait_till_ready(nor); +} + +/* + * Erase the whole flash memory + * + * Returns 0 if successful, non-zero otherwise. + */ +static int erase_chip(struct spi_nor *nor) +{ + int ret; + + dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10)); + + /* Wait until finished previous write command. */ + ret = wait_till_ready(nor); + if (ret) + return ret; + + /* Send write enable, then erase commands. */ + write_enable(nor); + + return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0); +} + +static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + int ret = 0; + + mutex_lock(&nor->lock); + + if (nor->prepare) { + ret = nor->prepare(nor, ops); + if (ret) { + dev_err(nor->dev, "failed in the preparation.\n"); + mutex_unlock(&nor->lock); + return ret; + } + } + return ret; +} + +static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + if (nor->unprepare) + nor->unprepare(nor, ops); + mutex_unlock(&nor->lock); +} + +/* + * Erase an address range on the nor chip. The address range may extend + * one or more erase sectors. Return an error is there is a problem erasing. + */ +static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + u32 addr, len; + uint32_t rem; + int ret; + + dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, + (long long)instr->len); + + div_u64_rem(instr->len, mtd->erasesize, &rem); + if (rem) + return -EINVAL; + + addr = instr->addr; + len = instr->len; + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); + if (ret) + return ret; + + /* whole-chip erase? */ + if (len == mtd->size) { + if (erase_chip(nor)) { + ret = -EIO; + goto erase_err; + } + + /* REVISIT in some cases we could speed up erasing large regions + * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up + * to use "small sector erase", but that's not always optimal. + */ + + /* "sector"-at-a-time erase */ + } else { + while (len) { + if (nor->erase(nor, addr)) { + ret = -EIO; + goto erase_err; + } + + addr += mtd->erasesize; + len -= mtd->erasesize; + } + } + + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return ret; + +erase_err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); + instr->state = MTD_ERASE_FAILED; + return ret; +} + +static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + uint32_t offset = ofs; + uint8_t status_old, status_new; + int ret = 0; + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); + if (ret) + return ret; + + /* Wait until finished previous command */ + ret = wait_till_ready(nor); + if (ret) + goto err; + + status_old = read_sr(nor); + + if (offset < mtd->size - (mtd->size / 2)) + status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0; + else if (offset < mtd->size - (mtd->size / 4)) + status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; + else if (offset < mtd->size - (mtd->size / 8)) + status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; + else if (offset < mtd->size - (mtd->size / 16)) + status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; + else if (offset < mtd->size - (mtd->size / 32)) + status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; + else if (offset < mtd->size - (mtd->size / 64)) + status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; + else + status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; + + /* Only modify protection if it will not unlock other areas */ + if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) > + (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { + write_enable(nor); + ret = write_sr(nor, status_new); + if (ret) + goto err; + } + +err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); + return ret; +} + +static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + uint32_t offset = ofs; + uint8_t status_old, status_new; + int ret = 0; + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); + if (ret) + return ret; + + /* Wait until finished previous command */ + ret = wait_till_ready(nor); + if (ret) + goto err; + + status_old = read_sr(nor); + + if (offset+len > mtd->size - (mtd->size / 64)) + status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0); + else if (offset+len > mtd->size - (mtd->size / 32)) + status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; + else if (offset+len > mtd->size - (mtd->size / 16)) + status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; + else if (offset+len > mtd->size - (mtd->size / 8)) + status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; + else if (offset+len > mtd->size - (mtd->size / 4)) + status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; + else if (offset+len > mtd->size - (mtd->size / 2)) + status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; + else + status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; + + /* Only modify protection if it will not lock other areas */ + if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) < + (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { + write_enable(nor); + ret = write_sr(nor, status_new); + if (ret) + goto err; + } + +err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); + return ret; +} + +struct flash_info { + /* JEDEC id zero means "no ID" (most older chips); otherwise it has + * a high byte of zero plus three data bytes: the manufacturer id, + * then a two byte device id. + */ + u32 jedec_id; + u16 ext_id; + + /* The size listed here is what works with SPINOR_OP_SE, which isn't + * necessarily called a "sector" by the vendor. + */ + unsigned sector_size; + u16 n_sectors; + + u16 page_size; + u16 addr_width; + + u16 flags; +#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */ +#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */ +#define SST_WRITE 0x04 /* use SST byte programming */ +#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */ +#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */ +#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */ +#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */ +}; + +#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ + ((kernel_ulong_t)&(struct flash_info) { \ + .jedec_id = (_jedec_id), \ + .ext_id = (_ext_id), \ + .sector_size = (_sector_size), \ + .n_sectors = (_n_sectors), \ + .page_size = 256, \ + .flags = (_flags), \ + }) + +#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ + ((kernel_ulong_t)&(struct flash_info) { \ + .sector_size = (_sector_size), \ + .n_sectors = (_n_sectors), \ + .page_size = (_page_size), \ + .addr_width = (_addr_width), \ + .flags = (_flags), \ + }) + +/* NOTE: double check command sets and memory organization when you add + * more nor chips. This current list focusses on newer chips, which + * have been converging on command sets which including JEDEC ID. + */ +const struct spi_device_id spi_nor_ids[] = { + /* Atmel -- some are (confusingly) marketed as "DataFlash" */ + { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, + { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, + + { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, + { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, + { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, + + { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, + { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, + { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, + { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, + + { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, + + /* EON -- en25xxx */ + { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, + { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, + { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, + { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, + { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, + { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, + + /* ESMT */ + { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, + + /* Everspin */ + { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + + /* GigaDevice */ + { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) }, + { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) }, + + /* Intel/Numonyx -- xxxs33b */ + { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, + { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, + { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, + + /* Macronix */ + { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, + { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, + { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, + { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, + { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, + { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, + { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, + { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, + { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, + { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, + { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, + { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, + { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, + + /* Micron */ + { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) }, + { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) }, + { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) }, + { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) }, + { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) }, + + /* PMC */ + { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, + { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, + { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, + + /* Spansion -- single (large) sector size only, at least + * for the chips listed here (without boot sectors). + */ + { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, + { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, + { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, + { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, + { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, + { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, + { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, + { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, + { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, + { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, + { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, + { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, + { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, + { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, + { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, + { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, + + /* SST -- large erase sizes are "overlays", "sectors" are 4K */ + { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, + { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, + { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, + { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, + { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, + { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, + { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, + { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, + { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, + + /* ST Microelectronics -- newer production may have feature updates */ + { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, + { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, + { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, + { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, + { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, + { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, + { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, + { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, + { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, + { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) }, + + { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, + { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, + { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, + { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, + { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, + { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, + { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, + { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, + { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, + + { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, + { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, + { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, + + { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, + { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, + { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, + + { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, + { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, + { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, + { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, + { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, + + /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ + { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, + { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, + { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, + { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, + { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, + { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, + { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, + { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, + { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, + { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, + { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, + { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, + { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, + + /* Catalyst / On Semiconductor -- non-JEDEC */ + { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, + { }, +}; +EXPORT_SYMBOL_GPL(spi_nor_ids); + +static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor) +{ + int tmp; + u8 id[5]; + u32 jedec; + u16 ext_jedec; + struct flash_info *info; + + tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5); + if (tmp < 0) { + dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp); + return ERR_PTR(tmp); + } + jedec = id[0]; + jedec = jedec << 8; + jedec |= id[1]; + jedec = jedec << 8; + jedec |= id[2]; + + ext_jedec = id[3] << 8 | id[4]; + + for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { + info = (void *)spi_nor_ids[tmp].driver_data; + if (info->jedec_id == jedec) { + if (info->ext_id == 0 || info->ext_id == ext_jedec) + return &spi_nor_ids[tmp]; + } + } + dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec); + return ERR_PTR(-ENODEV); +} + +static const struct spi_device_id *jedec_probe(struct spi_nor *nor) +{ + return nor->read_id(nor); +} + +static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + int ret; + + dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); + if (ret) + return ret; + + ret = nor->read(nor, from, len, retlen, buf); + + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); + return ret; +} + +static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + size_t actual; + int ret; + + dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); + if (ret) + return ret; + + /* Wait until finished previous write command. */ + ret = wait_till_ready(nor); + if (ret) + goto time_out; + + write_enable(nor); + + nor->sst_write_second = false; + + actual = to % 2; + /* Start write from odd address. */ + if (actual) { + nor->program_opcode = SPINOR_OP_BP; + + /* write one byte. */ + nor->write(nor, to, 1, retlen, buf); + ret = wait_till_ready(nor); + if (ret) + goto time_out; + } + to += actual; + + /* Write out most of the data here. */ + for (; actual < len - 1; actual += 2) { + nor->program_opcode = SPINOR_OP_AAI_WP; + + /* write two bytes. */ + nor->write(nor, to, 2, retlen, buf + actual); + ret = wait_till_ready(nor); + if (ret) + goto time_out; + to += 2; + nor->sst_write_second = true; + } + nor->sst_write_second = false; + + write_disable(nor); + ret = wait_till_ready(nor); + if (ret) + goto time_out; + + /* Write out trailing byte if it exists. */ + if (actual != len) { + write_enable(nor); + + nor->program_opcode = SPINOR_OP_BP; + nor->write(nor, to, 1, retlen, buf + actual); + + ret = wait_till_ready(nor); + if (ret) + goto time_out; + write_disable(nor); + } +time_out: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); + return ret; +} + +/* + * Write an address range to the nor chip. Data must be written in + * FLASH_PAGESIZE chunks. The address range may be any size provided + * it is within the physical boundaries. + */ +static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct spi_nor *nor = mtd_to_spi_nor(mtd); + u32 page_offset, page_size, i; + int ret; + + dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); + + ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); + if (ret) + return ret; + + /* Wait until finished previous write command. */ + ret = wait_till_ready(nor); + if (ret) + goto write_err; + + write_enable(nor); + + page_offset = to & (nor->page_size - 1); + + /* do all the bytes fit onto one page? */ + if (page_offset + len <= nor->page_size) { + nor->write(nor, to, len, retlen, buf); + } else { + /* the size of data remaining on the first page */ + page_size = nor->page_size - page_offset; + nor->write(nor, to, page_size, retlen, buf); + + /* write everything in nor->page_size chunks */ + for (i = page_size; i < len; i += page_size) { + page_size = len - i; + if (page_size > nor->page_size) + page_size = nor->page_size; + + wait_till_ready(nor); + write_enable(nor); + + nor->write(nor, to + i, page_size, retlen, buf + i); + } + } + +write_err: + spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); + return 0; +} + +static int macronix_quad_enable(struct spi_nor *nor) +{ + int ret, val; + + val = read_sr(nor); + write_enable(nor); + + nor->cmd_buf[0] = val | SR_QUAD_EN_MX; + nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); + + if (wait_till_ready(nor)) + return 1; + + ret = read_sr(nor); + if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { + dev_err(nor->dev, "Macronix Quad bit not set\n"); + return -EINVAL; + } + + return 0; +} + +/* + * Write status Register and configuration register with 2 bytes + * The first byte will be written to the status register, while the + * second byte will be written to the configuration register. + * Return negative if error occured. + */ +static int write_sr_cr(struct spi_nor *nor, u16 val) +{ + nor->cmd_buf[0] = val & 0xff; + nor->cmd_buf[1] = (val >> 8); + + return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0); +} + +static int spansion_quad_enable(struct spi_nor *nor) +{ + int ret; + int quad_en = CR_QUAD_EN_SPAN << 8; + + write_enable(nor); + + ret = write_sr_cr(nor, quad_en); + if (ret < 0) { + dev_err(nor->dev, + "error while writing configuration register\n"); + return -EINVAL; + } + + /* read back and check it */ + ret = read_cr(nor); + if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { + dev_err(nor->dev, "Spansion Quad bit not set\n"); + return -EINVAL; + } + + return 0; +} + +static int set_quad_mode(struct spi_nor *nor, u32 jedec_id) +{ + int status; + + switch (JEDEC_MFR(jedec_id)) { + case CFI_MFR_MACRONIX: + status = macronix_quad_enable(nor); + if (status) { + dev_err(nor->dev, "Macronix quad-read not enabled\n"); + return -EINVAL; + } + return status; + default: + status = spansion_quad_enable(nor); + if (status) { + dev_err(nor->dev, "Spansion quad-read not enabled\n"); + return -EINVAL; + } + return status; + } +} + +static int spi_nor_check(struct spi_nor *nor) +{ + if (!nor->dev || !nor->read || !nor->write || + !nor->read_reg || !nor->write_reg || !nor->erase) { + pr_err("spi-nor: please fill all the necessary fields!\n"); + return -EINVAL; + } + + if (!nor->read_id) + nor->read_id = spi_nor_read_id; + if (!nor->wait_till_ready) + nor->wait_till_ready = spi_nor_wait_till_ready; + + return 0; +} + +int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id, + enum read_mode mode) +{ + struct flash_info *info; + struct flash_platform_data *data; + struct device *dev = nor->dev; + struct mtd_info *mtd = nor->mtd; + struct device_node *np = dev->of_node; + int ret; + int i; + + ret = spi_nor_check(nor); + if (ret) + return ret; + + /* Platform data helps sort out which chip type we have, as + * well as how this board partitions it. If we don't have + * a chip ID, try the JEDEC id commands; they'll work for most + * newer chips, even if we don't recognize the particular chip. + */ + data = dev_get_platdata(dev); + if (data && data->type) { + const struct spi_device_id *plat_id; + + for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) { + plat_id = &spi_nor_ids[i]; + if (strcmp(data->type, plat_id->name)) + continue; + break; + } + + if (i < ARRAY_SIZE(spi_nor_ids) - 1) + id = plat_id; + else + dev_warn(dev, "unrecognized id %s\n", data->type); + } + + info = (void *)id->driver_data; + + if (info->jedec_id) { + const struct spi_device_id *jid; + + jid = jedec_probe(nor); + if (IS_ERR(jid)) { + return PTR_ERR(jid); + } else if (jid != id) { + /* + * JEDEC knows better, so overwrite platform ID. We + * can't trust partitions any longer, but we'll let + * mtd apply them anyway, since some partitions may be + * marked read-only, and we don't want to lose that + * information, even if it's not 100% accurate. + */ + dev_warn(dev, "found %s, expected %s\n", + jid->name, id->name); + id = jid; + info = (void *)jid->driver_data; + } + } + + mutex_init(&nor->lock); + + /* + * Atmel, SST and Intel/Numonyx serial nor tend to power + * up with the software protection bits set + */ + + if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || + JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || + JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { + write_enable(nor); + write_sr(nor, 0); + } + + if (data && data->name) + mtd->name = data->name; + else + mtd->name = dev_name(dev); + + mtd->type = MTD_NORFLASH; + mtd->writesize = 1; + mtd->flags = MTD_CAP_NORFLASH; + mtd->size = info->sector_size * info->n_sectors; + mtd->_erase = spi_nor_erase; + mtd->_read = spi_nor_read; + + /* nor protection support for STmicro chips */ + if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) { + mtd->_lock = spi_nor_lock; + mtd->_unlock = spi_nor_unlock; + } + + /* sst nor chips use AAI word program */ + if (info->flags & SST_WRITE) + mtd->_write = sst_write; + else + mtd->_write = spi_nor_write; + + /* prefer "small sector" erase if possible */ + if (info->flags & SECT_4K) { + nor->erase_opcode = SPINOR_OP_BE_4K; + mtd->erasesize = 4096; + } else if (info->flags & SECT_4K_PMC) { + nor->erase_opcode = SPINOR_OP_BE_4K_PMC; + mtd->erasesize = 4096; + } else { + nor->erase_opcode = SPINOR_OP_SE; + mtd->erasesize = info->sector_size; + } + + if (info->flags & SPI_NOR_NO_ERASE) + mtd->flags |= MTD_NO_ERASE; + + mtd->dev.parent = dev; + nor->page_size = info->page_size; + mtd->writebufsize = nor->page_size; + + if (np) { + /* If we were instantiated by DT, use it */ + if (of_property_read_bool(np, "m25p,fast-read")) + nor->flash_read = SPI_NOR_FAST; + else + nor->flash_read = SPI_NOR_NORMAL; + } else { + /* If we weren't instantiated by DT, default to fast-read */ + nor->flash_read = SPI_NOR_FAST; + } + + /* Some devices cannot do fast-read, no matter what DT tells us */ + if (info->flags & SPI_NOR_NO_FR) + nor->flash_read = SPI_NOR_NORMAL; + + /* Quad/Dual-read mode takes precedence over fast/normal */ + if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) { + ret = set_quad_mode(nor, info->jedec_id); + if (ret) { + dev_err(dev, "quad mode not supported\n"); + return ret; + } + nor->flash_read = SPI_NOR_QUAD; + } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) { + nor->flash_read = SPI_NOR_DUAL; + } + + /* Default commands */ + switch (nor->flash_read) { + case SPI_NOR_QUAD: + nor->read_opcode = SPINOR_OP_READ_1_1_4; + break; + case SPI_NOR_DUAL: + nor->read_opcode = SPINOR_OP_READ_1_1_2; + break; + case SPI_NOR_FAST: + nor->read_opcode = SPINOR_OP_READ_FAST; + break; + case SPI_NOR_NORMAL: + nor->read_opcode = SPINOR_OP_READ; + break; + default: + dev_err(dev, "No Read opcode defined\n"); + return -EINVAL; + } + + nor->program_opcode = SPINOR_OP_PP; + + if (info->addr_width) + nor->addr_width = info->addr_width; + else if (mtd->size > 0x1000000) { + /* enable 4-byte addressing if the device exceeds 16MiB */ + nor->addr_width = 4; + if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) { + /* Dedicated 4-byte command set */ + switch (nor->flash_read) { + case SPI_NOR_QUAD: + nor->read_opcode = SPINOR_OP_READ4_1_1_4; + break; + case SPI_NOR_DUAL: + nor->read_opcode = SPINOR_OP_READ4_1_1_2; + break; + case SPI_NOR_FAST: + nor->read_opcode = SPINOR_OP_READ4_FAST; + break; + case SPI_NOR_NORMAL: + nor->read_opcode = SPINOR_OP_READ4; + break; + } + nor->program_opcode = SPINOR_OP_PP_4B; + /* No small sector erase for 4-byte command set */ + nor->erase_opcode = SPINOR_OP_SE_4B; + mtd->erasesize = info->sector_size; + } else + set_4byte(nor, info->jedec_id, 1); + } else { + nor->addr_width = 3; + } + + nor->read_dummy = spi_nor_read_dummy_cycles(nor); + + dev_info(dev, "%s (%lld Kbytes)\n", id->name, + (long long)mtd->size >> 10); + + dev_dbg(dev, + "mtd .name = %s, .size = 0x%llx (%lldMiB), " + ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", + mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), + mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); + + if (mtd->numeraseregions) + for (i = 0; i < mtd->numeraseregions; i++) + dev_dbg(dev, + "mtd.eraseregions[%d] = { .offset = 0x%llx, " + ".erasesize = 0x%.8x (%uKiB), " + ".numblocks = %d }\n", + i, (long long)mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].erasesize / 1024, + mtd->eraseregions[i].numblocks); + return 0; +} +EXPORT_SYMBOL_GPL(spi_nor_scan); + +const struct spi_device_id *spi_nor_match_id(char *name) +{ + const struct spi_device_id *id = spi_nor_ids; + + while (id->name[0]) { + if (!strcmp(name, id->name)) + return id; + id++; + } + return NULL; +} +EXPORT_SYMBOL_GPL(spi_nor_match_id); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); +MODULE_AUTHOR("Mike Lavender"); +MODULE_DESCRIPTION("framework for SPI NOR"); diff --git a/drivers/mtd/ssfdc.c b/drivers/mtd/ssfdc.c index ab2a52a039c..daf82ba7aba 100644 --- a/drivers/mtd/ssfdc.c +++ b/drivers/mtd/ssfdc.c @@ -290,7 +290,7 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) int cis_sector; /* Check for small page NAND flash */ - if (mtd->type != MTD_NANDFLASH || mtd->oobsize != OOB_SIZE || + if (!mtd_type_is_nand(mtd) || mtd->oobsize != OOB_SIZE || mtd->size > UINT_MAX) return; diff --git a/drivers/mtd/tests/Makefile b/drivers/mtd/tests/Makefile index b44dcab940d..937a829bb70 100644 --- a/drivers/mtd/tests/Makefile +++ b/drivers/mtd/tests/Makefile @@ -6,3 +6,13 @@ obj-$(CONFIG_MTD_TESTS) += mtd_stresstest.o obj-$(CONFIG_MTD_TESTS) += mtd_subpagetest.o obj-$(CONFIG_MTD_TESTS) += mtd_torturetest.o obj-$(CONFIG_MTD_TESTS) += mtd_nandecctest.o +obj-$(CONFIG_MTD_TESTS) += mtd_nandbiterrs.o + +mtd_oobtest-objs := oobtest.o mtd_test.o +mtd_pagetest-objs := pagetest.o mtd_test.o +mtd_readtest-objs := readtest.o mtd_test.o +mtd_speedtest-objs := speedtest.o mtd_test.o +mtd_stresstest-objs := stresstest.o mtd_test.o +mtd_subpagetest-objs := subpagetest.o mtd_test.o +mtd_torturetest-objs := torturetest.o mtd_test.o +mtd_nandbiterrs-objs := nandbiterrs.o mtd_test.o diff --git a/drivers/mtd/tests/mtd_nandecctest.c b/drivers/mtd/tests/mtd_nandecctest.c index 70d6d7d0d65..e579f9027c4 100644 --- a/drivers/mtd/tests/mtd_nandecctest.c +++ b/drivers/mtd/tests/mtd_nandecctest.c @@ -1,63 +1,292 @@ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/kernel.h> #include <linux/module.h> #include <linux/list.h> #include <linux/random.h> #include <linux/string.h> #include <linux/bitops.h> -#include <linux/jiffies.h> +#include <linux/slab.h> #include <linux/mtd/nand_ecc.h> -#if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE) +/* + * Test the implementation for software ECC + * + * No actual MTD device is needed, So we don't need to warry about losing + * important data by human error. + * + * This covers possible patterns of corruption which can be reliably corrected + * or detected. + */ + +#if IS_ENABLED(CONFIG_MTD_NAND) + +struct nand_ecc_test { + const char *name; + void (*prepare)(void *, void *, void *, void *, const size_t); + int (*verify)(void *, void *, void *, const size_t); +}; -static void inject_single_bit_error(void *data, size_t size) +/* + * The reason for this __change_bit_le() instead of __change_bit() is to inject + * bit error properly within the region which is not a multiple of + * sizeof(unsigned long) on big-endian systems + */ +#ifdef __LITTLE_ENDIAN +#define __change_bit_le(nr, addr) __change_bit(nr, addr) +#elif defined(__BIG_ENDIAN) +#define __change_bit_le(nr, addr) \ + __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr) +#else +#error "Unknown byte order" +#endif + +static void single_bit_error_data(void *error_data, void *correct_data, + size_t size) { - unsigned long offset = random32() % (size * BITS_PER_BYTE); + unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE); - __change_bit(offset, data); + memcpy(error_data, correct_data, size); + __change_bit_le(offset, error_data); } -static unsigned char data[512]; -static unsigned char error_data[512]; +static void double_bit_error_data(void *error_data, void *correct_data, + size_t size) +{ + unsigned int offset[2]; + + offset[0] = prandom_u32() % (size * BITS_PER_BYTE); + do { + offset[1] = prandom_u32() % (size * BITS_PER_BYTE); + } while (offset[0] == offset[1]); + + memcpy(error_data, correct_data, size); -static int nand_ecc_test(const size_t size) + __change_bit_le(offset[0], error_data); + __change_bit_le(offset[1], error_data); +} + +static unsigned int random_ecc_bit(size_t size) { - unsigned char code[3]; - unsigned char error_code[3]; - char testname[30]; + unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE); + + if (size == 256) { + /* + * Don't inject a bit error into the insignificant bits (16th + * and 17th bit) in ECC code for 256 byte data block + */ + while (offset == 16 || offset == 17) + offset = prandom_u32() % (3 * BITS_PER_BYTE); + } - BUG_ON(sizeof(data) < size); + return offset; +} - sprintf(testname, "nand-ecc-%zu", size); +static void single_bit_error_ecc(void *error_ecc, void *correct_ecc, + size_t size) +{ + unsigned int offset = random_ecc_bit(size); - get_random_bytes(data, size); + memcpy(error_ecc, correct_ecc, 3); + __change_bit_le(offset, error_ecc); +} - memcpy(error_data, data, size); - inject_single_bit_error(error_data, size); +static void double_bit_error_ecc(void *error_ecc, void *correct_ecc, + size_t size) +{ + unsigned int offset[2]; - __nand_calculate_ecc(data, size, code); - __nand_calculate_ecc(error_data, size, error_code); - __nand_correct_data(error_data, code, error_code, size); + offset[0] = random_ecc_bit(size); + do { + offset[1] = random_ecc_bit(size); + } while (offset[0] == offset[1]); - if (!memcmp(data, error_data, size)) { - printk(KERN_INFO "mtd_nandecctest: ok - %s\n", testname); + memcpy(error_ecc, correct_ecc, 3); + __change_bit_le(offset[0], error_ecc); + __change_bit_le(offset[1], error_ecc); +} + +static void no_bit_error(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static int no_bit_error_verify(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + unsigned char calc_ecc[3]; + int ret; + + __nand_calculate_ecc(error_data, size, calc_ecc); + ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); + if (ret == 0 && !memcmp(correct_data, error_data, size)) return 0; - } - printk(KERN_ERR "mtd_nandecctest: not ok - %s\n", testname); + return -EINVAL; +} + +static void single_bit_error_in_data(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + single_bit_error_data(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static void single_bit_error_in_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + single_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static int single_bit_error_correct(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + unsigned char calc_ecc[3]; + int ret; + + __nand_calculate_ecc(error_data, size, calc_ecc); + ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); + if (ret == 1 && !memcmp(correct_data, error_data, size)) + return 0; + + return -EINVAL; +} + +static void double_bit_error_in_data(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + double_bit_error_data(error_data, correct_data, size); + memcpy(error_ecc, correct_ecc, 3); +} + +static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + single_bit_error_data(error_data, correct_data, size); + single_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static void double_bit_error_in_ecc(void *error_data, void *error_ecc, + void *correct_data, void *correct_ecc, const size_t size) +{ + memcpy(error_data, correct_data, size); + double_bit_error_ecc(error_ecc, correct_ecc, size); +} + +static int double_bit_error_detect(void *error_data, void *error_ecc, + void *correct_data, const size_t size) +{ + unsigned char calc_ecc[3]; + int ret; + + __nand_calculate_ecc(error_data, size, calc_ecc); + ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size); - printk(KERN_DEBUG "hexdump of data:\n"); - print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 4, - data, size, false); - printk(KERN_DEBUG "hexdump of error data:\n"); - print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 16, 4, + return (ret == -1) ? 0 : -EINVAL; +} + +static const struct nand_ecc_test nand_ecc_test[] = { + { + .name = "no-bit-error", + .prepare = no_bit_error, + .verify = no_bit_error_verify, + }, + { + .name = "single-bit-error-in-data-correct", + .prepare = single_bit_error_in_data, + .verify = single_bit_error_correct, + }, + { + .name = "single-bit-error-in-ecc-correct", + .prepare = single_bit_error_in_ecc, + .verify = single_bit_error_correct, + }, + { + .name = "double-bit-error-in-data-detect", + .prepare = double_bit_error_in_data, + .verify = double_bit_error_detect, + }, + { + .name = "single-bit-error-in-data-and-ecc-detect", + .prepare = single_bit_error_in_data_and_ecc, + .verify = double_bit_error_detect, + }, + { + .name = "double-bit-error-in-ecc-detect", + .prepare = double_bit_error_in_ecc, + .verify = double_bit_error_detect, + }, +}; + +static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data, + void *correct_ecc, const size_t size) +{ + pr_info("hexdump of error data:\n"); + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, error_data, size, false); + print_hex_dump(KERN_INFO, "hexdump of error ecc: ", + DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false); + + pr_info("hexdump of correct data:\n"); + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, + correct_data, size, false); + print_hex_dump(KERN_INFO, "hexdump of correct ecc: ", + DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false); +} + +static int nand_ecc_test_run(const size_t size) +{ + int i; + int err = 0; + void *error_data; + void *error_ecc; + void *correct_data; + void *correct_ecc; - return -1; + error_data = kmalloc(size, GFP_KERNEL); + error_ecc = kmalloc(3, GFP_KERNEL); + correct_data = kmalloc(size, GFP_KERNEL); + correct_ecc = kmalloc(3, GFP_KERNEL); + + if (!error_data || !error_ecc || !correct_data || !correct_ecc) { + err = -ENOMEM; + goto error; + } + + prandom_bytes(correct_data, size); + __nand_calculate_ecc(correct_data, size, correct_ecc); + + for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) { + nand_ecc_test[i].prepare(error_data, error_ecc, + correct_data, correct_ecc, size); + err = nand_ecc_test[i].verify(error_data, error_ecc, + correct_data, size); + + if (err) { + pr_err("not ok - %s-%zd\n", + nand_ecc_test[i].name, size); + dump_data_ecc(error_data, error_ecc, + correct_data, correct_ecc, size); + break; + } + pr_info("ok - %s-%zd\n", + nand_ecc_test[i].name, size); + } +error: + kfree(error_data); + kfree(error_ecc); + kfree(correct_data); + kfree(correct_ecc); + + return err; } #else -static int nand_ecc_test(const size_t size) +static int nand_ecc_test_run(const size_t size) { return 0; } @@ -66,12 +295,13 @@ static int nand_ecc_test(const size_t size) static int __init ecc_test_init(void) { - srandom32(jiffies); + int err; - nand_ecc_test(256); - nand_ecc_test(512); + err = nand_ecc_test_run(256); + if (err) + return err; - return 0; + return nand_ecc_test_run(512); } static void __exit ecc_test_exit(void) diff --git a/drivers/mtd/tests/mtd_pagetest.c b/drivers/mtd/tests/mtd_pagetest.c deleted file mode 100644 index 252ddb092fb..00000000000 --- a/drivers/mtd/tests/mtd_pagetest.c +++ /dev/null @@ -1,632 +0,0 @@ -/* - * Copyright (C) 2006-2008 Nokia Corporation - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; see the file COPYING. If not, write to the Free Software - * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - * - * Test page read and write on MTD device. - * - * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> - */ - -#include <asm/div64.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/moduleparam.h> -#include <linux/err.h> -#include <linux/mtd/mtd.h> -#include <linux/slab.h> -#include <linux/sched.h> - -#define PRINT_PREF KERN_INFO "mtd_pagetest: " - -static int dev = -EINVAL; -module_param(dev, int, S_IRUGO); -MODULE_PARM_DESC(dev, "MTD device number to use"); - -static struct mtd_info *mtd; -static unsigned char *twopages; -static unsigned char *writebuf; -static unsigned char *boundary; -static unsigned char *bbt; - -static int pgsize; -static int bufsize; -static int ebcnt; -static int pgcnt; -static int errcnt; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} - -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd_erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int write_eraseblock(int ebnum) -{ - int err = 0; - size_t written; - loff_t addr = ebnum * mtd->erasesize; - - set_random_data(writebuf, mtd->erasesize); - cond_resched(); - err = mtd_write(mtd, addr, mtd->erasesize, &written, writebuf); - if (err || written != mtd->erasesize) - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr); - - return err; -} - -static int verify_eraseblock(int ebnum) -{ - uint32_t j; - size_t read; - int err = 0, i; - loff_t addr0, addrn; - loff_t addr = ebnum * mtd->erasesize; - - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) - addr0 += mtd->erasesize; - - addrn = mtd->size; - for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) - addrn -= mtd->erasesize; - - set_random_data(writebuf, mtd->erasesize); - for (j = 0; j < pgcnt - 1; ++j, addr += pgsize) { - /* Do a read to set the internal dataRAMs to different data */ - err = mtd_read(mtd, addr0, bufsize, &read, twopages); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err; - } - err = mtd_read(mtd, addrn - bufsize, bufsize, &read, twopages); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)(addrn - bufsize)); - return err; - } - memset(twopages, 0, bufsize); - err = mtd_read(mtd, addr, bufsize, &read, twopages); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - break; - } - if (memcmp(twopages, writebuf + (j * pgsize), bufsize)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", - (long long)addr); - errcnt += 1; - } - } - /* Check boundary between eraseblocks */ - if (addr <= addrn - pgsize - pgsize && !bbt[ebnum + 1]) { - unsigned long oldnext = next; - /* Do a read to set the internal dataRAMs to different data */ - err = mtd_read(mtd, addr0, bufsize, &read, twopages); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err; - } - err = mtd_read(mtd, addrn - bufsize, bufsize, &read, twopages); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)(addrn - bufsize)); - return err; - } - memset(twopages, 0, bufsize); - err = mtd_read(mtd, addr, bufsize, &read, twopages); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != bufsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - return err; - } - memcpy(boundary, writebuf + mtd->erasesize - pgsize, pgsize); - set_random_data(boundary + pgsize, pgsize); - if (memcmp(twopages, boundary, bufsize)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", - (long long)addr); - errcnt += 1; - } - next = oldnext; - } - return err; -} - -static int crosstest(void) -{ - size_t read; - int err = 0, i; - loff_t addr, addr0, addrn; - unsigned char *pp1, *pp2, *pp3, *pp4; - - printk(PRINT_PREF "crosstest\n"); - pp1 = kmalloc(pgsize * 4, GFP_KERNEL); - if (!pp1) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - pp2 = pp1 + pgsize; - pp3 = pp2 + pgsize; - pp4 = pp3 + pgsize; - memset(pp1, 0, pgsize * 4); - - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) - addr0 += mtd->erasesize; - - addrn = mtd->size; - for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) - addrn -= mtd->erasesize; - - /* Read 2nd-to-last page to pp1 */ - addr = addrn - pgsize - pgsize; - err = mtd_read(mtd, addr, pgsize, &read, pp1); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read 3rd-to-last page to pp1 */ - addr = addrn - pgsize - pgsize - pgsize; - err = mtd_read(mtd, addr, pgsize, &read, pp1); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read first page to pp2 */ - addr = addr0; - printk(PRINT_PREF "reading page at %#llx\n", (long long)addr); - err = mtd_read(mtd, addr, pgsize, &read, pp2); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read last page to pp3 */ - addr = addrn - pgsize; - printk(PRINT_PREF "reading page at %#llx\n", (long long)addr); - err = mtd_read(mtd, addr, pgsize, &read, pp3); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* Read first page again to pp4 */ - addr = addr0; - printk(PRINT_PREF "reading page at %#llx\n", (long long)addr); - err = mtd_read(mtd, addr, pgsize, &read, pp4); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); - kfree(pp1); - return err; - } - - /* pp2 and pp4 should be the same */ - printk(PRINT_PREF "verifying pages read at %#llx match\n", - (long long)addr0); - if (memcmp(pp2, pp4, pgsize)) { - printk(PRINT_PREF "verify failed!\n"); - errcnt += 1; - } else if (!err) - printk(PRINT_PREF "crosstest ok\n"); - kfree(pp1); - return err; -} - -static int erasecrosstest(void) -{ - size_t read, written; - int err = 0, i, ebnum, ebnum2; - loff_t addr0; - char *readbuf = twopages; - - printk(PRINT_PREF "erasecrosstest\n"); - - ebnum = 0; - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) { - addr0 += mtd->erasesize; - ebnum += 1; - } - - ebnum2 = ebcnt - 1; - while (ebnum2 && bbt[ebnum2]) - ebnum2 -= 1; - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "writing 1st page of block %d\n", ebnum); - set_random_data(writebuf, pgsize); - strcpy(writebuf, "There is no data like this!"); - err = mtd_write(mtd, addr0, pgsize, &written, writebuf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "reading 1st page of block %d\n", ebnum); - memset(readbuf, 0, pgsize); - err = mtd_read(mtd, addr0, pgsize, &read, readbuf); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "verifying 1st page of block %d\n", ebnum); - if (memcmp(writebuf, readbuf, pgsize)) { - printk(PRINT_PREF "verify failed!\n"); - errcnt += 1; - return -1; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "writing 1st page of block %d\n", ebnum); - set_random_data(writebuf, pgsize); - strcpy(writebuf, "There is no data like this!"); - err = mtd_write(mtd, addr0, pgsize, &written, writebuf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum2); - err = erase_eraseblock(ebnum2); - if (err) - return err; - - printk(PRINT_PREF "reading 1st page of block %d\n", ebnum); - memset(readbuf, 0, pgsize); - err = mtd_read(mtd, addr0, pgsize, &read, readbuf); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "verifying 1st page of block %d\n", ebnum); - if (memcmp(writebuf, readbuf, pgsize)) { - printk(PRINT_PREF "verify failed!\n"); - errcnt += 1; - return -1; - } - - if (!err) - printk(PRINT_PREF "erasecrosstest ok\n"); - return err; -} - -static int erasetest(void) -{ - size_t read, written; - int err = 0, i, ebnum, ok = 1; - loff_t addr0; - - printk(PRINT_PREF "erasetest\n"); - - ebnum = 0; - addr0 = 0; - for (i = 0; i < ebcnt && bbt[i]; ++i) { - addr0 += mtd->erasesize; - ebnum += 1; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "writing 1st page of block %d\n", ebnum); - set_random_data(writebuf, pgsize); - err = mtd_write(mtd, addr0, pgsize, &written, writebuf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "erasing block %d\n", ebnum); - err = erase_eraseblock(ebnum); - if (err) - return err; - - printk(PRINT_PREF "reading 1st page of block %d\n", ebnum); - err = mtd_read(mtd, addr0, pgsize, &read, twopages); - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr0); - return err ? err : -1; - } - - printk(PRINT_PREF "verifying 1st page of block %d is all 0xff\n", - ebnum); - for (i = 0; i < pgsize; ++i) - if (twopages[i] != 0xff) { - printk(PRINT_PREF "verifying all 0xff failed at %d\n", - i); - errcnt += 1; - ok = 0; - break; - } - - if (ok && !err) - printk(PRINT_PREF "erasetest ok\n"); - - return err; -} - -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd_block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); - return 0; -} - -static int __init mtd_pagetest_init(void) -{ - int err = 0; - uint64_t tmp; - uint32_t i; - - printk(KERN_INFO "\n"); - printk(KERN_INFO "=================================================\n"); - - if (dev < 0) { - printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); - printk(KERN_CRIT "CAREFUL: This test wipes all data on the specified MTD device!\n"); - return -EINVAL; - } - - printk(PRINT_PREF "MTD device: %d\n", dev); - - mtd = get_mtd_device(NULL, dev); - if (IS_ERR(mtd)) { - err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); - return err; - } - - if (mtd->type != MTD_NANDFLASH) { - printk(PRINT_PREF "this test requires NAND flash\n"); - goto out; - } - - tmp = mtd->size; - do_div(tmp, mtd->erasesize); - ebcnt = tmp; - pgcnt = mtd->erasesize / mtd->writesize; - pgsize = mtd->writesize; - - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " - "page size %u, count of eraseblocks %u, pages per " - "eraseblock %u, OOB size %u\n", - (unsigned long long)mtd->size, mtd->erasesize, - pgsize, ebcnt, pgcnt, mtd->oobsize); - - err = -ENOMEM; - bufsize = pgsize * 2; - writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!writebuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - goto out; - } - twopages = kmalloc(bufsize, GFP_KERNEL); - if (!twopages) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - goto out; - } - boundary = kmalloc(bufsize, GFP_KERNEL); - if (!boundary) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - goto out; - } - - err = scan_for_bad_eraseblocks(); - if (err) - goto out; - - /* Erase all eraseblocks */ - printk(PRINT_PREF "erasing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - goto out; - cond_resched(); - } - printk(PRINT_PREF "erased %u eraseblocks\n", i); - - /* Write all eraseblocks */ - simple_srand(1); - printk(PRINT_PREF "writing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = write_eraseblock(i); - if (err) - goto out; - if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); - cond_resched(); - } - printk(PRINT_PREF "written %u eraseblocks\n", i); - - /* Check all eraseblocks */ - simple_srand(1); - printk(PRINT_PREF "verifying all eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = verify_eraseblock(i); - if (err) - goto out; - if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); - cond_resched(); - } - printk(PRINT_PREF "verified %u eraseblocks\n", i); - - err = crosstest(); - if (err) - goto out; - - err = erasecrosstest(); - if (err) - goto out; - - err = erasetest(); - if (err) - goto out; - - printk(PRINT_PREF "finished with %d errors\n", errcnt); -out: - - kfree(bbt); - kfree(boundary); - kfree(twopages); - kfree(writebuf); - put_mtd_device(mtd); - if (err) - printk(PRINT_PREF "error %d occurred\n", err); - printk(KERN_INFO "=================================================\n"); - return err; -} -module_init(mtd_pagetest_init); - -static void __exit mtd_pagetest_exit(void) -{ - return; -} -module_exit(mtd_pagetest_exit); - -MODULE_DESCRIPTION("NAND page test"); -MODULE_AUTHOR("Adrian Hunter"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/mtd_test.c b/drivers/mtd/tests/mtd_test.c new file mode 100644 index 00000000000..111ee46a742 --- /dev/null +++ b/drivers/mtd/tests/mtd_test.c @@ -0,0 +1,113 @@ +#define pr_fmt(fmt) "mtd_test: " fmt + +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/printk.h> + +#include "mtd_test.h" + +int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum) +{ + int err; + struct erase_info ei; + loff_t addr = ebnum * mtd->erasesize; + + memset(&ei, 0, sizeof(struct erase_info)); + ei.mtd = mtd; + ei.addr = addr; + ei.len = mtd->erasesize; + + err = mtd_erase(mtd, &ei); + if (err) { + pr_info("error %d while erasing EB %d\n", err, ebnum); + return err; + } + + if (ei.state == MTD_ERASE_FAILED) { + pr_info("some erase error occurred at EB %d\n", ebnum); + return -EIO; + } + return 0; +} + +static int is_block_bad(struct mtd_info *mtd, unsigned int ebnum) +{ + int ret; + loff_t addr = ebnum * mtd->erasesize; + + ret = mtd_block_isbad(mtd, addr); + if (ret) + pr_info("block %d is bad\n", ebnum); + + return ret; +} + +int mtdtest_scan_for_bad_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt) +{ + int i, bad = 0; + + if (!mtd_can_have_bb(mtd)) + return 0; + + pr_info("scanning for bad eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + bbt[i] = is_block_bad(mtd, eb + i) ? 1 : 0; + if (bbt[i]) + bad += 1; + cond_resched(); + } + pr_info("scanned %d eraseblocks, %d are bad\n", i, bad); + + return 0; +} + +int mtdtest_erase_good_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt) +{ + int err; + unsigned int i; + + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = mtdtest_erase_eraseblock(mtd, eb + i); + if (err) + return err; + cond_resched(); + } + + return 0; +} + +int mtdtest_read(struct mtd_info *mtd, loff_t addr, size_t size, void *buf) +{ + size_t read; + int err; + + err = mtd_read(mtd, addr, size, &read, buf); + /* Ignore corrected ECC errors */ + if (mtd_is_bitflip(err)) + err = 0; + if (!err && read != size) + err = -EIO; + if (err) + pr_err("error: read failed at %#llx\n", addr); + + return err; +} + +int mtdtest_write(struct mtd_info *mtd, loff_t addr, size_t size, + const void *buf) +{ + size_t written; + int err; + + err = mtd_write(mtd, addr, size, &written, buf); + if (!err && written != size) + err = -EIO; + if (err) + pr_err("error: write failed at %#llx\n", addr); + + return err; +} diff --git a/drivers/mtd/tests/mtd_test.h b/drivers/mtd/tests/mtd_test.h new file mode 100644 index 00000000000..f437c776c54 --- /dev/null +++ b/drivers/mtd/tests/mtd_test.h @@ -0,0 +1,11 @@ +#include <linux/mtd/mtd.h> + +int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum); +int mtdtest_scan_for_bad_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt); +int mtdtest_erase_good_eraseblocks(struct mtd_info *mtd, unsigned char *bbt, + unsigned int eb, int ebcnt); + +int mtdtest_read(struct mtd_info *mtd, loff_t addr, size_t size, void *buf); +int mtdtest_write(struct mtd_info *mtd, loff_t addr, size_t size, + const void *buf); diff --git a/drivers/mtd/tests/nandbiterrs.c b/drivers/mtd/tests/nandbiterrs.c new file mode 100644 index 00000000000..6f976159611 --- /dev/null +++ b/drivers/mtd/tests/nandbiterrs.c @@ -0,0 +1,428 @@ +/* + * Copyright © 2012 NetCommWireless + * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au> + * + * Test for multi-bit error recovery on a NAND page This mostly tests the + * ECC controller / driver. + * + * There are two test modes: + * + * 0 - artificially inserting bit errors until the ECC fails + * This is the default method and fairly quick. It should + * be independent of the quality of the FLASH. + * + * 1 - re-writing the same pattern repeatedly until the ECC fails. + * This method relies on the physics of NAND FLASH to eventually + * generate '0' bits if '1' has been written sufficient times. + * Depending on the NAND, the first bit errors will appear after + * 1000 or more writes and then will usually snowball, reaching the + * limits of the ECC quickly. + * + * The test stops after 10000 cycles, should your FLASH be + * exceptionally good and not generate bit errors before that. Try + * a different page in that case. + * + * Please note that neither of these tests will significantly 'use up' any + * FLASH endurance. Only a maximum of two erase operations will be performed. + * + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; see the file COPYING. If not, write to the Free Software + * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mtd/mtd.h> +#include <linux/err.h> +#include <linux/mtd/nand.h> +#include <linux/slab.h> +#include "mtd_test.h" + +static int dev; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static unsigned page_offset; +module_param(page_offset, uint, S_IRUGO); +MODULE_PARM_DESC(page_offset, "Page number relative to dev start"); + +static unsigned seed; +module_param(seed, uint, S_IRUGO); +MODULE_PARM_DESC(seed, "Random seed"); + +static int mode; +module_param(mode, int, S_IRUGO); +MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test"); + +static unsigned max_overwrite = 10000; + +static loff_t offset; /* Offset of the page we're using. */ +static unsigned eraseblock; /* Eraseblock number for our page. */ + +/* We assume that the ECC can correct up to a certain number + * of biterrors per subpage. */ +static unsigned subsize; /* Size of subpages */ +static unsigned subcount; /* Number of subpages per page */ + +static struct mtd_info *mtd; /* MTD device */ + +static uint8_t *wbuffer; /* One page write / compare buffer */ +static uint8_t *rbuffer; /* One page read buffer */ + +/* 'random' bytes from known offsets */ +static uint8_t hash(unsigned offset) +{ + unsigned v = offset; + unsigned char c; + v ^= 0x7f7edfd3; + v = v ^ (v >> 3); + v = v ^ (v >> 5); + v = v ^ (v >> 13); + c = v & 0xFF; + /* Reverse bits of result. */ + c = (c & 0x0F) << 4 | (c & 0xF0) >> 4; + c = (c & 0x33) << 2 | (c & 0xCC) >> 2; + c = (c & 0x55) << 1 | (c & 0xAA) >> 1; + return c; +} + +/* Writes wbuffer to page */ +static int write_page(int log) +{ + if (log) + pr_info("write_page\n"); + + return mtdtest_write(mtd, offset, mtd->writesize, wbuffer); +} + +/* Re-writes the data area while leaving the OOB alone. */ +static int rewrite_page(int log) +{ + int err = 0; + struct mtd_oob_ops ops; + + if (log) + pr_info("rewrite page\n"); + + ops.mode = MTD_OPS_RAW; /* No ECC */ + ops.len = mtd->writesize; + ops.retlen = 0; + ops.ooblen = 0; + ops.oobretlen = 0; + ops.ooboffs = 0; + ops.datbuf = wbuffer; + ops.oobbuf = NULL; + + err = mtd_write_oob(mtd, offset, &ops); + if (err || ops.retlen != mtd->writesize) { + pr_err("error: write_oob failed (%d)\n", err); + if (!err) + err = -EIO; + } + + return err; +} + +/* Reads page into rbuffer. Returns number of corrected bit errors (>=0) + * or error (<0) */ +static int read_page(int log) +{ + int err = 0; + size_t read; + struct mtd_ecc_stats oldstats; + + if (log) + pr_info("read_page\n"); + + /* Saving last mtd stats */ + memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats)); + + err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer); + if (err == -EUCLEAN) + err = mtd->ecc_stats.corrected - oldstats.corrected; + + if (err < 0 || read != mtd->writesize) { + pr_err("error: read failed at %#llx\n", (long long)offset); + if (err >= 0) + err = -EIO; + } + + return err; +} + +/* Verifies rbuffer against random sequence */ +static int verify_page(int log) +{ + unsigned i, errs = 0; + + if (log) + pr_info("verify_page\n"); + + for (i = 0; i < mtd->writesize; i++) { + if (rbuffer[i] != hash(i+seed)) { + pr_err("Error: page offset %u, expected %02x, got %02x\n", + i, hash(i+seed), rbuffer[i]); + errs++; + } + } + + if (errs) + return -EIO; + else + return 0; +} + +#define CBIT(v, n) ((v) & (1 << (n))) +#define BCLR(v, n) ((v) = (v) & ~(1 << (n))) + +/* Finds the first '1' bit in wbuffer starting at offset 'byte' + * and sets it to '0'. */ +static int insert_biterror(unsigned byte) +{ + int bit; + + while (byte < mtd->writesize) { + for (bit = 7; bit >= 0; bit--) { + if (CBIT(wbuffer[byte], bit)) { + BCLR(wbuffer[byte], bit); + pr_info("Inserted biterror @ %u/%u\n", byte, bit); + return 0; + } + } + byte++; + } + pr_err("biterror: Failed to find a '1' bit\n"); + return -EIO; +} + +/* Writes 'random' data to page and then introduces deliberate bit + * errors into the page, while verifying each step. */ +static int incremental_errors_test(void) +{ + int err = 0; + unsigned i; + unsigned errs_per_subpage = 0; + + pr_info("incremental biterrors test\n"); + + for (i = 0; i < mtd->writesize; i++) + wbuffer[i] = hash(i+seed); + + err = write_page(1); + if (err) + goto exit; + + while (1) { + + err = rewrite_page(1); + if (err) + goto exit; + + err = read_page(1); + if (err > 0) + pr_info("Read reported %d corrected bit errors\n", err); + if (err < 0) { + pr_err("After %d biterrors per subpage, read reported error %d\n", + errs_per_subpage, err); + err = 0; + goto exit; + } + + err = verify_page(1); + if (err) { + pr_err("ECC failure, read data is incorrect despite read success\n"); + goto exit; + } + + pr_info("Successfully corrected %d bit errors per subpage\n", + errs_per_subpage); + + for (i = 0; i < subcount; i++) { + err = insert_biterror(i * subsize); + if (err < 0) + goto exit; + } + errs_per_subpage++; + } + +exit: + return err; +} + + +/* Writes 'random' data to page and then re-writes that same data repeatedly. + This eventually develops bit errors (bits written as '1' will slowly become + '0'), which are corrected as far as the ECC is capable of. */ +static int overwrite_test(void) +{ + int err = 0; + unsigned i; + unsigned max_corrected = 0; + unsigned opno = 0; + /* We don't expect more than this many correctable bit errors per + * page. */ + #define MAXBITS 512 + static unsigned bitstats[MAXBITS]; /* bit error histogram. */ + + memset(bitstats, 0, sizeof(bitstats)); + + pr_info("overwrite biterrors test\n"); + + for (i = 0; i < mtd->writesize; i++) + wbuffer[i] = hash(i+seed); + + err = write_page(1); + if (err) + goto exit; + + while (opno < max_overwrite) { + + err = rewrite_page(0); + if (err) + break; + + err = read_page(0); + if (err >= 0) { + if (err >= MAXBITS) { + pr_info("Implausible number of bit errors corrected\n"); + err = -EIO; + break; + } + bitstats[err]++; + if (err > max_corrected) { + max_corrected = err; + pr_info("Read reported %d corrected bit errors\n", + err); + } + } else { /* err < 0 */ + pr_info("Read reported error %d\n", err); + err = 0; + break; + } + + err = verify_page(0); + if (err) { + bitstats[max_corrected] = opno; + pr_info("ECC failure, read data is incorrect despite read success\n"); + break; + } + + opno++; + } + + /* At this point bitstats[0] contains the number of ops with no bit + * errors, bitstats[1] the number of ops with 1 bit error, etc. */ + pr_info("Bit error histogram (%d operations total):\n", opno); + for (i = 0; i < max_corrected; i++) + pr_info("Page reads with %3d corrected bit errors: %d\n", + i, bitstats[i]); + +exit: + return err; +} + +static int __init mtd_nandbiterrs_init(void) +{ + int err = 0; + + printk("\n"); + printk(KERN_INFO "==================================================\n"); + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + goto exit_mtddev; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + err = -ENODEV; + goto exit_nand; + } + + pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n", + (unsigned long long)mtd->size, mtd->erasesize, + mtd->writesize, mtd->oobsize); + + subsize = mtd->writesize >> mtd->subpage_sft; + subcount = mtd->writesize / subsize; + + pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize); + + offset = page_offset * mtd->writesize; + eraseblock = mtd_div_by_eb(offset, mtd); + + pr_info("Using page=%u, offset=%llu, eraseblock=%u\n", + page_offset, offset, eraseblock); + + wbuffer = kmalloc(mtd->writesize, GFP_KERNEL); + if (!wbuffer) { + err = -ENOMEM; + goto exit_wbuffer; + } + + rbuffer = kmalloc(mtd->writesize, GFP_KERNEL); + if (!rbuffer) { + err = -ENOMEM; + goto exit_rbuffer; + } + + err = mtdtest_erase_eraseblock(mtd, eraseblock); + if (err) + goto exit_error; + + if (mode == 0) + err = incremental_errors_test(); + else + err = overwrite_test(); + + if (err) + goto exit_error; + + /* We leave the block un-erased in case of test failure. */ + err = mtdtest_erase_eraseblock(mtd, eraseblock); + if (err) + goto exit_error; + + err = -EIO; + pr_info("finished successfully.\n"); + printk(KERN_INFO "==================================================\n"); + +exit_error: + kfree(rbuffer); +exit_rbuffer: + kfree(wbuffer); +exit_wbuffer: + /* Nothing */ +exit_nand: + put_mtd_device(mtd); +exit_mtddev: + return err; +} + +static void __exit mtd_nandbiterrs_exit(void) +{ + return; +} + +module_init(mtd_nandbiterrs_init); +module_exit(mtd_nandbiterrs_exit); + +MODULE_DESCRIPTION("NAND bit error recovery test"); +MODULE_AUTHOR("Iwo Mergler"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/mtd_oobtest.c b/drivers/mtd/tests/oobtest.c index ed9b62827f1..f19ab1acde1 100644 --- a/drivers/mtd/tests/mtd_oobtest.c +++ b/drivers/mtd/tests/oobtest.c @@ -19,6 +19,8 @@ * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <asm/div64.h> #include <linux/init.h> #include <linux/module.h> @@ -27,8 +29,9 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_oobtest: " +#include "mtd_test.h" static int dev = -EINVAL; module_param(dev, int, S_IRUGO); @@ -46,70 +49,7 @@ static int use_offset; static int use_len; static int use_len_max; static int vary_offset; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} - -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd_erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int erase_whole_device(void) -{ - int err; - unsigned int i; - - printk(PRINT_PREF "erasing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - return err; - cond_resched(); - } - printk(PRINT_PREF "erased %u eraseblocks\n", i); - return 0; -} +static struct rnd_state rnd_state; static void do_vary_offset(void) { @@ -129,8 +69,8 @@ static int write_eraseblock(int ebnum) int err = 0; loff_t addr = ebnum * mtd->erasesize; + prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt); for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) { - set_random_data(writebuf, use_len); ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; @@ -138,12 +78,12 @@ static int write_eraseblock(int ebnum) ops.oobretlen = 0; ops.ooboffs = use_offset; ops.datbuf = NULL; - ops.oobbuf = writebuf; + ops.oobbuf = writebuf + (use_len_max * i) + use_offset; err = mtd_write_oob(mtd, addr, &ops); if (err || ops.oobretlen != use_len) { - printk(PRINT_PREF "error: writeoob failed at %#llx\n", + pr_err("error: writeoob failed at %#llx\n", (long long)addr); - printk(PRINT_PREF "error: use_len %d, use_offset %d\n", + pr_err("error: use_len %d, use_offset %d\n", use_len, use_offset); errcnt += 1; return err ? err : -1; @@ -160,7 +100,7 @@ static int write_whole_device(void) int err; unsigned int i; - printk(PRINT_PREF "writing OOBs of whole device\n"); + pr_info("writing OOBs of whole device\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -168,10 +108,10 @@ static int write_whole_device(void) if (err) return err; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); return 0; } @@ -182,8 +122,8 @@ static int verify_eraseblock(int ebnum) int err = 0; loff_t addr = ebnum * mtd->erasesize; + prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt); for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) { - set_random_data(writebuf, use_len); ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; @@ -194,17 +134,18 @@ static int verify_eraseblock(int ebnum) ops.oobbuf = readbuf; err = mtd_read_oob(mtd, addr, &ops); if (err || ops.oobretlen != use_len) { - printk(PRINT_PREF "error: readoob failed at %#llx\n", + pr_err("error: readoob failed at %#llx\n", (long long)addr); errcnt += 1; return err ? err : -1; } - if (memcmp(readbuf, writebuf, use_len)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + if (memcmp(readbuf, writebuf + (use_len_max * i) + use_offset, + use_len)) { + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many errors\n"); + pr_err("error: too many errors\n"); return -1; } } @@ -221,29 +162,30 @@ static int verify_eraseblock(int ebnum) ops.oobbuf = readbuf; err = mtd_read_oob(mtd, addr, &ops); if (err || ops.oobretlen != mtd->ecclayout->oobavail) { - printk(PRINT_PREF "error: readoob failed at " - "%#llx\n", (long long)addr); + pr_err("error: readoob failed at %#llx\n", + (long long)addr); errcnt += 1; return err ? err : -1; } - if (memcmp(readbuf + use_offset, writebuf, use_len)) { - printk(PRINT_PREF "error: verify failed at " - "%#llx\n", (long long)addr); + if (memcmp(readbuf + use_offset, + writebuf + (use_len_max * i) + use_offset, + use_len)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many " - "errors\n"); + pr_err("error: too many errors\n"); return -1; } } for (k = 0; k < use_offset; ++k) if (readbuf[k] != 0xff) { - printk(PRINT_PREF "error: verify 0xff " + pr_err("error: verify 0xff " "failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too " + pr_err("error: too " "many errors\n"); return -1; } @@ -251,12 +193,12 @@ static int verify_eraseblock(int ebnum) for (k = use_offset + use_len; k < mtd->ecclayout->oobavail; ++k) if (readbuf[k] != 0xff) { - printk(PRINT_PREF "error: verify 0xff " + pr_err("error: verify 0xff " "failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too " + pr_err("error: too " "many errors\n"); return -1; } @@ -275,7 +217,7 @@ static int verify_eraseblock_in_one_go(int ebnum) loff_t addr = ebnum * mtd->erasesize; size_t len = mtd->ecclayout->oobavail * pgcnt; - set_random_data(writebuf, len); + prandom_bytes_state(&rnd_state, writebuf, len); ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; @@ -286,17 +228,17 @@ static int verify_eraseblock_in_one_go(int ebnum) ops.oobbuf = readbuf; err = mtd_read_oob(mtd, addr, &ops); if (err || ops.oobretlen != len) { - printk(PRINT_PREF "error: readoob failed at %#llx\n", + pr_err("error: readoob failed at %#llx\n", (long long)addr); errcnt += 1; return err ? err : -1; } if (memcmp(readbuf, writebuf, len)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many errors\n"); + pr_err("error: too many errors\n"); return -1; } } @@ -309,7 +251,7 @@ static int verify_all_eraseblocks(void) int err; unsigned int i; - printk(PRINT_PREF "verifying all eraseblocks\n"); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -317,42 +259,10 @@ static int verify_all_eraseblocks(void) if (err) return err; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); - return 0; -} - -static int is_block_bad(int ebnum) -{ - int ret; - loff_t addr = ebnum * mtd->erasesize; - - ret = mtd_block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kmalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); + pr_info("verified %u eraseblocks\n", i); return 0; } @@ -368,22 +278,22 @@ static int __init mtd_oobtest_init(void) printk(KERN_INFO "=================================================\n"); if (dev < 0) { - printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); - printk(KERN_CRIT "CAREFUL: This test wipes all data on the specified MTD device!\n"); + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); return -EINVAL; } - printk(PRINT_PREF "MTD device: %d\n", dev); + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } - if (mtd->type != MTD_NANDFLASH) { - printk(PRINT_PREF "this test requires NAND flash\n"); + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); goto out; } @@ -392,7 +302,7 @@ static int __init mtd_oobtest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / mtd->writesize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, @@ -400,17 +310,16 @@ static int __init mtd_oobtest_init(void) err = -ENOMEM; readbuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!readbuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!readbuf) goto out; - } writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!writebuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!writebuf) + goto out; + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) goto out; - } - err = scan_for_bad_eraseblocks(); + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -420,18 +329,18 @@ static int __init mtd_oobtest_init(void) vary_offset = 0; /* First test: write all OOB, read it back and verify */ - printk(PRINT_PREF "test 1 of 5\n"); + pr_info("test 1 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - simple_srand(1); + prandom_seed_state(&rnd_state, 1); err = write_whole_device(); if (err) goto out; - simple_srand(1); + prandom_seed_state(&rnd_state, 1); err = verify_all_eraseblocks(); if (err) goto out; @@ -440,20 +349,20 @@ static int __init mtd_oobtest_init(void) * Second test: write all OOB, a block at a time, read it back and * verify. */ - printk(PRINT_PREF "test 2 of 5\n"); + pr_info("test 2 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - simple_srand(3); + prandom_seed_state(&rnd_state, 3); err = write_whole_device(); if (err) goto out; /* Check all eraseblocks */ - simple_srand(3); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 3); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -461,18 +370,18 @@ static int __init mtd_oobtest_init(void) if (err) goto out; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); /* * Third test: write OOB at varying offsets and lengths, read it back * and verify. */ - printk(PRINT_PREF "test 3 of 5\n"); + pr_info("test 3 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -481,7 +390,7 @@ static int __init mtd_oobtest_init(void) use_len = mtd->ecclayout->oobavail; use_len_max = mtd->ecclayout->oobavail; vary_offset = 1; - simple_srand(5); + prandom_seed_state(&rnd_state, 5); err = write_whole_device(); if (err) @@ -492,7 +401,7 @@ static int __init mtd_oobtest_init(void) use_len = mtd->ecclayout->oobavail; use_len_max = mtd->ecclayout->oobavail; vary_offset = 1; - simple_srand(5); + prandom_seed_state(&rnd_state, 5); err = verify_all_eraseblocks(); if (err) goto out; @@ -503,9 +412,9 @@ static int __init mtd_oobtest_init(void) vary_offset = 0; /* Fourth test: try to write off end of device */ - printk(PRINT_PREF "test 4 of 5\n"); + pr_info("test 4 of 5\n"); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -522,14 +431,14 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = mtd->ecclayout->oobavail; ops.datbuf = NULL; ops.oobbuf = writebuf; - printk(PRINT_PREF "attempting to start write past end of OOB\n"); - printk(PRINT_PREF "an error is expected...\n"); + pr_info("attempting to start write past end of OOB\n"); + pr_info("an error is expected...\n"); err = mtd_write_oob(mtd, addr0, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: can write past end of OOB\n"); + pr_err("error: can write past end of OOB\n"); errcnt += 1; } @@ -542,19 +451,19 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = mtd->ecclayout->oobavail; ops.datbuf = NULL; ops.oobbuf = readbuf; - printk(PRINT_PREF "attempting to start read past end of OOB\n"); - printk(PRINT_PREF "an error is expected...\n"); + pr_info("attempting to start read past end of OOB\n"); + pr_info("an error is expected...\n"); err = mtd_read_oob(mtd, addr0, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: can read past end of OOB\n"); + pr_err("error: can read past end of OOB\n"); errcnt += 1; } if (bbt[ebcnt - 1]) - printk(PRINT_PREF "skipping end of device tests because last " + pr_info("skipping end of device tests because last " "block is bad\n"); else { /* Attempt to write off end of device */ @@ -566,14 +475,14 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = writebuf; - printk(PRINT_PREF "attempting to write past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); + pr_info("attempting to write past end of device\n"); + pr_info("an error is expected...\n"); err = mtd_write_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: wrote past end of device\n"); + pr_err("error: wrote past end of device\n"); errcnt += 1; } @@ -586,18 +495,18 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 0; ops.datbuf = NULL; ops.oobbuf = readbuf; - printk(PRINT_PREF "attempting to read past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); + pr_info("attempting to read past end of device\n"); + pr_info("an error is expected...\n"); err = mtd_read_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: read past end of device\n"); + pr_err("error: read past end of device\n"); errcnt += 1; } - err = erase_eraseblock(ebcnt - 1); + err = mtdtest_erase_eraseblock(mtd, ebcnt - 1); if (err) goto out; @@ -610,14 +519,14 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 1; ops.datbuf = NULL; ops.oobbuf = writebuf; - printk(PRINT_PREF "attempting to write past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); + pr_info("attempting to write past end of device\n"); + pr_info("an error is expected...\n"); err = mtd_write_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: wrote past end of device\n"); + pr_err("error: wrote past end of device\n"); errcnt += 1; } @@ -630,29 +539,29 @@ static int __init mtd_oobtest_init(void) ops.ooboffs = 1; ops.datbuf = NULL; ops.oobbuf = readbuf; - printk(PRINT_PREF "attempting to read past end of device\n"); - printk(PRINT_PREF "an error is expected...\n"); + pr_info("attempting to read past end of device\n"); + pr_info("an error is expected...\n"); err = mtd_read_oob(mtd, mtd->size - mtd->writesize, &ops); if (err) { - printk(PRINT_PREF "error occurred as expected\n"); + pr_info("error occurred as expected\n"); err = 0; } else { - printk(PRINT_PREF "error: read past end of device\n"); + pr_err("error: read past end of device\n"); errcnt += 1; } } /* Fifth test: write / read across block boundaries */ - printk(PRINT_PREF "test 5 of 5\n"); + pr_info("test 5 of 5\n"); /* Erase all eraseblocks */ - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks */ - simple_srand(11); - printk(PRINT_PREF "writing OOBs of whole device\n"); + prandom_seed_state(&rnd_state, 11); + pr_info("writing OOBs of whole device\n"); for (i = 0; i < ebcnt - 1; ++i) { int cnt = 2; int pg; @@ -660,8 +569,8 @@ static int __init mtd_oobtest_init(void) if (bbt[i] || bbt[i + 1]) continue; addr = (i + 1) * mtd->erasesize - mtd->writesize; + prandom_bytes_state(&rnd_state, writebuf, sz * cnt); for (pg = 0; pg < cnt; ++pg) { - set_random_data(writebuf, sz); ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; ops.retlen = 0; @@ -669,26 +578,26 @@ static int __init mtd_oobtest_init(void) ops.oobretlen = 0; ops.ooboffs = 0; ops.datbuf = NULL; - ops.oobbuf = writebuf; + ops.oobbuf = writebuf + pg * sz; err = mtd_write_oob(mtd, addr, &ops); if (err) goto out; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock " - "%u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); addr += mtd->writesize; } } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); /* Check all eraseblocks */ - simple_srand(11); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 11); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt - 1; ++i) { if (bbt[i] || bbt[i + 1]) continue; - set_random_data(writebuf, mtd->ecclayout->oobavail * 2); + prandom_bytes_state(&rnd_state, writebuf, + mtd->ecclayout->oobavail * 2); addr = (i + 1) * mtd->erasesize - mtd->writesize; ops.mode = MTD_OPS_AUTO_OOB; ops.len = 0; @@ -702,28 +611,28 @@ static int __init mtd_oobtest_init(void) if (err) goto out; if (memcmp(readbuf, writebuf, mtd->ecclayout->oobavail * 2)) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; if (errcnt > 1000) { - printk(PRINT_PREF "error: too many errors\n"); + pr_err("error: too many errors\n"); goto out; } } if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); - printk(PRINT_PREF "finished with %d errors\n", errcnt); + pr_info("finished with %d errors\n", errcnt); out: kfree(bbt); kfree(writebuf); kfree(readbuf); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/pagetest.c b/drivers/mtd/tests/pagetest.c new file mode 100644 index 00000000000..ed2d3f656fd --- /dev/null +++ b/drivers/mtd/tests/pagetest.c @@ -0,0 +1,464 @@ +/* + * Copyright (C) 2006-2008 Nokia Corporation + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; see the file COPYING. If not, write to the Free Software + * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * Test page read and write on MTD device. + * + * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <asm/div64.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/err.h> +#include <linux/mtd/mtd.h> +#include <linux/slab.h> +#include <linux/sched.h> +#include <linux/random.h> + +#include "mtd_test.h" + +static int dev = -EINVAL; +module_param(dev, int, S_IRUGO); +MODULE_PARM_DESC(dev, "MTD device number to use"); + +static struct mtd_info *mtd; +static unsigned char *twopages; +static unsigned char *writebuf; +static unsigned char *boundary; +static unsigned char *bbt; + +static int pgsize; +static int bufsize; +static int ebcnt; +static int pgcnt; +static int errcnt; +static struct rnd_state rnd_state; + +static int write_eraseblock(int ebnum) +{ + loff_t addr = ebnum * mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize); + cond_resched(); + return mtdtest_write(mtd, addr, mtd->erasesize, writebuf); +} + +static int verify_eraseblock(int ebnum) +{ + uint32_t j; + int err = 0, i; + loff_t addr0, addrn; + loff_t addr = ebnum * mtd->erasesize; + + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) + addr0 += mtd->erasesize; + + addrn = mtd->size; + for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) + addrn -= mtd->erasesize; + + prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize); + for (j = 0; j < pgcnt - 1; ++j, addr += pgsize) { + /* Do a read to set the internal dataRAMs to different data */ + err = mtdtest_read(mtd, addr0, bufsize, twopages); + if (err) + return err; + err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages); + if (err) + return err; + memset(twopages, 0, bufsize); + err = mtdtest_read(mtd, addr, bufsize, twopages); + if (err) + break; + if (memcmp(twopages, writebuf + (j * pgsize), bufsize)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + } + } + /* Check boundary between eraseblocks */ + if (addr <= addrn - pgsize - pgsize && !bbt[ebnum + 1]) { + struct rnd_state old_state = rnd_state; + + /* Do a read to set the internal dataRAMs to different data */ + err = mtdtest_read(mtd, addr0, bufsize, twopages); + if (err) + return err; + err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages); + if (err) + return err; + memset(twopages, 0, bufsize); + err = mtdtest_read(mtd, addr, bufsize, twopages); + if (err) + return err; + memcpy(boundary, writebuf + mtd->erasesize - pgsize, pgsize); + prandom_bytes_state(&rnd_state, boundary + pgsize, pgsize); + if (memcmp(twopages, boundary, bufsize)) { + pr_err("error: verify failed at %#llx\n", + (long long)addr); + errcnt += 1; + } + rnd_state = old_state; + } + return err; +} + +static int crosstest(void) +{ + int err = 0, i; + loff_t addr, addr0, addrn; + unsigned char *pp1, *pp2, *pp3, *pp4; + + pr_info("crosstest\n"); + pp1 = kmalloc(pgsize * 4, GFP_KERNEL); + if (!pp1) + return -ENOMEM; + pp2 = pp1 + pgsize; + pp3 = pp2 + pgsize; + pp4 = pp3 + pgsize; + memset(pp1, 0, pgsize * 4); + + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) + addr0 += mtd->erasesize; + + addrn = mtd->size; + for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i) + addrn -= mtd->erasesize; + + /* Read 2nd-to-last page to pp1 */ + addr = addrn - pgsize - pgsize; + err = mtdtest_read(mtd, addr, pgsize, pp1); + if (err) { + kfree(pp1); + return err; + } + + /* Read 3rd-to-last page to pp1 */ + addr = addrn - pgsize - pgsize - pgsize; + err = mtdtest_read(mtd, addr, pgsize, pp1); + if (err) { + kfree(pp1); + return err; + } + + /* Read first page to pp2 */ + addr = addr0; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp2); + if (err) { + kfree(pp1); + return err; + } + + /* Read last page to pp3 */ + addr = addrn - pgsize; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp3); + if (err) { + kfree(pp1); + return err; + } + + /* Read first page again to pp4 */ + addr = addr0; + pr_info("reading page at %#llx\n", (long long)addr); + err = mtdtest_read(mtd, addr, pgsize, pp4); + if (err) { + kfree(pp1); + return err; + } + + /* pp2 and pp4 should be the same */ + pr_info("verifying pages read at %#llx match\n", + (long long)addr0); + if (memcmp(pp2, pp4, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + } else if (!err) + pr_info("crosstest ok\n"); + kfree(pp1); + return err; +} + +static int erasecrosstest(void) +{ + int err = 0, i, ebnum, ebnum2; + loff_t addr0; + char *readbuf = twopages; + + pr_info("erasecrosstest\n"); + + ebnum = 0; + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) { + addr0 += mtd->erasesize; + ebnum += 1; + } + + ebnum2 = ebcnt - 1; + while (ebnum2 && bbt[ebnum2]) + ebnum2 -= 1; + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + strcpy(writebuf, "There is no data like this!"); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + memset(readbuf, 0, pgsize); + err = mtdtest_read(mtd, addr0, pgsize, readbuf); + if (err) + return err; + + pr_info("verifying 1st page of block %d\n", ebnum); + if (memcmp(writebuf, readbuf, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + return -1; + } + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + strcpy(writebuf, "There is no data like this!"); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("erasing block %d\n", ebnum2); + err = mtdtest_erase_eraseblock(mtd, ebnum2); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + memset(readbuf, 0, pgsize); + err = mtdtest_read(mtd, addr0, pgsize, readbuf); + if (err) + return err; + + pr_info("verifying 1st page of block %d\n", ebnum); + if (memcmp(writebuf, readbuf, pgsize)) { + pr_err("verify failed!\n"); + errcnt += 1; + return -1; + } + + if (!err) + pr_info("erasecrosstest ok\n"); + return err; +} + +static int erasetest(void) +{ + int err = 0, i, ebnum, ok = 1; + loff_t addr0; + + pr_info("erasetest\n"); + + ebnum = 0; + addr0 = 0; + for (i = 0; i < ebcnt && bbt[i]; ++i) { + addr0 += mtd->erasesize; + ebnum += 1; + } + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("writing 1st page of block %d\n", ebnum); + prandom_bytes_state(&rnd_state, writebuf, pgsize); + err = mtdtest_write(mtd, addr0, pgsize, writebuf); + if (err) + return err; + + pr_info("erasing block %d\n", ebnum); + err = mtdtest_erase_eraseblock(mtd, ebnum); + if (err) + return err; + + pr_info("reading 1st page of block %d\n", ebnum); + err = mtdtest_read(mtd, addr0, pgsize, twopages); + if (err) + return err; + + pr_info("verifying 1st page of block %d is all 0xff\n", + ebnum); + for (i = 0; i < pgsize; ++i) + if (twopages[i] != 0xff) { + pr_err("verifying all 0xff failed at %d\n", + i); + errcnt += 1; + ok = 0; + break; + } + + if (ok && !err) + pr_info("erasetest ok\n"); + + return err; +} + +static int __init mtd_pagetest_init(void) +{ + int err = 0; + uint64_t tmp; + uint32_t i; + + printk(KERN_INFO "\n"); + printk(KERN_INFO "=================================================\n"); + + if (dev < 0) { + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); + return -EINVAL; + } + + pr_info("MTD device: %d\n", dev); + + mtd = get_mtd_device(NULL, dev); + if (IS_ERR(mtd)) { + err = PTR_ERR(mtd); + pr_err("error: cannot get MTD device\n"); + return err; + } + + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); + goto out; + } + + tmp = mtd->size; + do_div(tmp, mtd->erasesize); + ebcnt = tmp; + pgcnt = mtd->erasesize / mtd->writesize; + pgsize = mtd->writesize; + + pr_info("MTD device size %llu, eraseblock size %u, " + "page size %u, count of eraseblocks %u, pages per " + "eraseblock %u, OOB size %u\n", + (unsigned long long)mtd->size, mtd->erasesize, + pgsize, ebcnt, pgcnt, mtd->oobsize); + + err = -ENOMEM; + bufsize = pgsize * 2; + writebuf = kmalloc(mtd->erasesize, GFP_KERNEL); + if (!writebuf) + goto out; + twopages = kmalloc(bufsize, GFP_KERNEL); + if (!twopages) + goto out; + boundary = kmalloc(bufsize, GFP_KERNEL); + if (!boundary) + goto out; + + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + + /* Erase all eraseblocks */ + pr_info("erasing whole device\n"); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; + pr_info("erased %u eraseblocks\n", ebcnt); + + /* Write all eraseblocks */ + prandom_seed_state(&rnd_state, 1); + pr_info("writing whole device\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = write_eraseblock(i); + if (err) + goto out; + if (i % 256 == 0) + pr_info("written up to eraseblock %u\n", i); + cond_resched(); + } + pr_info("written %u eraseblocks\n", i); + + /* Check all eraseblocks */ + prandom_seed_state(&rnd_state, 1); + pr_info("verifying all eraseblocks\n"); + for (i = 0; i < ebcnt; ++i) { + if (bbt[i]) + continue; + err = verify_eraseblock(i); + if (err) + goto out; + if (i % 256 == 0) + pr_info("verified up to eraseblock %u\n", i); + cond_resched(); + } + pr_info("verified %u eraseblocks\n", i); + + err = crosstest(); + if (err) + goto out; + + err = erasecrosstest(); + if (err) + goto out; + + err = erasetest(); + if (err) + goto out; + + pr_info("finished with %d errors\n", errcnt); +out: + + kfree(bbt); + kfree(boundary); + kfree(twopages); + kfree(writebuf); + put_mtd_device(mtd); + if (err) + pr_info("error %d occurred\n", err); + printk(KERN_INFO "=================================================\n"); + return err; +} +module_init(mtd_pagetest_init); + +static void __exit mtd_pagetest_exit(void) +{ + return; +} +module_exit(mtd_pagetest_exit); + +MODULE_DESCRIPTION("NAND page test"); +MODULE_AUTHOR("Adrian Hunter"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/mtd_readtest.c b/drivers/mtd/tests/readtest.c index 121aba189ce..626e66d0f7e 100644 --- a/drivers/mtd/tests/mtd_readtest.c +++ b/drivers/mtd/tests/readtest.c @@ -19,6 +19,8 @@ * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -27,7 +29,7 @@ #include <linux/slab.h> #include <linux/sched.h> -#define PRINT_PREF KERN_INFO "mtd_readtest: " +#include "mtd_test.h" static int dev = -EINVAL; module_param(dev, int, S_IRUGO); @@ -44,24 +46,17 @@ static int pgcnt; static int read_eraseblock_by_page(int ebnum) { - size_t read; int i, ret, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; void *oobbuf = iobuf1; for (i = 0; i < pgcnt; i++) { - memset(buf, 0 , pgcnt); - ret = mtd_read(mtd, addr, pgsize, &read, buf); - if (ret == -EUCLEAN) - ret = 0; - if (ret || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - (long long)addr); + memset(buf, 0 , pgsize); + ret = mtdtest_read(mtd, addr, pgsize, buf); + if (ret) { if (!err) err = ret; - if (!err) - err = -EINVAL; } if (mtd->oobsize) { struct mtd_oob_ops ops; @@ -77,7 +72,7 @@ static int read_eraseblock_by_page(int ebnum) ret = mtd_read_oob(mtd, addr, &ops); if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != mtd->oobsize) { - printk(PRINT_PREF "error: read oob failed at " + pr_err("error: read oob failed at " "%#llx\n", (long long)addr); if (!err) err = ret; @@ -99,7 +94,7 @@ static void dump_eraseblock(int ebnum) char line[128]; int pg, oob; - printk(PRINT_PREF "dumping eraseblock %d\n", ebnum); + pr_info("dumping eraseblock %d\n", ebnum); n = mtd->erasesize; for (i = 0; i < n;) { char *p = line; @@ -112,7 +107,7 @@ static void dump_eraseblock(int ebnum) } if (!mtd->oobsize) return; - printk(PRINT_PREF "dumping oob from eraseblock %d\n", ebnum); + pr_info("dumping oob from eraseblock %d\n", ebnum); n = mtd->oobsize; for (pg = 0, i = 0; pg < pgcnt; pg++) for (oob = 0; oob < n;) { @@ -127,41 +122,6 @@ static void dump_eraseblock(int ebnum) } } -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd_block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - if (!mtd_can_have_bb(mtd)) - return 0; - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); - return 0; -} - static int __init mtd_readtest_init(void) { uint64_t tmp; @@ -171,21 +131,21 @@ static int __init mtd_readtest_init(void) printk(KERN_INFO "=================================================\n"); if (dev < 0) { - printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); + pr_info("Please specify a valid mtd-device via module parameter\n"); return -EINVAL; } - printk(PRINT_PREF "MTD device: %d\n", dev); + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: Cannot get MTD device\n"); + pr_err("error: Cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else @@ -196,7 +156,7 @@ static int __init mtd_readtest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, @@ -204,22 +164,21 @@ static int __init mtd_readtest_init(void) err = -ENOMEM; iobuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!iobuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!iobuf) goto out; - } iobuf1 = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!iobuf1) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!iobuf1) goto out; - } - err = scan_for_bad_eraseblocks(); + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Read all eraseblocks 1 page at a time */ - printk(PRINT_PREF "testing page read\n"); + pr_info("testing page read\n"); for (i = 0; i < ebcnt; ++i) { int ret; @@ -235,9 +194,9 @@ static int __init mtd_readtest_init(void) } if (err) - printk(PRINT_PREF "finished with errors\n"); + pr_info("finished with errors\n"); else - printk(PRINT_PREF "finished\n"); + pr_info("finished\n"); out: @@ -246,7 +205,7 @@ out: kfree(bbt); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_speedtest.c b/drivers/mtd/tests/speedtest.c index 2aec4f3b72b..87ff6a29f84 100644 --- a/drivers/mtd/tests/mtd_speedtest.c +++ b/drivers/mtd/tests/speedtest.c @@ -19,6 +19,8 @@ * Author: Adrian Hunter <adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -26,8 +28,9 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_speedtest: " +#include "mtd_test.h" static int dev = -EINVAL; module_param(dev, int, S_IRUGO); @@ -47,52 +50,6 @@ static int ebcnt; static int pgcnt; static int goodebcnt; static struct timeval start, finish; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} - -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd_erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} static int multiblock_erase(int ebnum, int blocks) { @@ -107,13 +64,13 @@ static int multiblock_erase(int ebnum, int blocks) err = mtd_erase(mtd, &ei); if (err) { - printk(PRINT_PREF "error %d while erasing EB %d, blocks %d\n", + pr_err("error %d while erasing EB %d, blocks %d\n", err, ebnum, blocks); return err; } if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d," + pr_err("some erase error occurred at EB %d," "blocks %d\n", ebnum, blocks); return -EIO; } @@ -121,54 +78,23 @@ static int multiblock_erase(int ebnum, int blocks) return 0; } -static int erase_whole_device(void) -{ - int err; - unsigned int i; - - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - return err; - cond_resched(); - } - return 0; -} - static int write_eraseblock(int ebnum) { - size_t written; - int err = 0; loff_t addr = ebnum * mtd->erasesize; - err = mtd_write(mtd, addr, mtd->erasesize, &written, iobuf); - if (err || written != mtd->erasesize) { - printk(PRINT_PREF "error: write failed at %#llx\n", addr); - if (!err) - err = -EINVAL; - } - - return err; + return mtdtest_write(mtd, addr, mtd->erasesize, iobuf); } static int write_eraseblock_by_page(int ebnum) { - size_t written; int i, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < pgcnt; i++) { - err = mtd_write(mtd, addr, pgsize, &written, buf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_write(mtd, addr, pgsize, buf); + if (err) break; - } addr += pgsize; buf += pgsize; } @@ -178,74 +104,41 @@ static int write_eraseblock_by_page(int ebnum) static int write_eraseblock_by_2pages(int ebnum) { - size_t written, sz = pgsize * 2; + size_t sz = pgsize * 2; int i, n = pgcnt / 2, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < n; i++) { - err = mtd_write(mtd, addr, sz, &written, buf); - if (err || written != sz) { - printk(PRINT_PREF "error: write failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_write(mtd, addr, sz, buf); + if (err) return err; - } addr += sz; buf += sz; } - if (pgcnt % 2) { - err = mtd_write(mtd, addr, pgsize, &written, buf); - if (err || written != pgsize) { - printk(PRINT_PREF "error: write failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; - } - } + if (pgcnt % 2) + err = mtdtest_write(mtd, addr, pgsize, buf); return err; } static int read_eraseblock(int ebnum) { - size_t read; - int err = 0; loff_t addr = ebnum * mtd->erasesize; - err = mtd_read(mtd, addr, mtd->erasesize, &read, iobuf); - /* Ignore corrected ECC errors */ - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != mtd->erasesize) { - printk(PRINT_PREF "error: read failed at %#llx\n", addr); - if (!err) - err = -EINVAL; - } - - return err; + return mtdtest_read(mtd, addr, mtd->erasesize, iobuf); } static int read_eraseblock_by_page(int ebnum) { - size_t read; int i, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < pgcnt; i++) { - err = mtd_read(mtd, addr, pgsize, &read, buf); - /* Ignore corrected ECC errors */ - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_read(mtd, addr, pgsize, buf); + if (err) break; - } addr += pgsize; buf += pgsize; } @@ -255,53 +148,24 @@ static int read_eraseblock_by_page(int ebnum) static int read_eraseblock_by_2pages(int ebnum) { - size_t read, sz = pgsize * 2; + size_t sz = pgsize * 2; int i, n = pgcnt / 2, err = 0; loff_t addr = ebnum * mtd->erasesize; void *buf = iobuf; for (i = 0; i < n; i++) { - err = mtd_read(mtd, addr, sz, &read, buf); - /* Ignore corrected ECC errors */ - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != sz) { - printk(PRINT_PREF "error: read failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; + err = mtdtest_read(mtd, addr, sz, buf); + if (err) return err; - } addr += sz; buf += sz; } - if (pgcnt % 2) { - err = mtd_read(mtd, addr, pgsize, &read, buf); - /* Ignore corrected ECC errors */ - if (mtd_is_bitflip(err)) - err = 0; - if (err || read != pgsize) { - printk(PRINT_PREF "error: read failed at %#llx\n", - addr); - if (!err) - err = -EINVAL; - } - } + if (pgcnt % 2) + err = mtdtest_read(mtd, addr, pgsize, buf); return err; } -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd_block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - static inline void start_timing(void) { do_gettimeofday(&start); @@ -326,32 +190,6 @@ static long calc_speed(void) return k; } -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - if (!mtd_can_have_bb(mtd)) - goto out; - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); -out: - goodebcnt = ebcnt - bad; - return 0; -} - static int __init mtd_speedtest_init(void) { int err, i, blocks, j, k; @@ -362,25 +200,25 @@ static int __init mtd_speedtest_init(void) printk(KERN_INFO "=================================================\n"); if (dev < 0) { - printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); - printk(KERN_CRIT "CAREFUL: This test wipes all data on the specified MTD device!\n"); + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); return -EINVAL; } if (count) - printk(PRINT_PREF "MTD device: %d count: %d\n", dev, count); + pr_info("MTD device: %d count: %d\n", dev, count); else - printk(PRINT_PREF "MTD device: %d\n", dev); + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else @@ -391,7 +229,7 @@ static int __init mtd_speedtest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, @@ -402,24 +240,28 @@ static int __init mtd_speedtest_init(void) err = -ENOMEM; iobuf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!iobuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!iobuf) goto out; - } - simple_srand(1); - set_random_data(iobuf, mtd->erasesize); + prandom_bytes(iobuf, mtd->erasesize); - err = scan_for_bad_eraseblocks(); + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; + for (i = 0; i < ebcnt; i++) { + if (!bbt[i]) + goodebcnt++; + } - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks, 1 eraseblock at a time */ - printk(PRINT_PREF "testing eraseblock write speed\n"); + pr_info("testing eraseblock write speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -431,10 +273,10 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "eraseblock write speed is %ld KiB/s\n", speed); + pr_info("eraseblock write speed is %ld KiB/s\n", speed); /* Read all eraseblocks, 1 eraseblock at a time */ - printk(PRINT_PREF "testing eraseblock read speed\n"); + pr_info("testing eraseblock read speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -446,14 +288,14 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "eraseblock read speed is %ld KiB/s\n", speed); + pr_info("eraseblock read speed is %ld KiB/s\n", speed); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks, 1 page at a time */ - printk(PRINT_PREF "testing page write speed\n"); + pr_info("testing page write speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -465,10 +307,10 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "page write speed is %ld KiB/s\n", speed); + pr_info("page write speed is %ld KiB/s\n", speed); /* Read all eraseblocks, 1 page at a time */ - printk(PRINT_PREF "testing page read speed\n"); + pr_info("testing page read speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -480,14 +322,14 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "page read speed is %ld KiB/s\n", speed); + pr_info("page read speed is %ld KiB/s\n", speed); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Write all eraseblocks, 2 pages at a time */ - printk(PRINT_PREF "testing 2 page write speed\n"); + pr_info("testing 2 page write speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -499,10 +341,10 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "2 page write speed is %ld KiB/s\n", speed); + pr_info("2 page write speed is %ld KiB/s\n", speed); /* Read all eraseblocks, 2 pages at a time */ - printk(PRINT_PREF "testing 2 page read speed\n"); + pr_info("testing 2 page read speed\n"); start_timing(); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) @@ -514,27 +356,22 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "2 page read speed is %ld KiB/s\n", speed); + pr_info("2 page read speed is %ld KiB/s\n", speed); /* Erase all eraseblocks */ - printk(PRINT_PREF "Testing erase speed\n"); + pr_info("Testing erase speed\n"); start_timing(); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - goto out; - cond_resched(); - } + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); + if (err) + goto out; stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "erase speed is %ld KiB/s\n", speed); + pr_info("erase speed is %ld KiB/s\n", speed); /* Multi-block erase all eraseblocks */ for (k = 1; k < 7; k++) { blocks = 1 << k; - printk(PRINT_PREF "Testing %dx multi-block erase speed\n", + pr_info("Testing %dx multi-block erase speed\n", blocks); start_timing(); for (i = 0; i < ebcnt; ) { @@ -553,16 +390,16 @@ static int __init mtd_speedtest_init(void) } stop_timing(); speed = calc_speed(); - printk(PRINT_PREF "%dx multi-block erase speed is %ld KiB/s\n", + pr_info("%dx multi-block erase speed is %ld KiB/s\n", blocks, speed); } - printk(PRINT_PREF "finished\n"); + pr_info("finished\n"); out: kfree(iobuf); kfree(bbt); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_stresstest.c b/drivers/mtd/tests/stresstest.c index 7b33f22d0b5..c9d42cc2df1 100644 --- a/drivers/mtd/tests/mtd_stresstest.c +++ b/drivers/mtd/tests/stresstest.c @@ -19,6 +19,8 @@ * Author: Adrian Hunter <ext-adrian.hunter@nokia.com> */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -27,8 +29,9 @@ #include <linux/slab.h> #include <linux/sched.h> #include <linux/vmalloc.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_stresstest: " +#include "mtd_test.h" static int dev = -EINVAL; module_param(dev, int, S_IRUGO); @@ -48,28 +51,13 @@ static int pgsize; static int bufsize; static int ebcnt; static int pgcnt; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} static int rand_eb(void) { - int eb; + unsigned int eb; again: - if (ebcnt < 32768) - eb = simple_rand(); - else - eb = (simple_rand() << 15) | simple_rand(); + eb = prandom_u32(); /* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */ eb %= (ebcnt - 1); if (bbt[eb]) @@ -79,71 +67,27 @@ again: static int rand_offs(void) { - int offs; + unsigned int offs; - if (bufsize < 32768) - offs = simple_rand(); - else - offs = (simple_rand() << 15) | simple_rand(); + offs = prandom_u32(); offs %= bufsize; return offs; } static int rand_len(int offs) { - int len; + unsigned int len; - if (bufsize < 32768) - len = simple_rand(); - else - len = (simple_rand() << 15) | simple_rand(); + len = prandom_u32(); len %= (bufsize - offs); return len; } -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd_erase(mtd, &ei); - if (unlikely(err)) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (unlikely(ei.state == MTD_ERASE_FAILED)) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd_block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - static int do_read(void) { - size_t read; int eb = rand_eb(); int offs = rand_offs(); - int len = rand_len(offs), err; + int len = rand_len(offs); loff_t addr; if (bbt[eb + 1]) { @@ -153,28 +97,17 @@ static int do_read(void) len = mtd->erasesize - offs; } addr = eb * mtd->erasesize + offs; - err = mtd_read(mtd, addr, len, &read, readbuf); - if (mtd_is_bitflip(err)) - err = 0; - if (unlikely(err || read != len)) { - printk(PRINT_PREF "error: read failed at 0x%llx\n", - (long long)addr); - if (!err) - err = -EINVAL; - return err; - } - return 0; + return mtdtest_read(mtd, addr, len, readbuf); } static int do_write(void) { int eb = rand_eb(), offs, err, len; - size_t written; loff_t addr; offs = offsets[eb]; if (offs >= mtd->erasesize) { - err = erase_eraseblock(eb); + err = mtdtest_erase_eraseblock(mtd, eb); if (err) return err; offs = offsets[eb] = 0; @@ -185,21 +118,16 @@ static int do_write(void) if (bbt[eb + 1]) len = mtd->erasesize - offs; else { - err = erase_eraseblock(eb + 1); + err = mtdtest_erase_eraseblock(mtd, eb + 1); if (err) return err; offsets[eb + 1] = 0; } } addr = eb * mtd->erasesize + offs; - err = mtd_write(mtd, addr, len, &written, writebuf); - if (unlikely(err || written != len)) { - printk(PRINT_PREF "error: write failed at 0x%llx\n", - (long long)addr); - if (!err) - err = -EINVAL; + err = mtdtest_write(mtd, addr, len, writebuf); + if (unlikely(err)) return err; - } offs += len; while (offs > mtd->erasesize) { offsets[eb++] = mtd->erasesize; @@ -211,36 +139,12 @@ static int do_write(void) static int do_operation(void) { - if (simple_rand() & 1) + if (prandom_u32() & 1) return do_read(); else return do_write(); } -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - if (!mtd_can_have_bb(mtd)) - return 0; - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); - return 0; -} - static int __init mtd_stresstest_init(void) { int err; @@ -251,22 +155,22 @@ static int __init mtd_stresstest_init(void) printk(KERN_INFO "=================================================\n"); if (dev < 0) { - printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); - printk(KERN_CRIT "CAREFUL: This test wipes all data on the specified MTD device!\n"); + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); return -EINVAL; } - printk(PRINT_PREF "MTD device: %d\n", dev); + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else @@ -277,14 +181,14 @@ static int __init mtd_stresstest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, pgsize, ebcnt, pgcnt, mtd->oobsize); if (ebcnt < 2) { - printk(PRINT_PREF "error: need at least 2 eraseblocks\n"); + pr_err("error: need at least 2 eraseblocks\n"); err = -ENOSPC; goto out_put_mtd; } @@ -296,31 +200,30 @@ static int __init mtd_stresstest_init(void) readbuf = vmalloc(bufsize); writebuf = vmalloc(bufsize); offsets = kmalloc(ebcnt * sizeof(int), GFP_KERNEL); - if (!readbuf || !writebuf || !offsets) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!readbuf || !writebuf || !offsets) goto out; - } for (i = 0; i < ebcnt; i++) offsets[i] = mtd->erasesize; - simple_srand(current->pid); - for (i = 0; i < bufsize; i++) - writebuf[i] = simple_rand(); + prandom_bytes(writebuf, bufsize); - err = scan_for_bad_eraseblocks(); + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) + goto out; + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; /* Do operations */ - printk(PRINT_PREF "doing operations\n"); + pr_info("doing operations\n"); for (op = 0; op < count; op++) { if ((op & 1023) == 0) - printk(PRINT_PREF "%d operations done\n", op); + pr_info("%d operations done\n", op); err = do_operation(); if (err) goto out; cond_resched(); } - printk(PRINT_PREF "finished, %d operations done\n", op); + pr_info("finished, %d operations done\n", op); out: kfree(offsets); @@ -330,7 +233,7 @@ out: out_put_mtd: put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_subpagetest.c b/drivers/mtd/tests/subpagetest.c index 9667bf53528..a876371ad41 100644 --- a/drivers/mtd/tests/mtd_subpagetest.c +++ b/drivers/mtd/tests/subpagetest.c @@ -19,6 +19,8 @@ * */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -26,8 +28,9 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include <linux/random.h> -#define PRINT_PREF KERN_INFO "mtd_subpagetest: " +#include "mtd_test.h" static int dev = -EINVAL; module_param(dev, int, S_IRUGO); @@ -43,104 +46,41 @@ static int bufsize; static int ebcnt; static int pgcnt; static int errcnt; -static unsigned long next = 1; - -static inline unsigned int simple_rand(void) -{ - next = next * 1103515245 + 12345; - return (unsigned int)((next / 65536) % 32768); -} - -static inline void simple_srand(unsigned long seed) -{ - next = seed; -} - -static void set_random_data(unsigned char *buf, size_t len) -{ - size_t i; - - for (i = 0; i < len; ++i) - buf[i] = simple_rand(); -} +static struct rnd_state rnd_state; static inline void clear_data(unsigned char *buf, size_t len) { memset(buf, 0, len); } -static int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd_erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -static int erase_whole_device(void) -{ - int err; - unsigned int i; - - printk(PRINT_PREF "erasing whole device\n"); - for (i = 0; i < ebcnt; ++i) { - if (bbt[i]) - continue; - err = erase_eraseblock(i); - if (err) - return err; - cond_resched(); - } - printk(PRINT_PREF "erased %u eraseblocks\n", i); - return 0; -} - static int write_eraseblock(int ebnum) { size_t written; int err = 0; loff_t addr = ebnum * mtd->erasesize; - set_random_data(writebuf, subpgsize); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); err = mtd_write(mtd, addr, subpgsize, &written, writebuf); if (unlikely(err || written != subpgsize)) { - printk(PRINT_PREF "error: write failed at %#llx\n", + pr_err("error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { - printk(PRINT_PREF " write size: %#x\n", subpgsize); - printk(PRINT_PREF " written: %#zx\n", written); + pr_err(" write size: %#x\n", subpgsize); + pr_err(" written: %#zx\n", written); } return err ? err : -1; } addr += subpgsize; - set_random_data(writebuf, subpgsize); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); err = mtd_write(mtd, addr, subpgsize, &written, writebuf); if (unlikely(err || written != subpgsize)) { - printk(PRINT_PREF "error: write failed at %#llx\n", + pr_err("error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { - printk(PRINT_PREF " write size: %#x\n", subpgsize); - printk(PRINT_PREF " written: %#zx\n", written); + pr_err(" write size: %#x\n", subpgsize); + pr_err(" written: %#zx\n", written); } return err ? err : -1; } @@ -157,15 +97,15 @@ static int write_eraseblock2(int ebnum) for (k = 1; k < 33; ++k) { if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize) break; - set_random_data(writebuf, subpgsize * k); + prandom_bytes_state(&rnd_state, writebuf, subpgsize * k); err = mtd_write(mtd, addr, subpgsize * k, &written, writebuf); if (unlikely(err || written != subpgsize * k)) { - printk(PRINT_PREF "error: write failed at %#llx\n", + pr_err("error: write failed at %#llx\n", (long long)addr); if (written != subpgsize) { - printk(PRINT_PREF " write size: %#x\n", + pr_err(" write size: %#x\n", subpgsize * k); - printk(PRINT_PREF " written: %#08zx\n", + pr_err(" written: %#08zx\n", written); } return err ? err : -1; @@ -193,55 +133,55 @@ static int verify_eraseblock(int ebnum) int err = 0; loff_t addr = ebnum * mtd->erasesize; - set_random_data(writebuf, subpgsize); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); clear_data(readbuf, subpgsize); err = mtd_read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { if (mtd_is_bitflip(err) && read == subpgsize) { - printk(PRINT_PREF "ECC correction at %#llx\n", + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at %#llx\n", + pr_err("error: read failed at %#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); - printk(PRINT_PREF "------------- written----------------\n"); + pr_info("------------- written----------------\n"); print_subpage(writebuf); - printk(PRINT_PREF "------------- read ------------------\n"); + pr_info("------------- read ------------------\n"); print_subpage(readbuf); - printk(PRINT_PREF "-------------------------------------\n"); + pr_info("-------------------------------------\n"); errcnt += 1; } addr += subpgsize; - set_random_data(writebuf, subpgsize); + prandom_bytes_state(&rnd_state, writebuf, subpgsize); clear_data(readbuf, subpgsize); err = mtd_read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { if (mtd_is_bitflip(err) && read == subpgsize) { - printk(PRINT_PREF "ECC correction at %#llx\n", + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at %#llx\n", + pr_err("error: read failed at %#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_info("error: verify failed at %#llx\n", (long long)addr); - printk(PRINT_PREF "------------- written----------------\n"); + pr_info("------------- written----------------\n"); print_subpage(writebuf); - printk(PRINT_PREF "------------- read ------------------\n"); + pr_info("------------- read ------------------\n"); print_subpage(readbuf); - printk(PRINT_PREF "-------------------------------------\n"); + pr_info("-------------------------------------\n"); errcnt += 1; } @@ -257,22 +197,22 @@ static int verify_eraseblock2(int ebnum) for (k = 1; k < 33; ++k) { if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize) break; - set_random_data(writebuf, subpgsize * k); + prandom_bytes_state(&rnd_state, writebuf, subpgsize * k); clear_data(readbuf, subpgsize * k); err = mtd_read(mtd, addr, subpgsize * k, &read, readbuf); if (unlikely(err || read != subpgsize * k)) { if (mtd_is_bitflip(err) && read == subpgsize * k) { - printk(PRINT_PREF "ECC correction at %#llx\n", + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at " + pr_err("error: read failed at " "%#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize * k))) { - printk(PRINT_PREF "error: verify failed at %#llx\n", + pr_err("error: verify failed at %#llx\n", (long long)addr); errcnt += 1; } @@ -295,17 +235,17 @@ static int verify_eraseblock_ff(int ebnum) err = mtd_read(mtd, addr, subpgsize, &read, readbuf); if (unlikely(err || read != subpgsize)) { if (mtd_is_bitflip(err) && read == subpgsize) { - printk(PRINT_PREF "ECC correction at %#llx\n", + pr_info("ECC correction at %#llx\n", (long long)addr); err = 0; } else { - printk(PRINT_PREF "error: read failed at " + pr_err("error: read failed at " "%#llx\n", (long long)addr); return err ? err : -1; } } if (unlikely(memcmp(readbuf, writebuf, subpgsize))) { - printk(PRINT_PREF "error: verify 0xff failed at " + pr_err("error: verify 0xff failed at " "%#llx\n", (long long)addr); errcnt += 1; } @@ -320,7 +260,7 @@ static int verify_all_eraseblocks_ff(void) int err; unsigned int i; - printk(PRINT_PREF "verifying all eraseblocks for 0xff\n"); + pr_info("verifying all eraseblocks for 0xff\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -328,42 +268,10 @@ static int verify_all_eraseblocks_ff(void) if (err) return err; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); - return 0; -} - -static int is_block_bad(int ebnum) -{ - loff_t addr = ebnum * mtd->erasesize; - int ret; - - ret = mtd_block_isbad(mtd, addr); - if (ret) - printk(PRINT_PREF "block %d is bad\n", ebnum); - return ret; -} - -static int scan_for_bad_eraseblocks(void) -{ - int i, bad = 0; - - bbt = kzalloc(ebcnt, GFP_KERNEL); - if (!bbt) { - printk(PRINT_PREF "error: cannot allocate memory\n"); - return -ENOMEM; - } - - printk(PRINT_PREF "scanning for bad eraseblocks\n"); - for (i = 0; i < ebcnt; ++i) { - bbt[i] = is_block_bad(i) ? 1 : 0; - if (bbt[i]) - bad += 1; - cond_resched(); - } - printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); + pr_info("verified %u eraseblocks\n", i); return 0; } @@ -377,22 +285,22 @@ static int __init mtd_subpagetest_init(void) printk(KERN_INFO "=================================================\n"); if (dev < 0) { - printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); - printk(KERN_CRIT "CAREFUL: This test wipes all data on the specified MTD device!\n"); + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); return -EINVAL; } - printk(PRINT_PREF "MTD device: %d\n", dev); + pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } - if (mtd->type != MTD_NANDFLASH) { - printk(PRINT_PREF "this test requires NAND flash\n"); + if (!mtd_type_is_nand(mtd)) { + pr_info("this test requires NAND flash\n"); goto out; } @@ -402,7 +310,7 @@ static int __init mtd_subpagetest_init(void) ebcnt = tmp; pgcnt = mtd->erasesize / mtd->writesize; - printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " + pr_info("MTD device size %llu, eraseblock size %u, " "page size %u, subpage size %u, count of eraseblocks %u, " "pages per eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, @@ -411,26 +319,25 @@ static int __init mtd_subpagetest_init(void) err = -ENOMEM; bufsize = subpgsize * 32; writebuf = kmalloc(bufsize, GFP_KERNEL); - if (!writebuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!writebuf) goto out; - } readbuf = kmalloc(bufsize, GFP_KERNEL); - if (!readbuf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!readbuf) + goto out; + bbt = kzalloc(ebcnt, GFP_KERNEL); + if (!bbt) goto out; - } - err = scan_for_bad_eraseblocks(); + err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; - printk(PRINT_PREF "writing whole device\n"); - simple_srand(1); + pr_info("writing whole device\n"); + prandom_seed_state(&rnd_state, 1); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -438,13 +345,13 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); - simple_srand(1); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 1); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -452,12 +359,12 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -466,8 +373,8 @@ static int __init mtd_subpagetest_init(void) goto out; /* Write all eraseblocks */ - simple_srand(3); - printk(PRINT_PREF "writing whole device\n"); + prandom_seed_state(&rnd_state, 3); + pr_info("writing whole device\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -475,14 +382,14 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "written up to eraseblock %u\n", i); + pr_info("written up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "written %u eraseblocks\n", i); + pr_info("written %u eraseblocks\n", i); /* Check all eraseblocks */ - simple_srand(3); - printk(PRINT_PREF "verifying all eraseblocks\n"); + prandom_seed_state(&rnd_state, 3); + pr_info("verifying all eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { if (bbt[i]) continue; @@ -490,12 +397,12 @@ static int __init mtd_subpagetest_init(void) if (unlikely(err)) goto out; if (i % 256 == 0) - printk(PRINT_PREF "verified up to eraseblock %u\n", i); + pr_info("verified up to eraseblock %u\n", i); cond_resched(); } - printk(PRINT_PREF "verified %u eraseblocks\n", i); + pr_info("verified %u eraseblocks\n", i); - err = erase_whole_device(); + err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt); if (err) goto out; @@ -503,7 +410,7 @@ static int __init mtd_subpagetest_init(void) if (err) goto out; - printk(PRINT_PREF "finished with %d errors\n", errcnt); + pr_info("finished with %d errors\n", errcnt); out: kfree(bbt); @@ -511,7 +418,7 @@ out: kfree(writebuf); put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred\n", err); + pr_info("error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } diff --git a/drivers/mtd/tests/mtd_torturetest.c b/drivers/mtd/tests/torturetest.c index b65861bc7b8..eeab96973cf 100644 --- a/drivers/mtd/tests/mtd_torturetest.c +++ b/drivers/mtd/tests/torturetest.c @@ -23,6 +23,8 @@ * damage caused by this program. */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -30,8 +32,8 @@ #include <linux/mtd/mtd.h> #include <linux/slab.h> #include <linux/sched.h> +#include "mtd_test.h" -#define PRINT_PREF KERN_INFO "mtd_torturetest: " #define RETRIES 3 static int eb = 8; @@ -92,35 +94,6 @@ static inline void stop_timing(void) } /* - * Erase eraseblock number @ebnum. - */ -static inline int erase_eraseblock(int ebnum) -{ - int err; - struct erase_info ei; - loff_t addr = ebnum * mtd->erasesize; - - memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; - ei.addr = addr; - ei.len = mtd->erasesize; - - err = mtd_erase(mtd, &ei); - if (err) { - printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); - return err; - } - - if (ei.state == MTD_ERASE_FAILED) { - printk(PRINT_PREF "some erase error occurred at EB %d\n", - ebnum); - return -EIO; - } - - return 0; -} - -/* * Check that the contents of eraseblock number @enbum is equivalent to the * @buf buffer. */ @@ -139,40 +112,40 @@ static inline int check_eraseblock(int ebnum, unsigned char *buf) retry: err = mtd_read(mtd, addr, len, &read, check_buf); if (mtd_is_bitflip(err)) - printk(PRINT_PREF "single bit flip occurred at EB %d " + pr_err("single bit flip occurred at EB %d " "MTD reported that it was fixed.\n", ebnum); else if (err) { - printk(PRINT_PREF "error %d while reading EB %d, " + pr_err("error %d while reading EB %d, " "read %zd\n", err, ebnum, read); return err; } if (read != len) { - printk(PRINT_PREF "failed to read %zd bytes from EB %d, " + pr_err("failed to read %zd bytes from EB %d, " "read only %zd, but no error reported\n", len, ebnum, read); return -EIO; } if (memcmp(buf, check_buf, len)) { - printk(PRINT_PREF "read wrong data from EB %d\n", ebnum); + pr_err("read wrong data from EB %d\n", ebnum); report_corrupt(check_buf, buf); if (retries++ < RETRIES) { /* Try read again */ yield(); - printk(PRINT_PREF "re-try reading data from EB %d\n", + pr_info("re-try reading data from EB %d\n", ebnum); goto retry; } else { - printk(PRINT_PREF "retried %d times, still errors, " + pr_info("retried %d times, still errors, " "give-up\n", RETRIES); return -EINVAL; } } if (retries != 0) - printk(PRINT_PREF "only attempt number %d was OK (!!!)\n", + pr_info("only attempt number %d was OK (!!!)\n", retries); return 0; @@ -191,12 +164,12 @@ static inline int write_pattern(int ebnum, void *buf) } err = mtd_write(mtd, addr, len, &written, buf); if (err) { - printk(PRINT_PREF "error %d while writing EB %d, written %zd" + pr_err("error %d while writing EB %d, written %zd" " bytes\n", err, ebnum, written); return err; } if (written != len) { - printk(PRINT_PREF "written only %zd bytes of %zd, but no error" + pr_info("written only %zd bytes of %zd, but no error" " reported\n", written, len); return -EIO; } @@ -207,70 +180,66 @@ static inline int write_pattern(int ebnum, void *buf) static int __init tort_init(void) { int err = 0, i, infinite = !cycles_count; - int bad_ebs[ebcnt]; + unsigned char *bad_ebs; printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); - printk(PRINT_PREF "Warning: this program is trying to wear out your " + pr_info("Warning: this program is trying to wear out your " "flash, stop it if this is not wanted.\n"); if (dev < 0) { - printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); - printk(KERN_CRIT "CAREFUL: This test wipes all data on the specified MTD device!\n"); + pr_info("Please specify a valid mtd-device via module parameter\n"); + pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n"); return -EINVAL; } - printk(PRINT_PREF "MTD device: %d\n", dev); - printk(PRINT_PREF "torture %d eraseblocks (%d-%d) of mtd%d\n", + pr_info("MTD device: %d\n", dev); + pr_info("torture %d eraseblocks (%d-%d) of mtd%d\n", ebcnt, eb, eb + ebcnt - 1, dev); if (pgcnt) - printk(PRINT_PREF "torturing just %d pages per eraseblock\n", + pr_info("torturing just %d pages per eraseblock\n", pgcnt); - printk(PRINT_PREF "write verify %s\n", check ? "enabled" : "disabled"); + pr_info("write verify %s\n", check ? "enabled" : "disabled"); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - printk(PRINT_PREF "error: cannot get MTD device\n"); + pr_err("error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { - printk(PRINT_PREF "not NAND flash, assume page size is 512 " + pr_info("not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else pgsize = mtd->writesize; if (pgcnt && (pgcnt > mtd->erasesize / pgsize || pgcnt < 0)) { - printk(PRINT_PREF "error: invalid pgcnt value %d\n", pgcnt); + pr_err("error: invalid pgcnt value %d\n", pgcnt); goto out_mtd; } err = -ENOMEM; patt_5A5 = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!patt_5A5) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!patt_5A5) goto out_mtd; - } patt_A5A = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!patt_A5A) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!patt_A5A) goto out_patt_5A5; - } patt_FF = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!patt_FF) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!patt_FF) goto out_patt_A5A; - } check_buf = kmalloc(mtd->erasesize, GFP_KERNEL); - if (!check_buf) { - printk(PRINT_PREF "error: cannot allocate memory\n"); + if (!check_buf) goto out_patt_FF; - } + + bad_ebs = kzalloc(ebcnt, GFP_KERNEL); + if (!bad_ebs) + goto out_check_buf; err = 0; @@ -286,41 +255,16 @@ static int __init tort_init(void) } } - /* - * Check if there is a bad eraseblock among those we are going to test. - */ - memset(&bad_ebs[0], 0, sizeof(int) * ebcnt); - if (mtd_can_have_bb(mtd)) { - for (i = eb; i < eb + ebcnt; i++) { - err = mtd_block_isbad(mtd, (loff_t)i * mtd->erasesize); - - if (err < 0) { - printk(PRINT_PREF "block_isbad() returned %d " - "for EB %d\n", err, i); - goto out; - } - - if (err) { - printk("EB %d is bad. Skip it.\n", i); - bad_ebs[i - eb] = 1; - } - } - } + err = mtdtest_scan_for_bad_eraseblocks(mtd, bad_ebs, eb, ebcnt); + if (err) + goto out; start_timing(); while (1) { int i; void *patt; - /* Erase all eraseblocks */ - for (i = eb; i < eb + ebcnt; i++) { - if (bad_ebs[i - eb]) - continue; - err = erase_eraseblock(i); - if (err) - goto out; - cond_resched(); - } + mtdtest_erase_good_eraseblocks(mtd, bad_ebs, eb, ebcnt); /* Check if the eraseblocks contain only 0xFF bytes */ if (check) { @@ -329,7 +273,7 @@ static int __init tort_init(void) continue; err = check_eraseblock(i, patt_FF); if (err) { - printk(PRINT_PREF "verify failed" + pr_info("verify failed" " for 0xFF... pattern\n"); goto out; } @@ -362,7 +306,7 @@ static int __init tort_init(void) patt = patt_A5A; err = check_eraseblock(i, patt); if (err) { - printk(PRINT_PREF "verify failed for %s" + pr_info("verify failed for %s" " pattern\n", ((eb + erase_cycles) & 1) ? "0x55AA55..." : "0xAA55AA..."); @@ -380,7 +324,7 @@ static int __init tort_init(void) stop_timing(); ms = (finish.tv_sec - start.tv_sec) * 1000 + (finish.tv_usec - start.tv_usec) / 1000; - printk(PRINT_PREF "%08u erase cycles done, took %lu " + pr_info("%08u erase cycles done, took %lu " "milliseconds (%lu seconds)\n", erase_cycles, ms, ms / 1000); start_timing(); @@ -391,8 +335,10 @@ static int __init tort_init(void) } out: - printk(PRINT_PREF "finished after %u erase cycles\n", + pr_info("finished after %u erase cycles\n", erase_cycles); + kfree(bad_ebs); +out_check_buf: kfree(check_buf); out_patt_FF: kfree(patt_FF); @@ -403,7 +349,7 @@ out_patt_5A5: out_mtd: put_mtd_device(mtd); if (err) - printk(PRINT_PREF "error %d occurred during torturing\n", err); + pr_info("error %d occurred during torturing\n", err); printk(KERN_INFO "=================================================\n"); return err; } @@ -441,9 +387,9 @@ static void report_corrupt(unsigned char *read, unsigned char *written) &bits) >= 0) pages++; - printk(PRINT_PREF "verify fails on %d pages, %d bytes/%d bits\n", + pr_info("verify fails on %d pages, %d bytes/%d bits\n", pages, bytes, bits); - printk(PRINT_PREF "The following is a list of all differences between" + pr_info("The following is a list of all differences between" " what was read from flash and what was expected\n"); for (i = 0; i < check_len; i += pgsize) { @@ -457,7 +403,7 @@ static void report_corrupt(unsigned char *read, unsigned char *written) printk("-------------------------------------------------------" "----------------------------------\n"); - printk(PRINT_PREF "Page %zd has %d bytes/%d bits failing verify," + pr_info("Page %zd has %d bytes/%d bits failing verify," " starting at offset 0x%x\n", (mtd->erasesize - check_len + i) / pgsize, bytes, bits, first); diff --git a/drivers/mtd/ubi/Kconfig b/drivers/mtd/ubi/Kconfig index 738ee8dc16c..f0855ce08ed 100644 --- a/drivers/mtd/ubi/Kconfig +++ b/drivers/mtd/ubi/Kconfig @@ -27,20 +27,55 @@ config MTD_UBI_WL_THRESHOLD life-cycle less than 10000, the threshold should be lessened (e.g., to 128 or 256, although it does not have to be power of 2). -config MTD_UBI_BEB_RESERVE - int "Percentage of reserved eraseblocks for bad eraseblocks handling" - default 1 - range 0 25 +config MTD_UBI_BEB_LIMIT + int "Maximum expected bad eraseblock count per 1024 eraseblocks" + default 20 + range 0 768 help - If the MTD device admits of bad eraseblocks (e.g. NAND flash), UBI - reserves some amount of physical eraseblocks to handle new bad - eraseblocks. For example, if a flash physical eraseblock becomes bad, - UBI uses these reserved physical eraseblocks to relocate the bad one. - This option specifies how many physical eraseblocks will be reserved - for bad eraseblock handling (percents of total number of good flash - eraseblocks). If the underlying flash does not admit of bad - eraseblocks (e.g. NOR flash), this value is ignored and nothing is - reserved. Leave the default value if unsure. + This option specifies the maximum bad physical eraseblocks UBI + expects on the MTD device (per 1024 eraseblocks). If the underlying + flash does not admit of bad eraseblocks (e.g. NOR flash), this value + is ignored. + + NAND datasheets often specify the minimum and maximum NVM (Number of + Valid Blocks) for the flashes' endurance lifetime. The maximum + expected bad eraseblocks per 1024 eraseblocks then can be calculated + as "1024 * (1 - MinNVB / MaxNVB)", which gives 20 for most NANDs + (MaxNVB is basically the total count of eraseblocks on the chip). + + To put it differently, if this value is 20, UBI will try to reserve + about 1.9% of physical eraseblocks for bad blocks handling. And that + will be 1.9% of eraseblocks on the entire NAND chip, not just the MTD + partition UBI attaches. This means that if you have, say, a NAND + flash chip admits maximum 40 bad eraseblocks, and it is split on two + MTD partitions of the same size, UBI will reserve 40 eraseblocks when + attaching a partition. + + This option can be overridden by the "mtd=" UBI module parameter or + by the "attach" ioctl. + + Leave the default value if unsure. + +config MTD_UBI_FASTMAP + bool "UBI Fastmap (Experimental feature)" + default n + help + Important: this feature is experimental so far and the on-flash + format for fastmap may change in the next kernel versions + + Fastmap is a mechanism which allows attaching an UBI device + in nearly constant time. Instead of scanning the whole MTD device it + only has to locate a checkpoint (called fastmap) on the device. + The on-flash fastmap contains all information needed to attach + the device. Using fastmap makes only sense on large devices where + attaching by scanning takes long. UBI will not automatically install + a fastmap on old images, but you can set the UBI module parameter + fm_autoconvert to 1 if you want so. Please note that fastmap-enabled + images are still usable with UBI implementations without + fastmap support. On typical flash devices the whole fastmap fits + into one PEB. UBI will reserve PEBs to hold two fastmaps. + + If in doubt, say "N". config MTD_UBI_GLUEBI tristate "MTD devices emulation driver (gluebi)" @@ -52,4 +87,20 @@ config MTD_UBI_GLUEBI work on top of UBI. Do not enable this unless you use legacy software. +config MTD_UBI_BLOCK + bool "Read-only block devices on top of UBI volumes" + default n + depends on BLOCK + help + This option enables read-only UBI block devices support. UBI block + devices will be layered on top of UBI volumes, which means that the + UBI driver will transparently handle things like bad eraseblocks and + bit-flips. You can put any block-oriented file system on top of UBI + volumes in read-only mode (e.g., ext4), but it is probably most + practical for read-only file systems, like squashfs. + + When selected, this feature will be built in the UBI driver. + + If in doubt, say "N". + endif # MTD_UBI diff --git a/drivers/mtd/ubi/Makefile b/drivers/mtd/ubi/Makefile index a0803ac7471..4e3c3d70d8c 100644 --- a/drivers/mtd/ubi/Makefile +++ b/drivers/mtd/ubi/Makefile @@ -2,5 +2,7 @@ obj-$(CONFIG_MTD_UBI) += ubi.o ubi-y += vtbl.o vmt.o upd.o build.o cdev.o kapi.o eba.o io.o wl.o attach.o ubi-y += misc.o debug.o +ubi-$(CONFIG_MTD_UBI_FASTMAP) += fastmap.o +ubi-$(CONFIG_MTD_UBI_BLOCK) += block.o obj-$(CONFIG_MTD_UBI_GLUEBI) += gluebi.o diff --git a/drivers/mtd/ubi/attach.c b/drivers/mtd/ubi/attach.c index bd27cbbb406..6f27d9a1be3 100644 --- a/drivers/mtd/ubi/attach.c +++ b/drivers/mtd/ubi/attach.c @@ -79,7 +79,7 @@ * NAND), it is probably a PEB which was being erased when power cut * happened, so this is corruption type 1. However, this is just a guess, * which might be wrong. - * o Otherwise this it corruption type 2. + * o Otherwise this is corruption type 2. */ #include <linux/err.h> @@ -300,7 +300,7 @@ static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, } /** - * compare_lebs - find out which logical eraseblock is newer. + * ubi_compare_lebs - find out which logical eraseblock is newer. * @ubi: UBI device description object * @aeb: first logical eraseblock to compare * @pnum: physical eraseblock number of the second logical eraseblock to @@ -319,10 +319,9 @@ static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, * o bit 2 is cleared: the older LEB is not corrupted; * o bit 2 is set: the older LEB is corrupted. */ -static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, +int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, int pnum, const struct ubi_vid_hdr *vid_hdr) { - void *buf; int len, err, second_is_newer, bitflips = 0, corrupted = 0; uint32_t data_crc, crc; struct ubi_vid_hdr *vh = NULL; @@ -337,7 +336,7 @@ static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, * support these images anymore. Well, those images still work, * but only if no unclean reboots happened. */ - ubi_err("unsupported on-flash UBI format\n"); + ubi_err("unsupported on-flash UBI format"); return -EINVAL; } @@ -378,8 +377,8 @@ static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, if (err == UBI_IO_BITFLIPS) bitflips = 1; else { - ubi_err("VID of PEB %d header is bad, but it " - "was OK earlier, err %d", pnum, err); + ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d", + pnum, err); if (err > 0) err = -EIO; @@ -393,18 +392,14 @@ static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, /* Read the data of the copy and check the CRC */ len = be32_to_cpu(vid_hdr->data_size); - buf = vmalloc(len); - if (!buf) { - err = -ENOMEM; - goto out_free_vidh; - } - err = ubi_io_read_data(ubi, buf, pnum, 0, len); + mutex_lock(&ubi->buf_mutex); + err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len); if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) - goto out_free_buf; + goto out_unlock; data_crc = be32_to_cpu(vid_hdr->data_crc); - crc = crc32(UBI_CRC32_INIT, buf, len); + crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len); if (crc != data_crc) { dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", pnum, crc, data_crc); @@ -415,8 +410,8 @@ static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, dbg_bld("PEB %d CRC is OK", pnum); bitflips = !!err; } + mutex_unlock(&ubi->buf_mutex); - vfree(buf); ubi_free_vid_hdr(ubi, vh); if (second_is_newer) @@ -426,8 +421,8 @@ static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, return second_is_newer | (bitflips << 1) | (corrupted << 2); -out_free_buf: - vfree(buf); +out_unlock: + mutex_unlock(&ubi->buf_mutex); out_free_vidh: ubi_free_vid_hdr(ubi, vh); return err; @@ -507,7 +502,7 @@ int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, * sequence numbers. We still can attach these images, unless * there is a need to distinguish between old and new * eraseblocks, in which case we'll refuse the image in - * 'compare_lebs()'. In other words, we attach old clean + * 'ubi_compare_lebs()'. In other words, we attach old clean * images, but refuse attaching old images with duplicated * logical eraseblocks because there was an unclean reboot. */ @@ -523,7 +518,7 @@ int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, * Now we have to drop the older one and preserve the newer * one. */ - cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr); + cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr); if (cmp_res < 0) return cmp_res; @@ -748,7 +743,7 @@ struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, /** * check_corruption - check the data area of PEB. * @ubi: UBI device description object - * @vid_hrd: the (corrupted) VID header of this PEB + * @vid_hdr: the (corrupted) VID header of this PEB * @pnum: the physical eraseblock number to check * * This is a helper function which is used to distinguish between VID header @@ -790,12 +785,12 @@ static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) goto out_unlock; - ubi_err("PEB %d contains corrupted VID header, and the data does not " - "contain all 0xFF, this may be a non-UBI PEB or a severe VID " - "header corruption which requires manual inspection", pnum); + ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF", + pnum); + ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection"); ubi_dump_vid_hdr(vid_hdr); - dbg_msg("hexdump of PEB %d offset %d, length %d", - pnum, ubi->leb_start, ubi->leb_size); + pr_err("hexdump of PEB %d offset %d, length %d", + pnum, ubi->leb_start, ubi->leb_size); ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, ubi->peb_buf, ubi->leb_size, 1); err = 1; @@ -810,6 +805,8 @@ out_unlock: * @ubi: UBI device description object * @ai: attaching information * @pnum: the physical eraseblock number + * @vid: The volume ID of the found volume will be stored in this pointer + * @sqnum: The sqnum of the found volume will be stored in this pointer * * This function reads UBI headers of PEB @pnum, checks them, and adds * information about this PEB to the corresponding list or RB-tree in the @@ -817,10 +814,10 @@ out_unlock: * successfully handled and a negative error code in case of failure. */ static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, - int pnum) + int pnum, int *vid, unsigned long long *sqnum) { long long uninitialized_var(ec); - int err, bitflips = 0, vol_id, ec_err = 0; + int err, bitflips = 0, vol_id = -1, ec_err = 0; dbg_bld("scan PEB %d", pnum); @@ -903,12 +900,11 @@ static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, * number. */ image_seq = be32_to_cpu(ech->image_seq); - if (!ubi->image_seq && image_seq) + if (!ubi->image_seq) ubi->image_seq = image_seq; - if (ubi->image_seq && image_seq && - ubi->image_seq != image_seq) { - ubi_err("bad image sequence number %d in PEB %d, " - "expected %d", image_seq, pnum, ubi->image_seq); + if (image_seq && ubi->image_seq != image_seq) { + ubi_err("bad image sequence number %d in PEB %d, expected %d", + image_seq, pnum, ubi->image_seq); ubi_dump_ec_hdr(ech); return -EINVAL; } @@ -975,7 +971,7 @@ static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, return err; goto adjust_mean_ec; case UBI_IO_FF: - if (ec_err) + if (ec_err || bitflips) err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, ec, 1, &ai->erase); else @@ -991,14 +987,21 @@ static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, } vol_id = be32_to_cpu(vidh->vol_id); + if (vid) + *vid = vol_id; + if (sqnum) + *sqnum = be64_to_cpu(vidh->sqnum); if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { int lnum = be32_to_cpu(vidh->lnum); /* Unsupported internal volume */ switch (vidh->compat) { case UBI_COMPAT_DELETE: - ubi_msg("\"delete\" compatible internal volume %d:%d" - " found, will remove it", vol_id, lnum); + if (vol_id != UBI_FM_SB_VOLUME_ID + && vol_id != UBI_FM_DATA_VOLUME_ID) { + ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it", + vol_id, lnum); + } err = add_to_list(ai, pnum, vol_id, lnum, ec, 1, &ai->erase); if (err) @@ -1006,15 +1009,14 @@ static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, return 0; case UBI_COMPAT_RO: - ubi_msg("read-only compatible internal volume %d:%d" - " found, switch to read-only mode", + ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode", vol_id, lnum); ubi->ro_mode = 1; break; case UBI_COMPAT_PRESERVE: - ubi_msg("\"preserve\" compatible internal volume %d:%d" - " found", vol_id, lnum); + ubi_msg("\"preserve\" compatible internal volume %d:%d found", + vol_id, lnum); err = add_to_list(ai, pnum, vol_id, lnum, ec, 0, &ai->alien); if (err) @@ -1075,10 +1077,10 @@ static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) if (ai->corr_peb_count) { ubi_err("%d PEBs are corrupted and preserved", ai->corr_peb_count); - printk(KERN_ERR "Corrupted PEBs are:"); + pr_err("Corrupted PEBs are:"); list_for_each_entry(aeb, &ai->corr, u.list) - printk(KERN_CONT " %d", aeb->pnum); - printk(KERN_CONT "\n"); + pr_cont(" %d", aeb->pnum); + pr_cont("\n"); /* * If too many PEBs are corrupted, we refuse attaching, @@ -1112,8 +1114,7 @@ static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) get_random_bytes(&ubi->image_seq, sizeof(ubi->image_seq)); } else { - ubi_err("MTD device is not UBI-formatted and possibly " - "contains non-UBI data - refusing it"); + ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it"); return -EINVAL; } @@ -1123,56 +1124,131 @@ static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) } /** + * destroy_av - free volume attaching information. + * @av: volume attaching information + * @ai: attaching information + * + * This function destroys the volume attaching information. + */ +static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) +{ + struct ubi_ainf_peb *aeb; + struct rb_node *this = av->root.rb_node; + + while (this) { + if (this->rb_left) + this = this->rb_left; + else if (this->rb_right) + this = this->rb_right; + else { + aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); + this = rb_parent(this); + if (this) { + if (this->rb_left == &aeb->u.rb) + this->rb_left = NULL; + else + this->rb_right = NULL; + } + + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + } + kfree(av); +} + +/** + * destroy_ai - destroy attaching information. + * @ai: attaching information + */ +static void destroy_ai(struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb, *aeb_tmp; + struct ubi_ainf_volume *av; + struct rb_node *rb; + + list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { + list_del(&aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, aeb); + } + + /* Destroy the volume RB-tree */ + rb = ai->volumes.rb_node; + while (rb) { + if (rb->rb_left) + rb = rb->rb_left; + else if (rb->rb_right) + rb = rb->rb_right; + else { + av = rb_entry(rb, struct ubi_ainf_volume, rb); + + rb = rb_parent(rb); + if (rb) { + if (rb->rb_left == &av->rb) + rb->rb_left = NULL; + else + rb->rb_right = NULL; + } + + destroy_av(ai, av); + } + } + + if (ai->aeb_slab_cache) + kmem_cache_destroy(ai->aeb_slab_cache); + + kfree(ai); +} + +/** * scan_all - scan entire MTD device. * @ubi: UBI device description object + * @ai: attach info object + * @start: start scanning at this PEB * * This function does full scanning of an MTD device and returns complete * information about it in form of a "struct ubi_attach_info" object. In case * of failure, an error code is returned. */ -static struct ubi_attach_info *scan_all(struct ubi_device *ubi) +static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai, + int start) { int err, pnum; struct rb_node *rb1, *rb2; struct ubi_ainf_volume *av; struct ubi_ainf_peb *aeb; - struct ubi_attach_info *ai; - - ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); - if (!ai) - return ERR_PTR(-ENOMEM); - - INIT_LIST_HEAD(&ai->corr); - INIT_LIST_HEAD(&ai->free); - INIT_LIST_HEAD(&ai->erase); - INIT_LIST_HEAD(&ai->alien); - ai->volumes = RB_ROOT; err = -ENOMEM; - ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache", - sizeof(struct ubi_ainf_peb), - 0, 0, NULL); - if (!ai->aeb_slab_cache) - goto out_ai; ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); if (!ech) - goto out_ai; + return err; vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); if (!vidh) goto out_ech; - for (pnum = 0; pnum < ubi->peb_count; pnum++) { + for (pnum = start; pnum < ubi->peb_count; pnum++) { cond_resched(); dbg_gen("process PEB %d", pnum); - err = scan_peb(ubi, ai, pnum); + err = scan_peb(ubi, ai, pnum, NULL, NULL); if (err < 0) goto out_vidh; } - dbg_msg("scanning is finished"); + ubi_msg("scanning is finished"); /* Calculate mean erase counter */ if (ai->ec_count) @@ -1212,39 +1288,153 @@ static struct ubi_attach_info *scan_all(struct ubi_device *ubi) ubi_free_vid_hdr(ubi, vidh); kfree(ech); - return ai; + return 0; out_vidh: ubi_free_vid_hdr(ubi, vidh); out_ech: kfree(ech); -out_ai: - ubi_destroy_ai(ai); - return ERR_PTR(err); + return err; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP + +/** + * scan_fastmap - try to find a fastmap and attach from it. + * @ubi: UBI device description object + * @ai: attach info object + * + * Returns 0 on success, negative return values indicate an internal + * error. + * UBI_NO_FASTMAP denotes that no fastmap was found. + * UBI_BAD_FASTMAP denotes that the found fastmap was invalid. + */ +static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai) +{ + int err, pnum, fm_anchor = -1; + unsigned long long max_sqnum = 0; + + err = -ENOMEM; + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) + goto out; + + vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vidh) + goto out_ech; + + for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) { + int vol_id = -1; + unsigned long long sqnum = -1; + cond_resched(); + + dbg_gen("process PEB %d", pnum); + err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum); + if (err < 0) + goto out_vidh; + + if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) { + max_sqnum = sqnum; + fm_anchor = pnum; + } + } + + ubi_free_vid_hdr(ubi, vidh); + kfree(ech); + + if (fm_anchor < 0) + return UBI_NO_FASTMAP; + + return ubi_scan_fastmap(ubi, ai, fm_anchor); + +out_vidh: + ubi_free_vid_hdr(ubi, vidh); +out_ech: + kfree(ech); +out: + return err; +} + +#endif + +static struct ubi_attach_info *alloc_ai(const char *slab_name) +{ + struct ubi_attach_info *ai; + + ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); + if (!ai) + return ai; + + INIT_LIST_HEAD(&ai->corr); + INIT_LIST_HEAD(&ai->free); + INIT_LIST_HEAD(&ai->erase); + INIT_LIST_HEAD(&ai->alien); + ai->volumes = RB_ROOT; + ai->aeb_slab_cache = kmem_cache_create(slab_name, + sizeof(struct ubi_ainf_peb), + 0, 0, NULL); + if (!ai->aeb_slab_cache) { + kfree(ai); + ai = NULL; + } + + return ai; } /** * ubi_attach - attach an MTD device. * @ubi: UBI device descriptor + * @force_scan: if set to non-zero attach by scanning * * This function returns zero in case of success and a negative error code in * case of failure. */ -int ubi_attach(struct ubi_device *ubi) +int ubi_attach(struct ubi_device *ubi, int force_scan) { int err; struct ubi_attach_info *ai; - ai = scan_all(ubi); - if (IS_ERR(ai)) - return PTR_ERR(ai); + ai = alloc_ai("ubi_aeb_slab_cache"); + if (!ai) + return -ENOMEM; + +#ifdef CONFIG_MTD_UBI_FASTMAP + /* On small flash devices we disable fastmap in any case. */ + if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) { + ubi->fm_disabled = 1; + force_scan = 1; + } + + if (force_scan) + err = scan_all(ubi, ai, 0); + else { + err = scan_fast(ubi, ai); + if (err > 0) { + if (err != UBI_NO_FASTMAP) { + destroy_ai(ai); + ai = alloc_ai("ubi_aeb_slab_cache2"); + if (!ai) + return -ENOMEM; + + err = scan_all(ubi, ai, 0); + } else { + err = scan_all(ubi, ai, UBI_FM_MAX_START); + } + } + } +#else + err = scan_all(ubi, ai, 0); +#endif + if (err) + goto out_ai; ubi->bad_peb_count = ai->bad_peb_count; ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; ubi->corr_peb_count = ai->corr_peb_count; ubi->max_ec = ai->max_ec; ubi->mean_ec = ai->mean_ec; - ubi_msg("max. sequence number: %llu", ai->max_sqnum); + dbg_gen("max. sequence number: %llu", ai->max_sqnum); err = ubi_read_volume_table(ubi, ai); if (err) @@ -1258,7 +1448,31 @@ int ubi_attach(struct ubi_device *ubi) if (err) goto out_wl; - ubi_destroy_ai(ai); +#ifdef CONFIG_MTD_UBI_FASTMAP + if (ubi->fm && ubi_dbg_chk_gen(ubi)) { + struct ubi_attach_info *scan_ai; + + scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache"); + if (!scan_ai) { + err = -ENOMEM; + goto out_wl; + } + + err = scan_all(ubi, scan_ai, 0); + if (err) { + destroy_ai(scan_ai); + goto out_wl; + } + + err = self_check_eba(ubi, ai, scan_ai); + destroy_ai(scan_ai); + + if (err) + goto out_wl; + } +#endif + + destroy_ai(ai); return 0; out_wl: @@ -1267,99 +1481,11 @@ out_vtbl: ubi_free_internal_volumes(ubi); vfree(ubi->vtbl); out_ai: - ubi_destroy_ai(ai); + destroy_ai(ai); return err; } /** - * destroy_av - free volume attaching information. - * @av: volume attaching information - * @ai: attaching information - * - * This function destroys the volume attaching information. - */ -static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) -{ - struct ubi_ainf_peb *aeb; - struct rb_node *this = av->root.rb_node; - - while (this) { - if (this->rb_left) - this = this->rb_left; - else if (this->rb_right) - this = this->rb_right; - else { - aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); - this = rb_parent(this); - if (this) { - if (this->rb_left == &aeb->u.rb) - this->rb_left = NULL; - else - this->rb_right = NULL; - } - - kmem_cache_free(ai->aeb_slab_cache, aeb); - } - } - kfree(av); -} - -/** - * ubi_destroy_ai - destroy attaching information. - * @ai: attaching information - */ -void ubi_destroy_ai(struct ubi_attach_info *ai) -{ - struct ubi_ainf_peb *aeb, *aeb_tmp; - struct ubi_ainf_volume *av; - struct rb_node *rb; - - list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { - list_del(&aeb->u.list); - kmem_cache_free(ai->aeb_slab_cache, aeb); - } - list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { - list_del(&aeb->u.list); - kmem_cache_free(ai->aeb_slab_cache, aeb); - } - list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { - list_del(&aeb->u.list); - kmem_cache_free(ai->aeb_slab_cache, aeb); - } - list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { - list_del(&aeb->u.list); - kmem_cache_free(ai->aeb_slab_cache, aeb); - } - - /* Destroy the volume RB-tree */ - rb = ai->volumes.rb_node; - while (rb) { - if (rb->rb_left) - rb = rb->rb_left; - else if (rb->rb_right) - rb = rb->rb_right; - else { - av = rb_entry(rb, struct ubi_ainf_volume, rb); - - rb = rb_parent(rb); - if (rb) { - if (rb->rb_left == &av->rb) - rb->rb_left = NULL; - else - rb->rb_right = NULL; - } - - destroy_av(ai, av); - } - } - - if (ai->aeb_slab_cache) - kmem_cache_destroy(ai->aeb_slab_cache); - - kfree(ai); -} - -/** * self_check_ai - check the attaching information. * @ubi: UBI device description object * @ai: attaching information @@ -1375,7 +1501,7 @@ static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) struct ubi_ainf_peb *aeb, *last_aeb; uint8_t *buf; - if (!ubi->dbg->chk_gen) + if (!ubi_dbg_chk_gen(ubi)) return 0; /* diff --git a/drivers/mtd/ubi/block.c b/drivers/mtd/ubi/block.c new file mode 100644 index 00000000000..8457df7ec5a --- /dev/null +++ b/drivers/mtd/ubi/block.c @@ -0,0 +1,649 @@ +/* + * Copyright (c) 2014 Ezequiel Garcia + * Copyright (c) 2011 Free Electrons + * + * Driver parameter handling strongly based on drivers/mtd/ubi/build.c + * Copyright (c) International Business Machines Corp., 2006 + * Copyright (c) Nokia Corporation, 2007 + * Authors: Artem Bityutskiy, Frank Haverkamp + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, version 2. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + */ + +/* + * Read-only block devices on top of UBI volumes + * + * A simple implementation to allow a block device to be layered on top of a + * UBI volume. The implementation is provided by creating a static 1-to-1 + * mapping between the block device and the UBI volume. + * + * The addressed byte is obtained from the addressed block sector, which is + * mapped linearly into the corresponding LEB: + * + * LEB number = addressed byte / LEB size + * + * This feature is compiled in the UBI core, and adds a 'block' parameter + * to allow early creation of block devices on top of UBI volumes. Runtime + * block creation/removal for UBI volumes is provided through two UBI ioctls: + * UBI_IOCVOLCRBLK and UBI_IOCVOLRMBLK. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/err.h> +#include <linux/kernel.h> +#include <linux/list.h> +#include <linux/mutex.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/mtd/ubi.h> +#include <linux/workqueue.h> +#include <linux/blkdev.h> +#include <linux/hdreg.h> +#include <asm/div64.h> + +#include "ubi-media.h" +#include "ubi.h" + +/* Maximum number of supported devices */ +#define UBIBLOCK_MAX_DEVICES 32 + +/* Maximum length of the 'block=' parameter */ +#define UBIBLOCK_PARAM_LEN 63 + +/* Maximum number of comma-separated items in the 'block=' parameter */ +#define UBIBLOCK_PARAM_COUNT 2 + +struct ubiblock_param { + int ubi_num; + int vol_id; + char name[UBIBLOCK_PARAM_LEN+1]; +}; + +/* Numbers of elements set in the @ubiblock_param array */ +static int ubiblock_devs __initdata; + +/* MTD devices specification parameters */ +static struct ubiblock_param ubiblock_param[UBIBLOCK_MAX_DEVICES] __initdata; + +struct ubiblock { + struct ubi_volume_desc *desc; + int ubi_num; + int vol_id; + int refcnt; + int leb_size; + + struct gendisk *gd; + struct request_queue *rq; + + struct workqueue_struct *wq; + struct work_struct work; + + struct mutex dev_mutex; + spinlock_t queue_lock; + struct list_head list; +}; + +/* Linked list of all ubiblock instances */ +static LIST_HEAD(ubiblock_devices); +static DEFINE_MUTEX(devices_mutex); +static int ubiblock_major; + +static int __init ubiblock_set_param(const char *val, + const struct kernel_param *kp) +{ + int i, ret; + size_t len; + struct ubiblock_param *param; + char buf[UBIBLOCK_PARAM_LEN]; + char *pbuf = &buf[0]; + char *tokens[UBIBLOCK_PARAM_COUNT]; + + if (!val) + return -EINVAL; + + len = strnlen(val, UBIBLOCK_PARAM_LEN); + if (len == 0) { + ubi_warn("block: empty 'block=' parameter - ignored\n"); + return 0; + } + + if (len == UBIBLOCK_PARAM_LEN) { + ubi_err("block: parameter \"%s\" is too long, max. is %d\n", + val, UBIBLOCK_PARAM_LEN); + return -EINVAL; + } + + strcpy(buf, val); + + /* Get rid of the final newline */ + if (buf[len - 1] == '\n') + buf[len - 1] = '\0'; + + for (i = 0; i < UBIBLOCK_PARAM_COUNT; i++) + tokens[i] = strsep(&pbuf, ","); + + param = &ubiblock_param[ubiblock_devs]; + if (tokens[1]) { + /* Two parameters: can be 'ubi, vol_id' or 'ubi, vol_name' */ + ret = kstrtoint(tokens[0], 10, ¶m->ubi_num); + if (ret < 0) + return -EINVAL; + + /* Second param can be a number or a name */ + ret = kstrtoint(tokens[1], 10, ¶m->vol_id); + if (ret < 0) { + param->vol_id = -1; + strcpy(param->name, tokens[1]); + } + + } else { + /* One parameter: must be device path */ + strcpy(param->name, tokens[0]); + param->ubi_num = -1; + param->vol_id = -1; + } + + ubiblock_devs++; + + return 0; +} + +static struct kernel_param_ops ubiblock_param_ops = { + .set = ubiblock_set_param, +}; +module_param_cb(block, &ubiblock_param_ops, NULL, 0); +MODULE_PARM_DESC(block, "Attach block devices to UBI volumes. Parameter format: block=<path|dev,num|dev,name>.\n" + "Multiple \"block\" parameters may be specified.\n" + "UBI volumes may be specified by their number, name, or path to the device node.\n" + "Examples\n" + "Using the UBI volume path:\n" + "ubi.block=/dev/ubi0_0\n" + "Using the UBI device, and the volume name:\n" + "ubi.block=0,rootfs\n" + "Using both UBI device number and UBI volume number:\n" + "ubi.block=0,0\n"); + +static struct ubiblock *find_dev_nolock(int ubi_num, int vol_id) +{ + struct ubiblock *dev; + + list_for_each_entry(dev, &ubiblock_devices, list) + if (dev->ubi_num == ubi_num && dev->vol_id == vol_id) + return dev; + return NULL; +} + +static int ubiblock_read_to_buf(struct ubiblock *dev, char *buffer, + int leb, int offset, int len) +{ + int ret; + + ret = ubi_read(dev->desc, leb, buffer, offset, len); + if (ret) { + ubi_err("%s ubi_read error %d", + dev->gd->disk_name, ret); + return ret; + } + return 0; +} + +static int ubiblock_read(struct ubiblock *dev, char *buffer, + sector_t sec, int len) +{ + int ret, leb, offset; + int bytes_left = len; + int to_read = len; + u64 pos = sec << 9; + + /* Get LEB:offset address to read from */ + offset = do_div(pos, dev->leb_size); + leb = pos; + + while (bytes_left) { + /* + * We can only read one LEB at a time. Therefore if the read + * length is larger than one LEB size, we split the operation. + */ + if (offset + to_read > dev->leb_size) + to_read = dev->leb_size - offset; + + ret = ubiblock_read_to_buf(dev, buffer, leb, offset, to_read); + if (ret) + return ret; + + buffer += to_read; + bytes_left -= to_read; + to_read = bytes_left; + leb += 1; + offset = 0; + } + return 0; +} + +static int do_ubiblock_request(struct ubiblock *dev, struct request *req) +{ + int len, ret; + sector_t sec; + + if (req->cmd_type != REQ_TYPE_FS) + return -EIO; + + if (blk_rq_pos(req) + blk_rq_cur_sectors(req) > + get_capacity(req->rq_disk)) + return -EIO; + + if (rq_data_dir(req) != READ) + return -ENOSYS; /* Write not implemented */ + + sec = blk_rq_pos(req); + len = blk_rq_cur_bytes(req); + + /* + * Let's prevent the device from being removed while we're doing I/O + * work. Notice that this means we serialize all the I/O operations, + * but it's probably of no impact given the NAND core serializes + * flash access anyway. + */ + mutex_lock(&dev->dev_mutex); + ret = ubiblock_read(dev, bio_data(req->bio), sec, len); + mutex_unlock(&dev->dev_mutex); + + return ret; +} + +static void ubiblock_do_work(struct work_struct *work) +{ + struct ubiblock *dev = + container_of(work, struct ubiblock, work); + struct request_queue *rq = dev->rq; + struct request *req; + int res; + + spin_lock_irq(rq->queue_lock); + + req = blk_fetch_request(rq); + while (req) { + + spin_unlock_irq(rq->queue_lock); + res = do_ubiblock_request(dev, req); + spin_lock_irq(rq->queue_lock); + + /* + * If we're done with this request, + * we need to fetch a new one + */ + if (!__blk_end_request_cur(req, res)) + req = blk_fetch_request(rq); + } + + spin_unlock_irq(rq->queue_lock); +} + +static void ubiblock_request(struct request_queue *rq) +{ + struct ubiblock *dev; + struct request *req; + + dev = rq->queuedata; + + if (!dev) + while ((req = blk_fetch_request(rq)) != NULL) + __blk_end_request_all(req, -ENODEV); + else + queue_work(dev->wq, &dev->work); +} + +static int ubiblock_open(struct block_device *bdev, fmode_t mode) +{ + struct ubiblock *dev = bdev->bd_disk->private_data; + int ret; + + mutex_lock(&dev->dev_mutex); + if (dev->refcnt > 0) { + /* + * The volume is already open, just increase the reference + * counter. + */ + goto out_done; + } + + /* + * We want users to be aware they should only mount us as read-only. + * It's just a paranoid check, as write requests will get rejected + * in any case. + */ + if (mode & FMODE_WRITE) { + ret = -EPERM; + goto out_unlock; + } + + dev->desc = ubi_open_volume(dev->ubi_num, dev->vol_id, UBI_READONLY); + if (IS_ERR(dev->desc)) { + ubi_err("%s failed to open ubi volume %d_%d", + dev->gd->disk_name, dev->ubi_num, dev->vol_id); + ret = PTR_ERR(dev->desc); + dev->desc = NULL; + goto out_unlock; + } + +out_done: + dev->refcnt++; + mutex_unlock(&dev->dev_mutex); + return 0; + +out_unlock: + mutex_unlock(&dev->dev_mutex); + return ret; +} + +static void ubiblock_release(struct gendisk *gd, fmode_t mode) +{ + struct ubiblock *dev = gd->private_data; + + mutex_lock(&dev->dev_mutex); + dev->refcnt--; + if (dev->refcnt == 0) { + ubi_close_volume(dev->desc); + dev->desc = NULL; + } + mutex_unlock(&dev->dev_mutex); +} + +static int ubiblock_getgeo(struct block_device *bdev, struct hd_geometry *geo) +{ + /* Some tools might require this information */ + geo->heads = 1; + geo->cylinders = 1; + geo->sectors = get_capacity(bdev->bd_disk); + geo->start = 0; + return 0; +} + +static const struct block_device_operations ubiblock_ops = { + .owner = THIS_MODULE, + .open = ubiblock_open, + .release = ubiblock_release, + .getgeo = ubiblock_getgeo, +}; + +int ubiblock_create(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + struct gendisk *gd; + int disk_capacity; + int ret; + + /* Check that the volume isn't already handled */ + mutex_lock(&devices_mutex); + if (find_dev_nolock(vi->ubi_num, vi->vol_id)) { + mutex_unlock(&devices_mutex); + return -EEXIST; + } + mutex_unlock(&devices_mutex); + + dev = kzalloc(sizeof(struct ubiblock), GFP_KERNEL); + if (!dev) + return -ENOMEM; + + mutex_init(&dev->dev_mutex); + + dev->ubi_num = vi->ubi_num; + dev->vol_id = vi->vol_id; + dev->leb_size = vi->usable_leb_size; + + /* Initialize the gendisk of this ubiblock device */ + gd = alloc_disk(1); + if (!gd) { + ubi_err("block: alloc_disk failed"); + ret = -ENODEV; + goto out_free_dev; + } + + gd->fops = &ubiblock_ops; + gd->major = ubiblock_major; + gd->first_minor = dev->ubi_num * UBI_MAX_VOLUMES + dev->vol_id; + gd->private_data = dev; + sprintf(gd->disk_name, "ubiblock%d_%d", dev->ubi_num, dev->vol_id); + disk_capacity = (vi->size * vi->usable_leb_size) >> 9; + set_capacity(gd, disk_capacity); + dev->gd = gd; + + spin_lock_init(&dev->queue_lock); + dev->rq = blk_init_queue(ubiblock_request, &dev->queue_lock); + if (!dev->rq) { + ubi_err("block: blk_init_queue failed"); + ret = -ENODEV; + goto out_put_disk; + } + + dev->rq->queuedata = dev; + dev->gd->queue = dev->rq; + + /* + * Create one workqueue per volume (per registered block device). + * Rembember workqueues are cheap, they're not threads. + */ + dev->wq = alloc_workqueue("%s", 0, 0, gd->disk_name); + if (!dev->wq) { + ret = -ENOMEM; + goto out_free_queue; + } + INIT_WORK(&dev->work, ubiblock_do_work); + + mutex_lock(&devices_mutex); + list_add_tail(&dev->list, &ubiblock_devices); + mutex_unlock(&devices_mutex); + + /* Must be the last step: anyone can call file ops from now on */ + add_disk(dev->gd); + ubi_msg("%s created from ubi%d:%d(%s)", + dev->gd->disk_name, dev->ubi_num, dev->vol_id, vi->name); + return 0; + +out_free_queue: + blk_cleanup_queue(dev->rq); +out_put_disk: + put_disk(dev->gd); +out_free_dev: + kfree(dev); + + return ret; +} + +static void ubiblock_cleanup(struct ubiblock *dev) +{ + del_gendisk(dev->gd); + blk_cleanup_queue(dev->rq); + ubi_msg("%s released", dev->gd->disk_name); + put_disk(dev->gd); +} + +int ubiblock_remove(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + + mutex_lock(&devices_mutex); + dev = find_dev_nolock(vi->ubi_num, vi->vol_id); + if (!dev) { + mutex_unlock(&devices_mutex); + return -ENODEV; + } + + /* Found a device, let's lock it so we can check if it's busy */ + mutex_lock(&dev->dev_mutex); + if (dev->refcnt > 0) { + mutex_unlock(&dev->dev_mutex); + mutex_unlock(&devices_mutex); + return -EBUSY; + } + + /* Remove from device list */ + list_del(&dev->list); + mutex_unlock(&devices_mutex); + + /* Flush pending work and stop this workqueue */ + destroy_workqueue(dev->wq); + + ubiblock_cleanup(dev); + mutex_unlock(&dev->dev_mutex); + kfree(dev); + return 0; +} + +static void ubiblock_resize(struct ubi_volume_info *vi) +{ + struct ubiblock *dev; + int disk_capacity; + + /* + * Need to lock the device list until we stop using the device, + * otherwise the device struct might get released in + * 'ubiblock_remove()'. + */ + mutex_lock(&devices_mutex); + dev = find_dev_nolock(vi->ubi_num, vi->vol_id); + if (!dev) { + mutex_unlock(&devices_mutex); + return; + } + + mutex_lock(&dev->dev_mutex); + disk_capacity = (vi->size * vi->usable_leb_size) >> 9; + set_capacity(dev->gd, disk_capacity); + ubi_msg("%s resized to %d LEBs", dev->gd->disk_name, vi->size); + mutex_unlock(&dev->dev_mutex); + mutex_unlock(&devices_mutex); +} + +static int ubiblock_notify(struct notifier_block *nb, + unsigned long notification_type, void *ns_ptr) +{ + struct ubi_notification *nt = ns_ptr; + + switch (notification_type) { + case UBI_VOLUME_ADDED: + /* + * We want to enforce explicit block device creation for + * volumes, so when a volume is added we do nothing. + */ + break; + case UBI_VOLUME_REMOVED: + ubiblock_remove(&nt->vi); + break; + case UBI_VOLUME_RESIZED: + ubiblock_resize(&nt->vi); + break; + default: + break; + } + return NOTIFY_OK; +} + +static struct notifier_block ubiblock_notifier = { + .notifier_call = ubiblock_notify, +}; + +static struct ubi_volume_desc * __init +open_volume_desc(const char *name, int ubi_num, int vol_id) +{ + if (ubi_num == -1) + /* No ubi num, name must be a vol device path */ + return ubi_open_volume_path(name, UBI_READONLY); + else if (vol_id == -1) + /* No vol_id, must be vol_name */ + return ubi_open_volume_nm(ubi_num, name, UBI_READONLY); + else + return ubi_open_volume(ubi_num, vol_id, UBI_READONLY); +} + +static int __init ubiblock_create_from_param(void) +{ + int i, ret; + struct ubiblock_param *p; + struct ubi_volume_desc *desc; + struct ubi_volume_info vi; + + for (i = 0; i < ubiblock_devs; i++) { + p = &ubiblock_param[i]; + + desc = open_volume_desc(p->name, p->ubi_num, p->vol_id); + if (IS_ERR(desc)) { + ubi_err("block: can't open volume, err=%ld\n", + PTR_ERR(desc)); + ret = PTR_ERR(desc); + break; + } + + ubi_get_volume_info(desc, &vi); + ubi_close_volume(desc); + + ret = ubiblock_create(&vi); + if (ret) { + ubi_err("block: can't add '%s' volume, err=%d\n", + vi.name, ret); + break; + } + } + return ret; +} + +static void ubiblock_remove_all(void) +{ + struct ubiblock *next; + struct ubiblock *dev; + + list_for_each_entry_safe(dev, next, &ubiblock_devices, list) { + /* Flush pending work and stop workqueue */ + destroy_workqueue(dev->wq); + /* The module is being forcefully removed */ + WARN_ON(dev->desc); + /* Remove from device list */ + list_del(&dev->list); + ubiblock_cleanup(dev); + kfree(dev); + } +} + +int __init ubiblock_init(void) +{ + int ret; + + ubiblock_major = register_blkdev(0, "ubiblock"); + if (ubiblock_major < 0) + return ubiblock_major; + + /* Attach block devices from 'block=' module param */ + ret = ubiblock_create_from_param(); + if (ret) + goto err_remove; + + /* + * Block devices are only created upon user requests, so we ignore + * existing volumes. + */ + ret = ubi_register_volume_notifier(&ubiblock_notifier, 1); + if (ret) + goto err_unreg; + return 0; + +err_unreg: + unregister_blkdev(ubiblock_major, "ubiblock"); +err_remove: + ubiblock_remove_all(); + return ret; +} + +void __exit ubiblock_exit(void) +{ + ubi_unregister_volume_notifier(&ubiblock_notifier); + ubiblock_remove_all(); + unregister_blkdev(ubiblock_major, "ubiblock"); +} diff --git a/drivers/mtd/ubi/build.c b/drivers/mtd/ubi/build.c index 2c5ed5ca9c3..6e30a3c280d 100644 --- a/drivers/mtd/ubi/build.c +++ b/drivers/mtd/ubi/build.c @@ -36,15 +36,23 @@ #include <linux/namei.h> #include <linux/stat.h> #include <linux/miscdevice.h> +#include <linux/mtd/partitions.h> #include <linux/log2.h> #include <linux/kthread.h> #include <linux/kernel.h> #include <linux/slab.h> +#include <linux/major.h> #include "ubi.h" /* Maximum length of the 'mtd=' parameter */ #define MTD_PARAM_LEN_MAX 64 +/* Maximum number of comma-separated items in the 'mtd=' parameter */ +#define MTD_PARAM_MAX_COUNT 4 + +/* Maximum value for the number of bad PEBs per 1024 PEBs */ +#define MAX_MTD_UBI_BEB_LIMIT 768 + #ifdef CONFIG_MTD_UBI_MODULE #define ubi_is_module() 1 #else @@ -56,10 +64,13 @@ * @name: MTD character device node path, MTD device name, or MTD device number * string * @vid_hdr_offs: VID header offset + * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs */ struct mtd_dev_param { char name[MTD_PARAM_LEN_MAX]; + int ubi_num; int vid_hdr_offs; + int max_beb_per1024; }; /* Numbers of elements set in the @mtd_dev_param array */ @@ -67,7 +78,10 @@ static int __initdata mtd_devs; /* MTD devices specification parameters */ static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; - +#ifdef CONFIG_MTD_UBI_FASTMAP +/* UBI module parameter to enable fastmap automatically on non-fastmap images */ +static bool fm_autoconvert; +#endif /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ struct class *ubi_class; @@ -144,6 +158,19 @@ int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) ubi_do_get_device_info(ubi, &nt.di); ubi_do_get_volume_info(ubi, vol, &nt.vi); + +#ifdef CONFIG_MTD_UBI_FASTMAP + switch (ntype) { + case UBI_VOLUME_ADDED: + case UBI_VOLUME_REMOVED: + case UBI_VOLUME_RESIZED: + case UBI_VOLUME_RENAMED: + if (ubi_update_fastmap(ubi)) { + ubi_err("Unable to update fastmap!"); + ubi_ro_mode(ubi); + } + } +#endif return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); } @@ -564,9 +591,38 @@ void ubi_free_internal_volumes(struct ubi_device *ubi) } } +static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) +{ + int limit, device_pebs; + uint64_t device_size; + + if (!max_beb_per1024) + return 0; + + /* + * Here we are using size of the entire flash chip and + * not just the MTD partition size because the maximum + * number of bad eraseblocks is a percentage of the + * whole device and bad eraseblocks are not fairly + * distributed over the flash chip. So the worst case + * is that all the bad eraseblocks of the chip are in + * the MTD partition we are attaching (ubi->mtd). + */ + device_size = mtd_get_device_size(ubi->mtd); + device_pebs = mtd_div_by_eb(device_size, ubi->mtd); + limit = mult_frac(device_pebs, max_beb_per1024, 1024); + + /* Round it up */ + if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) + limit += 1; + + return limit; +} + /** * io_init - initialize I/O sub-system for a given UBI device. * @ubi: UBI device description object + * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs * * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are * assumed: @@ -579,8 +635,11 @@ void ubi_free_internal_volumes(struct ubi_device *ubi) * This function returns zero in case of success and a negative error code in * case of failure. */ -static int io_init(struct ubi_device *ubi) +static int io_init(struct ubi_device *ubi, int max_beb_per1024) { + dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); + dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); + if (ubi->mtd->numeraseregions != 0) { /* * Some flashes have several erase regions. Different regions @@ -607,8 +666,10 @@ static int io_init(struct ubi_device *ubi) ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); ubi->flash_size = ubi->mtd->size; - if (mtd_can_have_bb(ubi->mtd)) + if (mtd_can_have_bb(ubi->mtd)) { ubi->bad_allowed = 1; + ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); + } if (ubi->mtd->type == MTD_NORFLASH) { ubi_assert(ubi->mtd->writesize == 1); @@ -650,11 +711,11 @@ static int io_init(struct ubi_device *ubi) ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); - dbg_msg("min_io_size %d", ubi->min_io_size); - dbg_msg("max_write_size %d", ubi->max_write_size); - dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size); - dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize); - dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize); + dbg_gen("min_io_size %d", ubi->min_io_size); + dbg_gen("max_write_size %d", ubi->max_write_size); + dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); + dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); + dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); if (ubi->vid_hdr_offset == 0) /* Default offset */ @@ -671,10 +732,10 @@ static int io_init(struct ubi_device *ubi) ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); - dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset); - dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); - dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift); - dbg_msg("leb_start %d", ubi->leb_start); + dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); + dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); + dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); + dbg_gen("leb_start %d", ubi->leb_start); /* The shift must be aligned to 32-bit boundary */ if (ubi->vid_hdr_shift % 4) { @@ -700,7 +761,7 @@ static int io_init(struct ubi_device *ubi) ubi->max_erroneous = ubi->peb_count / 10; if (ubi->max_erroneous < 16) ubi->max_erroneous = 16; - dbg_msg("max_erroneous %d", ubi->max_erroneous); + dbg_gen("max_erroneous %d", ubi->max_erroneous); /* * It may happen that EC and VID headers are situated in one minimal @@ -708,30 +769,18 @@ static int io_init(struct ubi_device *ubi) * read-only mode. */ if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { - ubi_warn("EC and VID headers are in the same minimal I/O unit, " - "switch to read-only mode"); + ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); ubi->ro_mode = 1; } ubi->leb_size = ubi->peb_size - ubi->leb_start; if (!(ubi->mtd->flags & MTD_WRITEABLE)) { - ubi_msg("MTD device %d is write-protected, attach in " - "read-only mode", ubi->mtd->index); + ubi_msg("MTD device %d is write-protected, attach in read-only mode", + ubi->mtd->index); ubi->ro_mode = 1; } - ubi_msg("physical eraseblock size: %d bytes (%d KiB)", - ubi->peb_size, ubi->peb_size >> 10); - ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size); - ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size); - if (ubi->hdrs_min_io_size != ubi->min_io_size) - ubi_msg("sub-page size: %d", - ubi->hdrs_min_io_size); - ubi_msg("VID header offset: %d (aligned %d)", - ubi->vid_hdr_offset, ubi->vid_hdr_aloffset); - ubi_msg("data offset: %d", ubi->leb_start); - /* * Note, ideally, we have to initialize @ubi->bad_peb_count here. But * unfortunately, MTD does not provide this information. We should loop @@ -759,6 +808,11 @@ static int autoresize(struct ubi_device *ubi, int vol_id) struct ubi_volume *vol = ubi->volumes[vol_id]; int err, old_reserved_pebs = vol->reserved_pebs; + if (ubi->ro_mode) { + ubi_warn("skip auto-resize because of R/O mode"); + return 0; + } + /* * Clear the auto-resize flag in the volume in-memory copy of the * volume table, and 'ubi_resize_volume()' will propagate this change @@ -773,8 +827,7 @@ static int autoresize(struct ubi_device *ubi, int vol_id) * No available PEBs to re-size the volume, clear the flag on * flash and exit. */ - memcpy(&vtbl_rec, &ubi->vtbl[vol_id], - sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol_id]; err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); if (err) ubi_err("cannot clean auto-resize flag for volume %d", @@ -800,6 +853,7 @@ static int autoresize(struct ubi_device *ubi, int vol_id) * @mtd: MTD device description object * @ubi_num: number to assign to the new UBI device * @vid_hdr_offset: VID header offset + * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs * * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in @@ -810,11 +864,18 @@ static int autoresize(struct ubi_device *ubi, int vol_id) * Note, the invocations of this function has to be serialized by the * @ubi_devices_mutex. */ -int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) +int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, + int vid_hdr_offset, int max_beb_per1024) { struct ubi_device *ubi; int i, err, ref = 0; + if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) + return -EINVAL; + + if (!max_beb_per1024) + max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; + /* * Check if we already have the same MTD device attached. * @@ -839,8 +900,8 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) * no sense to attach emulated MTD devices, so we prohibit this. */ if (mtd->type == MTD_UBIVOLUME) { - ubi_err("refuse attaching mtd%d - it is already emulated on " - "top of UBI", mtd->index); + ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI", + mtd->index); return -EINVAL; } @@ -874,16 +935,44 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) ubi->vid_hdr_offset = vid_hdr_offset; ubi->autoresize_vol_id = -1; +#ifdef CONFIG_MTD_UBI_FASTMAP + ubi->fm_pool.used = ubi->fm_pool.size = 0; + ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; + + /* + * fm_pool.max_size is 5% of the total number of PEBs but it's also + * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. + */ + ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, + ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); + if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE) + ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE; + + ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE; + ubi->fm_disabled = !fm_autoconvert; + + if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) + <= UBI_FM_MAX_START) { + ubi_err("More than %i PEBs are needed for fastmap, sorry.", + UBI_FM_MAX_START); + ubi->fm_disabled = 1; + } + + ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size); + ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); +#else + ubi->fm_disabled = 1; +#endif mutex_init(&ubi->buf_mutex); mutex_init(&ubi->ckvol_mutex); mutex_init(&ubi->device_mutex); spin_lock_init(&ubi->volumes_lock); + mutex_init(&ubi->fm_mutex); + init_rwsem(&ubi->fm_sem); ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); - dbg_msg("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); - dbg_msg("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); - err = io_init(ubi); + err = io_init(ubi, max_beb_per1024); if (err) goto out_free; @@ -892,14 +981,16 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) if (!ubi->peb_buf) goto out_free; - err = ubi_debugging_init_dev(ubi); - if (err) +#ifdef CONFIG_MTD_UBI_FASTMAP + ubi->fm_size = ubi_calc_fm_size(ubi); + ubi->fm_buf = vzalloc(ubi->fm_size); + if (!ubi->fm_buf) goto out_free; - - err = ubi_attach(ubi); +#endif + err = ubi_attach(ubi, 0); if (err) { ubi_err("failed to attach mtd%d, error %d", mtd->index, err); - goto out_debugging; + goto out_free; } if (ubi->autoresize_vol_id != -1) { @@ -916,7 +1007,7 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) if (err) goto out_uif; - ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); + ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); if (IS_ERR(ubi->bgt_thread)) { err = PTR_ERR(ubi->bgt_thread); ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, @@ -924,23 +1015,24 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) goto out_debugfs; } - ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num); - ubi_msg("MTD device name: \"%s\"", mtd->name); - ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20); - ubi_msg("number of good PEBs: %d", ubi->good_peb_count); - ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count); - ubi_msg("number of corrupted PEBs: %d", ubi->corr_peb_count); - ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots); - ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD); - ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT); - ubi_msg("number of user volumes: %d", - ubi->vol_count - UBI_INT_VOL_COUNT); - ubi_msg("available PEBs: %d", ubi->avail_pebs); - ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs); - ubi_msg("number of PEBs reserved for bad PEB handling: %d", - ubi->beb_rsvd_pebs); - ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec); - ubi_msg("image sequence number: %d", ubi->image_seq); + ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d", + mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num); + ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes", + ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); + ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d", + ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); + ubi_msg("VID header offset: %d (aligned %d), data offset: %d", + ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); + ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", + ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); + ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d", + ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, + ubi->vtbl_slots); + ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", + ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, + ubi->image_seq); + ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", + ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); /* * The below lock makes sure we do not race with 'ubi_thread()' which @@ -965,10 +1057,9 @@ out_detach: ubi_wl_close(ubi); ubi_free_internal_volumes(ubi); vfree(ubi->vtbl); -out_debugging: - ubi_debugging_exit_dev(ubi); out_free: vfree(ubi->peb_buf); + vfree(ubi->fm_buf); if (ref) put_device(&ubi->dev); else @@ -1017,8 +1108,12 @@ int ubi_detach_mtd_dev(int ubi_num, int anyway) ubi_assert(ubi_num == ubi->ubi_num); ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); - dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); - + ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); +#ifdef CONFIG_MTD_UBI_FASTMAP + /* If we don't write a new fastmap at detach time we lose all + * EC updates that have been made since the last written fastmap. */ + ubi_update_fastmap(ubi); +#endif /* * Before freeing anything, we have to stop the background thread to * prevent it from doing anything on this device while we are freeing. @@ -1034,12 +1129,13 @@ int ubi_detach_mtd_dev(int ubi_num, int anyway) ubi_debugfs_exit_dev(ubi); uif_close(ubi); + ubi_wl_close(ubi); ubi_free_internal_volumes(ubi); vfree(ubi->vtbl); put_mtd_device(ubi->mtd); - ubi_debugging_exit_dev(ubi); vfree(ubi->peb_buf); + vfree(ubi->fm_buf); ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); put_device(&ubi->dev); return 0; @@ -1149,8 +1245,10 @@ static int __init ubi_init(void) ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", sizeof(struct ubi_wl_entry), 0, 0, NULL); - if (!ubi_wl_entry_slab) + if (!ubi_wl_entry_slab) { + err = -ENOMEM; goto out_dev_unreg; + } err = ubi_debugfs_init(); if (err) @@ -1167,12 +1265,16 @@ static int __init ubi_init(void) mtd = open_mtd_device(p->name); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); - goto out_detach; + ubi_err("cannot open mtd %s, error %d", p->name, err); + /* See comment below re-ubi_is_module(). */ + if (ubi_is_module()) + goto out_detach; + continue; } mutex_lock(&ubi_devices_mutex); - err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO, - p->vid_hdr_offs); + err = ubi_attach_mtd_dev(mtd, p->ubi_num, + p->vid_hdr_offs, p->max_beb_per1024); mutex_unlock(&ubi_devices_mutex); if (err < 0) { ubi_err("cannot attach mtd%d", mtd->index); @@ -1196,6 +1298,15 @@ static int __init ubi_init(void) } } + err = ubiblock_init(); + if (err) { + ubi_err("block: cannot initialize, error %d", err); + + /* See comment above re-ubi_is_module(). */ + if (ubi_is_module()) + goto out_detach; + } + return 0; out_detach: @@ -1215,15 +1326,17 @@ out_version: out_class: class_destroy(ubi_class); out: - ubi_err("UBI error: cannot initialize UBI, error %d", err); + ubi_err("cannot initialize UBI, error %d", err); return err; } -module_init(ubi_init); +late_initcall(ubi_init); static void __exit ubi_exit(void) { int i; + ubiblock_exit(); + for (i = 0; i < UBI_MAX_DEVICES; i++) if (ubi_devices[i]) { mutex_lock(&ubi_devices_mutex); @@ -1252,8 +1365,7 @@ static int __init bytes_str_to_int(const char *str) result = simple_strtoul(str, &endp, 0); if (str == endp || result >= INT_MAX) { - printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", - str); + ubi_err("incorrect bytes count: \"%s\"\n", str); return -EINVAL; } @@ -1269,8 +1381,7 @@ static int __init bytes_str_to_int(const char *str) case '\0': break; default: - printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", - str); + ubi_err("incorrect bytes count: \"%s\"\n", str); return -EINVAL; } @@ -1291,27 +1402,26 @@ static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) struct mtd_dev_param *p; char buf[MTD_PARAM_LEN_MAX]; char *pbuf = &buf[0]; - char *tokens[2] = {NULL, NULL}; + char *tokens[MTD_PARAM_MAX_COUNT], *token; if (!val) return -EINVAL; if (mtd_devs == UBI_MAX_DEVICES) { - printk(KERN_ERR "UBI error: too many parameters, max. is %d\n", - UBI_MAX_DEVICES); + ubi_err("too many parameters, max. is %d\n", + UBI_MAX_DEVICES); return -EINVAL; } len = strnlen(val, MTD_PARAM_LEN_MAX); if (len == MTD_PARAM_LEN_MAX) { - printk(KERN_ERR "UBI error: parameter \"%s\" is too long, " - "max. is %d\n", val, MTD_PARAM_LEN_MAX); + ubi_err("parameter \"%s\" is too long, max. is %d\n", + val, MTD_PARAM_LEN_MAX); return -EINVAL; } if (len == 0) { - printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - " - "ignored\n"); + pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); return 0; } @@ -1321,42 +1431,69 @@ static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) if (buf[len - 1] == '\n') buf[len - 1] = '\0'; - for (i = 0; i < 2; i++) + for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) tokens[i] = strsep(&pbuf, ","); if (pbuf) { - printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n", - val); + ubi_err("too many arguments at \"%s\"\n", val); return -EINVAL; } p = &mtd_dev_param[mtd_devs]; strcpy(&p->name[0], tokens[0]); - if (tokens[1]) - p->vid_hdr_offs = bytes_str_to_int(tokens[1]); + token = tokens[1]; + if (token) { + p->vid_hdr_offs = bytes_str_to_int(token); + + if (p->vid_hdr_offs < 0) + return p->vid_hdr_offs; + } + + token = tokens[2]; + if (token) { + int err = kstrtoint(token, 10, &p->max_beb_per1024); + + if (err) { + ubi_err("bad value for max_beb_per1024 parameter: %s", + token); + return -EINVAL; + } + } + + token = tokens[3]; + if (token) { + int err = kstrtoint(token, 10, &p->ubi_num); - if (p->vid_hdr_offs < 0) - return p->vid_hdr_offs; + if (err) { + ubi_err("bad value for ubi_num parameter: %s", token); + return -EINVAL; + } + } else + p->ubi_num = UBI_DEV_NUM_AUTO; mtd_devs += 1; return 0; } module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); -MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: " - "mtd=<name|num|path>[,<vid_hdr_offs>].\n" +MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" "Multiple \"mtd\" parameters may be specified.\n" - "MTD devices may be specified by their number, name, or " - "path to the MTD character device node.\n" - "Optional \"vid_hdr_offs\" parameter specifies UBI VID " - "header position to be used by UBI.\n" - "Example 1: mtd=/dev/mtd0 - attach MTD device " - "/dev/mtd0.\n" - "Example 2: mtd=content,1984 mtd=4 - attach MTD device " - "with name \"content\" using VID header offset 1984, and " - "MTD device number 4 with default VID header offset."); - + "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" + "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" + "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" + __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" + "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" + "\n" + "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" + "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" + "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" + "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" + "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); +#ifdef CONFIG_MTD_UBI_FASTMAP +module_param(fm_autoconvert, bool, 0644); +MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); +#endif MODULE_VERSION(__stringify(UBI_VERSION)); MODULE_DESCRIPTION("UBI - Unsorted Block Images"); MODULE_AUTHOR("Artem Bityutskiy"); diff --git a/drivers/mtd/ubi/cdev.c b/drivers/mtd/ubi/cdev.c index acec85deb6a..7646220ca6e 100644 --- a/drivers/mtd/ubi/cdev.c +++ b/drivers/mtd/ubi/cdev.c @@ -140,9 +140,9 @@ static int vol_cdev_release(struct inode *inode, struct file *file) vol->updating = 0; vfree(vol->upd_buf); } else if (vol->changing_leb) { - dbg_gen("only %lld of %lld bytes received for atomic LEB change" - " for volume %d:%d, cancel", vol->upd_received, - vol->upd_bytes, vol->ubi->ubi_num, vol->vol_id); + dbg_gen("only %lld of %lld bytes received for atomic LEB change for volume %d:%d, cancel", + vol->upd_received, vol->upd_bytes, vol->ubi->ubi_num, + vol->vol_id); vol->changing_leb = 0; vfree(vol->upd_buf); } @@ -155,7 +155,6 @@ static loff_t vol_cdev_llseek(struct file *file, loff_t offset, int origin) { struct ubi_volume_desc *desc = file->private_data; struct ubi_volume *vol = desc->vol; - loff_t new_offset; if (vol->updating) { /* Update is in progress, seeking is prohibited */ @@ -163,37 +162,15 @@ static loff_t vol_cdev_llseek(struct file *file, loff_t offset, int origin) return -EBUSY; } - switch (origin) { - case 0: /* SEEK_SET */ - new_offset = offset; - break; - case 1: /* SEEK_CUR */ - new_offset = file->f_pos + offset; - break; - case 2: /* SEEK_END */ - new_offset = vol->used_bytes + offset; - break; - default: - return -EINVAL; - } - - if (new_offset < 0 || new_offset > vol->used_bytes) { - ubi_err("bad seek %lld", new_offset); - return -EINVAL; - } - - dbg_gen("seek volume %d, offset %lld, origin %d, new offset %lld", - vol->vol_id, offset, origin, new_offset); - - file->f_pos = new_offset; - return new_offset; + return fixed_size_llseek(file, offset, origin, vol->used_bytes); } -static int vol_cdev_fsync(struct file *file, loff_t start, loff_t end, int datasync) +static int vol_cdev_fsync(struct file *file, loff_t start, loff_t end, + int datasync) { struct ubi_volume_desc *desc = file->private_data; struct ubi_device *ubi = desc->vol->ubi; - struct inode *inode = file->f_path.dentry->d_inode; + struct inode *inode = file_inode(file); int err; mutex_lock(&inode->i_mutex); err = ubi_sync(ubi->ubi_num); @@ -584,6 +561,26 @@ static long vol_cdev_ioctl(struct file *file, unsigned int cmd, break; } + /* Create a R/O block device on top of the UBI volume */ + case UBI_IOCVOLCRBLK: + { + struct ubi_volume_info vi; + + ubi_get_volume_info(desc, &vi); + err = ubiblock_create(&vi); + break; + } + + /* Remove the R/O block device */ + case UBI_IOCVOLRMBLK: + { + struct ubi_volume_info vi; + + ubi_get_volume_info(desc, &vi); + err = ubiblock_remove(&vi); + break; + } + default: err = -ENOTTY; break; @@ -734,7 +731,7 @@ static int rename_volumes(struct ubi_device *ubi, goto out_free; } - re->desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_EXCLUSIVE); + re->desc = ubi_open_volume(ubi->ubi_num, vol_id, UBI_READWRITE); if (IS_ERR(re->desc)) { err = PTR_ERR(re->desc); ubi_err("cannot open volume %d, error %d", vol_id, err); @@ -753,7 +750,7 @@ static int rename_volumes(struct ubi_device *ubi, re->new_name_len = name_len; memcpy(re->new_name, name, name_len); list_add_tail(&re->list, &rename_list); - dbg_msg("will rename volume %d from \"%s\" to \"%s\"", + dbg_gen("will rename volume %d from \"%s\" to \"%s\"", vol_id, re->desc->vol->name, name); } @@ -811,7 +808,7 @@ static int rename_volumes(struct ubi_device *ubi, re1->remove = 1; re1->desc = desc; list_add(&re1->list, &rename_list); - dbg_msg("will remove volume %d, name \"%s\"", + dbg_gen("will remove volume %d, name \"%s\"", re1->desc->vol->vol_id, re1->desc->vol->name); } @@ -942,7 +939,7 @@ static long ubi_cdev_ioctl(struct file *file, unsigned int cmd, { struct ubi_rnvol_req *req; - dbg_msg("re-name volumes"); + dbg_gen("re-name volumes"); req = kmalloc(sizeof(struct ubi_rnvol_req), GFP_KERNEL); if (!req) { err = -ENOMEM; @@ -1010,7 +1007,8 @@ static long ctrl_cdev_ioctl(struct file *file, unsigned int cmd, * 'ubi_attach_mtd_dev()'. */ mutex_lock(&ubi_devices_mutex); - err = ubi_attach_mtd_dev(mtd, req.ubi_num, req.vid_hdr_offset); + err = ubi_attach_mtd_dev(mtd, req.ubi_num, req.vid_hdr_offset, + req.max_beb_per1024); mutex_unlock(&ubi_devices_mutex); if (err < 0) put_mtd_device(mtd); @@ -1026,7 +1024,7 @@ static long ctrl_cdev_ioctl(struct file *file, unsigned int cmd, { int ubi_num; - dbg_gen("dettach MTD device"); + dbg_gen("detach MTD device"); err = get_user(ubi_num, (__user int32_t *)argp); if (err) { err = -EFAULT; diff --git a/drivers/mtd/ubi/debug.c b/drivers/mtd/ubi/debug.c index 7c138030521..63cb1d7236c 100644 --- a/drivers/mtd/ubi/debug.c +++ b/drivers/mtd/ubi/debug.c @@ -43,8 +43,8 @@ void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len) return; err = mtd_read(ubi->mtd, addr, len, &read, buf); if (err && err != -EUCLEAN) { - ubi_err("error %d while reading %d bytes from PEB %d:%d, " - "read %zd bytes", err, len, pnum, offset, read); + ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", + err, len, pnum, offset, read); goto out; } @@ -62,21 +62,15 @@ out: */ void ubi_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr) { - printk(KERN_DEBUG "Erase counter header dump:\n"); - printk(KERN_DEBUG "\tmagic %#08x\n", - be32_to_cpu(ec_hdr->magic)); - printk(KERN_DEBUG "\tversion %d\n", (int)ec_hdr->version); - printk(KERN_DEBUG "\tec %llu\n", - (long long)be64_to_cpu(ec_hdr->ec)); - printk(KERN_DEBUG "\tvid_hdr_offset %d\n", - be32_to_cpu(ec_hdr->vid_hdr_offset)); - printk(KERN_DEBUG "\tdata_offset %d\n", - be32_to_cpu(ec_hdr->data_offset)); - printk(KERN_DEBUG "\timage_seq %d\n", - be32_to_cpu(ec_hdr->image_seq)); - printk(KERN_DEBUG "\thdr_crc %#08x\n", - be32_to_cpu(ec_hdr->hdr_crc)); - printk(KERN_DEBUG "erase counter header hexdump:\n"); + pr_err("Erase counter header dump:\n"); + pr_err("\tmagic %#08x\n", be32_to_cpu(ec_hdr->magic)); + pr_err("\tversion %d\n", (int)ec_hdr->version); + pr_err("\tec %llu\n", (long long)be64_to_cpu(ec_hdr->ec)); + pr_err("\tvid_hdr_offset %d\n", be32_to_cpu(ec_hdr->vid_hdr_offset)); + pr_err("\tdata_offset %d\n", be32_to_cpu(ec_hdr->data_offset)); + pr_err("\timage_seq %d\n", be32_to_cpu(ec_hdr->image_seq)); + pr_err("\thdr_crc %#08x\n", be32_to_cpu(ec_hdr->hdr_crc)); + pr_err("erase counter header hexdump:\n"); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, ec_hdr, UBI_EC_HDR_SIZE, 1); } @@ -87,21 +81,21 @@ void ubi_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr) */ void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr) { - printk(KERN_DEBUG "Volume identifier header dump:\n"); - printk(KERN_DEBUG "\tmagic %08x\n", be32_to_cpu(vid_hdr->magic)); - printk(KERN_DEBUG "\tversion %d\n", (int)vid_hdr->version); - printk(KERN_DEBUG "\tvol_type %d\n", (int)vid_hdr->vol_type); - printk(KERN_DEBUG "\tcopy_flag %d\n", (int)vid_hdr->copy_flag); - printk(KERN_DEBUG "\tcompat %d\n", (int)vid_hdr->compat); - printk(KERN_DEBUG "\tvol_id %d\n", be32_to_cpu(vid_hdr->vol_id)); - printk(KERN_DEBUG "\tlnum %d\n", be32_to_cpu(vid_hdr->lnum)); - printk(KERN_DEBUG "\tdata_size %d\n", be32_to_cpu(vid_hdr->data_size)); - printk(KERN_DEBUG "\tused_ebs %d\n", be32_to_cpu(vid_hdr->used_ebs)); - printk(KERN_DEBUG "\tdata_pad %d\n", be32_to_cpu(vid_hdr->data_pad)); - printk(KERN_DEBUG "\tsqnum %llu\n", + pr_err("Volume identifier header dump:\n"); + pr_err("\tmagic %08x\n", be32_to_cpu(vid_hdr->magic)); + pr_err("\tversion %d\n", (int)vid_hdr->version); + pr_err("\tvol_type %d\n", (int)vid_hdr->vol_type); + pr_err("\tcopy_flag %d\n", (int)vid_hdr->copy_flag); + pr_err("\tcompat %d\n", (int)vid_hdr->compat); + pr_err("\tvol_id %d\n", be32_to_cpu(vid_hdr->vol_id)); + pr_err("\tlnum %d\n", be32_to_cpu(vid_hdr->lnum)); + pr_err("\tdata_size %d\n", be32_to_cpu(vid_hdr->data_size)); + pr_err("\tused_ebs %d\n", be32_to_cpu(vid_hdr->used_ebs)); + pr_err("\tdata_pad %d\n", be32_to_cpu(vid_hdr->data_pad)); + pr_err("\tsqnum %llu\n", (unsigned long long)be64_to_cpu(vid_hdr->sqnum)); - printk(KERN_DEBUG "\thdr_crc %08x\n", be32_to_cpu(vid_hdr->hdr_crc)); - printk(KERN_DEBUG "Volume identifier header hexdump:\n"); + pr_err("\thdr_crc %08x\n", be32_to_cpu(vid_hdr->hdr_crc)); + pr_err("Volume identifier header hexdump:\n"); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, vid_hdr, UBI_VID_HDR_SIZE, 1); } @@ -112,25 +106,25 @@ void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr) */ void ubi_dump_vol_info(const struct ubi_volume *vol) { - printk(KERN_DEBUG "Volume information dump:\n"); - printk(KERN_DEBUG "\tvol_id %d\n", vol->vol_id); - printk(KERN_DEBUG "\treserved_pebs %d\n", vol->reserved_pebs); - printk(KERN_DEBUG "\talignment %d\n", vol->alignment); - printk(KERN_DEBUG "\tdata_pad %d\n", vol->data_pad); - printk(KERN_DEBUG "\tvol_type %d\n", vol->vol_type); - printk(KERN_DEBUG "\tname_len %d\n", vol->name_len); - printk(KERN_DEBUG "\tusable_leb_size %d\n", vol->usable_leb_size); - printk(KERN_DEBUG "\tused_ebs %d\n", vol->used_ebs); - printk(KERN_DEBUG "\tused_bytes %lld\n", vol->used_bytes); - printk(KERN_DEBUG "\tlast_eb_bytes %d\n", vol->last_eb_bytes); - printk(KERN_DEBUG "\tcorrupted %d\n", vol->corrupted); - printk(KERN_DEBUG "\tupd_marker %d\n", vol->upd_marker); + pr_err("Volume information dump:\n"); + pr_err("\tvol_id %d\n", vol->vol_id); + pr_err("\treserved_pebs %d\n", vol->reserved_pebs); + pr_err("\talignment %d\n", vol->alignment); + pr_err("\tdata_pad %d\n", vol->data_pad); + pr_err("\tvol_type %d\n", vol->vol_type); + pr_err("\tname_len %d\n", vol->name_len); + pr_err("\tusable_leb_size %d\n", vol->usable_leb_size); + pr_err("\tused_ebs %d\n", vol->used_ebs); + pr_err("\tused_bytes %lld\n", vol->used_bytes); + pr_err("\tlast_eb_bytes %d\n", vol->last_eb_bytes); + pr_err("\tcorrupted %d\n", vol->corrupted); + pr_err("\tupd_marker %d\n", vol->upd_marker); if (vol->name_len <= UBI_VOL_NAME_MAX && strnlen(vol->name, vol->name_len + 1) == vol->name_len) { - printk(KERN_DEBUG "\tname %s\n", vol->name); + pr_err("\tname %s\n", vol->name); } else { - printk(KERN_DEBUG "\t1st 5 characters of name: %c%c%c%c%c\n", + pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", vol->name[0], vol->name[1], vol->name[2], vol->name[3], vol->name[4]); } @@ -145,29 +139,28 @@ void ubi_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx) { int name_len = be16_to_cpu(r->name_len); - printk(KERN_DEBUG "Volume table record %d dump:\n", idx); - printk(KERN_DEBUG "\treserved_pebs %d\n", - be32_to_cpu(r->reserved_pebs)); - printk(KERN_DEBUG "\talignment %d\n", be32_to_cpu(r->alignment)); - printk(KERN_DEBUG "\tdata_pad %d\n", be32_to_cpu(r->data_pad)); - printk(KERN_DEBUG "\tvol_type %d\n", (int)r->vol_type); - printk(KERN_DEBUG "\tupd_marker %d\n", (int)r->upd_marker); - printk(KERN_DEBUG "\tname_len %d\n", name_len); + pr_err("Volume table record %d dump:\n", idx); + pr_err("\treserved_pebs %d\n", be32_to_cpu(r->reserved_pebs)); + pr_err("\talignment %d\n", be32_to_cpu(r->alignment)); + pr_err("\tdata_pad %d\n", be32_to_cpu(r->data_pad)); + pr_err("\tvol_type %d\n", (int)r->vol_type); + pr_err("\tupd_marker %d\n", (int)r->upd_marker); + pr_err("\tname_len %d\n", name_len); if (r->name[0] == '\0') { - printk(KERN_DEBUG "\tname NULL\n"); + pr_err("\tname NULL\n"); return; } if (name_len <= UBI_VOL_NAME_MAX && strnlen(&r->name[0], name_len + 1) == name_len) { - printk(KERN_DEBUG "\tname %s\n", &r->name[0]); + pr_err("\tname %s\n", &r->name[0]); } else { - printk(KERN_DEBUG "\t1st 5 characters of name: %c%c%c%c%c\n", + pr_err("\t1st 5 characters of name: %c%c%c%c%c\n", r->name[0], r->name[1], r->name[2], r->name[3], r->name[4]); } - printk(KERN_DEBUG "\tcrc %#08x\n", be32_to_cpu(r->crc)); + pr_err("\tcrc %#08x\n", be32_to_cpu(r->crc)); } /** @@ -176,15 +169,15 @@ void ubi_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx) */ void ubi_dump_av(const struct ubi_ainf_volume *av) { - printk(KERN_DEBUG "Volume attaching information dump:\n"); - printk(KERN_DEBUG "\tvol_id %d\n", av->vol_id); - printk(KERN_DEBUG "\thighest_lnum %d\n", av->highest_lnum); - printk(KERN_DEBUG "\tleb_count %d\n", av->leb_count); - printk(KERN_DEBUG "\tcompat %d\n", av->compat); - printk(KERN_DEBUG "\tvol_type %d\n", av->vol_type); - printk(KERN_DEBUG "\tused_ebs %d\n", av->used_ebs); - printk(KERN_DEBUG "\tlast_data_size %d\n", av->last_data_size); - printk(KERN_DEBUG "\tdata_pad %d\n", av->data_pad); + pr_err("Volume attaching information dump:\n"); + pr_err("\tvol_id %d\n", av->vol_id); + pr_err("\thighest_lnum %d\n", av->highest_lnum); + pr_err("\tleb_count %d\n", av->leb_count); + pr_err("\tcompat %d\n", av->compat); + pr_err("\tvol_type %d\n", av->vol_type); + pr_err("\tused_ebs %d\n", av->used_ebs); + pr_err("\tlast_data_size %d\n", av->last_data_size); + pr_err("\tdata_pad %d\n", av->data_pad); } /** @@ -194,13 +187,13 @@ void ubi_dump_av(const struct ubi_ainf_volume *av) */ void ubi_dump_aeb(const struct ubi_ainf_peb *aeb, int type) { - printk(KERN_DEBUG "eraseblock attaching information dump:\n"); - printk(KERN_DEBUG "\tec %d\n", aeb->ec); - printk(KERN_DEBUG "\tpnum %d\n", aeb->pnum); + pr_err("eraseblock attaching information dump:\n"); + pr_err("\tec %d\n", aeb->ec); + pr_err("\tpnum %d\n", aeb->pnum); if (type == 0) { - printk(KERN_DEBUG "\tlnum %d\n", aeb->lnum); - printk(KERN_DEBUG "\tscrub %d\n", aeb->scrub); - printk(KERN_DEBUG "\tsqnum %llu\n", aeb->sqnum); + pr_err("\tlnum %d\n", aeb->lnum); + pr_err("\tscrub %d\n", aeb->scrub); + pr_err("\tsqnum %llu\n", aeb->sqnum); } } @@ -212,42 +205,16 @@ void ubi_dump_mkvol_req(const struct ubi_mkvol_req *req) { char nm[17]; - printk(KERN_DEBUG "Volume creation request dump:\n"); - printk(KERN_DEBUG "\tvol_id %d\n", req->vol_id); - printk(KERN_DEBUG "\talignment %d\n", req->alignment); - printk(KERN_DEBUG "\tbytes %lld\n", (long long)req->bytes); - printk(KERN_DEBUG "\tvol_type %d\n", req->vol_type); - printk(KERN_DEBUG "\tname_len %d\n", req->name_len); + pr_err("Volume creation request dump:\n"); + pr_err("\tvol_id %d\n", req->vol_id); + pr_err("\talignment %d\n", req->alignment); + pr_err("\tbytes %lld\n", (long long)req->bytes); + pr_err("\tvol_type %d\n", req->vol_type); + pr_err("\tname_len %d\n", req->name_len); memcpy(nm, req->name, 16); nm[16] = 0; - printk(KERN_DEBUG "\t1st 16 characters of name: %s\n", nm); -} - -/** - * ubi_debugging_init_dev - initialize debugging for an UBI device. - * @ubi: UBI device description object - * - * This function initializes debugging-related data for UBI device @ubi. - * Returns zero in case of success and a negative error code in case of - * failure. - */ -int ubi_debugging_init_dev(struct ubi_device *ubi) -{ - ubi->dbg = kzalloc(sizeof(struct ubi_debug_info), GFP_KERNEL); - if (!ubi->dbg) - return -ENOMEM; - - return 0; -} - -/** - * ubi_debugging_exit_dev - free debugging data for an UBI device. - * @ubi: UBI device description object - */ -void ubi_debugging_exit_dev(struct ubi_device *ubi) -{ - kfree(ubi->dbg); + pr_err("\t1st 16 characters of name: %s\n", nm); } /* @@ -302,7 +269,7 @@ static ssize_t dfs_file_read(struct file *file, char __user *user_buf, ubi = ubi_get_device(ubi_num); if (!ubi) return -ENODEV; - d = ubi->dbg; + d = &ubi->dbg; if (dent == d->dfs_chk_gen) val = d->chk_gen; @@ -348,7 +315,7 @@ static ssize_t dfs_file_write(struct file *file, const char __user *user_buf, ubi = ubi_get_device(ubi_num); if (!ubi) return -ENODEV; - d = ubi->dbg; + d = &ubi->dbg; buf_size = min_t(size_t, count, (sizeof(buf) - 1)); if (copy_from_user(buf, user_buf, buf_size)) { @@ -405,7 +372,7 @@ int ubi_debugfs_init_dev(struct ubi_device *ubi) unsigned long ubi_num = ubi->ubi_num; const char *fname; struct dentry *dent; - struct ubi_debug_info *d = ubi->dbg; + struct ubi_debug_info *d = &ubi->dbg; if (!IS_ENABLED(CONFIG_DEBUG_FS)) return 0; @@ -478,5 +445,5 @@ out: void ubi_debugfs_exit_dev(struct ubi_device *ubi) { if (IS_ENABLED(CONFIG_DEBUG_FS)) - debugfs_remove_recursive(ubi->dbg->dfs_dir); + debugfs_remove_recursive(ubi->dbg.dfs_dir); } diff --git a/drivers/mtd/ubi/debug.h b/drivers/mtd/ubi/debug.h index d5d2645b51a..cba89fcd158 100644 --- a/drivers/mtd/ubi/debug.h +++ b/drivers/mtd/ubi/debug.h @@ -29,22 +29,18 @@ void ubi_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr); #define ubi_assert(expr) do { \ if (unlikely(!(expr))) { \ - printk(KERN_CRIT "UBI assert failed in %s at %u (pid %d)\n", \ + pr_crit("UBI assert failed in %s at %u (pid %d)\n", \ __func__, __LINE__, current->pid); \ dump_stack(); \ } \ } while (0) -#define ubi_dbg_print_hex_dump(l, ps, pt, r, g, b, len, a) \ +#define ubi_dbg_print_hex_dump(l, ps, pt, r, g, b, len, a) \ print_hex_dump(l, ps, pt, r, g, b, len, a) #define ubi_dbg_msg(type, fmt, ...) \ - pr_debug("UBI DBG " type ": " fmt "\n", ##__VA_ARGS__) - -/* Just a debugging messages not related to any specific UBI subsystem */ -#define dbg_msg(fmt, ...) \ - printk(KERN_DEBUG "UBI DBG (pid %d): %s: " fmt "\n", \ - current->pid, __func__, ##__VA_ARGS__) + pr_debug("UBI DBG " type " (pid %d): " fmt "\n", current->pid, \ + ##__VA_ARGS__) /* General debugging messages */ #define dbg_gen(fmt, ...) ubi_dbg_msg("gen", fmt, ##__VA_ARGS__) @@ -64,51 +60,11 @@ void ubi_dump_aeb(const struct ubi_ainf_peb *aeb, int type); void ubi_dump_mkvol_req(const struct ubi_mkvol_req *req); int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len); -int ubi_debugging_init_dev(struct ubi_device *ubi); -void ubi_debugging_exit_dev(struct ubi_device *ubi); int ubi_debugfs_init(void); void ubi_debugfs_exit(void); int ubi_debugfs_init_dev(struct ubi_device *ubi); void ubi_debugfs_exit_dev(struct ubi_device *ubi); -/* - * The UBI debugfs directory name pattern and maximum name length (3 for "ubi" - * + 2 for the number plus 1 for the trailing zero byte. - */ -#define UBI_DFS_DIR_NAME "ubi%d" -#define UBI_DFS_DIR_LEN (3 + 2 + 1) - -/** - * struct ubi_debug_info - debugging information for an UBI device. - * - * @chk_gen: if UBI general extra checks are enabled - * @chk_io: if UBI I/O extra checks are enabled - * @disable_bgt: disable the background task for testing purposes - * @emulate_bitflips: emulate bit-flips for testing purposes - * @emulate_io_failures: emulate write/erase failures for testing purposes - * @dfs_dir_name: name of debugfs directory containing files of this UBI device - * @dfs_dir: direntry object of the UBI device debugfs directory - * @dfs_chk_gen: debugfs knob to enable UBI general extra checks - * @dfs_chk_io: debugfs knob to enable UBI I/O extra checks - * @dfs_disable_bgt: debugfs knob to disable the background task - * @dfs_emulate_bitflips: debugfs knob to emulate bit-flips - * @dfs_emulate_io_failures: debugfs knob to emulate write/erase failures - */ -struct ubi_debug_info { - unsigned int chk_gen:1; - unsigned int chk_io:1; - unsigned int disable_bgt:1; - unsigned int emulate_bitflips:1; - unsigned int emulate_io_failures:1; - char dfs_dir_name[UBI_DFS_DIR_LEN + 1]; - struct dentry *dfs_dir; - struct dentry *dfs_chk_gen; - struct dentry *dfs_chk_io; - struct dentry *dfs_disable_bgt; - struct dentry *dfs_emulate_bitflips; - struct dentry *dfs_emulate_io_failures; -}; - /** * ubi_dbg_is_bgt_disabled - if the background thread is disabled. * @ubi: UBI device description object @@ -118,7 +74,7 @@ struct ubi_debug_info { */ static inline int ubi_dbg_is_bgt_disabled(const struct ubi_device *ubi) { - return ubi->dbg->disable_bgt; + return ubi->dbg.disable_bgt; } /** @@ -129,8 +85,8 @@ static inline int ubi_dbg_is_bgt_disabled(const struct ubi_device *ubi) */ static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi) { - if (ubi->dbg->emulate_bitflips) - return !(random32() % 200); + if (ubi->dbg.emulate_bitflips) + return !(prandom_u32() % 200); return 0; } @@ -143,8 +99,8 @@ static inline int ubi_dbg_is_bitflip(const struct ubi_device *ubi) */ static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi) { - if (ubi->dbg->emulate_io_failures) - return !(random32() % 500); + if (ubi->dbg.emulate_io_failures) + return !(prandom_u32() % 500); return 0; } @@ -157,9 +113,18 @@ static inline int ubi_dbg_is_write_failure(const struct ubi_device *ubi) */ static inline int ubi_dbg_is_erase_failure(const struct ubi_device *ubi) { - if (ubi->dbg->emulate_io_failures) - return !(random32() % 400); + if (ubi->dbg.emulate_io_failures) + return !(prandom_u32() % 400); return 0; } +static inline int ubi_dbg_chk_io(const struct ubi_device *ubi) +{ + return ubi->dbg.chk_io; +} + +static inline int ubi_dbg_chk_gen(const struct ubi_device *ubi) +{ + return ubi->dbg.chk_gen; +} #endif /* !__UBI_DEBUG_H__ */ diff --git a/drivers/mtd/ubi/eba.c b/drivers/mtd/ubi/eba.c index b703ac7729c..0e11671dadc 100644 --- a/drivers/mtd/ubi/eba.c +++ b/drivers/mtd/ubi/eba.c @@ -57,7 +57,7 @@ * global sequence counter value. It also increases the global sequence * counter. */ -static unsigned long long next_sqnum(struct ubi_device *ubi) +unsigned long long ubi_next_sqnum(struct ubi_device *ubi) { unsigned long long sqnum; @@ -340,7 +340,9 @@ int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; + up_read(&ubi->fm_sem); err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); out_unlock: @@ -420,9 +422,8 @@ retry: */ if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_BAD_HDR) { - ubi_warn("corrupted VID header at PEB " - "%d, LEB %d:%d", pnum, vol_id, - lnum); + ubi_warn("corrupted VID header at PEB %d, LEB %d:%d", + pnum, vol_id, lnum); err = -EBADMSG; } else ubi_ro_mode(ubi); @@ -522,7 +523,7 @@ retry: goto out_put; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); if (err) goto write_error; @@ -549,7 +550,9 @@ retry: mutex_unlock(&ubi->buf_mutex); ubi_free_vid_hdr(ubi, vid_hdr); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = new_pnum; + up_read(&ubi->fm_sem); ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); ubi_msg("data was successfully recovered"); @@ -633,7 +636,7 @@ int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, } vid_hdr->vol_type = UBI_VID_DYNAMIC; - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); @@ -660,14 +663,15 @@ retry: if (len) { err = ubi_io_write_data(ubi, buf, pnum, offset, len); if (err) { - ubi_warn("failed to write %d bytes at offset %d of " - "LEB %d:%d, PEB %d", len, offset, vol_id, - lnum, pnum); + ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", + len, offset, vol_id, lnum, pnum); goto write_error; } } + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = pnum; + up_read(&ubi->fm_sem); leb_write_unlock(ubi, vol_id, lnum); ubi_free_vid_hdr(ubi, vid_hdr); @@ -694,7 +698,7 @@ write_error: return err; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg("try another PEB"); goto retry; } @@ -747,7 +751,7 @@ int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, return err; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); @@ -785,7 +789,9 @@ retry: } ubi_assert(vol->eba_tbl[lnum] < 0); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = pnum; + up_read(&ubi->fm_sem); leb_write_unlock(ubi, vol_id, lnum); ubi_free_vid_hdr(ubi, vid_hdr); @@ -812,7 +818,7 @@ write_error: return err; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg("try another PEB"); goto retry; } @@ -864,7 +870,7 @@ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, if (err) goto out_mutex; - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); vid_hdr->vol_id = cpu_to_be32(vol_id); vid_hdr->lnum = cpu_to_be32(lnum); vid_hdr->compat = ubi_get_compat(ubi, vol_id); @@ -906,7 +912,9 @@ retry: goto out_leb_unlock; } + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = pnum; + up_read(&ubi->fm_sem); out_leb_unlock: leb_write_unlock(ubi, vol_id, lnum); @@ -932,7 +940,7 @@ write_error: goto out_leb_unlock; } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); ubi_msg("try another PEB"); goto retry; } @@ -1040,9 +1048,8 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, * cancel it. */ if (vol->eba_tbl[lnum] != from) { - dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to " - "PEB %d, cancel", vol_id, lnum, from, - vol->eba_tbl[lnum]); + dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", + vol_id, lnum, from, vol->eba_tbl[lnum]); err = MOVE_CANCEL_RACE; goto out_unlock_leb; } @@ -1092,7 +1099,7 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, vid_hdr->data_size = cpu_to_be32(data_size); vid_hdr->data_crc = cpu_to_be32(crc); } - vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); + vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); if (err) { @@ -1107,8 +1114,8 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); if (err) { if (err != UBI_IO_BITFLIPS) { - ubi_warn("error %d while reading VID header back from " - "PEB %d", err, to); + ubi_warn("error %d while reading VID header back from PEB %d", + err, to); if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else @@ -1134,8 +1141,8 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size); if (err) { if (err != UBI_IO_BITFLIPS) { - ubi_warn("error %d while reading data back " - "from PEB %d", err, to); + ubi_warn("error %d while reading data back from PEB %d", + err, to); if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else @@ -1146,15 +1153,17 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, cond_resched(); if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) { - ubi_warn("read data back from PEB %d and it is " - "different", to); + ubi_warn("read data back from PEB %d and it is different", + to); err = -EINVAL; goto out_unlock_buf; } } ubi_assert(vol->eba_tbl[lnum] == from); + down_read(&ubi->fm_sem); vol->eba_tbl[lnum] = to; + up_read(&ubi->fm_sem); out_unlock_buf: mutex_unlock(&ubi->buf_mutex); @@ -1197,11 +1206,107 @@ static void print_rsvd_warning(struct ubi_device *ubi, return; } - ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d," - " need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); + ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", + ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); if (ubi->corr_peb_count) ubi_warn("%d PEBs are corrupted and not used", - ubi->corr_peb_count); + ubi->corr_peb_count); +} + +/** + * self_check_eba - run a self check on the EBA table constructed by fastmap. + * @ubi: UBI device description object + * @ai_fastmap: UBI attach info object created by fastmap + * @ai_scan: UBI attach info object created by scanning + * + * Returns < 0 in case of an internal error, 0 otherwise. + * If a bad EBA table entry was found it will be printed out and + * ubi_assert() triggers. + */ +int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, + struct ubi_attach_info *ai_scan) +{ + int i, j, num_volumes, ret = 0; + int **scan_eba, **fm_eba; + struct ubi_ainf_volume *av; + struct ubi_volume *vol; + struct ubi_ainf_peb *aeb; + struct rb_node *rb; + + num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; + + scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); + if (!scan_eba) + return -ENOMEM; + + fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); + if (!fm_eba) { + kfree(scan_eba); + return -ENOMEM; + } + + for (i = 0; i < num_volumes; i++) { + vol = ubi->volumes[i]; + if (!vol) + continue; + + scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), + GFP_KERNEL); + if (!scan_eba[i]) { + ret = -ENOMEM; + goto out_free; + } + + fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), + GFP_KERNEL); + if (!fm_eba[i]) { + ret = -ENOMEM; + goto out_free; + } + + for (j = 0; j < vol->reserved_pebs; j++) + scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; + + av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); + if (!av) + continue; + + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) + scan_eba[i][aeb->lnum] = aeb->pnum; + + av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); + if (!av) + continue; + + ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) + fm_eba[i][aeb->lnum] = aeb->pnum; + + for (j = 0; j < vol->reserved_pebs; j++) { + if (scan_eba[i][j] != fm_eba[i][j]) { + if (scan_eba[i][j] == UBI_LEB_UNMAPPED || + fm_eba[i][j] == UBI_LEB_UNMAPPED) + continue; + + ubi_err("LEB:%i:%i is PEB:%i instead of %i!", + vol->vol_id, i, fm_eba[i][j], + scan_eba[i][j]); + ubi_assert(0); + } + } + } + +out_free: + for (i = 0; i < num_volumes; i++) { + if (!ubi->volumes[i]) + continue; + + kfree(scan_eba[i]); + kfree(fm_eba[i]); + } + + kfree(scan_eba); + kfree(fm_eba); + return ret; } /** diff --git a/drivers/mtd/ubi/fastmap.c b/drivers/mtd/ubi/fastmap.c new file mode 100644 index 00000000000..0431b46d9fd --- /dev/null +++ b/drivers/mtd/ubi/fastmap.c @@ -0,0 +1,1567 @@ +/* + * Copyright (c) 2012 Linutronix GmbH + * Author: Richard Weinberger <richard@nod.at> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + */ + +#include <linux/crc32.h> +#include "ubi.h" + +/** + * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device. + * @ubi: UBI device description object + */ +size_t ubi_calc_fm_size(struct ubi_device *ubi) +{ + size_t size; + + size = sizeof(struct ubi_fm_hdr) + \ + sizeof(struct ubi_fm_scan_pool) + \ + sizeof(struct ubi_fm_scan_pool) + \ + (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \ + (sizeof(struct ubi_fm_eba) + \ + (ubi->peb_count * sizeof(__be32))) + \ + sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES; + return roundup(size, ubi->leb_size); +} + + +/** + * new_fm_vhdr - allocate a new volume header for fastmap usage. + * @ubi: UBI device description object + * @vol_id: the VID of the new header + * + * Returns a new struct ubi_vid_hdr on success. + * NULL indicates out of memory. + */ +static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id) +{ + struct ubi_vid_hdr *new; + + new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!new) + goto out; + + new->vol_type = UBI_VID_DYNAMIC; + new->vol_id = cpu_to_be32(vol_id); + + /* UBI implementations without fastmap support have to delete the + * fastmap. + */ + new->compat = UBI_COMPAT_DELETE; + +out: + return new; +} + +/** + * add_aeb - create and add a attach erase block to a given list. + * @ai: UBI attach info object + * @list: the target list + * @pnum: PEB number of the new attach erase block + * @ec: erease counter of the new LEB + * @scrub: scrub this PEB after attaching + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int add_aeb(struct ubi_attach_info *ai, struct list_head *list, + int pnum, int ec, int scrub) +{ + struct ubi_ainf_peb *aeb; + + aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); + if (!aeb) + return -ENOMEM; + + aeb->pnum = pnum; + aeb->ec = ec; + aeb->lnum = -1; + aeb->scrub = scrub; + aeb->copy_flag = aeb->sqnum = 0; + + ai->ec_sum += aeb->ec; + ai->ec_count++; + + if (ai->max_ec < aeb->ec) + ai->max_ec = aeb->ec; + + if (ai->min_ec > aeb->ec) + ai->min_ec = aeb->ec; + + list_add_tail(&aeb->u.list, list); + + return 0; +} + +/** + * add_vol - create and add a new volume to ubi_attach_info. + * @ai: ubi_attach_info object + * @vol_id: VID of the new volume + * @used_ebs: number of used EBS + * @data_pad: data padding value of the new volume + * @vol_type: volume type + * @last_eb_bytes: number of bytes in the last LEB + * + * Returns the new struct ubi_ainf_volume on success. + * NULL indicates an error. + */ +static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id, + int used_ebs, int data_pad, u8 vol_type, + int last_eb_bytes) +{ + struct ubi_ainf_volume *av; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + + while (*p) { + parent = *p; + av = rb_entry(parent, struct ubi_ainf_volume, rb); + + if (vol_id > av->vol_id) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + } + + av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); + if (!av) + goto out; + + av->highest_lnum = av->leb_count = 0; + av->vol_id = vol_id; + av->used_ebs = used_ebs; + av->data_pad = data_pad; + av->last_data_size = last_eb_bytes; + av->compat = 0; + av->vol_type = vol_type; + av->root = RB_ROOT; + + dbg_bld("found volume (ID %i)", vol_id); + + rb_link_node(&av->rb, parent, p); + rb_insert_color(&av->rb, &ai->volumes); + +out: + return av; +} + +/** + * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it + * from it's original list. + * @ai: ubi_attach_info object + * @aeb: the to be assigned SEB + * @av: target scan volume + */ +static void assign_aeb_to_av(struct ubi_attach_info *ai, + struct ubi_ainf_peb *aeb, + struct ubi_ainf_volume *av) +{ + struct ubi_ainf_peb *tmp_aeb; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + + p = &av->root.rb_node; + while (*p) { + parent = *p; + + tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + if (aeb->lnum != tmp_aeb->lnum) { + if (aeb->lnum < tmp_aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + + continue; + } else + break; + } + + list_del(&aeb->u.list); + av->leb_count++; + + rb_link_node(&aeb->u.rb, parent, p); + rb_insert_color(&aeb->u.rb, &av->root); +} + +/** + * update_vol - inserts or updates a LEB which was found a pool. + * @ubi: the UBI device object + * @ai: attach info object + * @av: the volume this LEB belongs to + * @new_vh: the volume header derived from new_aeb + * @new_aeb: the AEB to be examined + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh, + struct ubi_ainf_peb *new_aeb) +{ + struct rb_node **p = &av->root.rb_node, *parent = NULL; + struct ubi_ainf_peb *aeb, *victim; + int cmp_res; + + while (*p) { + parent = *p; + aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); + + if (be32_to_cpu(new_vh->lnum) != aeb->lnum) { + if (be32_to_cpu(new_vh->lnum) < aeb->lnum) + p = &(*p)->rb_left; + else + p = &(*p)->rb_right; + + continue; + } + + /* This case can happen if the fastmap gets written + * because of a volume change (creation, deletion, ..). + * Then a PEB can be within the persistent EBA and the pool. + */ + if (aeb->pnum == new_aeb->pnum) { + ubi_assert(aeb->lnum == new_aeb->lnum); + kmem_cache_free(ai->aeb_slab_cache, new_aeb); + + return 0; + } + + cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh); + if (cmp_res < 0) + return cmp_res; + + /* new_aeb is newer */ + if (cmp_res & 1) { + victim = kmem_cache_alloc(ai->aeb_slab_cache, + GFP_KERNEL); + if (!victim) + return -ENOMEM; + + victim->ec = aeb->ec; + victim->pnum = aeb->pnum; + list_add_tail(&victim->u.list, &ai->erase); + + if (av->highest_lnum == be32_to_cpu(new_vh->lnum)) + av->last_data_size = \ + be32_to_cpu(new_vh->data_size); + + dbg_bld("vol %i: AEB %i's PEB %i is the newer", + av->vol_id, aeb->lnum, new_aeb->pnum); + + aeb->ec = new_aeb->ec; + aeb->pnum = new_aeb->pnum; + aeb->copy_flag = new_vh->copy_flag; + aeb->scrub = new_aeb->scrub; + kmem_cache_free(ai->aeb_slab_cache, new_aeb); + + /* new_aeb is older */ + } else { + dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it", + av->vol_id, aeb->lnum, new_aeb->pnum); + list_add_tail(&new_aeb->u.list, &ai->erase); + } + + return 0; + } + /* This LEB is new, let's add it to the volume */ + + if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) { + av->highest_lnum = be32_to_cpu(new_vh->lnum); + av->last_data_size = be32_to_cpu(new_vh->data_size); + } + + if (av->vol_type == UBI_STATIC_VOLUME) + av->used_ebs = be32_to_cpu(new_vh->used_ebs); + + av->leb_count++; + + rb_link_node(&new_aeb->u.rb, parent, p); + rb_insert_color(&new_aeb->u.rb, &av->root); + + return 0; +} + +/** + * process_pool_aeb - we found a non-empty PEB in a pool. + * @ubi: UBI device object + * @ai: attach info object + * @new_vh: the volume header derived from new_aeb + * @new_aeb: the AEB to be examined + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai, + struct ubi_vid_hdr *new_vh, + struct ubi_ainf_peb *new_aeb) +{ + struct ubi_ainf_volume *av, *tmp_av = NULL; + struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; + int found = 0; + + if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID || + be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) { + kmem_cache_free(ai->aeb_slab_cache, new_aeb); + + return 0; + } + + /* Find the volume this SEB belongs to */ + while (*p) { + parent = *p; + tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb); + + if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id) + p = &(*p)->rb_left; + else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id) + p = &(*p)->rb_right; + else { + found = 1; + break; + } + } + + if (found) + av = tmp_av; + else { + ubi_err("orphaned volume in fastmap pool!"); + return UBI_BAD_FASTMAP; + } + + ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id); + + return update_vol(ubi, ai, av, new_vh, new_aeb); +} + +/** + * unmap_peb - unmap a PEB. + * If fastmap detects a free PEB in the pool it has to check whether + * this PEB has been unmapped after writing the fastmap. + * + * @ai: UBI attach info object + * @pnum: The PEB to be unmapped + */ +static void unmap_peb(struct ubi_attach_info *ai, int pnum) +{ + struct ubi_ainf_volume *av; + struct rb_node *node, *node2; + struct ubi_ainf_peb *aeb; + + for (node = rb_first(&ai->volumes); node; node = rb_next(node)) { + av = rb_entry(node, struct ubi_ainf_volume, rb); + + for (node2 = rb_first(&av->root); node2; + node2 = rb_next(node2)) { + aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb); + if (aeb->pnum == pnum) { + rb_erase(&aeb->u.rb, &av->root); + kmem_cache_free(ai->aeb_slab_cache, aeb); + return; + } + } + } +} + +/** + * scan_pool - scans a pool for changed (no longer empty PEBs). + * @ubi: UBI device object + * @ai: attach info object + * @pebs: an array of all PEB numbers in the to be scanned pool + * @pool_size: size of the pool (number of entries in @pebs) + * @max_sqnum: pointer to the maximal sequence number + * @eba_orphans: list of PEBs which need to be scanned + * @free: list of PEBs which are most likely free (and go into @ai->free) + * + * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned. + * < 0 indicates an internal error. + */ +static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai, + int *pebs, int pool_size, unsigned long long *max_sqnum, + struct list_head *eba_orphans, struct list_head *free) +{ + struct ubi_vid_hdr *vh; + struct ubi_ec_hdr *ech; + struct ubi_ainf_peb *new_aeb, *tmp_aeb; + int i, pnum, err, found_orphan, ret = 0; + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) + return -ENOMEM; + + vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vh) { + kfree(ech); + return -ENOMEM; + } + + dbg_bld("scanning fastmap pool: size = %i", pool_size); + + /* + * Now scan all PEBs in the pool to find changes which have been made + * after the creation of the fastmap + */ + for (i = 0; i < pool_size; i++) { + int scrub = 0; + int image_seq; + + pnum = be32_to_cpu(pebs[i]); + + if (ubi_io_is_bad(ubi, pnum)) { + ubi_err("bad PEB in fastmap pool!"); + ret = UBI_BAD_FASTMAP; + goto out; + } + + err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (err && err != UBI_IO_BITFLIPS) { + ubi_err("unable to read EC header! PEB:%i err:%i", + pnum, err); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } else if (err == UBI_IO_BITFLIPS) + scrub = 1; + + /* + * Older UBI implementations have image_seq set to zero, so + * we shouldn't fail if image_seq == 0. + */ + image_seq = be32_to_cpu(ech->image_seq); + + if (image_seq && (image_seq != ubi->image_seq)) { + ubi_err("bad image seq: 0x%x, expected: 0x%x", + be32_to_cpu(ech->image_seq), ubi->image_seq); + ret = UBI_BAD_FASTMAP; + goto out; + } + + err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); + if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) { + unsigned long long ec = be64_to_cpu(ech->ec); + unmap_peb(ai, pnum); + dbg_bld("Adding PEB to free: %i", pnum); + if (err == UBI_IO_FF_BITFLIPS) + add_aeb(ai, free, pnum, ec, 1); + else + add_aeb(ai, free, pnum, ec, 0); + continue; + } else if (err == 0 || err == UBI_IO_BITFLIPS) { + dbg_bld("Found non empty PEB:%i in pool", pnum); + + if (err == UBI_IO_BITFLIPS) + scrub = 1; + + found_orphan = 0; + list_for_each_entry(tmp_aeb, eba_orphans, u.list) { + if (tmp_aeb->pnum == pnum) { + found_orphan = 1; + break; + } + } + if (found_orphan) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + + new_aeb = kmem_cache_alloc(ai->aeb_slab_cache, + GFP_KERNEL); + if (!new_aeb) { + ret = -ENOMEM; + goto out; + } + + new_aeb->ec = be64_to_cpu(ech->ec); + new_aeb->pnum = pnum; + new_aeb->lnum = be32_to_cpu(vh->lnum); + new_aeb->sqnum = be64_to_cpu(vh->sqnum); + new_aeb->copy_flag = vh->copy_flag; + new_aeb->scrub = scrub; + + if (*max_sqnum < new_aeb->sqnum) + *max_sqnum = new_aeb->sqnum; + + err = process_pool_aeb(ubi, ai, vh, new_aeb); + if (err) { + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } + } else { + /* We are paranoid and fall back to scanning mode */ + ubi_err("fastmap pool PEBs contains damaged PEBs!"); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + goto out; + } + + } + +out: + ubi_free_vid_hdr(ubi, vh); + kfree(ech); + return ret; +} + +/** + * count_fastmap_pebs - Counts the PEBs found by fastmap. + * @ai: The UBI attach info object + */ +static int count_fastmap_pebs(struct ubi_attach_info *ai) +{ + struct ubi_ainf_peb *aeb; + struct ubi_ainf_volume *av; + struct rb_node *rb1, *rb2; + int n = 0; + + list_for_each_entry(aeb, &ai->erase, u.list) + n++; + + list_for_each_entry(aeb, &ai->free, u.list) + n++; + + ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) + ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) + n++; + + return n; +} + +/** + * ubi_attach_fastmap - creates ubi_attach_info from a fastmap. + * @ubi: UBI device object + * @ai: UBI attach info object + * @fm: the fastmap to be attached + * + * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable. + * < 0 indicates an internal error. + */ +static int ubi_attach_fastmap(struct ubi_device *ubi, + struct ubi_attach_info *ai, + struct ubi_fastmap_layout *fm) +{ + struct list_head used, eba_orphans, free; + struct ubi_ainf_volume *av; + struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb; + struct ubi_ec_hdr *ech; + struct ubi_fm_sb *fmsb; + struct ubi_fm_hdr *fmhdr; + struct ubi_fm_scan_pool *fmpl1, *fmpl2; + struct ubi_fm_ec *fmec; + struct ubi_fm_volhdr *fmvhdr; + struct ubi_fm_eba *fm_eba; + int ret, i, j, pool_size, wl_pool_size; + size_t fm_pos = 0, fm_size = ubi->fm_size; + unsigned long long max_sqnum = 0; + void *fm_raw = ubi->fm_buf; + + INIT_LIST_HEAD(&used); + INIT_LIST_HEAD(&free); + INIT_LIST_HEAD(&eba_orphans); + INIT_LIST_HEAD(&ai->corr); + INIT_LIST_HEAD(&ai->free); + INIT_LIST_HEAD(&ai->erase); + INIT_LIST_HEAD(&ai->alien); + ai->volumes = RB_ROOT; + ai->min_ec = UBI_MAX_ERASECOUNTER; + + ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab", + sizeof(struct ubi_ainf_peb), + 0, 0, NULL); + if (!ai->aeb_slab_cache) { + ret = -ENOMEM; + goto fail; + } + + fmsb = (struct ubi_fm_sb *)(fm_raw); + ai->max_sqnum = fmsb->sqnum; + fm_pos += sizeof(struct ubi_fm_sb); + if (fm_pos >= fm_size) + goto fail_bad; + + fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmhdr); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) { + ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC); + goto fail_bad; + } + + fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl1); + if (fm_pos >= fm_size) + goto fail_bad; + if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) { + ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC); + goto fail_bad; + } + + fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl2); + if (fm_pos >= fm_size) + goto fail_bad; + if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) { + ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC); + goto fail_bad; + } + + pool_size = be16_to_cpu(fmpl1->size); + wl_pool_size = be16_to_cpu(fmpl2->size); + fm->max_pool_size = be16_to_cpu(fmpl1->max_size); + fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size); + + if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) { + ubi_err("bad pool size: %i", pool_size); + goto fail_bad; + } + + if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) { + ubi_err("bad WL pool size: %i", wl_pool_size); + goto fail_bad; + } + + + if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE || + fm->max_pool_size < 0) { + ubi_err("bad maximal pool size: %i", fm->max_pool_size); + goto fail_bad; + } + + if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE || + fm->max_wl_pool_size < 0) { + ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size); + goto fail_bad; + } + + /* read EC values from free list */ + for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 0); + } + + /* read EC values from used list */ + for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &used, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 0); + } + + /* read EC values from scrub list */ + for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &used, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 1); + } + + /* read EC values from erase list */ + for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) { + fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmec); + if (fm_pos >= fm_size) + goto fail_bad; + + add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum), + be32_to_cpu(fmec->ec), 1); + } + + ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); + ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count); + + /* Iterate over all volumes and read their EBA table */ + for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) { + fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmvhdr); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) { + ubi_err("bad fastmap vol header magic: 0x%x, " \ + "expected: 0x%x", + be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC); + goto fail_bad; + } + + av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id), + be32_to_cpu(fmvhdr->used_ebs), + be32_to_cpu(fmvhdr->data_pad), + fmvhdr->vol_type, + be32_to_cpu(fmvhdr->last_eb_bytes)); + + if (!av) + goto fail_bad; + + ai->vols_found++; + if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id)) + ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id); + + fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos); + fm_pos += sizeof(*fm_eba); + fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs)); + if (fm_pos >= fm_size) + goto fail_bad; + + if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) { + ubi_err("bad fastmap EBA header magic: 0x%x, " \ + "expected: 0x%x", + be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC); + goto fail_bad; + } + + for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) { + int pnum = be32_to_cpu(fm_eba->pnum[j]); + + if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0) + continue; + + aeb = NULL; + list_for_each_entry(tmp_aeb, &used, u.list) { + if (tmp_aeb->pnum == pnum) { + aeb = tmp_aeb; + break; + } + } + + /* This can happen if a PEB is already in an EBA known + * by this fastmap but the PEB itself is not in the used + * list. + * In this case the PEB can be within the fastmap pool + * or while writing the fastmap it was in the protection + * queue. + */ + if (!aeb) { + aeb = kmem_cache_alloc(ai->aeb_slab_cache, + GFP_KERNEL); + if (!aeb) { + ret = -ENOMEM; + + goto fail; + } + + aeb->lnum = j; + aeb->pnum = be32_to_cpu(fm_eba->pnum[j]); + aeb->ec = -1; + aeb->scrub = aeb->copy_flag = aeb->sqnum = 0; + list_add_tail(&aeb->u.list, &eba_orphans); + continue; + } + + aeb->lnum = j; + + if (av->highest_lnum <= aeb->lnum) + av->highest_lnum = aeb->lnum; + + assign_aeb_to_av(ai, aeb, av); + + dbg_bld("inserting PEB:%i (LEB %i) to vol %i", + aeb->pnum, aeb->lnum, av->vol_id); + } + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) { + ret = -ENOMEM; + goto fail; + } + + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, + u.list) { + int err; + + if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) { + ubi_err("bad PEB in fastmap EBA orphan list"); + ret = UBI_BAD_FASTMAP; + kfree(ech); + goto fail; + } + + err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0); + if (err && err != UBI_IO_BITFLIPS) { + ubi_err("unable to read EC header! PEB:%i " \ + "err:%i", tmp_aeb->pnum, err); + ret = err > 0 ? UBI_BAD_FASTMAP : err; + kfree(ech); + + goto fail; + } else if (err == UBI_IO_BITFLIPS) + tmp_aeb->scrub = 1; + + tmp_aeb->ec = be64_to_cpu(ech->ec); + assign_aeb_to_av(ai, tmp_aeb, av); + } + + kfree(ech); + } + + ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum, + &eba_orphans, &free); + if (ret) + goto fail; + + ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum, + &eba_orphans, &free); + if (ret) + goto fail; + + if (max_sqnum > ai->max_sqnum) + ai->max_sqnum = max_sqnum; + + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) + list_move_tail(&tmp_aeb->u.list, &ai->free); + + ubi_assert(list_empty(&used)); + ubi_assert(list_empty(&eba_orphans)); + ubi_assert(list_empty(&free)); + + /* + * If fastmap is leaking PEBs (must not happen), raise a + * fat warning and fall back to scanning mode. + * We do this here because in ubi_wl_init() it's too late + * and we cannot fall back to scanning. + */ + if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count - + ai->bad_peb_count - fm->used_blocks)) + goto fail_bad; + + return 0; + +fail_bad: + ret = UBI_BAD_FASTMAP; +fail: + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, u.list) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) { + list_del(&tmp_aeb->u.list); + kmem_cache_free(ai->aeb_slab_cache, tmp_aeb); + } + + return ret; +} + +/** + * ubi_scan_fastmap - scan the fastmap. + * @ubi: UBI device object + * @ai: UBI attach info to be filled + * @fm_anchor: The fastmap starts at this PEB + * + * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found, + * UBI_BAD_FASTMAP if one was found but is not usable. + * < 0 indicates an internal error. + */ +int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, + int fm_anchor) +{ + struct ubi_fm_sb *fmsb, *fmsb2; + struct ubi_vid_hdr *vh; + struct ubi_ec_hdr *ech; + struct ubi_fastmap_layout *fm; + int i, used_blocks, pnum, ret = 0; + size_t fm_size; + __be32 crc, tmp_crc; + unsigned long long sqnum = 0; + + mutex_lock(&ubi->fm_mutex); + memset(ubi->fm_buf, 0, ubi->fm_size); + + fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL); + if (!fmsb) { + ret = -ENOMEM; + goto out; + } + + fm = kzalloc(sizeof(*fm), GFP_KERNEL); + if (!fm) { + ret = -ENOMEM; + kfree(fmsb); + goto out; + } + + ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb)); + if (ret && ret != UBI_IO_BITFLIPS) + goto free_fm_sb; + else if (ret == UBI_IO_BITFLIPS) + fm->to_be_tortured[0] = 1; + + if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) { + ubi_err("bad super block magic: 0x%x, expected: 0x%x", + be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + if (fmsb->version != UBI_FM_FMT_VERSION) { + ubi_err("bad fastmap version: %i, expected: %i", + fmsb->version, UBI_FM_FMT_VERSION); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + used_blocks = be32_to_cpu(fmsb->used_blocks); + if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) { + ubi_err("number of fastmap blocks is invalid: %i", used_blocks); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + fm_size = ubi->leb_size * used_blocks; + if (fm_size != ubi->fm_size) { + ubi_err("bad fastmap size: %zi, expected: %zi", fm_size, + ubi->fm_size); + ret = UBI_BAD_FASTMAP; + goto free_fm_sb; + } + + ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ech) { + ret = -ENOMEM; + goto free_fm_sb; + } + + vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); + if (!vh) { + ret = -ENOMEM; + goto free_hdr; + } + + for (i = 0; i < used_blocks; i++) { + int image_seq; + + pnum = be32_to_cpu(fmsb->block_loc[i]); + + if (ubi_io_is_bad(ubi, pnum)) { + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err("unable to read fastmap block# %i EC (PEB: %i)", + i, pnum); + if (ret > 0) + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } else if (ret == UBI_IO_BITFLIPS) + fm->to_be_tortured[i] = 1; + + image_seq = be32_to_cpu(ech->image_seq); + if (!ubi->image_seq) + ubi->image_seq = image_seq; + + /* + * Older UBI implementations have image_seq set to zero, so + * we shouldn't fail if image_seq == 0. + */ + if (image_seq && (image_seq != ubi->image_seq)) { + ubi_err("wrong image seq:%d instead of %d", + be32_to_cpu(ech->image_seq), ubi->image_seq); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err("unable to read fastmap block# %i (PEB: %i)", + i, pnum); + goto free_hdr; + } + + if (i == 0) { + if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) { + ubi_err("bad fastmap anchor vol_id: 0x%x," \ + " expected: 0x%x", + be32_to_cpu(vh->vol_id), + UBI_FM_SB_VOLUME_ID); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + } else { + if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) { + ubi_err("bad fastmap data vol_id: 0x%x," \ + " expected: 0x%x", + be32_to_cpu(vh->vol_id), + UBI_FM_DATA_VOLUME_ID); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + } + + if (sqnum < be64_to_cpu(vh->sqnum)) + sqnum = be64_to_cpu(vh->sqnum); + + ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum, + ubi->leb_start, ubi->leb_size); + if (ret && ret != UBI_IO_BITFLIPS) { + ubi_err("unable to read fastmap block# %i (PEB: %i, " \ + "err: %i)", i, pnum, ret); + goto free_hdr; + } + } + + kfree(fmsb); + fmsb = NULL; + + fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf); + tmp_crc = be32_to_cpu(fmsb2->data_crc); + fmsb2->data_crc = 0; + crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size); + if (crc != tmp_crc) { + ubi_err("fastmap data CRC is invalid"); + ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc); + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + fmsb2->sqnum = sqnum; + + fm->used_blocks = used_blocks; + + ret = ubi_attach_fastmap(ubi, ai, fm); + if (ret) { + if (ret > 0) + ret = UBI_BAD_FASTMAP; + goto free_hdr; + } + + for (i = 0; i < used_blocks; i++) { + struct ubi_wl_entry *e; + + e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!e) { + while (i--) + kfree(fm->e[i]); + + ret = -ENOMEM; + goto free_hdr; + } + + e->pnum = be32_to_cpu(fmsb2->block_loc[i]); + e->ec = be32_to_cpu(fmsb2->block_ec[i]); + fm->e[i] = e; + } + + ubi->fm = fm; + ubi->fm_pool.max_size = ubi->fm->max_pool_size; + ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size; + ubi_msg("attached by fastmap"); + ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size); + ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); + ubi->fm_disabled = 0; + + ubi_free_vid_hdr(ubi, vh); + kfree(ech); +out: + mutex_unlock(&ubi->fm_mutex); + if (ret == UBI_BAD_FASTMAP) + ubi_err("Attach by fastmap failed, doing a full scan!"); + return ret; + +free_hdr: + ubi_free_vid_hdr(ubi, vh); + kfree(ech); +free_fm_sb: + kfree(fmsb); + kfree(fm); + goto out; +} + +/** + * ubi_write_fastmap - writes a fastmap. + * @ubi: UBI device object + * @new_fm: the to be written fastmap + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int ubi_write_fastmap(struct ubi_device *ubi, + struct ubi_fastmap_layout *new_fm) +{ + size_t fm_pos = 0; + void *fm_raw; + struct ubi_fm_sb *fmsb; + struct ubi_fm_hdr *fmh; + struct ubi_fm_scan_pool *fmpl1, *fmpl2; + struct ubi_fm_ec *fec; + struct ubi_fm_volhdr *fvh; + struct ubi_fm_eba *feba; + struct rb_node *node; + struct ubi_wl_entry *wl_e; + struct ubi_volume *vol; + struct ubi_vid_hdr *avhdr, *dvhdr; + struct ubi_work *ubi_wrk; + int ret, i, j, free_peb_count, used_peb_count, vol_count; + int scrub_peb_count, erase_peb_count; + + fm_raw = ubi->fm_buf; + memset(ubi->fm_buf, 0, ubi->fm_size); + + avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); + if (!avhdr) { + ret = -ENOMEM; + goto out; + } + + dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID); + if (!dvhdr) { + ret = -ENOMEM; + goto out_kfree; + } + + spin_lock(&ubi->volumes_lock); + spin_lock(&ubi->wl_lock); + + fmsb = (struct ubi_fm_sb *)fm_raw; + fm_pos += sizeof(*fmsb); + ubi_assert(fm_pos <= ubi->fm_size); + + fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmh); + ubi_assert(fm_pos <= ubi->fm_size); + + fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC); + fmsb->version = UBI_FM_FMT_VERSION; + fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks); + /* the max sqnum will be filled in while *reading* the fastmap */ + fmsb->sqnum = 0; + + fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC); + free_peb_count = 0; + used_peb_count = 0; + scrub_peb_count = 0; + erase_peb_count = 0; + vol_count = 0; + + fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl1); + fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); + fmpl1->size = cpu_to_be16(ubi->fm_pool.size); + fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size); + + for (i = 0; i < ubi->fm_pool.size; i++) + fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]); + + fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos); + fm_pos += sizeof(*fmpl2); + fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC); + fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size); + fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size); + + for (i = 0; i < ubi->fm_wl_pool.size; i++) + fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]); + + for (node = rb_first(&ubi->free); node; node = rb_next(node)) { + wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + free_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->free_peb_count = cpu_to_be32(free_peb_count); + + for (node = rb_first(&ubi->used); node; node = rb_next(node)) { + wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + used_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->used_peb_count = cpu_to_be32(used_peb_count); + + for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) { + wl_e = rb_entry(node, struct ubi_wl_entry, u.rb); + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + scrub_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count); + + + list_for_each_entry(ubi_wrk, &ubi->works, list) { + if (ubi_is_erase_work(ubi_wrk)) { + wl_e = ubi_wrk->e; + ubi_assert(wl_e); + + fec = (struct ubi_fm_ec *)(fm_raw + fm_pos); + + fec->pnum = cpu_to_be32(wl_e->pnum); + fec->ec = cpu_to_be32(wl_e->ec); + + erase_peb_count++; + fm_pos += sizeof(*fec); + ubi_assert(fm_pos <= ubi->fm_size); + } + } + fmh->erase_peb_count = cpu_to_be32(erase_peb_count); + + for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) { + vol = ubi->volumes[i]; + + if (!vol) + continue; + + vol_count++; + + fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos); + fm_pos += sizeof(*fvh); + ubi_assert(fm_pos <= ubi->fm_size); + + fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC); + fvh->vol_id = cpu_to_be32(vol->vol_id); + fvh->vol_type = vol->vol_type; + fvh->used_ebs = cpu_to_be32(vol->used_ebs); + fvh->data_pad = cpu_to_be32(vol->data_pad); + fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes); + + ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME || + vol->vol_type == UBI_STATIC_VOLUME); + + feba = (struct ubi_fm_eba *)(fm_raw + fm_pos); + fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs); + ubi_assert(fm_pos <= ubi->fm_size); + + for (j = 0; j < vol->reserved_pebs; j++) + feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]); + + feba->reserved_pebs = cpu_to_be32(j); + feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC); + } + fmh->vol_count = cpu_to_be32(vol_count); + fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count); + + avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + avhdr->lnum = 0; + + spin_unlock(&ubi->wl_lock); + spin_unlock(&ubi->volumes_lock); + + dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum); + ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr); + if (ret) { + ubi_err("unable to write vid_hdr to fastmap SB!"); + goto out_kfree; + } + + for (i = 0; i < new_fm->used_blocks; i++) { + fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum); + fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec); + } + + fmsb->data_crc = 0; + fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw, + ubi->fm_size)); + + for (i = 1; i < new_fm->used_blocks; i++) { + dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + dvhdr->lnum = cpu_to_be32(i); + dbg_bld("writing fastmap data to PEB %i sqnum %llu", + new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum)); + ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr); + if (ret) { + ubi_err("unable to write vid_hdr to PEB %i!", + new_fm->e[i]->pnum); + goto out_kfree; + } + } + + for (i = 0; i < new_fm->used_blocks; i++) { + ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size), + new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size); + if (ret) { + ubi_err("unable to write fastmap to PEB %i!", + new_fm->e[i]->pnum); + goto out_kfree; + } + } + + ubi_assert(new_fm); + ubi->fm = new_fm; + + dbg_bld("fastmap written!"); + +out_kfree: + ubi_free_vid_hdr(ubi, avhdr); + ubi_free_vid_hdr(ubi, dvhdr); +out: + return ret; +} + +/** + * erase_block - Manually erase a PEB. + * @ubi: UBI device object + * @pnum: PEB to be erased + * + * Returns the new EC value on success, < 0 indicates an internal error. + */ +static int erase_block(struct ubi_device *ubi, int pnum) +{ + int ret; + struct ubi_ec_hdr *ec_hdr; + long long ec; + + ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); + if (!ec_hdr) + return -ENOMEM; + + ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); + if (ret < 0) + goto out; + else if (ret && ret != UBI_IO_BITFLIPS) { + ret = -EINVAL; + goto out; + } + + ret = ubi_io_sync_erase(ubi, pnum, 0); + if (ret < 0) + goto out; + + ec = be64_to_cpu(ec_hdr->ec); + ec += ret; + if (ec > UBI_MAX_ERASECOUNTER) { + ret = -EINVAL; + goto out; + } + + ec_hdr->ec = cpu_to_be64(ec); + ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); + if (ret < 0) + goto out; + + ret = ec; +out: + kfree(ec_hdr); + return ret; +} + +/** + * invalidate_fastmap - destroys a fastmap. + * @ubi: UBI device object + * @fm: the fastmap to be destroyed + * + * Returns 0 on success, < 0 indicates an internal error. + */ +static int invalidate_fastmap(struct ubi_device *ubi, + struct ubi_fastmap_layout *fm) +{ + int ret; + struct ubi_vid_hdr *vh; + + ret = erase_block(ubi, fm->e[0]->pnum); + if (ret < 0) + return ret; + + vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID); + if (!vh) + return -ENOMEM; + + /* deleting the current fastmap SB is not enough, an old SB may exist, + * so create a (corrupted) SB such that fastmap will find it and fall + * back to scanning mode in any case */ + vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); + ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh); + + return ret; +} + +/** + * ubi_update_fastmap - will be called by UBI if a volume changes or + * a fastmap pool becomes full. + * @ubi: UBI device object + * + * Returns 0 on success, < 0 indicates an internal error. + */ +int ubi_update_fastmap(struct ubi_device *ubi) +{ + int ret, i; + struct ubi_fastmap_layout *new_fm, *old_fm; + struct ubi_wl_entry *tmp_e; + + mutex_lock(&ubi->fm_mutex); + + ubi_refill_pools(ubi); + + if (ubi->ro_mode || ubi->fm_disabled) { + mutex_unlock(&ubi->fm_mutex); + return 0; + } + + ret = ubi_ensure_anchor_pebs(ubi); + if (ret) { + mutex_unlock(&ubi->fm_mutex); + return ret; + } + + new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL); + if (!new_fm) { + mutex_unlock(&ubi->fm_mutex); + return -ENOMEM; + } + + new_fm->used_blocks = ubi->fm_size / ubi->leb_size; + + for (i = 0; i < new_fm->used_blocks; i++) { + new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); + if (!new_fm->e[i]) { + while (i--) + kfree(new_fm->e[i]); + + kfree(new_fm); + mutex_unlock(&ubi->fm_mutex); + return -ENOMEM; + } + } + + old_fm = ubi->fm; + ubi->fm = NULL; + + if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) { + ubi_err("fastmap too large"); + ret = -ENOSPC; + goto err; + } + + for (i = 1; i < new_fm->used_blocks; i++) { + spin_lock(&ubi->wl_lock); + tmp_e = ubi_wl_get_fm_peb(ubi, 0); + spin_unlock(&ubi->wl_lock); + + if (!tmp_e && !old_fm) { + int j; + ubi_err("could not get any free erase block"); + + for (j = 1; j < i; j++) + ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0); + + ret = -ENOSPC; + goto err; + } else if (!tmp_e && old_fm) { + ret = erase_block(ubi, old_fm->e[i]->pnum); + if (ret < 0) { + int j; + + for (j = 1; j < i; j++) + ubi_wl_put_fm_peb(ubi, new_fm->e[j], + j, 0); + + ubi_err("could not erase old fastmap PEB"); + goto err; + } + + new_fm->e[i]->pnum = old_fm->e[i]->pnum; + new_fm->e[i]->ec = old_fm->e[i]->ec; + } else { + new_fm->e[i]->pnum = tmp_e->pnum; + new_fm->e[i]->ec = tmp_e->ec; + + if (old_fm) + ubi_wl_put_fm_peb(ubi, old_fm->e[i], i, + old_fm->to_be_tortured[i]); + } + } + + spin_lock(&ubi->wl_lock); + tmp_e = ubi_wl_get_fm_peb(ubi, 1); + spin_unlock(&ubi->wl_lock); + + if (old_fm) { + /* no fresh anchor PEB was found, reuse the old one */ + if (!tmp_e) { + ret = erase_block(ubi, old_fm->e[0]->pnum); + if (ret < 0) { + int i; + ubi_err("could not erase old anchor PEB"); + + for (i = 1; i < new_fm->used_blocks; i++) + ubi_wl_put_fm_peb(ubi, new_fm->e[i], + i, 0); + goto err; + } + + new_fm->e[0]->pnum = old_fm->e[0]->pnum; + new_fm->e[0]->ec = ret; + } else { + /* we've got a new anchor PEB, return the old one */ + ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0, + old_fm->to_be_tortured[0]); + + new_fm->e[0]->pnum = tmp_e->pnum; + new_fm->e[0]->ec = tmp_e->ec; + } + } else { + if (!tmp_e) { + int i; + ubi_err("could not find any anchor PEB"); + + for (i = 1; i < new_fm->used_blocks; i++) + ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0); + + ret = -ENOSPC; + goto err; + } + + new_fm->e[0]->pnum = tmp_e->pnum; + new_fm->e[0]->ec = tmp_e->ec; + } + + down_write(&ubi->work_sem); + down_write(&ubi->fm_sem); + ret = ubi_write_fastmap(ubi, new_fm); + up_write(&ubi->fm_sem); + up_write(&ubi->work_sem); + + if (ret) + goto err; + +out_unlock: + mutex_unlock(&ubi->fm_mutex); + kfree(old_fm); + return ret; + +err: + kfree(new_fm); + + ubi_warn("Unable to write new fastmap, err=%i", ret); + + ret = 0; + if (old_fm) { + ret = invalidate_fastmap(ubi, old_fm); + if (ret < 0) + ubi_err("Unable to invalidiate current fastmap!"); + else if (ret) + ret = 0; + } + goto out_unlock; +} diff --git a/drivers/mtd/ubi/gluebi.c b/drivers/mtd/ubi/gluebi.c index 4e44bee4c56..b93807b4c45 100644 --- a/drivers/mtd/ubi/gluebi.c +++ b/drivers/mtd/ubi/gluebi.c @@ -41,7 +41,7 @@ #include "ubi-media.h" #define err_msg(fmt, ...) \ - printk(KERN_DEBUG "gluebi (pid %d): %s: " fmt "\n", \ + pr_err("gluebi (pid %d): %s: " fmt "\n", \ current->pid, __func__, ##__VA_ARGS__) /** @@ -171,17 +171,17 @@ static void gluebi_put_device(struct mtd_info *mtd) static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, unsigned char *buf) { - int err = 0, lnum, offs, total_read; + int err = 0, lnum, offs, bytes_left; struct gluebi_device *gluebi; gluebi = container_of(mtd, struct gluebi_device, mtd); lnum = div_u64_rem(from, mtd->erasesize, &offs); - total_read = len; - while (total_read) { + bytes_left = len; + while (bytes_left) { size_t to_read = mtd->erasesize - offs; - if (to_read > total_read) - to_read = total_read; + if (to_read > bytes_left) + to_read = bytes_left; err = ubi_read(gluebi->desc, lnum, buf, offs, to_read); if (err) @@ -189,11 +189,11 @@ static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len, lnum += 1; offs = 0; - total_read -= to_read; + bytes_left -= to_read; buf += to_read; } - *retlen = len - total_read; + *retlen = len - bytes_left; return err; } @@ -211,7 +211,7 @@ static int gluebi_read(struct mtd_info *mtd, loff_t from, size_t len, static int gluebi_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { - int err = 0, lnum, offs, total_written; + int err = 0, lnum, offs, bytes_left; struct gluebi_device *gluebi; gluebi = container_of(mtd, struct gluebi_device, mtd); @@ -220,12 +220,12 @@ static int gluebi_write(struct mtd_info *mtd, loff_t to, size_t len, if (len % mtd->writesize || offs % mtd->writesize) return -EINVAL; - total_written = len; - while (total_written) { + bytes_left = len; + while (bytes_left) { size_t to_write = mtd->erasesize - offs; - if (to_write > total_written) - to_write = total_written; + if (to_write > bytes_left) + to_write = bytes_left; err = ubi_leb_write(gluebi->desc, lnum, buf, offs, to_write); if (err) @@ -233,11 +233,11 @@ static int gluebi_write(struct mtd_info *mtd, loff_t to, size_t len, lnum += 1; offs = 0; - total_written -= to_write; + bytes_left -= to_write; buf += to_write; } - *retlen = len - total_written; + *retlen = len - bytes_left; return err; } @@ -341,9 +341,8 @@ static int gluebi_create(struct ubi_device_info *di, mutex_lock(&devices_mutex); g = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (g) - err_msg("gluebi MTD device %d form UBI device %d volume %d " - "already exists", g->mtd.index, vi->ubi_num, - vi->vol_id); + err_msg("gluebi MTD device %d form UBI device %d volume %d already exists", + g->mtd.index, vi->ubi_num, vi->vol_id); mutex_unlock(&devices_mutex); if (mtd_device_register(mtd, NULL, 0)) { @@ -376,8 +375,8 @@ static int gluebi_remove(struct ubi_volume_info *vi) mutex_lock(&devices_mutex); gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (!gluebi) { - err_msg("got remove notification for unknown UBI device %d " - "volume %d", vi->ubi_num, vi->vol_id); + err_msg("got remove notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); err = -ENOENT; } else if (gluebi->refcnt) err = -EBUSY; @@ -390,9 +389,8 @@ static int gluebi_remove(struct ubi_volume_info *vi) mtd = &gluebi->mtd; err = mtd_device_unregister(mtd); if (err) { - err_msg("cannot remove fake MTD device %d, UBI device %d, " - "volume %d, error %d", mtd->index, gluebi->ubi_num, - gluebi->vol_id, err); + err_msg("cannot remove fake MTD device %d, UBI device %d, volume %d, error %d", + mtd->index, gluebi->ubi_num, gluebi->vol_id, err); mutex_lock(&devices_mutex); list_add_tail(&gluebi->list, &gluebi_devices); mutex_unlock(&devices_mutex); @@ -422,8 +420,8 @@ static int gluebi_updated(struct ubi_volume_info *vi) gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (!gluebi) { mutex_unlock(&devices_mutex); - err_msg("got update notification for unknown UBI device %d " - "volume %d", vi->ubi_num, vi->vol_id); + err_msg("got update notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); return -ENOENT; } @@ -449,8 +447,8 @@ static int gluebi_resized(struct ubi_volume_info *vi) gluebi = find_gluebi_nolock(vi->ubi_num, vi->vol_id); if (!gluebi) { mutex_unlock(&devices_mutex); - err_msg("got update notification for unknown UBI device %d " - "volume %d", vi->ubi_num, vi->vol_id); + err_msg("got update notification for unknown UBI device %d volume %d", + vi->ubi_num, vi->vol_id); return -ENOENT; } gluebi->mtd.size = vi->used_bytes; @@ -507,9 +505,9 @@ static void __exit ubi_gluebi_exit(void) err = mtd_device_unregister(mtd); if (err) - err_msg("error %d while removing gluebi MTD device %d, " - "UBI device %d, volume %d - ignoring", err, - mtd->index, gluebi->ubi_num, gluebi->vol_id); + err_msg("error %d while removing gluebi MTD device %d, UBI device %d, volume %d - ignoring", + err, mtd->index, gluebi->ubi_num, + gluebi->vol_id); kfree(mtd->name); kfree(gluebi); } diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c index a8d523794b5..d36134925d3 100644 --- a/drivers/mtd/ubi/io.c +++ b/drivers/mtd/ubi/io.c @@ -177,21 +177,20 @@ retry: * enabled. A corresponding message will be printed * later, when it is has been scrubbed. */ - dbg_msg("fixable bit-flip detected at PEB %d", pnum); + ubi_msg("fixable bit-flip detected at PEB %d", pnum); ubi_assert(len == read); return UBI_IO_BITFLIPS; } if (retries++ < UBI_IO_RETRIES) { - ubi_warn("error %d%s while reading %d bytes from PEB " - "%d:%d, read only %zd bytes, retry", + ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", err, errstr, len, pnum, offset, read); yield(); goto retry; } - ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " - "read %zd bytes", err, errstr, len, pnum, offset, read); + ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", + err, errstr, len, pnum, offset, read); dump_stack(); /* @@ -274,8 +273,8 @@ int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, } if (ubi_dbg_is_write_failure(ubi)) { - ubi_err("cannot write %d bytes to PEB %d:%d " - "(emulated)", len, pnum, offset); + ubi_err("cannot write %d bytes to PEB %d:%d (emulated)", + len, pnum, offset); dump_stack(); return -EIO; } @@ -283,8 +282,8 @@ int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, addr = (loff_t)pnum * ubi->peb_size + offset; err = mtd_write(ubi->mtd, addr, len, &written, buf); if (err) { - ubi_err("error %d while writing %d bytes to PEB %d:%d, written " - "%zd bytes", err, len, pnum, offset, written); + ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes", + err, len, pnum, offset, written); dump_stack(); ubi_dump_flash(ubi, pnum, offset, len); } else @@ -496,10 +495,12 @@ out: */ static int nor_erase_prepare(struct ubi_device *ubi, int pnum) { - int err, err1; + int err; size_t written; loff_t addr; uint32_t data = 0; + struct ubi_ec_hdr ec_hdr; + /* * Note, we cannot generally define VID header buffers on stack, * because of the way we deal with these buffers (see the header @@ -510,50 +511,38 @@ static int nor_erase_prepare(struct ubi_device *ubi, int pnum) struct ubi_vid_hdr vid_hdr; /* + * If VID or EC is valid, we have to corrupt them before erasing. * It is important to first invalidate the EC header, and then the VID * header. Otherwise a power cut may lead to valid EC header and * invalid VID header, in which case UBI will treat this PEB as * corrupted and will try to preserve it, and print scary warnings. */ addr = (loff_t)pnum * ubi->peb_size; - err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); - if (!err) { - addr += ubi->vid_hdr_aloffset; + err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); + if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && + err != UBI_IO_FF){ err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); - if (!err) - return 0; + if(err) + goto error; } - /* - * We failed to write to the media. This was observed with Spansion - * S29GL512N NOR flash. Most probably the previously eraseblock erasure - * was interrupted at a very inappropriate moment, so it became - * unwritable. In this case we probably anyway have garbage in this - * PEB. - */ - err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); - if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || - err1 == UBI_IO_FF) { - struct ubi_ec_hdr ec_hdr; - - err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); - if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || - err1 == UBI_IO_FF) - /* - * Both VID and EC headers are corrupted, so we can - * safely erase this PEB and not afraid that it will be - * treated as a valid PEB in case of an unclean reboot. - */ - return 0; + err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); + if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && + err != UBI_IO_FF){ + addr += ubi->vid_hdr_aloffset; + err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); + if (err) + goto error; } + return 0; +error: /* - * The PEB contains a valid VID header, but we cannot invalidate it. - * Supposedly the flash media or the driver is screwed up, so return an - * error. + * The PEB contains a valid VID or EC header, but we cannot invalidate + * it. Supposedly the flash media or the driver is screwed up, so + * return an error. */ - ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", - pnum, err, err1); + ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err); ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); return -EIO; } @@ -685,8 +674,7 @@ static int validate_ec_hdr(const struct ubi_device *ubi, leb_start = be32_to_cpu(ec_hdr->data_offset); if (ec_hdr->version != UBI_VERSION) { - ubi_err("node with incompatible UBI version found: " - "this UBI version is %d, image version is %d", + ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d", UBI_VERSION, (int)ec_hdr->version); goto bad; } @@ -777,10 +765,10 @@ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { /* The physical eraseblock is supposedly empty */ if (verbose) - ubi_warn("no EC header found at PEB %d, " - "only 0xFF bytes", pnum); - dbg_bld("no EC header found at PEB %d, " - "only 0xFF bytes", pnum); + ubi_warn("no EC header found at PEB %d, only 0xFF bytes", + pnum); + dbg_bld("no EC header found at PEB %d, only 0xFF bytes", + pnum); if (!read_err) return UBI_IO_FF; else @@ -792,12 +780,12 @@ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, * 0xFF bytes. Report that the header is corrupted. */ if (verbose) { - ubi_warn("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_EC_HDR_MAGIC); + ubi_warn("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_EC_HDR_MAGIC); ubi_dump_ec_hdr(ec_hdr); } - dbg_bld("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_EC_HDR_MAGIC); + dbg_bld("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_EC_HDR_MAGIC); return UBI_IO_BAD_HDR; } @@ -806,12 +794,12 @@ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, if (hdr_crc != crc) { if (verbose) { - ubi_warn("bad EC header CRC at PEB %d, calculated " - "%#08x, read %#08x", pnum, crc, hdr_crc); + ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); ubi_dump_ec_hdr(ec_hdr); } - dbg_bld("bad EC header CRC at PEB %d, calculated " - "%#08x, read %#08x", pnum, crc, hdr_crc); + dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); if (!read_err) return UBI_IO_BAD_HDR; @@ -1032,10 +1020,10 @@ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { if (verbose) - ubi_warn("no VID header found at PEB %d, " - "only 0xFF bytes", pnum); - dbg_bld("no VID header found at PEB %d, " - "only 0xFF bytes", pnum); + ubi_warn("no VID header found at PEB %d, only 0xFF bytes", + pnum); + dbg_bld("no VID header found at PEB %d, only 0xFF bytes", + pnum); if (!read_err) return UBI_IO_FF; else @@ -1043,12 +1031,12 @@ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, } if (verbose) { - ubi_warn("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_VID_HDR_MAGIC); + ubi_warn("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_VID_HDR_MAGIC); ubi_dump_vid_hdr(vid_hdr); } - dbg_bld("bad magic number at PEB %d: %08x instead of " - "%08x", pnum, magic, UBI_VID_HDR_MAGIC); + dbg_bld("bad magic number at PEB %d: %08x instead of %08x", + pnum, magic, UBI_VID_HDR_MAGIC); return UBI_IO_BAD_HDR; } @@ -1057,12 +1045,12 @@ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, if (hdr_crc != crc) { if (verbose) { - ubi_warn("bad CRC at PEB %d, calculated %#08x, " - "read %#08x", pnum, crc, hdr_crc); + ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); ubi_dump_vid_hdr(vid_hdr); } - dbg_bld("bad CRC at PEB %d, calculated %#08x, " - "read %#08x", pnum, crc, hdr_crc); + dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); if (!read_err) return UBI_IO_BAD_HDR; else @@ -1134,7 +1122,7 @@ static int self_check_not_bad(const struct ubi_device *ubi, int pnum) { int err; - if (!ubi->dbg->chk_io) + if (!ubi_dbg_chk_io(ubi)) return 0; err = ubi_io_is_bad(ubi, pnum); @@ -1161,7 +1149,7 @@ static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, int err; uint32_t magic; - if (!ubi->dbg->chk_io) + if (!ubi_dbg_chk_io(ubi)) return 0; magic = be32_to_cpu(ec_hdr->magic); @@ -1199,7 +1187,7 @@ static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) uint32_t crc, hdr_crc; struct ubi_ec_hdr *ec_hdr; - if (!ubi->dbg->chk_io) + if (!ubi_dbg_chk_io(ubi)) return 0; ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); @@ -1243,7 +1231,7 @@ static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, int err; uint32_t magic; - if (!ubi->dbg->chk_io) + if (!ubi_dbg_chk_io(ubi)) return 0; magic = be32_to_cpu(vid_hdr->magic); @@ -1284,7 +1272,7 @@ static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) struct ubi_vid_hdr *vid_hdr; void *p; - if (!ubi->dbg->chk_io) + if (!ubi_dbg_chk_io(ubi)) return 0; vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); @@ -1300,8 +1288,8 @@ static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); if (hdr_crc != crc) { - ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " - "read %#08x", pnum, crc, hdr_crc); + ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x", + pnum, crc, hdr_crc); ubi_err("self-check failed for PEB %d", pnum); ubi_dump_vid_hdr(vid_hdr); dump_stack(); @@ -1336,7 +1324,7 @@ static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, void *buf1; loff_t addr = (loff_t)pnum * ubi->peb_size + offset; - if (!ubi->dbg->chk_io) + if (!ubi_dbg_chk_io(ubi)) return 0; buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); @@ -1400,7 +1388,7 @@ int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) void *buf; loff_t addr = (loff_t)pnum * ubi->peb_size + offset; - if (!ubi->dbg->chk_io) + if (!ubi_dbg_chk_io(ubi)) return 0; buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); @@ -1411,15 +1399,15 @@ int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) err = mtd_read(ubi->mtd, addr, len, &read, buf); if (err && !mtd_is_bitflip(err)) { - ubi_err("error %d while reading %d bytes from PEB %d:%d, " - "read %zd bytes", err, len, pnum, offset, read); + ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes", + err, len, pnum, offset, read); goto error; } err = ubi_check_pattern(buf, 0xFF, len); if (err == 0) { - ubi_err("flash region at PEB %d:%d, length %d does not " - "contain all 0xFF bytes", pnum, offset, len); + ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", + pnum, offset, len); goto fail; } diff --git a/drivers/mtd/ubi/misc.c b/drivers/mtd/ubi/misc.c index f6a7d7ac4b9..f913d701a5b 100644 --- a/drivers/mtd/ubi/misc.c +++ b/drivers/mtd/ubi/misc.c @@ -92,16 +92,45 @@ int ubi_check_volume(struct ubi_device *ubi, int vol_id) } /** - * ubi_calculate_rsvd_pool - calculate how many PEBs must be reserved for bad + * ubi_update_reserved - update bad eraseblock handling accounting data. + * @ubi: UBI device description object + * + * This function calculates the gap between current number of PEBs reserved for + * bad eraseblock handling and the required level of PEBs that must be + * reserved, and if necessary, reserves more PEBs to fill that gap, according + * to availability. Should be called with ubi->volumes_lock held. + */ +void ubi_update_reserved(struct ubi_device *ubi) +{ + int need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs; + + if (need <= 0 || ubi->avail_pebs == 0) + return; + + need = min_t(int, need, ubi->avail_pebs); + ubi->avail_pebs -= need; + ubi->rsvd_pebs += need; + ubi->beb_rsvd_pebs += need; + ubi_msg("reserved more %d PEBs for bad PEB handling", need); +} + +/** + * ubi_calculate_reserved - calculate how many PEBs must be reserved for bad * eraseblock handling. * @ubi: UBI device description object */ void ubi_calculate_reserved(struct ubi_device *ubi) { - ubi->beb_rsvd_level = ubi->good_peb_count/100; - ubi->beb_rsvd_level *= CONFIG_MTD_UBI_BEB_RESERVE; - if (ubi->beb_rsvd_level < MIN_RESEVED_PEBS) - ubi->beb_rsvd_level = MIN_RESEVED_PEBS; + /* + * Calculate the actual number of PEBs currently needed to be reserved + * for future bad eraseblock handling. + */ + ubi->beb_rsvd_level = ubi->bad_peb_limit - ubi->bad_peb_count; + if (ubi->beb_rsvd_level < 0) { + ubi->beb_rsvd_level = 0; + ubi_warn("number of bad PEBs (%d) is above the expected limit (%d), not reserving any PEBs for bad PEB handling, will use available PEBs (if any)", + ubi->bad_peb_count, ubi->bad_peb_limit); + } } /** diff --git a/drivers/mtd/ubi/ubi-media.h b/drivers/mtd/ubi/ubi-media.h index 468ffbc0eab..ac2b24d1783 100644 --- a/drivers/mtd/ubi/ubi-media.h +++ b/drivers/mtd/ubi/ubi-media.h @@ -375,4 +375,141 @@ struct ubi_vtbl_record { __be32 crc; } __packed; +/* UBI fastmap on-flash data structures */ + +#define UBI_FM_SB_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 1) +#define UBI_FM_DATA_VOLUME_ID (UBI_LAYOUT_VOLUME_ID + 2) + +/* fastmap on-flash data structure format version */ +#define UBI_FM_FMT_VERSION 1 + +#define UBI_FM_SB_MAGIC 0x7B11D69F +#define UBI_FM_HDR_MAGIC 0xD4B82EF7 +#define UBI_FM_VHDR_MAGIC 0xFA370ED1 +#define UBI_FM_POOL_MAGIC 0x67AF4D08 +#define UBI_FM_EBA_MAGIC 0xf0c040a8 + +/* A fastmap supber block can be located between PEB 0 and + * UBI_FM_MAX_START */ +#define UBI_FM_MAX_START 64 + +/* A fastmap can use up to UBI_FM_MAX_BLOCKS PEBs */ +#define UBI_FM_MAX_BLOCKS 32 + +/* 5% of the total number of PEBs have to be scanned while attaching + * from a fastmap. + * But the size of this pool is limited to be between UBI_FM_MIN_POOL_SIZE and + * UBI_FM_MAX_POOL_SIZE */ +#define UBI_FM_MIN_POOL_SIZE 8 +#define UBI_FM_MAX_POOL_SIZE 256 + +#define UBI_FM_WL_POOL_SIZE 25 + +/** + * struct ubi_fm_sb - UBI fastmap super block + * @magic: fastmap super block magic number (%UBI_FM_SB_MAGIC) + * @version: format version of this fastmap + * @data_crc: CRC over the fastmap data + * @used_blocks: number of PEBs used by this fastmap + * @block_loc: an array containing the location of all PEBs of the fastmap + * @block_ec: the erase counter of each used PEB + * @sqnum: highest sequence number value at the time while taking the fastmap + * + */ +struct ubi_fm_sb { + __be32 magic; + __u8 version; + __u8 padding1[3]; + __be32 data_crc; + __be32 used_blocks; + __be32 block_loc[UBI_FM_MAX_BLOCKS]; + __be32 block_ec[UBI_FM_MAX_BLOCKS]; + __be64 sqnum; + __u8 padding2[32]; +} __packed; + +/** + * struct ubi_fm_hdr - header of the fastmap data set + * @magic: fastmap header magic number (%UBI_FM_HDR_MAGIC) + * @free_peb_count: number of free PEBs known by this fastmap + * @used_peb_count: number of used PEBs known by this fastmap + * @scrub_peb_count: number of to be scrubbed PEBs known by this fastmap + * @bad_peb_count: number of bad PEBs known by this fastmap + * @erase_peb_count: number of bad PEBs which have to be erased + * @vol_count: number of UBI volumes known by this fastmap + */ +struct ubi_fm_hdr { + __be32 magic; + __be32 free_peb_count; + __be32 used_peb_count; + __be32 scrub_peb_count; + __be32 bad_peb_count; + __be32 erase_peb_count; + __be32 vol_count; + __u8 padding[4]; +} __packed; + +/* struct ubi_fm_hdr is followed by two struct ubi_fm_scan_pool */ + +/** + * struct ubi_fm_scan_pool - Fastmap pool PEBs to be scanned while attaching + * @magic: pool magic numer (%UBI_FM_POOL_MAGIC) + * @size: current pool size + * @max_size: maximal pool size + * @pebs: an array containing the location of all PEBs in this pool + */ +struct ubi_fm_scan_pool { + __be32 magic; + __be16 size; + __be16 max_size; + __be32 pebs[UBI_FM_MAX_POOL_SIZE]; + __be32 padding[4]; +} __packed; + +/* ubi_fm_scan_pool is followed by nfree+nused struct ubi_fm_ec records */ + +/** + * struct ubi_fm_ec - stores the erase counter of a PEB + * @pnum: PEB number + * @ec: ec of this PEB + */ +struct ubi_fm_ec { + __be32 pnum; + __be32 ec; +} __packed; + +/** + * struct ubi_fm_volhdr - Fastmap volume header + * it identifies the start of an eba table + * @magic: Fastmap volume header magic number (%UBI_FM_VHDR_MAGIC) + * @vol_id: volume id of the fastmapped volume + * @vol_type: type of the fastmapped volume + * @data_pad: data_pad value of the fastmapped volume + * @used_ebs: number of used LEBs within this volume + * @last_eb_bytes: number of bytes used in the last LEB + */ +struct ubi_fm_volhdr { + __be32 magic; + __be32 vol_id; + __u8 vol_type; + __u8 padding1[3]; + __be32 data_pad; + __be32 used_ebs; + __be32 last_eb_bytes; + __u8 padding2[8]; +} __packed; + +/* struct ubi_fm_volhdr is followed by one struct ubi_fm_eba records */ + +/** + * struct ubi_fm_eba - denotes an association beween a PEB and LEB + * @magic: EBA table magic number + * @reserved_pebs: number of table entries + * @pnum: PEB number of LEB (LEB is the index) + */ +struct ubi_fm_eba { + __be32 magic; + __be32 reserved_pebs; + __be32 pnum[0]; +} __packed; #endif /* !__UBI_MEDIA_H__ */ diff --git a/drivers/mtd/ubi/ubi.h b/drivers/mtd/ubi/ubi.h index a1a81c9ea8c..7bf416329c1 100644 --- a/drivers/mtd/ubi/ubi.h +++ b/drivers/mtd/ubi/ubi.h @@ -22,7 +22,6 @@ #ifndef __UBI_UBI_H__ #define __UBI_UBI_H__ -#include <linux/init.h> #include <linux/types.h> #include <linux/list.h> #include <linux/rbtree.h> @@ -51,17 +50,14 @@ #define UBI_NAME_STR "ubi" /* Normal UBI messages */ -#define ubi_msg(fmt, ...) printk(KERN_NOTICE "UBI: " fmt "\n", ##__VA_ARGS__) +#define ubi_msg(fmt, ...) pr_notice("UBI: " fmt "\n", ##__VA_ARGS__) /* UBI warning messages */ -#define ubi_warn(fmt, ...) printk(KERN_WARNING "UBI warning: %s: " fmt "\n", \ - __func__, ##__VA_ARGS__) +#define ubi_warn(fmt, ...) pr_warn("UBI warning: %s: " fmt "\n", \ + __func__, ##__VA_ARGS__) /* UBI error messages */ -#define ubi_err(fmt, ...) printk(KERN_ERR "UBI error: %s: " fmt "\n", \ +#define ubi_err(fmt, ...) pr_err("UBI error: %s: " fmt "\n", \ __func__, ##__VA_ARGS__) -/* Lowest number PEBs reserved for bad PEB handling */ -#define MIN_RESEVED_PEBS 2 - /* Background thread name pattern */ #define UBI_BGT_NAME_PATTERN "ubi_bgt%dd" @@ -88,6 +84,13 @@ #define UBI_UNKNOWN -1 /* + * The UBI debugfs directory name pattern and maximum name length (3 for "ubi" + * + 2 for the number plus 1 for the trailing zero byte. + */ +#define UBI_DFS_DIR_NAME "ubi%d" +#define UBI_DFS_DIR_LEN (3 + 2 + 1) + +/* * Error codes returned by the I/O sub-system. * * UBI_IO_FF: the read region of flash contains only 0xFFs @@ -136,6 +139,17 @@ enum { MOVE_RETRY, }; +/* + * Return codes of the fastmap sub-system + * + * UBI_NO_FASTMAP: No fastmap super block was found + * UBI_BAD_FASTMAP: A fastmap was found but it's unusable + */ +enum { + UBI_NO_FASTMAP = 1, + UBI_BAD_FASTMAP, +}; + /** * struct ubi_wl_entry - wear-leveling entry. * @u.rb: link in the corresponding (free/used) RB-tree @@ -202,6 +216,41 @@ struct ubi_rename_entry { struct ubi_volume_desc; /** + * struct ubi_fastmap_layout - in-memory fastmap data structure. + * @e: PEBs used by the current fastmap + * @to_be_tortured: if non-zero tortured this PEB + * @used_blocks: number of used PEBs + * @max_pool_size: maximal size of the user pool + * @max_wl_pool_size: maximal size of the pool used by the WL sub-system + */ +struct ubi_fastmap_layout { + struct ubi_wl_entry *e[UBI_FM_MAX_BLOCKS]; + int to_be_tortured[UBI_FM_MAX_BLOCKS]; + int used_blocks; + int max_pool_size; + int max_wl_pool_size; +}; + +/** + * struct ubi_fm_pool - in-memory fastmap pool + * @pebs: PEBs in this pool + * @used: number of used PEBs + * @size: total number of PEBs in this pool + * @max_size: maximal size of the pool + * + * A pool gets filled with up to max_size. + * If all PEBs within the pool are used a new fastmap will be written + * to the flash and the pool gets refilled with empty PEBs. + * + */ +struct ubi_fm_pool { + int pebs[UBI_FM_MAX_POOL_SIZE]; + int used; + int size; + int max_size; +}; + +/** * struct ubi_volume - UBI volume description data structure. * @dev: device object to make use of the the Linux device model * @cdev: character device object to create character device @@ -299,6 +348,37 @@ struct ubi_volume_desc { struct ubi_wl_entry; /** + * struct ubi_debug_info - debugging information for an UBI device. + * + * @chk_gen: if UBI general extra checks are enabled + * @chk_io: if UBI I/O extra checks are enabled + * @disable_bgt: disable the background task for testing purposes + * @emulate_bitflips: emulate bit-flips for testing purposes + * @emulate_io_failures: emulate write/erase failures for testing purposes + * @dfs_dir_name: name of debugfs directory containing files of this UBI device + * @dfs_dir: direntry object of the UBI device debugfs directory + * @dfs_chk_gen: debugfs knob to enable UBI general extra checks + * @dfs_chk_io: debugfs knob to enable UBI I/O extra checks + * @dfs_disable_bgt: debugfs knob to disable the background task + * @dfs_emulate_bitflips: debugfs knob to emulate bit-flips + * @dfs_emulate_io_failures: debugfs knob to emulate write/erase failures + */ +struct ubi_debug_info { + unsigned int chk_gen:1; + unsigned int chk_io:1; + unsigned int disable_bgt:1; + unsigned int emulate_bitflips:1; + unsigned int emulate_io_failures:1; + char dfs_dir_name[UBI_DFS_DIR_LEN + 1]; + struct dentry *dfs_dir; + struct dentry *dfs_chk_gen; + struct dentry *dfs_chk_io; + struct dentry *dfs_disable_bgt; + struct dentry *dfs_emulate_bitflips; + struct dentry *dfs_emulate_io_failures; +}; + +/** * struct ubi_device - UBI device description structure * @dev: UBI device object to use the the Linux device model * @cdev: character device object to create character device @@ -336,9 +416,21 @@ struct ubi_wl_entry; * @ltree: the lock tree * @alc_mutex: serializes "atomic LEB change" operations * + * @fm_disabled: non-zero if fastmap is disabled (default) + * @fm: in-memory data structure of the currently used fastmap + * @fm_pool: in-memory data structure of the fastmap pool + * @fm_wl_pool: in-memory data structure of the fastmap pool used by the WL + * sub-system + * @fm_mutex: serializes ubi_update_fastmap() and protects @fm_buf + * @fm_buf: vmalloc()'d buffer which holds the raw fastmap + * @fm_size: fastmap size in bytes + * @fm_sem: allows ubi_update_fastmap() to block EBA table changes + * @fm_work: fastmap work queue + * * @used: RB-tree of used physical eraseblocks * @erroneous: RB-tree of erroneous used physical eraseblocks * @free: RB-tree of free physical eraseblocks + * @free_count: Contains the number of elements in @free * @scrub: RB-tree of physical eraseblocks which need scrubbing * @pq: protection queue (contain physical eraseblocks which are temporarily * protected from the wear-leveling worker) @@ -363,6 +455,7 @@ struct ubi_wl_entry; * @flash_size: underlying MTD device size (in bytes) * @peb_count: count of physical eraseblocks on the MTD device * @peb_size: physical eraseblock size + * @bad_peb_limit: top limit of expected bad physical eraseblocks * @bad_peb_count: count of bad physical eraseblocks * @good_peb_count: count of good physical eraseblocks * @corr_peb_count: count of corrupted physical eraseblocks (preserved and not @@ -410,6 +503,7 @@ struct ubi_device { int avail_pebs; int beb_rsvd_pebs; int beb_rsvd_level; + int bad_peb_limit; int autoresize_vol_id; int vtbl_slots; @@ -427,10 +521,22 @@ struct ubi_device { struct rb_root ltree; struct mutex alc_mutex; + /* Fastmap stuff */ + int fm_disabled; + struct ubi_fastmap_layout *fm; + struct ubi_fm_pool fm_pool; + struct ubi_fm_pool fm_wl_pool; + struct rw_semaphore fm_sem; + struct mutex fm_mutex; + void *fm_buf; + size_t fm_size; + struct work_struct fm_work; + /* Wear-leveling sub-system's stuff */ struct rb_root used; struct rb_root erroneous; struct rb_root free; + int free_count; struct rb_root scrub; struct list_head pq[UBI_PROT_QUEUE_LEN]; int pq_head; @@ -476,7 +582,7 @@ struct ubi_device { struct mutex buf_mutex; struct mutex ckvol_mutex; - struct ubi_debug_info *dbg; + struct ubi_debug_info dbg; }; /** @@ -597,6 +703,32 @@ struct ubi_attach_info { struct kmem_cache *aeb_slab_cache; }; +/** + * struct ubi_work - UBI work description data structure. + * @list: a link in the list of pending works + * @func: worker function + * @e: physical eraseblock to erase + * @vol_id: the volume ID on which this erasure is being performed + * @lnum: the logical eraseblock number + * @torture: if the physical eraseblock has to be tortured + * @anchor: produce a anchor PEB to by used by fastmap + * + * The @func pointer points to the worker function. If the @cancel argument is + * not zero, the worker has to free the resources and exit immediately. The + * worker has to return zero in case of success and a negative error code in + * case of failure. + */ +struct ubi_work { + struct list_head list; + int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); + /* The below fields are only relevant to erasure works */ + struct ubi_wl_entry *e; + int vol_id; + int lnum; + int torture; + int anchor; +}; + #include "debug.h" extern struct kmem_cache *ubi_wl_entry_slab; @@ -607,7 +739,7 @@ extern struct class *ubi_class; extern struct mutex ubi_devices_mutex; extern struct blocking_notifier_head ubi_notifiers; -/* scan.c */ +/* attach.c */ int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips); struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, @@ -615,7 +747,7 @@ struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av); struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, struct ubi_attach_info *ai); -int ubi_attach(struct ubi_device *ubi); +int ubi_attach(struct ubi_device *ubi, int force_scan); void ubi_destroy_ai(struct ubi_attach_info *ai); /* vtbl.c */ @@ -647,6 +779,7 @@ int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol, int ubi_calc_data_len(const struct ubi_device *ubi, const void *buf, int length); int ubi_check_volume(struct ubi_device *ubi, int vol_id); +void ubi_update_reserved(struct ubi_device *ubi); void ubi_calculate_reserved(struct ubi_device *ubi); int ubi_check_pattern(const void *buf, uint8_t patt, int size); @@ -664,6 +797,9 @@ int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, struct ubi_vid_hdr *vid_hdr); int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai); +unsigned long long ubi_next_sqnum(struct ubi_device *ubi); +int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, + struct ubi_attach_info *ai_scan); /* wl.c */ int ubi_wl_get_peb(struct ubi_device *ubi); @@ -674,6 +810,12 @@ int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum); int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai); void ubi_wl_close(struct ubi_device *ubi); int ubi_thread(void *u); +struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor); +int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *used_e, + int lnum, int torture); +int ubi_is_erase_work(struct ubi_work *wrk); +void ubi_refill_pools(struct ubi_device *ubi); +int ubi_ensure_anchor_pebs(struct ubi_device *ubi); /* io.c */ int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, @@ -693,7 +835,8 @@ int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, struct ubi_vid_hdr *vid_hdr); /* build.c */ -int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset); +int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, + int vid_hdr_offset, int max_beb_per1024); int ubi_detach_mtd_dev(int ubi_num, int anyway); struct ubi_device *ubi_get_device(int ubi_num); void ubi_put_device(struct ubi_device *ubi); @@ -710,6 +853,35 @@ void ubi_free_internal_volumes(struct ubi_device *ubi); void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di); void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol, struct ubi_volume_info *vi); +/* scan.c */ +int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, + int pnum, const struct ubi_vid_hdr *vid_hdr); + +/* fastmap.c */ +size_t ubi_calc_fm_size(struct ubi_device *ubi); +int ubi_update_fastmap(struct ubi_device *ubi); +int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai, + int fm_anchor); + +/* block.c */ +#ifdef CONFIG_MTD_UBI_BLOCK +int ubiblock_init(void); +void ubiblock_exit(void); +int ubiblock_create(struct ubi_volume_info *vi); +int ubiblock_remove(struct ubi_volume_info *vi); +#else +static inline int ubiblock_init(void) { return 0; } +static inline void ubiblock_exit(void) {} +static inline int ubiblock_create(struct ubi_volume_info *vi) +{ + return -ENOSYS; +} +static inline int ubiblock_remove(struct ubi_volume_info *vi) +{ + return -ENOSYS; +} +#endif + /* * ubi_rb_for_each_entry - walk an RB-tree. diff --git a/drivers/mtd/ubi/upd.c b/drivers/mtd/ubi/upd.c index 9f2ebd8750e..ec2c2dc1c1c 100644 --- a/drivers/mtd/ubi/upd.c +++ b/drivers/mtd/ubi/upd.c @@ -64,8 +64,7 @@ static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol) return 0; } - memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id], - sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol->vol_id]; vtbl_rec.upd_marker = 1; mutex_lock(&ubi->device_mutex); @@ -93,8 +92,7 @@ static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol, dbg_gen("clear update marker for volume %d", vol->vol_id); - memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id], - sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol->vol_id]; ubi_assert(vol->upd_marker && vtbl_rec.upd_marker); vtbl_rec.upd_marker = 0; diff --git a/drivers/mtd/ubi/vmt.c b/drivers/mtd/ubi/vmt.c index 0669cff8ac3..8330703c098 100644 --- a/drivers/mtd/ubi/vmt.c +++ b/drivers/mtd/ubi/vmt.c @@ -443,15 +443,7 @@ int ubi_remove_volume(struct ubi_volume_desc *desc, int no_vtbl) spin_lock(&ubi->volumes_lock); ubi->rsvd_pebs -= reserved_pebs; ubi->avail_pebs += reserved_pebs; - i = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs; - if (i > 0) { - i = ubi->avail_pebs >= i ? i : ubi->avail_pebs; - ubi->avail_pebs -= i; - ubi->rsvd_pebs += i; - ubi->beb_rsvd_pebs += i; - if (i > 0) - ubi_msg("reserve more %d PEBs", i); - } + ubi_update_reserved(ubi); ubi->vol_count -= 1; spin_unlock(&ubi->volumes_lock); @@ -543,7 +535,7 @@ int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) } /* Change volume table record */ - memcpy(&vtbl_rec, &ubi->vtbl[vol_id], sizeof(struct ubi_vtbl_record)); + vtbl_rec = ubi->vtbl[vol_id]; vtbl_rec.reserved_pebs = cpu_to_be32(reserved_pebs); err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); if (err) @@ -558,15 +550,7 @@ int ubi_resize_volume(struct ubi_volume_desc *desc, int reserved_pebs) spin_lock(&ubi->volumes_lock); ubi->rsvd_pebs += pebs; ubi->avail_pebs -= pebs; - pebs = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs; - if (pebs > 0) { - pebs = ubi->avail_pebs >= pebs ? pebs : ubi->avail_pebs; - ubi->avail_pebs -= pebs; - ubi->rsvd_pebs += pebs; - ubi->beb_rsvd_pebs += pebs; - if (pebs > 0) - ubi_msg("reserve more %d PEBs", pebs); - } + ubi_update_reserved(ubi); for (i = 0; i < reserved_pebs; i++) new_mapping[i] = vol->eba_tbl[i]; kfree(vol->eba_tbl); @@ -863,7 +847,7 @@ static int self_check_volumes(struct ubi_device *ubi) { int i, err = 0; - if (!ubi->dbg->chk_gen) + if (!ubi_dbg_chk_gen(ubi)) return 0; for (i = 0; i < ubi->vtbl_slots; i++) { diff --git a/drivers/mtd/ubi/vtbl.c b/drivers/mtd/ubi/vtbl.c index 437bc193e17..d77b1c1d7c7 100644 --- a/drivers/mtd/ubi/vtbl.c +++ b/drivers/mtd/ubi/vtbl.c @@ -270,8 +270,8 @@ static int vtbl_check(const struct ubi_device *ubi, if (len1 > 0 && len1 == len2 && !strncmp(vtbl[i].name, vtbl[n].name, len1)) { - ubi_err("volumes %d and %d have the same name" - " \"%s\"", i, n, vtbl[i].name); + ubi_err("volumes %d and %d have the same name \"%s\"", + i, n, vtbl[i].name); ubi_dump_vtbl_record(&vtbl[i], i); ubi_dump_vtbl_record(&vtbl[n], n); return -EINVAL; @@ -304,7 +304,7 @@ static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, struct ubi_vid_hdr *vid_hdr; struct ubi_ainf_peb *new_aeb; - ubi_msg("create volume table (copy #%d)", copy + 1); + dbg_gen("create volume table (copy #%d)", copy + 1); vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); if (!vid_hdr) @@ -340,7 +340,7 @@ retry: * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. */ err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); - kfree(new_aeb); + kmem_cache_free(ai->aeb_slab_cache, new_aeb); ubi_free_vid_hdr(ubi, vid_hdr); return err; @@ -353,7 +353,7 @@ write_error: list_add(&new_aeb->u.list, &ai->erase); goto retry; } - kfree(new_aeb); + kmem_cache_free(ai->aeb_slab_cache, new_aeb); out_free: ubi_free_vid_hdr(ubi, vid_hdr); return err; @@ -562,8 +562,8 @@ static int init_volumes(struct ubi_device *ubi, if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { /* Auto re-size flag may be set only for one volume */ if (ubi->autoresize_vol_id != -1) { - ubi_err("more than one auto-resize volume (%d " - "and %d)", ubi->autoresize_vol_id, i); + ubi_err("more than one auto-resize volume (%d and %d)", + ubi->autoresize_vol_id, i); kfree(vol); return -EINVAL; } @@ -858,7 +858,7 @@ out_free: */ static void self_vtbl_check(const struct ubi_device *ubi) { - if (!ubi->dbg->chk_gen) + if (!ubi_dbg_chk_gen(ubi)) return; if (vtbl_check(ubi, ubi->vtbl)) { diff --git a/drivers/mtd/ubi/wl.c b/drivers/mtd/ubi/wl.c index b6be644e7b8..0f3425dac91 100644 --- a/drivers/mtd/ubi/wl.c +++ b/drivers/mtd/ubi/wl.c @@ -1,5 +1,4 @@ /* - * @ubi: UBI device description object * Copyright (c) International Business Machines Corp., 2006 * * This program is free software; you can redistribute it and/or modify @@ -135,36 +134,48 @@ */ #define WL_MAX_FAILURES 32 -/** - * struct ubi_work - UBI work description data structure. - * @list: a link in the list of pending works - * @func: worker function - * @e: physical eraseblock to erase - * @vol_id: the volume ID on which this erasure is being performed - * @lnum: the logical eraseblock number - * @torture: if the physical eraseblock has to be tortured - * - * The @func pointer points to the worker function. If the @cancel argument is - * not zero, the worker has to free the resources and exit immediately. The - * worker has to return zero in case of success and a negative error code in - * case of failure. - */ -struct ubi_work { - struct list_head list; - int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); - /* The below fields are only relevant to erasure works */ - struct ubi_wl_entry *e; - int vol_id; - int lnum; - int torture; -}; - static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); static int self_check_in_wl_tree(const struct ubi_device *ubi, struct ubi_wl_entry *e, struct rb_root *root); static int self_check_in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e); +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue + * @wrk: the work description object + */ +static void update_fastmap_work_fn(struct work_struct *wrk) +{ + struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); + ubi_update_fastmap(ubi); +} + +/** + * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. + * @ubi: UBI device description object + * @pnum: the to be checked PEB + */ +static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) +{ + int i; + + if (!ubi->fm) + return 0; + + for (i = 0; i < ubi->fm->used_blocks; i++) + if (ubi->fm->e[i]->pnum == pnum) + return 1; + + return 0; +} +#else +static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) +{ + return 0; +} +#endif + /** * wl_tree_add - add a wear-leveling entry to a WL RB-tree. * @e: the wear-leveling entry to add @@ -261,18 +272,16 @@ static int produce_free_peb(struct ubi_device *ubi) { int err; - spin_lock(&ubi->wl_lock); while (!ubi->free.rb_node) { spin_unlock(&ubi->wl_lock); dbg_wl("do one work synchronously"); err = do_work(ubi); - if (err) - return err; spin_lock(&ubi->wl_lock); + if (err) + return err; } - spin_unlock(&ubi->wl_lock); return 0; } @@ -339,16 +348,18 @@ static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) /** * find_wl_entry - find wear-leveling entry closest to certain erase counter. + * @ubi: UBI device description object * @root: the RB-tree where to look for * @diff: maximum possible difference from the smallest erase counter * * This function looks for a wear leveling entry with erase counter closest to * min + @diff, where min is the smallest erase counter. */ -static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff) +static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, + struct rb_root *root, int diff) { struct rb_node *p; - struct ubi_wl_entry *e; + struct ubi_wl_entry *e, *prev_e = NULL; int max; e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); @@ -363,35 +374,143 @@ static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff) p = p->rb_left; else { p = p->rb_right; + prev_e = e; e = e1; } } + /* If no fastmap has been written and this WL entry can be used + * as anchor PEB, hold it back and return the second best WL entry + * such that fastmap can use the anchor PEB later. */ + if (prev_e && !ubi->fm_disabled && + !ubi->fm && e->pnum < UBI_FM_MAX_START) + return prev_e; + return e; } /** - * ubi_wl_get_peb - get a physical eraseblock. + * find_mean_wl_entry - find wear-leveling entry with medium erase counter. + * @ubi: UBI device description object + * @root: the RB-tree where to look for + * + * This function looks for a wear leveling entry with medium erase counter, + * but not greater or equivalent than the lowest erase counter plus + * %WL_FREE_MAX_DIFF/2. + */ +static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, + struct rb_root *root) +{ + struct ubi_wl_entry *e, *first, *last; + + first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); + last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); + + if (last->ec - first->ec < WL_FREE_MAX_DIFF) { + e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); + +#ifdef CONFIG_MTD_UBI_FASTMAP + /* If no fastmap has been written and this WL entry can be used + * as anchor PEB, hold it back and return the second best + * WL entry such that fastmap can use the anchor PEB later. */ + if (e && !ubi->fm_disabled && !ubi->fm && + e->pnum < UBI_FM_MAX_START) + e = rb_entry(rb_next(root->rb_node), + struct ubi_wl_entry, u.rb); +#endif + } else + e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); + + return e; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. + * @root: the RB-tree where to look for + */ +static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) +{ + struct rb_node *p; + struct ubi_wl_entry *e, *victim = NULL; + int max_ec = UBI_MAX_ERASECOUNTER; + + ubi_rb_for_each_entry(p, e, root, u.rb) { + if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { + victim = e; + max_ec = e->ec; + } + } + + return victim; +} + +static int anchor_pebs_avalible(struct rb_root *root) +{ + struct rb_node *p; + struct ubi_wl_entry *e; + + ubi_rb_for_each_entry(p, e, root, u.rb) + if (e->pnum < UBI_FM_MAX_START) + return 1; + + return 0; +} + +/** + * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. + * @ubi: UBI device description object + * @anchor: This PEB will be used as anchor PEB by fastmap + * + * The function returns a physical erase block with a given maximal number + * and removes it from the wl subsystem. + * Must be called with wl_lock held! + */ +struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) +{ + struct ubi_wl_entry *e = NULL; + + if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) + goto out; + + if (anchor) + e = find_anchor_wl_entry(&ubi->free); + else + e = find_mean_wl_entry(ubi, &ubi->free); + + if (!e) + goto out; + + self_check_in_wl_tree(ubi, e, &ubi->free); + + /* remove it from the free list, + * the wl subsystem does no longer know this erase block */ + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; +out: + return e; +} +#endif + +/** + * __wl_get_peb - get a physical eraseblock. * @ubi: UBI device description object * * This function returns a physical eraseblock in case of success and a - * negative error code in case of failure. Might sleep. + * negative error code in case of failure. */ -int ubi_wl_get_peb(struct ubi_device *ubi) +static int __wl_get_peb(struct ubi_device *ubi) { int err; - struct ubi_wl_entry *e, *first, *last; + struct ubi_wl_entry *e; retry: - spin_lock(&ubi->wl_lock); if (!ubi->free.rb_node) { if (ubi->works_count == 0) { - ubi_assert(list_empty(&ubi->works)); ubi_err("no free eraseblocks"); - spin_unlock(&ubi->wl_lock); + ubi_assert(list_empty(&ubi->works)); return -ENOSPC; } - spin_unlock(&ubi->wl_lock); err = produce_free_peb(ubi); if (err < 0) @@ -399,13 +518,11 @@ retry: goto retry; } - first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); - last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb); - - if (last->ec - first->ec < WL_FREE_MAX_DIFF) - e = rb_entry(ubi->free.rb_node, struct ubi_wl_entry, u.rb); - else - e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2); + e = find_mean_wl_entry(ubi, &ubi->free); + if (!e) { + ubi_err("no free eraseblocks"); + return -ENOSPC; + } self_check_in_wl_tree(ubi, e, &ubi->free); @@ -414,19 +531,174 @@ retry: * be protected from being moved for some time. */ rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; dbg_wl("PEB %d EC %d", e->pnum, e->ec); +#ifndef CONFIG_MTD_UBI_FASTMAP + /* We have to enqueue e only if fastmap is disabled, + * is fastmap enabled prot_queue_add() will be called by + * ubi_wl_get_peb() after removing e from the pool. */ prot_queue_add(ubi, e); +#endif + return e->pnum; +} + +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * return_unused_pool_pebs - returns unused PEB to the free tree. + * @ubi: UBI device description object + * @pool: fastmap pool description object + */ +static void return_unused_pool_pebs(struct ubi_device *ubi, + struct ubi_fm_pool *pool) +{ + int i; + struct ubi_wl_entry *e; + + for (i = pool->used; i < pool->size; i++) { + e = ubi->lookuptbl[pool->pebs[i]]; + wl_tree_add(e, &ubi->free); + ubi->free_count++; + } +} + +/** + * refill_wl_pool - refills all the fastmap pool used by the + * WL sub-system. + * @ubi: UBI device description object + */ +static void refill_wl_pool(struct ubi_device *ubi) +{ + struct ubi_wl_entry *e; + struct ubi_fm_pool *pool = &ubi->fm_wl_pool; + + return_unused_pool_pebs(ubi, pool); + + for (pool->size = 0; pool->size < pool->max_size; pool->size++) { + if (!ubi->free.rb_node || + (ubi->free_count - ubi->beb_rsvd_pebs < 5)) + break; + + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + self_check_in_wl_tree(ubi, e, &ubi->free); + rb_erase(&e->u.rb, &ubi->free); + ubi->free_count--; + + pool->pebs[pool->size] = e->pnum; + } + pool->used = 0; +} + +/** + * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. + * @ubi: UBI device description object + */ +static void refill_wl_user_pool(struct ubi_device *ubi) +{ + struct ubi_fm_pool *pool = &ubi->fm_pool; + + return_unused_pool_pebs(ubi, pool); + + for (pool->size = 0; pool->size < pool->max_size; pool->size++) { + pool->pebs[pool->size] = __wl_get_peb(ubi); + if (pool->pebs[pool->size] < 0) + break; + } + pool->used = 0; +} + +/** + * ubi_refill_pools - refills all fastmap PEB pools. + * @ubi: UBI device description object + */ +void ubi_refill_pools(struct ubi_device *ubi) +{ + spin_lock(&ubi->wl_lock); + refill_wl_pool(ubi); + refill_wl_user_pool(ubi); + spin_unlock(&ubi->wl_lock); +} + +/* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of + * the fastmap pool. + */ +int ubi_wl_get_peb(struct ubi_device *ubi) +{ + int ret; + struct ubi_fm_pool *pool = &ubi->fm_pool; + struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; + + if (!pool->size || !wl_pool->size || pool->used == pool->size || + wl_pool->used == wl_pool->size) + ubi_update_fastmap(ubi); + + /* we got not a single free PEB */ + if (!pool->size) + ret = -ENOSPC; + else { + spin_lock(&ubi->wl_lock); + ret = pool->pebs[pool->used++]; + prot_queue_add(ubi, ubi->lookuptbl[ret]); + spin_unlock(&ubi->wl_lock); + } + + return ret; +} + +/* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. + * + * @ubi: UBI device description object + */ +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) +{ + struct ubi_fm_pool *pool = &ubi->fm_wl_pool; + int pnum; + + if (pool->used == pool->size || !pool->size) { + /* We cannot update the fastmap here because this + * function is called in atomic context. + * Let's fail here and refill/update it as soon as possible. */ + schedule_work(&ubi->fm_work); + return NULL; + } else { + pnum = pool->pebs[pool->used++]; + return ubi->lookuptbl[pnum]; + } +} +#else +static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) +{ + struct ubi_wl_entry *e; + + e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); + self_check_in_wl_tree(ubi, e, &ubi->free); + ubi->free_count--; + ubi_assert(ubi->free_count >= 0); + rb_erase(&e->u.rb, &ubi->free); + + return e; +} + +int ubi_wl_get_peb(struct ubi_device *ubi) +{ + int peb, err; + + spin_lock(&ubi->wl_lock); + peb = __wl_get_peb(ubi); spin_unlock(&ubi->wl_lock); - err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, + if (peb < 0) + return peb; + + err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, ubi->peb_size - ubi->vid_hdr_aloffset); if (err) { - ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum); + ubi_err("new PEB %d does not contain all 0xFF bytes", peb); return err; } - return e->pnum; + return peb; } +#endif /** * prot_queue_del - remove a physical eraseblock from the protection queue. @@ -558,14 +830,14 @@ repeat: } /** - * schedule_ubi_work - schedule a work. + * __schedule_ubi_work - schedule a work. * @ubi: UBI device description object * @wrk: the work to schedule * * This function adds a work defined by @wrk to the tail of the pending works - * list. + * list. Can only be used of ubi->work_sem is already held in read mode! */ -static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) +static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) { spin_lock(&ubi->wl_lock); list_add_tail(&wrk->list, &ubi->works); @@ -576,9 +848,35 @@ static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) spin_unlock(&ubi->wl_lock); } +/** + * schedule_ubi_work - schedule a work. + * @ubi: UBI device description object + * @wrk: the work to schedule + * + * This function adds a work defined by @wrk to the tail of the pending works + * list. + */ +static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) +{ + down_read(&ubi->work_sem); + __schedule_ubi_work(ubi, wrk); + up_read(&ubi->work_sem); +} + static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, int cancel); +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * ubi_is_erase_work - checks whether a work is erase work. + * @wrk: The work object to be checked + */ +int ubi_is_erase_work(struct ubi_work *wrk) +{ + return wrk->func == erase_worker; +} +#endif + /** * schedule_erase - schedule an erase work. * @ubi: UBI device description object @@ -595,6 +893,9 @@ static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, { struct ubi_work *wl_wrk; + ubi_assert(e); + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); + dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", e->pnum, e->ec, torture); @@ -613,6 +914,79 @@ static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, } /** + * do_sync_erase - run the erase worker synchronously. + * @ubi: UBI device description object + * @e: the WL entry of the physical eraseblock to erase + * @vol_id: the volume ID that last used this PEB + * @lnum: the last used logical eraseblock number for the PEB + * @torture: if the physical eraseblock has to be tortured + * + */ +static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, + int vol_id, int lnum, int torture) +{ + struct ubi_work *wl_wrk; + + dbg_wl("sync erase of PEB %i", e->pnum); + + wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); + if (!wl_wrk) + return -ENOMEM; + + wl_wrk->e = e; + wl_wrk->vol_id = vol_id; + wl_wrk->lnum = lnum; + wl_wrk->torture = torture; + + return erase_worker(ubi, wl_wrk, 0); +} + +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling + * sub-system. + * see: ubi_wl_put_peb() + * + * @ubi: UBI device description object + * @fm_e: physical eraseblock to return + * @lnum: the last used logical eraseblock number for the PEB + * @torture: if this physical eraseblock has to be tortured + */ +int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, + int lnum, int torture) +{ + struct ubi_wl_entry *e; + int vol_id, pnum = fm_e->pnum; + + dbg_wl("PEB %d", pnum); + + ubi_assert(pnum >= 0); + ubi_assert(pnum < ubi->peb_count); + + spin_lock(&ubi->wl_lock); + e = ubi->lookuptbl[pnum]; + + /* This can happen if we recovered from a fastmap the very + * first time and writing now a new one. In this case the wl system + * has never seen any PEB used by the original fastmap. + */ + if (!e) { + e = fm_e; + ubi_assert(e->ec >= 0); + ubi->lookuptbl[pnum] = e; + } else { + e->ec = fm_e->ec; + kfree(fm_e); + } + + spin_unlock(&ubi->wl_lock); + + vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; + return schedule_erase(ubi, e, vol_id, lnum, torture); +} +#endif + +/** * wear_leveling_worker - wear-leveling worker function. * @ubi: UBI device description object * @wrk: the work object @@ -627,6 +1001,9 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, { int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; int vol_id = -1, uninitialized_var(lnum); +#ifdef CONFIG_MTD_UBI_FASTMAP + int anchor = wrk->anchor; +#endif struct ubi_wl_entry *e1, *e2; struct ubi_vid_hdr *vid_hdr; @@ -660,18 +1037,43 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, goto out_cancel; } +#ifdef CONFIG_MTD_UBI_FASTMAP + /* Check whether we need to produce an anchor PEB */ + if (!anchor) + anchor = !anchor_pebs_avalible(&ubi->free); + + if (anchor) { + e1 = find_anchor_wl_entry(&ubi->used); + if (!e1) + goto out_cancel; + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; + + self_check_in_wl_tree(ubi, e1, &ubi->used); + rb_erase(&e1->u.rb, &ubi->used); + dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); + } else if (!ubi->scrub.rb_node) { +#else if (!ubi->scrub.rb_node) { +#endif /* * Now pick the least worn-out used physical eraseblock and a * highly worn-out free physical eraseblock. If the erase * counters differ much enough, start wear-leveling. */ e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); - e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { dbg_wl("no WL needed: min used EC %d, max free EC %d", e1->ec, e2->ec); + + /* Give the unused PEB back */ + wl_tree_add(e2, &ubi->free); + ubi->free_count++; goto out_cancel; } self_check_in_wl_tree(ubi, e1, &ubi->used); @@ -682,14 +1084,15 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, /* Perform scrubbing */ scrubbing = 1; e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); - e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); + e2 = get_peb_for_wl(ubi); + if (!e2) + goto out_cancel; + self_check_in_wl_tree(ubi, e1, &ubi->scrub); rb_erase(&e1->u.rb, &ubi->scrub); dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); } - self_check_in_wl_tree(ubi, e2, &ubi->free); - rb_erase(&e2->u.rb, &ubi->free); ubi->move_from = e1; ubi->move_to = e2; spin_unlock(&ubi->wl_lock); @@ -806,7 +1209,7 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, ubi->move_to_put = ubi->wl_scheduled = 0; spin_unlock(&ubi->wl_lock); - err = schedule_erase(ubi, e1, vol_id, lnum, 0); + err = do_sync_erase(ubi, e1, vol_id, lnum, 0); if (err) { kmem_cache_free(ubi_wl_entry_slab, e1); if (e2) @@ -821,7 +1224,7 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, */ dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", e2->pnum, vol_id, lnum); - err = schedule_erase(ubi, e2, vol_id, lnum, 0); + err = do_sync_erase(ubi, e2, vol_id, lnum, 0); if (err) { kmem_cache_free(ubi_wl_entry_slab, e2); goto out_ro; @@ -860,7 +1263,7 @@ out_not_moved: spin_unlock(&ubi->wl_lock); ubi_free_vid_hdr(ubi, vid_hdr); - err = schedule_erase(ubi, e2, vol_id, lnum, torture); + err = do_sync_erase(ubi, e2, vol_id, lnum, torture); if (err) { kmem_cache_free(ubi_wl_entry_slab, e2); goto out_ro; @@ -901,12 +1304,13 @@ out_cancel: /** * ensure_wear_leveling - schedule wear-leveling if it is needed. * @ubi: UBI device description object + * @nested: set to non-zero if this function is called from UBI worker * * This function checks if it is time to start wear-leveling and schedules it * if yes. This function returns zero in case of success and a negative error * code in case of failure. */ -static int ensure_wear_leveling(struct ubi_device *ubi) +static int ensure_wear_leveling(struct ubi_device *ubi, int nested) { int err = 0; struct ubi_wl_entry *e1; @@ -934,7 +1338,7 @@ static int ensure_wear_leveling(struct ubi_device *ubi) * %UBI_WL_THRESHOLD. */ e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); - e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); + e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) goto out_unlock; @@ -951,8 +1355,12 @@ static int ensure_wear_leveling(struct ubi_device *ubi) goto out_cancel; } + wrk->anchor = 0; wrk->func = &wear_leveling_worker; - schedule_ubi_work(ubi, wrk); + if (nested) + __schedule_ubi_work(ubi, wrk); + else + schedule_ubi_work(ubi, wrk); return err; out_cancel: @@ -963,6 +1371,38 @@ out_unlock: return err; } +#ifdef CONFIG_MTD_UBI_FASTMAP +/** + * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. + * @ubi: UBI device description object + */ +int ubi_ensure_anchor_pebs(struct ubi_device *ubi) +{ + struct ubi_work *wrk; + + spin_lock(&ubi->wl_lock); + if (ubi->wl_scheduled) { + spin_unlock(&ubi->wl_lock); + return 0; + } + ubi->wl_scheduled = 1; + spin_unlock(&ubi->wl_lock); + + wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); + if (!wrk) { + spin_lock(&ubi->wl_lock); + ubi->wl_scheduled = 0; + spin_unlock(&ubi->wl_lock); + return -ENOMEM; + } + + wrk->anchor = 1; + wrk->func = &wear_leveling_worker; + schedule_ubi_work(ubi, wrk); + return 0; +} +#endif + /** * erase_worker - physical eraseblock erase worker function. * @ubi: UBI device description object @@ -978,9 +1418,10 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, int cancel) { struct ubi_wl_entry *e = wl_wrk->e; - int pnum = e->pnum, err, need; + int pnum = e->pnum; int vol_id = wl_wrk->vol_id; int lnum = wl_wrk->lnum; + int err, available_consumed = 0; if (cancel) { dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); @@ -992,6 +1433,8 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, dbg_wl("erase PEB %d EC %d LEB %d:%d", pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); + err = sync_erase(ubi, e, wl_wrk->torture); if (!err) { /* Fine, we've erased it successfully */ @@ -999,6 +1442,7 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, spin_lock(&ubi->wl_lock); wl_tree_add(e, &ubi->free); + ubi->free_count++; spin_unlock(&ubi->wl_lock); /* @@ -1008,7 +1452,7 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, serve_prot_queue(ubi); /* And take care about wear-leveling */ - err = ensure_wear_leveling(ubi); + err = ensure_wear_leveling(ubi, 1); return err; } @@ -1045,20 +1489,14 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, } spin_lock(&ubi->volumes_lock); - need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; - if (need > 0) { - need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; - ubi->avail_pebs -= need; - ubi->rsvd_pebs += need; - ubi->beb_rsvd_pebs += need; - if (need > 0) - ubi_msg("reserve more %d PEBs", need); - } - if (ubi->beb_rsvd_pebs == 0) { - spin_unlock(&ubi->volumes_lock); - ubi_err("no reserved physical eraseblocks"); - goto out_ro; + if (ubi->avail_pebs == 0) { + spin_unlock(&ubi->volumes_lock); + ubi_err("no reserved/available physical eraseblocks"); + goto out_ro; + } + ubi->avail_pebs -= 1; + available_consumed = 1; } spin_unlock(&ubi->volumes_lock); @@ -1068,19 +1506,36 @@ static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, goto out_ro; spin_lock(&ubi->volumes_lock); - ubi->beb_rsvd_pebs -= 1; + if (ubi->beb_rsvd_pebs > 0) { + if (available_consumed) { + /* + * The amount of reserved PEBs increased since we last + * checked. + */ + ubi->avail_pebs += 1; + available_consumed = 0; + } + ubi->beb_rsvd_pebs -= 1; + } ubi->bad_peb_count += 1; ubi->good_peb_count -= 1; ubi_calculate_reserved(ubi); - if (ubi->beb_rsvd_pebs) + if (available_consumed) + ubi_warn("no PEBs in the reserved pool, used an available PEB"); + else if (ubi->beb_rsvd_pebs) ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); else - ubi_warn("last PEB from the reserved pool was used"); + ubi_warn("last PEB from the reserve was used"); spin_unlock(&ubi->volumes_lock); return err; out_ro: + if (available_consumed) { + spin_lock(&ubi->volumes_lock); + ubi->avail_pebs += 1; + spin_unlock(&ubi->volumes_lock); + } ubi_ro_mode(ubi); return err; } @@ -1189,7 +1644,7 @@ int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) { struct ubi_wl_entry *e; - dbg_msg("schedule PEB %d for scrubbing", pnum); + ubi_msg("schedule PEB %d for scrubbing", pnum); retry: spin_lock(&ubi->wl_lock); @@ -1235,7 +1690,7 @@ retry: * Technically scrubbing is the same as wear-leveling, so it is done * by the WL worker. */ - return ensure_wear_leveling(ubi); + return ensure_wear_leveling(ubi, 0); } /** @@ -1416,7 +1871,7 @@ static void cancel_pending(struct ubi_device *ubi) */ int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) { - int err, i; + int err, i, reserved_pebs, found_pebs = 0; struct rb_node *rb1, *rb2; struct ubi_ainf_volume *av; struct ubi_ainf_peb *aeb, *tmp; @@ -1428,6 +1883,9 @@ int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) init_rwsem(&ubi->work_sem); ubi->max_ec = ai->max_ec; INIT_LIST_HEAD(&ubi->works); +#ifdef CONFIG_MTD_UBI_FASTMAP + INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); +#endif sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); @@ -1449,13 +1907,17 @@ int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) e->pnum = aeb->pnum; e->ec = aeb->ec; + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); ubi->lookuptbl[e->pnum] = e; if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { kmem_cache_free(ubi_wl_entry_slab, e); goto out_free; } + + found_pebs++; } + ubi->free_count = 0; list_for_each_entry(aeb, &ai->free, u.list) { cond_resched(); @@ -1466,8 +1928,14 @@ int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) e->pnum = aeb->pnum; e->ec = aeb->ec; ubi_assert(e->ec >= 0); + ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); + wl_tree_add(e, &ubi->free); + ubi->free_count++; + ubi->lookuptbl[e->pnum] = e; + + found_pebs++; } ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { @@ -1481,6 +1949,7 @@ int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) e->pnum = aeb->pnum; e->ec = aeb->ec; ubi->lookuptbl[e->pnum] = e; + if (!aeb->scrub) { dbg_wl("add PEB %d EC %d to the used tree", e->pnum, e->ec); @@ -1490,22 +1959,38 @@ int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) e->pnum, e->ec); wl_tree_add(e, &ubi->scrub); } + + found_pebs++; } } - if (ubi->avail_pebs < WL_RESERVED_PEBS) { + dbg_wl("found %i PEBs", found_pebs); + + if (ubi->fm) + ubi_assert(ubi->good_peb_count == \ + found_pebs + ubi->fm->used_blocks); + else + ubi_assert(ubi->good_peb_count == found_pebs); + + reserved_pebs = WL_RESERVED_PEBS; +#ifdef CONFIG_MTD_UBI_FASTMAP + /* Reserve enough LEBs to store two fastmaps. */ + reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; +#endif + + if (ubi->avail_pebs < reserved_pebs) { ubi_err("no enough physical eraseblocks (%d, need %d)", - ubi->avail_pebs, WL_RESERVED_PEBS); + ubi->avail_pebs, reserved_pebs); if (ubi->corr_peb_count) ubi_err("%d PEBs are corrupted and not used", ubi->corr_peb_count); goto out_free; } - ubi->avail_pebs -= WL_RESERVED_PEBS; - ubi->rsvd_pebs += WL_RESERVED_PEBS; + ubi->avail_pebs -= reserved_pebs; + ubi->rsvd_pebs += reserved_pebs; /* Schedule wear-leveling if needed */ - err = ensure_wear_leveling(ubi); + err = ensure_wear_leveling(ubi, 0); if (err) goto out_free; @@ -1569,7 +2054,7 @@ static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) long long read_ec; struct ubi_ec_hdr *ec_hdr; - if (!ubi->dbg->chk_gen) + if (!ubi_dbg_chk_gen(ubi)) return 0; ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); @@ -1584,7 +2069,7 @@ static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) } read_ec = be64_to_cpu(ec_hdr->ec); - if (ec != read_ec) { + if (ec != read_ec && read_ec - ec > 1) { ubi_err("self-check failed for PEB %d", pnum); ubi_err("read EC is %lld, should be %d", read_ec, ec); dump_stack(); @@ -1609,7 +2094,7 @@ out_free: static int self_check_in_wl_tree(const struct ubi_device *ubi, struct ubi_wl_entry *e, struct rb_root *root) { - if (!ubi->dbg->chk_gen) + if (!ubi_dbg_chk_gen(ubi)) return 0; if (in_wl_tree(e, root)) @@ -1635,7 +2120,7 @@ static int self_check_in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *p; int i; - if (!ubi->dbg->chk_gen) + if (!ubi_dbg_chk_gen(ubi)) return 0; for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) |
