diff options
Diffstat (limited to 'drivers/md')
111 files changed, 34081 insertions, 3298 deletions
diff --git a/drivers/md/Kconfig b/drivers/md/Kconfig index 91a02eeeb31..5bdedf6df15 100644 --- a/drivers/md/Kconfig +++ b/drivers/md/Kconfig @@ -154,17 +154,6 @@ config MD_RAID456 If unsure, say Y. -config MULTICORE_RAID456 - bool "RAID-4/RAID-5/RAID-6 Multicore processing (EXPERIMENTAL)" - depends on MD_RAID456 - depends on SMP - depends on EXPERIMENTAL - ---help--- - Enable the raid456 module to dispatch per-stripe raid operations to a - thread pool. - - If unsure, say N. - config MD_MULTIPATH tristate "Multipath I/O support" depends on BLK_DEV_MD @@ -185,8 +174,14 @@ config MD_FAULTY In unsure, say N. +source "drivers/md/bcache/Kconfig" + +config BLK_DEV_DM_BUILTIN + boolean + config BLK_DEV_DM tristate "Device mapper support" + select BLK_DEV_DM_BUILTIN ---help--- Device-mapper is a low level volume manager. It works by allowing people to specify mappings for ranges of logical sectors. Various @@ -210,7 +205,7 @@ config DM_DEBUG config DM_BUFIO tristate - depends on BLK_DEV_DM && EXPERIMENTAL + depends on BLK_DEV_DM ---help--- This interface allows you to do buffered I/O on a device and acts as a cache, holding recently-read blocks in memory and performing @@ -218,7 +213,7 @@ config DM_BUFIO config DM_BIO_PRISON tristate - depends on BLK_DEV_DM && EXPERIMENTAL + depends on BLK_DEV_DM ---help--- Some bio locking schemes used by other device-mapper targets including thin provisioning. @@ -247,26 +242,59 @@ config DM_CRYPT config DM_SNAPSHOT tristate "Snapshot target" depends on BLK_DEV_DM + select DM_BUFIO ---help--- Allow volume managers to take writable snapshots of a device. config DM_THIN_PROVISIONING - tristate "Thin provisioning target (EXPERIMENTAL)" - depends on BLK_DEV_DM && EXPERIMENTAL + tristate "Thin provisioning target" + depends on BLK_DEV_DM select DM_PERSISTENT_DATA select DM_BIO_PRISON ---help--- Provides thin provisioning and snapshots that share a data store. -config DM_DEBUG_BLOCK_STACK_TRACING - boolean "Keep stack trace of thin provisioning block lock holders" - depends on STACKTRACE_SUPPORT && DM_THIN_PROVISIONING - select STACKTRACE - ---help--- - Enable this for messages that may help debug problems with the - block manager locking used by thin provisioning. +config DM_CACHE + tristate "Cache target (EXPERIMENTAL)" + depends on BLK_DEV_DM + default n + select DM_PERSISTENT_DATA + select DM_BIO_PRISON + ---help--- + dm-cache attempts to improve performance of a block device by + moving frequently used data to a smaller, higher performance + device. Different 'policy' plugins can be used to change the + algorithms used to select which blocks are promoted, demoted, + cleaned etc. It supports writeback and writethrough modes. + +config DM_CACHE_MQ + tristate "MQ Cache Policy (EXPERIMENTAL)" + depends on DM_CACHE + default y + ---help--- + A cache policy that uses a multiqueue ordered by recent hit + count to select which blocks should be promoted and demoted. + This is meant to be a general purpose policy. It prioritises + reads over writes. + +config DM_CACHE_CLEANER + tristate "Cleaner Cache Policy (EXPERIMENTAL)" + depends on DM_CACHE + default y + ---help--- + A simple cache policy that writes back all data to the + origin. Used when decommissioning a dm-cache. - If unsure, say N. +config DM_ERA + tristate "Era target (EXPERIMENTAL)" + depends on BLK_DEV_DM + default n + select DM_PERSISTENT_DATA + select DM_BIO_PRISON + ---help--- + dm-era tracks which parts of a block device are written to + over time. Useful for maintaining cache coherency when using + vendor snapshots. config DM_MIRROR tristate "Mirror target" @@ -275,6 +303,17 @@ config DM_MIRROR Allow volume managers to mirror logical volumes, also needed for live data migration tools such as 'pvmove'. +config DM_LOG_USERSPACE + tristate "Mirror userspace logging" + depends on DM_MIRROR && NET + select CONNECTOR + ---help--- + The userspace logging module provides a mechanism for + relaying the dm-dirty-log API to userspace. Log designs + which are more suited to userspace implementation (e.g. + shared storage logs) or experimental logs can be implemented + by leveraging this framework. + config DM_RAID tristate "RAID 1/4/5/6/10 target" depends on BLK_DEV_DM @@ -301,17 +340,6 @@ config DM_RAID RAID-5, RAID-6 distributes the syndromes across the drives in one of the available parity distribution methods. -config DM_LOG_USERSPACE - tristate "Mirror userspace logging (EXPERIMENTAL)" - depends on DM_MIRROR && EXPERIMENTAL && NET - select CONNECTOR - ---help--- - The userspace logging module provides a mechanism for - relaying the dm-dirty-log API to userspace. Log designs - which are more suited to userspace implementation (e.g. - shared storage logs) or experimental logs can be implemented - by leveraging this framework. - config DM_ZERO tristate "Zero target" depends on BLK_DEV_DM @@ -350,8 +378,8 @@ config DM_MULTIPATH_ST If unsure, say N. config DM_DELAY - tristate "I/O delaying target (EXPERIMENTAL)" - depends on BLK_DEV_DM && EXPERIMENTAL + tristate "I/O delaying target" + depends on BLK_DEV_DM ---help--- A target that delays reads and/or writes and can send them to different devices. Useful for testing. @@ -365,14 +393,14 @@ config DM_UEVENT Generate udev events for DM events. config DM_FLAKEY - tristate "Flakey target (EXPERIMENTAL)" - depends on BLK_DEV_DM && EXPERIMENTAL + tristate "Flakey target" + depends on BLK_DEV_DM ---help--- A target that intermittently fails I/O for debugging purposes. config DM_VERITY - tristate "Verity target support (EXPERIMENTAL)" - depends on BLK_DEV_DM && EXPERIMENTAL + tristate "Verity target support" + depends on BLK_DEV_DM select CRYPTO select CRYPTO_HASH select DM_BUFIO @@ -390,4 +418,18 @@ config DM_VERITY If unsure, say N. +config DM_SWITCH + tristate "Switch target support (EXPERIMENTAL)" + depends on BLK_DEV_DM + ---help--- + This device-mapper target creates a device that supports an arbitrary + mapping of fixed-size regions of I/O across a fixed set of paths. + The path used for any specific region can be switched dynamically + by sending the target a message. + + To compile this code as a module, choose M here: the module will + be called dm-switch. + + If unsure, say N. + endif # MD diff --git a/drivers/md/Makefile b/drivers/md/Makefile index 94dce8b4932..a2da532b1c2 100644 --- a/drivers/md/Makefile +++ b/drivers/md/Makefile @@ -3,7 +3,7 @@ # dm-mod-y += dm.o dm-table.o dm-target.o dm-linear.o dm-stripe.o \ - dm-ioctl.o dm-io.o dm-kcopyd.o dm-sysfs.o + dm-ioctl.o dm-io.o dm-kcopyd.o dm-sysfs.o dm-stats.o dm-multipath-y += dm-path-selector.o dm-mpath.o dm-snapshot-y += dm-snap.o dm-exception-store.o dm-snap-transient.o \ dm-snap-persistent.o @@ -11,6 +11,10 @@ dm-mirror-y += dm-raid1.o dm-log-userspace-y \ += dm-log-userspace-base.o dm-log-userspace-transfer.o dm-thin-pool-y += dm-thin.o dm-thin-metadata.o +dm-cache-y += dm-cache-target.o dm-cache-metadata.o dm-cache-policy.o +dm-cache-mq-y += dm-cache-policy-mq.o +dm-cache-cleaner-y += dm-cache-policy-cleaner.o +dm-era-y += dm-era-target.o md-mod-y += md.o bitmap.o raid456-y += raid5.o @@ -26,8 +30,10 @@ obj-$(CONFIG_MD_RAID10) += raid10.o obj-$(CONFIG_MD_RAID456) += raid456.o obj-$(CONFIG_MD_MULTIPATH) += multipath.o obj-$(CONFIG_MD_FAULTY) += faulty.o +obj-$(CONFIG_BCACHE) += bcache/ obj-$(CONFIG_BLK_DEV_MD) += md-mod.o obj-$(CONFIG_BLK_DEV_DM) += dm-mod.o +obj-$(CONFIG_BLK_DEV_DM_BUILTIN) += dm-builtin.o obj-$(CONFIG_DM_BUFIO) += dm-bufio.o obj-$(CONFIG_DM_BIO_PRISON) += dm-bio-prison.o obj-$(CONFIG_DM_CRYPT) += dm-crypt.o @@ -36,6 +42,7 @@ obj-$(CONFIG_DM_FLAKEY) += dm-flakey.o obj-$(CONFIG_DM_MULTIPATH) += dm-multipath.o dm-round-robin.o obj-$(CONFIG_DM_MULTIPATH_QL) += dm-queue-length.o obj-$(CONFIG_DM_MULTIPATH_ST) += dm-service-time.o +obj-$(CONFIG_DM_SWITCH) += dm-switch.o obj-$(CONFIG_DM_SNAPSHOT) += dm-snapshot.o obj-$(CONFIG_DM_PERSISTENT_DATA) += persistent-data/ obj-$(CONFIG_DM_MIRROR) += dm-mirror.o dm-log.o dm-region-hash.o @@ -44,6 +51,10 @@ obj-$(CONFIG_DM_ZERO) += dm-zero.o obj-$(CONFIG_DM_RAID) += dm-raid.o obj-$(CONFIG_DM_THIN_PROVISIONING) += dm-thin-pool.o obj-$(CONFIG_DM_VERITY) += dm-verity.o +obj-$(CONFIG_DM_CACHE) += dm-cache.o +obj-$(CONFIG_DM_CACHE_MQ) += dm-cache-mq.o +obj-$(CONFIG_DM_CACHE_CLEANER) += dm-cache-cleaner.o +obj-$(CONFIG_DM_ERA) += dm-era.o ifeq ($(CONFIG_DM_UEVENT),y) dm-mod-objs += dm-uevent.o diff --git a/drivers/md/bcache/Kconfig b/drivers/md/bcache/Kconfig new file mode 100644 index 00000000000..4d200883c50 --- /dev/null +++ b/drivers/md/bcache/Kconfig @@ -0,0 +1,26 @@ + +config BCACHE + tristate "Block device as cache" + ---help--- + Allows a block device to be used as cache for other devices; uses + a btree for indexing and the layout is optimized for SSDs. + + See Documentation/bcache.txt for details. + +config BCACHE_DEBUG + bool "Bcache debugging" + depends on BCACHE + ---help--- + Don't select this option unless you're a developer + + Enables extra debugging tools, allows expensive runtime checks to be + turned on. + +config BCACHE_CLOSURES_DEBUG + bool "Debug closures" + depends on BCACHE + select DEBUG_FS + ---help--- + Keeps all active closures in a linked list and provides a debugfs + interface to list them, which makes it possible to see asynchronous + operations that get stuck. diff --git a/drivers/md/bcache/Makefile b/drivers/md/bcache/Makefile new file mode 100644 index 00000000000..c488b846f83 --- /dev/null +++ b/drivers/md/bcache/Makefile @@ -0,0 +1,8 @@ + +obj-$(CONFIG_BCACHE) += bcache.o + +bcache-y := alloc.o bset.o btree.o closure.o debug.o extents.o\ + io.o journal.o movinggc.o request.o stats.o super.o sysfs.o trace.o\ + util.o writeback.o + +CFLAGS_request.o += -Iblock diff --git a/drivers/md/bcache/alloc.c b/drivers/md/bcache/alloc.c new file mode 100644 index 00000000000..443d03fbac4 --- /dev/null +++ b/drivers/md/bcache/alloc.c @@ -0,0 +1,696 @@ +/* + * Primary bucket allocation code + * + * Copyright 2012 Google, Inc. + * + * Allocation in bcache is done in terms of buckets: + * + * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in + * btree pointers - they must match for the pointer to be considered valid. + * + * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a + * bucket simply by incrementing its gen. + * + * The gens (along with the priorities; it's really the gens are important but + * the code is named as if it's the priorities) are written in an arbitrary list + * of buckets on disk, with a pointer to them in the journal header. + * + * When we invalidate a bucket, we have to write its new gen to disk and wait + * for that write to complete before we use it - otherwise after a crash we + * could have pointers that appeared to be good but pointed to data that had + * been overwritten. + * + * Since the gens and priorities are all stored contiguously on disk, we can + * batch this up: We fill up the free_inc list with freshly invalidated buckets, + * call prio_write(), and when prio_write() finishes we pull buckets off the + * free_inc list and optionally discard them. + * + * free_inc isn't the only freelist - if it was, we'd often to sleep while + * priorities and gens were being written before we could allocate. c->free is a + * smaller freelist, and buckets on that list are always ready to be used. + * + * If we've got discards enabled, that happens when a bucket moves from the + * free_inc list to the free list. + * + * There is another freelist, because sometimes we have buckets that we know + * have nothing pointing into them - these we can reuse without waiting for + * priorities to be rewritten. These come from freed btree nodes and buckets + * that garbage collection discovered no longer had valid keys pointing into + * them (because they were overwritten). That's the unused list - buckets on the + * unused list move to the free list, optionally being discarded in the process. + * + * It's also important to ensure that gens don't wrap around - with respect to + * either the oldest gen in the btree or the gen on disk. This is quite + * difficult to do in practice, but we explicitly guard against it anyways - if + * a bucket is in danger of wrapping around we simply skip invalidating it that + * time around, and we garbage collect or rewrite the priorities sooner than we + * would have otherwise. + * + * bch_bucket_alloc() allocates a single bucket from a specific cache. + * + * bch_bucket_alloc_set() allocates one or more buckets from different caches + * out of a cache set. + * + * free_some_buckets() drives all the processes described above. It's called + * from bch_bucket_alloc() and a few other places that need to make sure free + * buckets are ready. + * + * invalidate_buckets_(lru|fifo)() find buckets that are available to be + * invalidated, and then invalidate them and stick them on the free_inc list - + * in either lru or fifo order. + */ + +#include "bcache.h" +#include "btree.h" + +#include <linux/blkdev.h> +#include <linux/freezer.h> +#include <linux/kthread.h> +#include <linux/random.h> +#include <trace/events/bcache.h> + +/* Bucket heap / gen */ + +uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) +{ + uint8_t ret = ++b->gen; + + ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); + WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); + + return ret; +} + +void bch_rescale_priorities(struct cache_set *c, int sectors) +{ + struct cache *ca; + struct bucket *b; + unsigned next = c->nbuckets * c->sb.bucket_size / 1024; + unsigned i; + int r; + + atomic_sub(sectors, &c->rescale); + + do { + r = atomic_read(&c->rescale); + + if (r >= 0) + return; + } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); + + mutex_lock(&c->bucket_lock); + + c->min_prio = USHRT_MAX; + + for_each_cache(ca, c, i) + for_each_bucket(b, ca) + if (b->prio && + b->prio != BTREE_PRIO && + !atomic_read(&b->pin)) { + b->prio--; + c->min_prio = min(c->min_prio, b->prio); + } + + mutex_unlock(&c->bucket_lock); +} + +/* + * Background allocation thread: scans for buckets to be invalidated, + * invalidates them, rewrites prios/gens (marking them as invalidated on disk), + * then optionally issues discard commands to the newly free buckets, then puts + * them on the various freelists. + */ + +static inline bool can_inc_bucket_gen(struct bucket *b) +{ + return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; +} + +bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) +{ + BUG_ON(!ca->set->gc_mark_valid); + + return (!GC_MARK(b) || + GC_MARK(b) == GC_MARK_RECLAIMABLE) && + !atomic_read(&b->pin) && + can_inc_bucket_gen(b); +} + +void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) +{ + lockdep_assert_held(&ca->set->bucket_lock); + BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); + + if (GC_SECTORS_USED(b)) + trace_bcache_invalidate(ca, b - ca->buckets); + + bch_inc_gen(ca, b); + b->prio = INITIAL_PRIO; + atomic_inc(&b->pin); +} + +static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) +{ + __bch_invalidate_one_bucket(ca, b); + + fifo_push(&ca->free_inc, b - ca->buckets); +} + +/* + * Determines what order we're going to reuse buckets, smallest bucket_prio() + * first: we also take into account the number of sectors of live data in that + * bucket, and in order for that multiply to make sense we have to scale bucket + * + * Thus, we scale the bucket priorities so that the bucket with the smallest + * prio is worth 1/8th of what INITIAL_PRIO is worth. + */ + +#define bucket_prio(b) \ +({ \ + unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ + \ + (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ +}) + +#define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) +#define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) + +static void invalidate_buckets_lru(struct cache *ca) +{ + struct bucket *b; + ssize_t i; + + ca->heap.used = 0; + + for_each_bucket(b, ca) { + if (!bch_can_invalidate_bucket(ca, b)) + continue; + + if (!heap_full(&ca->heap)) + heap_add(&ca->heap, b, bucket_max_cmp); + else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { + ca->heap.data[0] = b; + heap_sift(&ca->heap, 0, bucket_max_cmp); + } + } + + for (i = ca->heap.used / 2 - 1; i >= 0; --i) + heap_sift(&ca->heap, i, bucket_min_cmp); + + while (!fifo_full(&ca->free_inc)) { + if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { + /* + * We don't want to be calling invalidate_buckets() + * multiple times when it can't do anything + */ + ca->invalidate_needs_gc = 1; + wake_up_gc(ca->set); + return; + } + + bch_invalidate_one_bucket(ca, b); + } +} + +static void invalidate_buckets_fifo(struct cache *ca) +{ + struct bucket *b; + size_t checked = 0; + + while (!fifo_full(&ca->free_inc)) { + if (ca->fifo_last_bucket < ca->sb.first_bucket || + ca->fifo_last_bucket >= ca->sb.nbuckets) + ca->fifo_last_bucket = ca->sb.first_bucket; + + b = ca->buckets + ca->fifo_last_bucket++; + + if (bch_can_invalidate_bucket(ca, b)) + bch_invalidate_one_bucket(ca, b); + + if (++checked >= ca->sb.nbuckets) { + ca->invalidate_needs_gc = 1; + wake_up_gc(ca->set); + return; + } + } +} + +static void invalidate_buckets_random(struct cache *ca) +{ + struct bucket *b; + size_t checked = 0; + + while (!fifo_full(&ca->free_inc)) { + size_t n; + get_random_bytes(&n, sizeof(n)); + + n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); + n += ca->sb.first_bucket; + + b = ca->buckets + n; + + if (bch_can_invalidate_bucket(ca, b)) + bch_invalidate_one_bucket(ca, b); + + if (++checked >= ca->sb.nbuckets / 2) { + ca->invalidate_needs_gc = 1; + wake_up_gc(ca->set); + return; + } + } +} + +static void invalidate_buckets(struct cache *ca) +{ + BUG_ON(ca->invalidate_needs_gc); + + switch (CACHE_REPLACEMENT(&ca->sb)) { + case CACHE_REPLACEMENT_LRU: + invalidate_buckets_lru(ca); + break; + case CACHE_REPLACEMENT_FIFO: + invalidate_buckets_fifo(ca); + break; + case CACHE_REPLACEMENT_RANDOM: + invalidate_buckets_random(ca); + break; + } +} + +#define allocator_wait(ca, cond) \ +do { \ + while (1) { \ + set_current_state(TASK_INTERRUPTIBLE); \ + if (cond) \ + break; \ + \ + mutex_unlock(&(ca)->set->bucket_lock); \ + if (kthread_should_stop()) \ + return 0; \ + \ + try_to_freeze(); \ + schedule(); \ + mutex_lock(&(ca)->set->bucket_lock); \ + } \ + __set_current_state(TASK_RUNNING); \ +} while (0) + +static int bch_allocator_push(struct cache *ca, long bucket) +{ + unsigned i; + + /* Prios/gens are actually the most important reserve */ + if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) + return true; + + for (i = 0; i < RESERVE_NR; i++) + if (fifo_push(&ca->free[i], bucket)) + return true; + + return false; +} + +static int bch_allocator_thread(void *arg) +{ + struct cache *ca = arg; + + mutex_lock(&ca->set->bucket_lock); + + while (1) { + /* + * First, we pull buckets off of the unused and free_inc lists, + * possibly issue discards to them, then we add the bucket to + * the free list: + */ + while (!fifo_empty(&ca->free_inc)) { + long bucket; + + fifo_pop(&ca->free_inc, bucket); + + if (ca->discard) { + mutex_unlock(&ca->set->bucket_lock); + blkdev_issue_discard(ca->bdev, + bucket_to_sector(ca->set, bucket), + ca->sb.block_size, GFP_KERNEL, 0); + mutex_lock(&ca->set->bucket_lock); + } + + allocator_wait(ca, bch_allocator_push(ca, bucket)); + wake_up(&ca->set->btree_cache_wait); + wake_up(&ca->set->bucket_wait); + } + + /* + * We've run out of free buckets, we need to find some buckets + * we can invalidate. First, invalidate them in memory and add + * them to the free_inc list: + */ + +retry_invalidate: + allocator_wait(ca, ca->set->gc_mark_valid && + !ca->invalidate_needs_gc); + invalidate_buckets(ca); + + /* + * Now, we write their new gens to disk so we can start writing + * new stuff to them: + */ + allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); + if (CACHE_SYNC(&ca->set->sb)) { + /* + * This could deadlock if an allocation with a btree + * node locked ever blocked - having the btree node + * locked would block garbage collection, but here we're + * waiting on garbage collection before we invalidate + * and free anything. + * + * But this should be safe since the btree code always + * uses btree_check_reserve() before allocating now, and + * if it fails it blocks without btree nodes locked. + */ + if (!fifo_full(&ca->free_inc)) + goto retry_invalidate; + + bch_prio_write(ca); + } + } +} + +/* Allocation */ + +long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait) +{ + DEFINE_WAIT(w); + struct bucket *b; + long r; + + /* fastpath */ + if (fifo_pop(&ca->free[RESERVE_NONE], r) || + fifo_pop(&ca->free[reserve], r)) + goto out; + + if (!wait) { + trace_bcache_alloc_fail(ca, reserve); + return -1; + } + + do { + prepare_to_wait(&ca->set->bucket_wait, &w, + TASK_UNINTERRUPTIBLE); + + mutex_unlock(&ca->set->bucket_lock); + schedule(); + mutex_lock(&ca->set->bucket_lock); + } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && + !fifo_pop(&ca->free[reserve], r)); + + finish_wait(&ca->set->bucket_wait, &w); +out: + wake_up_process(ca->alloc_thread); + + trace_bcache_alloc(ca, reserve); + + if (expensive_debug_checks(ca->set)) { + size_t iter; + long i; + unsigned j; + + for (iter = 0; iter < prio_buckets(ca) * 2; iter++) + BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); + + for (j = 0; j < RESERVE_NR; j++) + fifo_for_each(i, &ca->free[j], iter) + BUG_ON(i == r); + fifo_for_each(i, &ca->free_inc, iter) + BUG_ON(i == r); + } + + b = ca->buckets + r; + + BUG_ON(atomic_read(&b->pin) != 1); + + SET_GC_SECTORS_USED(b, ca->sb.bucket_size); + + if (reserve <= RESERVE_PRIO) { + SET_GC_MARK(b, GC_MARK_METADATA); + SET_GC_MOVE(b, 0); + b->prio = BTREE_PRIO; + } else { + SET_GC_MARK(b, GC_MARK_RECLAIMABLE); + SET_GC_MOVE(b, 0); + b->prio = INITIAL_PRIO; + } + + return r; +} + +void __bch_bucket_free(struct cache *ca, struct bucket *b) +{ + SET_GC_MARK(b, 0); + SET_GC_SECTORS_USED(b, 0); +} + +void bch_bucket_free(struct cache_set *c, struct bkey *k) +{ + unsigned i; + + for (i = 0; i < KEY_PTRS(k); i++) + __bch_bucket_free(PTR_CACHE(c, k, i), + PTR_BUCKET(c, k, i)); +} + +int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, + struct bkey *k, int n, bool wait) +{ + int i; + + lockdep_assert_held(&c->bucket_lock); + BUG_ON(!n || n > c->caches_loaded || n > 8); + + bkey_init(k); + + /* sort by free space/prio of oldest data in caches */ + + for (i = 0; i < n; i++) { + struct cache *ca = c->cache_by_alloc[i]; + long b = bch_bucket_alloc(ca, reserve, wait); + + if (b == -1) + goto err; + + k->ptr[i] = PTR(ca->buckets[b].gen, + bucket_to_sector(c, b), + ca->sb.nr_this_dev); + + SET_KEY_PTRS(k, i + 1); + } + + return 0; +err: + bch_bucket_free(c, k); + bkey_put(c, k); + return -1; +} + +int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, + struct bkey *k, int n, bool wait) +{ + int ret; + mutex_lock(&c->bucket_lock); + ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); + mutex_unlock(&c->bucket_lock); + return ret; +} + +/* Sector allocator */ + +struct open_bucket { + struct list_head list; + unsigned last_write_point; + unsigned sectors_free; + BKEY_PADDED(key); +}; + +/* + * We keep multiple buckets open for writes, and try to segregate different + * write streams for better cache utilization: first we look for a bucket where + * the last write to it was sequential with the current write, and failing that + * we look for a bucket that was last used by the same task. + * + * The ideas is if you've got multiple tasks pulling data into the cache at the + * same time, you'll get better cache utilization if you try to segregate their + * data and preserve locality. + * + * For example, say you've starting Firefox at the same time you're copying a + * bunch of files. Firefox will likely end up being fairly hot and stay in the + * cache awhile, but the data you copied might not be; if you wrote all that + * data to the same buckets it'd get invalidated at the same time. + * + * Both of those tasks will be doing fairly random IO so we can't rely on + * detecting sequential IO to segregate their data, but going off of the task + * should be a sane heuristic. + */ +static struct open_bucket *pick_data_bucket(struct cache_set *c, + const struct bkey *search, + unsigned write_point, + struct bkey *alloc) +{ + struct open_bucket *ret, *ret_task = NULL; + + list_for_each_entry_reverse(ret, &c->data_buckets, list) + if (!bkey_cmp(&ret->key, search)) + goto found; + else if (ret->last_write_point == write_point) + ret_task = ret; + + ret = ret_task ?: list_first_entry(&c->data_buckets, + struct open_bucket, list); +found: + if (!ret->sectors_free && KEY_PTRS(alloc)) { + ret->sectors_free = c->sb.bucket_size; + bkey_copy(&ret->key, alloc); + bkey_init(alloc); + } + + if (!ret->sectors_free) + ret = NULL; + + return ret; +} + +/* + * Allocates some space in the cache to write to, and k to point to the newly + * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the + * end of the newly allocated space). + * + * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many + * sectors were actually allocated. + * + * If s->writeback is true, will not fail. + */ +bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors, + unsigned write_point, unsigned write_prio, bool wait) +{ + struct open_bucket *b; + BKEY_PADDED(key) alloc; + unsigned i; + + /* + * We might have to allocate a new bucket, which we can't do with a + * spinlock held. So if we have to allocate, we drop the lock, allocate + * and then retry. KEY_PTRS() indicates whether alloc points to + * allocated bucket(s). + */ + + bkey_init(&alloc.key); + spin_lock(&c->data_bucket_lock); + + while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { + unsigned watermark = write_prio + ? RESERVE_MOVINGGC + : RESERVE_NONE; + + spin_unlock(&c->data_bucket_lock); + + if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) + return false; + + spin_lock(&c->data_bucket_lock); + } + + /* + * If we had to allocate, we might race and not need to allocate the + * second time we call find_data_bucket(). If we allocated a bucket but + * didn't use it, drop the refcount bch_bucket_alloc_set() took: + */ + if (KEY_PTRS(&alloc.key)) + bkey_put(c, &alloc.key); + + for (i = 0; i < KEY_PTRS(&b->key); i++) + EBUG_ON(ptr_stale(c, &b->key, i)); + + /* Set up the pointer to the space we're allocating: */ + + for (i = 0; i < KEY_PTRS(&b->key); i++) + k->ptr[i] = b->key.ptr[i]; + + sectors = min(sectors, b->sectors_free); + + SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); + SET_KEY_SIZE(k, sectors); + SET_KEY_PTRS(k, KEY_PTRS(&b->key)); + + /* + * Move b to the end of the lru, and keep track of what this bucket was + * last used for: + */ + list_move_tail(&b->list, &c->data_buckets); + bkey_copy_key(&b->key, k); + b->last_write_point = write_point; + + b->sectors_free -= sectors; + + for (i = 0; i < KEY_PTRS(&b->key); i++) { + SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); + + atomic_long_add(sectors, + &PTR_CACHE(c, &b->key, i)->sectors_written); + } + + if (b->sectors_free < c->sb.block_size) + b->sectors_free = 0; + + /* + * k takes refcounts on the buckets it points to until it's inserted + * into the btree, but if we're done with this bucket we just transfer + * get_data_bucket()'s refcount. + */ + if (b->sectors_free) + for (i = 0; i < KEY_PTRS(&b->key); i++) + atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); + + spin_unlock(&c->data_bucket_lock); + return true; +} + +/* Init */ + +void bch_open_buckets_free(struct cache_set *c) +{ + struct open_bucket *b; + + while (!list_empty(&c->data_buckets)) { + b = list_first_entry(&c->data_buckets, + struct open_bucket, list); + list_del(&b->list); + kfree(b); + } +} + +int bch_open_buckets_alloc(struct cache_set *c) +{ + int i; + + spin_lock_init(&c->data_bucket_lock); + + for (i = 0; i < 6; i++) { + struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); + if (!b) + return -ENOMEM; + + list_add(&b->list, &c->data_buckets); + } + + return 0; +} + +int bch_cache_allocator_start(struct cache *ca) +{ + struct task_struct *k = kthread_run(bch_allocator_thread, + ca, "bcache_allocator"); + if (IS_ERR(k)) + return PTR_ERR(k); + + ca->alloc_thread = k; + return 0; +} diff --git a/drivers/md/bcache/bcache.h b/drivers/md/bcache/bcache.h new file mode 100644 index 00000000000..d2ebcf32309 --- /dev/null +++ b/drivers/md/bcache/bcache.h @@ -0,0 +1,942 @@ +#ifndef _BCACHE_H +#define _BCACHE_H + +/* + * SOME HIGH LEVEL CODE DOCUMENTATION: + * + * Bcache mostly works with cache sets, cache devices, and backing devices. + * + * Support for multiple cache devices hasn't quite been finished off yet, but + * it's about 95% plumbed through. A cache set and its cache devices is sort of + * like a md raid array and its component devices. Most of the code doesn't care + * about individual cache devices, the main abstraction is the cache set. + * + * Multiple cache devices is intended to give us the ability to mirror dirty + * cached data and metadata, without mirroring clean cached data. + * + * Backing devices are different, in that they have a lifetime independent of a + * cache set. When you register a newly formatted backing device it'll come up + * in passthrough mode, and then you can attach and detach a backing device from + * a cache set at runtime - while it's mounted and in use. Detaching implicitly + * invalidates any cached data for that backing device. + * + * A cache set can have multiple (many) backing devices attached to it. + * + * There's also flash only volumes - this is the reason for the distinction + * between struct cached_dev and struct bcache_device. A flash only volume + * works much like a bcache device that has a backing device, except the + * "cached" data is always dirty. The end result is that we get thin + * provisioning with very little additional code. + * + * Flash only volumes work but they're not production ready because the moving + * garbage collector needs more work. More on that later. + * + * BUCKETS/ALLOCATION: + * + * Bcache is primarily designed for caching, which means that in normal + * operation all of our available space will be allocated. Thus, we need an + * efficient way of deleting things from the cache so we can write new things to + * it. + * + * To do this, we first divide the cache device up into buckets. A bucket is the + * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ + * works efficiently. + * + * Each bucket has a 16 bit priority, and an 8 bit generation associated with + * it. The gens and priorities for all the buckets are stored contiguously and + * packed on disk (in a linked list of buckets - aside from the superblock, all + * of bcache's metadata is stored in buckets). + * + * The priority is used to implement an LRU. We reset a bucket's priority when + * we allocate it or on cache it, and every so often we decrement the priority + * of each bucket. It could be used to implement something more sophisticated, + * if anyone ever gets around to it. + * + * The generation is used for invalidating buckets. Each pointer also has an 8 + * bit generation embedded in it; for a pointer to be considered valid, its gen + * must match the gen of the bucket it points into. Thus, to reuse a bucket all + * we have to do is increment its gen (and write its new gen to disk; we batch + * this up). + * + * Bcache is entirely COW - we never write twice to a bucket, even buckets that + * contain metadata (including btree nodes). + * + * THE BTREE: + * + * Bcache is in large part design around the btree. + * + * At a high level, the btree is just an index of key -> ptr tuples. + * + * Keys represent extents, and thus have a size field. Keys also have a variable + * number of pointers attached to them (potentially zero, which is handy for + * invalidating the cache). + * + * The key itself is an inode:offset pair. The inode number corresponds to a + * backing device or a flash only volume. The offset is the ending offset of the + * extent within the inode - not the starting offset; this makes lookups + * slightly more convenient. + * + * Pointers contain the cache device id, the offset on that device, and an 8 bit + * generation number. More on the gen later. + * + * Index lookups are not fully abstracted - cache lookups in particular are + * still somewhat mixed in with the btree code, but things are headed in that + * direction. + * + * Updates are fairly well abstracted, though. There are two different ways of + * updating the btree; insert and replace. + * + * BTREE_INSERT will just take a list of keys and insert them into the btree - + * overwriting (possibly only partially) any extents they overlap with. This is + * used to update the index after a write. + * + * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is + * overwriting a key that matches another given key. This is used for inserting + * data into the cache after a cache miss, and for background writeback, and for + * the moving garbage collector. + * + * There is no "delete" operation; deleting things from the index is + * accomplished by either by invalidating pointers (by incrementing a bucket's + * gen) or by inserting a key with 0 pointers - which will overwrite anything + * previously present at that location in the index. + * + * This means that there are always stale/invalid keys in the btree. They're + * filtered out by the code that iterates through a btree node, and removed when + * a btree node is rewritten. + * + * BTREE NODES: + * + * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and + * free smaller than a bucket - so, that's how big our btree nodes are. + * + * (If buckets are really big we'll only use part of the bucket for a btree node + * - no less than 1/4th - but a bucket still contains no more than a single + * btree node. I'd actually like to change this, but for now we rely on the + * bucket's gen for deleting btree nodes when we rewrite/split a node.) + * + * Anyways, btree nodes are big - big enough to be inefficient with a textbook + * btree implementation. + * + * The way this is solved is that btree nodes are internally log structured; we + * can append new keys to an existing btree node without rewriting it. This + * means each set of keys we write is sorted, but the node is not. + * + * We maintain this log structure in memory - keeping 1Mb of keys sorted would + * be expensive, and we have to distinguish between the keys we have written and + * the keys we haven't. So to do a lookup in a btree node, we have to search + * each sorted set. But we do merge written sets together lazily, so the cost of + * these extra searches is quite low (normally most of the keys in a btree node + * will be in one big set, and then there'll be one or two sets that are much + * smaller). + * + * This log structure makes bcache's btree more of a hybrid between a + * conventional btree and a compacting data structure, with some of the + * advantages of both. + * + * GARBAGE COLLECTION: + * + * We can't just invalidate any bucket - it might contain dirty data or + * metadata. If it once contained dirty data, other writes might overwrite it + * later, leaving no valid pointers into that bucket in the index. + * + * Thus, the primary purpose of garbage collection is to find buckets to reuse. + * It also counts how much valid data it each bucket currently contains, so that + * allocation can reuse buckets sooner when they've been mostly overwritten. + * + * It also does some things that are really internal to the btree + * implementation. If a btree node contains pointers that are stale by more than + * some threshold, it rewrites the btree node to avoid the bucket's generation + * wrapping around. It also merges adjacent btree nodes if they're empty enough. + * + * THE JOURNAL: + * + * Bcache's journal is not necessary for consistency; we always strictly + * order metadata writes so that the btree and everything else is consistent on + * disk in the event of an unclean shutdown, and in fact bcache had writeback + * caching (with recovery from unclean shutdown) before journalling was + * implemented. + * + * Rather, the journal is purely a performance optimization; we can't complete a + * write until we've updated the index on disk, otherwise the cache would be + * inconsistent in the event of an unclean shutdown. This means that without the + * journal, on random write workloads we constantly have to update all the leaf + * nodes in the btree, and those writes will be mostly empty (appending at most + * a few keys each) - highly inefficient in terms of amount of metadata writes, + * and it puts more strain on the various btree resorting/compacting code. + * + * The journal is just a log of keys we've inserted; on startup we just reinsert + * all the keys in the open journal entries. That means that when we're updating + * a node in the btree, we can wait until a 4k block of keys fills up before + * writing them out. + * + * For simplicity, we only journal updates to leaf nodes; updates to parent + * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth + * the complexity to deal with journalling them (in particular, journal replay) + * - updates to non leaf nodes just happen synchronously (see btree_split()). + */ + +#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ + +#include <linux/bcache.h> +#include <linux/bio.h> +#include <linux/kobject.h> +#include <linux/list.h> +#include <linux/mutex.h> +#include <linux/rbtree.h> +#include <linux/rwsem.h> +#include <linux/types.h> +#include <linux/workqueue.h> + +#include "bset.h" +#include "util.h" +#include "closure.h" + +struct bucket { + atomic_t pin; + uint16_t prio; + uint8_t gen; + uint8_t last_gc; /* Most out of date gen in the btree */ + uint16_t gc_mark; /* Bitfield used by GC. See below for field */ +}; + +/* + * I'd use bitfields for these, but I don't trust the compiler not to screw me + * as multiple threads touch struct bucket without locking + */ + +BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2); +#define GC_MARK_RECLAIMABLE 1 +#define GC_MARK_DIRTY 2 +#define GC_MARK_METADATA 3 +#define GC_SECTORS_USED_SIZE 13 +#define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE)) +BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE); +BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1); + +#include "journal.h" +#include "stats.h" +struct search; +struct btree; +struct keybuf; + +struct keybuf_key { + struct rb_node node; + BKEY_PADDED(key); + void *private; +}; + +struct keybuf { + struct bkey last_scanned; + spinlock_t lock; + + /* + * Beginning and end of range in rb tree - so that we can skip taking + * lock and checking the rb tree when we need to check for overlapping + * keys. + */ + struct bkey start; + struct bkey end; + + struct rb_root keys; + +#define KEYBUF_NR 500 + DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR); +}; + +struct bio_split_pool { + struct bio_set *bio_split; + mempool_t *bio_split_hook; +}; + +struct bio_split_hook { + struct closure cl; + struct bio_split_pool *p; + struct bio *bio; + bio_end_io_t *bi_end_io; + void *bi_private; +}; + +struct bcache_device { + struct closure cl; + + struct kobject kobj; + + struct cache_set *c; + unsigned id; +#define BCACHEDEVNAME_SIZE 12 + char name[BCACHEDEVNAME_SIZE]; + + struct gendisk *disk; + + unsigned long flags; +#define BCACHE_DEV_CLOSING 0 +#define BCACHE_DEV_DETACHING 1 +#define BCACHE_DEV_UNLINK_DONE 2 + + unsigned nr_stripes; + unsigned stripe_size; + atomic_t *stripe_sectors_dirty; + unsigned long *full_dirty_stripes; + + unsigned long sectors_dirty_last; + long sectors_dirty_derivative; + + struct bio_set *bio_split; + + unsigned data_csum:1; + + int (*cache_miss)(struct btree *, struct search *, + struct bio *, unsigned); + int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long); + + struct bio_split_pool bio_split_hook; +}; + +struct io { + /* Used to track sequential IO so it can be skipped */ + struct hlist_node hash; + struct list_head lru; + + unsigned long jiffies; + unsigned sequential; + sector_t last; +}; + +struct cached_dev { + struct list_head list; + struct bcache_device disk; + struct block_device *bdev; + + struct cache_sb sb; + struct bio sb_bio; + struct bio_vec sb_bv[1]; + struct closure sb_write; + struct semaphore sb_write_mutex; + + /* Refcount on the cache set. Always nonzero when we're caching. */ + atomic_t count; + struct work_struct detach; + + /* + * Device might not be running if it's dirty and the cache set hasn't + * showed up yet. + */ + atomic_t running; + + /* + * Writes take a shared lock from start to finish; scanning for dirty + * data to refill the rb tree requires an exclusive lock. + */ + struct rw_semaphore writeback_lock; + + /* + * Nonzero, and writeback has a refcount (d->count), iff there is dirty + * data in the cache. Protected by writeback_lock; must have an + * shared lock to set and exclusive lock to clear. + */ + atomic_t has_dirty; + + struct bch_ratelimit writeback_rate; + struct delayed_work writeback_rate_update; + + /* + * Internal to the writeback code, so read_dirty() can keep track of + * where it's at. + */ + sector_t last_read; + + /* Limit number of writeback bios in flight */ + struct semaphore in_flight; + struct task_struct *writeback_thread; + + struct keybuf writeback_keys; + + /* For tracking sequential IO */ +#define RECENT_IO_BITS 7 +#define RECENT_IO (1 << RECENT_IO_BITS) + struct io io[RECENT_IO]; + struct hlist_head io_hash[RECENT_IO + 1]; + struct list_head io_lru; + spinlock_t io_lock; + + struct cache_accounting accounting; + + /* The rest of this all shows up in sysfs */ + unsigned sequential_cutoff; + unsigned readahead; + + unsigned verify:1; + unsigned bypass_torture_test:1; + + unsigned partial_stripes_expensive:1; + unsigned writeback_metadata:1; + unsigned writeback_running:1; + unsigned char writeback_percent; + unsigned writeback_delay; + + uint64_t writeback_rate_target; + int64_t writeback_rate_proportional; + int64_t writeback_rate_derivative; + int64_t writeback_rate_change; + + unsigned writeback_rate_update_seconds; + unsigned writeback_rate_d_term; + unsigned writeback_rate_p_term_inverse; +}; + +enum alloc_reserve { + RESERVE_BTREE, + RESERVE_PRIO, + RESERVE_MOVINGGC, + RESERVE_NONE, + RESERVE_NR, +}; + +struct cache { + struct cache_set *set; + struct cache_sb sb; + struct bio sb_bio; + struct bio_vec sb_bv[1]; + + struct kobject kobj; + struct block_device *bdev; + + struct task_struct *alloc_thread; + + struct closure prio; + struct prio_set *disk_buckets; + + /* + * When allocating new buckets, prio_write() gets first dibs - since we + * may not be allocate at all without writing priorities and gens. + * prio_buckets[] contains the last buckets we wrote priorities to (so + * gc can mark them as metadata), prio_next[] contains the buckets + * allocated for the next prio write. + */ + uint64_t *prio_buckets; + uint64_t *prio_last_buckets; + + /* + * free: Buckets that are ready to be used + * + * free_inc: Incoming buckets - these are buckets that currently have + * cached data in them, and we can't reuse them until after we write + * their new gen to disk. After prio_write() finishes writing the new + * gens/prios, they'll be moved to the free list (and possibly discarded + * in the process) + */ + DECLARE_FIFO(long, free)[RESERVE_NR]; + DECLARE_FIFO(long, free_inc); + + size_t fifo_last_bucket; + + /* Allocation stuff: */ + struct bucket *buckets; + + DECLARE_HEAP(struct bucket *, heap); + + /* + * If nonzero, we know we aren't going to find any buckets to invalidate + * until a gc finishes - otherwise we could pointlessly burn a ton of + * cpu + */ + unsigned invalidate_needs_gc:1; + + bool discard; /* Get rid of? */ + + struct journal_device journal; + + /* The rest of this all shows up in sysfs */ +#define IO_ERROR_SHIFT 20 + atomic_t io_errors; + atomic_t io_count; + + atomic_long_t meta_sectors_written; + atomic_long_t btree_sectors_written; + atomic_long_t sectors_written; + + struct bio_split_pool bio_split_hook; +}; + +struct gc_stat { + size_t nodes; + size_t key_bytes; + + size_t nkeys; + uint64_t data; /* sectors */ + unsigned in_use; /* percent */ +}; + +/* + * Flag bits, for how the cache set is shutting down, and what phase it's at: + * + * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching + * all the backing devices first (their cached data gets invalidated, and they + * won't automatically reattach). + * + * CACHE_SET_STOPPING always gets set first when we're closing down a cache set; + * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e. + * flushing dirty data). + */ +#define CACHE_SET_UNREGISTERING 0 +#define CACHE_SET_STOPPING 1 + +struct cache_set { + struct closure cl; + + struct list_head list; + struct kobject kobj; + struct kobject internal; + struct dentry *debug; + struct cache_accounting accounting; + + unsigned long flags; + + struct cache_sb sb; + + struct cache *cache[MAX_CACHES_PER_SET]; + struct cache *cache_by_alloc[MAX_CACHES_PER_SET]; + int caches_loaded; + + struct bcache_device **devices; + struct list_head cached_devs; + uint64_t cached_dev_sectors; + struct closure caching; + + struct closure sb_write; + struct semaphore sb_write_mutex; + + mempool_t *search; + mempool_t *bio_meta; + struct bio_set *bio_split; + + /* For the btree cache */ + struct shrinker shrink; + + /* For the btree cache and anything allocation related */ + struct mutex bucket_lock; + + /* log2(bucket_size), in sectors */ + unsigned short bucket_bits; + + /* log2(block_size), in sectors */ + unsigned short block_bits; + + /* + * Default number of pages for a new btree node - may be less than a + * full bucket + */ + unsigned btree_pages; + + /* + * Lists of struct btrees; lru is the list for structs that have memory + * allocated for actual btree node, freed is for structs that do not. + * + * We never free a struct btree, except on shutdown - we just put it on + * the btree_cache_freed list and reuse it later. This simplifies the + * code, and it doesn't cost us much memory as the memory usage is + * dominated by buffers that hold the actual btree node data and those + * can be freed - and the number of struct btrees allocated is + * effectively bounded. + * + * btree_cache_freeable effectively is a small cache - we use it because + * high order page allocations can be rather expensive, and it's quite + * common to delete and allocate btree nodes in quick succession. It + * should never grow past ~2-3 nodes in practice. + */ + struct list_head btree_cache; + struct list_head btree_cache_freeable; + struct list_head btree_cache_freed; + + /* Number of elements in btree_cache + btree_cache_freeable lists */ + unsigned btree_cache_used; + + /* + * If we need to allocate memory for a new btree node and that + * allocation fails, we can cannibalize another node in the btree cache + * to satisfy the allocation - lock to guarantee only one thread does + * this at a time: + */ + wait_queue_head_t btree_cache_wait; + struct task_struct *btree_cache_alloc_lock; + + /* + * When we free a btree node, we increment the gen of the bucket the + * node is in - but we can't rewrite the prios and gens until we + * finished whatever it is we were doing, otherwise after a crash the + * btree node would be freed but for say a split, we might not have the + * pointers to the new nodes inserted into the btree yet. + * + * This is a refcount that blocks prio_write() until the new keys are + * written. + */ + atomic_t prio_blocked; + wait_queue_head_t bucket_wait; + + /* + * For any bio we don't skip we subtract the number of sectors from + * rescale; when it hits 0 we rescale all the bucket priorities. + */ + atomic_t rescale; + /* + * When we invalidate buckets, we use both the priority and the amount + * of good data to determine which buckets to reuse first - to weight + * those together consistently we keep track of the smallest nonzero + * priority of any bucket. + */ + uint16_t min_prio; + + /* + * max(gen - last_gc) for all buckets. When it gets too big we have to gc + * to keep gens from wrapping around. + */ + uint8_t need_gc; + struct gc_stat gc_stats; + size_t nbuckets; + + struct task_struct *gc_thread; + /* Where in the btree gc currently is */ + struct bkey gc_done; + + /* + * The allocation code needs gc_mark in struct bucket to be correct, but + * it's not while a gc is in progress. Protected by bucket_lock. + */ + int gc_mark_valid; + + /* Counts how many sectors bio_insert has added to the cache */ + atomic_t sectors_to_gc; + + wait_queue_head_t moving_gc_wait; + struct keybuf moving_gc_keys; + /* Number of moving GC bios in flight */ + struct semaphore moving_in_flight; + + struct workqueue_struct *moving_gc_wq; + + struct btree *root; + +#ifdef CONFIG_BCACHE_DEBUG + struct btree *verify_data; + struct bset *verify_ondisk; + struct mutex verify_lock; +#endif + + unsigned nr_uuids; + struct uuid_entry *uuids; + BKEY_PADDED(uuid_bucket); + struct closure uuid_write; + struct semaphore uuid_write_mutex; + + /* + * A btree node on disk could have too many bsets for an iterator to fit + * on the stack - have to dynamically allocate them + */ + mempool_t *fill_iter; + + struct bset_sort_state sort; + + /* List of buckets we're currently writing data to */ + struct list_head data_buckets; + spinlock_t data_bucket_lock; + + struct journal journal; + +#define CONGESTED_MAX 1024 + unsigned congested_last_us; + atomic_t congested; + + /* The rest of this all shows up in sysfs */ + unsigned congested_read_threshold_us; + unsigned congested_write_threshold_us; + + struct time_stats btree_gc_time; + struct time_stats btree_split_time; + struct time_stats btree_read_time; + + atomic_long_t cache_read_races; + atomic_long_t writeback_keys_done; + atomic_long_t writeback_keys_failed; + + enum { + ON_ERROR_UNREGISTER, + ON_ERROR_PANIC, + } on_error; + unsigned error_limit; + unsigned error_decay; + + unsigned short journal_delay_ms; + bool expensive_debug_checks; + unsigned verify:1; + unsigned key_merging_disabled:1; + unsigned gc_always_rewrite:1; + unsigned shrinker_disabled:1; + unsigned copy_gc_enabled:1; + +#define BUCKET_HASH_BITS 12 + struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS]; +}; + +struct bbio { + unsigned submit_time_us; + union { + struct bkey key; + uint64_t _pad[3]; + /* + * We only need pad = 3 here because we only ever carry around a + * single pointer - i.e. the pointer we're doing io to/from. + */ + }; + struct bio bio; +}; + +#define BTREE_PRIO USHRT_MAX +#define INITIAL_PRIO 32768U + +#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE) +#define btree_blocks(b) \ + ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits)) + +#define btree_default_blocks(c) \ + ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits)) + +#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS) +#define bucket_bytes(c) ((c)->sb.bucket_size << 9) +#define block_bytes(c) ((c)->sb.block_size << 9) + +#define prios_per_bucket(c) \ + ((bucket_bytes(c) - sizeof(struct prio_set)) / \ + sizeof(struct bucket_disk)) +#define prio_buckets(c) \ + DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c)) + +static inline size_t sector_to_bucket(struct cache_set *c, sector_t s) +{ + return s >> c->bucket_bits; +} + +static inline sector_t bucket_to_sector(struct cache_set *c, size_t b) +{ + return ((sector_t) b) << c->bucket_bits; +} + +static inline sector_t bucket_remainder(struct cache_set *c, sector_t s) +{ + return s & (c->sb.bucket_size - 1); +} + +static inline struct cache *PTR_CACHE(struct cache_set *c, + const struct bkey *k, + unsigned ptr) +{ + return c->cache[PTR_DEV(k, ptr)]; +} + +static inline size_t PTR_BUCKET_NR(struct cache_set *c, + const struct bkey *k, + unsigned ptr) +{ + return sector_to_bucket(c, PTR_OFFSET(k, ptr)); +} + +static inline struct bucket *PTR_BUCKET(struct cache_set *c, + const struct bkey *k, + unsigned ptr) +{ + return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr); +} + +static inline uint8_t gen_after(uint8_t a, uint8_t b) +{ + uint8_t r = a - b; + return r > 128U ? 0 : r; +} + +static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k, + unsigned i) +{ + return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i)); +} + +static inline bool ptr_available(struct cache_set *c, const struct bkey *k, + unsigned i) +{ + return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i); +} + +/* Btree key macros */ + +/* + * This is used for various on disk data structures - cache_sb, prio_set, bset, + * jset: The checksum is _always_ the first 8 bytes of these structs + */ +#define csum_set(i) \ + bch_crc64(((void *) (i)) + sizeof(uint64_t), \ + ((void *) bset_bkey_last(i)) - \ + (((void *) (i)) + sizeof(uint64_t))) + +/* Error handling macros */ + +#define btree_bug(b, ...) \ +do { \ + if (bch_cache_set_error((b)->c, __VA_ARGS__)) \ + dump_stack(); \ +} while (0) + +#define cache_bug(c, ...) \ +do { \ + if (bch_cache_set_error(c, __VA_ARGS__)) \ + dump_stack(); \ +} while (0) + +#define btree_bug_on(cond, b, ...) \ +do { \ + if (cond) \ + btree_bug(b, __VA_ARGS__); \ +} while (0) + +#define cache_bug_on(cond, c, ...) \ +do { \ + if (cond) \ + cache_bug(c, __VA_ARGS__); \ +} while (0) + +#define cache_set_err_on(cond, c, ...) \ +do { \ + if (cond) \ + bch_cache_set_error(c, __VA_ARGS__); \ +} while (0) + +/* Looping macros */ + +#define for_each_cache(ca, cs, iter) \ + for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++) + +#define for_each_bucket(b, ca) \ + for (b = (ca)->buckets + (ca)->sb.first_bucket; \ + b < (ca)->buckets + (ca)->sb.nbuckets; b++) + +static inline void cached_dev_put(struct cached_dev *dc) +{ + if (atomic_dec_and_test(&dc->count)) + schedule_work(&dc->detach); +} + +static inline bool cached_dev_get(struct cached_dev *dc) +{ + if (!atomic_inc_not_zero(&dc->count)) + return false; + + /* Paired with the mb in cached_dev_attach */ + smp_mb__after_atomic(); + return true; +} + +/* + * bucket_gc_gen() returns the difference between the bucket's current gen and + * the oldest gen of any pointer into that bucket in the btree (last_gc). + */ + +static inline uint8_t bucket_gc_gen(struct bucket *b) +{ + return b->gen - b->last_gc; +} + +#define BUCKET_GC_GEN_MAX 96U + +#define kobj_attribute_write(n, fn) \ + static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn) + +#define kobj_attribute_rw(n, show, store) \ + static struct kobj_attribute ksysfs_##n = \ + __ATTR(n, S_IWUSR|S_IRUSR, show, store) + +static inline void wake_up_allocators(struct cache_set *c) +{ + struct cache *ca; + unsigned i; + + for_each_cache(ca, c, i) + wake_up_process(ca->alloc_thread); +} + +/* Forward declarations */ + +void bch_count_io_errors(struct cache *, int, const char *); +void bch_bbio_count_io_errors(struct cache_set *, struct bio *, + int, const char *); +void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *); +void bch_bbio_free(struct bio *, struct cache_set *); +struct bio *bch_bbio_alloc(struct cache_set *); + +void bch_generic_make_request(struct bio *, struct bio_split_pool *); +void __bch_submit_bbio(struct bio *, struct cache_set *); +void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned); + +uint8_t bch_inc_gen(struct cache *, struct bucket *); +void bch_rescale_priorities(struct cache_set *, int); + +bool bch_can_invalidate_bucket(struct cache *, struct bucket *); +void __bch_invalidate_one_bucket(struct cache *, struct bucket *); + +void __bch_bucket_free(struct cache *, struct bucket *); +void bch_bucket_free(struct cache_set *, struct bkey *); + +long bch_bucket_alloc(struct cache *, unsigned, bool); +int __bch_bucket_alloc_set(struct cache_set *, unsigned, + struct bkey *, int, bool); +int bch_bucket_alloc_set(struct cache_set *, unsigned, + struct bkey *, int, bool); +bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned, + unsigned, unsigned, bool); + +__printf(2, 3) +bool bch_cache_set_error(struct cache_set *, const char *, ...); + +void bch_prio_write(struct cache *); +void bch_write_bdev_super(struct cached_dev *, struct closure *); + +extern struct workqueue_struct *bcache_wq; +extern const char * const bch_cache_modes[]; +extern struct mutex bch_register_lock; +extern struct list_head bch_cache_sets; + +extern struct kobj_type bch_cached_dev_ktype; +extern struct kobj_type bch_flash_dev_ktype; +extern struct kobj_type bch_cache_set_ktype; +extern struct kobj_type bch_cache_set_internal_ktype; +extern struct kobj_type bch_cache_ktype; + +void bch_cached_dev_release(struct kobject *); +void bch_flash_dev_release(struct kobject *); +void bch_cache_set_release(struct kobject *); +void bch_cache_release(struct kobject *); + +int bch_uuid_write(struct cache_set *); +void bcache_write_super(struct cache_set *); + +int bch_flash_dev_create(struct cache_set *c, uint64_t size); + +int bch_cached_dev_attach(struct cached_dev *, struct cache_set *); +void bch_cached_dev_detach(struct cached_dev *); +void bch_cached_dev_run(struct cached_dev *); +void bcache_device_stop(struct bcache_device *); + +void bch_cache_set_unregister(struct cache_set *); +void bch_cache_set_stop(struct cache_set *); + +struct cache_set *bch_cache_set_alloc(struct cache_sb *); +void bch_btree_cache_free(struct cache_set *); +int bch_btree_cache_alloc(struct cache_set *); +void bch_moving_init_cache_set(struct cache_set *); +int bch_open_buckets_alloc(struct cache_set *); +void bch_open_buckets_free(struct cache_set *); + +int bch_cache_allocator_start(struct cache *ca); + +void bch_debug_exit(void); +int bch_debug_init(struct kobject *); +void bch_request_exit(void); +int bch_request_init(void); + +#endif /* _BCACHE_H */ diff --git a/drivers/md/bcache/bset.c b/drivers/md/bcache/bset.c new file mode 100644 index 00000000000..54541641530 --- /dev/null +++ b/drivers/md/bcache/bset.c @@ -0,0 +1,1331 @@ +/* + * Code for working with individual keys, and sorted sets of keys with in a + * btree node + * + * Copyright 2012 Google, Inc. + */ + +#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ + +#include "util.h" +#include "bset.h" + +#include <linux/console.h> +#include <linux/random.h> +#include <linux/prefetch.h> + +#ifdef CONFIG_BCACHE_DEBUG + +void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set) +{ + struct bkey *k, *next; + + for (k = i->start; k < bset_bkey_last(i); k = next) { + next = bkey_next(k); + + printk(KERN_ERR "block %u key %u/%u: ", set, + (unsigned) ((u64 *) k - i->d), i->keys); + + if (b->ops->key_dump) + b->ops->key_dump(b, k); + else + printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); + + if (next < bset_bkey_last(i) && + bkey_cmp(k, b->ops->is_extents ? + &START_KEY(next) : next) > 0) + printk(KERN_ERR "Key skipped backwards\n"); + } +} + +void bch_dump_bucket(struct btree_keys *b) +{ + unsigned i; + + console_lock(); + for (i = 0; i <= b->nsets; i++) + bch_dump_bset(b, b->set[i].data, + bset_sector_offset(b, b->set[i].data)); + console_unlock(); +} + +int __bch_count_data(struct btree_keys *b) +{ + unsigned ret = 0; + struct btree_iter iter; + struct bkey *k; + + if (b->ops->is_extents) + for_each_key(b, k, &iter) + ret += KEY_SIZE(k); + return ret; +} + +void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) +{ + va_list args; + struct bkey *k, *p = NULL; + struct btree_iter iter; + const char *err; + + for_each_key(b, k, &iter) { + if (b->ops->is_extents) { + err = "Keys out of order"; + if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) + goto bug; + + if (bch_ptr_invalid(b, k)) + continue; + + err = "Overlapping keys"; + if (p && bkey_cmp(p, &START_KEY(k)) > 0) + goto bug; + } else { + if (bch_ptr_bad(b, k)) + continue; + + err = "Duplicate keys"; + if (p && !bkey_cmp(p, k)) + goto bug; + } + p = k; + } +#if 0 + err = "Key larger than btree node key"; + if (p && bkey_cmp(p, &b->key) > 0) + goto bug; +#endif + return; +bug: + bch_dump_bucket(b); + + va_start(args, fmt); + vprintk(fmt, args); + va_end(args); + + panic("bch_check_keys error: %s:\n", err); +} + +static void bch_btree_iter_next_check(struct btree_iter *iter) +{ + struct bkey *k = iter->data->k, *next = bkey_next(k); + + if (next < iter->data->end && + bkey_cmp(k, iter->b->ops->is_extents ? + &START_KEY(next) : next) > 0) { + bch_dump_bucket(iter->b); + panic("Key skipped backwards\n"); + } +} + +#else + +static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} + +#endif + +/* Keylists */ + +int __bch_keylist_realloc(struct keylist *l, unsigned u64s) +{ + size_t oldsize = bch_keylist_nkeys(l); + size_t newsize = oldsize + u64s; + uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; + uint64_t *new_keys; + + newsize = roundup_pow_of_two(newsize); + + if (newsize <= KEYLIST_INLINE || + roundup_pow_of_two(oldsize) == newsize) + return 0; + + new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); + + if (!new_keys) + return -ENOMEM; + + if (!old_keys) + memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); + + l->keys_p = new_keys; + l->top_p = new_keys + oldsize; + + return 0; +} + +struct bkey *bch_keylist_pop(struct keylist *l) +{ + struct bkey *k = l->keys; + + if (k == l->top) + return NULL; + + while (bkey_next(k) != l->top) + k = bkey_next(k); + + return l->top = k; +} + +void bch_keylist_pop_front(struct keylist *l) +{ + l->top_p -= bkey_u64s(l->keys); + + memmove(l->keys, + bkey_next(l->keys), + bch_keylist_bytes(l)); +} + +/* Key/pointer manipulation */ + +void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, + unsigned i) +{ + BUG_ON(i > KEY_PTRS(src)); + + /* Only copy the header, key, and one pointer. */ + memcpy(dest, src, 2 * sizeof(uint64_t)); + dest->ptr[0] = src->ptr[i]; + SET_KEY_PTRS(dest, 1); + /* We didn't copy the checksum so clear that bit. */ + SET_KEY_CSUM(dest, 0); +} + +bool __bch_cut_front(const struct bkey *where, struct bkey *k) +{ + unsigned i, len = 0; + + if (bkey_cmp(where, &START_KEY(k)) <= 0) + return false; + + if (bkey_cmp(where, k) < 0) + len = KEY_OFFSET(k) - KEY_OFFSET(where); + else + bkey_copy_key(k, where); + + for (i = 0; i < KEY_PTRS(k); i++) + SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); + + BUG_ON(len > KEY_SIZE(k)); + SET_KEY_SIZE(k, len); + return true; +} + +bool __bch_cut_back(const struct bkey *where, struct bkey *k) +{ + unsigned len = 0; + + if (bkey_cmp(where, k) >= 0) + return false; + + BUG_ON(KEY_INODE(where) != KEY_INODE(k)); + + if (bkey_cmp(where, &START_KEY(k)) > 0) + len = KEY_OFFSET(where) - KEY_START(k); + + bkey_copy_key(k, where); + + BUG_ON(len > KEY_SIZE(k)); + SET_KEY_SIZE(k, len); + return true; +} + +/* Auxiliary search trees */ + +/* 32 bits total: */ +#define BKEY_MID_BITS 3 +#define BKEY_EXPONENT_BITS 7 +#define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) +#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1) + +struct bkey_float { + unsigned exponent:BKEY_EXPONENT_BITS; + unsigned m:BKEY_MID_BITS; + unsigned mantissa:BKEY_MANTISSA_BITS; +} __packed; + +/* + * BSET_CACHELINE was originally intended to match the hardware cacheline size - + * it used to be 64, but I realized the lookup code would touch slightly less + * memory if it was 128. + * + * It definites the number of bytes (in struct bset) per struct bkey_float in + * the auxiliar search tree - when we're done searching the bset_float tree we + * have this many bytes left that we do a linear search over. + * + * Since (after level 5) every level of the bset_tree is on a new cacheline, + * we're touching one fewer cacheline in the bset tree in exchange for one more + * cacheline in the linear search - but the linear search might stop before it + * gets to the second cacheline. + */ + +#define BSET_CACHELINE 128 + +/* Space required for the btree node keys */ +static inline size_t btree_keys_bytes(struct btree_keys *b) +{ + return PAGE_SIZE << b->page_order; +} + +static inline size_t btree_keys_cachelines(struct btree_keys *b) +{ + return btree_keys_bytes(b) / BSET_CACHELINE; +} + +/* Space required for the auxiliary search trees */ +static inline size_t bset_tree_bytes(struct btree_keys *b) +{ + return btree_keys_cachelines(b) * sizeof(struct bkey_float); +} + +/* Space required for the prev pointers */ +static inline size_t bset_prev_bytes(struct btree_keys *b) +{ + return btree_keys_cachelines(b) * sizeof(uint8_t); +} + +/* Memory allocation */ + +void bch_btree_keys_free(struct btree_keys *b) +{ + struct bset_tree *t = b->set; + + if (bset_prev_bytes(b) < PAGE_SIZE) + kfree(t->prev); + else + free_pages((unsigned long) t->prev, + get_order(bset_prev_bytes(b))); + + if (bset_tree_bytes(b) < PAGE_SIZE) + kfree(t->tree); + else + free_pages((unsigned long) t->tree, + get_order(bset_tree_bytes(b))); + + free_pages((unsigned long) t->data, b->page_order); + + t->prev = NULL; + t->tree = NULL; + t->data = NULL; +} +EXPORT_SYMBOL(bch_btree_keys_free); + +int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp) +{ + struct bset_tree *t = b->set; + + BUG_ON(t->data); + + b->page_order = page_order; + + t->data = (void *) __get_free_pages(gfp, b->page_order); + if (!t->data) + goto err; + + t->tree = bset_tree_bytes(b) < PAGE_SIZE + ? kmalloc(bset_tree_bytes(b), gfp) + : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); + if (!t->tree) + goto err; + + t->prev = bset_prev_bytes(b) < PAGE_SIZE + ? kmalloc(bset_prev_bytes(b), gfp) + : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); + if (!t->prev) + goto err; + + return 0; +err: + bch_btree_keys_free(b); + return -ENOMEM; +} +EXPORT_SYMBOL(bch_btree_keys_alloc); + +void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, + bool *expensive_debug_checks) +{ + unsigned i; + + b->ops = ops; + b->expensive_debug_checks = expensive_debug_checks; + b->nsets = 0; + b->last_set_unwritten = 0; + + /* XXX: shouldn't be needed */ + for (i = 0; i < MAX_BSETS; i++) + b->set[i].size = 0; + /* + * Second loop starts at 1 because b->keys[0]->data is the memory we + * allocated + */ + for (i = 1; i < MAX_BSETS; i++) + b->set[i].data = NULL; +} +EXPORT_SYMBOL(bch_btree_keys_init); + +/* Binary tree stuff for auxiliary search trees */ + +static unsigned inorder_next(unsigned j, unsigned size) +{ + if (j * 2 + 1 < size) { + j = j * 2 + 1; + + while (j * 2 < size) + j *= 2; + } else + j >>= ffz(j) + 1; + + return j; +} + +static unsigned inorder_prev(unsigned j, unsigned size) +{ + if (j * 2 < size) { + j = j * 2; + + while (j * 2 + 1 < size) + j = j * 2 + 1; + } else + j >>= ffs(j); + + return j; +} + +/* I have no idea why this code works... and I'm the one who wrote it + * + * However, I do know what it does: + * Given a binary tree constructed in an array (i.e. how you normally implement + * a heap), it converts a node in the tree - referenced by array index - to the + * index it would have if you did an inorder traversal. + * + * Also tested for every j, size up to size somewhere around 6 million. + * + * The binary tree starts at array index 1, not 0 + * extra is a function of size: + * extra = (size - rounddown_pow_of_two(size - 1)) << 1; + */ +static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) +{ + unsigned b = fls(j); + unsigned shift = fls(size - 1) - b; + + j ^= 1U << (b - 1); + j <<= 1; + j |= 1; + j <<= shift; + + if (j > extra) + j -= (j - extra) >> 1; + + return j; +} + +static unsigned to_inorder(unsigned j, struct bset_tree *t) +{ + return __to_inorder(j, t->size, t->extra); +} + +static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) +{ + unsigned shift; + + if (j > extra) + j += j - extra; + + shift = ffs(j); + + j >>= shift; + j |= roundup_pow_of_two(size) >> shift; + + return j; +} + +static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) +{ + return __inorder_to_tree(j, t->size, t->extra); +} + +#if 0 +void inorder_test(void) +{ + unsigned long done = 0; + ktime_t start = ktime_get(); + + for (unsigned size = 2; + size < 65536000; + size++) { + unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; + unsigned i = 1, j = rounddown_pow_of_two(size - 1); + + if (!(size % 4096)) + printk(KERN_NOTICE "loop %u, %llu per us\n", size, + done / ktime_us_delta(ktime_get(), start)); + + while (1) { + if (__inorder_to_tree(i, size, extra) != j) + panic("size %10u j %10u i %10u", size, j, i); + + if (__to_inorder(j, size, extra) != i) + panic("size %10u j %10u i %10u", size, j, i); + + if (j == rounddown_pow_of_two(size) - 1) + break; + + BUG_ON(inorder_prev(inorder_next(j, size), size) != j); + + j = inorder_next(j, size); + i++; + } + + done += size - 1; + } +} +#endif + +/* + * Cacheline/offset <-> bkey pointer arithmetic: + * + * t->tree is a binary search tree in an array; each node corresponds to a key + * in one cacheline in t->set (BSET_CACHELINE bytes). + * + * This means we don't have to store the full index of the key that a node in + * the binary tree points to; to_inorder() gives us the cacheline, and then + * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. + * + * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to + * make this work. + * + * To construct the bfloat for an arbitrary key we need to know what the key + * immediately preceding it is: we have to check if the two keys differ in the + * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size + * of the previous key so we can walk backwards to it from t->tree[j]'s key. + */ + +static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, + unsigned offset) +{ + return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; +} + +static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) +{ + return ((void *) k - (void *) t->data) / BSET_CACHELINE; +} + +static unsigned bkey_to_cacheline_offset(struct bset_tree *t, + unsigned cacheline, + struct bkey *k) +{ + return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); +} + +static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) +{ + return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); +} + +static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) +{ + return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); +} + +/* + * For the write set - the one we're currently inserting keys into - we don't + * maintain a full search tree, we just keep a simple lookup table in t->prev. + */ +static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) +{ + return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); +} + +static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) +{ + low >>= shift; + low |= (high << 1) << (63U - shift); + return low; +} + +static inline unsigned bfloat_mantissa(const struct bkey *k, + struct bkey_float *f) +{ + const uint64_t *p = &k->low - (f->exponent >> 6); + return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; +} + +static void make_bfloat(struct bset_tree *t, unsigned j) +{ + struct bkey_float *f = &t->tree[j]; + struct bkey *m = tree_to_bkey(t, j); + struct bkey *p = tree_to_prev_bkey(t, j); + + struct bkey *l = is_power_of_2(j) + ? t->data->start + : tree_to_prev_bkey(t, j >> ffs(j)); + + struct bkey *r = is_power_of_2(j + 1) + ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) + : tree_to_bkey(t, j >> (ffz(j) + 1)); + + BUG_ON(m < l || m > r); + BUG_ON(bkey_next(p) != m); + + if (KEY_INODE(l) != KEY_INODE(r)) + f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; + else + f->exponent = fls64(r->low ^ l->low); + + f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); + + /* + * Setting f->exponent = 127 flags this node as failed, and causes the + * lookup code to fall back to comparing against the original key. + */ + + if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) + f->mantissa = bfloat_mantissa(m, f) - 1; + else + f->exponent = 127; +} + +static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) +{ + if (t != b->set) { + unsigned j = roundup(t[-1].size, + 64 / sizeof(struct bkey_float)); + + t->tree = t[-1].tree + j; + t->prev = t[-1].prev + j; + } + + while (t < b->set + MAX_BSETS) + t++->size = 0; +} + +static void bch_bset_build_unwritten_tree(struct btree_keys *b) +{ + struct bset_tree *t = bset_tree_last(b); + + BUG_ON(b->last_set_unwritten); + b->last_set_unwritten = 1; + + bset_alloc_tree(b, t); + + if (t->tree != b->set->tree + btree_keys_cachelines(b)) { + t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); + t->size = 1; + } +} + +void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) +{ + if (i != b->set->data) { + b->set[++b->nsets].data = i; + i->seq = b->set->data->seq; + } else + get_random_bytes(&i->seq, sizeof(uint64_t)); + + i->magic = magic; + i->version = 0; + i->keys = 0; + + bch_bset_build_unwritten_tree(b); +} +EXPORT_SYMBOL(bch_bset_init_next); + +void bch_bset_build_written_tree(struct btree_keys *b) +{ + struct bset_tree *t = bset_tree_last(b); + struct bkey *prev = NULL, *k = t->data->start; + unsigned j, cacheline = 1; + + b->last_set_unwritten = 0; + + bset_alloc_tree(b, t); + + t->size = min_t(unsigned, + bkey_to_cacheline(t, bset_bkey_last(t->data)), + b->set->tree + btree_keys_cachelines(b) - t->tree); + + if (t->size < 2) { + t->size = 0; + return; + } + + t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; + + /* First we figure out where the first key in each cacheline is */ + for (j = inorder_next(0, t->size); + j; + j = inorder_next(j, t->size)) { + while (bkey_to_cacheline(t, k) < cacheline) + prev = k, k = bkey_next(k); + + t->prev[j] = bkey_u64s(prev); + t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); + } + + while (bkey_next(k) != bset_bkey_last(t->data)) + k = bkey_next(k); + + t->end = *k; + + /* Then we build the tree */ + for (j = inorder_next(0, t->size); + j; + j = inorder_next(j, t->size)) + make_bfloat(t, j); +} +EXPORT_SYMBOL(bch_bset_build_written_tree); + +/* Insert */ + +void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) +{ + struct bset_tree *t; + unsigned inorder, j = 1; + + for (t = b->set; t <= bset_tree_last(b); t++) + if (k < bset_bkey_last(t->data)) + goto found_set; + + BUG(); +found_set: + if (!t->size || !bset_written(b, t)) + return; + + inorder = bkey_to_cacheline(t, k); + + if (k == t->data->start) + goto fix_left; + + if (bkey_next(k) == bset_bkey_last(t->data)) { + t->end = *k; + goto fix_right; + } + + j = inorder_to_tree(inorder, t); + + if (j && + j < t->size && + k == tree_to_bkey(t, j)) +fix_left: do { + make_bfloat(t, j); + j = j * 2; + } while (j < t->size); + + j = inorder_to_tree(inorder + 1, t); + + if (j && + j < t->size && + k == tree_to_prev_bkey(t, j)) +fix_right: do { + make_bfloat(t, j); + j = j * 2 + 1; + } while (j < t->size); +} +EXPORT_SYMBOL(bch_bset_fix_invalidated_key); + +static void bch_bset_fix_lookup_table(struct btree_keys *b, + struct bset_tree *t, + struct bkey *k) +{ + unsigned shift = bkey_u64s(k); + unsigned j = bkey_to_cacheline(t, k); + + /* We're getting called from btree_split() or btree_gc, just bail out */ + if (!t->size) + return; + + /* k is the key we just inserted; we need to find the entry in the + * lookup table for the first key that is strictly greater than k: + * it's either k's cacheline or the next one + */ + while (j < t->size && + table_to_bkey(t, j) <= k) + j++; + + /* Adjust all the lookup table entries, and find a new key for any that + * have gotten too big + */ + for (; j < t->size; j++) { + t->prev[j] += shift; + + if (t->prev[j] > 7) { + k = table_to_bkey(t, j - 1); + + while (k < cacheline_to_bkey(t, j, 0)) + k = bkey_next(k); + + t->prev[j] = bkey_to_cacheline_offset(t, j, k); + } + } + + if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) + return; + + /* Possibly add a new entry to the end of the lookup table */ + + for (k = table_to_bkey(t, t->size - 1); + k != bset_bkey_last(t->data); + k = bkey_next(k)) + if (t->size == bkey_to_cacheline(t, k)) { + t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k); + t->size++; + } +} + +/* + * Tries to merge l and r: l should be lower than r + * Returns true if we were able to merge. If we did merge, l will be the merged + * key, r will be untouched. + */ +bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) +{ + if (!b->ops->key_merge) + return false; + + /* + * Generic header checks + * Assumes left and right are in order + * Left and right must be exactly aligned + */ + if (!bch_bkey_equal_header(l, r) || + bkey_cmp(l, &START_KEY(r))) + return false; + + return b->ops->key_merge(b, l, r); +} +EXPORT_SYMBOL(bch_bkey_try_merge); + +void bch_bset_insert(struct btree_keys *b, struct bkey *where, + struct bkey *insert) +{ + struct bset_tree *t = bset_tree_last(b); + + BUG_ON(!b->last_set_unwritten); + BUG_ON(bset_byte_offset(b, t->data) + + __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > + PAGE_SIZE << b->page_order); + + memmove((uint64_t *) where + bkey_u64s(insert), + where, + (void *) bset_bkey_last(t->data) - (void *) where); + + t->data->keys += bkey_u64s(insert); + bkey_copy(where, insert); + bch_bset_fix_lookup_table(b, t, where); +} +EXPORT_SYMBOL(bch_bset_insert); + +unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k, + struct bkey *replace_key) +{ + unsigned status = BTREE_INSERT_STATUS_NO_INSERT; + struct bset *i = bset_tree_last(b)->data; + struct bkey *m, *prev = NULL; + struct btree_iter iter; + + BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); + + m = bch_btree_iter_init(b, &iter, b->ops->is_extents + ? PRECEDING_KEY(&START_KEY(k)) + : PRECEDING_KEY(k)); + + if (b->ops->insert_fixup(b, k, &iter, replace_key)) + return status; + + status = BTREE_INSERT_STATUS_INSERT; + + while (m != bset_bkey_last(i) && + bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) + prev = m, m = bkey_next(m); + + /* prev is in the tree, if we merge we're done */ + status = BTREE_INSERT_STATUS_BACK_MERGE; + if (prev && + bch_bkey_try_merge(b, prev, k)) + goto merged; +#if 0 + status = BTREE_INSERT_STATUS_OVERWROTE; + if (m != bset_bkey_last(i) && + KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) + goto copy; +#endif + status = BTREE_INSERT_STATUS_FRONT_MERGE; + if (m != bset_bkey_last(i) && + bch_bkey_try_merge(b, k, m)) + goto copy; + + bch_bset_insert(b, m, k); +copy: bkey_copy(m, k); +merged: + return status; +} +EXPORT_SYMBOL(bch_btree_insert_key); + +/* Lookup */ + +struct bset_search_iter { + struct bkey *l, *r; +}; + +static struct bset_search_iter bset_search_write_set(struct bset_tree *t, + const struct bkey *search) +{ + unsigned li = 0, ri = t->size; + + while (li + 1 != ri) { + unsigned m = (li + ri) >> 1; + + if (bkey_cmp(table_to_bkey(t, m), search) > 0) + ri = m; + else + li = m; + } + + return (struct bset_search_iter) { + table_to_bkey(t, li), + ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) + }; +} + +static struct bset_search_iter bset_search_tree(struct bset_tree *t, + const struct bkey *search) +{ + struct bkey *l, *r; + struct bkey_float *f; + unsigned inorder, j, n = 1; + + do { + unsigned p = n << 4; + p &= ((int) (p - t->size)) >> 31; + + prefetch(&t->tree[p]); + + j = n; + f = &t->tree[j]; + + /* + * n = (f->mantissa > bfloat_mantissa()) + * ? j * 2 + * : j * 2 + 1; + * + * We need to subtract 1 from f->mantissa for the sign bit trick + * to work - that's done in make_bfloat() + */ + if (likely(f->exponent != 127)) + n = j * 2 + (((unsigned) + (f->mantissa - + bfloat_mantissa(search, f))) >> 31); + else + n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) + ? j * 2 + : j * 2 + 1; + } while (n < t->size); + + inorder = to_inorder(j, t); + + /* + * n would have been the node we recursed to - the low bit tells us if + * we recursed left or recursed right. + */ + if (n & 1) { + l = cacheline_to_bkey(t, inorder, f->m); + + if (++inorder != t->size) { + f = &t->tree[inorder_next(j, t->size)]; + r = cacheline_to_bkey(t, inorder, f->m); + } else + r = bset_bkey_last(t->data); + } else { + r = cacheline_to_bkey(t, inorder, f->m); + + if (--inorder) { + f = &t->tree[inorder_prev(j, t->size)]; + l = cacheline_to_bkey(t, inorder, f->m); + } else + l = t->data->start; + } + + return (struct bset_search_iter) {l, r}; +} + +struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, + const struct bkey *search) +{ + struct bset_search_iter i; + + /* + * First, we search for a cacheline, then lastly we do a linear search + * within that cacheline. + * + * To search for the cacheline, there's three different possibilities: + * * The set is too small to have a search tree, so we just do a linear + * search over the whole set. + * * The set is the one we're currently inserting into; keeping a full + * auxiliary search tree up to date would be too expensive, so we + * use a much simpler lookup table to do a binary search - + * bset_search_write_set(). + * * Or we use the auxiliary search tree we constructed earlier - + * bset_search_tree() + */ + + if (unlikely(!t->size)) { + i.l = t->data->start; + i.r = bset_bkey_last(t->data); + } else if (bset_written(b, t)) { + /* + * Each node in the auxiliary search tree covers a certain range + * of bits, and keys above and below the set it covers might + * differ outside those bits - so we have to special case the + * start and end - handle that here: + */ + + if (unlikely(bkey_cmp(search, &t->end) >= 0)) + return bset_bkey_last(t->data); + + if (unlikely(bkey_cmp(search, t->data->start) < 0)) + return t->data->start; + + i = bset_search_tree(t, search); + } else { + BUG_ON(!b->nsets && + t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); + + i = bset_search_write_set(t, search); + } + + if (btree_keys_expensive_checks(b)) { + BUG_ON(bset_written(b, t) && + i.l != t->data->start && + bkey_cmp(tree_to_prev_bkey(t, + inorder_to_tree(bkey_to_cacheline(t, i.l), t)), + search) > 0); + + BUG_ON(i.r != bset_bkey_last(t->data) && + bkey_cmp(i.r, search) <= 0); + } + + while (likely(i.l != i.r) && + bkey_cmp(i.l, search) <= 0) + i.l = bkey_next(i.l); + + return i.l; +} +EXPORT_SYMBOL(__bch_bset_search); + +/* Btree iterator */ + +typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, + struct btree_iter_set); + +static inline bool btree_iter_cmp(struct btree_iter_set l, + struct btree_iter_set r) +{ + return bkey_cmp(l.k, r.k) > 0; +} + +static inline bool btree_iter_end(struct btree_iter *iter) +{ + return !iter->used; +} + +void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, + struct bkey *end) +{ + if (k != end) + BUG_ON(!heap_add(iter, + ((struct btree_iter_set) { k, end }), + btree_iter_cmp)); +} + +static struct bkey *__bch_btree_iter_init(struct btree_keys *b, + struct btree_iter *iter, + struct bkey *search, + struct bset_tree *start) +{ + struct bkey *ret = NULL; + iter->size = ARRAY_SIZE(iter->data); + iter->used = 0; + +#ifdef CONFIG_BCACHE_DEBUG + iter->b = b; +#endif + + for (; start <= bset_tree_last(b); start++) { + ret = bch_bset_search(b, start, search); + bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); + } + + return ret; +} + +struct bkey *bch_btree_iter_init(struct btree_keys *b, + struct btree_iter *iter, + struct bkey *search) +{ + return __bch_btree_iter_init(b, iter, search, b->set); +} +EXPORT_SYMBOL(bch_btree_iter_init); + +static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, + btree_iter_cmp_fn *cmp) +{ + struct btree_iter_set unused; + struct bkey *ret = NULL; + + if (!btree_iter_end(iter)) { + bch_btree_iter_next_check(iter); + + ret = iter->data->k; + iter->data->k = bkey_next(iter->data->k); + + if (iter->data->k > iter->data->end) { + WARN_ONCE(1, "bset was corrupt!\n"); + iter->data->k = iter->data->end; + } + + if (iter->data->k == iter->data->end) + heap_pop(iter, unused, cmp); + else + heap_sift(iter, 0, cmp); + } + + return ret; +} + +struct bkey *bch_btree_iter_next(struct btree_iter *iter) +{ + return __bch_btree_iter_next(iter, btree_iter_cmp); + +} +EXPORT_SYMBOL(bch_btree_iter_next); + +struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, + struct btree_keys *b, ptr_filter_fn fn) +{ + struct bkey *ret; + + do { + ret = bch_btree_iter_next(iter); + } while (ret && fn(b, ret)); + + return ret; +} + +/* Mergesort */ + +void bch_bset_sort_state_free(struct bset_sort_state *state) +{ + if (state->pool) + mempool_destroy(state->pool); +} + +int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order) +{ + spin_lock_init(&state->time.lock); + + state->page_order = page_order; + state->crit_factor = int_sqrt(1 << page_order); + + state->pool = mempool_create_page_pool(1, page_order); + if (!state->pool) + return -ENOMEM; + + return 0; +} +EXPORT_SYMBOL(bch_bset_sort_state_init); + +static void btree_mergesort(struct btree_keys *b, struct bset *out, + struct btree_iter *iter, + bool fixup, bool remove_stale) +{ + int i; + struct bkey *k, *last = NULL; + BKEY_PADDED(k) tmp; + bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale + ? bch_ptr_bad + : bch_ptr_invalid; + + /* Heapify the iterator, using our comparison function */ + for (i = iter->used / 2 - 1; i >= 0; --i) + heap_sift(iter, i, b->ops->sort_cmp); + + while (!btree_iter_end(iter)) { + if (b->ops->sort_fixup && fixup) + k = b->ops->sort_fixup(iter, &tmp.k); + else + k = NULL; + + if (!k) + k = __bch_btree_iter_next(iter, b->ops->sort_cmp); + + if (bad(b, k)) + continue; + + if (!last) { + last = out->start; + bkey_copy(last, k); + } else if (!bch_bkey_try_merge(b, last, k)) { + last = bkey_next(last); + bkey_copy(last, k); + } + } + + out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; + + pr_debug("sorted %i keys", out->keys); +} + +static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, + unsigned start, unsigned order, bool fixup, + struct bset_sort_state *state) +{ + uint64_t start_time; + bool used_mempool = false; + struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, + order); + if (!out) { + struct page *outp; + + BUG_ON(order > state->page_order); + + outp = mempool_alloc(state->pool, GFP_NOIO); + out = page_address(outp); + used_mempool = true; + order = state->page_order; + } + + start_time = local_clock(); + + btree_mergesort(b, out, iter, fixup, false); + b->nsets = start; + + if (!start && order == b->page_order) { + /* + * Our temporary buffer is the same size as the btree node's + * buffer, we can just swap buffers instead of doing a big + * memcpy() + */ + + out->magic = b->set->data->magic; + out->seq = b->set->data->seq; + out->version = b->set->data->version; + swap(out, b->set->data); + } else { + b->set[start].data->keys = out->keys; + memcpy(b->set[start].data->start, out->start, + (void *) bset_bkey_last(out) - (void *) out->start); + } + + if (used_mempool) + mempool_free(virt_to_page(out), state->pool); + else + free_pages((unsigned long) out, order); + + bch_bset_build_written_tree(b); + + if (!start) + bch_time_stats_update(&state->time, start_time); +} + +void bch_btree_sort_partial(struct btree_keys *b, unsigned start, + struct bset_sort_state *state) +{ + size_t order = b->page_order, keys = 0; + struct btree_iter iter; + int oldsize = bch_count_data(b); + + __bch_btree_iter_init(b, &iter, NULL, &b->set[start]); + + if (start) { + unsigned i; + + for (i = start; i <= b->nsets; i++) + keys += b->set[i].data->keys; + + order = get_order(__set_bytes(b->set->data, keys)); + } + + __btree_sort(b, &iter, start, order, false, state); + + EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); +} +EXPORT_SYMBOL(bch_btree_sort_partial); + +void bch_btree_sort_and_fix_extents(struct btree_keys *b, + struct btree_iter *iter, + struct bset_sort_state *state) +{ + __btree_sort(b, iter, 0, b->page_order, true, state); +} + +void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, + struct bset_sort_state *state) +{ + uint64_t start_time = local_clock(); + + struct btree_iter iter; + bch_btree_iter_init(b, &iter, NULL); + + btree_mergesort(b, new->set->data, &iter, false, true); + + bch_time_stats_update(&state->time, start_time); + + new->set->size = 0; // XXX: why? +} + +#define SORT_CRIT (4096 / sizeof(uint64_t)) + +void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) +{ + unsigned crit = SORT_CRIT; + int i; + + /* Don't sort if nothing to do */ + if (!b->nsets) + goto out; + + for (i = b->nsets - 1; i >= 0; --i) { + crit *= state->crit_factor; + + if (b->set[i].data->keys < crit) { + bch_btree_sort_partial(b, i, state); + return; + } + } + + /* Sort if we'd overflow */ + if (b->nsets + 1 == MAX_BSETS) { + bch_btree_sort(b, state); + return; + } + +out: + bch_bset_build_written_tree(b); +} +EXPORT_SYMBOL(bch_btree_sort_lazy); + +void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) +{ + unsigned i; + + for (i = 0; i <= b->nsets; i++) { + struct bset_tree *t = &b->set[i]; + size_t bytes = t->data->keys * sizeof(uint64_t); + size_t j; + + if (bset_written(b, t)) { + stats->sets_written++; + stats->bytes_written += bytes; + + stats->floats += t->size - 1; + + for (j = 1; j < t->size; j++) + if (t->tree[j].exponent == 127) + stats->failed++; + } else { + stats->sets_unwritten++; + stats->bytes_unwritten += bytes; + } + } +} diff --git a/drivers/md/bcache/bset.h b/drivers/md/bcache/bset.h new file mode 100644 index 00000000000..5f6728d5d4d --- /dev/null +++ b/drivers/md/bcache/bset.h @@ -0,0 +1,566 @@ +#ifndef _BCACHE_BSET_H +#define _BCACHE_BSET_H + +#include <linux/bcache.h> +#include <linux/kernel.h> +#include <linux/types.h> + +#include "util.h" /* for time_stats */ + +/* + * BKEYS: + * + * A bkey contains a key, a size field, a variable number of pointers, and some + * ancillary flag bits. + * + * We use two different functions for validating bkeys, bch_ptr_invalid and + * bch_ptr_bad(). + * + * bch_ptr_invalid() primarily filters out keys and pointers that would be + * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and + * pointer that occur in normal practice but don't point to real data. + * + * The one exception to the rule that ptr_invalid() filters out invalid keys is + * that it also filters out keys of size 0 - these are keys that have been + * completely overwritten. It'd be safe to delete these in memory while leaving + * them on disk, just unnecessary work - so we filter them out when resorting + * instead. + * + * We can't filter out stale keys when we're resorting, because garbage + * collection needs to find them to ensure bucket gens don't wrap around - + * unless we're rewriting the btree node those stale keys still exist on disk. + * + * We also implement functions here for removing some number of sectors from the + * front or the back of a bkey - this is mainly used for fixing overlapping + * extents, by removing the overlapping sectors from the older key. + * + * BSETS: + * + * A bset is an array of bkeys laid out contiguously in memory in sorted order, + * along with a header. A btree node is made up of a number of these, written at + * different times. + * + * There could be many of them on disk, but we never allow there to be more than + * 4 in memory - we lazily resort as needed. + * + * We implement code here for creating and maintaining auxiliary search trees + * (described below) for searching an individial bset, and on top of that we + * implement a btree iterator. + * + * BTREE ITERATOR: + * + * Most of the code in bcache doesn't care about an individual bset - it needs + * to search entire btree nodes and iterate over them in sorted order. + * + * The btree iterator code serves both functions; it iterates through the keys + * in a btree node in sorted order, starting from either keys after a specific + * point (if you pass it a search key) or the start of the btree node. + * + * AUXILIARY SEARCH TREES: + * + * Since keys are variable length, we can't use a binary search on a bset - we + * wouldn't be able to find the start of the next key. But binary searches are + * slow anyways, due to terrible cache behaviour; bcache originally used binary + * searches and that code topped out at under 50k lookups/second. + * + * So we need to construct some sort of lookup table. Since we only insert keys + * into the last (unwritten) set, most of the keys within a given btree node are + * usually in sets that are mostly constant. We use two different types of + * lookup tables to take advantage of this. + * + * Both lookup tables share in common that they don't index every key in the + * set; they index one key every BSET_CACHELINE bytes, and then a linear search + * is used for the rest. + * + * For sets that have been written to disk and are no longer being inserted + * into, we construct a binary search tree in an array - traversing a binary + * search tree in an array gives excellent locality of reference and is very + * fast, since both children of any node are adjacent to each other in memory + * (and their grandchildren, and great grandchildren...) - this means + * prefetching can be used to great effect. + * + * It's quite useful performance wise to keep these nodes small - not just + * because they're more likely to be in L2, but also because we can prefetch + * more nodes on a single cacheline and thus prefetch more iterations in advance + * when traversing this tree. + * + * Nodes in the auxiliary search tree must contain both a key to compare against + * (we don't want to fetch the key from the set, that would defeat the purpose), + * and a pointer to the key. We use a few tricks to compress both of these. + * + * To compress the pointer, we take advantage of the fact that one node in the + * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have + * a function (to_inorder()) that takes the index of a node in a binary tree and + * returns what its index would be in an inorder traversal, so we only have to + * store the low bits of the offset. + * + * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To + * compress that, we take advantage of the fact that when we're traversing the + * search tree at every iteration we know that both our search key and the key + * we're looking for lie within some range - bounded by our previous + * comparisons. (We special case the start of a search so that this is true even + * at the root of the tree). + * + * So we know the key we're looking for is between a and b, and a and b don't + * differ higher than bit 50, we don't need to check anything higher than bit + * 50. + * + * We don't usually need the rest of the bits, either; we only need enough bits + * to partition the key range we're currently checking. Consider key n - the + * key our auxiliary search tree node corresponds to, and key p, the key + * immediately preceding n. The lowest bit we need to store in the auxiliary + * search tree is the highest bit that differs between n and p. + * + * Note that this could be bit 0 - we might sometimes need all 80 bits to do the + * comparison. But we'd really like our nodes in the auxiliary search tree to be + * of fixed size. + * + * The solution is to make them fixed size, and when we're constructing a node + * check if p and n differed in the bits we needed them to. If they don't we + * flag that node, and when doing lookups we fallback to comparing against the + * real key. As long as this doesn't happen to often (and it seems to reliably + * happen a bit less than 1% of the time), we win - even on failures, that key + * is then more likely to be in cache than if we were doing binary searches all + * the way, since we're touching so much less memory. + * + * The keys in the auxiliary search tree are stored in (software) floating + * point, with an exponent and a mantissa. The exponent needs to be big enough + * to address all the bits in the original key, but the number of bits in the + * mantissa is somewhat arbitrary; more bits just gets us fewer failures. + * + * We need 7 bits for the exponent and 3 bits for the key's offset (since keys + * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes. + * We need one node per 128 bytes in the btree node, which means the auxiliary + * search trees take up 3% as much memory as the btree itself. + * + * Constructing these auxiliary search trees is moderately expensive, and we + * don't want to be constantly rebuilding the search tree for the last set + * whenever we insert another key into it. For the unwritten set, we use a much + * simpler lookup table - it's just a flat array, so index i in the lookup table + * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing + * within each byte range works the same as with the auxiliary search trees. + * + * These are much easier to keep up to date when we insert a key - we do it + * somewhat lazily; when we shift a key up we usually just increment the pointer + * to it, only when it would overflow do we go to the trouble of finding the + * first key in that range of bytes again. + */ + +struct btree_keys; +struct btree_iter; +struct btree_iter_set; +struct bkey_float; + +#define MAX_BSETS 4U + +struct bset_tree { + /* + * We construct a binary tree in an array as if the array + * started at 1, so that things line up on the same cachelines + * better: see comments in bset.c at cacheline_to_bkey() for + * details + */ + + /* size of the binary tree and prev array */ + unsigned size; + + /* function of size - precalculated for to_inorder() */ + unsigned extra; + + /* copy of the last key in the set */ + struct bkey end; + struct bkey_float *tree; + + /* + * The nodes in the bset tree point to specific keys - this + * array holds the sizes of the previous key. + * + * Conceptually it's a member of struct bkey_float, but we want + * to keep bkey_float to 4 bytes and prev isn't used in the fast + * path. + */ + uint8_t *prev; + + /* The actual btree node, with pointers to each sorted set */ + struct bset *data; +}; + +struct btree_keys_ops { + bool (*sort_cmp)(struct btree_iter_set, + struct btree_iter_set); + struct bkey *(*sort_fixup)(struct btree_iter *, struct bkey *); + bool (*insert_fixup)(struct btree_keys *, struct bkey *, + struct btree_iter *, struct bkey *); + bool (*key_invalid)(struct btree_keys *, + const struct bkey *); + bool (*key_bad)(struct btree_keys *, const struct bkey *); + bool (*key_merge)(struct btree_keys *, + struct bkey *, struct bkey *); + void (*key_to_text)(char *, size_t, const struct bkey *); + void (*key_dump)(struct btree_keys *, const struct bkey *); + + /* + * Only used for deciding whether to use START_KEY(k) or just the key + * itself in a couple places + */ + bool is_extents; +}; + +struct btree_keys { + const struct btree_keys_ops *ops; + uint8_t page_order; + uint8_t nsets; + unsigned last_set_unwritten:1; + bool *expensive_debug_checks; + + /* + * Sets of sorted keys - the real btree node - plus a binary search tree + * + * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point + * to the memory we have allocated for this btree node. Additionally, + * set[0]->data points to the entire btree node as it exists on disk. + */ + struct bset_tree set[MAX_BSETS]; +}; + +static inline struct bset_tree *bset_tree_last(struct btree_keys *b) +{ + return b->set + b->nsets; +} + +static inline bool bset_written(struct btree_keys *b, struct bset_tree *t) +{ + return t <= b->set + b->nsets - b->last_set_unwritten; +} + +static inline bool bkey_written(struct btree_keys *b, struct bkey *k) +{ + return !b->last_set_unwritten || k < b->set[b->nsets].data->start; +} + +static inline unsigned bset_byte_offset(struct btree_keys *b, struct bset *i) +{ + return ((size_t) i) - ((size_t) b->set->data); +} + +static inline unsigned bset_sector_offset(struct btree_keys *b, struct bset *i) +{ + return bset_byte_offset(b, i) >> 9; +} + +#define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t)) +#define set_bytes(i) __set_bytes(i, i->keys) + +#define __set_blocks(i, k, block_bytes) \ + DIV_ROUND_UP(__set_bytes(i, k), block_bytes) +#define set_blocks(i, block_bytes) \ + __set_blocks(i, (i)->keys, block_bytes) + +static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b) +{ + struct bset_tree *t = bset_tree_last(b); + + BUG_ON((PAGE_SIZE << b->page_order) < + (bset_byte_offset(b, t->data) + set_bytes(t->data))); + + if (!b->last_set_unwritten) + return 0; + + return ((PAGE_SIZE << b->page_order) - + (bset_byte_offset(b, t->data) + set_bytes(t->data))) / + sizeof(u64); +} + +static inline struct bset *bset_next_set(struct btree_keys *b, + unsigned block_bytes) +{ + struct bset *i = bset_tree_last(b)->data; + + return ((void *) i) + roundup(set_bytes(i), block_bytes); +} + +void bch_btree_keys_free(struct btree_keys *); +int bch_btree_keys_alloc(struct btree_keys *, unsigned, gfp_t); +void bch_btree_keys_init(struct btree_keys *, const struct btree_keys_ops *, + bool *); + +void bch_bset_init_next(struct btree_keys *, struct bset *, uint64_t); +void bch_bset_build_written_tree(struct btree_keys *); +void bch_bset_fix_invalidated_key(struct btree_keys *, struct bkey *); +bool bch_bkey_try_merge(struct btree_keys *, struct bkey *, struct bkey *); +void bch_bset_insert(struct btree_keys *, struct bkey *, struct bkey *); +unsigned bch_btree_insert_key(struct btree_keys *, struct bkey *, + struct bkey *); + +enum { + BTREE_INSERT_STATUS_NO_INSERT = 0, + BTREE_INSERT_STATUS_INSERT, + BTREE_INSERT_STATUS_BACK_MERGE, + BTREE_INSERT_STATUS_OVERWROTE, + BTREE_INSERT_STATUS_FRONT_MERGE, +}; + +/* Btree key iteration */ + +struct btree_iter { + size_t size, used; +#ifdef CONFIG_BCACHE_DEBUG + struct btree_keys *b; +#endif + struct btree_iter_set { + struct bkey *k, *end; + } data[MAX_BSETS]; +}; + +typedef bool (*ptr_filter_fn)(struct btree_keys *, const struct bkey *); + +struct bkey *bch_btree_iter_next(struct btree_iter *); +struct bkey *bch_btree_iter_next_filter(struct btree_iter *, + struct btree_keys *, ptr_filter_fn); + +void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *); +struct bkey *bch_btree_iter_init(struct btree_keys *, struct btree_iter *, + struct bkey *); + +struct bkey *__bch_bset_search(struct btree_keys *, struct bset_tree *, + const struct bkey *); + +/* + * Returns the first key that is strictly greater than search + */ +static inline struct bkey *bch_bset_search(struct btree_keys *b, + struct bset_tree *t, + const struct bkey *search) +{ + return search ? __bch_bset_search(b, t, search) : t->data->start; +} + +#define for_each_key_filter(b, k, iter, filter) \ + for (bch_btree_iter_init((b), (iter), NULL); \ + ((k) = bch_btree_iter_next_filter((iter), (b), filter));) + +#define for_each_key(b, k, iter) \ + for (bch_btree_iter_init((b), (iter), NULL); \ + ((k) = bch_btree_iter_next(iter));) + +/* Sorting */ + +struct bset_sort_state { + mempool_t *pool; + + unsigned page_order; + unsigned crit_factor; + + struct time_stats time; +}; + +void bch_bset_sort_state_free(struct bset_sort_state *); +int bch_bset_sort_state_init(struct bset_sort_state *, unsigned); +void bch_btree_sort_lazy(struct btree_keys *, struct bset_sort_state *); +void bch_btree_sort_into(struct btree_keys *, struct btree_keys *, + struct bset_sort_state *); +void bch_btree_sort_and_fix_extents(struct btree_keys *, struct btree_iter *, + struct bset_sort_state *); +void bch_btree_sort_partial(struct btree_keys *, unsigned, + struct bset_sort_state *); + +static inline void bch_btree_sort(struct btree_keys *b, + struct bset_sort_state *state) +{ + bch_btree_sort_partial(b, 0, state); +} + +struct bset_stats { + size_t sets_written, sets_unwritten; + size_t bytes_written, bytes_unwritten; + size_t floats, failed; +}; + +void bch_btree_keys_stats(struct btree_keys *, struct bset_stats *); + +/* Bkey utility code */ + +#define bset_bkey_last(i) bkey_idx((struct bkey *) (i)->d, (i)->keys) + +static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned idx) +{ + return bkey_idx(i->start, idx); +} + +static inline void bkey_init(struct bkey *k) +{ + *k = ZERO_KEY; +} + +static __always_inline int64_t bkey_cmp(const struct bkey *l, + const struct bkey *r) +{ + return unlikely(KEY_INODE(l) != KEY_INODE(r)) + ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r) + : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r); +} + +void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *, + unsigned); +bool __bch_cut_front(const struct bkey *, struct bkey *); +bool __bch_cut_back(const struct bkey *, struct bkey *); + +static inline bool bch_cut_front(const struct bkey *where, struct bkey *k) +{ + BUG_ON(bkey_cmp(where, k) > 0); + return __bch_cut_front(where, k); +} + +static inline bool bch_cut_back(const struct bkey *where, struct bkey *k) +{ + BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0); + return __bch_cut_back(where, k); +} + +#define PRECEDING_KEY(_k) \ +({ \ + struct bkey *_ret = NULL; \ + \ + if (KEY_INODE(_k) || KEY_OFFSET(_k)) { \ + _ret = &KEY(KEY_INODE(_k), KEY_OFFSET(_k), 0); \ + \ + if (!_ret->low) \ + _ret->high--; \ + _ret->low--; \ + } \ + \ + _ret; \ +}) + +static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k) +{ + return b->ops->key_invalid(b, k); +} + +static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k) +{ + return b->ops->key_bad(b, k); +} + +static inline void bch_bkey_to_text(struct btree_keys *b, char *buf, + size_t size, const struct bkey *k) +{ + return b->ops->key_to_text(buf, size, k); +} + +static inline bool bch_bkey_equal_header(const struct bkey *l, + const struct bkey *r) +{ + return (KEY_DIRTY(l) == KEY_DIRTY(r) && + KEY_PTRS(l) == KEY_PTRS(r) && + KEY_CSUM(l) == KEY_CSUM(l)); +} + +/* Keylists */ + +struct keylist { + union { + struct bkey *keys; + uint64_t *keys_p; + }; + union { + struct bkey *top; + uint64_t *top_p; + }; + + /* Enough room for btree_split's keys without realloc */ +#define KEYLIST_INLINE 16 + uint64_t inline_keys[KEYLIST_INLINE]; +}; + +static inline void bch_keylist_init(struct keylist *l) +{ + l->top_p = l->keys_p = l->inline_keys; +} + +static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k) +{ + l->keys = k; + l->top = bkey_next(k); +} + +static inline void bch_keylist_push(struct keylist *l) +{ + l->top = bkey_next(l->top); +} + +static inline void bch_keylist_add(struct keylist *l, struct bkey *k) +{ + bkey_copy(l->top, k); + bch_keylist_push(l); +} + +static inline bool bch_keylist_empty(struct keylist *l) +{ + return l->top == l->keys; +} + +static inline void bch_keylist_reset(struct keylist *l) +{ + l->top = l->keys; +} + +static inline void bch_keylist_free(struct keylist *l) +{ + if (l->keys_p != l->inline_keys) + kfree(l->keys_p); +} + +static inline size_t bch_keylist_nkeys(struct keylist *l) +{ + return l->top_p - l->keys_p; +} + +static inline size_t bch_keylist_bytes(struct keylist *l) +{ + return bch_keylist_nkeys(l) * sizeof(uint64_t); +} + +struct bkey *bch_keylist_pop(struct keylist *); +void bch_keylist_pop_front(struct keylist *); +int __bch_keylist_realloc(struct keylist *, unsigned); + +/* Debug stuff */ + +#ifdef CONFIG_BCACHE_DEBUG + +int __bch_count_data(struct btree_keys *); +void __bch_check_keys(struct btree_keys *, const char *, ...); +void bch_dump_bset(struct btree_keys *, struct bset *, unsigned); +void bch_dump_bucket(struct btree_keys *); + +#else + +static inline int __bch_count_data(struct btree_keys *b) { return -1; } +static inline void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {} +static inline void bch_dump_bucket(struct btree_keys *b) {} +void bch_dump_bset(struct btree_keys *, struct bset *, unsigned); + +#endif + +static inline bool btree_keys_expensive_checks(struct btree_keys *b) +{ +#ifdef CONFIG_BCACHE_DEBUG + return *b->expensive_debug_checks; +#else + return false; +#endif +} + +static inline int bch_count_data(struct btree_keys *b) +{ + return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1; +} + +#define bch_check_keys(b, ...) \ +do { \ + if (btree_keys_expensive_checks(b)) \ + __bch_check_keys(b, __VA_ARGS__); \ +} while (0) + +#endif diff --git a/drivers/md/bcache/btree.c b/drivers/md/bcache/btree.c new file mode 100644 index 00000000000..7347b610096 --- /dev/null +++ b/drivers/md/bcache/btree.c @@ -0,0 +1,2518 @@ +/* + * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> + * + * Uses a block device as cache for other block devices; optimized for SSDs. + * All allocation is done in buckets, which should match the erase block size + * of the device. + * + * Buckets containing cached data are kept on a heap sorted by priority; + * bucket priority is increased on cache hit, and periodically all the buckets + * on the heap have their priority scaled down. This currently is just used as + * an LRU but in the future should allow for more intelligent heuristics. + * + * Buckets have an 8 bit counter; freeing is accomplished by incrementing the + * counter. Garbage collection is used to remove stale pointers. + * + * Indexing is done via a btree; nodes are not necessarily fully sorted, rather + * as keys are inserted we only sort the pages that have not yet been written. + * When garbage collection is run, we resort the entire node. + * + * All configuration is done via sysfs; see Documentation/bcache.txt. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" +#include "extents.h" + +#include <linux/slab.h> +#include <linux/bitops.h> +#include <linux/freezer.h> +#include <linux/hash.h> +#include <linux/kthread.h> +#include <linux/prefetch.h> +#include <linux/random.h> +#include <linux/rcupdate.h> +#include <trace/events/bcache.h> + +/* + * Todo: + * register_bcache: Return errors out to userspace correctly + * + * Writeback: don't undirty key until after a cache flush + * + * Create an iterator for key pointers + * + * On btree write error, mark bucket such that it won't be freed from the cache + * + * Journalling: + * Check for bad keys in replay + * Propagate barriers + * Refcount journal entries in journal_replay + * + * Garbage collection: + * Finish incremental gc + * Gc should free old UUIDs, data for invalid UUIDs + * + * Provide a way to list backing device UUIDs we have data cached for, and + * probably how long it's been since we've seen them, and a way to invalidate + * dirty data for devices that will never be attached again + * + * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so + * that based on that and how much dirty data we have we can keep writeback + * from being starved + * + * Add a tracepoint or somesuch to watch for writeback starvation + * + * When btree depth > 1 and splitting an interior node, we have to make sure + * alloc_bucket() cannot fail. This should be true but is not completely + * obvious. + * + * Plugging? + * + * If data write is less than hard sector size of ssd, round up offset in open + * bucket to the next whole sector + * + * Superblock needs to be fleshed out for multiple cache devices + * + * Add a sysfs tunable for the number of writeback IOs in flight + * + * Add a sysfs tunable for the number of open data buckets + * + * IO tracking: Can we track when one process is doing io on behalf of another? + * IO tracking: Don't use just an average, weigh more recent stuff higher + * + * Test module load/unload + */ + +#define MAX_NEED_GC 64 +#define MAX_SAVE_PRIO 72 + +#define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) + +#define PTR_HASH(c, k) \ + (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) + +#define insert_lock(s, b) ((b)->level <= (s)->lock) + +/* + * These macros are for recursing down the btree - they handle the details of + * locking and looking up nodes in the cache for you. They're best treated as + * mere syntax when reading code that uses them. + * + * op->lock determines whether we take a read or a write lock at a given depth. + * If you've got a read lock and find that you need a write lock (i.e. you're + * going to have to split), set op->lock and return -EINTR; btree_root() will + * call you again and you'll have the correct lock. + */ + +/** + * btree - recurse down the btree on a specified key + * @fn: function to call, which will be passed the child node + * @key: key to recurse on + * @b: parent btree node + * @op: pointer to struct btree_op + */ +#define btree(fn, key, b, op, ...) \ +({ \ + int _r, l = (b)->level - 1; \ + bool _w = l <= (op)->lock; \ + struct btree *_child = bch_btree_node_get((b)->c, op, key, l, _w);\ + if (!IS_ERR(_child)) { \ + _child->parent = (b); \ + _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ + rw_unlock(_w, _child); \ + } else \ + _r = PTR_ERR(_child); \ + _r; \ +}) + +/** + * btree_root - call a function on the root of the btree + * @fn: function to call, which will be passed the child node + * @c: cache set + * @op: pointer to struct btree_op + */ +#define btree_root(fn, c, op, ...) \ +({ \ + int _r = -EINTR; \ + do { \ + struct btree *_b = (c)->root; \ + bool _w = insert_lock(op, _b); \ + rw_lock(_w, _b, _b->level); \ + if (_b == (c)->root && \ + _w == insert_lock(op, _b)) { \ + _b->parent = NULL; \ + _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ + } \ + rw_unlock(_w, _b); \ + bch_cannibalize_unlock(c); \ + if (_r == -EINTR) \ + schedule(); \ + } while (_r == -EINTR); \ + \ + finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ + _r; \ +}) + +static inline struct bset *write_block(struct btree *b) +{ + return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); +} + +static void bch_btree_init_next(struct btree *b) +{ + /* If not a leaf node, always sort */ + if (b->level && b->keys.nsets) + bch_btree_sort(&b->keys, &b->c->sort); + else + bch_btree_sort_lazy(&b->keys, &b->c->sort); + + if (b->written < btree_blocks(b)) + bch_bset_init_next(&b->keys, write_block(b), + bset_magic(&b->c->sb)); + +} + +/* Btree key manipulation */ + +void bkey_put(struct cache_set *c, struct bkey *k) +{ + unsigned i; + + for (i = 0; i < KEY_PTRS(k); i++) + if (ptr_available(c, k, i)) + atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); +} + +/* Btree IO */ + +static uint64_t btree_csum_set(struct btree *b, struct bset *i) +{ + uint64_t crc = b->key.ptr[0]; + void *data = (void *) i + 8, *end = bset_bkey_last(i); + + crc = bch_crc64_update(crc, data, end - data); + return crc ^ 0xffffffffffffffffULL; +} + +void bch_btree_node_read_done(struct btree *b) +{ + const char *err = "bad btree header"; + struct bset *i = btree_bset_first(b); + struct btree_iter *iter; + + iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT); + iter->size = b->c->sb.bucket_size / b->c->sb.block_size; + iter->used = 0; + +#ifdef CONFIG_BCACHE_DEBUG + iter->b = &b->keys; +#endif + + if (!i->seq) + goto err; + + for (; + b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; + i = write_block(b)) { + err = "unsupported bset version"; + if (i->version > BCACHE_BSET_VERSION) + goto err; + + err = "bad btree header"; + if (b->written + set_blocks(i, block_bytes(b->c)) > + btree_blocks(b)) + goto err; + + err = "bad magic"; + if (i->magic != bset_magic(&b->c->sb)) + goto err; + + err = "bad checksum"; + switch (i->version) { + case 0: + if (i->csum != csum_set(i)) + goto err; + break; + case BCACHE_BSET_VERSION: + if (i->csum != btree_csum_set(b, i)) + goto err; + break; + } + + err = "empty set"; + if (i != b->keys.set[0].data && !i->keys) + goto err; + + bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); + + b->written += set_blocks(i, block_bytes(b->c)); + } + + err = "corrupted btree"; + for (i = write_block(b); + bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); + i = ((void *) i) + block_bytes(b->c)) + if (i->seq == b->keys.set[0].data->seq) + goto err; + + bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); + + i = b->keys.set[0].data; + err = "short btree key"; + if (b->keys.set[0].size && + bkey_cmp(&b->key, &b->keys.set[0].end) < 0) + goto err; + + if (b->written < btree_blocks(b)) + bch_bset_init_next(&b->keys, write_block(b), + bset_magic(&b->c->sb)); +out: + mempool_free(iter, b->c->fill_iter); + return; +err: + set_btree_node_io_error(b); + bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", + err, PTR_BUCKET_NR(b->c, &b->key, 0), + bset_block_offset(b, i), i->keys); + goto out; +} + +static void btree_node_read_endio(struct bio *bio, int error) +{ + struct closure *cl = bio->bi_private; + closure_put(cl); +} + +static void bch_btree_node_read(struct btree *b) +{ + uint64_t start_time = local_clock(); + struct closure cl; + struct bio *bio; + + trace_bcache_btree_read(b); + + closure_init_stack(&cl); + + bio = bch_bbio_alloc(b->c); + bio->bi_rw = REQ_META|READ_SYNC; + bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; + bio->bi_end_io = btree_node_read_endio; + bio->bi_private = &cl; + + bch_bio_map(bio, b->keys.set[0].data); + + bch_submit_bbio(bio, b->c, &b->key, 0); + closure_sync(&cl); + + if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) + set_btree_node_io_error(b); + + bch_bbio_free(bio, b->c); + + if (btree_node_io_error(b)) + goto err; + + bch_btree_node_read_done(b); + bch_time_stats_update(&b->c->btree_read_time, start_time); + + return; +err: + bch_cache_set_error(b->c, "io error reading bucket %zu", + PTR_BUCKET_NR(b->c, &b->key, 0)); +} + +static void btree_complete_write(struct btree *b, struct btree_write *w) +{ + if (w->prio_blocked && + !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) + wake_up_allocators(b->c); + + if (w->journal) { + atomic_dec_bug(w->journal); + __closure_wake_up(&b->c->journal.wait); + } + + w->prio_blocked = 0; + w->journal = NULL; +} + +static void btree_node_write_unlock(struct closure *cl) +{ + struct btree *b = container_of(cl, struct btree, io); + + up(&b->io_mutex); +} + +static void __btree_node_write_done(struct closure *cl) +{ + struct btree *b = container_of(cl, struct btree, io); + struct btree_write *w = btree_prev_write(b); + + bch_bbio_free(b->bio, b->c); + b->bio = NULL; + btree_complete_write(b, w); + + if (btree_node_dirty(b)) + schedule_delayed_work(&b->work, 30 * HZ); + + closure_return_with_destructor(cl, btree_node_write_unlock); +} + +static void btree_node_write_done(struct closure *cl) +{ + struct btree *b = container_of(cl, struct btree, io); + struct bio_vec *bv; + int n; + + bio_for_each_segment_all(bv, b->bio, n) + __free_page(bv->bv_page); + + __btree_node_write_done(cl); +} + +static void btree_node_write_endio(struct bio *bio, int error) +{ + struct closure *cl = bio->bi_private; + struct btree *b = container_of(cl, struct btree, io); + + if (error) + set_btree_node_io_error(b); + + bch_bbio_count_io_errors(b->c, bio, error, "writing btree"); + closure_put(cl); +} + +static void do_btree_node_write(struct btree *b) +{ + struct closure *cl = &b->io; + struct bset *i = btree_bset_last(b); + BKEY_PADDED(key) k; + + i->version = BCACHE_BSET_VERSION; + i->csum = btree_csum_set(b, i); + + BUG_ON(b->bio); + b->bio = bch_bbio_alloc(b->c); + + b->bio->bi_end_io = btree_node_write_endio; + b->bio->bi_private = cl; + b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA; + b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); + bch_bio_map(b->bio, i); + + /* + * If we're appending to a leaf node, we don't technically need FUA - + * this write just needs to be persisted before the next journal write, + * which will be marked FLUSH|FUA. + * + * Similarly if we're writing a new btree root - the pointer is going to + * be in the next journal entry. + * + * But if we're writing a new btree node (that isn't a root) or + * appending to a non leaf btree node, we need either FUA or a flush + * when we write the parent with the new pointer. FUA is cheaper than a + * flush, and writes appending to leaf nodes aren't blocking anything so + * just make all btree node writes FUA to keep things sane. + */ + + bkey_copy(&k.key, &b->key); + SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + + bset_sector_offset(&b->keys, i)); + + if (!bio_alloc_pages(b->bio, GFP_NOIO)) { + int j; + struct bio_vec *bv; + void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); + + bio_for_each_segment_all(bv, b->bio, j) + memcpy(page_address(bv->bv_page), + base + j * PAGE_SIZE, PAGE_SIZE); + + bch_submit_bbio(b->bio, b->c, &k.key, 0); + + continue_at(cl, btree_node_write_done, NULL); + } else { + b->bio->bi_vcnt = 0; + bch_bio_map(b->bio, i); + + bch_submit_bbio(b->bio, b->c, &k.key, 0); + + closure_sync(cl); + continue_at_nobarrier(cl, __btree_node_write_done, NULL); + } +} + +void __bch_btree_node_write(struct btree *b, struct closure *parent) +{ + struct bset *i = btree_bset_last(b); + + lockdep_assert_held(&b->write_lock); + + trace_bcache_btree_write(b); + + BUG_ON(current->bio_list); + BUG_ON(b->written >= btree_blocks(b)); + BUG_ON(b->written && !i->keys); + BUG_ON(btree_bset_first(b)->seq != i->seq); + bch_check_keys(&b->keys, "writing"); + + cancel_delayed_work(&b->work); + + /* If caller isn't waiting for write, parent refcount is cache set */ + down(&b->io_mutex); + closure_init(&b->io, parent ?: &b->c->cl); + + clear_bit(BTREE_NODE_dirty, &b->flags); + change_bit(BTREE_NODE_write_idx, &b->flags); + + do_btree_node_write(b); + + atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, + &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); + + b->written += set_blocks(i, block_bytes(b->c)); +} + +void bch_btree_node_write(struct btree *b, struct closure *parent) +{ + unsigned nsets = b->keys.nsets; + + lockdep_assert_held(&b->lock); + + __bch_btree_node_write(b, parent); + + /* + * do verify if there was more than one set initially (i.e. we did a + * sort) and we sorted down to a single set: + */ + if (nsets && !b->keys.nsets) + bch_btree_verify(b); + + bch_btree_init_next(b); +} + +static void bch_btree_node_write_sync(struct btree *b) +{ + struct closure cl; + + closure_init_stack(&cl); + + mutex_lock(&b->write_lock); + bch_btree_node_write(b, &cl); + mutex_unlock(&b->write_lock); + + closure_sync(&cl); +} + +static void btree_node_write_work(struct work_struct *w) +{ + struct btree *b = container_of(to_delayed_work(w), struct btree, work); + + mutex_lock(&b->write_lock); + if (btree_node_dirty(b)) + __bch_btree_node_write(b, NULL); + mutex_unlock(&b->write_lock); +} + +static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) +{ + struct bset *i = btree_bset_last(b); + struct btree_write *w = btree_current_write(b); + + lockdep_assert_held(&b->write_lock); + + BUG_ON(!b->written); + BUG_ON(!i->keys); + + if (!btree_node_dirty(b)) + schedule_delayed_work(&b->work, 30 * HZ); + + set_btree_node_dirty(b); + + if (journal_ref) { + if (w->journal && + journal_pin_cmp(b->c, w->journal, journal_ref)) { + atomic_dec_bug(w->journal); + w->journal = NULL; + } + + if (!w->journal) { + w->journal = journal_ref; + atomic_inc(w->journal); + } + } + + /* Force write if set is too big */ + if (set_bytes(i) > PAGE_SIZE - 48 && + !current->bio_list) + bch_btree_node_write(b, NULL); +} + +/* + * Btree in memory cache - allocation/freeing + * mca -> memory cache + */ + +#define mca_reserve(c) (((c->root && c->root->level) \ + ? c->root->level : 1) * 8 + 16) +#define mca_can_free(c) \ + max_t(int, 0, c->btree_cache_used - mca_reserve(c)) + +static void mca_data_free(struct btree *b) +{ + BUG_ON(b->io_mutex.count != 1); + + bch_btree_keys_free(&b->keys); + + b->c->btree_cache_used--; + list_move(&b->list, &b->c->btree_cache_freed); +} + +static void mca_bucket_free(struct btree *b) +{ + BUG_ON(btree_node_dirty(b)); + + b->key.ptr[0] = 0; + hlist_del_init_rcu(&b->hash); + list_move(&b->list, &b->c->btree_cache_freeable); +} + +static unsigned btree_order(struct bkey *k) +{ + return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); +} + +static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) +{ + if (!bch_btree_keys_alloc(&b->keys, + max_t(unsigned, + ilog2(b->c->btree_pages), + btree_order(k)), + gfp)) { + b->c->btree_cache_used++; + list_move(&b->list, &b->c->btree_cache); + } else { + list_move(&b->list, &b->c->btree_cache_freed); + } +} + +static struct btree *mca_bucket_alloc(struct cache_set *c, + struct bkey *k, gfp_t gfp) +{ + struct btree *b = kzalloc(sizeof(struct btree), gfp); + if (!b) + return NULL; + + init_rwsem(&b->lock); + lockdep_set_novalidate_class(&b->lock); + mutex_init(&b->write_lock); + lockdep_set_novalidate_class(&b->write_lock); + INIT_LIST_HEAD(&b->list); + INIT_DELAYED_WORK(&b->work, btree_node_write_work); + b->c = c; + sema_init(&b->io_mutex, 1); + + mca_data_alloc(b, k, gfp); + return b; +} + +static int mca_reap(struct btree *b, unsigned min_order, bool flush) +{ + struct closure cl; + + closure_init_stack(&cl); + lockdep_assert_held(&b->c->bucket_lock); + + if (!down_write_trylock(&b->lock)) + return -ENOMEM; + + BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); + + if (b->keys.page_order < min_order) + goto out_unlock; + + if (!flush) { + if (btree_node_dirty(b)) + goto out_unlock; + + if (down_trylock(&b->io_mutex)) + goto out_unlock; + up(&b->io_mutex); + } + + mutex_lock(&b->write_lock); + if (btree_node_dirty(b)) + __bch_btree_node_write(b, &cl); + mutex_unlock(&b->write_lock); + + closure_sync(&cl); + + /* wait for any in flight btree write */ + down(&b->io_mutex); + up(&b->io_mutex); + + return 0; +out_unlock: + rw_unlock(true, b); + return -ENOMEM; +} + +static unsigned long bch_mca_scan(struct shrinker *shrink, + struct shrink_control *sc) +{ + struct cache_set *c = container_of(shrink, struct cache_set, shrink); + struct btree *b, *t; + unsigned long i, nr = sc->nr_to_scan; + unsigned long freed = 0; + + if (c->shrinker_disabled) + return SHRINK_STOP; + + if (c->btree_cache_alloc_lock) + return SHRINK_STOP; + + /* Return -1 if we can't do anything right now */ + if (sc->gfp_mask & __GFP_IO) + mutex_lock(&c->bucket_lock); + else if (!mutex_trylock(&c->bucket_lock)) + return -1; + + /* + * It's _really_ critical that we don't free too many btree nodes - we + * have to always leave ourselves a reserve. The reserve is how we + * guarantee that allocating memory for a new btree node can always + * succeed, so that inserting keys into the btree can always succeed and + * IO can always make forward progress: + */ + nr /= c->btree_pages; + nr = min_t(unsigned long, nr, mca_can_free(c)); + + i = 0; + list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { + if (freed >= nr) + break; + + if (++i > 3 && + !mca_reap(b, 0, false)) { + mca_data_free(b); + rw_unlock(true, b); + freed++; + } + } + + for (i = 0; (nr--) && i < c->btree_cache_used; i++) { + if (list_empty(&c->btree_cache)) + goto out; + + b = list_first_entry(&c->btree_cache, struct btree, list); + list_rotate_left(&c->btree_cache); + + if (!b->accessed && + !mca_reap(b, 0, false)) { + mca_bucket_free(b); + mca_data_free(b); + rw_unlock(true, b); + freed++; + } else + b->accessed = 0; + } +out: + mutex_unlock(&c->bucket_lock); + return freed; +} + +static unsigned long bch_mca_count(struct shrinker *shrink, + struct shrink_control *sc) +{ + struct cache_set *c = container_of(shrink, struct cache_set, shrink); + + if (c->shrinker_disabled) + return 0; + + if (c->btree_cache_alloc_lock) + return 0; + + return mca_can_free(c) * c->btree_pages; +} + +void bch_btree_cache_free(struct cache_set *c) +{ + struct btree *b; + struct closure cl; + closure_init_stack(&cl); + + if (c->shrink.list.next) + unregister_shrinker(&c->shrink); + + mutex_lock(&c->bucket_lock); + +#ifdef CONFIG_BCACHE_DEBUG + if (c->verify_data) + list_move(&c->verify_data->list, &c->btree_cache); + + free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); +#endif + + list_splice(&c->btree_cache_freeable, + &c->btree_cache); + + while (!list_empty(&c->btree_cache)) { + b = list_first_entry(&c->btree_cache, struct btree, list); + + if (btree_node_dirty(b)) + btree_complete_write(b, btree_current_write(b)); + clear_bit(BTREE_NODE_dirty, &b->flags); + + mca_data_free(b); + } + + while (!list_empty(&c->btree_cache_freed)) { + b = list_first_entry(&c->btree_cache_freed, + struct btree, list); + list_del(&b->list); + cancel_delayed_work_sync(&b->work); + kfree(b); + } + + mutex_unlock(&c->bucket_lock); +} + +int bch_btree_cache_alloc(struct cache_set *c) +{ + unsigned i; + + for (i = 0; i < mca_reserve(c); i++) + if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) + return -ENOMEM; + + list_splice_init(&c->btree_cache, + &c->btree_cache_freeable); + +#ifdef CONFIG_BCACHE_DEBUG + mutex_init(&c->verify_lock); + + c->verify_ondisk = (void *) + __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); + + c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); + + if (c->verify_data && + c->verify_data->keys.set->data) + list_del_init(&c->verify_data->list); + else + c->verify_data = NULL; +#endif + + c->shrink.count_objects = bch_mca_count; + c->shrink.scan_objects = bch_mca_scan; + c->shrink.seeks = 4; + c->shrink.batch = c->btree_pages * 2; + register_shrinker(&c->shrink); + + return 0; +} + +/* Btree in memory cache - hash table */ + +static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) +{ + return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; +} + +static struct btree *mca_find(struct cache_set *c, struct bkey *k) +{ + struct btree *b; + + rcu_read_lock(); + hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) + if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) + goto out; + b = NULL; +out: + rcu_read_unlock(); + return b; +} + +static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) +{ + struct task_struct *old; + + old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); + if (old && old != current) { + if (op) + prepare_to_wait(&c->btree_cache_wait, &op->wait, + TASK_UNINTERRUPTIBLE); + return -EINTR; + } + + return 0; +} + +static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, + struct bkey *k) +{ + struct btree *b; + + trace_bcache_btree_cache_cannibalize(c); + + if (mca_cannibalize_lock(c, op)) + return ERR_PTR(-EINTR); + + list_for_each_entry_reverse(b, &c->btree_cache, list) + if (!mca_reap(b, btree_order(k), false)) + return b; + + list_for_each_entry_reverse(b, &c->btree_cache, list) + if (!mca_reap(b, btree_order(k), true)) + return b; + + WARN(1, "btree cache cannibalize failed\n"); + return ERR_PTR(-ENOMEM); +} + +/* + * We can only have one thread cannibalizing other cached btree nodes at a time, + * or we'll deadlock. We use an open coded mutex to ensure that, which a + * cannibalize_bucket() will take. This means every time we unlock the root of + * the btree, we need to release this lock if we have it held. + */ +static void bch_cannibalize_unlock(struct cache_set *c) +{ + if (c->btree_cache_alloc_lock == current) { + c->btree_cache_alloc_lock = NULL; + wake_up(&c->btree_cache_wait); + } +} + +static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, + struct bkey *k, int level) +{ + struct btree *b; + + BUG_ON(current->bio_list); + + lockdep_assert_held(&c->bucket_lock); + + if (mca_find(c, k)) + return NULL; + + /* btree_free() doesn't free memory; it sticks the node on the end of + * the list. Check if there's any freed nodes there: + */ + list_for_each_entry(b, &c->btree_cache_freeable, list) + if (!mca_reap(b, btree_order(k), false)) + goto out; + + /* We never free struct btree itself, just the memory that holds the on + * disk node. Check the freed list before allocating a new one: + */ + list_for_each_entry(b, &c->btree_cache_freed, list) + if (!mca_reap(b, 0, false)) { + mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); + if (!b->keys.set[0].data) + goto err; + else + goto out; + } + + b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); + if (!b) + goto err; + + BUG_ON(!down_write_trylock(&b->lock)); + if (!b->keys.set->data) + goto err; +out: + BUG_ON(b->io_mutex.count != 1); + + bkey_copy(&b->key, k); + list_move(&b->list, &c->btree_cache); + hlist_del_init_rcu(&b->hash); + hlist_add_head_rcu(&b->hash, mca_hash(c, k)); + + lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); + b->parent = (void *) ~0UL; + b->flags = 0; + b->written = 0; + b->level = level; + + if (!b->level) + bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, + &b->c->expensive_debug_checks); + else + bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, + &b->c->expensive_debug_checks); + + return b; +err: + if (b) + rw_unlock(true, b); + + b = mca_cannibalize(c, op, k); + if (!IS_ERR(b)) + goto out; + + return b; +} + +/** + * bch_btree_node_get - find a btree node in the cache and lock it, reading it + * in from disk if necessary. + * + * If IO is necessary and running under generic_make_request, returns -EAGAIN. + * + * The btree node will have either a read or a write lock held, depending on + * level and op->lock. + */ +struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, + struct bkey *k, int level, bool write) +{ + int i = 0; + struct btree *b; + + BUG_ON(level < 0); +retry: + b = mca_find(c, k); + + if (!b) { + if (current->bio_list) + return ERR_PTR(-EAGAIN); + + mutex_lock(&c->bucket_lock); + b = mca_alloc(c, op, k, level); + mutex_unlock(&c->bucket_lock); + + if (!b) + goto retry; + if (IS_ERR(b)) + return b; + + bch_btree_node_read(b); + + if (!write) + downgrade_write(&b->lock); + } else { + rw_lock(write, b, level); + if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { + rw_unlock(write, b); + goto retry; + } + BUG_ON(b->level != level); + } + + b->accessed = 1; + + for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { + prefetch(b->keys.set[i].tree); + prefetch(b->keys.set[i].data); + } + + for (; i <= b->keys.nsets; i++) + prefetch(b->keys.set[i].data); + + if (btree_node_io_error(b)) { + rw_unlock(write, b); + return ERR_PTR(-EIO); + } + + BUG_ON(!b->written); + + return b; +} + +static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level) +{ + struct btree *b; + + mutex_lock(&c->bucket_lock); + b = mca_alloc(c, NULL, k, level); + mutex_unlock(&c->bucket_lock); + + if (!IS_ERR_OR_NULL(b)) { + bch_btree_node_read(b); + rw_unlock(true, b); + } +} + +/* Btree alloc */ + +static void btree_node_free(struct btree *b) +{ + trace_bcache_btree_node_free(b); + + BUG_ON(b == b->c->root); + + mutex_lock(&b->write_lock); + + if (btree_node_dirty(b)) + btree_complete_write(b, btree_current_write(b)); + clear_bit(BTREE_NODE_dirty, &b->flags); + + mutex_unlock(&b->write_lock); + + cancel_delayed_work(&b->work); + + mutex_lock(&b->c->bucket_lock); + bch_bucket_free(b->c, &b->key); + mca_bucket_free(b); + mutex_unlock(&b->c->bucket_lock); +} + +struct btree *bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, + int level) +{ + BKEY_PADDED(key) k; + struct btree *b = ERR_PTR(-EAGAIN); + + mutex_lock(&c->bucket_lock); +retry: + if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, op != NULL)) + goto err; + + bkey_put(c, &k.key); + SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); + + b = mca_alloc(c, op, &k.key, level); + if (IS_ERR(b)) + goto err_free; + + if (!b) { + cache_bug(c, + "Tried to allocate bucket that was in btree cache"); + goto retry; + } + + b->accessed = 1; + bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); + + mutex_unlock(&c->bucket_lock); + + trace_bcache_btree_node_alloc(b); + return b; +err_free: + bch_bucket_free(c, &k.key); +err: + mutex_unlock(&c->bucket_lock); + + trace_bcache_btree_node_alloc_fail(b); + return b; +} + +static struct btree *btree_node_alloc_replacement(struct btree *b, + struct btree_op *op) +{ + struct btree *n = bch_btree_node_alloc(b->c, op, b->level); + if (!IS_ERR_OR_NULL(n)) { + mutex_lock(&n->write_lock); + bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); + bkey_copy_key(&n->key, &b->key); + mutex_unlock(&n->write_lock); + } + + return n; +} + +static void make_btree_freeing_key(struct btree *b, struct bkey *k) +{ + unsigned i; + + mutex_lock(&b->c->bucket_lock); + + atomic_inc(&b->c->prio_blocked); + + bkey_copy(k, &b->key); + bkey_copy_key(k, &ZERO_KEY); + + for (i = 0; i < KEY_PTRS(k); i++) + SET_PTR_GEN(k, i, + bch_inc_gen(PTR_CACHE(b->c, &b->key, i), + PTR_BUCKET(b->c, &b->key, i))); + + mutex_unlock(&b->c->bucket_lock); +} + +static int btree_check_reserve(struct btree *b, struct btree_op *op) +{ + struct cache_set *c = b->c; + struct cache *ca; + unsigned i, reserve = (c->root->level - b->level) * 2 + 1; + + mutex_lock(&c->bucket_lock); + + for_each_cache(ca, c, i) + if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { + if (op) + prepare_to_wait(&c->btree_cache_wait, &op->wait, + TASK_UNINTERRUPTIBLE); + mutex_unlock(&c->bucket_lock); + return -EINTR; + } + + mutex_unlock(&c->bucket_lock); + + return mca_cannibalize_lock(b->c, op); +} + +/* Garbage collection */ + +static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, + struct bkey *k) +{ + uint8_t stale = 0; + unsigned i; + struct bucket *g; + + /* + * ptr_invalid() can't return true for the keys that mark btree nodes as + * freed, but since ptr_bad() returns true we'll never actually use them + * for anything and thus we don't want mark their pointers here + */ + if (!bkey_cmp(k, &ZERO_KEY)) + return stale; + + for (i = 0; i < KEY_PTRS(k); i++) { + if (!ptr_available(c, k, i)) + continue; + + g = PTR_BUCKET(c, k, i); + + if (gen_after(g->last_gc, PTR_GEN(k, i))) + g->last_gc = PTR_GEN(k, i); + + if (ptr_stale(c, k, i)) { + stale = max(stale, ptr_stale(c, k, i)); + continue; + } + + cache_bug_on(GC_MARK(g) && + (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), + c, "inconsistent ptrs: mark = %llu, level = %i", + GC_MARK(g), level); + + if (level) + SET_GC_MARK(g, GC_MARK_METADATA); + else if (KEY_DIRTY(k)) + SET_GC_MARK(g, GC_MARK_DIRTY); + else if (!GC_MARK(g)) + SET_GC_MARK(g, GC_MARK_RECLAIMABLE); + + /* guard against overflow */ + SET_GC_SECTORS_USED(g, min_t(unsigned, + GC_SECTORS_USED(g) + KEY_SIZE(k), + MAX_GC_SECTORS_USED)); + + BUG_ON(!GC_SECTORS_USED(g)); + } + + return stale; +} + +#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) + +void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) +{ + unsigned i; + + for (i = 0; i < KEY_PTRS(k); i++) + if (ptr_available(c, k, i) && + !ptr_stale(c, k, i)) { + struct bucket *b = PTR_BUCKET(c, k, i); + + b->gen = PTR_GEN(k, i); + + if (level && bkey_cmp(k, &ZERO_KEY)) + b->prio = BTREE_PRIO; + else if (!level && b->prio == BTREE_PRIO) + b->prio = INITIAL_PRIO; + } + + __bch_btree_mark_key(c, level, k); +} + +static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) +{ + uint8_t stale = 0; + unsigned keys = 0, good_keys = 0; + struct bkey *k; + struct btree_iter iter; + struct bset_tree *t; + + gc->nodes++; + + for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { + stale = max(stale, btree_mark_key(b, k)); + keys++; + + if (bch_ptr_bad(&b->keys, k)) + continue; + + gc->key_bytes += bkey_u64s(k); + gc->nkeys++; + good_keys++; + + gc->data += KEY_SIZE(k); + } + + for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) + btree_bug_on(t->size && + bset_written(&b->keys, t) && + bkey_cmp(&b->key, &t->end) < 0, + b, "found short btree key in gc"); + + if (b->c->gc_always_rewrite) + return true; + + if (stale > 10) + return true; + + if ((keys - good_keys) * 2 > keys) + return true; + + return false; +} + +#define GC_MERGE_NODES 4U + +struct gc_merge_info { + struct btree *b; + unsigned keys; +}; + +static int bch_btree_insert_node(struct btree *, struct btree_op *, + struct keylist *, atomic_t *, struct bkey *); + +static int btree_gc_coalesce(struct btree *b, struct btree_op *op, + struct gc_stat *gc, struct gc_merge_info *r) +{ + unsigned i, nodes = 0, keys = 0, blocks; + struct btree *new_nodes[GC_MERGE_NODES]; + struct keylist keylist; + struct closure cl; + struct bkey *k; + + bch_keylist_init(&keylist); + + if (btree_check_reserve(b, NULL)) + return 0; + + memset(new_nodes, 0, sizeof(new_nodes)); + closure_init_stack(&cl); + + while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) + keys += r[nodes++].keys; + + blocks = btree_default_blocks(b->c) * 2 / 3; + + if (nodes < 2 || + __set_blocks(b->keys.set[0].data, keys, + block_bytes(b->c)) > blocks * (nodes - 1)) + return 0; + + for (i = 0; i < nodes; i++) { + new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); + if (IS_ERR_OR_NULL(new_nodes[i])) + goto out_nocoalesce; + } + + /* + * We have to check the reserve here, after we've allocated our new + * nodes, to make sure the insert below will succeed - we also check + * before as an optimization to potentially avoid a bunch of expensive + * allocs/sorts + */ + if (btree_check_reserve(b, NULL)) + goto out_nocoalesce; + + for (i = 0; i < nodes; i++) + mutex_lock(&new_nodes[i]->write_lock); + + for (i = nodes - 1; i > 0; --i) { + struct bset *n1 = btree_bset_first(new_nodes[i]); + struct bset *n2 = btree_bset_first(new_nodes[i - 1]); + struct bkey *k, *last = NULL; + + keys = 0; + + if (i > 1) { + for (k = n2->start; + k < bset_bkey_last(n2); + k = bkey_next(k)) { + if (__set_blocks(n1, n1->keys + keys + + bkey_u64s(k), + block_bytes(b->c)) > blocks) + break; + + last = k; + keys += bkey_u64s(k); + } + } else { + /* + * Last node we're not getting rid of - we're getting + * rid of the node at r[0]. Have to try and fit all of + * the remaining keys into this node; we can't ensure + * they will always fit due to rounding and variable + * length keys (shouldn't be possible in practice, + * though) + */ + if (__set_blocks(n1, n1->keys + n2->keys, + block_bytes(b->c)) > + btree_blocks(new_nodes[i])) + goto out_nocoalesce; + + keys = n2->keys; + /* Take the key of the node we're getting rid of */ + last = &r->b->key; + } + + BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > + btree_blocks(new_nodes[i])); + + if (last) + bkey_copy_key(&new_nodes[i]->key, last); + + memcpy(bset_bkey_last(n1), + n2->start, + (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); + + n1->keys += keys; + r[i].keys = n1->keys; + + memmove(n2->start, + bset_bkey_idx(n2, keys), + (void *) bset_bkey_last(n2) - + (void *) bset_bkey_idx(n2, keys)); + + n2->keys -= keys; + + if (__bch_keylist_realloc(&keylist, + bkey_u64s(&new_nodes[i]->key))) + goto out_nocoalesce; + + bch_btree_node_write(new_nodes[i], &cl); + bch_keylist_add(&keylist, &new_nodes[i]->key); + } + + for (i = 0; i < nodes; i++) + mutex_unlock(&new_nodes[i]->write_lock); + + closure_sync(&cl); + + /* We emptied out this node */ + BUG_ON(btree_bset_first(new_nodes[0])->keys); + btree_node_free(new_nodes[0]); + rw_unlock(true, new_nodes[0]); + + for (i = 0; i < nodes; i++) { + if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) + goto out_nocoalesce; + + make_btree_freeing_key(r[i].b, keylist.top); + bch_keylist_push(&keylist); + } + + bch_btree_insert_node(b, op, &keylist, NULL, NULL); + BUG_ON(!bch_keylist_empty(&keylist)); + + for (i = 0; i < nodes; i++) { + btree_node_free(r[i].b); + rw_unlock(true, r[i].b); + + r[i].b = new_nodes[i]; + } + + memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); + r[nodes - 1].b = ERR_PTR(-EINTR); + + trace_bcache_btree_gc_coalesce(nodes); + gc->nodes--; + + bch_keylist_free(&keylist); + + /* Invalidated our iterator */ + return -EINTR; + +out_nocoalesce: + closure_sync(&cl); + bch_keylist_free(&keylist); + + while ((k = bch_keylist_pop(&keylist))) + if (!bkey_cmp(k, &ZERO_KEY)) + atomic_dec(&b->c->prio_blocked); + + for (i = 0; i < nodes; i++) + if (!IS_ERR_OR_NULL(new_nodes[i])) { + btree_node_free(new_nodes[i]); + rw_unlock(true, new_nodes[i]); + } + return 0; +} + +static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, + struct btree *replace) +{ + struct keylist keys; + struct btree *n; + + if (btree_check_reserve(b, NULL)) + return 0; + + n = btree_node_alloc_replacement(replace, NULL); + + /* recheck reserve after allocating replacement node */ + if (btree_check_reserve(b, NULL)) { + btree_node_free(n); + rw_unlock(true, n); + return 0; + } + + bch_btree_node_write_sync(n); + + bch_keylist_init(&keys); + bch_keylist_add(&keys, &n->key); + + make_btree_freeing_key(replace, keys.top); + bch_keylist_push(&keys); + + bch_btree_insert_node(b, op, &keys, NULL, NULL); + BUG_ON(!bch_keylist_empty(&keys)); + + btree_node_free(replace); + rw_unlock(true, n); + + /* Invalidated our iterator */ + return -EINTR; +} + +static unsigned btree_gc_count_keys(struct btree *b) +{ + struct bkey *k; + struct btree_iter iter; + unsigned ret = 0; + + for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) + ret += bkey_u64s(k); + + return ret; +} + +static int btree_gc_recurse(struct btree *b, struct btree_op *op, + struct closure *writes, struct gc_stat *gc) +{ + int ret = 0; + bool should_rewrite; + struct bkey *k; + struct btree_iter iter; + struct gc_merge_info r[GC_MERGE_NODES]; + struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; + + bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); + + for (i = r; i < r + ARRAY_SIZE(r); i++) + i->b = ERR_PTR(-EINTR); + + while (1) { + k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); + if (k) { + r->b = bch_btree_node_get(b->c, op, k, b->level - 1, + true); + if (IS_ERR(r->b)) { + ret = PTR_ERR(r->b); + break; + } + + r->keys = btree_gc_count_keys(r->b); + + ret = btree_gc_coalesce(b, op, gc, r); + if (ret) + break; + } + + if (!last->b) + break; + + if (!IS_ERR(last->b)) { + should_rewrite = btree_gc_mark_node(last->b, gc); + if (should_rewrite) { + ret = btree_gc_rewrite_node(b, op, last->b); + if (ret) + break; + } + + if (last->b->level) { + ret = btree_gc_recurse(last->b, op, writes, gc); + if (ret) + break; + } + + bkey_copy_key(&b->c->gc_done, &last->b->key); + + /* + * Must flush leaf nodes before gc ends, since replace + * operations aren't journalled + */ + mutex_lock(&last->b->write_lock); + if (btree_node_dirty(last->b)) + bch_btree_node_write(last->b, writes); + mutex_unlock(&last->b->write_lock); + rw_unlock(true, last->b); + } + + memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); + r->b = NULL; + + if (need_resched()) { + ret = -EAGAIN; + break; + } + } + + for (i = r; i < r + ARRAY_SIZE(r); i++) + if (!IS_ERR_OR_NULL(i->b)) { + mutex_lock(&i->b->write_lock); + if (btree_node_dirty(i->b)) + bch_btree_node_write(i->b, writes); + mutex_unlock(&i->b->write_lock); + rw_unlock(true, i->b); + } + + return ret; +} + +static int bch_btree_gc_root(struct btree *b, struct btree_op *op, + struct closure *writes, struct gc_stat *gc) +{ + struct btree *n = NULL; + int ret = 0; + bool should_rewrite; + + should_rewrite = btree_gc_mark_node(b, gc); + if (should_rewrite) { + n = btree_node_alloc_replacement(b, NULL); + + if (!IS_ERR_OR_NULL(n)) { + bch_btree_node_write_sync(n); + + bch_btree_set_root(n); + btree_node_free(b); + rw_unlock(true, n); + + return -EINTR; + } + } + + __bch_btree_mark_key(b->c, b->level + 1, &b->key); + + if (b->level) { + ret = btree_gc_recurse(b, op, writes, gc); + if (ret) + return ret; + } + + bkey_copy_key(&b->c->gc_done, &b->key); + + return ret; +} + +static void btree_gc_start(struct cache_set *c) +{ + struct cache *ca; + struct bucket *b; + unsigned i; + + if (!c->gc_mark_valid) + return; + + mutex_lock(&c->bucket_lock); + + c->gc_mark_valid = 0; + c->gc_done = ZERO_KEY; + + for_each_cache(ca, c, i) + for_each_bucket(b, ca) { + b->last_gc = b->gen; + if (!atomic_read(&b->pin)) { + SET_GC_MARK(b, 0); + SET_GC_SECTORS_USED(b, 0); + } + } + + mutex_unlock(&c->bucket_lock); +} + +static size_t bch_btree_gc_finish(struct cache_set *c) +{ + size_t available = 0; + struct bucket *b; + struct cache *ca; + unsigned i; + + mutex_lock(&c->bucket_lock); + + set_gc_sectors(c); + c->gc_mark_valid = 1; + c->need_gc = 0; + + for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) + SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), + GC_MARK_METADATA); + + /* don't reclaim buckets to which writeback keys point */ + rcu_read_lock(); + for (i = 0; i < c->nr_uuids; i++) { + struct bcache_device *d = c->devices[i]; + struct cached_dev *dc; + struct keybuf_key *w, *n; + unsigned j; + + if (!d || UUID_FLASH_ONLY(&c->uuids[i])) + continue; + dc = container_of(d, struct cached_dev, disk); + + spin_lock(&dc->writeback_keys.lock); + rbtree_postorder_for_each_entry_safe(w, n, + &dc->writeback_keys.keys, node) + for (j = 0; j < KEY_PTRS(&w->key); j++) + SET_GC_MARK(PTR_BUCKET(c, &w->key, j), + GC_MARK_DIRTY); + spin_unlock(&dc->writeback_keys.lock); + } + rcu_read_unlock(); + + for_each_cache(ca, c, i) { + uint64_t *i; + + ca->invalidate_needs_gc = 0; + + for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) + SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); + + for (i = ca->prio_buckets; + i < ca->prio_buckets + prio_buckets(ca) * 2; i++) + SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); + + for_each_bucket(b, ca) { + c->need_gc = max(c->need_gc, bucket_gc_gen(b)); + + if (atomic_read(&b->pin)) + continue; + + BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); + + if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) + available++; + } + } + + mutex_unlock(&c->bucket_lock); + return available; +} + +static void bch_btree_gc(struct cache_set *c) +{ + int ret; + unsigned long available; + struct gc_stat stats; + struct closure writes; + struct btree_op op; + uint64_t start_time = local_clock(); + + trace_bcache_gc_start(c); + + memset(&stats, 0, sizeof(struct gc_stat)); + closure_init_stack(&writes); + bch_btree_op_init(&op, SHRT_MAX); + + btree_gc_start(c); + + do { + ret = btree_root(gc_root, c, &op, &writes, &stats); + closure_sync(&writes); + + if (ret && ret != -EAGAIN) + pr_warn("gc failed!"); + } while (ret); + + available = bch_btree_gc_finish(c); + wake_up_allocators(c); + + bch_time_stats_update(&c->btree_gc_time, start_time); + + stats.key_bytes *= sizeof(uint64_t); + stats.data <<= 9; + stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets; + memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); + + trace_bcache_gc_end(c); + + bch_moving_gc(c); +} + +static int bch_gc_thread(void *arg) +{ + struct cache_set *c = arg; + struct cache *ca; + unsigned i; + + while (1) { +again: + bch_btree_gc(c); + + set_current_state(TASK_INTERRUPTIBLE); + if (kthread_should_stop()) + break; + + mutex_lock(&c->bucket_lock); + + for_each_cache(ca, c, i) + if (ca->invalidate_needs_gc) { + mutex_unlock(&c->bucket_lock); + set_current_state(TASK_RUNNING); + goto again; + } + + mutex_unlock(&c->bucket_lock); + + try_to_freeze(); + schedule(); + } + + return 0; +} + +int bch_gc_thread_start(struct cache_set *c) +{ + c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc"); + if (IS_ERR(c->gc_thread)) + return PTR_ERR(c->gc_thread); + + set_task_state(c->gc_thread, TASK_INTERRUPTIBLE); + return 0; +} + +/* Initial partial gc */ + +static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) +{ + int ret = 0; + struct bkey *k, *p = NULL; + struct btree_iter iter; + + for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) + bch_initial_mark_key(b->c, b->level, k); + + bch_initial_mark_key(b->c, b->level + 1, &b->key); + + if (b->level) { + bch_btree_iter_init(&b->keys, &iter, NULL); + + do { + k = bch_btree_iter_next_filter(&iter, &b->keys, + bch_ptr_bad); + if (k) + btree_node_prefetch(b->c, k, b->level - 1); + + if (p) + ret = btree(check_recurse, p, b, op); + + p = k; + } while (p && !ret); + } + + return ret; +} + +int bch_btree_check(struct cache_set *c) +{ + struct btree_op op; + + bch_btree_op_init(&op, SHRT_MAX); + + return btree_root(check_recurse, c, &op); +} + +void bch_initial_gc_finish(struct cache_set *c) +{ + struct cache *ca; + struct bucket *b; + unsigned i; + + bch_btree_gc_finish(c); + + mutex_lock(&c->bucket_lock); + + /* + * We need to put some unused buckets directly on the prio freelist in + * order to get the allocator thread started - it needs freed buckets in + * order to rewrite the prios and gens, and it needs to rewrite prios + * and gens in order to free buckets. + * + * This is only safe for buckets that have no live data in them, which + * there should always be some of. + */ + for_each_cache(ca, c, i) { + for_each_bucket(b, ca) { + if (fifo_full(&ca->free[RESERVE_PRIO])) + break; + + if (bch_can_invalidate_bucket(ca, b) && + !GC_MARK(b)) { + __bch_invalidate_one_bucket(ca, b); + fifo_push(&ca->free[RESERVE_PRIO], + b - ca->buckets); + } + } + } + + mutex_unlock(&c->bucket_lock); +} + +/* Btree insertion */ + +static bool btree_insert_key(struct btree *b, struct bkey *k, + struct bkey *replace_key) +{ + unsigned status; + + BUG_ON(bkey_cmp(k, &b->key) > 0); + + status = bch_btree_insert_key(&b->keys, k, replace_key); + if (status != BTREE_INSERT_STATUS_NO_INSERT) { + bch_check_keys(&b->keys, "%u for %s", status, + replace_key ? "replace" : "insert"); + + trace_bcache_btree_insert_key(b, k, replace_key != NULL, + status); + return true; + } else + return false; +} + +static size_t insert_u64s_remaining(struct btree *b) +{ + long ret = bch_btree_keys_u64s_remaining(&b->keys); + + /* + * Might land in the middle of an existing extent and have to split it + */ + if (b->keys.ops->is_extents) + ret -= KEY_MAX_U64S; + + return max(ret, 0L); +} + +static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, + struct keylist *insert_keys, + struct bkey *replace_key) +{ + bool ret = false; + int oldsize = bch_count_data(&b->keys); + + while (!bch_keylist_empty(insert_keys)) { + struct bkey *k = insert_keys->keys; + + if (bkey_u64s(k) > insert_u64s_remaining(b)) + break; + + if (bkey_cmp(k, &b->key) <= 0) { + if (!b->level) + bkey_put(b->c, k); + + ret |= btree_insert_key(b, k, replace_key); + bch_keylist_pop_front(insert_keys); + } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { + BKEY_PADDED(key) temp; + bkey_copy(&temp.key, insert_keys->keys); + + bch_cut_back(&b->key, &temp.key); + bch_cut_front(&b->key, insert_keys->keys); + + ret |= btree_insert_key(b, &temp.key, replace_key); + break; + } else { + break; + } + } + + if (!ret) + op->insert_collision = true; + + BUG_ON(!bch_keylist_empty(insert_keys) && b->level); + + BUG_ON(bch_count_data(&b->keys) < oldsize); + return ret; +} + +static int btree_split(struct btree *b, struct btree_op *op, + struct keylist *insert_keys, + struct bkey *replace_key) +{ + bool split; + struct btree *n1, *n2 = NULL, *n3 = NULL; + uint64_t start_time = local_clock(); + struct closure cl; + struct keylist parent_keys; + + closure_init_stack(&cl); + bch_keylist_init(&parent_keys); + + if (btree_check_reserve(b, op)) { + if (!b->level) + return -EINTR; + else + WARN(1, "insufficient reserve for split\n"); + } + + n1 = btree_node_alloc_replacement(b, op); + if (IS_ERR(n1)) + goto err; + + split = set_blocks(btree_bset_first(n1), + block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; + + if (split) { + unsigned keys = 0; + + trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); + + n2 = bch_btree_node_alloc(b->c, op, b->level); + if (IS_ERR(n2)) + goto err_free1; + + if (!b->parent) { + n3 = bch_btree_node_alloc(b->c, op, b->level + 1); + if (IS_ERR(n3)) + goto err_free2; + } + + mutex_lock(&n1->write_lock); + mutex_lock(&n2->write_lock); + + bch_btree_insert_keys(n1, op, insert_keys, replace_key); + + /* + * Has to be a linear search because we don't have an auxiliary + * search tree yet + */ + + while (keys < (btree_bset_first(n1)->keys * 3) / 5) + keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), + keys)); + + bkey_copy_key(&n1->key, + bset_bkey_idx(btree_bset_first(n1), keys)); + keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); + + btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; + btree_bset_first(n1)->keys = keys; + + memcpy(btree_bset_first(n2)->start, + bset_bkey_last(btree_bset_first(n1)), + btree_bset_first(n2)->keys * sizeof(uint64_t)); + + bkey_copy_key(&n2->key, &b->key); + + bch_keylist_add(&parent_keys, &n2->key); + bch_btree_node_write(n2, &cl); + mutex_unlock(&n2->write_lock); + rw_unlock(true, n2); + } else { + trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); + + mutex_lock(&n1->write_lock); + bch_btree_insert_keys(n1, op, insert_keys, replace_key); + } + + bch_keylist_add(&parent_keys, &n1->key); + bch_btree_node_write(n1, &cl); + mutex_unlock(&n1->write_lock); + + if (n3) { + /* Depth increases, make a new root */ + mutex_lock(&n3->write_lock); + bkey_copy_key(&n3->key, &MAX_KEY); + bch_btree_insert_keys(n3, op, &parent_keys, NULL); + bch_btree_node_write(n3, &cl); + mutex_unlock(&n3->write_lock); + + closure_sync(&cl); + bch_btree_set_root(n3); + rw_unlock(true, n3); + } else if (!b->parent) { + /* Root filled up but didn't need to be split */ + closure_sync(&cl); + bch_btree_set_root(n1); + } else { + /* Split a non root node */ + closure_sync(&cl); + make_btree_freeing_key(b, parent_keys.top); + bch_keylist_push(&parent_keys); + + bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); + BUG_ON(!bch_keylist_empty(&parent_keys)); + } + + btree_node_free(b); + rw_unlock(true, n1); + + bch_time_stats_update(&b->c->btree_split_time, start_time); + + return 0; +err_free2: + bkey_put(b->c, &n2->key); + btree_node_free(n2); + rw_unlock(true, n2); +err_free1: + bkey_put(b->c, &n1->key); + btree_node_free(n1); + rw_unlock(true, n1); +err: + WARN(1, "bcache: btree split failed (level %u)", b->level); + + if (n3 == ERR_PTR(-EAGAIN) || + n2 == ERR_PTR(-EAGAIN) || + n1 == ERR_PTR(-EAGAIN)) + return -EAGAIN; + + return -ENOMEM; +} + +static int bch_btree_insert_node(struct btree *b, struct btree_op *op, + struct keylist *insert_keys, + atomic_t *journal_ref, + struct bkey *replace_key) +{ + struct closure cl; + + BUG_ON(b->level && replace_key); + + closure_init_stack(&cl); + + mutex_lock(&b->write_lock); + + if (write_block(b) != btree_bset_last(b) && + b->keys.last_set_unwritten) + bch_btree_init_next(b); /* just wrote a set */ + + if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { + mutex_unlock(&b->write_lock); + goto split; + } + + BUG_ON(write_block(b) != btree_bset_last(b)); + + if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { + if (!b->level) + bch_btree_leaf_dirty(b, journal_ref); + else + bch_btree_node_write(b, &cl); + } + + mutex_unlock(&b->write_lock); + + /* wait for btree node write if necessary, after unlock */ + closure_sync(&cl); + + return 0; +split: + if (current->bio_list) { + op->lock = b->c->root->level + 1; + return -EAGAIN; + } else if (op->lock <= b->c->root->level) { + op->lock = b->c->root->level + 1; + return -EINTR; + } else { + /* Invalidated all iterators */ + int ret = btree_split(b, op, insert_keys, replace_key); + + if (bch_keylist_empty(insert_keys)) + return 0; + else if (!ret) + return -EINTR; + return ret; + } +} + +int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, + struct bkey *check_key) +{ + int ret = -EINTR; + uint64_t btree_ptr = b->key.ptr[0]; + unsigned long seq = b->seq; + struct keylist insert; + bool upgrade = op->lock == -1; + + bch_keylist_init(&insert); + + if (upgrade) { + rw_unlock(false, b); + rw_lock(true, b, b->level); + + if (b->key.ptr[0] != btree_ptr || + b->seq != seq + 1) + goto out; + } + + SET_KEY_PTRS(check_key, 1); + get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); + + SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); + + bch_keylist_add(&insert, check_key); + + ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); + + BUG_ON(!ret && !bch_keylist_empty(&insert)); +out: + if (upgrade) + downgrade_write(&b->lock); + return ret; +} + +struct btree_insert_op { + struct btree_op op; + struct keylist *keys; + atomic_t *journal_ref; + struct bkey *replace_key; +}; + +static int btree_insert_fn(struct btree_op *b_op, struct btree *b) +{ + struct btree_insert_op *op = container_of(b_op, + struct btree_insert_op, op); + + int ret = bch_btree_insert_node(b, &op->op, op->keys, + op->journal_ref, op->replace_key); + if (ret && !bch_keylist_empty(op->keys)) + return ret; + else + return MAP_DONE; +} + +int bch_btree_insert(struct cache_set *c, struct keylist *keys, + atomic_t *journal_ref, struct bkey *replace_key) +{ + struct btree_insert_op op; + int ret = 0; + + BUG_ON(current->bio_list); + BUG_ON(bch_keylist_empty(keys)); + + bch_btree_op_init(&op.op, 0); + op.keys = keys; + op.journal_ref = journal_ref; + op.replace_key = replace_key; + + while (!ret && !bch_keylist_empty(keys)) { + op.op.lock = 0; + ret = bch_btree_map_leaf_nodes(&op.op, c, + &START_KEY(keys->keys), + btree_insert_fn); + } + + if (ret) { + struct bkey *k; + + pr_err("error %i", ret); + + while ((k = bch_keylist_pop(keys))) + bkey_put(c, k); + } else if (op.op.insert_collision) + ret = -ESRCH; + + return ret; +} + +void bch_btree_set_root(struct btree *b) +{ + unsigned i; + struct closure cl; + + closure_init_stack(&cl); + + trace_bcache_btree_set_root(b); + + BUG_ON(!b->written); + + for (i = 0; i < KEY_PTRS(&b->key); i++) + BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); + + mutex_lock(&b->c->bucket_lock); + list_del_init(&b->list); + mutex_unlock(&b->c->bucket_lock); + + b->c->root = b; + + bch_journal_meta(b->c, &cl); + closure_sync(&cl); +} + +/* Map across nodes or keys */ + +static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, + struct bkey *from, + btree_map_nodes_fn *fn, int flags) +{ + int ret = MAP_CONTINUE; + + if (b->level) { + struct bkey *k; + struct btree_iter iter; + + bch_btree_iter_init(&b->keys, &iter, from); + + while ((k = bch_btree_iter_next_filter(&iter, &b->keys, + bch_ptr_bad))) { + ret = btree(map_nodes_recurse, k, b, + op, from, fn, flags); + from = NULL; + + if (ret != MAP_CONTINUE) + return ret; + } + } + + if (!b->level || flags == MAP_ALL_NODES) + ret = fn(op, b); + + return ret; +} + +int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, + struct bkey *from, btree_map_nodes_fn *fn, int flags) +{ + return btree_root(map_nodes_recurse, c, op, from, fn, flags); +} + +static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, + struct bkey *from, btree_map_keys_fn *fn, + int flags) +{ + int ret = MAP_CONTINUE; + struct bkey *k; + struct btree_iter iter; + + bch_btree_iter_init(&b->keys, &iter, from); + + while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { + ret = !b->level + ? fn(op, b, k) + : btree(map_keys_recurse, k, b, op, from, fn, flags); + from = NULL; + + if (ret != MAP_CONTINUE) + return ret; + } + + if (!b->level && (flags & MAP_END_KEY)) + ret = fn(op, b, &KEY(KEY_INODE(&b->key), + KEY_OFFSET(&b->key), 0)); + + return ret; +} + +int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, + struct bkey *from, btree_map_keys_fn *fn, int flags) +{ + return btree_root(map_keys_recurse, c, op, from, fn, flags); +} + +/* Keybuf code */ + +static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) +{ + /* Overlapping keys compare equal */ + if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) + return -1; + if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) + return 1; + return 0; +} + +static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, + struct keybuf_key *r) +{ + return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); +} + +struct refill { + struct btree_op op; + unsigned nr_found; + struct keybuf *buf; + struct bkey *end; + keybuf_pred_fn *pred; +}; + +static int refill_keybuf_fn(struct btree_op *op, struct btree *b, + struct bkey *k) +{ + struct refill *refill = container_of(op, struct refill, op); + struct keybuf *buf = refill->buf; + int ret = MAP_CONTINUE; + + if (bkey_cmp(k, refill->end) >= 0) { + ret = MAP_DONE; + goto out; + } + + if (!KEY_SIZE(k)) /* end key */ + goto out; + + if (refill->pred(buf, k)) { + struct keybuf_key *w; + + spin_lock(&buf->lock); + + w = array_alloc(&buf->freelist); + if (!w) { + spin_unlock(&buf->lock); + return MAP_DONE; + } + + w->private = NULL; + bkey_copy(&w->key, k); + + if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) + array_free(&buf->freelist, w); + else + refill->nr_found++; + + if (array_freelist_empty(&buf->freelist)) + ret = MAP_DONE; + + spin_unlock(&buf->lock); + } +out: + buf->last_scanned = *k; + return ret; +} + +void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, + struct bkey *end, keybuf_pred_fn *pred) +{ + struct bkey start = buf->last_scanned; + struct refill refill; + + cond_resched(); + + bch_btree_op_init(&refill.op, -1); + refill.nr_found = 0; + refill.buf = buf; + refill.end = end; + refill.pred = pred; + + bch_btree_map_keys(&refill.op, c, &buf->last_scanned, + refill_keybuf_fn, MAP_END_KEY); + + trace_bcache_keyscan(refill.nr_found, + KEY_INODE(&start), KEY_OFFSET(&start), + KEY_INODE(&buf->last_scanned), + KEY_OFFSET(&buf->last_scanned)); + + spin_lock(&buf->lock); + + if (!RB_EMPTY_ROOT(&buf->keys)) { + struct keybuf_key *w; + w = RB_FIRST(&buf->keys, struct keybuf_key, node); + buf->start = START_KEY(&w->key); + + w = RB_LAST(&buf->keys, struct keybuf_key, node); + buf->end = w->key; + } else { + buf->start = MAX_KEY; + buf->end = MAX_KEY; + } + + spin_unlock(&buf->lock); +} + +static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) +{ + rb_erase(&w->node, &buf->keys); + array_free(&buf->freelist, w); +} + +void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) +{ + spin_lock(&buf->lock); + __bch_keybuf_del(buf, w); + spin_unlock(&buf->lock); +} + +bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, + struct bkey *end) +{ + bool ret = false; + struct keybuf_key *p, *w, s; + s.key = *start; + + if (bkey_cmp(end, &buf->start) <= 0 || + bkey_cmp(start, &buf->end) >= 0) + return false; + + spin_lock(&buf->lock); + w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); + + while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { + p = w; + w = RB_NEXT(w, node); + + if (p->private) + ret = true; + else + __bch_keybuf_del(buf, p); + } + + spin_unlock(&buf->lock); + return ret; +} + +struct keybuf_key *bch_keybuf_next(struct keybuf *buf) +{ + struct keybuf_key *w; + spin_lock(&buf->lock); + + w = RB_FIRST(&buf->keys, struct keybuf_key, node); + + while (w && w->private) + w = RB_NEXT(w, node); + + if (w) + w->private = ERR_PTR(-EINTR); + + spin_unlock(&buf->lock); + return w; +} + +struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, + struct keybuf *buf, + struct bkey *end, + keybuf_pred_fn *pred) +{ + struct keybuf_key *ret; + + while (1) { + ret = bch_keybuf_next(buf); + if (ret) + break; + + if (bkey_cmp(&buf->last_scanned, end) >= 0) { + pr_debug("scan finished"); + break; + } + + bch_refill_keybuf(c, buf, end, pred); + } + + return ret; +} + +void bch_keybuf_init(struct keybuf *buf) +{ + buf->last_scanned = MAX_KEY; + buf->keys = RB_ROOT; + + spin_lock_init(&buf->lock); + array_allocator_init(&buf->freelist); +} diff --git a/drivers/md/bcache/btree.h b/drivers/md/bcache/btree.h new file mode 100644 index 00000000000..91dfa5e6968 --- /dev/null +++ b/drivers/md/bcache/btree.h @@ -0,0 +1,309 @@ +#ifndef _BCACHE_BTREE_H +#define _BCACHE_BTREE_H + +/* + * THE BTREE: + * + * At a high level, bcache's btree is relatively standard b+ tree. All keys and + * pointers are in the leaves; interior nodes only have pointers to the child + * nodes. + * + * In the interior nodes, a struct bkey always points to a child btree node, and + * the key is the highest key in the child node - except that the highest key in + * an interior node is always MAX_KEY. The size field refers to the size on disk + * of the child node - this would allow us to have variable sized btree nodes + * (handy for keeping the depth of the btree 1 by expanding just the root). + * + * Btree nodes are themselves log structured, but this is hidden fairly + * thoroughly. Btree nodes on disk will in practice have extents that overlap + * (because they were written at different times), but in memory we never have + * overlapping extents - when we read in a btree node from disk, the first thing + * we do is resort all the sets of keys with a mergesort, and in the same pass + * we check for overlapping extents and adjust them appropriately. + * + * struct btree_op is a central interface to the btree code. It's used for + * specifying read vs. write locking, and the embedded closure is used for + * waiting on IO or reserve memory. + * + * BTREE CACHE: + * + * Btree nodes are cached in memory; traversing the btree might require reading + * in btree nodes which is handled mostly transparently. + * + * bch_btree_node_get() looks up a btree node in the cache and reads it in from + * disk if necessary. This function is almost never called directly though - the + * btree() macro is used to get a btree node, call some function on it, and + * unlock the node after the function returns. + * + * The root is special cased - it's taken out of the cache's lru (thus pinning + * it in memory), so we can find the root of the btree by just dereferencing a + * pointer instead of looking it up in the cache. This makes locking a bit + * tricky, since the root pointer is protected by the lock in the btree node it + * points to - the btree_root() macro handles this. + * + * In various places we must be able to allocate memory for multiple btree nodes + * in order to make forward progress. To do this we use the btree cache itself + * as a reserve; if __get_free_pages() fails, we'll find a node in the btree + * cache we can reuse. We can't allow more than one thread to be doing this at a + * time, so there's a lock, implemented by a pointer to the btree_op closure - + * this allows the btree_root() macro to implicitly release this lock. + * + * BTREE IO: + * + * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles + * this. + * + * For writing, we have two btree_write structs embeddded in struct btree - one + * write in flight, and one being set up, and we toggle between them. + * + * Writing is done with a single function - bch_btree_write() really serves two + * different purposes and should be broken up into two different functions. When + * passing now = false, it merely indicates that the node is now dirty - calling + * it ensures that the dirty keys will be written at some point in the future. + * + * When passing now = true, bch_btree_write() causes a write to happen + * "immediately" (if there was already a write in flight, it'll cause the write + * to happen as soon as the previous write completes). It returns immediately + * though - but it takes a refcount on the closure in struct btree_op you passed + * to it, so a closure_sync() later can be used to wait for the write to + * complete. + * + * This is handy because btree_split() and garbage collection can issue writes + * in parallel, reducing the amount of time they have to hold write locks. + * + * LOCKING: + * + * When traversing the btree, we may need write locks starting at some level - + * inserting a key into the btree will typically only require a write lock on + * the leaf node. + * + * This is specified with the lock field in struct btree_op; lock = 0 means we + * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get() + * checks this field and returns the node with the appropriate lock held. + * + * If, after traversing the btree, the insertion code discovers it has to split + * then it must restart from the root and take new locks - to do this it changes + * the lock field and returns -EINTR, which causes the btree_root() macro to + * loop. + * + * Handling cache misses require a different mechanism for upgrading to a write + * lock. We do cache lookups with only a read lock held, but if we get a cache + * miss and we wish to insert this data into the cache, we have to insert a + * placeholder key to detect races - otherwise, we could race with a write and + * overwrite the data that was just written to the cache with stale data from + * the backing device. + * + * For this we use a sequence number that write locks and unlocks increment - to + * insert the check key it unlocks the btree node and then takes a write lock, + * and fails if the sequence number doesn't match. + */ + +#include "bset.h" +#include "debug.h" + +struct btree_write { + atomic_t *journal; + + /* If btree_split() frees a btree node, it writes a new pointer to that + * btree node indicating it was freed; it takes a refcount on + * c->prio_blocked because we can't write the gens until the new + * pointer is on disk. This allows btree_write_endio() to release the + * refcount that btree_split() took. + */ + int prio_blocked; +}; + +struct btree { + /* Hottest entries first */ + struct hlist_node hash; + + /* Key/pointer for this btree node */ + BKEY_PADDED(key); + + /* Single bit - set when accessed, cleared by shrinker */ + unsigned long accessed; + unsigned long seq; + struct rw_semaphore lock; + struct cache_set *c; + struct btree *parent; + + struct mutex write_lock; + + unsigned long flags; + uint16_t written; /* would be nice to kill */ + uint8_t level; + + struct btree_keys keys; + + /* For outstanding btree writes, used as a lock - protects write_idx */ + struct closure io; + struct semaphore io_mutex; + + struct list_head list; + struct delayed_work work; + + struct btree_write writes[2]; + struct bio *bio; +}; + +#define BTREE_FLAG(flag) \ +static inline bool btree_node_ ## flag(struct btree *b) \ +{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \ + \ +static inline void set_btree_node_ ## flag(struct btree *b) \ +{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \ + +enum btree_flags { + BTREE_NODE_io_error, + BTREE_NODE_dirty, + BTREE_NODE_write_idx, +}; + +BTREE_FLAG(io_error); +BTREE_FLAG(dirty); +BTREE_FLAG(write_idx); + +static inline struct btree_write *btree_current_write(struct btree *b) +{ + return b->writes + btree_node_write_idx(b); +} + +static inline struct btree_write *btree_prev_write(struct btree *b) +{ + return b->writes + (btree_node_write_idx(b) ^ 1); +} + +static inline struct bset *btree_bset_first(struct btree *b) +{ + return b->keys.set->data; +} + +static inline struct bset *btree_bset_last(struct btree *b) +{ + return bset_tree_last(&b->keys)->data; +} + +static inline unsigned bset_block_offset(struct btree *b, struct bset *i) +{ + return bset_sector_offset(&b->keys, i) >> b->c->block_bits; +} + +static inline void set_gc_sectors(struct cache_set *c) +{ + atomic_set(&c->sectors_to_gc, c->sb.bucket_size * c->nbuckets / 16); +} + +void bkey_put(struct cache_set *c, struct bkey *k); + +/* Looping macros */ + +#define for_each_cached_btree(b, c, iter) \ + for (iter = 0; \ + iter < ARRAY_SIZE((c)->bucket_hash); \ + iter++) \ + hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash) + +/* Recursing down the btree */ + +struct btree_op { + /* for waiting on btree reserve in btree_split() */ + wait_queue_t wait; + + /* Btree level at which we start taking write locks */ + short lock; + + unsigned insert_collision:1; +}; + +static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level) +{ + memset(op, 0, sizeof(struct btree_op)); + init_wait(&op->wait); + op->lock = write_lock_level; +} + +static inline void rw_lock(bool w, struct btree *b, int level) +{ + w ? down_write_nested(&b->lock, level + 1) + : down_read_nested(&b->lock, level + 1); + if (w) + b->seq++; +} + +static inline void rw_unlock(bool w, struct btree *b) +{ + if (w) + b->seq++; + (w ? up_write : up_read)(&b->lock); +} + +void bch_btree_node_read_done(struct btree *); +void __bch_btree_node_write(struct btree *, struct closure *); +void bch_btree_node_write(struct btree *, struct closure *); + +void bch_btree_set_root(struct btree *); +struct btree *bch_btree_node_alloc(struct cache_set *, struct btree_op *, int); +struct btree *bch_btree_node_get(struct cache_set *, struct btree_op *, + struct bkey *, int, bool); + +int bch_btree_insert_check_key(struct btree *, struct btree_op *, + struct bkey *); +int bch_btree_insert(struct cache_set *, struct keylist *, + atomic_t *, struct bkey *); + +int bch_gc_thread_start(struct cache_set *); +void bch_initial_gc_finish(struct cache_set *); +void bch_moving_gc(struct cache_set *); +int bch_btree_check(struct cache_set *); +void bch_initial_mark_key(struct cache_set *, int, struct bkey *); + +static inline void wake_up_gc(struct cache_set *c) +{ + if (c->gc_thread) + wake_up_process(c->gc_thread); +} + +#define MAP_DONE 0 +#define MAP_CONTINUE 1 + +#define MAP_ALL_NODES 0 +#define MAP_LEAF_NODES 1 + +#define MAP_END_KEY 1 + +typedef int (btree_map_nodes_fn)(struct btree_op *, struct btree *); +int __bch_btree_map_nodes(struct btree_op *, struct cache_set *, + struct bkey *, btree_map_nodes_fn *, int); + +static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, + struct bkey *from, btree_map_nodes_fn *fn) +{ + return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES); +} + +static inline int bch_btree_map_leaf_nodes(struct btree_op *op, + struct cache_set *c, + struct bkey *from, + btree_map_nodes_fn *fn) +{ + return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES); +} + +typedef int (btree_map_keys_fn)(struct btree_op *, struct btree *, + struct bkey *); +int bch_btree_map_keys(struct btree_op *, struct cache_set *, + struct bkey *, btree_map_keys_fn *, int); + +typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *); + +void bch_keybuf_init(struct keybuf *); +void bch_refill_keybuf(struct cache_set *, struct keybuf *, + struct bkey *, keybuf_pred_fn *); +bool bch_keybuf_check_overlapping(struct keybuf *, struct bkey *, + struct bkey *); +void bch_keybuf_del(struct keybuf *, struct keybuf_key *); +struct keybuf_key *bch_keybuf_next(struct keybuf *); +struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *, struct keybuf *, + struct bkey *, keybuf_pred_fn *); + +#endif diff --git a/drivers/md/bcache/closure.c b/drivers/md/bcache/closure.c new file mode 100644 index 00000000000..7a228de95fd --- /dev/null +++ b/drivers/md/bcache/closure.c @@ -0,0 +1,222 @@ +/* + * Asynchronous refcounty things + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include <linux/debugfs.h> +#include <linux/module.h> +#include <linux/seq_file.h> + +#include "closure.h" + +static inline void closure_put_after_sub(struct closure *cl, int flags) +{ + int r = flags & CLOSURE_REMAINING_MASK; + + BUG_ON(flags & CLOSURE_GUARD_MASK); + BUG_ON(!r && (flags & ~CLOSURE_DESTRUCTOR)); + + /* Must deliver precisely one wakeup */ + if (r == 1 && (flags & CLOSURE_SLEEPING)) + wake_up_process(cl->task); + + if (!r) { + if (cl->fn && !(flags & CLOSURE_DESTRUCTOR)) { + atomic_set(&cl->remaining, + CLOSURE_REMAINING_INITIALIZER); + closure_queue(cl); + } else { + struct closure *parent = cl->parent; + closure_fn *destructor = cl->fn; + + closure_debug_destroy(cl); + + if (destructor) + destructor(cl); + + if (parent) + closure_put(parent); + } + } +} + +/* For clearing flags with the same atomic op as a put */ +void closure_sub(struct closure *cl, int v) +{ + closure_put_after_sub(cl, atomic_sub_return(v, &cl->remaining)); +} +EXPORT_SYMBOL(closure_sub); + +/** + * closure_put - decrement a closure's refcount + */ +void closure_put(struct closure *cl) +{ + closure_put_after_sub(cl, atomic_dec_return(&cl->remaining)); +} +EXPORT_SYMBOL(closure_put); + +/** + * closure_wake_up - wake up all closures on a wait list, without memory barrier + */ +void __closure_wake_up(struct closure_waitlist *wait_list) +{ + struct llist_node *list; + struct closure *cl; + struct llist_node *reverse = NULL; + + list = llist_del_all(&wait_list->list); + + /* We first reverse the list to preserve FIFO ordering and fairness */ + + while (list) { + struct llist_node *t = list; + list = llist_next(list); + + t->next = reverse; + reverse = t; + } + + /* Then do the wakeups */ + + while (reverse) { + cl = container_of(reverse, struct closure, list); + reverse = llist_next(reverse); + + closure_set_waiting(cl, 0); + closure_sub(cl, CLOSURE_WAITING + 1); + } +} +EXPORT_SYMBOL(__closure_wake_up); + +/** + * closure_wait - add a closure to a waitlist + * + * @waitlist will own a ref on @cl, which will be released when + * closure_wake_up() is called on @waitlist. + * + */ +bool closure_wait(struct closure_waitlist *waitlist, struct closure *cl) +{ + if (atomic_read(&cl->remaining) & CLOSURE_WAITING) + return false; + + closure_set_waiting(cl, _RET_IP_); + atomic_add(CLOSURE_WAITING + 1, &cl->remaining); + llist_add(&cl->list, &waitlist->list); + + return true; +} +EXPORT_SYMBOL(closure_wait); + +/** + * closure_sync - sleep until a closure a closure has nothing left to wait on + * + * Sleeps until the refcount hits 1 - the thread that's running the closure owns + * the last refcount. + */ +void closure_sync(struct closure *cl) +{ + while (1) { + __closure_start_sleep(cl); + closure_set_ret_ip(cl); + + if ((atomic_read(&cl->remaining) & + CLOSURE_REMAINING_MASK) == 1) + break; + + schedule(); + } + + __closure_end_sleep(cl); +} +EXPORT_SYMBOL(closure_sync); + +#ifdef CONFIG_BCACHE_CLOSURES_DEBUG + +static LIST_HEAD(closure_list); +static DEFINE_SPINLOCK(closure_list_lock); + +void closure_debug_create(struct closure *cl) +{ + unsigned long flags; + + BUG_ON(cl->magic == CLOSURE_MAGIC_ALIVE); + cl->magic = CLOSURE_MAGIC_ALIVE; + + spin_lock_irqsave(&closure_list_lock, flags); + list_add(&cl->all, &closure_list); + spin_unlock_irqrestore(&closure_list_lock, flags); +} +EXPORT_SYMBOL(closure_debug_create); + +void closure_debug_destroy(struct closure *cl) +{ + unsigned long flags; + + BUG_ON(cl->magic != CLOSURE_MAGIC_ALIVE); + cl->magic = CLOSURE_MAGIC_DEAD; + + spin_lock_irqsave(&closure_list_lock, flags); + list_del(&cl->all); + spin_unlock_irqrestore(&closure_list_lock, flags); +} +EXPORT_SYMBOL(closure_debug_destroy); + +static struct dentry *debug; + +#define work_data_bits(work) ((unsigned long *)(&(work)->data)) + +static int debug_seq_show(struct seq_file *f, void *data) +{ + struct closure *cl; + spin_lock_irq(&closure_list_lock); + + list_for_each_entry(cl, &closure_list, all) { + int r = atomic_read(&cl->remaining); + + seq_printf(f, "%p: %pF -> %pf p %p r %i ", + cl, (void *) cl->ip, cl->fn, cl->parent, + r & CLOSURE_REMAINING_MASK); + + seq_printf(f, "%s%s%s%s\n", + test_bit(WORK_STRUCT_PENDING, + work_data_bits(&cl->work)) ? "Q" : "", + r & CLOSURE_RUNNING ? "R" : "", + r & CLOSURE_STACK ? "S" : "", + r & CLOSURE_SLEEPING ? "Sl" : ""); + + if (r & CLOSURE_WAITING) + seq_printf(f, " W %pF\n", + (void *) cl->waiting_on); + + seq_printf(f, "\n"); + } + + spin_unlock_irq(&closure_list_lock); + return 0; +} + +static int debug_seq_open(struct inode *inode, struct file *file) +{ + return single_open(file, debug_seq_show, NULL); +} + +static const struct file_operations debug_ops = { + .owner = THIS_MODULE, + .open = debug_seq_open, + .read = seq_read, + .release = single_release +}; + +void __init closure_debug_init(void) +{ + debug = debugfs_create_file("closures", 0400, NULL, NULL, &debug_ops); +} + +#endif + +MODULE_AUTHOR("Kent Overstreet <koverstreet@google.com>"); +MODULE_LICENSE("GPL"); diff --git a/drivers/md/bcache/closure.h b/drivers/md/bcache/closure.h new file mode 100644 index 00000000000..a08e3eeac3c --- /dev/null +++ b/drivers/md/bcache/closure.h @@ -0,0 +1,386 @@ +#ifndef _LINUX_CLOSURE_H +#define _LINUX_CLOSURE_H + +#include <linux/llist.h> +#include <linux/sched.h> +#include <linux/workqueue.h> + +/* + * Closure is perhaps the most overused and abused term in computer science, but + * since I've been unable to come up with anything better you're stuck with it + * again. + * + * What are closures? + * + * They embed a refcount. The basic idea is they count "things that are in + * progress" - in flight bios, some other thread that's doing something else - + * anything you might want to wait on. + * + * The refcount may be manipulated with closure_get() and closure_put(). + * closure_put() is where many of the interesting things happen, when it causes + * the refcount to go to 0. + * + * Closures can be used to wait on things both synchronously and asynchronously, + * and synchronous and asynchronous use can be mixed without restriction. To + * wait synchronously, use closure_sync() - you will sleep until your closure's + * refcount hits 1. + * + * To wait asynchronously, use + * continue_at(cl, next_function, workqueue); + * + * passing it, as you might expect, the function to run when nothing is pending + * and the workqueue to run that function out of. + * + * continue_at() also, critically, is a macro that returns the calling function. + * There's good reason for this. + * + * To use safely closures asynchronously, they must always have a refcount while + * they are running owned by the thread that is running them. Otherwise, suppose + * you submit some bios and wish to have a function run when they all complete: + * + * foo_endio(struct bio *bio, int error) + * { + * closure_put(cl); + * } + * + * closure_init(cl); + * + * do_stuff(); + * closure_get(cl); + * bio1->bi_endio = foo_endio; + * bio_submit(bio1); + * + * do_more_stuff(); + * closure_get(cl); + * bio2->bi_endio = foo_endio; + * bio_submit(bio2); + * + * continue_at(cl, complete_some_read, system_wq); + * + * If closure's refcount started at 0, complete_some_read() could run before the + * second bio was submitted - which is almost always not what you want! More + * importantly, it wouldn't be possible to say whether the original thread or + * complete_some_read()'s thread owned the closure - and whatever state it was + * associated with! + * + * So, closure_init() initializes a closure's refcount to 1 - and when a + * closure_fn is run, the refcount will be reset to 1 first. + * + * Then, the rule is - if you got the refcount with closure_get(), release it + * with closure_put() (i.e, in a bio->bi_endio function). If you have a refcount + * on a closure because you called closure_init() or you were run out of a + * closure - _always_ use continue_at(). Doing so consistently will help + * eliminate an entire class of particularly pernicious races. + * + * Lastly, you might have a wait list dedicated to a specific event, and have no + * need for specifying the condition - you just want to wait until someone runs + * closure_wake_up() on the appropriate wait list. In that case, just use + * closure_wait(). It will return either true or false, depending on whether the + * closure was already on a wait list or not - a closure can only be on one wait + * list at a time. + * + * Parents: + * + * closure_init() takes two arguments - it takes the closure to initialize, and + * a (possibly null) parent. + * + * If parent is non null, the new closure will have a refcount for its lifetime; + * a closure is considered to be "finished" when its refcount hits 0 and the + * function to run is null. Hence + * + * continue_at(cl, NULL, NULL); + * + * returns up the (spaghetti) stack of closures, precisely like normal return + * returns up the C stack. continue_at() with non null fn is better thought of + * as doing a tail call. + * + * All this implies that a closure should typically be embedded in a particular + * struct (which its refcount will normally control the lifetime of), and that + * struct can very much be thought of as a stack frame. + */ + +struct closure; +typedef void (closure_fn) (struct closure *); + +struct closure_waitlist { + struct llist_head list; +}; + +enum closure_state { + /* + * CLOSURE_WAITING: Set iff the closure is on a waitlist. Must be set by + * the thread that owns the closure, and cleared by the thread that's + * waking up the closure. + * + * CLOSURE_SLEEPING: Must be set before a thread uses a closure to sleep + * - indicates that cl->task is valid and closure_put() may wake it up. + * Only set or cleared by the thread that owns the closure. + * + * The rest are for debugging and don't affect behaviour: + * + * CLOSURE_RUNNING: Set when a closure is running (i.e. by + * closure_init() and when closure_put() runs then next function), and + * must be cleared before remaining hits 0. Primarily to help guard + * against incorrect usage and accidentally transferring references. + * continue_at() and closure_return() clear it for you, if you're doing + * something unusual you can use closure_set_dead() which also helps + * annotate where references are being transferred. + * + * CLOSURE_STACK: Sanity check - remaining should never hit 0 on a + * closure with this flag set + */ + + CLOSURE_BITS_START = (1 << 23), + CLOSURE_DESTRUCTOR = (1 << 23), + CLOSURE_WAITING = (1 << 25), + CLOSURE_SLEEPING = (1 << 27), + CLOSURE_RUNNING = (1 << 29), + CLOSURE_STACK = (1 << 31), +}; + +#define CLOSURE_GUARD_MASK \ + ((CLOSURE_DESTRUCTOR|CLOSURE_WAITING|CLOSURE_SLEEPING| \ + CLOSURE_RUNNING|CLOSURE_STACK) << 1) + +#define CLOSURE_REMAINING_MASK (CLOSURE_BITS_START - 1) +#define CLOSURE_REMAINING_INITIALIZER (1|CLOSURE_RUNNING) + +struct closure { + union { + struct { + struct workqueue_struct *wq; + struct task_struct *task; + struct llist_node list; + closure_fn *fn; + }; + struct work_struct work; + }; + + struct closure *parent; + + atomic_t remaining; + +#ifdef CONFIG_BCACHE_CLOSURES_DEBUG +#define CLOSURE_MAGIC_DEAD 0xc054dead +#define CLOSURE_MAGIC_ALIVE 0xc054a11e + + unsigned magic; + struct list_head all; + unsigned long ip; + unsigned long waiting_on; +#endif +}; + +void closure_sub(struct closure *cl, int v); +void closure_put(struct closure *cl); +void __closure_wake_up(struct closure_waitlist *list); +bool closure_wait(struct closure_waitlist *list, struct closure *cl); +void closure_sync(struct closure *cl); + +#ifdef CONFIG_BCACHE_CLOSURES_DEBUG + +void closure_debug_init(void); +void closure_debug_create(struct closure *cl); +void closure_debug_destroy(struct closure *cl); + +#else + +static inline void closure_debug_init(void) {} +static inline void closure_debug_create(struct closure *cl) {} +static inline void closure_debug_destroy(struct closure *cl) {} + +#endif + +static inline void closure_set_ip(struct closure *cl) +{ +#ifdef CONFIG_BCACHE_CLOSURES_DEBUG + cl->ip = _THIS_IP_; +#endif +} + +static inline void closure_set_ret_ip(struct closure *cl) +{ +#ifdef CONFIG_BCACHE_CLOSURES_DEBUG + cl->ip = _RET_IP_; +#endif +} + +static inline void closure_set_waiting(struct closure *cl, unsigned long f) +{ +#ifdef CONFIG_BCACHE_CLOSURES_DEBUG + cl->waiting_on = f; +#endif +} + +static inline void __closure_end_sleep(struct closure *cl) +{ + __set_current_state(TASK_RUNNING); + + if (atomic_read(&cl->remaining) & CLOSURE_SLEEPING) + atomic_sub(CLOSURE_SLEEPING, &cl->remaining); +} + +static inline void __closure_start_sleep(struct closure *cl) +{ + closure_set_ip(cl); + cl->task = current; + set_current_state(TASK_UNINTERRUPTIBLE); + + if (!(atomic_read(&cl->remaining) & CLOSURE_SLEEPING)) + atomic_add(CLOSURE_SLEEPING, &cl->remaining); +} + +static inline void closure_set_stopped(struct closure *cl) +{ + atomic_sub(CLOSURE_RUNNING, &cl->remaining); +} + +static inline void set_closure_fn(struct closure *cl, closure_fn *fn, + struct workqueue_struct *wq) +{ + BUG_ON(object_is_on_stack(cl)); + closure_set_ip(cl); + cl->fn = fn; + cl->wq = wq; + /* between atomic_dec() in closure_put() */ + smp_mb__before_atomic(); +} + +static inline void closure_queue(struct closure *cl) +{ + struct workqueue_struct *wq = cl->wq; + if (wq) { + INIT_WORK(&cl->work, cl->work.func); + BUG_ON(!queue_work(wq, &cl->work)); + } else + cl->fn(cl); +} + +/** + * closure_get - increment a closure's refcount + */ +static inline void closure_get(struct closure *cl) +{ +#ifdef CONFIG_BCACHE_CLOSURES_DEBUG + BUG_ON((atomic_inc_return(&cl->remaining) & + CLOSURE_REMAINING_MASK) <= 1); +#else + atomic_inc(&cl->remaining); +#endif +} + +/** + * closure_init - Initialize a closure, setting the refcount to 1 + * @cl: closure to initialize + * @parent: parent of the new closure. cl will take a refcount on it for its + * lifetime; may be NULL. + */ +static inline void closure_init(struct closure *cl, struct closure *parent) +{ + memset(cl, 0, sizeof(struct closure)); + cl->parent = parent; + if (parent) + closure_get(parent); + + atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER); + + closure_debug_create(cl); + closure_set_ip(cl); +} + +static inline void closure_init_stack(struct closure *cl) +{ + memset(cl, 0, sizeof(struct closure)); + atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER|CLOSURE_STACK); +} + +/** + * closure_wake_up - wake up all closures on a wait list. + */ +static inline void closure_wake_up(struct closure_waitlist *list) +{ + smp_mb(); + __closure_wake_up(list); +} + +/** + * continue_at - jump to another function with barrier + * + * After @cl is no longer waiting on anything (i.e. all outstanding refs have + * been dropped with closure_put()), it will resume execution at @fn running out + * of @wq (or, if @wq is NULL, @fn will be called by closure_put() directly). + * + * NOTE: This macro expands to a return in the calling function! + * + * This is because after calling continue_at() you no longer have a ref on @cl, + * and whatever @cl owns may be freed out from under you - a running closure fn + * has a ref on its own closure which continue_at() drops. + */ +#define continue_at(_cl, _fn, _wq) \ +do { \ + set_closure_fn(_cl, _fn, _wq); \ + closure_sub(_cl, CLOSURE_RUNNING + 1); \ + return; \ +} while (0) + +/** + * closure_return - finish execution of a closure + * + * This is used to indicate that @cl is finished: when all outstanding refs on + * @cl have been dropped @cl's ref on its parent closure (as passed to + * closure_init()) will be dropped, if one was specified - thus this can be + * thought of as returning to the parent closure. + */ +#define closure_return(_cl) continue_at((_cl), NULL, NULL) + +/** + * continue_at_nobarrier - jump to another function without barrier + * + * Causes @fn to be executed out of @cl, in @wq context (or called directly if + * @wq is NULL). + * + * NOTE: like continue_at(), this macro expands to a return in the caller! + * + * The ref the caller of continue_at_nobarrier() had on @cl is now owned by @fn, + * thus it's not safe to touch anything protected by @cl after a + * continue_at_nobarrier(). + */ +#define continue_at_nobarrier(_cl, _fn, _wq) \ +do { \ + set_closure_fn(_cl, _fn, _wq); \ + closure_queue(_cl); \ + return; \ +} while (0) + +/** + * closure_return - finish execution of a closure, with destructor + * + * Works like closure_return(), except @destructor will be called when all + * outstanding refs on @cl have been dropped; @destructor may be used to safely + * free the memory occupied by @cl, and it is called with the ref on the parent + * closure still held - so @destructor could safely return an item to a + * freelist protected by @cl's parent. + */ +#define closure_return_with_destructor(_cl, _destructor) \ +do { \ + set_closure_fn(_cl, _destructor, NULL); \ + closure_sub(_cl, CLOSURE_RUNNING - CLOSURE_DESTRUCTOR + 1); \ + return; \ +} while (0) + +/** + * closure_call - execute @fn out of a new, uninitialized closure + * + * Typically used when running out of one closure, and we want to run @fn + * asynchronously out of a new closure - @parent will then wait for @cl to + * finish. + */ +static inline void closure_call(struct closure *cl, closure_fn fn, + struct workqueue_struct *wq, + struct closure *parent) +{ + closure_init(cl, parent); + continue_at_nobarrier(cl, fn, wq); +} + +#endif /* _LINUX_CLOSURE_H */ diff --git a/drivers/md/bcache/debug.c b/drivers/md/bcache/debug.c new file mode 100644 index 00000000000..8b1f1d5c181 --- /dev/null +++ b/drivers/md/bcache/debug.c @@ -0,0 +1,252 @@ +/* + * Assorted bcache debug code + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" +#include "extents.h" + +#include <linux/console.h> +#include <linux/debugfs.h> +#include <linux/module.h> +#include <linux/random.h> +#include <linux/seq_file.h> + +static struct dentry *debug; + +#ifdef CONFIG_BCACHE_DEBUG + +#define for_each_written_bset(b, start, i) \ + for (i = (start); \ + (void *) i < (void *) (start) + (KEY_SIZE(&b->key) << 9) &&\ + i->seq == (start)->seq; \ + i = (void *) i + set_blocks(i, block_bytes(b->c)) * \ + block_bytes(b->c)) + +void bch_btree_verify(struct btree *b) +{ + struct btree *v = b->c->verify_data; + struct bset *ondisk, *sorted, *inmemory; + struct bio *bio; + + if (!b->c->verify || !b->c->verify_ondisk) + return; + + down(&b->io_mutex); + mutex_lock(&b->c->verify_lock); + + ondisk = b->c->verify_ondisk; + sorted = b->c->verify_data->keys.set->data; + inmemory = b->keys.set->data; + + bkey_copy(&v->key, &b->key); + v->written = 0; + v->level = b->level; + v->keys.ops = b->keys.ops; + + bio = bch_bbio_alloc(b->c); + bio->bi_bdev = PTR_CACHE(b->c, &b->key, 0)->bdev; + bio->bi_iter.bi_sector = PTR_OFFSET(&b->key, 0); + bio->bi_iter.bi_size = KEY_SIZE(&v->key) << 9; + bch_bio_map(bio, sorted); + + submit_bio_wait(REQ_META|READ_SYNC, bio); + bch_bbio_free(bio, b->c); + + memcpy(ondisk, sorted, KEY_SIZE(&v->key) << 9); + + bch_btree_node_read_done(v); + sorted = v->keys.set->data; + + if (inmemory->keys != sorted->keys || + memcmp(inmemory->start, + sorted->start, + (void *) bset_bkey_last(inmemory) - (void *) inmemory->start)) { + struct bset *i; + unsigned j; + + console_lock(); + + printk(KERN_ERR "*** in memory:\n"); + bch_dump_bset(&b->keys, inmemory, 0); + + printk(KERN_ERR "*** read back in:\n"); + bch_dump_bset(&v->keys, sorted, 0); + + for_each_written_bset(b, ondisk, i) { + unsigned block = ((void *) i - (void *) ondisk) / + block_bytes(b->c); + + printk(KERN_ERR "*** on disk block %u:\n", block); + bch_dump_bset(&b->keys, i, block); + } + + printk(KERN_ERR "*** block %zu not written\n", + ((void *) i - (void *) ondisk) / block_bytes(b->c)); + + for (j = 0; j < inmemory->keys; j++) + if (inmemory->d[j] != sorted->d[j]) + break; + + printk(KERN_ERR "b->written %u\n", b->written); + + console_unlock(); + panic("verify failed at %u\n", j); + } + + mutex_unlock(&b->c->verify_lock); + up(&b->io_mutex); +} + +void bch_data_verify(struct cached_dev *dc, struct bio *bio) +{ + char name[BDEVNAME_SIZE]; + struct bio *check; + struct bio_vec bv, *bv2; + struct bvec_iter iter; + int i; + + check = bio_clone(bio, GFP_NOIO); + if (!check) + return; + + if (bio_alloc_pages(check, GFP_NOIO)) + goto out_put; + + submit_bio_wait(READ_SYNC, check); + + bio_for_each_segment(bv, bio, iter) { + void *p1 = kmap_atomic(bv.bv_page); + void *p2 = page_address(check->bi_io_vec[iter.bi_idx].bv_page); + + cache_set_err_on(memcmp(p1 + bv.bv_offset, + p2 + bv.bv_offset, + bv.bv_len), + dc->disk.c, + "verify failed at dev %s sector %llu", + bdevname(dc->bdev, name), + (uint64_t) bio->bi_iter.bi_sector); + + kunmap_atomic(p1); + } + + bio_for_each_segment_all(bv2, check, i) + __free_page(bv2->bv_page); +out_put: + bio_put(check); +} + +#endif + +#ifdef CONFIG_DEBUG_FS + +/* XXX: cache set refcounting */ + +struct dump_iterator { + char buf[PAGE_SIZE]; + size_t bytes; + struct cache_set *c; + struct keybuf keys; +}; + +static bool dump_pred(struct keybuf *buf, struct bkey *k) +{ + return true; +} + +static ssize_t bch_dump_read(struct file *file, char __user *buf, + size_t size, loff_t *ppos) +{ + struct dump_iterator *i = file->private_data; + ssize_t ret = 0; + char kbuf[80]; + + while (size) { + struct keybuf_key *w; + unsigned bytes = min(i->bytes, size); + + int err = copy_to_user(buf, i->buf, bytes); + if (err) + return err; + + ret += bytes; + buf += bytes; + size -= bytes; + i->bytes -= bytes; + memmove(i->buf, i->buf + bytes, i->bytes); + + if (i->bytes) + break; + + w = bch_keybuf_next_rescan(i->c, &i->keys, &MAX_KEY, dump_pred); + if (!w) + break; + + bch_extent_to_text(kbuf, sizeof(kbuf), &w->key); + i->bytes = snprintf(i->buf, PAGE_SIZE, "%s\n", kbuf); + bch_keybuf_del(&i->keys, w); + } + + return ret; +} + +static int bch_dump_open(struct inode *inode, struct file *file) +{ + struct cache_set *c = inode->i_private; + struct dump_iterator *i; + + i = kzalloc(sizeof(struct dump_iterator), GFP_KERNEL); + if (!i) + return -ENOMEM; + + file->private_data = i; + i->c = c; + bch_keybuf_init(&i->keys); + i->keys.last_scanned = KEY(0, 0, 0); + + return 0; +} + +static int bch_dump_release(struct inode *inode, struct file *file) +{ + kfree(file->private_data); + return 0; +} + +static const struct file_operations cache_set_debug_ops = { + .owner = THIS_MODULE, + .open = bch_dump_open, + .read = bch_dump_read, + .release = bch_dump_release +}; + +void bch_debug_init_cache_set(struct cache_set *c) +{ + if (!IS_ERR_OR_NULL(debug)) { + char name[50]; + snprintf(name, 50, "bcache-%pU", c->sb.set_uuid); + + c->debug = debugfs_create_file(name, 0400, debug, c, + &cache_set_debug_ops); + } +} + +#endif + +void bch_debug_exit(void) +{ + if (!IS_ERR_OR_NULL(debug)) + debugfs_remove_recursive(debug); +} + +int __init bch_debug_init(struct kobject *kobj) +{ + int ret = 0; + + debug = debugfs_create_dir("bcache", NULL); + return ret; +} diff --git a/drivers/md/bcache/debug.h b/drivers/md/bcache/debug.h new file mode 100644 index 00000000000..1f63c195d24 --- /dev/null +++ b/drivers/md/bcache/debug.h @@ -0,0 +1,34 @@ +#ifndef _BCACHE_DEBUG_H +#define _BCACHE_DEBUG_H + +struct bio; +struct cached_dev; +struct cache_set; + +#ifdef CONFIG_BCACHE_DEBUG + +void bch_btree_verify(struct btree *); +void bch_data_verify(struct cached_dev *, struct bio *); + +#define expensive_debug_checks(c) ((c)->expensive_debug_checks) +#define key_merging_disabled(c) ((c)->key_merging_disabled) +#define bypass_torture_test(d) ((d)->bypass_torture_test) + +#else /* DEBUG */ + +static inline void bch_btree_verify(struct btree *b) {} +static inline void bch_data_verify(struct cached_dev *dc, struct bio *bio) {} + +#define expensive_debug_checks(c) 0 +#define key_merging_disabled(c) 0 +#define bypass_torture_test(d) 0 + +#endif + +#ifdef CONFIG_DEBUG_FS +void bch_debug_init_cache_set(struct cache_set *); +#else +static inline void bch_debug_init_cache_set(struct cache_set *c) {} +#endif + +#endif diff --git a/drivers/md/bcache/extents.c b/drivers/md/bcache/extents.c new file mode 100644 index 00000000000..3a0de4cf977 --- /dev/null +++ b/drivers/md/bcache/extents.c @@ -0,0 +1,620 @@ +/* + * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> + * + * Uses a block device as cache for other block devices; optimized for SSDs. + * All allocation is done in buckets, which should match the erase block size + * of the device. + * + * Buckets containing cached data are kept on a heap sorted by priority; + * bucket priority is increased on cache hit, and periodically all the buckets + * on the heap have their priority scaled down. This currently is just used as + * an LRU but in the future should allow for more intelligent heuristics. + * + * Buckets have an 8 bit counter; freeing is accomplished by incrementing the + * counter. Garbage collection is used to remove stale pointers. + * + * Indexing is done via a btree; nodes are not necessarily fully sorted, rather + * as keys are inserted we only sort the pages that have not yet been written. + * When garbage collection is run, we resort the entire node. + * + * All configuration is done via sysfs; see Documentation/bcache.txt. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" +#include "extents.h" +#include "writeback.h" + +static void sort_key_next(struct btree_iter *iter, + struct btree_iter_set *i) +{ + i->k = bkey_next(i->k); + + if (i->k == i->end) + *i = iter->data[--iter->used]; +} + +static bool bch_key_sort_cmp(struct btree_iter_set l, + struct btree_iter_set r) +{ + int64_t c = bkey_cmp(l.k, r.k); + + return c ? c > 0 : l.k < r.k; +} + +static bool __ptr_invalid(struct cache_set *c, const struct bkey *k) +{ + unsigned i; + + for (i = 0; i < KEY_PTRS(k); i++) + if (ptr_available(c, k, i)) { + struct cache *ca = PTR_CACHE(c, k, i); + size_t bucket = PTR_BUCKET_NR(c, k, i); + size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); + + if (KEY_SIZE(k) + r > c->sb.bucket_size || + bucket < ca->sb.first_bucket || + bucket >= ca->sb.nbuckets) + return true; + } + + return false; +} + +/* Common among btree and extent ptrs */ + +static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k) +{ + unsigned i; + + for (i = 0; i < KEY_PTRS(k); i++) + if (ptr_available(c, k, i)) { + struct cache *ca = PTR_CACHE(c, k, i); + size_t bucket = PTR_BUCKET_NR(c, k, i); + size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); + + if (KEY_SIZE(k) + r > c->sb.bucket_size) + return "bad, length too big"; + if (bucket < ca->sb.first_bucket) + return "bad, short offset"; + if (bucket >= ca->sb.nbuckets) + return "bad, offset past end of device"; + if (ptr_stale(c, k, i)) + return "stale"; + } + + if (!bkey_cmp(k, &ZERO_KEY)) + return "bad, null key"; + if (!KEY_PTRS(k)) + return "bad, no pointers"; + if (!KEY_SIZE(k)) + return "zeroed key"; + return ""; +} + +void bch_extent_to_text(char *buf, size_t size, const struct bkey *k) +{ + unsigned i = 0; + char *out = buf, *end = buf + size; + +#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__)) + + p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k)); + + for (i = 0; i < KEY_PTRS(k); i++) { + if (i) + p(", "); + + if (PTR_DEV(k, i) == PTR_CHECK_DEV) + p("check dev"); + else + p("%llu:%llu gen %llu", PTR_DEV(k, i), + PTR_OFFSET(k, i), PTR_GEN(k, i)); + } + + p("]"); + + if (KEY_DIRTY(k)) + p(" dirty"); + if (KEY_CSUM(k)) + p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]); +#undef p +} + +static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k) +{ + struct btree *b = container_of(keys, struct btree, keys); + unsigned j; + char buf[80]; + + bch_extent_to_text(buf, sizeof(buf), k); + printk(" %s", buf); + + for (j = 0; j < KEY_PTRS(k); j++) { + size_t n = PTR_BUCKET_NR(b->c, k, j); + printk(" bucket %zu", n); + + if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets) + printk(" prio %i", + PTR_BUCKET(b->c, k, j)->prio); + } + + printk(" %s\n", bch_ptr_status(b->c, k)); +} + +/* Btree ptrs */ + +bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k) +{ + char buf[80]; + + if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)) + goto bad; + + if (__ptr_invalid(c, k)) + goto bad; + + return false; +bad: + bch_extent_to_text(buf, sizeof(buf), k); + cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k)); + return true; +} + +static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k) +{ + struct btree *b = container_of(bk, struct btree, keys); + return __bch_btree_ptr_invalid(b->c, k); +} + +static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k) +{ + unsigned i; + char buf[80]; + struct bucket *g; + + if (mutex_trylock(&b->c->bucket_lock)) { + for (i = 0; i < KEY_PTRS(k); i++) + if (ptr_available(b->c, k, i)) { + g = PTR_BUCKET(b->c, k, i); + + if (KEY_DIRTY(k) || + g->prio != BTREE_PRIO || + (b->c->gc_mark_valid && + GC_MARK(g) != GC_MARK_METADATA)) + goto err; + } + + mutex_unlock(&b->c->bucket_lock); + } + + return false; +err: + mutex_unlock(&b->c->bucket_lock); + bch_extent_to_text(buf, sizeof(buf), k); + btree_bug(b, +"inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu", + buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), + g->prio, g->gen, g->last_gc, GC_MARK(g)); + return true; +} + +static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k) +{ + struct btree *b = container_of(bk, struct btree, keys); + unsigned i; + + if (!bkey_cmp(k, &ZERO_KEY) || + !KEY_PTRS(k) || + bch_ptr_invalid(bk, k)) + return true; + + for (i = 0; i < KEY_PTRS(k); i++) + if (!ptr_available(b->c, k, i) || + ptr_stale(b->c, k, i)) + return true; + + if (expensive_debug_checks(b->c) && + btree_ptr_bad_expensive(b, k)) + return true; + + return false; +} + +static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk, + struct bkey *insert, + struct btree_iter *iter, + struct bkey *replace_key) +{ + struct btree *b = container_of(bk, struct btree, keys); + + if (!KEY_OFFSET(insert)) + btree_current_write(b)->prio_blocked++; + + return false; +} + +const struct btree_keys_ops bch_btree_keys_ops = { + .sort_cmp = bch_key_sort_cmp, + .insert_fixup = bch_btree_ptr_insert_fixup, + .key_invalid = bch_btree_ptr_invalid, + .key_bad = bch_btree_ptr_bad, + .key_to_text = bch_extent_to_text, + .key_dump = bch_bkey_dump, +}; + +/* Extents */ + +/* + * Returns true if l > r - unless l == r, in which case returns true if l is + * older than r. + * + * Necessary for btree_sort_fixup() - if there are multiple keys that compare + * equal in different sets, we have to process them newest to oldest. + */ +static bool bch_extent_sort_cmp(struct btree_iter_set l, + struct btree_iter_set r) +{ + int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); + + return c ? c > 0 : l.k < r.k; +} + +static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter, + struct bkey *tmp) +{ + while (iter->used > 1) { + struct btree_iter_set *top = iter->data, *i = top + 1; + + if (iter->used > 2 && + bch_extent_sort_cmp(i[0], i[1])) + i++; + + if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0) + break; + + if (!KEY_SIZE(i->k)) { + sort_key_next(iter, i); + heap_sift(iter, i - top, bch_extent_sort_cmp); + continue; + } + + if (top->k > i->k) { + if (bkey_cmp(top->k, i->k) >= 0) + sort_key_next(iter, i); + else + bch_cut_front(top->k, i->k); + + heap_sift(iter, i - top, bch_extent_sort_cmp); + } else { + /* can't happen because of comparison func */ + BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k))); + + if (bkey_cmp(i->k, top->k) < 0) { + bkey_copy(tmp, top->k); + + bch_cut_back(&START_KEY(i->k), tmp); + bch_cut_front(i->k, top->k); + heap_sift(iter, 0, bch_extent_sort_cmp); + + return tmp; + } else { + bch_cut_back(&START_KEY(i->k), top->k); + } + } + } + + return NULL; +} + +static void bch_subtract_dirty(struct bkey *k, + struct cache_set *c, + uint64_t offset, + int sectors) +{ + if (KEY_DIRTY(k)) + bcache_dev_sectors_dirty_add(c, KEY_INODE(k), + offset, -sectors); +} + +static bool bch_extent_insert_fixup(struct btree_keys *b, + struct bkey *insert, + struct btree_iter *iter, + struct bkey *replace_key) +{ + struct cache_set *c = container_of(b, struct btree, keys)->c; + + uint64_t old_offset; + unsigned old_size, sectors_found = 0; + + BUG_ON(!KEY_OFFSET(insert)); + BUG_ON(!KEY_SIZE(insert)); + + while (1) { + struct bkey *k = bch_btree_iter_next(iter); + if (!k) + break; + + if (bkey_cmp(&START_KEY(k), insert) >= 0) { + if (KEY_SIZE(k)) + break; + else + continue; + } + + if (bkey_cmp(k, &START_KEY(insert)) <= 0) + continue; + + old_offset = KEY_START(k); + old_size = KEY_SIZE(k); + + /* + * We might overlap with 0 size extents; we can't skip these + * because if they're in the set we're inserting to we have to + * adjust them so they don't overlap with the key we're + * inserting. But we don't want to check them for replace + * operations. + */ + + if (replace_key && KEY_SIZE(k)) { + /* + * k might have been split since we inserted/found the + * key we're replacing + */ + unsigned i; + uint64_t offset = KEY_START(k) - + KEY_START(replace_key); + + /* But it must be a subset of the replace key */ + if (KEY_START(k) < KEY_START(replace_key) || + KEY_OFFSET(k) > KEY_OFFSET(replace_key)) + goto check_failed; + + /* We didn't find a key that we were supposed to */ + if (KEY_START(k) > KEY_START(insert) + sectors_found) + goto check_failed; + + if (!bch_bkey_equal_header(k, replace_key)) + goto check_failed; + + /* skip past gen */ + offset <<= 8; + + BUG_ON(!KEY_PTRS(replace_key)); + + for (i = 0; i < KEY_PTRS(replace_key); i++) + if (k->ptr[i] != replace_key->ptr[i] + offset) + goto check_failed; + + sectors_found = KEY_OFFSET(k) - KEY_START(insert); + } + + if (bkey_cmp(insert, k) < 0 && + bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) { + /* + * We overlapped in the middle of an existing key: that + * means we have to split the old key. But we have to do + * slightly different things depending on whether the + * old key has been written out yet. + */ + + struct bkey *top; + + bch_subtract_dirty(k, c, KEY_START(insert), + KEY_SIZE(insert)); + + if (bkey_written(b, k)) { + /* + * We insert a new key to cover the top of the + * old key, and the old key is modified in place + * to represent the bottom split. + * + * It's completely arbitrary whether the new key + * is the top or the bottom, but it has to match + * up with what btree_sort_fixup() does - it + * doesn't check for this kind of overlap, it + * depends on us inserting a new key for the top + * here. + */ + top = bch_bset_search(b, bset_tree_last(b), + insert); + bch_bset_insert(b, top, k); + } else { + BKEY_PADDED(key) temp; + bkey_copy(&temp.key, k); + bch_bset_insert(b, k, &temp.key); + top = bkey_next(k); + } + + bch_cut_front(insert, top); + bch_cut_back(&START_KEY(insert), k); + bch_bset_fix_invalidated_key(b, k); + goto out; + } + + if (bkey_cmp(insert, k) < 0) { + bch_cut_front(insert, k); + } else { + if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) + old_offset = KEY_START(insert); + + if (bkey_written(b, k) && + bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) { + /* + * Completely overwrote, so we don't have to + * invalidate the binary search tree + */ + bch_cut_front(k, k); + } else { + __bch_cut_back(&START_KEY(insert), k); + bch_bset_fix_invalidated_key(b, k); + } + } + + bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k)); + } + +check_failed: + if (replace_key) { + if (!sectors_found) { + return true; + } else if (sectors_found < KEY_SIZE(insert)) { + SET_KEY_OFFSET(insert, KEY_OFFSET(insert) - + (KEY_SIZE(insert) - sectors_found)); + SET_KEY_SIZE(insert, sectors_found); + } + } +out: + if (KEY_DIRTY(insert)) + bcache_dev_sectors_dirty_add(c, KEY_INODE(insert), + KEY_START(insert), + KEY_SIZE(insert)); + + return false; +} + +static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k) +{ + struct btree *b = container_of(bk, struct btree, keys); + char buf[80]; + + if (!KEY_SIZE(k)) + return true; + + if (KEY_SIZE(k) > KEY_OFFSET(k)) + goto bad; + + if (__ptr_invalid(b->c, k)) + goto bad; + + return false; +bad: + bch_extent_to_text(buf, sizeof(buf), k); + cache_bug(b->c, "spotted extent %s: %s", buf, bch_ptr_status(b->c, k)); + return true; +} + +static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k, + unsigned ptr) +{ + struct bucket *g = PTR_BUCKET(b->c, k, ptr); + char buf[80]; + + if (mutex_trylock(&b->c->bucket_lock)) { + if (b->c->gc_mark_valid && + (!GC_MARK(g) || + GC_MARK(g) == GC_MARK_METADATA || + (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k)))) + goto err; + + if (g->prio == BTREE_PRIO) + goto err; + + mutex_unlock(&b->c->bucket_lock); + } + + return false; +err: + mutex_unlock(&b->c->bucket_lock); + bch_extent_to_text(buf, sizeof(buf), k); + btree_bug(b, +"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu", + buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin), + g->prio, g->gen, g->last_gc, GC_MARK(g)); + return true; +} + +static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k) +{ + struct btree *b = container_of(bk, struct btree, keys); + struct bucket *g; + unsigned i, stale; + + if (!KEY_PTRS(k) || + bch_extent_invalid(bk, k)) + return true; + + for (i = 0; i < KEY_PTRS(k); i++) + if (!ptr_available(b->c, k, i)) + return true; + + if (!expensive_debug_checks(b->c) && KEY_DIRTY(k)) + return false; + + for (i = 0; i < KEY_PTRS(k); i++) { + g = PTR_BUCKET(b->c, k, i); + stale = ptr_stale(b->c, k, i); + + btree_bug_on(stale > 96, b, + "key too stale: %i, need_gc %u", + stale, b->c->need_gc); + + btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k), + b, "stale dirty pointer"); + + if (stale) + return true; + + if (expensive_debug_checks(b->c) && + bch_extent_bad_expensive(b, k, i)) + return true; + } + + return false; +} + +static uint64_t merge_chksums(struct bkey *l, struct bkey *r) +{ + return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & + ~((uint64_t)1 << 63); +} + +static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r) +{ + struct btree *b = container_of(bk, struct btree, keys); + unsigned i; + + if (key_merging_disabled(b->c)) + return false; + + for (i = 0; i < KEY_PTRS(l); i++) + if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || + PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) + return false; + + /* Keys with no pointers aren't restricted to one bucket and could + * overflow KEY_SIZE + */ + if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { + SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); + SET_KEY_SIZE(l, USHRT_MAX); + + bch_cut_front(l, r); + return false; + } + + if (KEY_CSUM(l)) { + if (KEY_CSUM(r)) + l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); + else + SET_KEY_CSUM(l, 0); + } + + SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); + SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); + + return true; +} + +const struct btree_keys_ops bch_extent_keys_ops = { + .sort_cmp = bch_extent_sort_cmp, + .sort_fixup = bch_extent_sort_fixup, + .insert_fixup = bch_extent_insert_fixup, + .key_invalid = bch_extent_invalid, + .key_bad = bch_extent_bad, + .key_merge = bch_extent_merge, + .key_to_text = bch_extent_to_text, + .key_dump = bch_bkey_dump, + .is_extents = true, +}; diff --git a/drivers/md/bcache/extents.h b/drivers/md/bcache/extents.h new file mode 100644 index 00000000000..e4e23409782 --- /dev/null +++ b/drivers/md/bcache/extents.h @@ -0,0 +1,13 @@ +#ifndef _BCACHE_EXTENTS_H +#define _BCACHE_EXTENTS_H + +extern const struct btree_keys_ops bch_btree_keys_ops; +extern const struct btree_keys_ops bch_extent_keys_ops; + +struct bkey; +struct cache_set; + +void bch_extent_to_text(char *, size_t, const struct bkey *); +bool __bch_btree_ptr_invalid(struct cache_set *, const struct bkey *); + +#endif /* _BCACHE_EXTENTS_H */ diff --git a/drivers/md/bcache/io.c b/drivers/md/bcache/io.c new file mode 100644 index 00000000000..fa028fa82df --- /dev/null +++ b/drivers/md/bcache/io.c @@ -0,0 +1,243 @@ +/* + * Some low level IO code, and hacks for various block layer limitations + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "bset.h" +#include "debug.h" + +#include <linux/blkdev.h> + +static unsigned bch_bio_max_sectors(struct bio *bio) +{ + struct request_queue *q = bdev_get_queue(bio->bi_bdev); + struct bio_vec bv; + struct bvec_iter iter; + unsigned ret = 0, seg = 0; + + if (bio->bi_rw & REQ_DISCARD) + return min(bio_sectors(bio), q->limits.max_discard_sectors); + + bio_for_each_segment(bv, bio, iter) { + struct bvec_merge_data bvm = { + .bi_bdev = bio->bi_bdev, + .bi_sector = bio->bi_iter.bi_sector, + .bi_size = ret << 9, + .bi_rw = bio->bi_rw, + }; + + if (seg == min_t(unsigned, BIO_MAX_PAGES, + queue_max_segments(q))) + break; + + if (q->merge_bvec_fn && + q->merge_bvec_fn(q, &bvm, &bv) < (int) bv.bv_len) + break; + + seg++; + ret += bv.bv_len >> 9; + } + + ret = min(ret, queue_max_sectors(q)); + + WARN_ON(!ret); + ret = max_t(int, ret, bio_iovec(bio).bv_len >> 9); + + return ret; +} + +static void bch_bio_submit_split_done(struct closure *cl) +{ + struct bio_split_hook *s = container_of(cl, struct bio_split_hook, cl); + + s->bio->bi_end_io = s->bi_end_io; + s->bio->bi_private = s->bi_private; + bio_endio_nodec(s->bio, 0); + + closure_debug_destroy(&s->cl); + mempool_free(s, s->p->bio_split_hook); +} + +static void bch_bio_submit_split_endio(struct bio *bio, int error) +{ + struct closure *cl = bio->bi_private; + struct bio_split_hook *s = container_of(cl, struct bio_split_hook, cl); + + if (error) + clear_bit(BIO_UPTODATE, &s->bio->bi_flags); + + bio_put(bio); + closure_put(cl); +} + +void bch_generic_make_request(struct bio *bio, struct bio_split_pool *p) +{ + struct bio_split_hook *s; + struct bio *n; + + if (!bio_has_data(bio) && !(bio->bi_rw & REQ_DISCARD)) + goto submit; + + if (bio_sectors(bio) <= bch_bio_max_sectors(bio)) + goto submit; + + s = mempool_alloc(p->bio_split_hook, GFP_NOIO); + closure_init(&s->cl, NULL); + + s->bio = bio; + s->p = p; + s->bi_end_io = bio->bi_end_io; + s->bi_private = bio->bi_private; + bio_get(bio); + + do { + n = bio_next_split(bio, bch_bio_max_sectors(bio), + GFP_NOIO, s->p->bio_split); + + n->bi_end_io = bch_bio_submit_split_endio; + n->bi_private = &s->cl; + + closure_get(&s->cl); + generic_make_request(n); + } while (n != bio); + + continue_at(&s->cl, bch_bio_submit_split_done, NULL); +submit: + generic_make_request(bio); +} + +/* Bios with headers */ + +void bch_bbio_free(struct bio *bio, struct cache_set *c) +{ + struct bbio *b = container_of(bio, struct bbio, bio); + mempool_free(b, c->bio_meta); +} + +struct bio *bch_bbio_alloc(struct cache_set *c) +{ + struct bbio *b = mempool_alloc(c->bio_meta, GFP_NOIO); + struct bio *bio = &b->bio; + + bio_init(bio); + bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET; + bio->bi_max_vecs = bucket_pages(c); + bio->bi_io_vec = bio->bi_inline_vecs; + + return bio; +} + +void __bch_submit_bbio(struct bio *bio, struct cache_set *c) +{ + struct bbio *b = container_of(bio, struct bbio, bio); + + bio->bi_iter.bi_sector = PTR_OFFSET(&b->key, 0); + bio->bi_bdev = PTR_CACHE(c, &b->key, 0)->bdev; + + b->submit_time_us = local_clock_us(); + closure_bio_submit(bio, bio->bi_private, PTR_CACHE(c, &b->key, 0)); +} + +void bch_submit_bbio(struct bio *bio, struct cache_set *c, + struct bkey *k, unsigned ptr) +{ + struct bbio *b = container_of(bio, struct bbio, bio); + bch_bkey_copy_single_ptr(&b->key, k, ptr); + __bch_submit_bbio(bio, c); +} + +/* IO errors */ + +void bch_count_io_errors(struct cache *ca, int error, const char *m) +{ + /* + * The halflife of an error is: + * log2(1/2)/log2(127/128) * refresh ~= 88 * refresh + */ + + if (ca->set->error_decay) { + unsigned count = atomic_inc_return(&ca->io_count); + + while (count > ca->set->error_decay) { + unsigned errors; + unsigned old = count; + unsigned new = count - ca->set->error_decay; + + /* + * First we subtract refresh from count; each time we + * succesfully do so, we rescale the errors once: + */ + + count = atomic_cmpxchg(&ca->io_count, old, new); + + if (count == old) { + count = new; + + errors = atomic_read(&ca->io_errors); + do { + old = errors; + new = ((uint64_t) errors * 127) / 128; + errors = atomic_cmpxchg(&ca->io_errors, + old, new); + } while (old != errors); + } + } + } + + if (error) { + char buf[BDEVNAME_SIZE]; + unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT, + &ca->io_errors); + errors >>= IO_ERROR_SHIFT; + + if (errors < ca->set->error_limit) + pr_err("%s: IO error on %s, recovering", + bdevname(ca->bdev, buf), m); + else + bch_cache_set_error(ca->set, + "%s: too many IO errors %s", + bdevname(ca->bdev, buf), m); + } +} + +void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio, + int error, const char *m) +{ + struct bbio *b = container_of(bio, struct bbio, bio); + struct cache *ca = PTR_CACHE(c, &b->key, 0); + + unsigned threshold = bio->bi_rw & REQ_WRITE + ? c->congested_write_threshold_us + : c->congested_read_threshold_us; + + if (threshold) { + unsigned t = local_clock_us(); + + int us = t - b->submit_time_us; + int congested = atomic_read(&c->congested); + + if (us > (int) threshold) { + int ms = us / 1024; + c->congested_last_us = t; + + ms = min(ms, CONGESTED_MAX + congested); + atomic_sub(ms, &c->congested); + } else if (congested < 0) + atomic_inc(&c->congested); + } + + bch_count_io_errors(ca, error, m); +} + +void bch_bbio_endio(struct cache_set *c, struct bio *bio, + int error, const char *m) +{ + struct closure *cl = bio->bi_private; + + bch_bbio_count_io_errors(c, bio, error, m); + bio_put(bio); + closure_put(cl); +} diff --git a/drivers/md/bcache/journal.c b/drivers/md/bcache/journal.c new file mode 100644 index 00000000000..59e82021b5b --- /dev/null +++ b/drivers/md/bcache/journal.c @@ -0,0 +1,815 @@ +/* + * bcache journalling code, for btree insertions + * + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" + +#include <trace/events/bcache.h> + +/* + * Journal replay/recovery: + * + * This code is all driven from run_cache_set(); we first read the journal + * entries, do some other stuff, then we mark all the keys in the journal + * entries (same as garbage collection would), then we replay them - reinserting + * them into the cache in precisely the same order as they appear in the + * journal. + * + * We only journal keys that go in leaf nodes, which simplifies things quite a + * bit. + */ + +static void journal_read_endio(struct bio *bio, int error) +{ + struct closure *cl = bio->bi_private; + closure_put(cl); +} + +static int journal_read_bucket(struct cache *ca, struct list_head *list, + unsigned bucket_index) +{ + struct journal_device *ja = &ca->journal; + struct bio *bio = &ja->bio; + + struct journal_replay *i; + struct jset *j, *data = ca->set->journal.w[0].data; + struct closure cl; + unsigned len, left, offset = 0; + int ret = 0; + sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); + + closure_init_stack(&cl); + + pr_debug("reading %u", bucket_index); + + while (offset < ca->sb.bucket_size) { +reread: left = ca->sb.bucket_size - offset; + len = min_t(unsigned, left, PAGE_SECTORS << JSET_BITS); + + bio_reset(bio); + bio->bi_iter.bi_sector = bucket + offset; + bio->bi_bdev = ca->bdev; + bio->bi_rw = READ; + bio->bi_iter.bi_size = len << 9; + + bio->bi_end_io = journal_read_endio; + bio->bi_private = &cl; + bch_bio_map(bio, data); + + closure_bio_submit(bio, &cl, ca); + closure_sync(&cl); + + /* This function could be simpler now since we no longer write + * journal entries that overlap bucket boundaries; this means + * the start of a bucket will always have a valid journal entry + * if it has any journal entries at all. + */ + + j = data; + while (len) { + struct list_head *where; + size_t blocks, bytes = set_bytes(j); + + if (j->magic != jset_magic(&ca->sb)) { + pr_debug("%u: bad magic", bucket_index); + return ret; + } + + if (bytes > left << 9 || + bytes > PAGE_SIZE << JSET_BITS) { + pr_info("%u: too big, %zu bytes, offset %u", + bucket_index, bytes, offset); + return ret; + } + + if (bytes > len << 9) + goto reread; + + if (j->csum != csum_set(j)) { + pr_info("%u: bad csum, %zu bytes, offset %u", + bucket_index, bytes, offset); + return ret; + } + + blocks = set_blocks(j, block_bytes(ca->set)); + + while (!list_empty(list)) { + i = list_first_entry(list, + struct journal_replay, list); + if (i->j.seq >= j->last_seq) + break; + list_del(&i->list); + kfree(i); + } + + list_for_each_entry_reverse(i, list, list) { + if (j->seq == i->j.seq) + goto next_set; + + if (j->seq < i->j.last_seq) + goto next_set; + + if (j->seq > i->j.seq) { + where = &i->list; + goto add; + } + } + + where = list; +add: + i = kmalloc(offsetof(struct journal_replay, j) + + bytes, GFP_KERNEL); + if (!i) + return -ENOMEM; + memcpy(&i->j, j, bytes); + list_add(&i->list, where); + ret = 1; + + ja->seq[bucket_index] = j->seq; +next_set: + offset += blocks * ca->sb.block_size; + len -= blocks * ca->sb.block_size; + j = ((void *) j) + blocks * block_bytes(ca); + } + } + + return ret; +} + +int bch_journal_read(struct cache_set *c, struct list_head *list) +{ +#define read_bucket(b) \ + ({ \ + int ret = journal_read_bucket(ca, list, b); \ + __set_bit(b, bitmap); \ + if (ret < 0) \ + return ret; \ + ret; \ + }) + + struct cache *ca; + unsigned iter; + + for_each_cache(ca, c, iter) { + struct journal_device *ja = &ca->journal; + unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG]; + unsigned i, l, r, m; + uint64_t seq; + + bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); + pr_debug("%u journal buckets", ca->sb.njournal_buckets); + + /* + * Read journal buckets ordered by golden ratio hash to quickly + * find a sequence of buckets with valid journal entries + */ + for (i = 0; i < ca->sb.njournal_buckets; i++) { + l = (i * 2654435769U) % ca->sb.njournal_buckets; + + if (test_bit(l, bitmap)) + break; + + if (read_bucket(l)) + goto bsearch; + } + + /* + * If that fails, check all the buckets we haven't checked + * already + */ + pr_debug("falling back to linear search"); + + for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets); + l < ca->sb.njournal_buckets; + l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, l + 1)) + if (read_bucket(l)) + goto bsearch; + + if (list_empty(list)) + continue; +bsearch: + /* Binary search */ + m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); + pr_debug("starting binary search, l %u r %u", l, r); + + while (l + 1 < r) { + seq = list_entry(list->prev, struct journal_replay, + list)->j.seq; + + m = (l + r) >> 1; + read_bucket(m); + + if (seq != list_entry(list->prev, struct journal_replay, + list)->j.seq) + l = m; + else + r = m; + } + + /* + * Read buckets in reverse order until we stop finding more + * journal entries + */ + pr_debug("finishing up: m %u njournal_buckets %u", + m, ca->sb.njournal_buckets); + l = m; + + while (1) { + if (!l--) + l = ca->sb.njournal_buckets - 1; + + if (l == m) + break; + + if (test_bit(l, bitmap)) + continue; + + if (!read_bucket(l)) + break; + } + + seq = 0; + + for (i = 0; i < ca->sb.njournal_buckets; i++) + if (ja->seq[i] > seq) { + seq = ja->seq[i]; + /* + * When journal_reclaim() goes to allocate for + * the first time, it'll use the bucket after + * ja->cur_idx + */ + ja->cur_idx = i; + ja->last_idx = ja->discard_idx = (i + 1) % + ca->sb.njournal_buckets; + + } + } + + if (!list_empty(list)) + c->journal.seq = list_entry(list->prev, + struct journal_replay, + list)->j.seq; + + return 0; +#undef read_bucket +} + +void bch_journal_mark(struct cache_set *c, struct list_head *list) +{ + atomic_t p = { 0 }; + struct bkey *k; + struct journal_replay *i; + struct journal *j = &c->journal; + uint64_t last = j->seq; + + /* + * journal.pin should never fill up - we never write a journal + * entry when it would fill up. But if for some reason it does, we + * iterate over the list in reverse order so that we can just skip that + * refcount instead of bugging. + */ + + list_for_each_entry_reverse(i, list, list) { + BUG_ON(last < i->j.seq); + i->pin = NULL; + + while (last-- != i->j.seq) + if (fifo_free(&j->pin) > 1) { + fifo_push_front(&j->pin, p); + atomic_set(&fifo_front(&j->pin), 0); + } + + if (fifo_free(&j->pin) > 1) { + fifo_push_front(&j->pin, p); + i->pin = &fifo_front(&j->pin); + atomic_set(i->pin, 1); + } + + for (k = i->j.start; + k < bset_bkey_last(&i->j); + k = bkey_next(k)) { + unsigned j; + + for (j = 0; j < KEY_PTRS(k); j++) + if (ptr_available(c, k, j)) + atomic_inc(&PTR_BUCKET(c, k, j)->pin); + + bch_initial_mark_key(c, 0, k); + } + } +} + +int bch_journal_replay(struct cache_set *s, struct list_head *list) +{ + int ret = 0, keys = 0, entries = 0; + struct bkey *k; + struct journal_replay *i = + list_entry(list->prev, struct journal_replay, list); + + uint64_t start = i->j.last_seq, end = i->j.seq, n = start; + struct keylist keylist; + + list_for_each_entry(i, list, list) { + BUG_ON(i->pin && atomic_read(i->pin) != 1); + + cache_set_err_on(n != i->j.seq, s, +"bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)", + n, i->j.seq - 1, start, end); + + for (k = i->j.start; + k < bset_bkey_last(&i->j); + k = bkey_next(k)) { + trace_bcache_journal_replay_key(k); + + bch_keylist_init_single(&keylist, k); + + ret = bch_btree_insert(s, &keylist, i->pin, NULL); + if (ret) + goto err; + + BUG_ON(!bch_keylist_empty(&keylist)); + keys++; + + cond_resched(); + } + + if (i->pin) + atomic_dec(i->pin); + n = i->j.seq + 1; + entries++; + } + + pr_info("journal replay done, %i keys in %i entries, seq %llu", + keys, entries, end); +err: + while (!list_empty(list)) { + i = list_first_entry(list, struct journal_replay, list); + list_del(&i->list); + kfree(i); + } + + return ret; +} + +/* Journalling */ + +static void btree_flush_write(struct cache_set *c) +{ + /* + * Try to find the btree node with that references the oldest journal + * entry, best is our current candidate and is locked if non NULL: + */ + struct btree *b, *best; + unsigned i; +retry: + best = NULL; + + for_each_cached_btree(b, c, i) + if (btree_current_write(b)->journal) { + if (!best) + best = b; + else if (journal_pin_cmp(c, + btree_current_write(best)->journal, + btree_current_write(b)->journal)) { + best = b; + } + } + + b = best; + if (b) { + mutex_lock(&b->write_lock); + if (!btree_current_write(b)->journal) { + mutex_unlock(&b->write_lock); + /* We raced */ + goto retry; + } + + __bch_btree_node_write(b, NULL); + mutex_unlock(&b->write_lock); + } +} + +#define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) + +static void journal_discard_endio(struct bio *bio, int error) +{ + struct journal_device *ja = + container_of(bio, struct journal_device, discard_bio); + struct cache *ca = container_of(ja, struct cache, journal); + + atomic_set(&ja->discard_in_flight, DISCARD_DONE); + + closure_wake_up(&ca->set->journal.wait); + closure_put(&ca->set->cl); +} + +static void journal_discard_work(struct work_struct *work) +{ + struct journal_device *ja = + container_of(work, struct journal_device, discard_work); + + submit_bio(0, &ja->discard_bio); +} + +static void do_journal_discard(struct cache *ca) +{ + struct journal_device *ja = &ca->journal; + struct bio *bio = &ja->discard_bio; + + if (!ca->discard) { + ja->discard_idx = ja->last_idx; + return; + } + + switch (atomic_read(&ja->discard_in_flight)) { + case DISCARD_IN_FLIGHT: + return; + + case DISCARD_DONE: + ja->discard_idx = (ja->discard_idx + 1) % + ca->sb.njournal_buckets; + + atomic_set(&ja->discard_in_flight, DISCARD_READY); + /* fallthrough */ + + case DISCARD_READY: + if (ja->discard_idx == ja->last_idx) + return; + + atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); + + bio_init(bio); + bio->bi_iter.bi_sector = bucket_to_sector(ca->set, + ca->sb.d[ja->discard_idx]); + bio->bi_bdev = ca->bdev; + bio->bi_rw = REQ_WRITE|REQ_DISCARD; + bio->bi_max_vecs = 1; + bio->bi_io_vec = bio->bi_inline_vecs; + bio->bi_iter.bi_size = bucket_bytes(ca); + bio->bi_end_io = journal_discard_endio; + + closure_get(&ca->set->cl); + INIT_WORK(&ja->discard_work, journal_discard_work); + schedule_work(&ja->discard_work); + } +} + +static void journal_reclaim(struct cache_set *c) +{ + struct bkey *k = &c->journal.key; + struct cache *ca; + uint64_t last_seq; + unsigned iter, n = 0; + atomic_t p; + + while (!atomic_read(&fifo_front(&c->journal.pin))) + fifo_pop(&c->journal.pin, p); + + last_seq = last_seq(&c->journal); + + /* Update last_idx */ + + for_each_cache(ca, c, iter) { + struct journal_device *ja = &ca->journal; + + while (ja->last_idx != ja->cur_idx && + ja->seq[ja->last_idx] < last_seq) + ja->last_idx = (ja->last_idx + 1) % + ca->sb.njournal_buckets; + } + + for_each_cache(ca, c, iter) + do_journal_discard(ca); + + if (c->journal.blocks_free) + goto out; + + /* + * Allocate: + * XXX: Sort by free journal space + */ + + for_each_cache(ca, c, iter) { + struct journal_device *ja = &ca->journal; + unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; + + /* No space available on this device */ + if (next == ja->discard_idx) + continue; + + ja->cur_idx = next; + k->ptr[n++] = PTR(0, + bucket_to_sector(c, ca->sb.d[ja->cur_idx]), + ca->sb.nr_this_dev); + } + + bkey_init(k); + SET_KEY_PTRS(k, n); + + if (n) + c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; +out: + if (!journal_full(&c->journal)) + __closure_wake_up(&c->journal.wait); +} + +void bch_journal_next(struct journal *j) +{ + atomic_t p = { 1 }; + + j->cur = (j->cur == j->w) + ? &j->w[1] + : &j->w[0]; + + /* + * The fifo_push() needs to happen at the same time as j->seq is + * incremented for last_seq() to be calculated correctly + */ + BUG_ON(!fifo_push(&j->pin, p)); + atomic_set(&fifo_back(&j->pin), 1); + + j->cur->data->seq = ++j->seq; + j->cur->dirty = false; + j->cur->need_write = false; + j->cur->data->keys = 0; + + if (fifo_full(&j->pin)) + pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); +} + +static void journal_write_endio(struct bio *bio, int error) +{ + struct journal_write *w = bio->bi_private; + + cache_set_err_on(error, w->c, "journal io error"); + closure_put(&w->c->journal.io); +} + +static void journal_write(struct closure *); + +static void journal_write_done(struct closure *cl) +{ + struct journal *j = container_of(cl, struct journal, io); + struct journal_write *w = (j->cur == j->w) + ? &j->w[1] + : &j->w[0]; + + __closure_wake_up(&w->wait); + continue_at_nobarrier(cl, journal_write, system_wq); +} + +static void journal_write_unlock(struct closure *cl) +{ + struct cache_set *c = container_of(cl, struct cache_set, journal.io); + + c->journal.io_in_flight = 0; + spin_unlock(&c->journal.lock); +} + +static void journal_write_unlocked(struct closure *cl) + __releases(c->journal.lock) +{ + struct cache_set *c = container_of(cl, struct cache_set, journal.io); + struct cache *ca; + struct journal_write *w = c->journal.cur; + struct bkey *k = &c->journal.key; + unsigned i, sectors = set_blocks(w->data, block_bytes(c)) * + c->sb.block_size; + + struct bio *bio; + struct bio_list list; + bio_list_init(&list); + + if (!w->need_write) { + closure_return_with_destructor(cl, journal_write_unlock); + } else if (journal_full(&c->journal)) { + journal_reclaim(c); + spin_unlock(&c->journal.lock); + + btree_flush_write(c); + continue_at(cl, journal_write, system_wq); + } + + c->journal.blocks_free -= set_blocks(w->data, block_bytes(c)); + + w->data->btree_level = c->root->level; + + bkey_copy(&w->data->btree_root, &c->root->key); + bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); + + for_each_cache(ca, c, i) + w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; + + w->data->magic = jset_magic(&c->sb); + w->data->version = BCACHE_JSET_VERSION; + w->data->last_seq = last_seq(&c->journal); + w->data->csum = csum_set(w->data); + + for (i = 0; i < KEY_PTRS(k); i++) { + ca = PTR_CACHE(c, k, i); + bio = &ca->journal.bio; + + atomic_long_add(sectors, &ca->meta_sectors_written); + + bio_reset(bio); + bio->bi_iter.bi_sector = PTR_OFFSET(k, i); + bio->bi_bdev = ca->bdev; + bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH|REQ_FUA; + bio->bi_iter.bi_size = sectors << 9; + + bio->bi_end_io = journal_write_endio; + bio->bi_private = w; + bch_bio_map(bio, w->data); + + trace_bcache_journal_write(bio); + bio_list_add(&list, bio); + + SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); + + ca->journal.seq[ca->journal.cur_idx] = w->data->seq; + } + + atomic_dec_bug(&fifo_back(&c->journal.pin)); + bch_journal_next(&c->journal); + journal_reclaim(c); + + spin_unlock(&c->journal.lock); + + while ((bio = bio_list_pop(&list))) + closure_bio_submit(bio, cl, c->cache[0]); + + continue_at(cl, journal_write_done, NULL); +} + +static void journal_write(struct closure *cl) +{ + struct cache_set *c = container_of(cl, struct cache_set, journal.io); + + spin_lock(&c->journal.lock); + journal_write_unlocked(cl); +} + +static void journal_try_write(struct cache_set *c) + __releases(c->journal.lock) +{ + struct closure *cl = &c->journal.io; + struct journal_write *w = c->journal.cur; + + w->need_write = true; + + if (!c->journal.io_in_flight) { + c->journal.io_in_flight = 1; + closure_call(cl, journal_write_unlocked, NULL, &c->cl); + } else { + spin_unlock(&c->journal.lock); + } +} + +static struct journal_write *journal_wait_for_write(struct cache_set *c, + unsigned nkeys) +{ + size_t sectors; + struct closure cl; + bool wait = false; + + closure_init_stack(&cl); + + spin_lock(&c->journal.lock); + + while (1) { + struct journal_write *w = c->journal.cur; + + sectors = __set_blocks(w->data, w->data->keys + nkeys, + block_bytes(c)) * c->sb.block_size; + + if (sectors <= min_t(size_t, + c->journal.blocks_free * c->sb.block_size, + PAGE_SECTORS << JSET_BITS)) + return w; + + if (wait) + closure_wait(&c->journal.wait, &cl); + + if (!journal_full(&c->journal)) { + if (wait) + trace_bcache_journal_entry_full(c); + + /* + * XXX: If we were inserting so many keys that they + * won't fit in an _empty_ journal write, we'll + * deadlock. For now, handle this in + * bch_keylist_realloc() - but something to think about. + */ + BUG_ON(!w->data->keys); + + journal_try_write(c); /* unlocks */ + } else { + if (wait) + trace_bcache_journal_full(c); + + journal_reclaim(c); + spin_unlock(&c->journal.lock); + + btree_flush_write(c); + } + + closure_sync(&cl); + spin_lock(&c->journal.lock); + wait = true; + } +} + +static void journal_write_work(struct work_struct *work) +{ + struct cache_set *c = container_of(to_delayed_work(work), + struct cache_set, + journal.work); + spin_lock(&c->journal.lock); + if (c->journal.cur->dirty) + journal_try_write(c); + else + spin_unlock(&c->journal.lock); +} + +/* + * Entry point to the journalling code - bio_insert() and btree_invalidate() + * pass bch_journal() a list of keys to be journalled, and then + * bch_journal() hands those same keys off to btree_insert_async() + */ + +atomic_t *bch_journal(struct cache_set *c, + struct keylist *keys, + struct closure *parent) +{ + struct journal_write *w; + atomic_t *ret; + + if (!CACHE_SYNC(&c->sb)) + return NULL; + + w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); + + memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); + w->data->keys += bch_keylist_nkeys(keys); + + ret = &fifo_back(&c->journal.pin); + atomic_inc(ret); + + if (parent) { + closure_wait(&w->wait, parent); + journal_try_write(c); + } else if (!w->dirty) { + w->dirty = true; + schedule_delayed_work(&c->journal.work, + msecs_to_jiffies(c->journal_delay_ms)); + spin_unlock(&c->journal.lock); + } else { + spin_unlock(&c->journal.lock); + } + + + return ret; +} + +void bch_journal_meta(struct cache_set *c, struct closure *cl) +{ + struct keylist keys; + atomic_t *ref; + + bch_keylist_init(&keys); + + ref = bch_journal(c, &keys, cl); + if (ref) + atomic_dec_bug(ref); +} + +void bch_journal_free(struct cache_set *c) +{ + free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); + free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); + free_fifo(&c->journal.pin); +} + +int bch_journal_alloc(struct cache_set *c) +{ + struct journal *j = &c->journal; + + spin_lock_init(&j->lock); + INIT_DELAYED_WORK(&j->work, journal_write_work); + + c->journal_delay_ms = 100; + + j->w[0].c = c; + j->w[1].c = c; + + if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || + !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || + !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) + return -ENOMEM; + + return 0; +} diff --git a/drivers/md/bcache/journal.h b/drivers/md/bcache/journal.h new file mode 100644 index 00000000000..e3c39457afb --- /dev/null +++ b/drivers/md/bcache/journal.h @@ -0,0 +1,179 @@ +#ifndef _BCACHE_JOURNAL_H +#define _BCACHE_JOURNAL_H + +/* + * THE JOURNAL: + * + * The journal is treated as a circular buffer of buckets - a journal entry + * never spans two buckets. This means (not implemented yet) we can resize the + * journal at runtime, and will be needed for bcache on raw flash support. + * + * Journal entries contain a list of keys, ordered by the time they were + * inserted; thus journal replay just has to reinsert the keys. + * + * We also keep some things in the journal header that are logically part of the + * superblock - all the things that are frequently updated. This is for future + * bcache on raw flash support; the superblock (which will become another + * journal) can't be moved or wear leveled, so it contains just enough + * information to find the main journal, and the superblock only has to be + * rewritten when we want to move/wear level the main journal. + * + * Currently, we don't journal BTREE_REPLACE operations - this will hopefully be + * fixed eventually. This isn't a bug - BTREE_REPLACE is used for insertions + * from cache misses, which don't have to be journaled, and for writeback and + * moving gc we work around it by flushing the btree to disk before updating the + * gc information. But it is a potential issue with incremental garbage + * collection, and it's fragile. + * + * OPEN JOURNAL ENTRIES: + * + * Each journal entry contains, in the header, the sequence number of the last + * journal entry still open - i.e. that has keys that haven't been flushed to + * disk in the btree. + * + * We track this by maintaining a refcount for every open journal entry, in a + * fifo; each entry in the fifo corresponds to a particular journal + * entry/sequence number. When the refcount at the tail of the fifo goes to + * zero, we pop it off - thus, the size of the fifo tells us the number of open + * journal entries + * + * We take a refcount on a journal entry when we add some keys to a journal + * entry that we're going to insert (held by struct btree_op), and then when we + * insert those keys into the btree the btree write we're setting up takes a + * copy of that refcount (held by struct btree_write). That refcount is dropped + * when the btree write completes. + * + * A struct btree_write can only hold a refcount on a single journal entry, but + * might contain keys for many journal entries - we handle this by making sure + * it always has a refcount on the _oldest_ journal entry of all the journal + * entries it has keys for. + * + * JOURNAL RECLAIM: + * + * As mentioned previously, our fifo of refcounts tells us the number of open + * journal entries; from that and the current journal sequence number we compute + * last_seq - the oldest journal entry we still need. We write last_seq in each + * journal entry, and we also have to keep track of where it exists on disk so + * we don't overwrite it when we loop around the journal. + * + * To do that we track, for each journal bucket, the sequence number of the + * newest journal entry it contains - if we don't need that journal entry we + * don't need anything in that bucket anymore. From that we track the last + * journal bucket we still need; all this is tracked in struct journal_device + * and updated by journal_reclaim(). + * + * JOURNAL FILLING UP: + * + * There are two ways the journal could fill up; either we could run out of + * space to write to, or we could have too many open journal entries and run out + * of room in the fifo of refcounts. Since those refcounts are decremented + * without any locking we can't safely resize that fifo, so we handle it the + * same way. + * + * If the journal fills up, we start flushing dirty btree nodes until we can + * allocate space for a journal write again - preferentially flushing btree + * nodes that are pinning the oldest journal entries first. + */ + +/* + * Only used for holding the journal entries we read in btree_journal_read() + * during cache_registration + */ +struct journal_replay { + struct list_head list; + atomic_t *pin; + struct jset j; +}; + +/* + * We put two of these in struct journal; we used them for writes to the + * journal that are being staged or in flight. + */ +struct journal_write { + struct jset *data; +#define JSET_BITS 3 + + struct cache_set *c; + struct closure_waitlist wait; + bool dirty; + bool need_write; +}; + +/* Embedded in struct cache_set */ +struct journal { + spinlock_t lock; + /* used when waiting because the journal was full */ + struct closure_waitlist wait; + struct closure io; + int io_in_flight; + struct delayed_work work; + + /* Number of blocks free in the bucket(s) we're currently writing to */ + unsigned blocks_free; + uint64_t seq; + DECLARE_FIFO(atomic_t, pin); + + BKEY_PADDED(key); + + struct journal_write w[2], *cur; +}; + +/* + * Embedded in struct cache. First three fields refer to the array of journal + * buckets, in cache_sb. + */ +struct journal_device { + /* + * For each journal bucket, contains the max sequence number of the + * journal writes it contains - so we know when a bucket can be reused. + */ + uint64_t seq[SB_JOURNAL_BUCKETS]; + + /* Journal bucket we're currently writing to */ + unsigned cur_idx; + + /* Last journal bucket that still contains an open journal entry */ + unsigned last_idx; + + /* Next journal bucket to be discarded */ + unsigned discard_idx; + +#define DISCARD_READY 0 +#define DISCARD_IN_FLIGHT 1 +#define DISCARD_DONE 2 + /* 1 - discard in flight, -1 - discard completed */ + atomic_t discard_in_flight; + + struct work_struct discard_work; + struct bio discard_bio; + struct bio_vec discard_bv; + + /* Bio for journal reads/writes to this device */ + struct bio bio; + struct bio_vec bv[8]; +}; + +#define journal_pin_cmp(c, l, r) \ + (fifo_idx(&(c)->journal.pin, (l)) > fifo_idx(&(c)->journal.pin, (r))) + +#define JOURNAL_PIN 20000 + +#define journal_full(j) \ + (!(j)->blocks_free || fifo_free(&(j)->pin) <= 1) + +struct closure; +struct cache_set; +struct btree_op; +struct keylist; + +atomic_t *bch_journal(struct cache_set *, struct keylist *, struct closure *); +void bch_journal_next(struct journal *); +void bch_journal_mark(struct cache_set *, struct list_head *); +void bch_journal_meta(struct cache_set *, struct closure *); +int bch_journal_read(struct cache_set *, struct list_head *); +int bch_journal_replay(struct cache_set *, struct list_head *); + +void bch_journal_free(struct cache_set *); +int bch_journal_alloc(struct cache_set *); + +#endif /* _BCACHE_JOURNAL_H */ diff --git a/drivers/md/bcache/movinggc.c b/drivers/md/bcache/movinggc.c new file mode 100644 index 00000000000..cd7490311e5 --- /dev/null +++ b/drivers/md/bcache/movinggc.c @@ -0,0 +1,256 @@ +/* + * Moving/copying garbage collector + * + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" +#include "request.h" + +#include <trace/events/bcache.h> + +struct moving_io { + struct closure cl; + struct keybuf_key *w; + struct data_insert_op op; + struct bbio bio; +}; + +static bool moving_pred(struct keybuf *buf, struct bkey *k) +{ + struct cache_set *c = container_of(buf, struct cache_set, + moving_gc_keys); + unsigned i; + + for (i = 0; i < KEY_PTRS(k); i++) + if (ptr_available(c, k, i) && + GC_MOVE(PTR_BUCKET(c, k, i))) + return true; + + return false; +} + +/* Moving GC - IO loop */ + +static void moving_io_destructor(struct closure *cl) +{ + struct moving_io *io = container_of(cl, struct moving_io, cl); + kfree(io); +} + +static void write_moving_finish(struct closure *cl) +{ + struct moving_io *io = container_of(cl, struct moving_io, cl); + struct bio *bio = &io->bio.bio; + struct bio_vec *bv; + int i; + + bio_for_each_segment_all(bv, bio, i) + __free_page(bv->bv_page); + + if (io->op.replace_collision) + trace_bcache_gc_copy_collision(&io->w->key); + + bch_keybuf_del(&io->op.c->moving_gc_keys, io->w); + + up(&io->op.c->moving_in_flight); + + closure_return_with_destructor(cl, moving_io_destructor); +} + +static void read_moving_endio(struct bio *bio, int error) +{ + struct bbio *b = container_of(bio, struct bbio, bio); + struct moving_io *io = container_of(bio->bi_private, + struct moving_io, cl); + + if (error) + io->op.error = error; + else if (!KEY_DIRTY(&b->key) && + ptr_stale(io->op.c, &b->key, 0)) { + io->op.error = -EINTR; + } + + bch_bbio_endio(io->op.c, bio, error, "reading data to move"); +} + +static void moving_init(struct moving_io *io) +{ + struct bio *bio = &io->bio.bio; + + bio_init(bio); + bio_get(bio); + bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); + + bio->bi_iter.bi_size = KEY_SIZE(&io->w->key) << 9; + bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&io->w->key), + PAGE_SECTORS); + bio->bi_private = &io->cl; + bio->bi_io_vec = bio->bi_inline_vecs; + bch_bio_map(bio, NULL); +} + +static void write_moving(struct closure *cl) +{ + struct moving_io *io = container_of(cl, struct moving_io, cl); + struct data_insert_op *op = &io->op; + + if (!op->error) { + moving_init(io); + + io->bio.bio.bi_iter.bi_sector = KEY_START(&io->w->key); + op->write_prio = 1; + op->bio = &io->bio.bio; + + op->writeback = KEY_DIRTY(&io->w->key); + op->csum = KEY_CSUM(&io->w->key); + + bkey_copy(&op->replace_key, &io->w->key); + op->replace = true; + + closure_call(&op->cl, bch_data_insert, NULL, cl); + } + + continue_at(cl, write_moving_finish, op->wq); +} + +static void read_moving_submit(struct closure *cl) +{ + struct moving_io *io = container_of(cl, struct moving_io, cl); + struct bio *bio = &io->bio.bio; + + bch_submit_bbio(bio, io->op.c, &io->w->key, 0); + + continue_at(cl, write_moving, io->op.wq); +} + +static void read_moving(struct cache_set *c) +{ + struct keybuf_key *w; + struct moving_io *io; + struct bio *bio; + struct closure cl; + + closure_init_stack(&cl); + + /* XXX: if we error, background writeback could stall indefinitely */ + + while (!test_bit(CACHE_SET_STOPPING, &c->flags)) { + w = bch_keybuf_next_rescan(c, &c->moving_gc_keys, + &MAX_KEY, moving_pred); + if (!w) + break; + + if (ptr_stale(c, &w->key, 0)) { + bch_keybuf_del(&c->moving_gc_keys, w); + continue; + } + + io = kzalloc(sizeof(struct moving_io) + sizeof(struct bio_vec) + * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), + GFP_KERNEL); + if (!io) + goto err; + + w->private = io; + io->w = w; + io->op.inode = KEY_INODE(&w->key); + io->op.c = c; + io->op.wq = c->moving_gc_wq; + + moving_init(io); + bio = &io->bio.bio; + + bio->bi_rw = READ; + bio->bi_end_io = read_moving_endio; + + if (bio_alloc_pages(bio, GFP_KERNEL)) + goto err; + + trace_bcache_gc_copy(&w->key); + + down(&c->moving_in_flight); + closure_call(&io->cl, read_moving_submit, NULL, &cl); + } + + if (0) { +err: if (!IS_ERR_OR_NULL(w->private)) + kfree(w->private); + + bch_keybuf_del(&c->moving_gc_keys, w); + } + + closure_sync(&cl); +} + +static bool bucket_cmp(struct bucket *l, struct bucket *r) +{ + return GC_SECTORS_USED(l) < GC_SECTORS_USED(r); +} + +static unsigned bucket_heap_top(struct cache *ca) +{ + struct bucket *b; + return (b = heap_peek(&ca->heap)) ? GC_SECTORS_USED(b) : 0; +} + +void bch_moving_gc(struct cache_set *c) +{ + struct cache *ca; + struct bucket *b; + unsigned i; + + if (!c->copy_gc_enabled) + return; + + mutex_lock(&c->bucket_lock); + + for_each_cache(ca, c, i) { + unsigned sectors_to_move = 0; + unsigned reserve_sectors = ca->sb.bucket_size * + fifo_used(&ca->free[RESERVE_MOVINGGC]); + + ca->heap.used = 0; + + for_each_bucket(b, ca) { + if (GC_MARK(b) == GC_MARK_METADATA || + !GC_SECTORS_USED(b) || + GC_SECTORS_USED(b) == ca->sb.bucket_size || + atomic_read(&b->pin)) + continue; + + if (!heap_full(&ca->heap)) { + sectors_to_move += GC_SECTORS_USED(b); + heap_add(&ca->heap, b, bucket_cmp); + } else if (bucket_cmp(b, heap_peek(&ca->heap))) { + sectors_to_move -= bucket_heap_top(ca); + sectors_to_move += GC_SECTORS_USED(b); + + ca->heap.data[0] = b; + heap_sift(&ca->heap, 0, bucket_cmp); + } + } + + while (sectors_to_move > reserve_sectors) { + heap_pop(&ca->heap, b, bucket_cmp); + sectors_to_move -= GC_SECTORS_USED(b); + } + + while (heap_pop(&ca->heap, b, bucket_cmp)) + SET_GC_MOVE(b, 1); + } + + mutex_unlock(&c->bucket_lock); + + c->moving_gc_keys.last_scanned = ZERO_KEY; + + read_moving(c); +} + +void bch_moving_init_cache_set(struct cache_set *c) +{ + bch_keybuf_init(&c->moving_gc_keys); + sema_init(&c->moving_in_flight, 64); +} diff --git a/drivers/md/bcache/request.c b/drivers/md/bcache/request.c new file mode 100644 index 00000000000..15fff4f68a7 --- /dev/null +++ b/drivers/md/bcache/request.c @@ -0,0 +1,1159 @@ +/* + * Main bcache entry point - handle a read or a write request and decide what to + * do with it; the make_request functions are called by the block layer. + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" +#include "request.h" +#include "writeback.h" + +#include <linux/module.h> +#include <linux/hash.h> +#include <linux/random.h> + +#include <trace/events/bcache.h> + +#define CUTOFF_CACHE_ADD 95 +#define CUTOFF_CACHE_READA 90 + +struct kmem_cache *bch_search_cache; + +static void bch_data_insert_start(struct closure *); + +static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) +{ + return BDEV_CACHE_MODE(&dc->sb); +} + +static bool verify(struct cached_dev *dc, struct bio *bio) +{ + return dc->verify; +} + +static void bio_csum(struct bio *bio, struct bkey *k) +{ + struct bio_vec bv; + struct bvec_iter iter; + uint64_t csum = 0; + + bio_for_each_segment(bv, bio, iter) { + void *d = kmap(bv.bv_page) + bv.bv_offset; + csum = bch_crc64_update(csum, d, bv.bv_len); + kunmap(bv.bv_page); + } + + k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); +} + +/* Insert data into cache */ + +static void bch_data_insert_keys(struct closure *cl) +{ + struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); + atomic_t *journal_ref = NULL; + struct bkey *replace_key = op->replace ? &op->replace_key : NULL; + int ret; + + /* + * If we're looping, might already be waiting on + * another journal write - can't wait on more than one journal write at + * a time + * + * XXX: this looks wrong + */ +#if 0 + while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) + closure_sync(&s->cl); +#endif + + if (!op->replace) + journal_ref = bch_journal(op->c, &op->insert_keys, + op->flush_journal ? cl : NULL); + + ret = bch_btree_insert(op->c, &op->insert_keys, + journal_ref, replace_key); + if (ret == -ESRCH) { + op->replace_collision = true; + } else if (ret) { + op->error = -ENOMEM; + op->insert_data_done = true; + } + + if (journal_ref) + atomic_dec_bug(journal_ref); + + if (!op->insert_data_done) + continue_at(cl, bch_data_insert_start, op->wq); + + bch_keylist_free(&op->insert_keys); + closure_return(cl); +} + +static int bch_keylist_realloc(struct keylist *l, unsigned u64s, + struct cache_set *c) +{ + size_t oldsize = bch_keylist_nkeys(l); + size_t newsize = oldsize + u64s; + + /* + * The journalling code doesn't handle the case where the keys to insert + * is bigger than an empty write: If we just return -ENOMEM here, + * bio_insert() and bio_invalidate() will insert the keys created so far + * and finish the rest when the keylist is empty. + */ + if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) + return -ENOMEM; + + return __bch_keylist_realloc(l, u64s); +} + +static void bch_data_invalidate(struct closure *cl) +{ + struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); + struct bio *bio = op->bio; + + pr_debug("invalidating %i sectors from %llu", + bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); + + while (bio_sectors(bio)) { + unsigned sectors = min(bio_sectors(bio), + 1U << (KEY_SIZE_BITS - 1)); + + if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) + goto out; + + bio->bi_iter.bi_sector += sectors; + bio->bi_iter.bi_size -= sectors << 9; + + bch_keylist_add(&op->insert_keys, + &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); + } + + op->insert_data_done = true; + bio_put(bio); +out: + continue_at(cl, bch_data_insert_keys, op->wq); +} + +static void bch_data_insert_error(struct closure *cl) +{ + struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); + + /* + * Our data write just errored, which means we've got a bunch of keys to + * insert that point to data that wasn't succesfully written. + * + * We don't have to insert those keys but we still have to invalidate + * that region of the cache - so, if we just strip off all the pointers + * from the keys we'll accomplish just that. + */ + + struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; + + while (src != op->insert_keys.top) { + struct bkey *n = bkey_next(src); + + SET_KEY_PTRS(src, 0); + memmove(dst, src, bkey_bytes(src)); + + dst = bkey_next(dst); + src = n; + } + + op->insert_keys.top = dst; + + bch_data_insert_keys(cl); +} + +static void bch_data_insert_endio(struct bio *bio, int error) +{ + struct closure *cl = bio->bi_private; + struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); + + if (error) { + /* TODO: We could try to recover from this. */ + if (op->writeback) + op->error = error; + else if (!op->replace) + set_closure_fn(cl, bch_data_insert_error, op->wq); + else + set_closure_fn(cl, NULL, NULL); + } + + bch_bbio_endio(op->c, bio, error, "writing data to cache"); +} + +static void bch_data_insert_start(struct closure *cl) +{ + struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); + struct bio *bio = op->bio, *n; + + if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { + set_gc_sectors(op->c); + wake_up_gc(op->c); + } + + if (op->bypass) + return bch_data_invalidate(cl); + + /* + * Journal writes are marked REQ_FLUSH; if the original write was a + * flush, it'll wait on the journal write. + */ + bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA); + + do { + unsigned i; + struct bkey *k; + struct bio_set *split = op->c->bio_split; + + /* 1 for the device pointer and 1 for the chksum */ + if (bch_keylist_realloc(&op->insert_keys, + 3 + (op->csum ? 1 : 0), + op->c)) + continue_at(cl, bch_data_insert_keys, op->wq); + + k = op->insert_keys.top; + bkey_init(k); + SET_KEY_INODE(k, op->inode); + SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); + + if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), + op->write_point, op->write_prio, + op->writeback)) + goto err; + + n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); + + n->bi_end_io = bch_data_insert_endio; + n->bi_private = cl; + + if (op->writeback) { + SET_KEY_DIRTY(k, true); + + for (i = 0; i < KEY_PTRS(k); i++) + SET_GC_MARK(PTR_BUCKET(op->c, k, i), + GC_MARK_DIRTY); + } + + SET_KEY_CSUM(k, op->csum); + if (KEY_CSUM(k)) + bio_csum(n, k); + + trace_bcache_cache_insert(k); + bch_keylist_push(&op->insert_keys); + + n->bi_rw |= REQ_WRITE; + bch_submit_bbio(n, op->c, k, 0); + } while (n != bio); + + op->insert_data_done = true; + continue_at(cl, bch_data_insert_keys, op->wq); +err: + /* bch_alloc_sectors() blocks if s->writeback = true */ + BUG_ON(op->writeback); + + /* + * But if it's not a writeback write we'd rather just bail out if + * there aren't any buckets ready to write to - it might take awhile and + * we might be starving btree writes for gc or something. + */ + + if (!op->replace) { + /* + * Writethrough write: We can't complete the write until we've + * updated the index. But we don't want to delay the write while + * we wait for buckets to be freed up, so just invalidate the + * rest of the write. + */ + op->bypass = true; + return bch_data_invalidate(cl); + } else { + /* + * From a cache miss, we can just insert the keys for the data + * we have written or bail out if we didn't do anything. + */ + op->insert_data_done = true; + bio_put(bio); + + if (!bch_keylist_empty(&op->insert_keys)) + continue_at(cl, bch_data_insert_keys, op->wq); + else + closure_return(cl); + } +} + +/** + * bch_data_insert - stick some data in the cache + * + * This is the starting point for any data to end up in a cache device; it could + * be from a normal write, or a writeback write, or a write to a flash only + * volume - it's also used by the moving garbage collector to compact data in + * mostly empty buckets. + * + * It first writes the data to the cache, creating a list of keys to be inserted + * (if the data had to be fragmented there will be multiple keys); after the + * data is written it calls bch_journal, and after the keys have been added to + * the next journal write they're inserted into the btree. + * + * It inserts the data in s->cache_bio; bi_sector is used for the key offset, + * and op->inode is used for the key inode. + * + * If s->bypass is true, instead of inserting the data it invalidates the + * region of the cache represented by s->cache_bio and op->inode. + */ +void bch_data_insert(struct closure *cl) +{ + struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); + + trace_bcache_write(op->bio, op->writeback, op->bypass); + + bch_keylist_init(&op->insert_keys); + bio_get(op->bio); + bch_data_insert_start(cl); +} + +/* Congested? */ + +unsigned bch_get_congested(struct cache_set *c) +{ + int i; + long rand; + + if (!c->congested_read_threshold_us && + !c->congested_write_threshold_us) + return 0; + + i = (local_clock_us() - c->congested_last_us) / 1024; + if (i < 0) + return 0; + + i += atomic_read(&c->congested); + if (i >= 0) + return 0; + + i += CONGESTED_MAX; + + if (i > 0) + i = fract_exp_two(i, 6); + + rand = get_random_int(); + i -= bitmap_weight(&rand, BITS_PER_LONG); + + return i > 0 ? i : 1; +} + +static void add_sequential(struct task_struct *t) +{ + ewma_add(t->sequential_io_avg, + t->sequential_io, 8, 0); + + t->sequential_io = 0; +} + +static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) +{ + return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; +} + +static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) +{ + struct cache_set *c = dc->disk.c; + unsigned mode = cache_mode(dc, bio); + unsigned sectors, congested = bch_get_congested(c); + struct task_struct *task = current; + struct io *i; + + if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || + c->gc_stats.in_use > CUTOFF_CACHE_ADD || + (bio->bi_rw & REQ_DISCARD)) + goto skip; + + if (mode == CACHE_MODE_NONE || + (mode == CACHE_MODE_WRITEAROUND && + (bio->bi_rw & REQ_WRITE))) + goto skip; + + if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || + bio_sectors(bio) & (c->sb.block_size - 1)) { + pr_debug("skipping unaligned io"); + goto skip; + } + + if (bypass_torture_test(dc)) { + if ((get_random_int() & 3) == 3) + goto skip; + else + goto rescale; + } + + if (!congested && !dc->sequential_cutoff) + goto rescale; + + if (!congested && + mode == CACHE_MODE_WRITEBACK && + (bio->bi_rw & REQ_WRITE) && + (bio->bi_rw & REQ_SYNC)) + goto rescale; + + spin_lock(&dc->io_lock); + + hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) + if (i->last == bio->bi_iter.bi_sector && + time_before(jiffies, i->jiffies)) + goto found; + + i = list_first_entry(&dc->io_lru, struct io, lru); + + add_sequential(task); + i->sequential = 0; +found: + if (i->sequential + bio->bi_iter.bi_size > i->sequential) + i->sequential += bio->bi_iter.bi_size; + + i->last = bio_end_sector(bio); + i->jiffies = jiffies + msecs_to_jiffies(5000); + task->sequential_io = i->sequential; + + hlist_del(&i->hash); + hlist_add_head(&i->hash, iohash(dc, i->last)); + list_move_tail(&i->lru, &dc->io_lru); + + spin_unlock(&dc->io_lock); + + sectors = max(task->sequential_io, + task->sequential_io_avg) >> 9; + + if (dc->sequential_cutoff && + sectors >= dc->sequential_cutoff >> 9) { + trace_bcache_bypass_sequential(bio); + goto skip; + } + + if (congested && sectors >= congested) { + trace_bcache_bypass_congested(bio); + goto skip; + } + +rescale: + bch_rescale_priorities(c, bio_sectors(bio)); + return false; +skip: + bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); + return true; +} + +/* Cache lookup */ + +struct search { + /* Stack frame for bio_complete */ + struct closure cl; + + struct bbio bio; + struct bio *orig_bio; + struct bio *cache_miss; + struct bcache_device *d; + + unsigned insert_bio_sectors; + unsigned recoverable:1; + unsigned write:1; + unsigned read_dirty_data:1; + + unsigned long start_time; + + struct btree_op op; + struct data_insert_op iop; +}; + +static void bch_cache_read_endio(struct bio *bio, int error) +{ + struct bbio *b = container_of(bio, struct bbio, bio); + struct closure *cl = bio->bi_private; + struct search *s = container_of(cl, struct search, cl); + + /* + * If the bucket was reused while our bio was in flight, we might have + * read the wrong data. Set s->error but not error so it doesn't get + * counted against the cache device, but we'll still reread the data + * from the backing device. + */ + + if (error) + s->iop.error = error; + else if (!KEY_DIRTY(&b->key) && + ptr_stale(s->iop.c, &b->key, 0)) { + atomic_long_inc(&s->iop.c->cache_read_races); + s->iop.error = -EINTR; + } + + bch_bbio_endio(s->iop.c, bio, error, "reading from cache"); +} + +/* + * Read from a single key, handling the initial cache miss if the key starts in + * the middle of the bio + */ +static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) +{ + struct search *s = container_of(op, struct search, op); + struct bio *n, *bio = &s->bio.bio; + struct bkey *bio_key; + unsigned ptr; + + if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) + return MAP_CONTINUE; + + if (KEY_INODE(k) != s->iop.inode || + KEY_START(k) > bio->bi_iter.bi_sector) { + unsigned bio_sectors = bio_sectors(bio); + unsigned sectors = KEY_INODE(k) == s->iop.inode + ? min_t(uint64_t, INT_MAX, + KEY_START(k) - bio->bi_iter.bi_sector) + : INT_MAX; + + int ret = s->d->cache_miss(b, s, bio, sectors); + if (ret != MAP_CONTINUE) + return ret; + + /* if this was a complete miss we shouldn't get here */ + BUG_ON(bio_sectors <= sectors); + } + + if (!KEY_SIZE(k)) + return MAP_CONTINUE; + + /* XXX: figure out best pointer - for multiple cache devices */ + ptr = 0; + + PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; + + if (KEY_DIRTY(k)) + s->read_dirty_data = true; + + n = bio_next_split(bio, min_t(uint64_t, INT_MAX, + KEY_OFFSET(k) - bio->bi_iter.bi_sector), + GFP_NOIO, s->d->bio_split); + + bio_key = &container_of(n, struct bbio, bio)->key; + bch_bkey_copy_single_ptr(bio_key, k, ptr); + + bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); + bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); + + n->bi_end_io = bch_cache_read_endio; + n->bi_private = &s->cl; + + /* + * The bucket we're reading from might be reused while our bio + * is in flight, and we could then end up reading the wrong + * data. + * + * We guard against this by checking (in cache_read_endio()) if + * the pointer is stale again; if so, we treat it as an error + * and reread from the backing device (but we don't pass that + * error up anywhere). + */ + + __bch_submit_bbio(n, b->c); + return n == bio ? MAP_DONE : MAP_CONTINUE; +} + +static void cache_lookup(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, iop.cl); + struct bio *bio = &s->bio.bio; + int ret; + + bch_btree_op_init(&s->op, -1); + + ret = bch_btree_map_keys(&s->op, s->iop.c, + &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), + cache_lookup_fn, MAP_END_KEY); + if (ret == -EAGAIN) + continue_at(cl, cache_lookup, bcache_wq); + + closure_return(cl); +} + +/* Common code for the make_request functions */ + +static void request_endio(struct bio *bio, int error) +{ + struct closure *cl = bio->bi_private; + + if (error) { + struct search *s = container_of(cl, struct search, cl); + s->iop.error = error; + /* Only cache read errors are recoverable */ + s->recoverable = false; + } + + bio_put(bio); + closure_put(cl); +} + +static void bio_complete(struct search *s) +{ + if (s->orig_bio) { + int cpu, rw = bio_data_dir(s->orig_bio); + unsigned long duration = jiffies - s->start_time; + + cpu = part_stat_lock(); + part_round_stats(cpu, &s->d->disk->part0); + part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration); + part_stat_unlock(); + + trace_bcache_request_end(s->d, s->orig_bio); + bio_endio(s->orig_bio, s->iop.error); + s->orig_bio = NULL; + } +} + +static void do_bio_hook(struct search *s, struct bio *orig_bio) +{ + struct bio *bio = &s->bio.bio; + + bio_init(bio); + __bio_clone_fast(bio, orig_bio); + bio->bi_end_io = request_endio; + bio->bi_private = &s->cl; + + atomic_set(&bio->bi_cnt, 3); +} + +static void search_free(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + bio_complete(s); + + if (s->iop.bio) + bio_put(s->iop.bio); + + closure_debug_destroy(cl); + mempool_free(s, s->d->c->search); +} + +static inline struct search *search_alloc(struct bio *bio, + struct bcache_device *d) +{ + struct search *s; + + s = mempool_alloc(d->c->search, GFP_NOIO); + + closure_init(&s->cl, NULL); + do_bio_hook(s, bio); + + s->orig_bio = bio; + s->cache_miss = NULL; + s->d = d; + s->recoverable = 1; + s->write = (bio->bi_rw & REQ_WRITE) != 0; + s->read_dirty_data = 0; + s->start_time = jiffies; + + s->iop.c = d->c; + s->iop.bio = NULL; + s->iop.inode = d->id; + s->iop.write_point = hash_long((unsigned long) current, 16); + s->iop.write_prio = 0; + s->iop.error = 0; + s->iop.flags = 0; + s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0; + s->iop.wq = bcache_wq; + + return s; +} + +/* Cached devices */ + +static void cached_dev_bio_complete(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); + + search_free(cl); + cached_dev_put(dc); +} + +/* Process reads */ + +static void cached_dev_cache_miss_done(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + + if (s->iop.replace_collision) + bch_mark_cache_miss_collision(s->iop.c, s->d); + + if (s->iop.bio) { + int i; + struct bio_vec *bv; + + bio_for_each_segment_all(bv, s->iop.bio, i) + __free_page(bv->bv_page); + } + + cached_dev_bio_complete(cl); +} + +static void cached_dev_read_error(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + struct bio *bio = &s->bio.bio; + + if (s->recoverable) { + /* Retry from the backing device: */ + trace_bcache_read_retry(s->orig_bio); + + s->iop.error = 0; + do_bio_hook(s, s->orig_bio); + + /* XXX: invalidate cache */ + + closure_bio_submit(bio, cl, s->d); + } + + continue_at(cl, cached_dev_cache_miss_done, NULL); +} + +static void cached_dev_read_done(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); + + /* + * We had a cache miss; cache_bio now contains data ready to be inserted + * into the cache. + * + * First, we copy the data we just read from cache_bio's bounce buffers + * to the buffers the original bio pointed to: + */ + + if (s->iop.bio) { + bio_reset(s->iop.bio); + s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; + s->iop.bio->bi_bdev = s->cache_miss->bi_bdev; + s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; + bch_bio_map(s->iop.bio, NULL); + + bio_copy_data(s->cache_miss, s->iop.bio); + + bio_put(s->cache_miss); + s->cache_miss = NULL; + } + + if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data) + bch_data_verify(dc, s->orig_bio); + + bio_complete(s); + + if (s->iop.bio && + !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { + BUG_ON(!s->iop.replace); + closure_call(&s->iop.cl, bch_data_insert, NULL, cl); + } + + continue_at(cl, cached_dev_cache_miss_done, NULL); +} + +static void cached_dev_read_done_bh(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); + + bch_mark_cache_accounting(s->iop.c, s->d, + !s->cache_miss, s->iop.bypass); + trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); + + if (s->iop.error) + continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); + else if (s->iop.bio || verify(dc, &s->bio.bio)) + continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); + else + continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); +} + +static int cached_dev_cache_miss(struct btree *b, struct search *s, + struct bio *bio, unsigned sectors) +{ + int ret = MAP_CONTINUE; + unsigned reada = 0; + struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); + struct bio *miss, *cache_bio; + + if (s->cache_miss || s->iop.bypass) { + miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); + ret = miss == bio ? MAP_DONE : MAP_CONTINUE; + goto out_submit; + } + + if (!(bio->bi_rw & REQ_RAHEAD) && + !(bio->bi_rw & REQ_META) && + s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) + reada = min_t(sector_t, dc->readahead >> 9, + bdev_sectors(bio->bi_bdev) - bio_end_sector(bio)); + + s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); + + s->iop.replace_key = KEY(s->iop.inode, + bio->bi_iter.bi_sector + s->insert_bio_sectors, + s->insert_bio_sectors); + + ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); + if (ret) + return ret; + + s->iop.replace = true; + + miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); + + /* btree_search_recurse()'s btree iterator is no good anymore */ + ret = miss == bio ? MAP_DONE : -EINTR; + + cache_bio = bio_alloc_bioset(GFP_NOWAIT, + DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), + dc->disk.bio_split); + if (!cache_bio) + goto out_submit; + + cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; + cache_bio->bi_bdev = miss->bi_bdev; + cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; + + cache_bio->bi_end_io = request_endio; + cache_bio->bi_private = &s->cl; + + bch_bio_map(cache_bio, NULL); + if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) + goto out_put; + + if (reada) + bch_mark_cache_readahead(s->iop.c, s->d); + + s->cache_miss = miss; + s->iop.bio = cache_bio; + bio_get(cache_bio); + closure_bio_submit(cache_bio, &s->cl, s->d); + + return ret; +out_put: + bio_put(cache_bio); +out_submit: + miss->bi_end_io = request_endio; + miss->bi_private = &s->cl; + closure_bio_submit(miss, &s->cl, s->d); + return ret; +} + +static void cached_dev_read(struct cached_dev *dc, struct search *s) +{ + struct closure *cl = &s->cl; + + closure_call(&s->iop.cl, cache_lookup, NULL, cl); + continue_at(cl, cached_dev_read_done_bh, NULL); +} + +/* Process writes */ + +static void cached_dev_write_complete(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); + + up_read_non_owner(&dc->writeback_lock); + cached_dev_bio_complete(cl); +} + +static void cached_dev_write(struct cached_dev *dc, struct search *s) +{ + struct closure *cl = &s->cl; + struct bio *bio = &s->bio.bio; + struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); + struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); + + bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); + + down_read_non_owner(&dc->writeback_lock); + if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { + /* + * We overlap with some dirty data undergoing background + * writeback, force this write to writeback + */ + s->iop.bypass = false; + s->iop.writeback = true; + } + + /* + * Discards aren't _required_ to do anything, so skipping if + * check_overlapping returned true is ok + * + * But check_overlapping drops dirty keys for which io hasn't started, + * so we still want to call it. + */ + if (bio->bi_rw & REQ_DISCARD) + s->iop.bypass = true; + + if (should_writeback(dc, s->orig_bio, + cache_mode(dc, bio), + s->iop.bypass)) { + s->iop.bypass = false; + s->iop.writeback = true; + } + + if (s->iop.bypass) { + s->iop.bio = s->orig_bio; + bio_get(s->iop.bio); + + if (!(bio->bi_rw & REQ_DISCARD) || + blk_queue_discard(bdev_get_queue(dc->bdev))) + closure_bio_submit(bio, cl, s->d); + } else if (s->iop.writeback) { + bch_writeback_add(dc); + s->iop.bio = bio; + + if (bio->bi_rw & REQ_FLUSH) { + /* Also need to send a flush to the backing device */ + struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, + dc->disk.bio_split); + + flush->bi_rw = WRITE_FLUSH; + flush->bi_bdev = bio->bi_bdev; + flush->bi_end_io = request_endio; + flush->bi_private = cl; + + closure_bio_submit(flush, cl, s->d); + } + } else { + s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); + + closure_bio_submit(bio, cl, s->d); + } + + closure_call(&s->iop.cl, bch_data_insert, NULL, cl); + continue_at(cl, cached_dev_write_complete, NULL); +} + +static void cached_dev_nodata(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + struct bio *bio = &s->bio.bio; + + if (s->iop.flush_journal) + bch_journal_meta(s->iop.c, cl); + + /* If it's a flush, we send the flush to the backing device too */ + closure_bio_submit(bio, cl, s->d); + + continue_at(cl, cached_dev_bio_complete, NULL); +} + +/* Cached devices - read & write stuff */ + +static void cached_dev_make_request(struct request_queue *q, struct bio *bio) +{ + struct search *s; + struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; + struct cached_dev *dc = container_of(d, struct cached_dev, disk); + int cpu, rw = bio_data_dir(bio); + + cpu = part_stat_lock(); + part_stat_inc(cpu, &d->disk->part0, ios[rw]); + part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); + part_stat_unlock(); + + bio->bi_bdev = dc->bdev; + bio->bi_iter.bi_sector += dc->sb.data_offset; + + if (cached_dev_get(dc)) { + s = search_alloc(bio, d); + trace_bcache_request_start(s->d, bio); + + if (!bio->bi_iter.bi_size) { + /* + * can't call bch_journal_meta from under + * generic_make_request + */ + continue_at_nobarrier(&s->cl, + cached_dev_nodata, + bcache_wq); + } else { + s->iop.bypass = check_should_bypass(dc, bio); + + if (rw) + cached_dev_write(dc, s); + else + cached_dev_read(dc, s); + } + } else { + if ((bio->bi_rw & REQ_DISCARD) && + !blk_queue_discard(bdev_get_queue(dc->bdev))) + bio_endio(bio, 0); + else + bch_generic_make_request(bio, &d->bio_split_hook); + } +} + +static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, + unsigned int cmd, unsigned long arg) +{ + struct cached_dev *dc = container_of(d, struct cached_dev, disk); + return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); +} + +static int cached_dev_congested(void *data, int bits) +{ + struct bcache_device *d = data; + struct cached_dev *dc = container_of(d, struct cached_dev, disk); + struct request_queue *q = bdev_get_queue(dc->bdev); + int ret = 0; + + if (bdi_congested(&q->backing_dev_info, bits)) + return 1; + + if (cached_dev_get(dc)) { + unsigned i; + struct cache *ca; + + for_each_cache(ca, d->c, i) { + q = bdev_get_queue(ca->bdev); + ret |= bdi_congested(&q->backing_dev_info, bits); + } + + cached_dev_put(dc); + } + + return ret; +} + +void bch_cached_dev_request_init(struct cached_dev *dc) +{ + struct gendisk *g = dc->disk.disk; + + g->queue->make_request_fn = cached_dev_make_request; + g->queue->backing_dev_info.congested_fn = cached_dev_congested; + dc->disk.cache_miss = cached_dev_cache_miss; + dc->disk.ioctl = cached_dev_ioctl; +} + +/* Flash backed devices */ + +static int flash_dev_cache_miss(struct btree *b, struct search *s, + struct bio *bio, unsigned sectors) +{ + unsigned bytes = min(sectors, bio_sectors(bio)) << 9; + + swap(bio->bi_iter.bi_size, bytes); + zero_fill_bio(bio); + swap(bio->bi_iter.bi_size, bytes); + + bio_advance(bio, bytes); + + if (!bio->bi_iter.bi_size) + return MAP_DONE; + + return MAP_CONTINUE; +} + +static void flash_dev_nodata(struct closure *cl) +{ + struct search *s = container_of(cl, struct search, cl); + + if (s->iop.flush_journal) + bch_journal_meta(s->iop.c, cl); + + continue_at(cl, search_free, NULL); +} + +static void flash_dev_make_request(struct request_queue *q, struct bio *bio) +{ + struct search *s; + struct closure *cl; + struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; + int cpu, rw = bio_data_dir(bio); + + cpu = part_stat_lock(); + part_stat_inc(cpu, &d->disk->part0, ios[rw]); + part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); + part_stat_unlock(); + + s = search_alloc(bio, d); + cl = &s->cl; + bio = &s->bio.bio; + + trace_bcache_request_start(s->d, bio); + + if (!bio->bi_iter.bi_size) { + /* + * can't call bch_journal_meta from under + * generic_make_request + */ + continue_at_nobarrier(&s->cl, + flash_dev_nodata, + bcache_wq); + } else if (rw) { + bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, + &KEY(d->id, bio->bi_iter.bi_sector, 0), + &KEY(d->id, bio_end_sector(bio), 0)); + + s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0; + s->iop.writeback = true; + s->iop.bio = bio; + + closure_call(&s->iop.cl, bch_data_insert, NULL, cl); + } else { + closure_call(&s->iop.cl, cache_lookup, NULL, cl); + } + + continue_at(cl, search_free, NULL); +} + +static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, + unsigned int cmd, unsigned long arg) +{ + return -ENOTTY; +} + +static int flash_dev_congested(void *data, int bits) +{ + struct bcache_device *d = data; + struct request_queue *q; + struct cache *ca; + unsigned i; + int ret = 0; + + for_each_cache(ca, d->c, i) { + q = bdev_get_queue(ca->bdev); + ret |= bdi_congested(&q->backing_dev_info, bits); + } + + return ret; +} + +void bch_flash_dev_request_init(struct bcache_device *d) +{ + struct gendisk *g = d->disk; + + g->queue->make_request_fn = flash_dev_make_request; + g->queue->backing_dev_info.congested_fn = flash_dev_congested; + d->cache_miss = flash_dev_cache_miss; + d->ioctl = flash_dev_ioctl; +} + +void bch_request_exit(void) +{ + if (bch_search_cache) + kmem_cache_destroy(bch_search_cache); +} + +int __init bch_request_init(void) +{ + bch_search_cache = KMEM_CACHE(search, 0); + if (!bch_search_cache) + return -ENOMEM; + + return 0; +} diff --git a/drivers/md/bcache/request.h b/drivers/md/bcache/request.h new file mode 100644 index 00000000000..1ff36875c2b --- /dev/null +++ b/drivers/md/bcache/request.h @@ -0,0 +1,43 @@ +#ifndef _BCACHE_REQUEST_H_ +#define _BCACHE_REQUEST_H_ + +struct data_insert_op { + struct closure cl; + struct cache_set *c; + struct bio *bio; + struct workqueue_struct *wq; + + unsigned inode; + uint16_t write_point; + uint16_t write_prio; + short error; + + union { + uint16_t flags; + + struct { + unsigned bypass:1; + unsigned writeback:1; + unsigned flush_journal:1; + unsigned csum:1; + + unsigned replace:1; + unsigned replace_collision:1; + + unsigned insert_data_done:1; + }; + }; + + struct keylist insert_keys; + BKEY_PADDED(replace_key); +}; + +unsigned bch_get_congested(struct cache_set *); +void bch_data_insert(struct closure *cl); + +void bch_cached_dev_request_init(struct cached_dev *dc); +void bch_flash_dev_request_init(struct bcache_device *d); + +extern struct kmem_cache *bch_search_cache, *bch_passthrough_cache; + +#endif /* _BCACHE_REQUEST_H_ */ diff --git a/drivers/md/bcache/stats.c b/drivers/md/bcache/stats.c new file mode 100644 index 00000000000..0ca072c20d0 --- /dev/null +++ b/drivers/md/bcache/stats.c @@ -0,0 +1,241 @@ +/* + * bcache stats code + * + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "stats.h" +#include "btree.h" +#include "sysfs.h" + +/* + * We keep absolute totals of various statistics, and addionally a set of three + * rolling averages. + * + * Every so often, a timer goes off and rescales the rolling averages. + * accounting_rescale[] is how many times the timer has to go off before we + * rescale each set of numbers; that gets us half lives of 5 minutes, one hour, + * and one day. + * + * accounting_delay is how often the timer goes off - 22 times in 5 minutes, + * and accounting_weight is what we use to rescale: + * + * pow(31 / 32, 22) ~= 1/2 + * + * So that we don't have to increment each set of numbers every time we (say) + * get a cache hit, we increment a single atomic_t in acc->collector, and when + * the rescale function runs it resets the atomic counter to 0 and adds its + * old value to each of the exported numbers. + * + * To reduce rounding error, the numbers in struct cache_stats are all + * stored left shifted by 16, and scaled back in the sysfs show() function. + */ + +static const unsigned DAY_RESCALE = 288; +static const unsigned HOUR_RESCALE = 12; +static const unsigned FIVE_MINUTE_RESCALE = 1; +static const unsigned accounting_delay = (HZ * 300) / 22; +static const unsigned accounting_weight = 32; + +/* sysfs reading/writing */ + +read_attribute(cache_hits); +read_attribute(cache_misses); +read_attribute(cache_bypass_hits); +read_attribute(cache_bypass_misses); +read_attribute(cache_hit_ratio); +read_attribute(cache_readaheads); +read_attribute(cache_miss_collisions); +read_attribute(bypassed); + +SHOW(bch_stats) +{ + struct cache_stats *s = + container_of(kobj, struct cache_stats, kobj); +#define var(stat) (s->stat >> 16) + var_print(cache_hits); + var_print(cache_misses); + var_print(cache_bypass_hits); + var_print(cache_bypass_misses); + + sysfs_print(cache_hit_ratio, + DIV_SAFE(var(cache_hits) * 100, + var(cache_hits) + var(cache_misses))); + + var_print(cache_readaheads); + var_print(cache_miss_collisions); + sysfs_hprint(bypassed, var(sectors_bypassed) << 9); +#undef var + return 0; +} + +STORE(bch_stats) +{ + return size; +} + +static void bch_stats_release(struct kobject *k) +{ +} + +static struct attribute *bch_stats_files[] = { + &sysfs_cache_hits, + &sysfs_cache_misses, + &sysfs_cache_bypass_hits, + &sysfs_cache_bypass_misses, + &sysfs_cache_hit_ratio, + &sysfs_cache_readaheads, + &sysfs_cache_miss_collisions, + &sysfs_bypassed, + NULL +}; +static KTYPE(bch_stats); + +int bch_cache_accounting_add_kobjs(struct cache_accounting *acc, + struct kobject *parent) +{ + int ret = kobject_add(&acc->total.kobj, parent, + "stats_total"); + ret = ret ?: kobject_add(&acc->five_minute.kobj, parent, + "stats_five_minute"); + ret = ret ?: kobject_add(&acc->hour.kobj, parent, + "stats_hour"); + ret = ret ?: kobject_add(&acc->day.kobj, parent, + "stats_day"); + return ret; +} + +void bch_cache_accounting_clear(struct cache_accounting *acc) +{ + memset(&acc->total.cache_hits, + 0, + sizeof(unsigned long) * 7); +} + +void bch_cache_accounting_destroy(struct cache_accounting *acc) +{ + kobject_put(&acc->total.kobj); + kobject_put(&acc->five_minute.kobj); + kobject_put(&acc->hour.kobj); + kobject_put(&acc->day.kobj); + + atomic_set(&acc->closing, 1); + if (del_timer_sync(&acc->timer)) + closure_return(&acc->cl); +} + +/* EWMA scaling */ + +static void scale_stat(unsigned long *stat) +{ + *stat = ewma_add(*stat, 0, accounting_weight, 0); +} + +static void scale_stats(struct cache_stats *stats, unsigned long rescale_at) +{ + if (++stats->rescale == rescale_at) { + stats->rescale = 0; + scale_stat(&stats->cache_hits); + scale_stat(&stats->cache_misses); + scale_stat(&stats->cache_bypass_hits); + scale_stat(&stats->cache_bypass_misses); + scale_stat(&stats->cache_readaheads); + scale_stat(&stats->cache_miss_collisions); + scale_stat(&stats->sectors_bypassed); + } +} + +static void scale_accounting(unsigned long data) +{ + struct cache_accounting *acc = (struct cache_accounting *) data; + +#define move_stat(name) do { \ + unsigned t = atomic_xchg(&acc->collector.name, 0); \ + t <<= 16; \ + acc->five_minute.name += t; \ + acc->hour.name += t; \ + acc->day.name += t; \ + acc->total.name += t; \ +} while (0) + + move_stat(cache_hits); + move_stat(cache_misses); + move_stat(cache_bypass_hits); + move_stat(cache_bypass_misses); + move_stat(cache_readaheads); + move_stat(cache_miss_collisions); + move_stat(sectors_bypassed); + + scale_stats(&acc->total, 0); + scale_stats(&acc->day, DAY_RESCALE); + scale_stats(&acc->hour, HOUR_RESCALE); + scale_stats(&acc->five_minute, FIVE_MINUTE_RESCALE); + + acc->timer.expires += accounting_delay; + + if (!atomic_read(&acc->closing)) + add_timer(&acc->timer); + else + closure_return(&acc->cl); +} + +static void mark_cache_stats(struct cache_stat_collector *stats, + bool hit, bool bypass) +{ + if (!bypass) + if (hit) + atomic_inc(&stats->cache_hits); + else + atomic_inc(&stats->cache_misses); + else + if (hit) + atomic_inc(&stats->cache_bypass_hits); + else + atomic_inc(&stats->cache_bypass_misses); +} + +void bch_mark_cache_accounting(struct cache_set *c, struct bcache_device *d, + bool hit, bool bypass) +{ + struct cached_dev *dc = container_of(d, struct cached_dev, disk); + mark_cache_stats(&dc->accounting.collector, hit, bypass); + mark_cache_stats(&c->accounting.collector, hit, bypass); +} + +void bch_mark_cache_readahead(struct cache_set *c, struct bcache_device *d) +{ + struct cached_dev *dc = container_of(d, struct cached_dev, disk); + atomic_inc(&dc->accounting.collector.cache_readaheads); + atomic_inc(&c->accounting.collector.cache_readaheads); +} + +void bch_mark_cache_miss_collision(struct cache_set *c, struct bcache_device *d) +{ + struct cached_dev *dc = container_of(d, struct cached_dev, disk); + atomic_inc(&dc->accounting.collector.cache_miss_collisions); + atomic_inc(&c->accounting.collector.cache_miss_collisions); +} + +void bch_mark_sectors_bypassed(struct cache_set *c, struct cached_dev *dc, + int sectors) +{ + atomic_add(sectors, &dc->accounting.collector.sectors_bypassed); + atomic_add(sectors, &c->accounting.collector.sectors_bypassed); +} + +void bch_cache_accounting_init(struct cache_accounting *acc, + struct closure *parent) +{ + kobject_init(&acc->total.kobj, &bch_stats_ktype); + kobject_init(&acc->five_minute.kobj, &bch_stats_ktype); + kobject_init(&acc->hour.kobj, &bch_stats_ktype); + kobject_init(&acc->day.kobj, &bch_stats_ktype); + + closure_init(&acc->cl, parent); + init_timer(&acc->timer); + acc->timer.expires = jiffies + accounting_delay; + acc->timer.data = (unsigned long) acc; + acc->timer.function = scale_accounting; + add_timer(&acc->timer); +} diff --git a/drivers/md/bcache/stats.h b/drivers/md/bcache/stats.h new file mode 100644 index 00000000000..adbff141c88 --- /dev/null +++ b/drivers/md/bcache/stats.h @@ -0,0 +1,61 @@ +#ifndef _BCACHE_STATS_H_ +#define _BCACHE_STATS_H_ + +struct cache_stat_collector { + atomic_t cache_hits; + atomic_t cache_misses; + atomic_t cache_bypass_hits; + atomic_t cache_bypass_misses; + atomic_t cache_readaheads; + atomic_t cache_miss_collisions; + atomic_t sectors_bypassed; +}; + +struct cache_stats { + struct kobject kobj; + + unsigned long cache_hits; + unsigned long cache_misses; + unsigned long cache_bypass_hits; + unsigned long cache_bypass_misses; + unsigned long cache_readaheads; + unsigned long cache_miss_collisions; + unsigned long sectors_bypassed; + + unsigned rescale; +}; + +struct cache_accounting { + struct closure cl; + struct timer_list timer; + atomic_t closing; + + struct cache_stat_collector collector; + + struct cache_stats total; + struct cache_stats five_minute; + struct cache_stats hour; + struct cache_stats day; +}; + +struct cache_set; +struct cached_dev; +struct bcache_device; + +void bch_cache_accounting_init(struct cache_accounting *acc, + struct closure *parent); + +int bch_cache_accounting_add_kobjs(struct cache_accounting *acc, + struct kobject *parent); + +void bch_cache_accounting_clear(struct cache_accounting *acc); + +void bch_cache_accounting_destroy(struct cache_accounting *acc); + +void bch_mark_cache_accounting(struct cache_set *, struct bcache_device *, + bool, bool); +void bch_mark_cache_readahead(struct cache_set *, struct bcache_device *); +void bch_mark_cache_miss_collision(struct cache_set *, struct bcache_device *); +void bch_mark_sectors_bypassed(struct cache_set *, struct cached_dev *, int); + +#endif /* _BCACHE_STATS_H_ */ diff --git a/drivers/md/bcache/super.c b/drivers/md/bcache/super.c new file mode 100644 index 00000000000..926ded8ccbf --- /dev/null +++ b/drivers/md/bcache/super.c @@ -0,0 +1,2102 @@ +/* + * bcache setup/teardown code, and some metadata io - read a superblock and + * figure out what to do with it. + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" +#include "extents.h" +#include "request.h" +#include "writeback.h" + +#include <linux/blkdev.h> +#include <linux/buffer_head.h> +#include <linux/debugfs.h> +#include <linux/genhd.h> +#include <linux/idr.h> +#include <linux/kthread.h> +#include <linux/module.h> +#include <linux/random.h> +#include <linux/reboot.h> +#include <linux/sysfs.h> + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); + +static const char bcache_magic[] = { + 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, + 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 +}; + +static const char invalid_uuid[] = { + 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, + 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 +}; + +/* Default is -1; we skip past it for struct cached_dev's cache mode */ +const char * const bch_cache_modes[] = { + "default", + "writethrough", + "writeback", + "writearound", + "none", + NULL +}; + +static struct kobject *bcache_kobj; +struct mutex bch_register_lock; +LIST_HEAD(bch_cache_sets); +static LIST_HEAD(uncached_devices); + +static int bcache_major; +static DEFINE_IDA(bcache_minor); +static wait_queue_head_t unregister_wait; +struct workqueue_struct *bcache_wq; + +#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) + +static void bio_split_pool_free(struct bio_split_pool *p) +{ + if (p->bio_split_hook) + mempool_destroy(p->bio_split_hook); + + if (p->bio_split) + bioset_free(p->bio_split); +} + +static int bio_split_pool_init(struct bio_split_pool *p) +{ + p->bio_split = bioset_create(4, 0); + if (!p->bio_split) + return -ENOMEM; + + p->bio_split_hook = mempool_create_kmalloc_pool(4, + sizeof(struct bio_split_hook)); + if (!p->bio_split_hook) + return -ENOMEM; + + return 0; +} + +/* Superblock */ + +static const char *read_super(struct cache_sb *sb, struct block_device *bdev, + struct page **res) +{ + const char *err; + struct cache_sb *s; + struct buffer_head *bh = __bread(bdev, 1, SB_SIZE); + unsigned i; + + if (!bh) + return "IO error"; + + s = (struct cache_sb *) bh->b_data; + + sb->offset = le64_to_cpu(s->offset); + sb->version = le64_to_cpu(s->version); + + memcpy(sb->magic, s->magic, 16); + memcpy(sb->uuid, s->uuid, 16); + memcpy(sb->set_uuid, s->set_uuid, 16); + memcpy(sb->label, s->label, SB_LABEL_SIZE); + + sb->flags = le64_to_cpu(s->flags); + sb->seq = le64_to_cpu(s->seq); + sb->last_mount = le32_to_cpu(s->last_mount); + sb->first_bucket = le16_to_cpu(s->first_bucket); + sb->keys = le16_to_cpu(s->keys); + + for (i = 0; i < SB_JOURNAL_BUCKETS; i++) + sb->d[i] = le64_to_cpu(s->d[i]); + + pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u", + sb->version, sb->flags, sb->seq, sb->keys); + + err = "Not a bcache superblock"; + if (sb->offset != SB_SECTOR) + goto err; + + if (memcmp(sb->magic, bcache_magic, 16)) + goto err; + + err = "Too many journal buckets"; + if (sb->keys > SB_JOURNAL_BUCKETS) + goto err; + + err = "Bad checksum"; + if (s->csum != csum_set(s)) + goto err; + + err = "Bad UUID"; + if (bch_is_zero(sb->uuid, 16)) + goto err; + + sb->block_size = le16_to_cpu(s->block_size); + + err = "Superblock block size smaller than device block size"; + if (sb->block_size << 9 < bdev_logical_block_size(bdev)) + goto err; + + switch (sb->version) { + case BCACHE_SB_VERSION_BDEV: + sb->data_offset = BDEV_DATA_START_DEFAULT; + break; + case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: + sb->data_offset = le64_to_cpu(s->data_offset); + + err = "Bad data offset"; + if (sb->data_offset < BDEV_DATA_START_DEFAULT) + goto err; + + break; + case BCACHE_SB_VERSION_CDEV: + case BCACHE_SB_VERSION_CDEV_WITH_UUID: + sb->nbuckets = le64_to_cpu(s->nbuckets); + sb->block_size = le16_to_cpu(s->block_size); + sb->bucket_size = le16_to_cpu(s->bucket_size); + + sb->nr_in_set = le16_to_cpu(s->nr_in_set); + sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); + + err = "Too many buckets"; + if (sb->nbuckets > LONG_MAX) + goto err; + + err = "Not enough buckets"; + if (sb->nbuckets < 1 << 7) + goto err; + + err = "Bad block/bucket size"; + if (!is_power_of_2(sb->block_size) || + sb->block_size > PAGE_SECTORS || + !is_power_of_2(sb->bucket_size) || + sb->bucket_size < PAGE_SECTORS) + goto err; + + err = "Invalid superblock: device too small"; + if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets) + goto err; + + err = "Bad UUID"; + if (bch_is_zero(sb->set_uuid, 16)) + goto err; + + err = "Bad cache device number in set"; + if (!sb->nr_in_set || + sb->nr_in_set <= sb->nr_this_dev || + sb->nr_in_set > MAX_CACHES_PER_SET) + goto err; + + err = "Journal buckets not sequential"; + for (i = 0; i < sb->keys; i++) + if (sb->d[i] != sb->first_bucket + i) + goto err; + + err = "Too many journal buckets"; + if (sb->first_bucket + sb->keys > sb->nbuckets) + goto err; + + err = "Invalid superblock: first bucket comes before end of super"; + if (sb->first_bucket * sb->bucket_size < 16) + goto err; + + break; + default: + err = "Unsupported superblock version"; + goto err; + } + + sb->last_mount = get_seconds(); + err = NULL; + + get_page(bh->b_page); + *res = bh->b_page; +err: + put_bh(bh); + return err; +} + +static void write_bdev_super_endio(struct bio *bio, int error) +{ + struct cached_dev *dc = bio->bi_private; + /* XXX: error checking */ + + closure_put(&dc->sb_write); +} + +static void __write_super(struct cache_sb *sb, struct bio *bio) +{ + struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page); + unsigned i; + + bio->bi_iter.bi_sector = SB_SECTOR; + bio->bi_rw = REQ_SYNC|REQ_META; + bio->bi_iter.bi_size = SB_SIZE; + bch_bio_map(bio, NULL); + + out->offset = cpu_to_le64(sb->offset); + out->version = cpu_to_le64(sb->version); + + memcpy(out->uuid, sb->uuid, 16); + memcpy(out->set_uuid, sb->set_uuid, 16); + memcpy(out->label, sb->label, SB_LABEL_SIZE); + + out->flags = cpu_to_le64(sb->flags); + out->seq = cpu_to_le64(sb->seq); + + out->last_mount = cpu_to_le32(sb->last_mount); + out->first_bucket = cpu_to_le16(sb->first_bucket); + out->keys = cpu_to_le16(sb->keys); + + for (i = 0; i < sb->keys; i++) + out->d[i] = cpu_to_le64(sb->d[i]); + + out->csum = csum_set(out); + + pr_debug("ver %llu, flags %llu, seq %llu", + sb->version, sb->flags, sb->seq); + + submit_bio(REQ_WRITE, bio); +} + +static void bch_write_bdev_super_unlock(struct closure *cl) +{ + struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); + + up(&dc->sb_write_mutex); +} + +void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) +{ + struct closure *cl = &dc->sb_write; + struct bio *bio = &dc->sb_bio; + + down(&dc->sb_write_mutex); + closure_init(cl, parent); + + bio_reset(bio); + bio->bi_bdev = dc->bdev; + bio->bi_end_io = write_bdev_super_endio; + bio->bi_private = dc; + + closure_get(cl); + __write_super(&dc->sb, bio); + + closure_return_with_destructor(cl, bch_write_bdev_super_unlock); +} + +static void write_super_endio(struct bio *bio, int error) +{ + struct cache *ca = bio->bi_private; + + bch_count_io_errors(ca, error, "writing superblock"); + closure_put(&ca->set->sb_write); +} + +static void bcache_write_super_unlock(struct closure *cl) +{ + struct cache_set *c = container_of(cl, struct cache_set, sb_write); + + up(&c->sb_write_mutex); +} + +void bcache_write_super(struct cache_set *c) +{ + struct closure *cl = &c->sb_write; + struct cache *ca; + unsigned i; + + down(&c->sb_write_mutex); + closure_init(cl, &c->cl); + + c->sb.seq++; + + for_each_cache(ca, c, i) { + struct bio *bio = &ca->sb_bio; + + ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; + ca->sb.seq = c->sb.seq; + ca->sb.last_mount = c->sb.last_mount; + + SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); + + bio_reset(bio); + bio->bi_bdev = ca->bdev; + bio->bi_end_io = write_super_endio; + bio->bi_private = ca; + + closure_get(cl); + __write_super(&ca->sb, bio); + } + + closure_return_with_destructor(cl, bcache_write_super_unlock); +} + +/* UUID io */ + +static void uuid_endio(struct bio *bio, int error) +{ + struct closure *cl = bio->bi_private; + struct cache_set *c = container_of(cl, struct cache_set, uuid_write); + + cache_set_err_on(error, c, "accessing uuids"); + bch_bbio_free(bio, c); + closure_put(cl); +} + +static void uuid_io_unlock(struct closure *cl) +{ + struct cache_set *c = container_of(cl, struct cache_set, uuid_write); + + up(&c->uuid_write_mutex); +} + +static void uuid_io(struct cache_set *c, unsigned long rw, + struct bkey *k, struct closure *parent) +{ + struct closure *cl = &c->uuid_write; + struct uuid_entry *u; + unsigned i; + char buf[80]; + + BUG_ON(!parent); + down(&c->uuid_write_mutex); + closure_init(cl, parent); + + for (i = 0; i < KEY_PTRS(k); i++) { + struct bio *bio = bch_bbio_alloc(c); + + bio->bi_rw = REQ_SYNC|REQ_META|rw; + bio->bi_iter.bi_size = KEY_SIZE(k) << 9; + + bio->bi_end_io = uuid_endio; + bio->bi_private = cl; + bch_bio_map(bio, c->uuids); + + bch_submit_bbio(bio, c, k, i); + + if (!(rw & WRITE)) + break; + } + + bch_extent_to_text(buf, sizeof(buf), k); + pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf); + + for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) + if (!bch_is_zero(u->uuid, 16)) + pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u", + u - c->uuids, u->uuid, u->label, + u->first_reg, u->last_reg, u->invalidated); + + closure_return_with_destructor(cl, uuid_io_unlock); +} + +static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) +{ + struct bkey *k = &j->uuid_bucket; + + if (__bch_btree_ptr_invalid(c, k)) + return "bad uuid pointer"; + + bkey_copy(&c->uuid_bucket, k); + uuid_io(c, READ_SYNC, k, cl); + + if (j->version < BCACHE_JSET_VERSION_UUIDv1) { + struct uuid_entry_v0 *u0 = (void *) c->uuids; + struct uuid_entry *u1 = (void *) c->uuids; + int i; + + closure_sync(cl); + + /* + * Since the new uuid entry is bigger than the old, we have to + * convert starting at the highest memory address and work down + * in order to do it in place + */ + + for (i = c->nr_uuids - 1; + i >= 0; + --i) { + memcpy(u1[i].uuid, u0[i].uuid, 16); + memcpy(u1[i].label, u0[i].label, 32); + + u1[i].first_reg = u0[i].first_reg; + u1[i].last_reg = u0[i].last_reg; + u1[i].invalidated = u0[i].invalidated; + + u1[i].flags = 0; + u1[i].sectors = 0; + } + } + + return NULL; +} + +static int __uuid_write(struct cache_set *c) +{ + BKEY_PADDED(key) k; + struct closure cl; + closure_init_stack(&cl); + + lockdep_assert_held(&bch_register_lock); + + if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) + return 1; + + SET_KEY_SIZE(&k.key, c->sb.bucket_size); + uuid_io(c, REQ_WRITE, &k.key, &cl); + closure_sync(&cl); + + bkey_copy(&c->uuid_bucket, &k.key); + bkey_put(c, &k.key); + return 0; +} + +int bch_uuid_write(struct cache_set *c) +{ + int ret = __uuid_write(c); + + if (!ret) + bch_journal_meta(c, NULL); + + return ret; +} + +static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) +{ + struct uuid_entry *u; + + for (u = c->uuids; + u < c->uuids + c->nr_uuids; u++) + if (!memcmp(u->uuid, uuid, 16)) + return u; + + return NULL; +} + +static struct uuid_entry *uuid_find_empty(struct cache_set *c) +{ + static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; + return uuid_find(c, zero_uuid); +} + +/* + * Bucket priorities/gens: + * + * For each bucket, we store on disk its + * 8 bit gen + * 16 bit priority + * + * See alloc.c for an explanation of the gen. The priority is used to implement + * lru (and in the future other) cache replacement policies; for most purposes + * it's just an opaque integer. + * + * The gens and the priorities don't have a whole lot to do with each other, and + * it's actually the gens that must be written out at specific times - it's no + * big deal if the priorities don't get written, if we lose them we just reuse + * buckets in suboptimal order. + * + * On disk they're stored in a packed array, and in as many buckets are required + * to fit them all. The buckets we use to store them form a list; the journal + * header points to the first bucket, the first bucket points to the second + * bucket, et cetera. + * + * This code is used by the allocation code; periodically (whenever it runs out + * of buckets to allocate from) the allocation code will invalidate some + * buckets, but it can't use those buckets until their new gens are safely on + * disk. + */ + +static void prio_endio(struct bio *bio, int error) +{ + struct cache *ca = bio->bi_private; + + cache_set_err_on(error, ca->set, "accessing priorities"); + bch_bbio_free(bio, ca->set); + closure_put(&ca->prio); +} + +static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw) +{ + struct closure *cl = &ca->prio; + struct bio *bio = bch_bbio_alloc(ca->set); + + closure_init_stack(cl); + + bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; + bio->bi_bdev = ca->bdev; + bio->bi_rw = REQ_SYNC|REQ_META|rw; + bio->bi_iter.bi_size = bucket_bytes(ca); + + bio->bi_end_io = prio_endio; + bio->bi_private = ca; + bch_bio_map(bio, ca->disk_buckets); + + closure_bio_submit(bio, &ca->prio, ca); + closure_sync(cl); +} + +void bch_prio_write(struct cache *ca) +{ + int i; + struct bucket *b; + struct closure cl; + + closure_init_stack(&cl); + + lockdep_assert_held(&ca->set->bucket_lock); + + ca->disk_buckets->seq++; + + atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), + &ca->meta_sectors_written); + + //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free), + // fifo_used(&ca->free_inc), fifo_used(&ca->unused)); + + for (i = prio_buckets(ca) - 1; i >= 0; --i) { + long bucket; + struct prio_set *p = ca->disk_buckets; + struct bucket_disk *d = p->data; + struct bucket_disk *end = d + prios_per_bucket(ca); + + for (b = ca->buckets + i * prios_per_bucket(ca); + b < ca->buckets + ca->sb.nbuckets && d < end; + b++, d++) { + d->prio = cpu_to_le16(b->prio); + d->gen = b->gen; + } + + p->next_bucket = ca->prio_buckets[i + 1]; + p->magic = pset_magic(&ca->sb); + p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); + + bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true); + BUG_ON(bucket == -1); + + mutex_unlock(&ca->set->bucket_lock); + prio_io(ca, bucket, REQ_WRITE); + mutex_lock(&ca->set->bucket_lock); + + ca->prio_buckets[i] = bucket; + atomic_dec_bug(&ca->buckets[bucket].pin); + } + + mutex_unlock(&ca->set->bucket_lock); + + bch_journal_meta(ca->set, &cl); + closure_sync(&cl); + + mutex_lock(&ca->set->bucket_lock); + + /* + * Don't want the old priorities to get garbage collected until after we + * finish writing the new ones, and they're journalled + */ + for (i = 0; i < prio_buckets(ca); i++) { + if (ca->prio_last_buckets[i]) + __bch_bucket_free(ca, + &ca->buckets[ca->prio_last_buckets[i]]); + + ca->prio_last_buckets[i] = ca->prio_buckets[i]; + } +} + +static void prio_read(struct cache *ca, uint64_t bucket) +{ + struct prio_set *p = ca->disk_buckets; + struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; + struct bucket *b; + unsigned bucket_nr = 0; + + for (b = ca->buckets; + b < ca->buckets + ca->sb.nbuckets; + b++, d++) { + if (d == end) { + ca->prio_buckets[bucket_nr] = bucket; + ca->prio_last_buckets[bucket_nr] = bucket; + bucket_nr++; + + prio_io(ca, bucket, READ_SYNC); + + if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8)) + pr_warn("bad csum reading priorities"); + + if (p->magic != pset_magic(&ca->sb)) + pr_warn("bad magic reading priorities"); + + bucket = p->next_bucket; + d = p->data; + } + + b->prio = le16_to_cpu(d->prio); + b->gen = b->last_gc = d->gen; + } +} + +/* Bcache device */ + +static int open_dev(struct block_device *b, fmode_t mode) +{ + struct bcache_device *d = b->bd_disk->private_data; + if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) + return -ENXIO; + + closure_get(&d->cl); + return 0; +} + +static void release_dev(struct gendisk *b, fmode_t mode) +{ + struct bcache_device *d = b->private_data; + closure_put(&d->cl); +} + +static int ioctl_dev(struct block_device *b, fmode_t mode, + unsigned int cmd, unsigned long arg) +{ + struct bcache_device *d = b->bd_disk->private_data; + return d->ioctl(d, mode, cmd, arg); +} + +static const struct block_device_operations bcache_ops = { + .open = open_dev, + .release = release_dev, + .ioctl = ioctl_dev, + .owner = THIS_MODULE, +}; + +void bcache_device_stop(struct bcache_device *d) +{ + if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) + closure_queue(&d->cl); +} + +static void bcache_device_unlink(struct bcache_device *d) +{ + lockdep_assert_held(&bch_register_lock); + + if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { + unsigned i; + struct cache *ca; + + sysfs_remove_link(&d->c->kobj, d->name); + sysfs_remove_link(&d->kobj, "cache"); + + for_each_cache(ca, d->c, i) + bd_unlink_disk_holder(ca->bdev, d->disk); + } +} + +static void bcache_device_link(struct bcache_device *d, struct cache_set *c, + const char *name) +{ + unsigned i; + struct cache *ca; + + for_each_cache(ca, d->c, i) + bd_link_disk_holder(ca->bdev, d->disk); + + snprintf(d->name, BCACHEDEVNAME_SIZE, + "%s%u", name, d->id); + + WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") || + sysfs_create_link(&c->kobj, &d->kobj, d->name), + "Couldn't create device <-> cache set symlinks"); +} + +static void bcache_device_detach(struct bcache_device *d) +{ + lockdep_assert_held(&bch_register_lock); + + if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { + struct uuid_entry *u = d->c->uuids + d->id; + + SET_UUID_FLASH_ONLY(u, 0); + memcpy(u->uuid, invalid_uuid, 16); + u->invalidated = cpu_to_le32(get_seconds()); + bch_uuid_write(d->c); + } + + bcache_device_unlink(d); + + d->c->devices[d->id] = NULL; + closure_put(&d->c->caching); + d->c = NULL; +} + +static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, + unsigned id) +{ + BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags)); + + d->id = id; + d->c = c; + c->devices[id] = d; + + closure_get(&c->caching); +} + +static void bcache_device_free(struct bcache_device *d) +{ + lockdep_assert_held(&bch_register_lock); + + pr_info("%s stopped", d->disk->disk_name); + + if (d->c) + bcache_device_detach(d); + if (d->disk && d->disk->flags & GENHD_FL_UP) + del_gendisk(d->disk); + if (d->disk && d->disk->queue) + blk_cleanup_queue(d->disk->queue); + if (d->disk) { + ida_simple_remove(&bcache_minor, d->disk->first_minor); + put_disk(d->disk); + } + + bio_split_pool_free(&d->bio_split_hook); + if (d->bio_split) + bioset_free(d->bio_split); + if (is_vmalloc_addr(d->full_dirty_stripes)) + vfree(d->full_dirty_stripes); + else + kfree(d->full_dirty_stripes); + if (is_vmalloc_addr(d->stripe_sectors_dirty)) + vfree(d->stripe_sectors_dirty); + else + kfree(d->stripe_sectors_dirty); + + closure_debug_destroy(&d->cl); +} + +static int bcache_device_init(struct bcache_device *d, unsigned block_size, + sector_t sectors) +{ + struct request_queue *q; + size_t n; + int minor; + + if (!d->stripe_size) + d->stripe_size = 1 << 31; + + d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); + + if (!d->nr_stripes || + d->nr_stripes > INT_MAX || + d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) { + pr_err("nr_stripes too large"); + return -ENOMEM; + } + + n = d->nr_stripes * sizeof(atomic_t); + d->stripe_sectors_dirty = n < PAGE_SIZE << 6 + ? kzalloc(n, GFP_KERNEL) + : vzalloc(n); + if (!d->stripe_sectors_dirty) + return -ENOMEM; + + n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); + d->full_dirty_stripes = n < PAGE_SIZE << 6 + ? kzalloc(n, GFP_KERNEL) + : vzalloc(n); + if (!d->full_dirty_stripes) + return -ENOMEM; + + minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL); + if (minor < 0) + return minor; + + if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) || + bio_split_pool_init(&d->bio_split_hook) || + !(d->disk = alloc_disk(1))) { + ida_simple_remove(&bcache_minor, minor); + return -ENOMEM; + } + + set_capacity(d->disk, sectors); + snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor); + + d->disk->major = bcache_major; + d->disk->first_minor = minor; + d->disk->fops = &bcache_ops; + d->disk->private_data = d; + + q = blk_alloc_queue(GFP_KERNEL); + if (!q) + return -ENOMEM; + + blk_queue_make_request(q, NULL); + d->disk->queue = q; + q->queuedata = d; + q->backing_dev_info.congested_data = d; + q->limits.max_hw_sectors = UINT_MAX; + q->limits.max_sectors = UINT_MAX; + q->limits.max_segment_size = UINT_MAX; + q->limits.max_segments = BIO_MAX_PAGES; + q->limits.max_discard_sectors = UINT_MAX; + q->limits.discard_granularity = 512; + q->limits.io_min = block_size; + q->limits.logical_block_size = block_size; + q->limits.physical_block_size = block_size; + set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags); + set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags); + + blk_queue_flush(q, REQ_FLUSH|REQ_FUA); + + return 0; +} + +/* Cached device */ + +static void calc_cached_dev_sectors(struct cache_set *c) +{ + uint64_t sectors = 0; + struct cached_dev *dc; + + list_for_each_entry(dc, &c->cached_devs, list) + sectors += bdev_sectors(dc->bdev); + + c->cached_dev_sectors = sectors; +} + +void bch_cached_dev_run(struct cached_dev *dc) +{ + struct bcache_device *d = &dc->disk; + char buf[SB_LABEL_SIZE + 1]; + char *env[] = { + "DRIVER=bcache", + kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), + NULL, + NULL, + }; + + memcpy(buf, dc->sb.label, SB_LABEL_SIZE); + buf[SB_LABEL_SIZE] = '\0'; + env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf); + + if (atomic_xchg(&dc->running, 1)) + return; + + if (!d->c && + BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { + struct closure cl; + closure_init_stack(&cl); + + SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); + bch_write_bdev_super(dc, &cl); + closure_sync(&cl); + } + + add_disk(d->disk); + bd_link_disk_holder(dc->bdev, dc->disk.disk); + /* won't show up in the uevent file, use udevadm monitor -e instead + * only class / kset properties are persistent */ + kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); + kfree(env[1]); + kfree(env[2]); + + if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || + sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache")) + pr_debug("error creating sysfs link"); +} + +static void cached_dev_detach_finish(struct work_struct *w) +{ + struct cached_dev *dc = container_of(w, struct cached_dev, detach); + char buf[BDEVNAME_SIZE]; + struct closure cl; + closure_init_stack(&cl); + + BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); + BUG_ON(atomic_read(&dc->count)); + + mutex_lock(&bch_register_lock); + + memset(&dc->sb.set_uuid, 0, 16); + SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); + + bch_write_bdev_super(dc, &cl); + closure_sync(&cl); + + bcache_device_detach(&dc->disk); + list_move(&dc->list, &uncached_devices); + + clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); + + mutex_unlock(&bch_register_lock); + + pr_info("Caching disabled for %s", bdevname(dc->bdev, buf)); + + /* Drop ref we took in cached_dev_detach() */ + closure_put(&dc->disk.cl); +} + +void bch_cached_dev_detach(struct cached_dev *dc) +{ + lockdep_assert_held(&bch_register_lock); + + if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) + return; + + if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) + return; + + /* + * Block the device from being closed and freed until we're finished + * detaching + */ + closure_get(&dc->disk.cl); + + bch_writeback_queue(dc); + cached_dev_put(dc); +} + +int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c) +{ + uint32_t rtime = cpu_to_le32(get_seconds()); + struct uuid_entry *u; + char buf[BDEVNAME_SIZE]; + + bdevname(dc->bdev, buf); + + if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)) + return -ENOENT; + + if (dc->disk.c) { + pr_err("Can't attach %s: already attached", buf); + return -EINVAL; + } + + if (test_bit(CACHE_SET_STOPPING, &c->flags)) { + pr_err("Can't attach %s: shutting down", buf); + return -EINVAL; + } + + if (dc->sb.block_size < c->sb.block_size) { + /* Will die */ + pr_err("Couldn't attach %s: block size less than set's block size", + buf); + return -EINVAL; + } + + u = uuid_find(c, dc->sb.uuid); + + if (u && + (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || + BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { + memcpy(u->uuid, invalid_uuid, 16); + u->invalidated = cpu_to_le32(get_seconds()); + u = NULL; + } + + if (!u) { + if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { + pr_err("Couldn't find uuid for %s in set", buf); + return -ENOENT; + } + + u = uuid_find_empty(c); + if (!u) { + pr_err("Not caching %s, no room for UUID", buf); + return -EINVAL; + } + } + + /* Deadlocks since we're called via sysfs... + sysfs_remove_file(&dc->kobj, &sysfs_attach); + */ + + if (bch_is_zero(u->uuid, 16)) { + struct closure cl; + closure_init_stack(&cl); + + memcpy(u->uuid, dc->sb.uuid, 16); + memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); + u->first_reg = u->last_reg = rtime; + bch_uuid_write(c); + + memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); + SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); + + bch_write_bdev_super(dc, &cl); + closure_sync(&cl); + } else { + u->last_reg = rtime; + bch_uuid_write(c); + } + + bcache_device_attach(&dc->disk, c, u - c->uuids); + list_move(&dc->list, &c->cached_devs); + calc_cached_dev_sectors(c); + + smp_wmb(); + /* + * dc->c must be set before dc->count != 0 - paired with the mb in + * cached_dev_get() + */ + atomic_set(&dc->count, 1); + + if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { + bch_sectors_dirty_init(dc); + atomic_set(&dc->has_dirty, 1); + atomic_inc(&dc->count); + bch_writeback_queue(dc); + } + + bch_cached_dev_run(dc); + bcache_device_link(&dc->disk, c, "bdev"); + + pr_info("Caching %s as %s on set %pU", + bdevname(dc->bdev, buf), dc->disk.disk->disk_name, + dc->disk.c->sb.set_uuid); + return 0; +} + +void bch_cached_dev_release(struct kobject *kobj) +{ + struct cached_dev *dc = container_of(kobj, struct cached_dev, + disk.kobj); + kfree(dc); + module_put(THIS_MODULE); +} + +static void cached_dev_free(struct closure *cl) +{ + struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); + + cancel_delayed_work_sync(&dc->writeback_rate_update); + kthread_stop(dc->writeback_thread); + + mutex_lock(&bch_register_lock); + + if (atomic_read(&dc->running)) + bd_unlink_disk_holder(dc->bdev, dc->disk.disk); + bcache_device_free(&dc->disk); + list_del(&dc->list); + + mutex_unlock(&bch_register_lock); + + if (!IS_ERR_OR_NULL(dc->bdev)) { + if (dc->bdev->bd_disk) + blk_sync_queue(bdev_get_queue(dc->bdev)); + + blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); + } + + wake_up(&unregister_wait); + + kobject_put(&dc->disk.kobj); +} + +static void cached_dev_flush(struct closure *cl) +{ + struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); + struct bcache_device *d = &dc->disk; + + mutex_lock(&bch_register_lock); + bcache_device_unlink(d); + mutex_unlock(&bch_register_lock); + + bch_cache_accounting_destroy(&dc->accounting); + kobject_del(&d->kobj); + + continue_at(cl, cached_dev_free, system_wq); +} + +static int cached_dev_init(struct cached_dev *dc, unsigned block_size) +{ + int ret; + struct io *io; + struct request_queue *q = bdev_get_queue(dc->bdev); + + __module_get(THIS_MODULE); + INIT_LIST_HEAD(&dc->list); + closure_init(&dc->disk.cl, NULL); + set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); + kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); + INIT_WORK(&dc->detach, cached_dev_detach_finish); + sema_init(&dc->sb_write_mutex, 1); + INIT_LIST_HEAD(&dc->io_lru); + spin_lock_init(&dc->io_lock); + bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); + + dc->sequential_cutoff = 4 << 20; + + for (io = dc->io; io < dc->io + RECENT_IO; io++) { + list_add(&io->lru, &dc->io_lru); + hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); + } + + dc->disk.stripe_size = q->limits.io_opt >> 9; + + if (dc->disk.stripe_size) + dc->partial_stripes_expensive = + q->limits.raid_partial_stripes_expensive; + + ret = bcache_device_init(&dc->disk, block_size, + dc->bdev->bd_part->nr_sects - dc->sb.data_offset); + if (ret) + return ret; + + set_capacity(dc->disk.disk, + dc->bdev->bd_part->nr_sects - dc->sb.data_offset); + + dc->disk.disk->queue->backing_dev_info.ra_pages = + max(dc->disk.disk->queue->backing_dev_info.ra_pages, + q->backing_dev_info.ra_pages); + + bch_cached_dev_request_init(dc); + bch_cached_dev_writeback_init(dc); + return 0; +} + +/* Cached device - bcache superblock */ + +static void register_bdev(struct cache_sb *sb, struct page *sb_page, + struct block_device *bdev, + struct cached_dev *dc) +{ + char name[BDEVNAME_SIZE]; + const char *err = "cannot allocate memory"; + struct cache_set *c; + + memcpy(&dc->sb, sb, sizeof(struct cache_sb)); + dc->bdev = bdev; + dc->bdev->bd_holder = dc; + + bio_init(&dc->sb_bio); + dc->sb_bio.bi_max_vecs = 1; + dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs; + dc->sb_bio.bi_io_vec[0].bv_page = sb_page; + get_page(sb_page); + + if (cached_dev_init(dc, sb->block_size << 9)) + goto err; + + err = "error creating kobject"; + if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, + "bcache")) + goto err; + if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) + goto err; + + pr_info("registered backing device %s", bdevname(bdev, name)); + + list_add(&dc->list, &uncached_devices); + list_for_each_entry(c, &bch_cache_sets, list) + bch_cached_dev_attach(dc, c); + + if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || + BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) + bch_cached_dev_run(dc); + + return; +err: + pr_notice("error opening %s: %s", bdevname(bdev, name), err); + bcache_device_stop(&dc->disk); +} + +/* Flash only volumes */ + +void bch_flash_dev_release(struct kobject *kobj) +{ + struct bcache_device *d = container_of(kobj, struct bcache_device, + kobj); + kfree(d); +} + +static void flash_dev_free(struct closure *cl) +{ + struct bcache_device *d = container_of(cl, struct bcache_device, cl); + bcache_device_free(d); + kobject_put(&d->kobj); +} + +static void flash_dev_flush(struct closure *cl) +{ + struct bcache_device *d = container_of(cl, struct bcache_device, cl); + + bcache_device_unlink(d); + kobject_del(&d->kobj); + continue_at(cl, flash_dev_free, system_wq); +} + +static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) +{ + struct bcache_device *d = kzalloc(sizeof(struct bcache_device), + GFP_KERNEL); + if (!d) + return -ENOMEM; + + closure_init(&d->cl, NULL); + set_closure_fn(&d->cl, flash_dev_flush, system_wq); + + kobject_init(&d->kobj, &bch_flash_dev_ktype); + + if (bcache_device_init(d, block_bytes(c), u->sectors)) + goto err; + + bcache_device_attach(d, c, u - c->uuids); + bch_flash_dev_request_init(d); + add_disk(d->disk); + + if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) + goto err; + + bcache_device_link(d, c, "volume"); + + return 0; +err: + kobject_put(&d->kobj); + return -ENOMEM; +} + +static int flash_devs_run(struct cache_set *c) +{ + int ret = 0; + struct uuid_entry *u; + + for (u = c->uuids; + u < c->uuids + c->nr_uuids && !ret; + u++) + if (UUID_FLASH_ONLY(u)) + ret = flash_dev_run(c, u); + + return ret; +} + +int bch_flash_dev_create(struct cache_set *c, uint64_t size) +{ + struct uuid_entry *u; + + if (test_bit(CACHE_SET_STOPPING, &c->flags)) + return -EINTR; + + u = uuid_find_empty(c); + if (!u) { + pr_err("Can't create volume, no room for UUID"); + return -EINVAL; + } + + get_random_bytes(u->uuid, 16); + memset(u->label, 0, 32); + u->first_reg = u->last_reg = cpu_to_le32(get_seconds()); + + SET_UUID_FLASH_ONLY(u, 1); + u->sectors = size >> 9; + + bch_uuid_write(c); + + return flash_dev_run(c, u); +} + +/* Cache set */ + +__printf(2, 3) +bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) +{ + va_list args; + + if (c->on_error != ON_ERROR_PANIC && + test_bit(CACHE_SET_STOPPING, &c->flags)) + return false; + + /* XXX: we can be called from atomic context + acquire_console_sem(); + */ + + printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid); + + va_start(args, fmt); + vprintk(fmt, args); + va_end(args); + + printk(", disabling caching\n"); + + if (c->on_error == ON_ERROR_PANIC) + panic("panic forced after error\n"); + + bch_cache_set_unregister(c); + return true; +} + +void bch_cache_set_release(struct kobject *kobj) +{ + struct cache_set *c = container_of(kobj, struct cache_set, kobj); + kfree(c); + module_put(THIS_MODULE); +} + +static void cache_set_free(struct closure *cl) +{ + struct cache_set *c = container_of(cl, struct cache_set, cl); + struct cache *ca; + unsigned i; + + if (!IS_ERR_OR_NULL(c->debug)) + debugfs_remove(c->debug); + + bch_open_buckets_free(c); + bch_btree_cache_free(c); + bch_journal_free(c); + + for_each_cache(ca, c, i) + if (ca) + kobject_put(&ca->kobj); + + bch_bset_sort_state_free(&c->sort); + free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); + + if (c->moving_gc_wq) + destroy_workqueue(c->moving_gc_wq); + if (c->bio_split) + bioset_free(c->bio_split); + if (c->fill_iter) + mempool_destroy(c->fill_iter); + if (c->bio_meta) + mempool_destroy(c->bio_meta); + if (c->search) + mempool_destroy(c->search); + kfree(c->devices); + + mutex_lock(&bch_register_lock); + list_del(&c->list); + mutex_unlock(&bch_register_lock); + + pr_info("Cache set %pU unregistered", c->sb.set_uuid); + wake_up(&unregister_wait); + + closure_debug_destroy(&c->cl); + kobject_put(&c->kobj); +} + +static void cache_set_flush(struct closure *cl) +{ + struct cache_set *c = container_of(cl, struct cache_set, caching); + struct cache *ca; + struct btree *b; + unsigned i; + + bch_cache_accounting_destroy(&c->accounting); + + kobject_put(&c->internal); + kobject_del(&c->kobj); + + if (c->gc_thread) + kthread_stop(c->gc_thread); + + if (!IS_ERR_OR_NULL(c->root)) + list_add(&c->root->list, &c->btree_cache); + + /* Should skip this if we're unregistering because of an error */ + list_for_each_entry(b, &c->btree_cache, list) { + mutex_lock(&b->write_lock); + if (btree_node_dirty(b)) + __bch_btree_node_write(b, NULL); + mutex_unlock(&b->write_lock); + } + + for_each_cache(ca, c, i) + if (ca->alloc_thread) + kthread_stop(ca->alloc_thread); + + cancel_delayed_work_sync(&c->journal.work); + /* flush last journal entry if needed */ + c->journal.work.work.func(&c->journal.work.work); + + closure_return(cl); +} + +static void __cache_set_unregister(struct closure *cl) +{ + struct cache_set *c = container_of(cl, struct cache_set, caching); + struct cached_dev *dc; + size_t i; + + mutex_lock(&bch_register_lock); + + for (i = 0; i < c->nr_uuids; i++) + if (c->devices[i]) { + if (!UUID_FLASH_ONLY(&c->uuids[i]) && + test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { + dc = container_of(c->devices[i], + struct cached_dev, disk); + bch_cached_dev_detach(dc); + } else { + bcache_device_stop(c->devices[i]); + } + } + + mutex_unlock(&bch_register_lock); + + continue_at(cl, cache_set_flush, system_wq); +} + +void bch_cache_set_stop(struct cache_set *c) +{ + if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) + closure_queue(&c->caching); +} + +void bch_cache_set_unregister(struct cache_set *c) +{ + set_bit(CACHE_SET_UNREGISTERING, &c->flags); + bch_cache_set_stop(c); +} + +#define alloc_bucket_pages(gfp, c) \ + ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) + +struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) +{ + int iter_size; + struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); + if (!c) + return NULL; + + __module_get(THIS_MODULE); + closure_init(&c->cl, NULL); + set_closure_fn(&c->cl, cache_set_free, system_wq); + + closure_init(&c->caching, &c->cl); + set_closure_fn(&c->caching, __cache_set_unregister, system_wq); + + /* Maybe create continue_at_noreturn() and use it here? */ + closure_set_stopped(&c->cl); + closure_put(&c->cl); + + kobject_init(&c->kobj, &bch_cache_set_ktype); + kobject_init(&c->internal, &bch_cache_set_internal_ktype); + + bch_cache_accounting_init(&c->accounting, &c->cl); + + memcpy(c->sb.set_uuid, sb->set_uuid, 16); + c->sb.block_size = sb->block_size; + c->sb.bucket_size = sb->bucket_size; + c->sb.nr_in_set = sb->nr_in_set; + c->sb.last_mount = sb->last_mount; + c->bucket_bits = ilog2(sb->bucket_size); + c->block_bits = ilog2(sb->block_size); + c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); + + c->btree_pages = bucket_pages(c); + if (c->btree_pages > BTREE_MAX_PAGES) + c->btree_pages = max_t(int, c->btree_pages / 4, + BTREE_MAX_PAGES); + + sema_init(&c->sb_write_mutex, 1); + mutex_init(&c->bucket_lock); + init_waitqueue_head(&c->btree_cache_wait); + init_waitqueue_head(&c->bucket_wait); + sema_init(&c->uuid_write_mutex, 1); + + spin_lock_init(&c->btree_gc_time.lock); + spin_lock_init(&c->btree_split_time.lock); + spin_lock_init(&c->btree_read_time.lock); + + bch_moving_init_cache_set(c); + + INIT_LIST_HEAD(&c->list); + INIT_LIST_HEAD(&c->cached_devs); + INIT_LIST_HEAD(&c->btree_cache); + INIT_LIST_HEAD(&c->btree_cache_freeable); + INIT_LIST_HEAD(&c->btree_cache_freed); + INIT_LIST_HEAD(&c->data_buckets); + + c->search = mempool_create_slab_pool(32, bch_search_cache); + if (!c->search) + goto err; + + iter_size = (sb->bucket_size / sb->block_size + 1) * + sizeof(struct btree_iter_set); + + if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) || + !(c->bio_meta = mempool_create_kmalloc_pool(2, + sizeof(struct bbio) + sizeof(struct bio_vec) * + bucket_pages(c))) || + !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) || + !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) || + !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || + !(c->moving_gc_wq = create_workqueue("bcache_gc")) || + bch_journal_alloc(c) || + bch_btree_cache_alloc(c) || + bch_open_buckets_alloc(c) || + bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) + goto err; + + c->congested_read_threshold_us = 2000; + c->congested_write_threshold_us = 20000; + c->error_limit = 8 << IO_ERROR_SHIFT; + + return c; +err: + bch_cache_set_unregister(c); + return NULL; +} + +static void run_cache_set(struct cache_set *c) +{ + const char *err = "cannot allocate memory"; + struct cached_dev *dc, *t; + struct cache *ca; + struct closure cl; + unsigned i; + + closure_init_stack(&cl); + + for_each_cache(ca, c, i) + c->nbuckets += ca->sb.nbuckets; + + if (CACHE_SYNC(&c->sb)) { + LIST_HEAD(journal); + struct bkey *k; + struct jset *j; + + err = "cannot allocate memory for journal"; + if (bch_journal_read(c, &journal)) + goto err; + + pr_debug("btree_journal_read() done"); + + err = "no journal entries found"; + if (list_empty(&journal)) + goto err; + + j = &list_entry(journal.prev, struct journal_replay, list)->j; + + err = "IO error reading priorities"; + for_each_cache(ca, c, i) + prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]); + + /* + * If prio_read() fails it'll call cache_set_error and we'll + * tear everything down right away, but if we perhaps checked + * sooner we could avoid journal replay. + */ + + k = &j->btree_root; + + err = "bad btree root"; + if (__bch_btree_ptr_invalid(c, k)) + goto err; + + err = "error reading btree root"; + c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true); + if (IS_ERR_OR_NULL(c->root)) + goto err; + + list_del_init(&c->root->list); + rw_unlock(true, c->root); + + err = uuid_read(c, j, &cl); + if (err) + goto err; + + err = "error in recovery"; + if (bch_btree_check(c)) + goto err; + + bch_journal_mark(c, &journal); + bch_initial_gc_finish(c); + pr_debug("btree_check() done"); + + /* + * bcache_journal_next() can't happen sooner, or + * btree_gc_finish() will give spurious errors about last_gc > + * gc_gen - this is a hack but oh well. + */ + bch_journal_next(&c->journal); + + err = "error starting allocator thread"; + for_each_cache(ca, c, i) + if (bch_cache_allocator_start(ca)) + goto err; + + /* + * First place it's safe to allocate: btree_check() and + * btree_gc_finish() have to run before we have buckets to + * allocate, and bch_bucket_alloc_set() might cause a journal + * entry to be written so bcache_journal_next() has to be called + * first. + * + * If the uuids were in the old format we have to rewrite them + * before the next journal entry is written: + */ + if (j->version < BCACHE_JSET_VERSION_UUID) + __uuid_write(c); + + bch_journal_replay(c, &journal); + } else { + pr_notice("invalidating existing data"); + + for_each_cache(ca, c, i) { + unsigned j; + + ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, + 2, SB_JOURNAL_BUCKETS); + + for (j = 0; j < ca->sb.keys; j++) + ca->sb.d[j] = ca->sb.first_bucket + j; + } + + bch_initial_gc_finish(c); + + err = "error starting allocator thread"; + for_each_cache(ca, c, i) + if (bch_cache_allocator_start(ca)) + goto err; + + mutex_lock(&c->bucket_lock); + for_each_cache(ca, c, i) + bch_prio_write(ca); + mutex_unlock(&c->bucket_lock); + + err = "cannot allocate new UUID bucket"; + if (__uuid_write(c)) + goto err; + + err = "cannot allocate new btree root"; + c->root = bch_btree_node_alloc(c, NULL, 0); + if (IS_ERR_OR_NULL(c->root)) + goto err; + + mutex_lock(&c->root->write_lock); + bkey_copy_key(&c->root->key, &MAX_KEY); + bch_btree_node_write(c->root, &cl); + mutex_unlock(&c->root->write_lock); + + bch_btree_set_root(c->root); + rw_unlock(true, c->root); + + /* + * We don't want to write the first journal entry until + * everything is set up - fortunately journal entries won't be + * written until the SET_CACHE_SYNC() here: + */ + SET_CACHE_SYNC(&c->sb, true); + + bch_journal_next(&c->journal); + bch_journal_meta(c, &cl); + } + + err = "error starting gc thread"; + if (bch_gc_thread_start(c)) + goto err; + + closure_sync(&cl); + c->sb.last_mount = get_seconds(); + bcache_write_super(c); + + list_for_each_entry_safe(dc, t, &uncached_devices, list) + bch_cached_dev_attach(dc, c); + + flash_devs_run(c); + + return; +err: + closure_sync(&cl); + /* XXX: test this, it's broken */ + bch_cache_set_error(c, "%s", err); +} + +static bool can_attach_cache(struct cache *ca, struct cache_set *c) +{ + return ca->sb.block_size == c->sb.block_size && + ca->sb.bucket_size == c->sb.bucket_size && + ca->sb.nr_in_set == c->sb.nr_in_set; +} + +static const char *register_cache_set(struct cache *ca) +{ + char buf[12]; + const char *err = "cannot allocate memory"; + struct cache_set *c; + + list_for_each_entry(c, &bch_cache_sets, list) + if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { + if (c->cache[ca->sb.nr_this_dev]) + return "duplicate cache set member"; + + if (!can_attach_cache(ca, c)) + return "cache sb does not match set"; + + if (!CACHE_SYNC(&ca->sb)) + SET_CACHE_SYNC(&c->sb, false); + + goto found; + } + + c = bch_cache_set_alloc(&ca->sb); + if (!c) + return err; + + err = "error creating kobject"; + if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || + kobject_add(&c->internal, &c->kobj, "internal")) + goto err; + + if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) + goto err; + + bch_debug_init_cache_set(c); + + list_add(&c->list, &bch_cache_sets); +found: + sprintf(buf, "cache%i", ca->sb.nr_this_dev); + if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || + sysfs_create_link(&c->kobj, &ca->kobj, buf)) + goto err; + + if (ca->sb.seq > c->sb.seq) { + c->sb.version = ca->sb.version; + memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); + c->sb.flags = ca->sb.flags; + c->sb.seq = ca->sb.seq; + pr_debug("set version = %llu", c->sb.version); + } + + ca->set = c; + ca->set->cache[ca->sb.nr_this_dev] = ca; + c->cache_by_alloc[c->caches_loaded++] = ca; + + if (c->caches_loaded == c->sb.nr_in_set) + run_cache_set(c); + + return NULL; +err: + bch_cache_set_unregister(c); + return err; +} + +/* Cache device */ + +void bch_cache_release(struct kobject *kobj) +{ + struct cache *ca = container_of(kobj, struct cache, kobj); + unsigned i; + + if (ca->set) + ca->set->cache[ca->sb.nr_this_dev] = NULL; + + bio_split_pool_free(&ca->bio_split_hook); + + free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); + kfree(ca->prio_buckets); + vfree(ca->buckets); + + free_heap(&ca->heap); + free_fifo(&ca->free_inc); + + for (i = 0; i < RESERVE_NR; i++) + free_fifo(&ca->free[i]); + + if (ca->sb_bio.bi_inline_vecs[0].bv_page) + put_page(ca->sb_bio.bi_io_vec[0].bv_page); + + if (!IS_ERR_OR_NULL(ca->bdev)) { + blk_sync_queue(bdev_get_queue(ca->bdev)); + blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); + } + + kfree(ca); + module_put(THIS_MODULE); +} + +static int cache_alloc(struct cache_sb *sb, struct cache *ca) +{ + size_t free; + struct bucket *b; + + __module_get(THIS_MODULE); + kobject_init(&ca->kobj, &bch_cache_ktype); + + bio_init(&ca->journal.bio); + ca->journal.bio.bi_max_vecs = 8; + ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs; + + free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; + + if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) || + !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) || + !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) || + !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) || + !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) || + !init_heap(&ca->heap, free << 3, GFP_KERNEL) || + !(ca->buckets = vzalloc(sizeof(struct bucket) * + ca->sb.nbuckets)) || + !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) * + 2, GFP_KERNEL)) || + !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) || + bio_split_pool_init(&ca->bio_split_hook)) + return -ENOMEM; + + ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); + + for_each_bucket(b, ca) + atomic_set(&b->pin, 0); + + return 0; +} + +static void register_cache(struct cache_sb *sb, struct page *sb_page, + struct block_device *bdev, struct cache *ca) +{ + char name[BDEVNAME_SIZE]; + const char *err = "cannot allocate memory"; + + memcpy(&ca->sb, sb, sizeof(struct cache_sb)); + ca->bdev = bdev; + ca->bdev->bd_holder = ca; + + bio_init(&ca->sb_bio); + ca->sb_bio.bi_max_vecs = 1; + ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs; + ca->sb_bio.bi_io_vec[0].bv_page = sb_page; + get_page(sb_page); + + if (blk_queue_discard(bdev_get_queue(ca->bdev))) + ca->discard = CACHE_DISCARD(&ca->sb); + + if (cache_alloc(sb, ca) != 0) + goto err; + + err = "error creating kobject"; + if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) + goto err; + + mutex_lock(&bch_register_lock); + err = register_cache_set(ca); + mutex_unlock(&bch_register_lock); + + if (err) + goto err; + + pr_info("registered cache device %s", bdevname(bdev, name)); + return; +err: + pr_notice("error opening %s: %s", bdevname(bdev, name), err); + kobject_put(&ca->kobj); +} + +/* Global interfaces/init */ + +static ssize_t register_bcache(struct kobject *, struct kobj_attribute *, + const char *, size_t); + +kobj_attribute_write(register, register_bcache); +kobj_attribute_write(register_quiet, register_bcache); + +static bool bch_is_open_backing(struct block_device *bdev) { + struct cache_set *c, *tc; + struct cached_dev *dc, *t; + + list_for_each_entry_safe(c, tc, &bch_cache_sets, list) + list_for_each_entry_safe(dc, t, &c->cached_devs, list) + if (dc->bdev == bdev) + return true; + list_for_each_entry_safe(dc, t, &uncached_devices, list) + if (dc->bdev == bdev) + return true; + return false; +} + +static bool bch_is_open_cache(struct block_device *bdev) { + struct cache_set *c, *tc; + struct cache *ca; + unsigned i; + + list_for_each_entry_safe(c, tc, &bch_cache_sets, list) + for_each_cache(ca, c, i) + if (ca->bdev == bdev) + return true; + return false; +} + +static bool bch_is_open(struct block_device *bdev) { + return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); +} + +static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, + const char *buffer, size_t size) +{ + ssize_t ret = size; + const char *err = "cannot allocate memory"; + char *path = NULL; + struct cache_sb *sb = NULL; + struct block_device *bdev = NULL; + struct page *sb_page = NULL; + + if (!try_module_get(THIS_MODULE)) + return -EBUSY; + + if (!(path = kstrndup(buffer, size, GFP_KERNEL)) || + !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL))) + goto err; + + err = "failed to open device"; + bdev = blkdev_get_by_path(strim(path), + FMODE_READ|FMODE_WRITE|FMODE_EXCL, + sb); + if (IS_ERR(bdev)) { + if (bdev == ERR_PTR(-EBUSY)) { + bdev = lookup_bdev(strim(path)); + if (!IS_ERR(bdev) && bch_is_open(bdev)) + err = "device already registered"; + else + err = "device busy"; + } + goto err; + } + + err = "failed to set blocksize"; + if (set_blocksize(bdev, 4096)) + goto err_close; + + err = read_super(sb, bdev, &sb_page); + if (err) + goto err_close; + + if (SB_IS_BDEV(sb)) { + struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); + if (!dc) + goto err_close; + + mutex_lock(&bch_register_lock); + register_bdev(sb, sb_page, bdev, dc); + mutex_unlock(&bch_register_lock); + } else { + struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); + if (!ca) + goto err_close; + + register_cache(sb, sb_page, bdev, ca); + } +out: + if (sb_page) + put_page(sb_page); + kfree(sb); + kfree(path); + module_put(THIS_MODULE); + return ret; + +err_close: + blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); +err: + if (attr != &ksysfs_register_quiet) + pr_info("error opening %s: %s", path, err); + ret = -EINVAL; + goto out; +} + +static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) +{ + if (code == SYS_DOWN || + code == SYS_HALT || + code == SYS_POWER_OFF) { + DEFINE_WAIT(wait); + unsigned long start = jiffies; + bool stopped = false; + + struct cache_set *c, *tc; + struct cached_dev *dc, *tdc; + + mutex_lock(&bch_register_lock); + + if (list_empty(&bch_cache_sets) && + list_empty(&uncached_devices)) + goto out; + + pr_info("Stopping all devices:"); + + list_for_each_entry_safe(c, tc, &bch_cache_sets, list) + bch_cache_set_stop(c); + + list_for_each_entry_safe(dc, tdc, &uncached_devices, list) + bcache_device_stop(&dc->disk); + + /* What's a condition variable? */ + while (1) { + long timeout = start + 2 * HZ - jiffies; + + stopped = list_empty(&bch_cache_sets) && + list_empty(&uncached_devices); + + if (timeout < 0 || stopped) + break; + + prepare_to_wait(&unregister_wait, &wait, + TASK_UNINTERRUPTIBLE); + + mutex_unlock(&bch_register_lock); + schedule_timeout(timeout); + mutex_lock(&bch_register_lock); + } + + finish_wait(&unregister_wait, &wait); + + if (stopped) + pr_info("All devices stopped"); + else + pr_notice("Timeout waiting for devices to be closed"); +out: + mutex_unlock(&bch_register_lock); + } + + return NOTIFY_DONE; +} + +static struct notifier_block reboot = { + .notifier_call = bcache_reboot, + .priority = INT_MAX, /* before any real devices */ +}; + +static void bcache_exit(void) +{ + bch_debug_exit(); + bch_request_exit(); + if (bcache_kobj) + kobject_put(bcache_kobj); + if (bcache_wq) + destroy_workqueue(bcache_wq); + if (bcache_major) + unregister_blkdev(bcache_major, "bcache"); + unregister_reboot_notifier(&reboot); +} + +static int __init bcache_init(void) +{ + static const struct attribute *files[] = { + &ksysfs_register.attr, + &ksysfs_register_quiet.attr, + NULL + }; + + mutex_init(&bch_register_lock); + init_waitqueue_head(&unregister_wait); + register_reboot_notifier(&reboot); + closure_debug_init(); + + bcache_major = register_blkdev(0, "bcache"); + if (bcache_major < 0) + return bcache_major; + + if (!(bcache_wq = create_workqueue("bcache")) || + !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) || + sysfs_create_files(bcache_kobj, files) || + bch_request_init() || + bch_debug_init(bcache_kobj)) + goto err; + + return 0; +err: + bcache_exit(); + return -ENOMEM; +} + +module_exit(bcache_exit); +module_init(bcache_init); diff --git a/drivers/md/bcache/sysfs.c b/drivers/md/bcache/sysfs.c new file mode 100644 index 00000000000..b3ff57d61dd --- /dev/null +++ b/drivers/md/bcache/sysfs.c @@ -0,0 +1,898 @@ +/* + * bcache sysfs interfaces + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "sysfs.h" +#include "btree.h" +#include "request.h" +#include "writeback.h" + +#include <linux/blkdev.h> +#include <linux/sort.h> + +static const char * const cache_replacement_policies[] = { + "lru", + "fifo", + "random", + NULL +}; + +static const char * const error_actions[] = { + "unregister", + "panic", + NULL +}; + +write_attribute(attach); +write_attribute(detach); +write_attribute(unregister); +write_attribute(stop); +write_attribute(clear_stats); +write_attribute(trigger_gc); +write_attribute(prune_cache); +write_attribute(flash_vol_create); + +read_attribute(bucket_size); +read_attribute(block_size); +read_attribute(nbuckets); +read_attribute(tree_depth); +read_attribute(root_usage_percent); +read_attribute(priority_stats); +read_attribute(btree_cache_size); +read_attribute(btree_cache_max_chain); +read_attribute(cache_available_percent); +read_attribute(written); +read_attribute(btree_written); +read_attribute(metadata_written); +read_attribute(active_journal_entries); + +sysfs_time_stats_attribute(btree_gc, sec, ms); +sysfs_time_stats_attribute(btree_split, sec, us); +sysfs_time_stats_attribute(btree_sort, ms, us); +sysfs_time_stats_attribute(btree_read, ms, us); + +read_attribute(btree_nodes); +read_attribute(btree_used_percent); +read_attribute(average_key_size); +read_attribute(dirty_data); +read_attribute(bset_tree_stats); + +read_attribute(state); +read_attribute(cache_read_races); +read_attribute(writeback_keys_done); +read_attribute(writeback_keys_failed); +read_attribute(io_errors); +read_attribute(congested); +rw_attribute(congested_read_threshold_us); +rw_attribute(congested_write_threshold_us); + +rw_attribute(sequential_cutoff); +rw_attribute(data_csum); +rw_attribute(cache_mode); +rw_attribute(writeback_metadata); +rw_attribute(writeback_running); +rw_attribute(writeback_percent); +rw_attribute(writeback_delay); +rw_attribute(writeback_rate); + +rw_attribute(writeback_rate_update_seconds); +rw_attribute(writeback_rate_d_term); +rw_attribute(writeback_rate_p_term_inverse); +read_attribute(writeback_rate_debug); + +read_attribute(stripe_size); +read_attribute(partial_stripes_expensive); + +rw_attribute(synchronous); +rw_attribute(journal_delay_ms); +rw_attribute(discard); +rw_attribute(running); +rw_attribute(label); +rw_attribute(readahead); +rw_attribute(errors); +rw_attribute(io_error_limit); +rw_attribute(io_error_halflife); +rw_attribute(verify); +rw_attribute(bypass_torture_test); +rw_attribute(key_merging_disabled); +rw_attribute(gc_always_rewrite); +rw_attribute(expensive_debug_checks); +rw_attribute(cache_replacement_policy); +rw_attribute(btree_shrinker_disabled); +rw_attribute(copy_gc_enabled); +rw_attribute(size); + +SHOW(__bch_cached_dev) +{ + struct cached_dev *dc = container_of(kobj, struct cached_dev, + disk.kobj); + const char *states[] = { "no cache", "clean", "dirty", "inconsistent" }; + +#define var(stat) (dc->stat) + + if (attr == &sysfs_cache_mode) + return bch_snprint_string_list(buf, PAGE_SIZE, + bch_cache_modes + 1, + BDEV_CACHE_MODE(&dc->sb)); + + sysfs_printf(data_csum, "%i", dc->disk.data_csum); + var_printf(verify, "%i"); + var_printf(bypass_torture_test, "%i"); + var_printf(writeback_metadata, "%i"); + var_printf(writeback_running, "%i"); + var_print(writeback_delay); + var_print(writeback_percent); + sysfs_hprint(writeback_rate, dc->writeback_rate.rate << 9); + + var_print(writeback_rate_update_seconds); + var_print(writeback_rate_d_term); + var_print(writeback_rate_p_term_inverse); + + if (attr == &sysfs_writeback_rate_debug) { + char rate[20]; + char dirty[20]; + char target[20]; + char proportional[20]; + char derivative[20]; + char change[20]; + s64 next_io; + + bch_hprint(rate, dc->writeback_rate.rate << 9); + bch_hprint(dirty, bcache_dev_sectors_dirty(&dc->disk) << 9); + bch_hprint(target, dc->writeback_rate_target << 9); + bch_hprint(proportional,dc->writeback_rate_proportional << 9); + bch_hprint(derivative, dc->writeback_rate_derivative << 9); + bch_hprint(change, dc->writeback_rate_change << 9); + + next_io = div64_s64(dc->writeback_rate.next - local_clock(), + NSEC_PER_MSEC); + + return sprintf(buf, + "rate:\t\t%s/sec\n" + "dirty:\t\t%s\n" + "target:\t\t%s\n" + "proportional:\t%s\n" + "derivative:\t%s\n" + "change:\t\t%s/sec\n" + "next io:\t%llims\n", + rate, dirty, target, proportional, + derivative, change, next_io); + } + + sysfs_hprint(dirty_data, + bcache_dev_sectors_dirty(&dc->disk) << 9); + + sysfs_hprint(stripe_size, dc->disk.stripe_size << 9); + var_printf(partial_stripes_expensive, "%u"); + + var_hprint(sequential_cutoff); + var_hprint(readahead); + + sysfs_print(running, atomic_read(&dc->running)); + sysfs_print(state, states[BDEV_STATE(&dc->sb)]); + + if (attr == &sysfs_label) { + memcpy(buf, dc->sb.label, SB_LABEL_SIZE); + buf[SB_LABEL_SIZE + 1] = '\0'; + strcat(buf, "\n"); + return strlen(buf); + } + +#undef var + return 0; +} +SHOW_LOCKED(bch_cached_dev) + +STORE(__cached_dev) +{ + struct cached_dev *dc = container_of(kobj, struct cached_dev, + disk.kobj); + unsigned v = size; + struct cache_set *c; + struct kobj_uevent_env *env; + +#define d_strtoul(var) sysfs_strtoul(var, dc->var) +#define d_strtoul_nonzero(var) sysfs_strtoul_clamp(var, dc->var, 1, INT_MAX) +#define d_strtoi_h(var) sysfs_hatoi(var, dc->var) + + sysfs_strtoul(data_csum, dc->disk.data_csum); + d_strtoul(verify); + d_strtoul(bypass_torture_test); + d_strtoul(writeback_metadata); + d_strtoul(writeback_running); + d_strtoul(writeback_delay); + + sysfs_strtoul_clamp(writeback_percent, dc->writeback_percent, 0, 40); + + sysfs_strtoul_clamp(writeback_rate, + dc->writeback_rate.rate, 1, INT_MAX); + + d_strtoul_nonzero(writeback_rate_update_seconds); + d_strtoul(writeback_rate_d_term); + d_strtoul_nonzero(writeback_rate_p_term_inverse); + + d_strtoi_h(sequential_cutoff); + d_strtoi_h(readahead); + + if (attr == &sysfs_clear_stats) + bch_cache_accounting_clear(&dc->accounting); + + if (attr == &sysfs_running && + strtoul_or_return(buf)) + bch_cached_dev_run(dc); + + if (attr == &sysfs_cache_mode) { + ssize_t v = bch_read_string_list(buf, bch_cache_modes + 1); + + if (v < 0) + return v; + + if ((unsigned) v != BDEV_CACHE_MODE(&dc->sb)) { + SET_BDEV_CACHE_MODE(&dc->sb, v); + bch_write_bdev_super(dc, NULL); + } + } + + if (attr == &sysfs_label) { + if (size > SB_LABEL_SIZE) + return -EINVAL; + memcpy(dc->sb.label, buf, size); + if (size < SB_LABEL_SIZE) + dc->sb.label[size] = '\0'; + if (size && dc->sb.label[size - 1] == '\n') + dc->sb.label[size - 1] = '\0'; + bch_write_bdev_super(dc, NULL); + if (dc->disk.c) { + memcpy(dc->disk.c->uuids[dc->disk.id].label, + buf, SB_LABEL_SIZE); + bch_uuid_write(dc->disk.c); + } + env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); + if (!env) + return -ENOMEM; + add_uevent_var(env, "DRIVER=bcache"); + add_uevent_var(env, "CACHED_UUID=%pU", dc->sb.uuid), + add_uevent_var(env, "CACHED_LABEL=%s", buf); + kobject_uevent_env( + &disk_to_dev(dc->disk.disk)->kobj, KOBJ_CHANGE, env->envp); + kfree(env); + } + + if (attr == &sysfs_attach) { + if (bch_parse_uuid(buf, dc->sb.set_uuid) < 16) + return -EINVAL; + + list_for_each_entry(c, &bch_cache_sets, list) { + v = bch_cached_dev_attach(dc, c); + if (!v) + return size; + } + + pr_err("Can't attach %s: cache set not found", buf); + size = v; + } + + if (attr == &sysfs_detach && dc->disk.c) + bch_cached_dev_detach(dc); + + if (attr == &sysfs_stop) + bcache_device_stop(&dc->disk); + + return size; +} + +STORE(bch_cached_dev) +{ + struct cached_dev *dc = container_of(kobj, struct cached_dev, + disk.kobj); + + mutex_lock(&bch_register_lock); + size = __cached_dev_store(kobj, attr, buf, size); + + if (attr == &sysfs_writeback_running) + bch_writeback_queue(dc); + + if (attr == &sysfs_writeback_percent) + schedule_delayed_work(&dc->writeback_rate_update, + dc->writeback_rate_update_seconds * HZ); + + mutex_unlock(&bch_register_lock); + return size; +} + +static struct attribute *bch_cached_dev_files[] = { + &sysfs_attach, + &sysfs_detach, + &sysfs_stop, +#if 0 + &sysfs_data_csum, +#endif + &sysfs_cache_mode, + &sysfs_writeback_metadata, + &sysfs_writeback_running, + &sysfs_writeback_delay, + &sysfs_writeback_percent, + &sysfs_writeback_rate, + &sysfs_writeback_rate_update_seconds, + &sysfs_writeback_rate_d_term, + &sysfs_writeback_rate_p_term_inverse, + &sysfs_writeback_rate_debug, + &sysfs_dirty_data, + &sysfs_stripe_size, + &sysfs_partial_stripes_expensive, + &sysfs_sequential_cutoff, + &sysfs_clear_stats, + &sysfs_running, + &sysfs_state, + &sysfs_label, + &sysfs_readahead, +#ifdef CONFIG_BCACHE_DEBUG + &sysfs_verify, + &sysfs_bypass_torture_test, +#endif + NULL +}; +KTYPE(bch_cached_dev); + +SHOW(bch_flash_dev) +{ + struct bcache_device *d = container_of(kobj, struct bcache_device, + kobj); + struct uuid_entry *u = &d->c->uuids[d->id]; + + sysfs_printf(data_csum, "%i", d->data_csum); + sysfs_hprint(size, u->sectors << 9); + + if (attr == &sysfs_label) { + memcpy(buf, u->label, SB_LABEL_SIZE); + buf[SB_LABEL_SIZE + 1] = '\0'; + strcat(buf, "\n"); + return strlen(buf); + } + + return 0; +} + +STORE(__bch_flash_dev) +{ + struct bcache_device *d = container_of(kobj, struct bcache_device, + kobj); + struct uuid_entry *u = &d->c->uuids[d->id]; + + sysfs_strtoul(data_csum, d->data_csum); + + if (attr == &sysfs_size) { + uint64_t v; + strtoi_h_or_return(buf, v); + + u->sectors = v >> 9; + bch_uuid_write(d->c); + set_capacity(d->disk, u->sectors); + } + + if (attr == &sysfs_label) { + memcpy(u->label, buf, SB_LABEL_SIZE); + bch_uuid_write(d->c); + } + + if (attr == &sysfs_unregister) { + set_bit(BCACHE_DEV_DETACHING, &d->flags); + bcache_device_stop(d); + } + + return size; +} +STORE_LOCKED(bch_flash_dev) + +static struct attribute *bch_flash_dev_files[] = { + &sysfs_unregister, +#if 0 + &sysfs_data_csum, +#endif + &sysfs_label, + &sysfs_size, + NULL +}; +KTYPE(bch_flash_dev); + +struct bset_stats_op { + struct btree_op op; + size_t nodes; + struct bset_stats stats; +}; + +static int bch_btree_bset_stats(struct btree_op *b_op, struct btree *b) +{ + struct bset_stats_op *op = container_of(b_op, struct bset_stats_op, op); + + op->nodes++; + bch_btree_keys_stats(&b->keys, &op->stats); + + return MAP_CONTINUE; +} + +static int bch_bset_print_stats(struct cache_set *c, char *buf) +{ + struct bset_stats_op op; + int ret; + + memset(&op, 0, sizeof(op)); + bch_btree_op_init(&op.op, -1); + + ret = bch_btree_map_nodes(&op.op, c, &ZERO_KEY, bch_btree_bset_stats); + if (ret < 0) + return ret; + + return snprintf(buf, PAGE_SIZE, + "btree nodes: %zu\n" + "written sets: %zu\n" + "unwritten sets: %zu\n" + "written key bytes: %zu\n" + "unwritten key bytes: %zu\n" + "floats: %zu\n" + "failed: %zu\n", + op.nodes, + op.stats.sets_written, op.stats.sets_unwritten, + op.stats.bytes_written, op.stats.bytes_unwritten, + op.stats.floats, op.stats.failed); +} + +static unsigned bch_root_usage(struct cache_set *c) +{ + unsigned bytes = 0; + struct bkey *k; + struct btree *b; + struct btree_iter iter; + + goto lock_root; + + do { + rw_unlock(false, b); +lock_root: + b = c->root; + rw_lock(false, b, b->level); + } while (b != c->root); + + for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) + bytes += bkey_bytes(k); + + rw_unlock(false, b); + + return (bytes * 100) / btree_bytes(c); +} + +static size_t bch_cache_size(struct cache_set *c) +{ + size_t ret = 0; + struct btree *b; + + mutex_lock(&c->bucket_lock); + list_for_each_entry(b, &c->btree_cache, list) + ret += 1 << (b->keys.page_order + PAGE_SHIFT); + + mutex_unlock(&c->bucket_lock); + return ret; +} + +static unsigned bch_cache_max_chain(struct cache_set *c) +{ + unsigned ret = 0; + struct hlist_head *h; + + mutex_lock(&c->bucket_lock); + + for (h = c->bucket_hash; + h < c->bucket_hash + (1 << BUCKET_HASH_BITS); + h++) { + unsigned i = 0; + struct hlist_node *p; + + hlist_for_each(p, h) + i++; + + ret = max(ret, i); + } + + mutex_unlock(&c->bucket_lock); + return ret; +} + +static unsigned bch_btree_used(struct cache_set *c) +{ + return div64_u64(c->gc_stats.key_bytes * 100, + (c->gc_stats.nodes ?: 1) * btree_bytes(c)); +} + +static unsigned bch_average_key_size(struct cache_set *c) +{ + return c->gc_stats.nkeys + ? div64_u64(c->gc_stats.data, c->gc_stats.nkeys) + : 0; +} + +SHOW(__bch_cache_set) +{ + struct cache_set *c = container_of(kobj, struct cache_set, kobj); + + sysfs_print(synchronous, CACHE_SYNC(&c->sb)); + sysfs_print(journal_delay_ms, c->journal_delay_ms); + sysfs_hprint(bucket_size, bucket_bytes(c)); + sysfs_hprint(block_size, block_bytes(c)); + sysfs_print(tree_depth, c->root->level); + sysfs_print(root_usage_percent, bch_root_usage(c)); + + sysfs_hprint(btree_cache_size, bch_cache_size(c)); + sysfs_print(btree_cache_max_chain, bch_cache_max_chain(c)); + sysfs_print(cache_available_percent, 100 - c->gc_stats.in_use); + + sysfs_print_time_stats(&c->btree_gc_time, btree_gc, sec, ms); + sysfs_print_time_stats(&c->btree_split_time, btree_split, sec, us); + sysfs_print_time_stats(&c->sort.time, btree_sort, ms, us); + sysfs_print_time_stats(&c->btree_read_time, btree_read, ms, us); + + sysfs_print(btree_used_percent, bch_btree_used(c)); + sysfs_print(btree_nodes, c->gc_stats.nodes); + sysfs_hprint(average_key_size, bch_average_key_size(c)); + + sysfs_print(cache_read_races, + atomic_long_read(&c->cache_read_races)); + + sysfs_print(writeback_keys_done, + atomic_long_read(&c->writeback_keys_done)); + sysfs_print(writeback_keys_failed, + atomic_long_read(&c->writeback_keys_failed)); + + if (attr == &sysfs_errors) + return bch_snprint_string_list(buf, PAGE_SIZE, error_actions, + c->on_error); + + /* See count_io_errors for why 88 */ + sysfs_print(io_error_halflife, c->error_decay * 88); + sysfs_print(io_error_limit, c->error_limit >> IO_ERROR_SHIFT); + + sysfs_hprint(congested, + ((uint64_t) bch_get_congested(c)) << 9); + sysfs_print(congested_read_threshold_us, + c->congested_read_threshold_us); + sysfs_print(congested_write_threshold_us, + c->congested_write_threshold_us); + + sysfs_print(active_journal_entries, fifo_used(&c->journal.pin)); + sysfs_printf(verify, "%i", c->verify); + sysfs_printf(key_merging_disabled, "%i", c->key_merging_disabled); + sysfs_printf(expensive_debug_checks, + "%i", c->expensive_debug_checks); + sysfs_printf(gc_always_rewrite, "%i", c->gc_always_rewrite); + sysfs_printf(btree_shrinker_disabled, "%i", c->shrinker_disabled); + sysfs_printf(copy_gc_enabled, "%i", c->copy_gc_enabled); + + if (attr == &sysfs_bset_tree_stats) + return bch_bset_print_stats(c, buf); + + return 0; +} +SHOW_LOCKED(bch_cache_set) + +STORE(__bch_cache_set) +{ + struct cache_set *c = container_of(kobj, struct cache_set, kobj); + + if (attr == &sysfs_unregister) + bch_cache_set_unregister(c); + + if (attr == &sysfs_stop) + bch_cache_set_stop(c); + + if (attr == &sysfs_synchronous) { + bool sync = strtoul_or_return(buf); + + if (sync != CACHE_SYNC(&c->sb)) { + SET_CACHE_SYNC(&c->sb, sync); + bcache_write_super(c); + } + } + + if (attr == &sysfs_flash_vol_create) { + int r; + uint64_t v; + strtoi_h_or_return(buf, v); + + r = bch_flash_dev_create(c, v); + if (r) + return r; + } + + if (attr == &sysfs_clear_stats) { + atomic_long_set(&c->writeback_keys_done, 0); + atomic_long_set(&c->writeback_keys_failed, 0); + + memset(&c->gc_stats, 0, sizeof(struct gc_stat)); + bch_cache_accounting_clear(&c->accounting); + } + + if (attr == &sysfs_trigger_gc) + wake_up_gc(c); + + if (attr == &sysfs_prune_cache) { + struct shrink_control sc; + sc.gfp_mask = GFP_KERNEL; + sc.nr_to_scan = strtoul_or_return(buf); + c->shrink.scan_objects(&c->shrink, &sc); + } + + sysfs_strtoul(congested_read_threshold_us, + c->congested_read_threshold_us); + sysfs_strtoul(congested_write_threshold_us, + c->congested_write_threshold_us); + + if (attr == &sysfs_errors) { + ssize_t v = bch_read_string_list(buf, error_actions); + + if (v < 0) + return v; + + c->on_error = v; + } + + if (attr == &sysfs_io_error_limit) + c->error_limit = strtoul_or_return(buf) << IO_ERROR_SHIFT; + + /* See count_io_errors() for why 88 */ + if (attr == &sysfs_io_error_halflife) + c->error_decay = strtoul_or_return(buf) / 88; + + sysfs_strtoul(journal_delay_ms, c->journal_delay_ms); + sysfs_strtoul(verify, c->verify); + sysfs_strtoul(key_merging_disabled, c->key_merging_disabled); + sysfs_strtoul(expensive_debug_checks, c->expensive_debug_checks); + sysfs_strtoul(gc_always_rewrite, c->gc_always_rewrite); + sysfs_strtoul(btree_shrinker_disabled, c->shrinker_disabled); + sysfs_strtoul(copy_gc_enabled, c->copy_gc_enabled); + + return size; +} +STORE_LOCKED(bch_cache_set) + +SHOW(bch_cache_set_internal) +{ + struct cache_set *c = container_of(kobj, struct cache_set, internal); + return bch_cache_set_show(&c->kobj, attr, buf); +} + +STORE(bch_cache_set_internal) +{ + struct cache_set *c = container_of(kobj, struct cache_set, internal); + return bch_cache_set_store(&c->kobj, attr, buf, size); +} + +static void bch_cache_set_internal_release(struct kobject *k) +{ +} + +static struct attribute *bch_cache_set_files[] = { + &sysfs_unregister, + &sysfs_stop, + &sysfs_synchronous, + &sysfs_journal_delay_ms, + &sysfs_flash_vol_create, + + &sysfs_bucket_size, + &sysfs_block_size, + &sysfs_tree_depth, + &sysfs_root_usage_percent, + &sysfs_btree_cache_size, + &sysfs_cache_available_percent, + + &sysfs_average_key_size, + + &sysfs_errors, + &sysfs_io_error_limit, + &sysfs_io_error_halflife, + &sysfs_congested, + &sysfs_congested_read_threshold_us, + &sysfs_congested_write_threshold_us, + &sysfs_clear_stats, + NULL +}; +KTYPE(bch_cache_set); + +static struct attribute *bch_cache_set_internal_files[] = { + &sysfs_active_journal_entries, + + sysfs_time_stats_attribute_list(btree_gc, sec, ms) + sysfs_time_stats_attribute_list(btree_split, sec, us) + sysfs_time_stats_attribute_list(btree_sort, ms, us) + sysfs_time_stats_attribute_list(btree_read, ms, us) + + &sysfs_btree_nodes, + &sysfs_btree_used_percent, + &sysfs_btree_cache_max_chain, + + &sysfs_bset_tree_stats, + &sysfs_cache_read_races, + &sysfs_writeback_keys_done, + &sysfs_writeback_keys_failed, + + &sysfs_trigger_gc, + &sysfs_prune_cache, +#ifdef CONFIG_BCACHE_DEBUG + &sysfs_verify, + &sysfs_key_merging_disabled, + &sysfs_expensive_debug_checks, +#endif + &sysfs_gc_always_rewrite, + &sysfs_btree_shrinker_disabled, + &sysfs_copy_gc_enabled, + NULL +}; +KTYPE(bch_cache_set_internal); + +SHOW(__bch_cache) +{ + struct cache *ca = container_of(kobj, struct cache, kobj); + + sysfs_hprint(bucket_size, bucket_bytes(ca)); + sysfs_hprint(block_size, block_bytes(ca)); + sysfs_print(nbuckets, ca->sb.nbuckets); + sysfs_print(discard, ca->discard); + sysfs_hprint(written, atomic_long_read(&ca->sectors_written) << 9); + sysfs_hprint(btree_written, + atomic_long_read(&ca->btree_sectors_written) << 9); + sysfs_hprint(metadata_written, + (atomic_long_read(&ca->meta_sectors_written) + + atomic_long_read(&ca->btree_sectors_written)) << 9); + + sysfs_print(io_errors, + atomic_read(&ca->io_errors) >> IO_ERROR_SHIFT); + + if (attr == &sysfs_cache_replacement_policy) + return bch_snprint_string_list(buf, PAGE_SIZE, + cache_replacement_policies, + CACHE_REPLACEMENT(&ca->sb)); + + if (attr == &sysfs_priority_stats) { + int cmp(const void *l, const void *r) + { return *((uint16_t *) r) - *((uint16_t *) l); } + + struct bucket *b; + size_t n = ca->sb.nbuckets, i; + size_t unused = 0, available = 0, dirty = 0, meta = 0; + uint64_t sum = 0; + /* Compute 31 quantiles */ + uint16_t q[31], *p, *cached; + ssize_t ret; + + cached = p = vmalloc(ca->sb.nbuckets * sizeof(uint16_t)); + if (!p) + return -ENOMEM; + + mutex_lock(&ca->set->bucket_lock); + for_each_bucket(b, ca) { + if (!GC_SECTORS_USED(b)) + unused++; + if (GC_MARK(b) == GC_MARK_RECLAIMABLE) + available++; + if (GC_MARK(b) == GC_MARK_DIRTY) + dirty++; + if (GC_MARK(b) == GC_MARK_METADATA) + meta++; + } + + for (i = ca->sb.first_bucket; i < n; i++) + p[i] = ca->buckets[i].prio; + mutex_unlock(&ca->set->bucket_lock); + + sort(p, n, sizeof(uint16_t), cmp, NULL); + + while (n && + !cached[n - 1]) + --n; + + unused = ca->sb.nbuckets - n; + + while (cached < p + n && + *cached == BTREE_PRIO) + cached++, n--; + + for (i = 0; i < n; i++) + sum += INITIAL_PRIO - cached[i]; + + if (n) + do_div(sum, n); + + for (i = 0; i < ARRAY_SIZE(q); i++) + q[i] = INITIAL_PRIO - cached[n * (i + 1) / + (ARRAY_SIZE(q) + 1)]; + + vfree(p); + + ret = scnprintf(buf, PAGE_SIZE, + "Unused: %zu%%\n" + "Clean: %zu%%\n" + "Dirty: %zu%%\n" + "Metadata: %zu%%\n" + "Average: %llu\n" + "Sectors per Q: %zu\n" + "Quantiles: [", + unused * 100 / (size_t) ca->sb.nbuckets, + available * 100 / (size_t) ca->sb.nbuckets, + dirty * 100 / (size_t) ca->sb.nbuckets, + meta * 100 / (size_t) ca->sb.nbuckets, sum, + n * ca->sb.bucket_size / (ARRAY_SIZE(q) + 1)); + + for (i = 0; i < ARRAY_SIZE(q); i++) + ret += scnprintf(buf + ret, PAGE_SIZE - ret, + "%u ", q[i]); + ret--; + + ret += scnprintf(buf + ret, PAGE_SIZE - ret, "]\n"); + + return ret; + } + + return 0; +} +SHOW_LOCKED(bch_cache) + +STORE(__bch_cache) +{ + struct cache *ca = container_of(kobj, struct cache, kobj); + + if (attr == &sysfs_discard) { + bool v = strtoul_or_return(buf); + + if (blk_queue_discard(bdev_get_queue(ca->bdev))) + ca->discard = v; + + if (v != CACHE_DISCARD(&ca->sb)) { + SET_CACHE_DISCARD(&ca->sb, v); + bcache_write_super(ca->set); + } + } + + if (attr == &sysfs_cache_replacement_policy) { + ssize_t v = bch_read_string_list(buf, cache_replacement_policies); + + if (v < 0) + return v; + + if ((unsigned) v != CACHE_REPLACEMENT(&ca->sb)) { + mutex_lock(&ca->set->bucket_lock); + SET_CACHE_REPLACEMENT(&ca->sb, v); + mutex_unlock(&ca->set->bucket_lock); + + bcache_write_super(ca->set); + } + } + + if (attr == &sysfs_clear_stats) { + atomic_long_set(&ca->sectors_written, 0); + atomic_long_set(&ca->btree_sectors_written, 0); + atomic_long_set(&ca->meta_sectors_written, 0); + atomic_set(&ca->io_count, 0); + atomic_set(&ca->io_errors, 0); + } + + return size; +} +STORE_LOCKED(bch_cache) + +static struct attribute *bch_cache_files[] = { + &sysfs_bucket_size, + &sysfs_block_size, + &sysfs_nbuckets, + &sysfs_priority_stats, + &sysfs_discard, + &sysfs_written, + &sysfs_btree_written, + &sysfs_metadata_written, + &sysfs_io_errors, + &sysfs_clear_stats, + &sysfs_cache_replacement_policy, + NULL +}; +KTYPE(bch_cache); diff --git a/drivers/md/bcache/sysfs.h b/drivers/md/bcache/sysfs.h new file mode 100644 index 00000000000..0526fe92a68 --- /dev/null +++ b/drivers/md/bcache/sysfs.h @@ -0,0 +1,110 @@ +#ifndef _BCACHE_SYSFS_H_ +#define _BCACHE_SYSFS_H_ + +#define KTYPE(type) \ +struct kobj_type type ## _ktype = { \ + .release = type ## _release, \ + .sysfs_ops = &((const struct sysfs_ops) { \ + .show = type ## _show, \ + .store = type ## _store \ + }), \ + .default_attrs = type ## _files \ +} + +#define SHOW(fn) \ +static ssize_t fn ## _show(struct kobject *kobj, struct attribute *attr,\ + char *buf) \ + +#define STORE(fn) \ +static ssize_t fn ## _store(struct kobject *kobj, struct attribute *attr,\ + const char *buf, size_t size) \ + +#define SHOW_LOCKED(fn) \ +SHOW(fn) \ +{ \ + ssize_t ret; \ + mutex_lock(&bch_register_lock); \ + ret = __ ## fn ## _show(kobj, attr, buf); \ + mutex_unlock(&bch_register_lock); \ + return ret; \ +} + +#define STORE_LOCKED(fn) \ +STORE(fn) \ +{ \ + ssize_t ret; \ + mutex_lock(&bch_register_lock); \ + ret = __ ## fn ## _store(kobj, attr, buf, size); \ + mutex_unlock(&bch_register_lock); \ + return ret; \ +} + +#define __sysfs_attribute(_name, _mode) \ + static struct attribute sysfs_##_name = \ + { .name = #_name, .mode = _mode } + +#define write_attribute(n) __sysfs_attribute(n, S_IWUSR) +#define read_attribute(n) __sysfs_attribute(n, S_IRUGO) +#define rw_attribute(n) __sysfs_attribute(n, S_IRUGO|S_IWUSR) + +#define sysfs_printf(file, fmt, ...) \ +do { \ + if (attr == &sysfs_ ## file) \ + return snprintf(buf, PAGE_SIZE, fmt "\n", __VA_ARGS__); \ +} while (0) + +#define sysfs_print(file, var) \ +do { \ + if (attr == &sysfs_ ## file) \ + return snprint(buf, PAGE_SIZE, var); \ +} while (0) + +#define sysfs_hprint(file, val) \ +do { \ + if (attr == &sysfs_ ## file) { \ + ssize_t ret = bch_hprint(buf, val); \ + strcat(buf, "\n"); \ + return ret + 1; \ + } \ +} while (0) + +#define var_printf(_var, fmt) sysfs_printf(_var, fmt, var(_var)) +#define var_print(_var) sysfs_print(_var, var(_var)) +#define var_hprint(_var) sysfs_hprint(_var, var(_var)) + +#define sysfs_strtoul(file, var) \ +do { \ + if (attr == &sysfs_ ## file) \ + return strtoul_safe(buf, var) ?: (ssize_t) size; \ +} while (0) + +#define sysfs_strtoul_clamp(file, var, min, max) \ +do { \ + if (attr == &sysfs_ ## file) \ + return strtoul_safe_clamp(buf, var, min, max) \ + ?: (ssize_t) size; \ +} while (0) + +#define strtoul_or_return(cp) \ +({ \ + unsigned long _v; \ + int _r = kstrtoul(cp, 10, &_v); \ + if (_r) \ + return _r; \ + _v; \ +}) + +#define strtoi_h_or_return(cp, v) \ +do { \ + int _r = strtoi_h(cp, &v); \ + if (_r) \ + return _r; \ +} while (0) + +#define sysfs_hatoi(file, var) \ +do { \ + if (attr == &sysfs_ ## file) \ + return strtoi_h(buf, &var) ?: (ssize_t) size; \ +} while (0) + +#endif /* _BCACHE_SYSFS_H_ */ diff --git a/drivers/md/bcache/trace.c b/drivers/md/bcache/trace.c new file mode 100644 index 00000000000..b7820b0d262 --- /dev/null +++ b/drivers/md/bcache/trace.c @@ -0,0 +1,52 @@ +#include "bcache.h" +#include "btree.h" + +#include <linux/blktrace_api.h> +#include <linux/module.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/bcache.h> + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_request_start); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_request_end); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_bypass_sequential); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_bypass_congested); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_read); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_write); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_read_retry); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_cache_insert); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_replay_key); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_write); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_full); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_entry_full); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_cache_cannibalize); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_read); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_write); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_alloc); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_alloc_fail); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_free); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_gc_coalesce); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_start); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_end); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_copy); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_copy_collision); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_insert_key); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_split); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_compact); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_set_root); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_invalidate); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_alloc_fail); + +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_writeback); +EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_writeback_collision); diff --git a/drivers/md/bcache/util.c b/drivers/md/bcache/util.c new file mode 100644 index 00000000000..db3ae4c2b22 --- /dev/null +++ b/drivers/md/bcache/util.c @@ -0,0 +1,381 @@ +/* + * random utiility code, for bcache but in theory not specific to bcache + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include <linux/bio.h> +#include <linux/blkdev.h> +#include <linux/ctype.h> +#include <linux/debugfs.h> +#include <linux/module.h> +#include <linux/seq_file.h> +#include <linux/types.h> + +#include "util.h" + +#define simple_strtoint(c, end, base) simple_strtol(c, end, base) +#define simple_strtouint(c, end, base) simple_strtoul(c, end, base) + +#define STRTO_H(name, type) \ +int bch_ ## name ## _h(const char *cp, type *res) \ +{ \ + int u = 0; \ + char *e; \ + type i = simple_ ## name(cp, &e, 10); \ + \ + switch (tolower(*e)) { \ + default: \ + return -EINVAL; \ + case 'y': \ + case 'z': \ + u++; \ + case 'e': \ + u++; \ + case 'p': \ + u++; \ + case 't': \ + u++; \ + case 'g': \ + u++; \ + case 'm': \ + u++; \ + case 'k': \ + u++; \ + if (e++ == cp) \ + return -EINVAL; \ + case '\n': \ + case '\0': \ + if (*e == '\n') \ + e++; \ + } \ + \ + if (*e) \ + return -EINVAL; \ + \ + while (u--) { \ + if ((type) ~0 > 0 && \ + (type) ~0 / 1024 <= i) \ + return -EINVAL; \ + if ((i > 0 && ANYSINT_MAX(type) / 1024 < i) || \ + (i < 0 && -ANYSINT_MAX(type) / 1024 > i)) \ + return -EINVAL; \ + i *= 1024; \ + } \ + \ + *res = i; \ + return 0; \ +} \ + +STRTO_H(strtoint, int) +STRTO_H(strtouint, unsigned int) +STRTO_H(strtoll, long long) +STRTO_H(strtoull, unsigned long long) + +ssize_t bch_hprint(char *buf, int64_t v) +{ + static const char units[] = "?kMGTPEZY"; + char dec[4] = ""; + int u, t = 0; + + for (u = 0; v >= 1024 || v <= -1024; u++) { + t = v & ~(~0 << 10); + v >>= 10; + } + + if (!u) + return sprintf(buf, "%llu", v); + + if (v < 100 && v > -100) + snprintf(dec, sizeof(dec), ".%i", t / 100); + + return sprintf(buf, "%lli%s%c", v, dec, units[u]); +} + +ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[], + size_t selected) +{ + char *out = buf; + size_t i; + + for (i = 0; list[i]; i++) + out += snprintf(out, buf + size - out, + i == selected ? "[%s] " : "%s ", list[i]); + + out[-1] = '\n'; + return out - buf; +} + +ssize_t bch_read_string_list(const char *buf, const char * const list[]) +{ + size_t i; + char *s, *d = kstrndup(buf, PAGE_SIZE - 1, GFP_KERNEL); + if (!d) + return -ENOMEM; + + s = strim(d); + + for (i = 0; list[i]; i++) + if (!strcmp(list[i], s)) + break; + + kfree(d); + + if (!list[i]) + return -EINVAL; + + return i; +} + +bool bch_is_zero(const char *p, size_t n) +{ + size_t i; + + for (i = 0; i < n; i++) + if (p[i]) + return false; + return true; +} + +int bch_parse_uuid(const char *s, char *uuid) +{ + size_t i, j, x; + memset(uuid, 0, 16); + + for (i = 0, j = 0; + i < strspn(s, "-0123456789:ABCDEFabcdef") && j < 32; + i++) { + x = s[i] | 32; + + switch (x) { + case '0'...'9': + x -= '0'; + break; + case 'a'...'f': + x -= 'a' - 10; + break; + default: + continue; + } + + if (!(j & 1)) + x <<= 4; + uuid[j++ >> 1] |= x; + } + return i; +} + +void bch_time_stats_update(struct time_stats *stats, uint64_t start_time) +{ + uint64_t now, duration, last; + + spin_lock(&stats->lock); + + now = local_clock(); + duration = time_after64(now, start_time) + ? now - start_time : 0; + last = time_after64(now, stats->last) + ? now - stats->last : 0; + + stats->max_duration = max(stats->max_duration, duration); + + if (stats->last) { + ewma_add(stats->average_duration, duration, 8, 8); + + if (stats->average_frequency) + ewma_add(stats->average_frequency, last, 8, 8); + else + stats->average_frequency = last << 8; + } else { + stats->average_duration = duration << 8; + } + + stats->last = now ?: 1; + + spin_unlock(&stats->lock); +} + +/** + * bch_next_delay() - increment @d by the amount of work done, and return how + * long to delay until the next time to do some work. + * + * @d - the struct bch_ratelimit to update + * @done - the amount of work done, in arbitrary units + * + * Returns the amount of time to delay by, in jiffies + */ +uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done) +{ + uint64_t now = local_clock(); + + d->next += div_u64(done * NSEC_PER_SEC, d->rate); + + if (time_before64(now + NSEC_PER_SEC, d->next)) + d->next = now + NSEC_PER_SEC; + + if (time_after64(now - NSEC_PER_SEC * 2, d->next)) + d->next = now - NSEC_PER_SEC * 2; + + return time_after64(d->next, now) + ? div_u64(d->next - now, NSEC_PER_SEC / HZ) + : 0; +} + +void bch_bio_map(struct bio *bio, void *base) +{ + size_t size = bio->bi_iter.bi_size; + struct bio_vec *bv = bio->bi_io_vec; + + BUG_ON(!bio->bi_iter.bi_size); + BUG_ON(bio->bi_vcnt); + + bv->bv_offset = base ? ((unsigned long) base) % PAGE_SIZE : 0; + goto start; + + for (; size; bio->bi_vcnt++, bv++) { + bv->bv_offset = 0; +start: bv->bv_len = min_t(size_t, PAGE_SIZE - bv->bv_offset, + size); + if (base) { + bv->bv_page = is_vmalloc_addr(base) + ? vmalloc_to_page(base) + : virt_to_page(base); + + base += bv->bv_len; + } + + size -= bv->bv_len; + } +} + +/* + * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group (Any + * use permitted, subject to terms of PostgreSQL license; see.) + + * If we have a 64-bit integer type, then a 64-bit CRC looks just like the + * usual sort of implementation. (See Ross Williams' excellent introduction + * A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS, available from + * ftp://ftp.rocksoft.com/papers/crc_v3.txt or several other net sites.) + * If we have no working 64-bit type, then fake it with two 32-bit registers. + * + * The present implementation is a normal (not "reflected", in Williams' + * terms) 64-bit CRC, using initial all-ones register contents and a final + * bit inversion. The chosen polynomial is borrowed from the DLT1 spec + * (ECMA-182, available from http://www.ecma.ch/ecma1/STAND/ECMA-182.HTM): + * + * x^64 + x^62 + x^57 + x^55 + x^54 + x^53 + x^52 + x^47 + x^46 + x^45 + + * x^40 + x^39 + x^38 + x^37 + x^35 + x^33 + x^32 + x^31 + x^29 + x^27 + + * x^24 + x^23 + x^22 + x^21 + x^19 + x^17 + x^13 + x^12 + x^10 + x^9 + + * x^7 + x^4 + x + 1 +*/ + +static const uint64_t crc_table[256] = { + 0x0000000000000000ULL, 0x42F0E1EBA9EA3693ULL, 0x85E1C3D753D46D26ULL, + 0xC711223CFA3E5BB5ULL, 0x493366450E42ECDFULL, 0x0BC387AEA7A8DA4CULL, + 0xCCD2A5925D9681F9ULL, 0x8E224479F47CB76AULL, 0x9266CC8A1C85D9BEULL, + 0xD0962D61B56FEF2DULL, 0x17870F5D4F51B498ULL, 0x5577EEB6E6BB820BULL, + 0xDB55AACF12C73561ULL, 0x99A54B24BB2D03F2ULL, 0x5EB4691841135847ULL, + 0x1C4488F3E8F96ED4ULL, 0x663D78FF90E185EFULL, 0x24CD9914390BB37CULL, + 0xE3DCBB28C335E8C9ULL, 0xA12C5AC36ADFDE5AULL, 0x2F0E1EBA9EA36930ULL, + 0x6DFEFF5137495FA3ULL, 0xAAEFDD6DCD770416ULL, 0xE81F3C86649D3285ULL, + 0xF45BB4758C645C51ULL, 0xB6AB559E258E6AC2ULL, 0x71BA77A2DFB03177ULL, + 0x334A9649765A07E4ULL, 0xBD68D2308226B08EULL, 0xFF9833DB2BCC861DULL, + 0x388911E7D1F2DDA8ULL, 0x7A79F00C7818EB3BULL, 0xCC7AF1FF21C30BDEULL, + 0x8E8A101488293D4DULL, 0x499B3228721766F8ULL, 0x0B6BD3C3DBFD506BULL, + 0x854997BA2F81E701ULL, 0xC7B97651866BD192ULL, 0x00A8546D7C558A27ULL, + 0x4258B586D5BFBCB4ULL, 0x5E1C3D753D46D260ULL, 0x1CECDC9E94ACE4F3ULL, + 0xDBFDFEA26E92BF46ULL, 0x990D1F49C77889D5ULL, 0x172F5B3033043EBFULL, + 0x55DFBADB9AEE082CULL, 0x92CE98E760D05399ULL, 0xD03E790CC93A650AULL, + 0xAA478900B1228E31ULL, 0xE8B768EB18C8B8A2ULL, 0x2FA64AD7E2F6E317ULL, + 0x6D56AB3C4B1CD584ULL, 0xE374EF45BF6062EEULL, 0xA1840EAE168A547DULL, + 0x66952C92ECB40FC8ULL, 0x2465CD79455E395BULL, 0x3821458AADA7578FULL, + 0x7AD1A461044D611CULL, 0xBDC0865DFE733AA9ULL, 0xFF3067B657990C3AULL, + 0x711223CFA3E5BB50ULL, 0x33E2C2240A0F8DC3ULL, 0xF4F3E018F031D676ULL, + 0xB60301F359DBE0E5ULL, 0xDA050215EA6C212FULL, 0x98F5E3FE438617BCULL, + 0x5FE4C1C2B9B84C09ULL, 0x1D14202910527A9AULL, 0x93366450E42ECDF0ULL, + 0xD1C685BB4DC4FB63ULL, 0x16D7A787B7FAA0D6ULL, 0x5427466C1E109645ULL, + 0x4863CE9FF6E9F891ULL, 0x0A932F745F03CE02ULL, 0xCD820D48A53D95B7ULL, + 0x8F72ECA30CD7A324ULL, 0x0150A8DAF8AB144EULL, 0x43A04931514122DDULL, + 0x84B16B0DAB7F7968ULL, 0xC6418AE602954FFBULL, 0xBC387AEA7A8DA4C0ULL, + 0xFEC89B01D3679253ULL, 0x39D9B93D2959C9E6ULL, 0x7B2958D680B3FF75ULL, + 0xF50B1CAF74CF481FULL, 0xB7FBFD44DD257E8CULL, 0x70EADF78271B2539ULL, + 0x321A3E938EF113AAULL, 0x2E5EB66066087D7EULL, 0x6CAE578BCFE24BEDULL, + 0xABBF75B735DC1058ULL, 0xE94F945C9C3626CBULL, 0x676DD025684A91A1ULL, + 0x259D31CEC1A0A732ULL, 0xE28C13F23B9EFC87ULL, 0xA07CF2199274CA14ULL, + 0x167FF3EACBAF2AF1ULL, 0x548F120162451C62ULL, 0x939E303D987B47D7ULL, + 0xD16ED1D631917144ULL, 0x5F4C95AFC5EDC62EULL, 0x1DBC74446C07F0BDULL, + 0xDAAD56789639AB08ULL, 0x985DB7933FD39D9BULL, 0x84193F60D72AF34FULL, + 0xC6E9DE8B7EC0C5DCULL, 0x01F8FCB784FE9E69ULL, 0x43081D5C2D14A8FAULL, + 0xCD2A5925D9681F90ULL, 0x8FDAB8CE70822903ULL, 0x48CB9AF28ABC72B6ULL, + 0x0A3B7B1923564425ULL, 0x70428B155B4EAF1EULL, 0x32B26AFEF2A4998DULL, + 0xF5A348C2089AC238ULL, 0xB753A929A170F4ABULL, 0x3971ED50550C43C1ULL, + 0x7B810CBBFCE67552ULL, 0xBC902E8706D82EE7ULL, 0xFE60CF6CAF321874ULL, + 0xE224479F47CB76A0ULL, 0xA0D4A674EE214033ULL, 0x67C58448141F1B86ULL, + 0x253565A3BDF52D15ULL, 0xAB1721DA49899A7FULL, 0xE9E7C031E063ACECULL, + 0x2EF6E20D1A5DF759ULL, 0x6C0603E6B3B7C1CAULL, 0xF6FAE5C07D3274CDULL, + 0xB40A042BD4D8425EULL, 0x731B26172EE619EBULL, 0x31EBC7FC870C2F78ULL, + 0xBFC9838573709812ULL, 0xFD39626EDA9AAE81ULL, 0x3A28405220A4F534ULL, + 0x78D8A1B9894EC3A7ULL, 0x649C294A61B7AD73ULL, 0x266CC8A1C85D9BE0ULL, + 0xE17DEA9D3263C055ULL, 0xA38D0B769B89F6C6ULL, 0x2DAF4F0F6FF541ACULL, + 0x6F5FAEE4C61F773FULL, 0xA84E8CD83C212C8AULL, 0xEABE6D3395CB1A19ULL, + 0x90C79D3FEDD3F122ULL, 0xD2377CD44439C7B1ULL, 0x15265EE8BE079C04ULL, + 0x57D6BF0317EDAA97ULL, 0xD9F4FB7AE3911DFDULL, 0x9B041A914A7B2B6EULL, + 0x5C1538ADB04570DBULL, 0x1EE5D94619AF4648ULL, 0x02A151B5F156289CULL, + 0x4051B05E58BC1E0FULL, 0x87409262A28245BAULL, 0xC5B073890B687329ULL, + 0x4B9237F0FF14C443ULL, 0x0962D61B56FEF2D0ULL, 0xCE73F427ACC0A965ULL, + 0x8C8315CC052A9FF6ULL, 0x3A80143F5CF17F13ULL, 0x7870F5D4F51B4980ULL, + 0xBF61D7E80F251235ULL, 0xFD913603A6CF24A6ULL, 0x73B3727A52B393CCULL, + 0x31439391FB59A55FULL, 0xF652B1AD0167FEEAULL, 0xB4A25046A88DC879ULL, + 0xA8E6D8B54074A6ADULL, 0xEA16395EE99E903EULL, 0x2D071B6213A0CB8BULL, + 0x6FF7FA89BA4AFD18ULL, 0xE1D5BEF04E364A72ULL, 0xA3255F1BE7DC7CE1ULL, + 0x64347D271DE22754ULL, 0x26C49CCCB40811C7ULL, 0x5CBD6CC0CC10FAFCULL, + 0x1E4D8D2B65FACC6FULL, 0xD95CAF179FC497DAULL, 0x9BAC4EFC362EA149ULL, + 0x158E0A85C2521623ULL, 0x577EEB6E6BB820B0ULL, 0x906FC95291867B05ULL, + 0xD29F28B9386C4D96ULL, 0xCEDBA04AD0952342ULL, 0x8C2B41A1797F15D1ULL, + 0x4B3A639D83414E64ULL, 0x09CA82762AAB78F7ULL, 0x87E8C60FDED7CF9DULL, + 0xC51827E4773DF90EULL, 0x020905D88D03A2BBULL, 0x40F9E43324E99428ULL, + 0x2CFFE7D5975E55E2ULL, 0x6E0F063E3EB46371ULL, 0xA91E2402C48A38C4ULL, + 0xEBEEC5E96D600E57ULL, 0x65CC8190991CB93DULL, 0x273C607B30F68FAEULL, + 0xE02D4247CAC8D41BULL, 0xA2DDA3AC6322E288ULL, 0xBE992B5F8BDB8C5CULL, + 0xFC69CAB42231BACFULL, 0x3B78E888D80FE17AULL, 0x7988096371E5D7E9ULL, + 0xF7AA4D1A85996083ULL, 0xB55AACF12C735610ULL, 0x724B8ECDD64D0DA5ULL, + 0x30BB6F267FA73B36ULL, 0x4AC29F2A07BFD00DULL, 0x08327EC1AE55E69EULL, + 0xCF235CFD546BBD2BULL, 0x8DD3BD16FD818BB8ULL, 0x03F1F96F09FD3CD2ULL, + 0x41011884A0170A41ULL, 0x86103AB85A2951F4ULL, 0xC4E0DB53F3C36767ULL, + 0xD8A453A01B3A09B3ULL, 0x9A54B24BB2D03F20ULL, 0x5D45907748EE6495ULL, + 0x1FB5719CE1045206ULL, 0x919735E51578E56CULL, 0xD367D40EBC92D3FFULL, + 0x1476F63246AC884AULL, 0x568617D9EF46BED9ULL, 0xE085162AB69D5E3CULL, + 0xA275F7C11F7768AFULL, 0x6564D5FDE549331AULL, 0x279434164CA30589ULL, + 0xA9B6706FB8DFB2E3ULL, 0xEB46918411358470ULL, 0x2C57B3B8EB0BDFC5ULL, + 0x6EA7525342E1E956ULL, 0x72E3DAA0AA188782ULL, 0x30133B4B03F2B111ULL, + 0xF7021977F9CCEAA4ULL, 0xB5F2F89C5026DC37ULL, 0x3BD0BCE5A45A6B5DULL, + 0x79205D0E0DB05DCEULL, 0xBE317F32F78E067BULL, 0xFCC19ED95E6430E8ULL, + 0x86B86ED5267CDBD3ULL, 0xC4488F3E8F96ED40ULL, 0x0359AD0275A8B6F5ULL, + 0x41A94CE9DC428066ULL, 0xCF8B0890283E370CULL, 0x8D7BE97B81D4019FULL, + 0x4A6ACB477BEA5A2AULL, 0x089A2AACD2006CB9ULL, 0x14DEA25F3AF9026DULL, + 0x562E43B4931334FEULL, 0x913F6188692D6F4BULL, 0xD3CF8063C0C759D8ULL, + 0x5DEDC41A34BBEEB2ULL, 0x1F1D25F19D51D821ULL, 0xD80C07CD676F8394ULL, + 0x9AFCE626CE85B507ULL, +}; + +uint64_t bch_crc64_update(uint64_t crc, const void *_data, size_t len) +{ + const unsigned char *data = _data; + + while (len--) { + int i = ((int) (crc >> 56) ^ *data++) & 0xFF; + crc = crc_table[i] ^ (crc << 8); + } + + return crc; +} + +uint64_t bch_crc64(const void *data, size_t len) +{ + uint64_t crc = 0xffffffffffffffffULL; + + crc = bch_crc64_update(crc, data, len); + + return crc ^ 0xffffffffffffffffULL; +} diff --git a/drivers/md/bcache/util.h b/drivers/md/bcache/util.h new file mode 100644 index 00000000000..ac7d0d1f70d --- /dev/null +++ b/drivers/md/bcache/util.h @@ -0,0 +1,588 @@ + +#ifndef _BCACHE_UTIL_H +#define _BCACHE_UTIL_H + +#include <linux/blkdev.h> +#include <linux/errno.h> +#include <linux/kernel.h> +#include <linux/llist.h> +#include <linux/ratelimit.h> +#include <linux/vmalloc.h> +#include <linux/workqueue.h> + +#include "closure.h" + +#define PAGE_SECTORS (PAGE_SIZE / 512) + +struct closure; + +#ifdef CONFIG_BCACHE_DEBUG + +#define EBUG_ON(cond) BUG_ON(cond) +#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) +#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) + +#else /* DEBUG */ + +#define EBUG_ON(cond) do { if (cond); } while (0) +#define atomic_dec_bug(v) atomic_dec(v) +#define atomic_inc_bug(v, i) atomic_inc(v) + +#endif + +#define DECLARE_HEAP(type, name) \ + struct { \ + size_t size, used; \ + type *data; \ + } name + +#define init_heap(heap, _size, gfp) \ +({ \ + size_t _bytes; \ + (heap)->used = 0; \ + (heap)->size = (_size); \ + _bytes = (heap)->size * sizeof(*(heap)->data); \ + (heap)->data = NULL; \ + if (_bytes < KMALLOC_MAX_SIZE) \ + (heap)->data = kmalloc(_bytes, (gfp)); \ + if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \ + (heap)->data = vmalloc(_bytes); \ + (heap)->data; \ +}) + +#define free_heap(heap) \ +do { \ + if (is_vmalloc_addr((heap)->data)) \ + vfree((heap)->data); \ + else \ + kfree((heap)->data); \ + (heap)->data = NULL; \ +} while (0) + +#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) + +#define heap_sift(h, i, cmp) \ +do { \ + size_t _r, _j = i; \ + \ + for (; _j * 2 + 1 < (h)->used; _j = _r) { \ + _r = _j * 2 + 1; \ + if (_r + 1 < (h)->used && \ + cmp((h)->data[_r], (h)->data[_r + 1])) \ + _r++; \ + \ + if (cmp((h)->data[_r], (h)->data[_j])) \ + break; \ + heap_swap(h, _r, _j); \ + } \ +} while (0) + +#define heap_sift_down(h, i, cmp) \ +do { \ + while (i) { \ + size_t p = (i - 1) / 2; \ + if (cmp((h)->data[i], (h)->data[p])) \ + break; \ + heap_swap(h, i, p); \ + i = p; \ + } \ +} while (0) + +#define heap_add(h, d, cmp) \ +({ \ + bool _r = !heap_full(h); \ + if (_r) { \ + size_t _i = (h)->used++; \ + (h)->data[_i] = d; \ + \ + heap_sift_down(h, _i, cmp); \ + heap_sift(h, _i, cmp); \ + } \ + _r; \ +}) + +#define heap_pop(h, d, cmp) \ +({ \ + bool _r = (h)->used; \ + if (_r) { \ + (d) = (h)->data[0]; \ + (h)->used--; \ + heap_swap(h, 0, (h)->used); \ + heap_sift(h, 0, cmp); \ + } \ + _r; \ +}) + +#define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) + +#define heap_full(h) ((h)->used == (h)->size) + +#define DECLARE_FIFO(type, name) \ + struct { \ + size_t front, back, size, mask; \ + type *data; \ + } name + +#define fifo_for_each(c, fifo, iter) \ + for (iter = (fifo)->front; \ + c = (fifo)->data[iter], iter != (fifo)->back; \ + iter = (iter + 1) & (fifo)->mask) + +#define __init_fifo(fifo, gfp) \ +({ \ + size_t _allocated_size, _bytes; \ + BUG_ON(!(fifo)->size); \ + \ + _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ + _bytes = _allocated_size * sizeof(*(fifo)->data); \ + \ + (fifo)->mask = _allocated_size - 1; \ + (fifo)->front = (fifo)->back = 0; \ + (fifo)->data = NULL; \ + \ + if (_bytes < KMALLOC_MAX_SIZE) \ + (fifo)->data = kmalloc(_bytes, (gfp)); \ + if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \ + (fifo)->data = vmalloc(_bytes); \ + (fifo)->data; \ +}) + +#define init_fifo_exact(fifo, _size, gfp) \ +({ \ + (fifo)->size = (_size); \ + __init_fifo(fifo, gfp); \ +}) + +#define init_fifo(fifo, _size, gfp) \ +({ \ + (fifo)->size = (_size); \ + if ((fifo)->size > 4) \ + (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ + __init_fifo(fifo, gfp); \ +}) + +#define free_fifo(fifo) \ +do { \ + if (is_vmalloc_addr((fifo)->data)) \ + vfree((fifo)->data); \ + else \ + kfree((fifo)->data); \ + (fifo)->data = NULL; \ +} while (0) + +#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) +#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) + +#define fifo_empty(fifo) (!fifo_used(fifo)) +#define fifo_full(fifo) (!fifo_free(fifo)) + +#define fifo_front(fifo) ((fifo)->data[(fifo)->front]) +#define fifo_back(fifo) \ + ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) + +#define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) + +#define fifo_push_back(fifo, i) \ +({ \ + bool _r = !fifo_full((fifo)); \ + if (_r) { \ + (fifo)->data[(fifo)->back++] = (i); \ + (fifo)->back &= (fifo)->mask; \ + } \ + _r; \ +}) + +#define fifo_pop_front(fifo, i) \ +({ \ + bool _r = !fifo_empty((fifo)); \ + if (_r) { \ + (i) = (fifo)->data[(fifo)->front++]; \ + (fifo)->front &= (fifo)->mask; \ + } \ + _r; \ +}) + +#define fifo_push_front(fifo, i) \ +({ \ + bool _r = !fifo_full((fifo)); \ + if (_r) { \ + --(fifo)->front; \ + (fifo)->front &= (fifo)->mask; \ + (fifo)->data[(fifo)->front] = (i); \ + } \ + _r; \ +}) + +#define fifo_pop_back(fifo, i) \ +({ \ + bool _r = !fifo_empty((fifo)); \ + if (_r) { \ + --(fifo)->back; \ + (fifo)->back &= (fifo)->mask; \ + (i) = (fifo)->data[(fifo)->back] \ + } \ + _r; \ +}) + +#define fifo_push(fifo, i) fifo_push_back(fifo, (i)) +#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) + +#define fifo_swap(l, r) \ +do { \ + swap((l)->front, (r)->front); \ + swap((l)->back, (r)->back); \ + swap((l)->size, (r)->size); \ + swap((l)->mask, (r)->mask); \ + swap((l)->data, (r)->data); \ +} while (0) + +#define fifo_move(dest, src) \ +do { \ + typeof(*((dest)->data)) _t; \ + while (!fifo_full(dest) && \ + fifo_pop(src, _t)) \ + fifo_push(dest, _t); \ +} while (0) + +/* + * Simple array based allocator - preallocates a number of elements and you can + * never allocate more than that, also has no locking. + * + * Handy because if you know you only need a fixed number of elements you don't + * have to worry about memory allocation failure, and sometimes a mempool isn't + * what you want. + * + * We treat the free elements as entries in a singly linked list, and the + * freelist as a stack - allocating and freeing push and pop off the freelist. + */ + +#define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ + struct { \ + type *freelist; \ + type data[size]; \ + } name + +#define array_alloc(array) \ +({ \ + typeof((array)->freelist) _ret = (array)->freelist; \ + \ + if (_ret) \ + (array)->freelist = *((typeof((array)->freelist) *) _ret);\ + \ + _ret; \ +}) + +#define array_free(array, ptr) \ +do { \ + typeof((array)->freelist) _ptr = ptr; \ + \ + *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ + (array)->freelist = _ptr; \ +} while (0) + +#define array_allocator_init(array) \ +do { \ + typeof((array)->freelist) _i; \ + \ + BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ + (array)->freelist = NULL; \ + \ + for (_i = (array)->data; \ + _i < (array)->data + ARRAY_SIZE((array)->data); \ + _i++) \ + array_free(array, _i); \ +} while (0) + +#define array_freelist_empty(array) ((array)->freelist == NULL) + +#define ANYSINT_MAX(t) \ + ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) + +int bch_strtoint_h(const char *, int *); +int bch_strtouint_h(const char *, unsigned int *); +int bch_strtoll_h(const char *, long long *); +int bch_strtoull_h(const char *, unsigned long long *); + +static inline int bch_strtol_h(const char *cp, long *res) +{ +#if BITS_PER_LONG == 32 + return bch_strtoint_h(cp, (int *) res); +#else + return bch_strtoll_h(cp, (long long *) res); +#endif +} + +static inline int bch_strtoul_h(const char *cp, long *res) +{ +#if BITS_PER_LONG == 32 + return bch_strtouint_h(cp, (unsigned int *) res); +#else + return bch_strtoull_h(cp, (unsigned long long *) res); +#endif +} + +#define strtoi_h(cp, res) \ + (__builtin_types_compatible_p(typeof(*res), int) \ + ? bch_strtoint_h(cp, (void *) res) \ + : __builtin_types_compatible_p(typeof(*res), long) \ + ? bch_strtol_h(cp, (void *) res) \ + : __builtin_types_compatible_p(typeof(*res), long long) \ + ? bch_strtoll_h(cp, (void *) res) \ + : __builtin_types_compatible_p(typeof(*res), unsigned int) \ + ? bch_strtouint_h(cp, (void *) res) \ + : __builtin_types_compatible_p(typeof(*res), unsigned long) \ + ? bch_strtoul_h(cp, (void *) res) \ + : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ + ? bch_strtoull_h(cp, (void *) res) : -EINVAL) + +#define strtoul_safe(cp, var) \ +({ \ + unsigned long _v; \ + int _r = kstrtoul(cp, 10, &_v); \ + if (!_r) \ + var = _v; \ + _r; \ +}) + +#define strtoul_safe_clamp(cp, var, min, max) \ +({ \ + unsigned long _v; \ + int _r = kstrtoul(cp, 10, &_v); \ + if (!_r) \ + var = clamp_t(typeof(var), _v, min, max); \ + _r; \ +}) + +#define snprint(buf, size, var) \ + snprintf(buf, size, \ + __builtin_types_compatible_p(typeof(var), int) \ + ? "%i\n" : \ + __builtin_types_compatible_p(typeof(var), unsigned) \ + ? "%u\n" : \ + __builtin_types_compatible_p(typeof(var), long) \ + ? "%li\n" : \ + __builtin_types_compatible_p(typeof(var), unsigned long)\ + ? "%lu\n" : \ + __builtin_types_compatible_p(typeof(var), int64_t) \ + ? "%lli\n" : \ + __builtin_types_compatible_p(typeof(var), uint64_t) \ + ? "%llu\n" : \ + __builtin_types_compatible_p(typeof(var), const char *) \ + ? "%s\n" : "%i\n", var) + +ssize_t bch_hprint(char *buf, int64_t v); + +bool bch_is_zero(const char *p, size_t n); +int bch_parse_uuid(const char *s, char *uuid); + +ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[], + size_t selected); + +ssize_t bch_read_string_list(const char *buf, const char * const list[]); + +struct time_stats { + spinlock_t lock; + /* + * all fields are in nanoseconds, averages are ewmas stored left shifted + * by 8 + */ + uint64_t max_duration; + uint64_t average_duration; + uint64_t average_frequency; + uint64_t last; +}; + +void bch_time_stats_update(struct time_stats *stats, uint64_t time); + +static inline unsigned local_clock_us(void) +{ + return local_clock() >> 10; +} + +#define NSEC_PER_ns 1L +#define NSEC_PER_us NSEC_PER_USEC +#define NSEC_PER_ms NSEC_PER_MSEC +#define NSEC_PER_sec NSEC_PER_SEC + +#define __print_time_stat(stats, name, stat, units) \ + sysfs_print(name ## _ ## stat ## _ ## units, \ + div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) + +#define sysfs_print_time_stats(stats, name, \ + frequency_units, \ + duration_units) \ +do { \ + __print_time_stat(stats, name, \ + average_frequency, frequency_units); \ + __print_time_stat(stats, name, \ + average_duration, duration_units); \ + __print_time_stat(stats, name, \ + max_duration, duration_units); \ + \ + sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ + ? div_s64(local_clock() - (stats)->last, \ + NSEC_PER_ ## frequency_units) \ + : -1LL); \ +} while (0) + +#define sysfs_time_stats_attribute(name, \ + frequency_units, \ + duration_units) \ +read_attribute(name ## _average_frequency_ ## frequency_units); \ +read_attribute(name ## _average_duration_ ## duration_units); \ +read_attribute(name ## _max_duration_ ## duration_units); \ +read_attribute(name ## _last_ ## frequency_units) + +#define sysfs_time_stats_attribute_list(name, \ + frequency_units, \ + duration_units) \ +&sysfs_ ## name ## _average_frequency_ ## frequency_units, \ +&sysfs_ ## name ## _average_duration_ ## duration_units, \ +&sysfs_ ## name ## _max_duration_ ## duration_units, \ +&sysfs_ ## name ## _last_ ## frequency_units, + +#define ewma_add(ewma, val, weight, factor) \ +({ \ + (ewma) *= (weight) - 1; \ + (ewma) += (val) << factor; \ + (ewma) /= (weight); \ + (ewma) >> factor; \ +}) + +struct bch_ratelimit { + /* Next time we want to do some work, in nanoseconds */ + uint64_t next; + + /* + * Rate at which we want to do work, in units per nanosecond + * The units here correspond to the units passed to bch_next_delay() + */ + unsigned rate; +}; + +static inline void bch_ratelimit_reset(struct bch_ratelimit *d) +{ + d->next = local_clock(); +} + +uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); + +#define __DIV_SAFE(n, d, zero) \ +({ \ + typeof(n) _n = (n); \ + typeof(d) _d = (d); \ + _d ? _n / _d : zero; \ +}) + +#define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) + +#define container_of_or_null(ptr, type, member) \ +({ \ + typeof(ptr) _ptr = ptr; \ + _ptr ? container_of(_ptr, type, member) : NULL; \ +}) + +#define RB_INSERT(root, new, member, cmp) \ +({ \ + __label__ dup; \ + struct rb_node **n = &(root)->rb_node, *parent = NULL; \ + typeof(new) this; \ + int res, ret = -1; \ + \ + while (*n) { \ + parent = *n; \ + this = container_of(*n, typeof(*(new)), member); \ + res = cmp(new, this); \ + if (!res) \ + goto dup; \ + n = res < 0 \ + ? &(*n)->rb_left \ + : &(*n)->rb_right; \ + } \ + \ + rb_link_node(&(new)->member, parent, n); \ + rb_insert_color(&(new)->member, root); \ + ret = 0; \ +dup: \ + ret; \ +}) + +#define RB_SEARCH(root, search, member, cmp) \ +({ \ + struct rb_node *n = (root)->rb_node; \ + typeof(&(search)) this, ret = NULL; \ + int res; \ + \ + while (n) { \ + this = container_of(n, typeof(search), member); \ + res = cmp(&(search), this); \ + if (!res) { \ + ret = this; \ + break; \ + } \ + n = res < 0 \ + ? n->rb_left \ + : n->rb_right; \ + } \ + ret; \ +}) + +#define RB_GREATER(root, search, member, cmp) \ +({ \ + struct rb_node *n = (root)->rb_node; \ + typeof(&(search)) this, ret = NULL; \ + int res; \ + \ + while (n) { \ + this = container_of(n, typeof(search), member); \ + res = cmp(&(search), this); \ + if (res < 0) { \ + ret = this; \ + n = n->rb_left; \ + } else \ + n = n->rb_right; \ + } \ + ret; \ +}) + +#define RB_FIRST(root, type, member) \ + container_of_or_null(rb_first(root), type, member) + +#define RB_LAST(root, type, member) \ + container_of_or_null(rb_last(root), type, member) + +#define RB_NEXT(ptr, member) \ + container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) + +#define RB_PREV(ptr, member) \ + container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) + +/* Does linear interpolation between powers of two */ +static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) +{ + unsigned fract = x & ~(~0 << fract_bits); + + x >>= fract_bits; + x = 1 << x; + x += (x * fract) >> fract_bits; + + return x; +} + +void bch_bio_map(struct bio *bio, void *base); + +static inline sector_t bdev_sectors(struct block_device *bdev) +{ + return bdev->bd_inode->i_size >> 9; +} + +#define closure_bio_submit(bio, cl, dev) \ +do { \ + closure_get(cl); \ + bch_generic_make_request(bio, &(dev)->bio_split_hook); \ +} while (0) + +uint64_t bch_crc64_update(uint64_t, const void *, size_t); +uint64_t bch_crc64(const void *, size_t); + +#endif /* _BCACHE_UTIL_H */ diff --git a/drivers/md/bcache/writeback.c b/drivers/md/bcache/writeback.c new file mode 100644 index 00000000000..f4300e4c011 --- /dev/null +++ b/drivers/md/bcache/writeback.c @@ -0,0 +1,507 @@ +/* + * background writeback - scan btree for dirty data and write it to the backing + * device + * + * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> + * Copyright 2012 Google, Inc. + */ + +#include "bcache.h" +#include "btree.h" +#include "debug.h" +#include "writeback.h" + +#include <linux/delay.h> +#include <linux/freezer.h> +#include <linux/kthread.h> +#include <trace/events/bcache.h> + +/* Rate limiting */ + +static void __update_writeback_rate(struct cached_dev *dc) +{ + struct cache_set *c = dc->disk.c; + uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size; + uint64_t cache_dirty_target = + div_u64(cache_sectors * dc->writeback_percent, 100); + + int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev), + c->cached_dev_sectors); + + /* PD controller */ + + int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); + int64_t derivative = dirty - dc->disk.sectors_dirty_last; + int64_t proportional = dirty - target; + int64_t change; + + dc->disk.sectors_dirty_last = dirty; + + /* Scale to sectors per second */ + + proportional *= dc->writeback_rate_update_seconds; + proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse); + + derivative = div_s64(derivative, dc->writeback_rate_update_seconds); + + derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative, + (dc->writeback_rate_d_term / + dc->writeback_rate_update_seconds) ?: 1, 0); + + derivative *= dc->writeback_rate_d_term; + derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse); + + change = proportional + derivative; + + /* Don't increase writeback rate if the device isn't keeping up */ + if (change > 0 && + time_after64(local_clock(), + dc->writeback_rate.next + NSEC_PER_MSEC)) + change = 0; + + dc->writeback_rate.rate = + clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change, + 1, NSEC_PER_MSEC); + + dc->writeback_rate_proportional = proportional; + dc->writeback_rate_derivative = derivative; + dc->writeback_rate_change = change; + dc->writeback_rate_target = target; +} + +static void update_writeback_rate(struct work_struct *work) +{ + struct cached_dev *dc = container_of(to_delayed_work(work), + struct cached_dev, + writeback_rate_update); + + down_read(&dc->writeback_lock); + + if (atomic_read(&dc->has_dirty) && + dc->writeback_percent) + __update_writeback_rate(dc); + + up_read(&dc->writeback_lock); + + schedule_delayed_work(&dc->writeback_rate_update, + dc->writeback_rate_update_seconds * HZ); +} + +static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors) +{ + if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || + !dc->writeback_percent) + return 0; + + return bch_next_delay(&dc->writeback_rate, sectors); +} + +struct dirty_io { + struct closure cl; + struct cached_dev *dc; + struct bio bio; +}; + +static void dirty_init(struct keybuf_key *w) +{ + struct dirty_io *io = w->private; + struct bio *bio = &io->bio; + + bio_init(bio); + if (!io->dc->writeback_percent) + bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); + + bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; + bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS); + bio->bi_private = w; + bio->bi_io_vec = bio->bi_inline_vecs; + bch_bio_map(bio, NULL); +} + +static void dirty_io_destructor(struct closure *cl) +{ + struct dirty_io *io = container_of(cl, struct dirty_io, cl); + kfree(io); +} + +static void write_dirty_finish(struct closure *cl) +{ + struct dirty_io *io = container_of(cl, struct dirty_io, cl); + struct keybuf_key *w = io->bio.bi_private; + struct cached_dev *dc = io->dc; + struct bio_vec *bv; + int i; + + bio_for_each_segment_all(bv, &io->bio, i) + __free_page(bv->bv_page); + + /* This is kind of a dumb way of signalling errors. */ + if (KEY_DIRTY(&w->key)) { + int ret; + unsigned i; + struct keylist keys; + + bch_keylist_init(&keys); + + bkey_copy(keys.top, &w->key); + SET_KEY_DIRTY(keys.top, false); + bch_keylist_push(&keys); + + for (i = 0; i < KEY_PTRS(&w->key); i++) + atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); + + ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); + + if (ret) + trace_bcache_writeback_collision(&w->key); + + atomic_long_inc(ret + ? &dc->disk.c->writeback_keys_failed + : &dc->disk.c->writeback_keys_done); + } + + bch_keybuf_del(&dc->writeback_keys, w); + up(&dc->in_flight); + + closure_return_with_destructor(cl, dirty_io_destructor); +} + +static void dirty_endio(struct bio *bio, int error) +{ + struct keybuf_key *w = bio->bi_private; + struct dirty_io *io = w->private; + + if (error) + SET_KEY_DIRTY(&w->key, false); + + closure_put(&io->cl); +} + +static void write_dirty(struct closure *cl) +{ + struct dirty_io *io = container_of(cl, struct dirty_io, cl); + struct keybuf_key *w = io->bio.bi_private; + + dirty_init(w); + io->bio.bi_rw = WRITE; + io->bio.bi_iter.bi_sector = KEY_START(&w->key); + io->bio.bi_bdev = io->dc->bdev; + io->bio.bi_end_io = dirty_endio; + + closure_bio_submit(&io->bio, cl, &io->dc->disk); + + continue_at(cl, write_dirty_finish, system_wq); +} + +static void read_dirty_endio(struct bio *bio, int error) +{ + struct keybuf_key *w = bio->bi_private; + struct dirty_io *io = w->private; + + bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), + error, "reading dirty data from cache"); + + dirty_endio(bio, error); +} + +static void read_dirty_submit(struct closure *cl) +{ + struct dirty_io *io = container_of(cl, struct dirty_io, cl); + + closure_bio_submit(&io->bio, cl, &io->dc->disk); + + continue_at(cl, write_dirty, system_wq); +} + +static void read_dirty(struct cached_dev *dc) +{ + unsigned delay = 0; + struct keybuf_key *w; + struct dirty_io *io; + struct closure cl; + + closure_init_stack(&cl); + + /* + * XXX: if we error, background writeback just spins. Should use some + * mempools. + */ + + while (!kthread_should_stop()) { + try_to_freeze(); + + w = bch_keybuf_next(&dc->writeback_keys); + if (!w) + break; + + BUG_ON(ptr_stale(dc->disk.c, &w->key, 0)); + + if (KEY_START(&w->key) != dc->last_read || + jiffies_to_msecs(delay) > 50) + while (!kthread_should_stop() && delay) + delay = schedule_timeout_uninterruptible(delay); + + dc->last_read = KEY_OFFSET(&w->key); + + io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec) + * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), + GFP_KERNEL); + if (!io) + goto err; + + w->private = io; + io->dc = dc; + + dirty_init(w); + io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); + io->bio.bi_bdev = PTR_CACHE(dc->disk.c, + &w->key, 0)->bdev; + io->bio.bi_rw = READ; + io->bio.bi_end_io = read_dirty_endio; + + if (bio_alloc_pages(&io->bio, GFP_KERNEL)) + goto err_free; + + trace_bcache_writeback(&w->key); + + down(&dc->in_flight); + closure_call(&io->cl, read_dirty_submit, NULL, &cl); + + delay = writeback_delay(dc, KEY_SIZE(&w->key)); + } + + if (0) { +err_free: + kfree(w->private); +err: + bch_keybuf_del(&dc->writeback_keys, w); + } + + /* + * Wait for outstanding writeback IOs to finish (and keybuf slots to be + * freed) before refilling again + */ + closure_sync(&cl); +} + +/* Scan for dirty data */ + +void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode, + uint64_t offset, int nr_sectors) +{ + struct bcache_device *d = c->devices[inode]; + unsigned stripe_offset, stripe, sectors_dirty; + + if (!d) + return; + + stripe = offset_to_stripe(d, offset); + stripe_offset = offset & (d->stripe_size - 1); + + while (nr_sectors) { + int s = min_t(unsigned, abs(nr_sectors), + d->stripe_size - stripe_offset); + + if (nr_sectors < 0) + s = -s; + + if (stripe >= d->nr_stripes) + return; + + sectors_dirty = atomic_add_return(s, + d->stripe_sectors_dirty + stripe); + if (sectors_dirty == d->stripe_size) + set_bit(stripe, d->full_dirty_stripes); + else + clear_bit(stripe, d->full_dirty_stripes); + + nr_sectors -= s; + stripe_offset = 0; + stripe++; + } +} + +static bool dirty_pred(struct keybuf *buf, struct bkey *k) +{ + return KEY_DIRTY(k); +} + +static void refill_full_stripes(struct cached_dev *dc) +{ + struct keybuf *buf = &dc->writeback_keys; + unsigned start_stripe, stripe, next_stripe; + bool wrapped = false; + + stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); + + if (stripe >= dc->disk.nr_stripes) + stripe = 0; + + start_stripe = stripe; + + while (1) { + stripe = find_next_bit(dc->disk.full_dirty_stripes, + dc->disk.nr_stripes, stripe); + + if (stripe == dc->disk.nr_stripes) + goto next; + + next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, + dc->disk.nr_stripes, stripe); + + buf->last_scanned = KEY(dc->disk.id, + stripe * dc->disk.stripe_size, 0); + + bch_refill_keybuf(dc->disk.c, buf, + &KEY(dc->disk.id, + next_stripe * dc->disk.stripe_size, 0), + dirty_pred); + + if (array_freelist_empty(&buf->freelist)) + return; + + stripe = next_stripe; +next: + if (wrapped && stripe > start_stripe) + return; + + if (stripe == dc->disk.nr_stripes) { + stripe = 0; + wrapped = true; + } + } +} + +static bool refill_dirty(struct cached_dev *dc) +{ + struct keybuf *buf = &dc->writeback_keys; + struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); + bool searched_from_start = false; + + if (dc->partial_stripes_expensive) { + refill_full_stripes(dc); + if (array_freelist_empty(&buf->freelist)) + return false; + } + + if (bkey_cmp(&buf->last_scanned, &end) >= 0) { + buf->last_scanned = KEY(dc->disk.id, 0, 0); + searched_from_start = true; + } + + bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); + + return bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start; +} + +static int bch_writeback_thread(void *arg) +{ + struct cached_dev *dc = arg; + bool searched_full_index; + + while (!kthread_should_stop()) { + down_write(&dc->writeback_lock); + if (!atomic_read(&dc->has_dirty) || + (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && + !dc->writeback_running)) { + up_write(&dc->writeback_lock); + set_current_state(TASK_INTERRUPTIBLE); + + if (kthread_should_stop()) + return 0; + + try_to_freeze(); + schedule(); + continue; + } + + searched_full_index = refill_dirty(dc); + + if (searched_full_index && + RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { + atomic_set(&dc->has_dirty, 0); + cached_dev_put(dc); + SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); + bch_write_bdev_super(dc, NULL); + } + + up_write(&dc->writeback_lock); + + bch_ratelimit_reset(&dc->writeback_rate); + read_dirty(dc); + + if (searched_full_index) { + unsigned delay = dc->writeback_delay * HZ; + + while (delay && + !kthread_should_stop() && + !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) + delay = schedule_timeout_uninterruptible(delay); + } + } + + return 0; +} + +/* Init */ + +struct sectors_dirty_init { + struct btree_op op; + unsigned inode; +}; + +static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, + struct bkey *k) +{ + struct sectors_dirty_init *op = container_of(_op, + struct sectors_dirty_init, op); + if (KEY_INODE(k) > op->inode) + return MAP_DONE; + + if (KEY_DIRTY(k)) + bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), + KEY_START(k), KEY_SIZE(k)); + + return MAP_CONTINUE; +} + +void bch_sectors_dirty_init(struct cached_dev *dc) +{ + struct sectors_dirty_init op; + + bch_btree_op_init(&op.op, -1); + op.inode = dc->disk.id; + + bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0), + sectors_dirty_init_fn, 0); + + dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk); +} + +int bch_cached_dev_writeback_init(struct cached_dev *dc) +{ + sema_init(&dc->in_flight, 64); + init_rwsem(&dc->writeback_lock); + bch_keybuf_init(&dc->writeback_keys); + + dc->writeback_metadata = true; + dc->writeback_running = true; + dc->writeback_percent = 10; + dc->writeback_delay = 30; + dc->writeback_rate.rate = 1024; + + dc->writeback_rate_update_seconds = 5; + dc->writeback_rate_d_term = 30; + dc->writeback_rate_p_term_inverse = 6000; + + dc->writeback_thread = kthread_create(bch_writeback_thread, dc, + "bcache_writeback"); + if (IS_ERR(dc->writeback_thread)) + return PTR_ERR(dc->writeback_thread); + + INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); + schedule_delayed_work(&dc->writeback_rate_update, + dc->writeback_rate_update_seconds * HZ); + + return 0; +} diff --git a/drivers/md/bcache/writeback.h b/drivers/md/bcache/writeback.h new file mode 100644 index 00000000000..e2f8598937a --- /dev/null +++ b/drivers/md/bcache/writeback.h @@ -0,0 +1,90 @@ +#ifndef _BCACHE_WRITEBACK_H +#define _BCACHE_WRITEBACK_H + +#define CUTOFF_WRITEBACK 40 +#define CUTOFF_WRITEBACK_SYNC 70 + +static inline uint64_t bcache_dev_sectors_dirty(struct bcache_device *d) +{ + uint64_t i, ret = 0; + + for (i = 0; i < d->nr_stripes; i++) + ret += atomic_read(d->stripe_sectors_dirty + i); + + return ret; +} + +static inline unsigned offset_to_stripe(struct bcache_device *d, + uint64_t offset) +{ + do_div(offset, d->stripe_size); + return offset; +} + +static inline bool bcache_dev_stripe_dirty(struct cached_dev *dc, + uint64_t offset, + unsigned nr_sectors) +{ + unsigned stripe = offset_to_stripe(&dc->disk, offset); + + while (1) { + if (atomic_read(dc->disk.stripe_sectors_dirty + stripe)) + return true; + + if (nr_sectors <= dc->disk.stripe_size) + return false; + + nr_sectors -= dc->disk.stripe_size; + stripe++; + } +} + +static inline bool should_writeback(struct cached_dev *dc, struct bio *bio, + unsigned cache_mode, bool would_skip) +{ + unsigned in_use = dc->disk.c->gc_stats.in_use; + + if (cache_mode != CACHE_MODE_WRITEBACK || + test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || + in_use > CUTOFF_WRITEBACK_SYNC) + return false; + + if (dc->partial_stripes_expensive && + bcache_dev_stripe_dirty(dc, bio->bi_iter.bi_sector, + bio_sectors(bio))) + return true; + + if (would_skip) + return false; + + return bio->bi_rw & REQ_SYNC || + in_use <= CUTOFF_WRITEBACK; +} + +static inline void bch_writeback_queue(struct cached_dev *dc) +{ + wake_up_process(dc->writeback_thread); +} + +static inline void bch_writeback_add(struct cached_dev *dc) +{ + if (!atomic_read(&dc->has_dirty) && + !atomic_xchg(&dc->has_dirty, 1)) { + atomic_inc(&dc->count); + + if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) { + SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY); + /* XXX: should do this synchronously */ + bch_write_bdev_super(dc, NULL); + } + + bch_writeback_queue(dc); + } +} + +void bcache_dev_sectors_dirty_add(struct cache_set *, unsigned, uint64_t, int); + +void bch_sectors_dirty_init(struct cached_dev *dc); +int bch_cached_dev_writeback_init(struct cached_dev *); + +#endif diff --git a/drivers/md/bitmap.c b/drivers/md/bitmap.c index 7155945f8eb..67f8b31e205 100644 --- a/drivers/md/bitmap.c +++ b/drivers/md/bitmap.c @@ -337,7 +337,7 @@ static int read_page(struct file *file, unsigned long index, struct page *page) { int ret = 0; - struct inode *inode = file->f_path.dentry->d_inode; + struct inode *inode = file_inode(file); struct buffer_head *bh; sector_t block; @@ -669,17 +669,13 @@ static inline unsigned long file_page_offset(struct bitmap_storage *store, /* * return a pointer to the page in the filemap that contains the given bit * - * this lookup is complicated by the fact that the bitmap sb might be exactly - * 1 page (e.g., x86) or less than 1 page -- so the bitmap might start on page - * 0 or page 1 */ static inline struct page *filemap_get_page(struct bitmap_storage *store, unsigned long chunk) { if (file_page_index(store, chunk) >= store->file_pages) return NULL; - return store->filemap[file_page_index(store, chunk) - - file_page_index(store, 0)]; + return store->filemap[file_page_index(store, chunk)]; } static int bitmap_storage_alloc(struct bitmap_storage *store, @@ -755,7 +751,7 @@ static void bitmap_file_unmap(struct bitmap_storage *store) free_buffers(sb_page); if (file) { - struct inode *inode = file->f_path.dentry->d_inode; + struct inode *inode = file_inode(file); invalidate_mapping_pages(inode->i_mapping, 0, -1); fput(file); } @@ -846,7 +842,7 @@ static void bitmap_file_set_bit(struct bitmap *bitmap, sector_t block) if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) set_bit(bit, kaddr); else - test_and_set_bit_le(bit, kaddr); + set_bit_le(bit, kaddr); kunmap_atomic(kaddr); pr_debug("set file bit %lu page %lu\n", bit, page->index); /* record page number so it gets flushed to disk when unplug occurs */ @@ -868,7 +864,7 @@ static void bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block) if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags)) clear_bit(bit, paddr); else - test_and_clear_bit_le(bit, paddr); + clear_bit_le(bit, paddr); kunmap_atomic(paddr); if (!test_page_attr(bitmap, page->index, BITMAP_PAGE_NEEDWRITE)) { set_page_attr(bitmap, page->index, BITMAP_PAGE_PENDING); @@ -1635,7 +1631,7 @@ int bitmap_create(struct mddev *mddev) sector_t blocks = mddev->resync_max_sectors; struct file *file = mddev->bitmap_info.file; int err; - struct sysfs_dirent *bm = NULL; + struct kernfs_node *bm = NULL; BUILD_BUG_ON(sizeof(bitmap_super_t) != 256); @@ -1654,9 +1650,9 @@ int bitmap_create(struct mddev *mddev) bitmap->mddev = mddev; if (mddev->kobj.sd) - bm = sysfs_get_dirent(mddev->kobj.sd, NULL, "bitmap"); + bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap"); if (bm) { - bitmap->sysfs_can_clear = sysfs_get_dirent(bm, NULL, "can_clear"); + bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear"); sysfs_put(bm); } else bitmap->sysfs_can_clear = NULL; @@ -1988,7 +1984,6 @@ location_store(struct mddev *mddev, const char *buf, size_t len) if (mddev->bitmap_info.file) { struct file *f = mddev->bitmap_info.file; mddev->bitmap_info.file = NULL; - restore_bitmap_write_access(f); fput(f); } } else { @@ -2002,9 +1997,9 @@ location_store(struct mddev *mddev, const char *buf, size_t len) } else { int rv; if (buf[0] == '+') - rv = strict_strtoll(buf+1, 10, &offset); + rv = kstrtoll(buf+1, 10, &offset); else - rv = strict_strtoll(buf, 10, &offset); + rv = kstrtoll(buf, 10, &offset); if (rv) return rv; if (offset == 0) @@ -2139,7 +2134,7 @@ static ssize_t backlog_store(struct mddev *mddev, const char *buf, size_t len) { unsigned long backlog; - int rv = strict_strtoul(buf, 10, &backlog); + int rv = kstrtoul(buf, 10, &backlog); if (rv) return rv; if (backlog > COUNTER_MAX) @@ -2165,7 +2160,7 @@ chunksize_store(struct mddev *mddev, const char *buf, size_t len) unsigned long csize; if (mddev->bitmap) return -EBUSY; - rv = strict_strtoul(buf, 10, &csize); + rv = kstrtoul(buf, 10, &csize); if (rv) return rv; if (csize < 512 || diff --git a/drivers/md/bitmap.h b/drivers/md/bitmap.h index df4aeb6ac6f..30210b9c4ef 100644 --- a/drivers/md/bitmap.h +++ b/drivers/md/bitmap.h @@ -225,7 +225,7 @@ struct bitmap { wait_queue_head_t overflow_wait; wait_queue_head_t behind_wait; - struct sysfs_dirent *sysfs_can_clear; + struct kernfs_node *sysfs_can_clear; }; /* the bitmap API */ diff --git a/drivers/md/dm-bio-prison.c b/drivers/md/dm-bio-prison.c index aefb78e3cbf..f752d12081f 100644 --- a/drivers/md/dm-bio-prison.c +++ b/drivers/md/dm-bio-prison.c @@ -14,21 +14,17 @@ /*----------------------------------------------------------------*/ -struct dm_bio_prison_cell { - struct hlist_node list; - struct dm_bio_prison *prison; - struct dm_cell_key key; - struct bio *holder; - struct bio_list bios; +struct bucket { + spinlock_t lock; + struct hlist_head cells; }; struct dm_bio_prison { - spinlock_t lock; mempool_t *cell_pool; unsigned nr_buckets; unsigned hash_mask; - struct hlist_head *cells; + struct bucket *buckets; }; /*----------------------------------------------------------------*/ @@ -48,6 +44,12 @@ static uint32_t calc_nr_buckets(unsigned nr_cells) static struct kmem_cache *_cell_cache; +static void init_bucket(struct bucket *b) +{ + spin_lock_init(&b->lock); + INIT_HLIST_HEAD(&b->cells); +} + /* * @nr_cells should be the number of cells you want in use _concurrently_. * Don't confuse it with the number of distinct keys. @@ -57,13 +59,12 @@ struct dm_bio_prison *dm_bio_prison_create(unsigned nr_cells) unsigned i; uint32_t nr_buckets = calc_nr_buckets(nr_cells); size_t len = sizeof(struct dm_bio_prison) + - (sizeof(struct hlist_head) * nr_buckets); + (sizeof(struct bucket) * nr_buckets); struct dm_bio_prison *prison = kmalloc(len, GFP_KERNEL); if (!prison) return NULL; - spin_lock_init(&prison->lock); prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache); if (!prison->cell_pool) { kfree(prison); @@ -72,9 +73,9 @@ struct dm_bio_prison *dm_bio_prison_create(unsigned nr_cells) prison->nr_buckets = nr_buckets; prison->hash_mask = nr_buckets - 1; - prison->cells = (struct hlist_head *) (prison + 1); + prison->buckets = (struct bucket *) (prison + 1); for (i = 0; i < nr_buckets; i++) - INIT_HLIST_HEAD(prison->cells + i); + init_bucket(prison->buckets + i); return prison; } @@ -87,6 +88,19 @@ void dm_bio_prison_destroy(struct dm_bio_prison *prison) } EXPORT_SYMBOL_GPL(dm_bio_prison_destroy); +struct dm_bio_prison_cell *dm_bio_prison_alloc_cell(struct dm_bio_prison *prison, gfp_t gfp) +{ + return mempool_alloc(prison->cell_pool, gfp); +} +EXPORT_SYMBOL_GPL(dm_bio_prison_alloc_cell); + +void dm_bio_prison_free_cell(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell) +{ + mempool_free(cell, prison->cell_pool); +} +EXPORT_SYMBOL_GPL(dm_bio_prison_free_cell); + static uint32_t hash_key(struct dm_bio_prison *prison, struct dm_cell_key *key) { const unsigned long BIG_PRIME = 4294967291UL; @@ -102,150 +116,154 @@ static int keys_equal(struct dm_cell_key *lhs, struct dm_cell_key *rhs) (lhs->block == rhs->block); } -static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket, +static struct bucket *get_bucket(struct dm_bio_prison *prison, + struct dm_cell_key *key) +{ + return prison->buckets + hash_key(prison, key); +} + +static struct dm_bio_prison_cell *__search_bucket(struct bucket *b, struct dm_cell_key *key) { struct dm_bio_prison_cell *cell; - struct hlist_node *tmp; - hlist_for_each_entry(cell, tmp, bucket, list) + hlist_for_each_entry(cell, &b->cells, list) if (keys_equal(&cell->key, key)) return cell; return NULL; } -/* - * This may block if a new cell needs allocating. You must ensure that - * cells will be unlocked even if the calling thread is blocked. - * - * Returns 1 if the cell was already held, 0 if @inmate is the new holder. - */ -int dm_bio_detain(struct dm_bio_prison *prison, struct dm_cell_key *key, - struct bio *inmate, struct dm_bio_prison_cell **ref) +static void __setup_new_cell(struct bucket *b, + struct dm_cell_key *key, + struct bio *holder, + struct dm_bio_prison_cell *cell) { - int r = 1; - unsigned long flags; - uint32_t hash = hash_key(prison, key); - struct dm_bio_prison_cell *cell, *cell2; - - BUG_ON(hash > prison->nr_buckets); - - spin_lock_irqsave(&prison->lock, flags); + memcpy(&cell->key, key, sizeof(cell->key)); + cell->holder = holder; + bio_list_init(&cell->bios); + hlist_add_head(&cell->list, &b->cells); +} - cell = __search_bucket(prison->cells + hash, key); - if (cell) { - bio_list_add(&cell->bios, inmate); - goto out; - } +static int __bio_detain(struct bucket *b, + struct dm_cell_key *key, + struct bio *inmate, + struct dm_bio_prison_cell *cell_prealloc, + struct dm_bio_prison_cell **cell_result) +{ + struct dm_bio_prison_cell *cell; - /* - * Allocate a new cell - */ - spin_unlock_irqrestore(&prison->lock, flags); - cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO); - spin_lock_irqsave(&prison->lock, flags); - - /* - * We've been unlocked, so we have to double check that - * nobody else has inserted this cell in the meantime. - */ - cell = __search_bucket(prison->cells + hash, key); + cell = __search_bucket(b, key); if (cell) { - mempool_free(cell2, prison->cell_pool); - bio_list_add(&cell->bios, inmate); - goto out; + if (inmate) + bio_list_add(&cell->bios, inmate); + *cell_result = cell; + return 1; } - /* - * Use new cell. - */ - cell = cell2; - - cell->prison = prison; - memcpy(&cell->key, key, sizeof(cell->key)); - cell->holder = inmate; - bio_list_init(&cell->bios); - hlist_add_head(&cell->list, prison->cells + hash); - - r = 0; + __setup_new_cell(b, key, inmate, cell_prealloc); + *cell_result = cell_prealloc; + return 0; +} -out: - spin_unlock_irqrestore(&prison->lock, flags); +static int bio_detain(struct dm_bio_prison *prison, + struct dm_cell_key *key, + struct bio *inmate, + struct dm_bio_prison_cell *cell_prealloc, + struct dm_bio_prison_cell **cell_result) +{ + int r; + unsigned long flags; + struct bucket *b = get_bucket(prison, key); - *ref = cell; + spin_lock_irqsave(&b->lock, flags); + r = __bio_detain(b, key, inmate, cell_prealloc, cell_result); + spin_unlock_irqrestore(&b->lock, flags); return r; } + +int dm_bio_detain(struct dm_bio_prison *prison, + struct dm_cell_key *key, + struct bio *inmate, + struct dm_bio_prison_cell *cell_prealloc, + struct dm_bio_prison_cell **cell_result) +{ + return bio_detain(prison, key, inmate, cell_prealloc, cell_result); +} EXPORT_SYMBOL_GPL(dm_bio_detain); +int dm_get_cell(struct dm_bio_prison *prison, + struct dm_cell_key *key, + struct dm_bio_prison_cell *cell_prealloc, + struct dm_bio_prison_cell **cell_result) +{ + return bio_detain(prison, key, NULL, cell_prealloc, cell_result); +} +EXPORT_SYMBOL_GPL(dm_get_cell); + /* * @inmates must have been initialised prior to this call */ -static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates) +static void __cell_release(struct dm_bio_prison_cell *cell, + struct bio_list *inmates) { - struct dm_bio_prison *prison = cell->prison; - hlist_del(&cell->list); if (inmates) { - bio_list_add(inmates, cell->holder); + if (cell->holder) + bio_list_add(inmates, cell->holder); bio_list_merge(inmates, &cell->bios); } - - mempool_free(cell, prison->cell_pool); } -void dm_cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios) +void dm_cell_release(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell, + struct bio_list *bios) { unsigned long flags; - struct dm_bio_prison *prison = cell->prison; + struct bucket *b = get_bucket(prison, &cell->key); - spin_lock_irqsave(&prison->lock, flags); + spin_lock_irqsave(&b->lock, flags); __cell_release(cell, bios); - spin_unlock_irqrestore(&prison->lock, flags); + spin_unlock_irqrestore(&b->lock, flags); } EXPORT_SYMBOL_GPL(dm_cell_release); /* * Sometimes we don't want the holder, just the additional bios. */ -static void __cell_release_no_holder(struct dm_bio_prison_cell *cell, struct bio_list *inmates) +static void __cell_release_no_holder(struct dm_bio_prison_cell *cell, + struct bio_list *inmates) { - struct dm_bio_prison *prison = cell->prison; - hlist_del(&cell->list); bio_list_merge(inmates, &cell->bios); - - mempool_free(cell, prison->cell_pool); } -void dm_cell_release_no_holder(struct dm_bio_prison_cell *cell, struct bio_list *inmates) +void dm_cell_release_no_holder(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell, + struct bio_list *inmates) { unsigned long flags; - struct dm_bio_prison *prison = cell->prison; + struct bucket *b = get_bucket(prison, &cell->key); - spin_lock_irqsave(&prison->lock, flags); + spin_lock_irqsave(&b->lock, flags); __cell_release_no_holder(cell, inmates); - spin_unlock_irqrestore(&prison->lock, flags); + spin_unlock_irqrestore(&b->lock, flags); } EXPORT_SYMBOL_GPL(dm_cell_release_no_holder); -void dm_cell_error(struct dm_bio_prison_cell *cell) +void dm_cell_error(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell, int error) { - struct dm_bio_prison *prison = cell->prison; struct bio_list bios; struct bio *bio; - unsigned long flags; bio_list_init(&bios); - - spin_lock_irqsave(&prison->lock, flags); - __cell_release(cell, &bios); - spin_unlock_irqrestore(&prison->lock, flags); + dm_cell_release(prison, cell, &bios); while ((bio = bio_list_pop(&bios))) - bio_io_error(bio); + bio_endio(bio, error); } EXPORT_SYMBOL_GPL(dm_cell_error); diff --git a/drivers/md/dm-bio-prison.h b/drivers/md/dm-bio-prison.h index 53d1a7a84e2..6805a142b75 100644 --- a/drivers/md/dm-bio-prison.h +++ b/drivers/md/dm-bio-prison.h @@ -22,7 +22,6 @@ * subsequently unlocked the bios become available. */ struct dm_bio_prison; -struct dm_bio_prison_cell; /* FIXME: this needs to be more abstract */ struct dm_cell_key { @@ -31,21 +30,62 @@ struct dm_cell_key { dm_block_t block; }; +/* + * Treat this as opaque, only in header so callers can manage allocation + * themselves. + */ +struct dm_bio_prison_cell { + struct hlist_node list; + struct dm_cell_key key; + struct bio *holder; + struct bio_list bios; +}; + struct dm_bio_prison *dm_bio_prison_create(unsigned nr_cells); void dm_bio_prison_destroy(struct dm_bio_prison *prison); /* - * This may block if a new cell needs allocating. You must ensure that - * cells will be unlocked even if the calling thread is blocked. + * These two functions just wrap a mempool. This is a transitory step: + * Eventually all bio prison clients should manage their own cell memory. * - * Returns 1 if the cell was already held, 0 if @inmate is the new holder. + * Like mempool_alloc(), dm_bio_prison_alloc_cell() can only fail if called + * in interrupt context or passed GFP_NOWAIT. */ -int dm_bio_detain(struct dm_bio_prison *prison, struct dm_cell_key *key, - struct bio *inmate, struct dm_bio_prison_cell **ref); +struct dm_bio_prison_cell *dm_bio_prison_alloc_cell(struct dm_bio_prison *prison, + gfp_t gfp); +void dm_bio_prison_free_cell(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell); -void dm_cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios); -void dm_cell_release_no_holder(struct dm_bio_prison_cell *cell, struct bio_list *inmates); -void dm_cell_error(struct dm_bio_prison_cell *cell); +/* + * Creates, or retrieves a cell for the given key. + * + * Returns 1 if pre-existing cell returned, zero if new cell created using + * @cell_prealloc. + */ +int dm_get_cell(struct dm_bio_prison *prison, + struct dm_cell_key *key, + struct dm_bio_prison_cell *cell_prealloc, + struct dm_bio_prison_cell **cell_result); + +/* + * An atomic op that combines retrieving a cell, and adding a bio to it. + * + * Returns 1 if the cell was already held, 0 if @inmate is the new holder. + */ +int dm_bio_detain(struct dm_bio_prison *prison, + struct dm_cell_key *key, + struct bio *inmate, + struct dm_bio_prison_cell *cell_prealloc, + struct dm_bio_prison_cell **cell_result); + +void dm_cell_release(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell, + struct bio_list *bios); +void dm_cell_release_no_holder(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell, + struct bio_list *inmates); +void dm_cell_error(struct dm_bio_prison *prison, + struct dm_bio_prison_cell *cell, int error); /*----------------------------------------------------------------*/ diff --git a/drivers/md/dm-bio-record.h b/drivers/md/dm-bio-record.h index 3a8cfa2645c..dd364611156 100644 --- a/drivers/md/dm-bio-record.h +++ b/drivers/md/dm-bio-record.h @@ -17,55 +17,24 @@ * original bio state. */ -struct dm_bio_vec_details { -#if PAGE_SIZE < 65536 - __u16 bv_len; - __u16 bv_offset; -#else - unsigned bv_len; - unsigned bv_offset; -#endif -}; - struct dm_bio_details { - sector_t bi_sector; struct block_device *bi_bdev; - unsigned int bi_size; - unsigned short bi_idx; unsigned long bi_flags; - struct dm_bio_vec_details bi_io_vec[BIO_MAX_PAGES]; + struct bvec_iter bi_iter; }; static inline void dm_bio_record(struct dm_bio_details *bd, struct bio *bio) { - unsigned i; - - bd->bi_sector = bio->bi_sector; bd->bi_bdev = bio->bi_bdev; - bd->bi_size = bio->bi_size; - bd->bi_idx = bio->bi_idx; bd->bi_flags = bio->bi_flags; - - for (i = 0; i < bio->bi_vcnt; i++) { - bd->bi_io_vec[i].bv_len = bio->bi_io_vec[i].bv_len; - bd->bi_io_vec[i].bv_offset = bio->bi_io_vec[i].bv_offset; - } + bd->bi_iter = bio->bi_iter; } static inline void dm_bio_restore(struct dm_bio_details *bd, struct bio *bio) { - unsigned i; - - bio->bi_sector = bd->bi_sector; bio->bi_bdev = bd->bi_bdev; - bio->bi_size = bd->bi_size; - bio->bi_idx = bd->bi_idx; bio->bi_flags = bd->bi_flags; - - for (i = 0; i < bio->bi_vcnt; i++) { - bio->bi_io_vec[i].bv_len = bd->bi_io_vec[i].bv_len; - bio->bi_io_vec[i].bv_offset = bd->bi_io_vec[i].bv_offset; - } + bio->bi_iter = bd->bi_iter; } #endif diff --git a/drivers/md/dm-bufio.c b/drivers/md/dm-bufio.c index 651ca79881d..d724459860d 100644 --- a/drivers/md/dm-bufio.c +++ b/drivers/md/dm-bufio.c @@ -104,6 +104,8 @@ struct dm_bufio_client { struct list_head reserved_buffers; unsigned need_reserved_buffers; + unsigned minimum_buffers; + struct hlist_head *cache_hash; wait_queue_head_t free_buffer_wait; @@ -145,6 +147,7 @@ struct dm_buffer { unsigned long state; unsigned long last_accessed; struct dm_bufio_client *c; + struct list_head write_list; struct bio bio; struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; }; @@ -319,6 +322,9 @@ static void __cache_size_refresh(void) static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, enum data_mode *data_mode) { + unsigned noio_flag; + void *ptr; + if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { *data_mode = DATA_MODE_SLAB; return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); @@ -332,7 +338,26 @@ static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, } *data_mode = DATA_MODE_VMALLOC; - return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); + + /* + * __vmalloc allocates the data pages and auxiliary structures with + * gfp_flags that were specified, but pagetables are always allocated + * with GFP_KERNEL, no matter what was specified as gfp_mask. + * + * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that + * all allocations done by this process (including pagetables) are done + * as if GFP_NOIO was specified. + */ + + if (gfp_mask & __GFP_NORETRY) + noio_flag = memalloc_noio_save(); + + ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL); + + if (gfp_mask & __GFP_NORETRY) + memalloc_noio_restore(noio_flag); + + return ptr; } /* @@ -515,7 +540,7 @@ static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block, bio_init(&b->bio); b->bio.bi_io_vec = b->bio_vec; b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS; - b->bio.bi_sector = block << b->c->sectors_per_block_bits; + b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits; b->bio.bi_bdev = b->c->bdev; b->bio.bi_end_io = end_io; @@ -582,9 +607,9 @@ static void write_endio(struct bio *bio, int error) BUG_ON(!test_bit(B_WRITING, &b->state)); - smp_mb__before_clear_bit(); + smp_mb__before_atomic(); clear_bit(B_WRITING, &b->state); - smp_mb__after_clear_bit(); + smp_mb__after_atomic(); wake_up_bit(&b->state, B_WRITING); } @@ -608,7 +633,8 @@ static int do_io_schedule(void *word) * - Submit our write and don't wait on it. We set B_WRITING indicating * that there is a write in progress. */ -static void __write_dirty_buffer(struct dm_buffer *b) +static void __write_dirty_buffer(struct dm_buffer *b, + struct list_head *write_list) { if (!test_bit(B_DIRTY, &b->state)) return; @@ -617,7 +643,24 @@ static void __write_dirty_buffer(struct dm_buffer *b) wait_on_bit_lock(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE); - submit_io(b, WRITE, b->block, write_endio); + if (!write_list) + submit_io(b, WRITE, b->block, write_endio); + else + list_add_tail(&b->write_list, write_list); +} + +static void __flush_write_list(struct list_head *write_list) +{ + struct blk_plug plug; + blk_start_plug(&plug); + while (!list_empty(write_list)) { + struct dm_buffer *b = + list_entry(write_list->next, struct dm_buffer, write_list); + list_del(&b->write_list); + submit_io(b, WRITE, b->block, write_endio); + dm_bufio_cond_resched(); + } + blk_finish_plug(&plug); } /* @@ -633,7 +676,7 @@ static void __make_buffer_clean(struct dm_buffer *b) return; wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE); - __write_dirty_buffer(b); + __write_dirty_buffer(b, NULL); wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE); } @@ -780,7 +823,8 @@ static void __free_buffer_wake(struct dm_buffer *b) wake_up(&c->free_buffer_wait); } -static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait) +static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, + struct list_head *write_list) { struct dm_buffer *b, *tmp; @@ -796,7 +840,7 @@ static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait) if (no_wait && test_bit(B_WRITING, &b->state)) return; - __write_dirty_buffer(b); + __write_dirty_buffer(b, write_list); dm_bufio_cond_resched(); } } @@ -819,8 +863,8 @@ static void __get_memory_limit(struct dm_bufio_client *c, buffers = dm_bufio_cache_size_per_client >> (c->sectors_per_block_bits + SECTOR_SHIFT); - if (buffers < DM_BUFIO_MIN_BUFFERS) - buffers = DM_BUFIO_MIN_BUFFERS; + if (buffers < c->minimum_buffers) + buffers = c->minimum_buffers; *limit_buffers = buffers; *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; @@ -831,7 +875,8 @@ static void __get_memory_limit(struct dm_bufio_client *c, * If we are over threshold_buffers, start freeing buffers. * If we're over "limit_buffers", block until we get under the limit. */ -static void __check_watermark(struct dm_bufio_client *c) +static void __check_watermark(struct dm_bufio_client *c, + struct list_head *write_list) { unsigned long threshold_buffers, limit_buffers; @@ -850,7 +895,7 @@ static void __check_watermark(struct dm_bufio_client *c) } if (c->n_buffers[LIST_DIRTY] > threshold_buffers) - __write_dirty_buffers_async(c, 1); + __write_dirty_buffers_async(c, 1, write_list); } /* @@ -859,9 +904,8 @@ static void __check_watermark(struct dm_bufio_client *c) static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) { struct dm_buffer *b; - struct hlist_node *hn; - hlist_for_each_entry(b, hn, &c->cache_hash[DM_BUFIO_HASH(block)], + hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)], hash_list) { dm_bufio_cond_resched(); if (b->block == block) @@ -876,7 +920,8 @@ static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) *--------------------------------------------------------------*/ static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, - enum new_flag nf, int *need_submit) + enum new_flag nf, int *need_submit, + struct list_head *write_list) { struct dm_buffer *b, *new_b = NULL; @@ -903,7 +948,7 @@ static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, goto found_buffer; } - __check_watermark(c); + __check_watermark(c, write_list); b = new_b; b->hold_count = 1; @@ -952,9 +997,9 @@ static void read_endio(struct bio *bio, int error) BUG_ON(!test_bit(B_READING, &b->state)); - smp_mb__before_clear_bit(); + smp_mb__before_atomic(); clear_bit(B_READING, &b->state); - smp_mb__after_clear_bit(); + smp_mb__after_atomic(); wake_up_bit(&b->state, B_READING); } @@ -971,10 +1016,14 @@ static void *new_read(struct dm_bufio_client *c, sector_t block, int need_submit; struct dm_buffer *b; + LIST_HEAD(write_list); + dm_bufio_lock(c); - b = __bufio_new(c, block, nf, &need_submit); + b = __bufio_new(c, block, nf, &need_submit, &write_list); dm_bufio_unlock(c); + __flush_write_list(&write_list); + if (!b) return b; @@ -1026,13 +1075,25 @@ void dm_bufio_prefetch(struct dm_bufio_client *c, { struct blk_plug plug; + LIST_HEAD(write_list); + + BUG_ON(dm_bufio_in_request()); + blk_start_plug(&plug); dm_bufio_lock(c); for (; n_blocks--; block++) { int need_submit; struct dm_buffer *b; - b = __bufio_new(c, block, NF_PREFETCH, &need_submit); + b = __bufio_new(c, block, NF_PREFETCH, &need_submit, + &write_list); + if (unlikely(!list_empty(&write_list))) { + dm_bufio_unlock(c); + blk_finish_plug(&plug); + __flush_write_list(&write_list); + blk_start_plug(&plug); + dm_bufio_lock(c); + } if (unlikely(b != NULL)) { dm_bufio_unlock(c); @@ -1046,7 +1107,6 @@ void dm_bufio_prefetch(struct dm_bufio_client *c, goto flush_plug; dm_bufio_lock(c); } - } dm_bufio_unlock(c); @@ -1103,11 +1163,14 @@ EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) { + LIST_HEAD(write_list); + BUG_ON(dm_bufio_in_request()); dm_bufio_lock(c); - __write_dirty_buffers_async(c, 0); + __write_dirty_buffers_async(c, 0, &write_list); dm_bufio_unlock(c); + __flush_write_list(&write_list); } EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); @@ -1124,8 +1187,13 @@ int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) unsigned long buffers_processed = 0; struct dm_buffer *b, *tmp; + LIST_HEAD(write_list); + + dm_bufio_lock(c); + __write_dirty_buffers_async(c, 0, &write_list); + dm_bufio_unlock(c); + __flush_write_list(&write_list); dm_bufio_lock(c); - __write_dirty_buffers_async(c, 0); again: list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { @@ -1193,7 +1261,7 @@ EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); int dm_bufio_issue_flush(struct dm_bufio_client *c) { struct dm_io_request io_req = { - .bi_rw = REQ_FLUSH, + .bi_rw = WRITE_FLUSH, .mem.type = DM_IO_KMEM, .mem.ptr.addr = NULL, .client = c->dm_io, @@ -1251,7 +1319,7 @@ retry: BUG_ON(!b->hold_count); BUG_ON(test_bit(B_READING, &b->state)); - __write_dirty_buffer(b); + __write_dirty_buffer(b, NULL); if (b->hold_count == 1) { wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE); @@ -1284,6 +1352,34 @@ retry: } EXPORT_SYMBOL_GPL(dm_bufio_release_move); +/* + * Free the given buffer. + * + * This is just a hint, if the buffer is in use or dirty, this function + * does nothing. + */ +void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) +{ + struct dm_buffer *b; + + dm_bufio_lock(c); + + b = __find(c, block); + if (b && likely(!b->hold_count) && likely(!b->state)) { + __unlink_buffer(b); + __free_buffer_wake(b); + } + + dm_bufio_unlock(c); +} +EXPORT_SYMBOL(dm_bufio_forget); + +void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) +{ + c->minimum_buffers = n; +} +EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); + unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) { return c->block_size; @@ -1359,62 +1455,75 @@ static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp, unsigned long max_jiffies) { if (jiffies - b->last_accessed < max_jiffies) - return 1; + return 0; if (!(gfp & __GFP_IO)) { if (test_bit(B_READING, &b->state) || test_bit(B_WRITING, &b->state) || test_bit(B_DIRTY, &b->state)) - return 1; + return 0; } if (b->hold_count) - return 1; + return 0; __make_buffer_clean(b); __unlink_buffer(b); __free_buffer_wake(b); - return 0; + return 1; } -static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, - struct shrink_control *sc) +static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, + gfp_t gfp_mask) { int l; struct dm_buffer *b, *tmp; + long freed = 0; for (l = 0; l < LIST_SIZE; l++) { - list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) - if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) && - !--nr_to_scan) - return; + list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { + freed += __cleanup_old_buffer(b, gfp_mask, 0); + if (!--nr_to_scan) + break; + } dm_bufio_cond_resched(); } + return freed; } -static int shrink(struct shrinker *shrinker, struct shrink_control *sc) +static unsigned long +dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) { - struct dm_bufio_client *c = - container_of(shrinker, struct dm_bufio_client, shrinker); - unsigned long r; - unsigned long nr_to_scan = sc->nr_to_scan; + struct dm_bufio_client *c; + unsigned long freed; + c = container_of(shrink, struct dm_bufio_client, shrinker); if (sc->gfp_mask & __GFP_IO) dm_bufio_lock(c); else if (!dm_bufio_trylock(c)) - return !nr_to_scan ? 0 : -1; + return SHRINK_STOP; + + freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); + dm_bufio_unlock(c); + return freed; +} - if (nr_to_scan) - __scan(c, nr_to_scan, sc); +static unsigned long +dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) +{ + struct dm_bufio_client *c; + unsigned long count; - r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; - if (r > INT_MAX) - r = INT_MAX; + c = container_of(shrink, struct dm_bufio_client, shrinker); + if (sc->gfp_mask & __GFP_IO) + dm_bufio_lock(c); + else if (!dm_bufio_trylock(c)) + return 0; + count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; dm_bufio_unlock(c); - - return r; + return count; } /* @@ -1432,7 +1541,7 @@ struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsign BUG_ON(block_size < 1 << SECTOR_SHIFT || (block_size & (block_size - 1))); - c = kmalloc(sizeof(*c), GFP_KERNEL); + c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) { r = -ENOMEM; goto bad_client; @@ -1467,6 +1576,8 @@ struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsign INIT_LIST_HEAD(&c->reserved_buffers); c->need_reserved_buffers = reserved_buffers; + c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; + init_waitqueue_head(&c->free_buffer_wait); c->async_write_error = 0; @@ -1516,7 +1627,8 @@ struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsign __cache_size_refresh(); mutex_unlock(&dm_bufio_clients_lock); - c->shrinker.shrink = shrink; + c->shrinker.count_objects = dm_bufio_shrink_count; + c->shrinker.scan_objects = dm_bufio_shrink_scan; c->shrinker.seeks = 1; c->shrinker.batch = 0; register_shrinker(&c->shrinker); @@ -1603,7 +1715,7 @@ static void cleanup_old_buffers(void) struct dm_buffer *b; b = list_entry(c->lru[LIST_CLEAN].prev, struct dm_buffer, lru_list); - if (__cleanup_old_buffer(b, 0, max_age * HZ)) + if (!__cleanup_old_buffer(b, 0, max_age * HZ)) break; dm_bufio_cond_resched(); } @@ -1637,6 +1749,11 @@ static int __init dm_bufio_init(void) { __u64 mem; + dm_bufio_allocated_kmem_cache = 0; + dm_bufio_allocated_get_free_pages = 0; + dm_bufio_allocated_vmalloc = 0; + dm_bufio_current_allocated = 0; + memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); diff --git a/drivers/md/dm-bufio.h b/drivers/md/dm-bufio.h index b142946a9e3..c096779a729 100644 --- a/drivers/md/dm-bufio.h +++ b/drivers/md/dm-bufio.h @@ -108,6 +108,18 @@ int dm_bufio_issue_flush(struct dm_bufio_client *c); */ void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block); +/* + * Free the given buffer. + * This is just a hint, if the buffer is in use or dirty, this function + * does nothing. + */ +void dm_bufio_forget(struct dm_bufio_client *c, sector_t block); + +/* + * Set the minimum number of buffers before cleanup happens. + */ +void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n); + unsigned dm_bufio_get_block_size(struct dm_bufio_client *c); sector_t dm_bufio_get_device_size(struct dm_bufio_client *c); sector_t dm_bufio_get_block_number(struct dm_buffer *b); diff --git a/drivers/md/dm-builtin.c b/drivers/md/dm-builtin.c new file mode 100644 index 00000000000..6c9049c51b2 --- /dev/null +++ b/drivers/md/dm-builtin.c @@ -0,0 +1,48 @@ +#include "dm.h" + +/* + * The kobject release method must not be placed in the module itself, + * otherwise we are subject to module unload races. + * + * The release method is called when the last reference to the kobject is + * dropped. It may be called by any other kernel code that drops the last + * reference. + * + * The release method suffers from module unload race. We may prevent the + * module from being unloaded at the start of the release method (using + * increased module reference count or synchronizing against the release + * method), however there is no way to prevent the module from being + * unloaded at the end of the release method. + * + * If this code were placed in the dm module, the following race may + * happen: + * 1. Some other process takes a reference to dm kobject + * 2. The user issues ioctl function to unload the dm device + * 3. dm_sysfs_exit calls kobject_put, however the object is not released + * because of the other reference taken at step 1 + * 4. dm_sysfs_exit waits on the completion + * 5. The other process that took the reference in step 1 drops it, + * dm_kobject_release is called from this process + * 6. dm_kobject_release calls complete() + * 7. a reschedule happens before dm_kobject_release returns + * 8. dm_sysfs_exit continues, the dm device is unloaded, module reference + * count is decremented + * 9. The user unloads the dm module + * 10. The other process that was rescheduled in step 7 continues to run, + * it is now executing code in unloaded module, so it crashes + * + * Note that if the process that takes the foreign reference to dm kobject + * has a low priority and the system is sufficiently loaded with + * higher-priority processes that prevent the low-priority process from + * being scheduled long enough, this bug may really happen. + * + * In order to fix this module unload race, we place the release method + * into a helper code that is compiled directly into the kernel. + */ + +void dm_kobject_release(struct kobject *kobj) +{ + complete(dm_get_completion_from_kobject(kobj)); +} + +EXPORT_SYMBOL(dm_kobject_release); diff --git a/drivers/md/dm-cache-block-types.h b/drivers/md/dm-cache-block-types.h new file mode 100644 index 00000000000..aac0e2df06b --- /dev/null +++ b/drivers/md/dm-cache-block-types.h @@ -0,0 +1,43 @@ +/* + * Copyright (C) 2012 Red Hat, Inc. + * + * This file is released under the GPL. + */ + +#ifndef DM_CACHE_BLOCK_TYPES_H +#define DM_CACHE_BLOCK_TYPES_H + +#include "persistent-data/dm-block-manager.h" + +/*----------------------------------------------------------------*/ + +/* + * It's helpful to get sparse to differentiate between indexes into the + * origin device, indexes into the cache device, and indexes into the + * discard bitset. + */ + +typedef dm_block_t __bitwise__ dm_oblock_t; +typedef uint32_t __bitwise__ dm_cblock_t; + +static inline dm_oblock_t to_oblock(dm_block_t b) +{ + return (__force dm_oblock_t) b; +} + +static inline dm_block_t from_oblock(dm_oblock_t b) +{ + return (__force dm_block_t) b; +} + +static inline dm_cblock_t to_cblock(uint32_t b) +{ + return (__force dm_cblock_t) b; +} + +static inline uint32_t from_cblock(dm_cblock_t b) +{ + return (__force uint32_t) b; +} + +#endif /* DM_CACHE_BLOCK_TYPES_H */ diff --git a/drivers/md/dm-cache-metadata.c b/drivers/md/dm-cache-metadata.c new file mode 100644 index 00000000000..d2899e7eb3a --- /dev/null +++ b/drivers/md/dm-cache-metadata.c @@ -0,0 +1,1299 @@ +/* + * Copyright (C) 2012 Red Hat, Inc. + * + * This file is released under the GPL. + */ + +#include "dm-cache-metadata.h" + +#include "persistent-data/dm-array.h" +#include "persistent-data/dm-bitset.h" +#include "persistent-data/dm-space-map.h" +#include "persistent-data/dm-space-map-disk.h" +#include "persistent-data/dm-transaction-manager.h" + +#include <linux/device-mapper.h> + +/*----------------------------------------------------------------*/ + +#define DM_MSG_PREFIX "cache metadata" + +#define CACHE_SUPERBLOCK_MAGIC 06142003 +#define CACHE_SUPERBLOCK_LOCATION 0 + +/* + * defines a range of metadata versions that this module can handle. + */ +#define MIN_CACHE_VERSION 1 +#define MAX_CACHE_VERSION 1 + +#define CACHE_METADATA_CACHE_SIZE 64 + +/* + * 3 for btree insert + + * 2 for btree lookup used within space map + */ +#define CACHE_MAX_CONCURRENT_LOCKS 5 +#define SPACE_MAP_ROOT_SIZE 128 + +enum superblock_flag_bits { + /* for spotting crashes that would invalidate the dirty bitset */ + CLEAN_SHUTDOWN, +}; + +/* + * Each mapping from cache block -> origin block carries a set of flags. + */ +enum mapping_bits { + /* + * A valid mapping. Because we're using an array we clear this + * flag for an non existant mapping. + */ + M_VALID = 1, + + /* + * The data on the cache is different from that on the origin. + */ + M_DIRTY = 2 +}; + +struct cache_disk_superblock { + __le32 csum; + __le32 flags; + __le64 blocknr; + + __u8 uuid[16]; + __le64 magic; + __le32 version; + + __u8 policy_name[CACHE_POLICY_NAME_SIZE]; + __le32 policy_hint_size; + + __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; + __le64 mapping_root; + __le64 hint_root; + + __le64 discard_root; + __le64 discard_block_size; + __le64 discard_nr_blocks; + + __le32 data_block_size; + __le32 metadata_block_size; + __le32 cache_blocks; + + __le32 compat_flags; + __le32 compat_ro_flags; + __le32 incompat_flags; + + __le32 read_hits; + __le32 read_misses; + __le32 write_hits; + __le32 write_misses; + + __le32 policy_version[CACHE_POLICY_VERSION_SIZE]; +} __packed; + +struct dm_cache_metadata { + struct block_device *bdev; + struct dm_block_manager *bm; + struct dm_space_map *metadata_sm; + struct dm_transaction_manager *tm; + + struct dm_array_info info; + struct dm_array_info hint_info; + struct dm_disk_bitset discard_info; + + struct rw_semaphore root_lock; + dm_block_t root; + dm_block_t hint_root; + dm_block_t discard_root; + + sector_t discard_block_size; + dm_oblock_t discard_nr_blocks; + + sector_t data_block_size; + dm_cblock_t cache_blocks; + bool changed:1; + bool clean_when_opened:1; + + char policy_name[CACHE_POLICY_NAME_SIZE]; + unsigned policy_version[CACHE_POLICY_VERSION_SIZE]; + size_t policy_hint_size; + struct dm_cache_statistics stats; + + /* + * Reading the space map root can fail, so we read it into this + * buffer before the superblock is locked and updated. + */ + __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; +}; + +/*------------------------------------------------------------------- + * superblock validator + *-----------------------------------------------------------------*/ + +#define SUPERBLOCK_CSUM_XOR 9031977 + +static void sb_prepare_for_write(struct dm_block_validator *v, + struct dm_block *b, + size_t sb_block_size) +{ + struct cache_disk_superblock *disk_super = dm_block_data(b); + + disk_super->blocknr = cpu_to_le64(dm_block_location(b)); + disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, + sb_block_size - sizeof(__le32), + SUPERBLOCK_CSUM_XOR)); +} + +static int check_metadata_version(struct cache_disk_superblock *disk_super) +{ + uint32_t metadata_version = le32_to_cpu(disk_super->version); + if (metadata_version < MIN_CACHE_VERSION || metadata_version > MAX_CACHE_VERSION) { + DMERR("Cache metadata version %u found, but only versions between %u and %u supported.", + metadata_version, MIN_CACHE_VERSION, MAX_CACHE_VERSION); + return -EINVAL; + } + + return 0; +} + +static int sb_check(struct dm_block_validator *v, + struct dm_block *b, + size_t sb_block_size) +{ + struct cache_disk_superblock *disk_super = dm_block_data(b); + __le32 csum_le; + + if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { + DMERR("sb_check failed: blocknr %llu: wanted %llu", + le64_to_cpu(disk_super->blocknr), + (unsigned long long)dm_block_location(b)); + return -ENOTBLK; + } + + if (le64_to_cpu(disk_super->magic) != CACHE_SUPERBLOCK_MAGIC) { + DMERR("sb_check failed: magic %llu: wanted %llu", + le64_to_cpu(disk_super->magic), + (unsigned long long)CACHE_SUPERBLOCK_MAGIC); + return -EILSEQ; + } + + csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, + sb_block_size - sizeof(__le32), + SUPERBLOCK_CSUM_XOR)); + if (csum_le != disk_super->csum) { + DMERR("sb_check failed: csum %u: wanted %u", + le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); + return -EILSEQ; + } + + return check_metadata_version(disk_super); +} + +static struct dm_block_validator sb_validator = { + .name = "superblock", + .prepare_for_write = sb_prepare_for_write, + .check = sb_check +}; + +/*----------------------------------------------------------------*/ + +static int superblock_read_lock(struct dm_cache_metadata *cmd, + struct dm_block **sblock) +{ + return dm_bm_read_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION, + &sb_validator, sblock); +} + +static int superblock_lock_zero(struct dm_cache_metadata *cmd, + struct dm_block **sblock) +{ + return dm_bm_write_lock_zero(cmd->bm, CACHE_SUPERBLOCK_LOCATION, + &sb_validator, sblock); +} + +static int superblock_lock(struct dm_cache_metadata *cmd, + struct dm_block **sblock) +{ + return dm_bm_write_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION, + &sb_validator, sblock); +} + +/*----------------------------------------------------------------*/ + +static int __superblock_all_zeroes(struct dm_block_manager *bm, bool *result) +{ + int r; + unsigned i; + struct dm_block *b; + __le64 *data_le, zero = cpu_to_le64(0); + unsigned sb_block_size = dm_bm_block_size(bm) / sizeof(__le64); + + /* + * We can't use a validator here - it may be all zeroes. + */ + r = dm_bm_read_lock(bm, CACHE_SUPERBLOCK_LOCATION, NULL, &b); + if (r) + return r; + + data_le = dm_block_data(b); + *result = true; + for (i = 0; i < sb_block_size; i++) { + if (data_le[i] != zero) { + *result = false; + break; + } + } + + return dm_bm_unlock(b); +} + +static void __setup_mapping_info(struct dm_cache_metadata *cmd) +{ + struct dm_btree_value_type vt; + + vt.context = NULL; + vt.size = sizeof(__le64); + vt.inc = NULL; + vt.dec = NULL; + vt.equal = NULL; + dm_array_info_init(&cmd->info, cmd->tm, &vt); + + if (cmd->policy_hint_size) { + vt.size = sizeof(__le32); + dm_array_info_init(&cmd->hint_info, cmd->tm, &vt); + } +} + +static int __save_sm_root(struct dm_cache_metadata *cmd) +{ + int r; + size_t metadata_len; + + r = dm_sm_root_size(cmd->metadata_sm, &metadata_len); + if (r < 0) + return r; + + return dm_sm_copy_root(cmd->metadata_sm, &cmd->metadata_space_map_root, + metadata_len); +} + +static void __copy_sm_root(struct dm_cache_metadata *cmd, + struct cache_disk_superblock *disk_super) +{ + memcpy(&disk_super->metadata_space_map_root, + &cmd->metadata_space_map_root, + sizeof(cmd->metadata_space_map_root)); +} + +static int __write_initial_superblock(struct dm_cache_metadata *cmd) +{ + int r; + struct dm_block *sblock; + struct cache_disk_superblock *disk_super; + sector_t bdev_size = i_size_read(cmd->bdev->bd_inode) >> SECTOR_SHIFT; + + /* FIXME: see if we can lose the max sectors limit */ + if (bdev_size > DM_CACHE_METADATA_MAX_SECTORS) + bdev_size = DM_CACHE_METADATA_MAX_SECTORS; + + r = dm_tm_pre_commit(cmd->tm); + if (r < 0) + return r; + + /* + * dm_sm_copy_root() can fail. So we need to do it before we start + * updating the superblock. + */ + r = __save_sm_root(cmd); + if (r) + return r; + + r = superblock_lock_zero(cmd, &sblock); + if (r) + return r; + + disk_super = dm_block_data(sblock); + disk_super->flags = 0; + memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); + disk_super->magic = cpu_to_le64(CACHE_SUPERBLOCK_MAGIC); + disk_super->version = cpu_to_le32(MAX_CACHE_VERSION); + memset(disk_super->policy_name, 0, sizeof(disk_super->policy_name)); + memset(disk_super->policy_version, 0, sizeof(disk_super->policy_version)); + disk_super->policy_hint_size = 0; + + __copy_sm_root(cmd, disk_super); + + disk_super->mapping_root = cpu_to_le64(cmd->root); + disk_super->hint_root = cpu_to_le64(cmd->hint_root); + disk_super->discard_root = cpu_to_le64(cmd->discard_root); + disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size); + disk_super->discard_nr_blocks = cpu_to_le64(from_oblock(cmd->discard_nr_blocks)); + disk_super->metadata_block_size = cpu_to_le32(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT); + disk_super->data_block_size = cpu_to_le32(cmd->data_block_size); + disk_super->cache_blocks = cpu_to_le32(0); + + disk_super->read_hits = cpu_to_le32(0); + disk_super->read_misses = cpu_to_le32(0); + disk_super->write_hits = cpu_to_le32(0); + disk_super->write_misses = cpu_to_le32(0); + + return dm_tm_commit(cmd->tm, sblock); +} + +static int __format_metadata(struct dm_cache_metadata *cmd) +{ + int r; + + r = dm_tm_create_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION, + &cmd->tm, &cmd->metadata_sm); + if (r < 0) { + DMERR("tm_create_with_sm failed"); + return r; + } + + __setup_mapping_info(cmd); + + r = dm_array_empty(&cmd->info, &cmd->root); + if (r < 0) + goto bad; + + dm_disk_bitset_init(cmd->tm, &cmd->discard_info); + + r = dm_bitset_empty(&cmd->discard_info, &cmd->discard_root); + if (r < 0) + goto bad; + + cmd->discard_block_size = 0; + cmd->discard_nr_blocks = 0; + + r = __write_initial_superblock(cmd); + if (r) + goto bad; + + cmd->clean_when_opened = true; + return 0; + +bad: + dm_tm_destroy(cmd->tm); + dm_sm_destroy(cmd->metadata_sm); + + return r; +} + +static int __check_incompat_features(struct cache_disk_superblock *disk_super, + struct dm_cache_metadata *cmd) +{ + uint32_t features; + + features = le32_to_cpu(disk_super->incompat_flags) & ~DM_CACHE_FEATURE_INCOMPAT_SUPP; + if (features) { + DMERR("could not access metadata due to unsupported optional features (%lx).", + (unsigned long)features); + return -EINVAL; + } + + /* + * Check for read-only metadata to skip the following RDWR checks. + */ + if (get_disk_ro(cmd->bdev->bd_disk)) + return 0; + + features = le32_to_cpu(disk_super->compat_ro_flags) & ~DM_CACHE_FEATURE_COMPAT_RO_SUPP; + if (features) { + DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", + (unsigned long)features); + return -EINVAL; + } + + return 0; +} + +static int __open_metadata(struct dm_cache_metadata *cmd) +{ + int r; + struct dm_block *sblock; + struct cache_disk_superblock *disk_super; + unsigned long sb_flags; + + r = superblock_read_lock(cmd, &sblock); + if (r < 0) { + DMERR("couldn't read lock superblock"); + return r; + } + + disk_super = dm_block_data(sblock); + + /* Verify the data block size hasn't changed */ + if (le32_to_cpu(disk_super->data_block_size) != cmd->data_block_size) { + DMERR("changing the data block size (from %u to %llu) is not supported", + le32_to_cpu(disk_super->data_block_size), + (unsigned long long)cmd->data_block_size); + r = -EINVAL; + goto bad; + } + + r = __check_incompat_features(disk_super, cmd); + if (r < 0) + goto bad; + + r = dm_tm_open_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION, + disk_super->metadata_space_map_root, + sizeof(disk_super->metadata_space_map_root), + &cmd->tm, &cmd->metadata_sm); + if (r < 0) { + DMERR("tm_open_with_sm failed"); + goto bad; + } + + __setup_mapping_info(cmd); + dm_disk_bitset_init(cmd->tm, &cmd->discard_info); + sb_flags = le32_to_cpu(disk_super->flags); + cmd->clean_when_opened = test_bit(CLEAN_SHUTDOWN, &sb_flags); + return dm_bm_unlock(sblock); + +bad: + dm_bm_unlock(sblock); + return r; +} + +static int __open_or_format_metadata(struct dm_cache_metadata *cmd, + bool format_device) +{ + int r; + bool unformatted = false; + + r = __superblock_all_zeroes(cmd->bm, &unformatted); + if (r) + return r; + + if (unformatted) + return format_device ? __format_metadata(cmd) : -EPERM; + + return __open_metadata(cmd); +} + +static int __create_persistent_data_objects(struct dm_cache_metadata *cmd, + bool may_format_device) +{ + int r; + cmd->bm = dm_block_manager_create(cmd->bdev, DM_CACHE_METADATA_BLOCK_SIZE, + CACHE_METADATA_CACHE_SIZE, + CACHE_MAX_CONCURRENT_LOCKS); + if (IS_ERR(cmd->bm)) { + DMERR("could not create block manager"); + return PTR_ERR(cmd->bm); + } + + r = __open_or_format_metadata(cmd, may_format_device); + if (r) + dm_block_manager_destroy(cmd->bm); + + return r; +} + +static void __destroy_persistent_data_objects(struct dm_cache_metadata *cmd) +{ + dm_sm_destroy(cmd->metadata_sm); + dm_tm_destroy(cmd->tm); + dm_block_manager_destroy(cmd->bm); +} + +typedef unsigned long (*flags_mutator)(unsigned long); + +static void update_flags(struct cache_disk_superblock *disk_super, + flags_mutator mutator) +{ + uint32_t sb_flags = mutator(le32_to_cpu(disk_super->flags)); + disk_super->flags = cpu_to_le32(sb_flags); +} + +static unsigned long set_clean_shutdown(unsigned long flags) +{ + set_bit(CLEAN_SHUTDOWN, &flags); + return flags; +} + +static unsigned long clear_clean_shutdown(unsigned long flags) +{ + clear_bit(CLEAN_SHUTDOWN, &flags); + return flags; +} + +static void read_superblock_fields(struct dm_cache_metadata *cmd, + struct cache_disk_superblock *disk_super) +{ + cmd->root = le64_to_cpu(disk_super->mapping_root); + cmd->hint_root = le64_to_cpu(disk_super->hint_root); + cmd->discard_root = le64_to_cpu(disk_super->discard_root); + cmd->discard_block_size = le64_to_cpu(disk_super->discard_block_size); + cmd->discard_nr_blocks = to_oblock(le64_to_cpu(disk_super->discard_nr_blocks)); + cmd->data_block_size = le32_to_cpu(disk_super->data_block_size); + cmd->cache_blocks = to_cblock(le32_to_cpu(disk_super->cache_blocks)); + strncpy(cmd->policy_name, disk_super->policy_name, sizeof(cmd->policy_name)); + cmd->policy_version[0] = le32_to_cpu(disk_super->policy_version[0]); + cmd->policy_version[1] = le32_to_cpu(disk_super->policy_version[1]); + cmd->policy_version[2] = le32_to_cpu(disk_super->policy_version[2]); + cmd->policy_hint_size = le32_to_cpu(disk_super->policy_hint_size); + + cmd->stats.read_hits = le32_to_cpu(disk_super->read_hits); + cmd->stats.read_misses = le32_to_cpu(disk_super->read_misses); + cmd->stats.write_hits = le32_to_cpu(disk_super->write_hits); + cmd->stats.write_misses = le32_to_cpu(disk_super->write_misses); + + cmd->changed = false; +} + +/* + * The mutator updates the superblock flags. + */ +static int __begin_transaction_flags(struct dm_cache_metadata *cmd, + flags_mutator mutator) +{ + int r; + struct cache_disk_superblock *disk_super; + struct dm_block *sblock; + + r = superblock_lock(cmd, &sblock); + if (r) + return r; + + disk_super = dm_block_data(sblock); + update_flags(disk_super, mutator); + read_superblock_fields(cmd, disk_super); + dm_bm_unlock(sblock); + + return dm_bm_flush(cmd->bm); +} + +static int __begin_transaction(struct dm_cache_metadata *cmd) +{ + int r; + struct cache_disk_superblock *disk_super; + struct dm_block *sblock; + + /* + * We re-read the superblock every time. Shouldn't need to do this + * really. + */ + r = superblock_read_lock(cmd, &sblock); + if (r) + return r; + + disk_super = dm_block_data(sblock); + read_superblock_fields(cmd, disk_super); + dm_bm_unlock(sblock); + + return 0; +} + +static int __commit_transaction(struct dm_cache_metadata *cmd, + flags_mutator mutator) +{ + int r; + struct cache_disk_superblock *disk_super; + struct dm_block *sblock; + + /* + * We need to know if the cache_disk_superblock exceeds a 512-byte sector. + */ + BUILD_BUG_ON(sizeof(struct cache_disk_superblock) > 512); + + r = dm_bitset_flush(&cmd->discard_info, cmd->discard_root, + &cmd->discard_root); + if (r) + return r; + + r = dm_tm_pre_commit(cmd->tm); + if (r < 0) + return r; + + r = __save_sm_root(cmd); + if (r) + return r; + + r = superblock_lock(cmd, &sblock); + if (r) + return r; + + disk_super = dm_block_data(sblock); + + if (mutator) + update_flags(disk_super, mutator); + + disk_super->mapping_root = cpu_to_le64(cmd->root); + disk_super->hint_root = cpu_to_le64(cmd->hint_root); + disk_super->discard_root = cpu_to_le64(cmd->discard_root); + disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size); + disk_super->discard_nr_blocks = cpu_to_le64(from_oblock(cmd->discard_nr_blocks)); + disk_super->cache_blocks = cpu_to_le32(from_cblock(cmd->cache_blocks)); + strncpy(disk_super->policy_name, cmd->policy_name, sizeof(disk_super->policy_name)); + disk_super->policy_version[0] = cpu_to_le32(cmd->policy_version[0]); + disk_super->policy_version[1] = cpu_to_le32(cmd->policy_version[1]); + disk_super->policy_version[2] = cpu_to_le32(cmd->policy_version[2]); + + disk_super->read_hits = cpu_to_le32(cmd->stats.read_hits); + disk_super->read_misses = cpu_to_le32(cmd->stats.read_misses); + disk_super->write_hits = cpu_to_le32(cmd->stats.write_hits); + disk_super->write_misses = cpu_to_le32(cmd->stats.write_misses); + __copy_sm_root(cmd, disk_super); + + return dm_tm_commit(cmd->tm, sblock); +} + +/*----------------------------------------------------------------*/ + +/* + * The mappings are held in a dm-array that has 64-bit values stored in + * little-endian format. The index is the cblock, the high 48bits of the + * value are the oblock and the low 16 bit the flags. + */ +#define FLAGS_MASK ((1 << 16) - 1) + +static __le64 pack_value(dm_oblock_t block, unsigned flags) +{ + uint64_t value = from_oblock(block); + value <<= 16; + value = value | (flags & FLAGS_MASK); + return cpu_to_le64(value); +} + +static void unpack_value(__le64 value_le, dm_oblock_t *block, unsigned *flags) +{ + uint64_t value = le64_to_cpu(value_le); + uint64_t b = value >> 16; + *block = to_oblock(b); + *flags = value & FLAGS_MASK; +} + +/*----------------------------------------------------------------*/ + +struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev, + sector_t data_block_size, + bool may_format_device, + size_t policy_hint_size) +{ + int r; + struct dm_cache_metadata *cmd; + + cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); + if (!cmd) { + DMERR("could not allocate metadata struct"); + return NULL; + } + + init_rwsem(&cmd->root_lock); + cmd->bdev = bdev; + cmd->data_block_size = data_block_size; + cmd->cache_blocks = 0; + cmd->policy_hint_size = policy_hint_size; + cmd->changed = true; + + r = __create_persistent_data_objects(cmd, may_format_device); + if (r) { + kfree(cmd); + return ERR_PTR(r); + } + + r = __begin_transaction_flags(cmd, clear_clean_shutdown); + if (r < 0) { + dm_cache_metadata_close(cmd); + return ERR_PTR(r); + } + + return cmd; +} + +void dm_cache_metadata_close(struct dm_cache_metadata *cmd) +{ + __destroy_persistent_data_objects(cmd); + kfree(cmd); +} + +/* + * Checks that the given cache block is either unmapped or clean. + */ +static int block_unmapped_or_clean(struct dm_cache_metadata *cmd, dm_cblock_t b, + bool *result) +{ + int r; + __le64 value; + dm_oblock_t ob; + unsigned flags; + + r = dm_array_get_value(&cmd->info, cmd->root, from_cblock(b), &value); + if (r) { + DMERR("block_unmapped_or_clean failed"); + return r; + } + + unpack_value(value, &ob, &flags); + *result = !((flags & M_VALID) && (flags & M_DIRTY)); + + return 0; +} + +static int blocks_are_unmapped_or_clean(struct dm_cache_metadata *cmd, + dm_cblock_t begin, dm_cblock_t end, + bool *result) +{ + int r; + *result = true; + + while (begin != end) { + r = block_unmapped_or_clean(cmd, begin, result); + if (r) + return r; + + if (!*result) { + DMERR("cache block %llu is dirty", + (unsigned long long) from_cblock(begin)); + return 0; + } + + begin = to_cblock(from_cblock(begin) + 1); + } + + return 0; +} + +int dm_cache_resize(struct dm_cache_metadata *cmd, dm_cblock_t new_cache_size) +{ + int r; + bool clean; + __le64 null_mapping = pack_value(0, 0); + + down_write(&cmd->root_lock); + __dm_bless_for_disk(&null_mapping); + + if (from_cblock(new_cache_size) < from_cblock(cmd->cache_blocks)) { + r = blocks_are_unmapped_or_clean(cmd, new_cache_size, cmd->cache_blocks, &clean); + if (r) { + __dm_unbless_for_disk(&null_mapping); + goto out; + } + + if (!clean) { + DMERR("unable to shrink cache due to dirty blocks"); + r = -EINVAL; + __dm_unbless_for_disk(&null_mapping); + goto out; + } + } + + r = dm_array_resize(&cmd->info, cmd->root, from_cblock(cmd->cache_blocks), + from_cblock(new_cache_size), + &null_mapping, &cmd->root); + if (!r) + cmd->cache_blocks = new_cache_size; + cmd->changed = true; + +out: + up_write(&cmd->root_lock); + + return r; +} + +int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd, + sector_t discard_block_size, + dm_oblock_t new_nr_entries) +{ + int r; + + down_write(&cmd->root_lock); + r = dm_bitset_resize(&cmd->discard_info, + cmd->discard_root, + from_oblock(cmd->discard_nr_blocks), + from_oblock(new_nr_entries), + false, &cmd->discard_root); + if (!r) { + cmd->discard_block_size = discard_block_size; + cmd->discard_nr_blocks = new_nr_entries; + } + + cmd->changed = true; + up_write(&cmd->root_lock); + + return r; +} + +static int __set_discard(struct dm_cache_metadata *cmd, dm_oblock_t b) +{ + return dm_bitset_set_bit(&cmd->discard_info, cmd->discard_root, + from_oblock(b), &cmd->discard_root); +} + +static int __clear_discard(struct dm_cache_metadata *cmd, dm_oblock_t b) +{ + return dm_bitset_clear_bit(&cmd->discard_info, cmd->discard_root, + from_oblock(b), &cmd->discard_root); +} + +static int __is_discarded(struct dm_cache_metadata *cmd, dm_oblock_t b, + bool *is_discarded) +{ + return dm_bitset_test_bit(&cmd->discard_info, cmd->discard_root, + from_oblock(b), &cmd->discard_root, + is_discarded); +} + +static int __discard(struct dm_cache_metadata *cmd, + dm_oblock_t dblock, bool discard) +{ + int r; + + r = (discard ? __set_discard : __clear_discard)(cmd, dblock); + if (r) + return r; + + cmd->changed = true; + return 0; +} + +int dm_cache_set_discard(struct dm_cache_metadata *cmd, + dm_oblock_t dblock, bool discard) +{ + int r; + + down_write(&cmd->root_lock); + r = __discard(cmd, dblock, discard); + up_write(&cmd->root_lock); + + return r; +} + +static int __load_discards(struct dm_cache_metadata *cmd, + load_discard_fn fn, void *context) +{ + int r = 0; + dm_block_t b; + bool discard; + + for (b = 0; b < from_oblock(cmd->discard_nr_blocks); b++) { + dm_oblock_t dblock = to_oblock(b); + + if (cmd->clean_when_opened) { + r = __is_discarded(cmd, dblock, &discard); + if (r) + return r; + } else + discard = false; + + r = fn(context, cmd->discard_block_size, dblock, discard); + if (r) + break; + } + + return r; +} + +int dm_cache_load_discards(struct dm_cache_metadata *cmd, + load_discard_fn fn, void *context) +{ + int r; + + down_read(&cmd->root_lock); + r = __load_discards(cmd, fn, context); + up_read(&cmd->root_lock); + + return r; +} + +dm_cblock_t dm_cache_size(struct dm_cache_metadata *cmd) +{ + dm_cblock_t r; + + down_read(&cmd->root_lock); + r = cmd->cache_blocks; + up_read(&cmd->root_lock); + + return r; +} + +static int __remove(struct dm_cache_metadata *cmd, dm_cblock_t cblock) +{ + int r; + __le64 value = pack_value(0, 0); + + __dm_bless_for_disk(&value); + r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock), + &value, &cmd->root); + if (r) + return r; + + cmd->changed = true; + return 0; +} + +int dm_cache_remove_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock) +{ + int r; + + down_write(&cmd->root_lock); + r = __remove(cmd, cblock); + up_write(&cmd->root_lock); + + return r; +} + +static int __insert(struct dm_cache_metadata *cmd, + dm_cblock_t cblock, dm_oblock_t oblock) +{ + int r; + __le64 value = pack_value(oblock, M_VALID); + __dm_bless_for_disk(&value); + + r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock), + &value, &cmd->root); + if (r) + return r; + + cmd->changed = true; + return 0; +} + +int dm_cache_insert_mapping(struct dm_cache_metadata *cmd, + dm_cblock_t cblock, dm_oblock_t oblock) +{ + int r; + + down_write(&cmd->root_lock); + r = __insert(cmd, cblock, oblock); + up_write(&cmd->root_lock); + + return r; +} + +struct thunk { + load_mapping_fn fn; + void *context; + + struct dm_cache_metadata *cmd; + bool respect_dirty_flags; + bool hints_valid; +}; + +static bool policy_unchanged(struct dm_cache_metadata *cmd, + struct dm_cache_policy *policy) +{ + const char *policy_name = dm_cache_policy_get_name(policy); + const unsigned *policy_version = dm_cache_policy_get_version(policy); + size_t policy_hint_size = dm_cache_policy_get_hint_size(policy); + + /* + * Ensure policy names match. + */ + if (strncmp(cmd->policy_name, policy_name, sizeof(cmd->policy_name))) + return false; + + /* + * Ensure policy major versions match. + */ + if (cmd->policy_version[0] != policy_version[0]) + return false; + + /* + * Ensure policy hint sizes match. + */ + if (cmd->policy_hint_size != policy_hint_size) + return false; + + return true; +} + +static bool hints_array_initialized(struct dm_cache_metadata *cmd) +{ + return cmd->hint_root && cmd->policy_hint_size; +} + +static bool hints_array_available(struct dm_cache_metadata *cmd, + struct dm_cache_policy *policy) +{ + return cmd->clean_when_opened && policy_unchanged(cmd, policy) && + hints_array_initialized(cmd); +} + +static int __load_mapping(void *context, uint64_t cblock, void *leaf) +{ + int r = 0; + bool dirty; + __le64 value; + __le32 hint_value = 0; + dm_oblock_t oblock; + unsigned flags; + struct thunk *thunk = context; + struct dm_cache_metadata *cmd = thunk->cmd; + + memcpy(&value, leaf, sizeof(value)); + unpack_value(value, &oblock, &flags); + + if (flags & M_VALID) { + if (thunk->hints_valid) { + r = dm_array_get_value(&cmd->hint_info, cmd->hint_root, + cblock, &hint_value); + if (r && r != -ENODATA) + return r; + } + + dirty = thunk->respect_dirty_flags ? (flags & M_DIRTY) : true; + r = thunk->fn(thunk->context, oblock, to_cblock(cblock), + dirty, le32_to_cpu(hint_value), thunk->hints_valid); + } + + return r; +} + +static int __load_mappings(struct dm_cache_metadata *cmd, + struct dm_cache_policy *policy, + load_mapping_fn fn, void *context) +{ + struct thunk thunk; + + thunk.fn = fn; + thunk.context = context; + + thunk.cmd = cmd; + thunk.respect_dirty_flags = cmd->clean_when_opened; + thunk.hints_valid = hints_array_available(cmd, policy); + + return dm_array_walk(&cmd->info, cmd->root, __load_mapping, &thunk); +} + +int dm_cache_load_mappings(struct dm_cache_metadata *cmd, + struct dm_cache_policy *policy, + load_mapping_fn fn, void *context) +{ + int r; + + down_read(&cmd->root_lock); + r = __load_mappings(cmd, policy, fn, context); + up_read(&cmd->root_lock); + + return r; +} + +static int __dump_mapping(void *context, uint64_t cblock, void *leaf) +{ + int r = 0; + __le64 value; + dm_oblock_t oblock; + unsigned flags; + + memcpy(&value, leaf, sizeof(value)); + unpack_value(value, &oblock, &flags); + + return r; +} + +static int __dump_mappings(struct dm_cache_metadata *cmd) +{ + return dm_array_walk(&cmd->info, cmd->root, __dump_mapping, NULL); +} + +void dm_cache_dump(struct dm_cache_metadata *cmd) +{ + down_read(&cmd->root_lock); + __dump_mappings(cmd); + up_read(&cmd->root_lock); +} + +int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd) +{ + int r; + + down_read(&cmd->root_lock); + r = cmd->changed; + up_read(&cmd->root_lock); + + return r; +} + +static int __dirty(struct dm_cache_metadata *cmd, dm_cblock_t cblock, bool dirty) +{ + int r; + unsigned flags; + dm_oblock_t oblock; + __le64 value; + + r = dm_array_get_value(&cmd->info, cmd->root, from_cblock(cblock), &value); + if (r) + return r; + + unpack_value(value, &oblock, &flags); + + if (((flags & M_DIRTY) && dirty) || (!(flags & M_DIRTY) && !dirty)) + /* nothing to be done */ + return 0; + + value = pack_value(oblock, (flags & ~M_DIRTY) | (dirty ? M_DIRTY : 0)); + __dm_bless_for_disk(&value); + + r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock), + &value, &cmd->root); + if (r) + return r; + + cmd->changed = true; + return 0; + +} + +int dm_cache_set_dirty(struct dm_cache_metadata *cmd, + dm_cblock_t cblock, bool dirty) +{ + int r; + + down_write(&cmd->root_lock); + r = __dirty(cmd, cblock, dirty); + up_write(&cmd->root_lock); + + return r; +} + +void dm_cache_metadata_get_stats(struct dm_cache_metadata *cmd, + struct dm_cache_statistics *stats) +{ + down_read(&cmd->root_lock); + *stats = cmd->stats; + up_read(&cmd->root_lock); +} + +void dm_cache_metadata_set_stats(struct dm_cache_metadata *cmd, + struct dm_cache_statistics *stats) +{ + down_write(&cmd->root_lock); + cmd->stats = *stats; + up_write(&cmd->root_lock); +} + +int dm_cache_commit(struct dm_cache_metadata *cmd, bool clean_shutdown) +{ + int r; + flags_mutator mutator = (clean_shutdown ? set_clean_shutdown : + clear_clean_shutdown); + + down_write(&cmd->root_lock); + r = __commit_transaction(cmd, mutator); + if (r) + goto out; + + r = __begin_transaction(cmd); + +out: + up_write(&cmd->root_lock); + return r; +} + +int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd, + dm_block_t *result) +{ + int r = -EINVAL; + + down_read(&cmd->root_lock); + r = dm_sm_get_nr_free(cmd->metadata_sm, result); + up_read(&cmd->root_lock); + + return r; +} + +int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd, + dm_block_t *result) +{ + int r = -EINVAL; + + down_read(&cmd->root_lock); + r = dm_sm_get_nr_blocks(cmd->metadata_sm, result); + up_read(&cmd->root_lock); + + return r; +} + +/*----------------------------------------------------------------*/ + +static int begin_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *policy) +{ + int r; + __le32 value; + size_t hint_size; + const char *policy_name = dm_cache_policy_get_name(policy); + const unsigned *policy_version = dm_cache_policy_get_version(policy); + + if (!policy_name[0] || + (strlen(policy_name) > sizeof(cmd->policy_name) - 1)) + return -EINVAL; + + if (!policy_unchanged(cmd, policy)) { + strncpy(cmd->policy_name, policy_name, sizeof(cmd->policy_name)); + memcpy(cmd->policy_version, policy_version, sizeof(cmd->policy_version)); + + hint_size = dm_cache_policy_get_hint_size(policy); + if (!hint_size) + return 0; /* short-circuit hints initialization */ + cmd->policy_hint_size = hint_size; + + if (cmd->hint_root) { + r = dm_array_del(&cmd->hint_info, cmd->hint_root); + if (r) + return r; + } + + r = dm_array_empty(&cmd->hint_info, &cmd->hint_root); + if (r) + return r; + + value = cpu_to_le32(0); + __dm_bless_for_disk(&value); + r = dm_array_resize(&cmd->hint_info, cmd->hint_root, 0, + from_cblock(cmd->cache_blocks), + &value, &cmd->hint_root); + if (r) + return r; + } + + return 0; +} + +static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock, uint32_t hint) +{ + struct dm_cache_metadata *cmd = context; + __le32 value = cpu_to_le32(hint); + int r; + + __dm_bless_for_disk(&value); + + r = dm_array_set_value(&cmd->hint_info, cmd->hint_root, + from_cblock(cblock), &value, &cmd->hint_root); + cmd->changed = true; + + return r; +} + +static int write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *policy) +{ + int r; + + r = begin_hints(cmd, policy); + if (r) { + DMERR("begin_hints failed"); + return r; + } + + return policy_walk_mappings(policy, save_hint, cmd); +} + +int dm_cache_write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *policy) +{ + int r; + + down_write(&cmd->root_lock); + r = write_hints(cmd, policy); + up_write(&cmd->root_lock); + + return r; +} + +int dm_cache_metadata_all_clean(struct dm_cache_metadata *cmd, bool *result) +{ + return blocks_are_unmapped_or_clean(cmd, 0, cmd->cache_blocks, result); +} diff --git a/drivers/md/dm-cache-metadata.h b/drivers/md/dm-cache-metadata.h new file mode 100644 index 00000000000..cd70a78623a --- /dev/null +++ b/drivers/md/dm-cache-metadata.h @@ -0,0 +1,140 @@ +/* + * Copyright (C) 2012 Red Hat, Inc. + * + * This file is released under the GPL. + */ + +#ifndef DM_CACHE_METADATA_H +#define DM_CACHE_METADATA_H + +#include "dm-cache-block-types.h" +#include "dm-cache-policy-internal.h" + +/*----------------------------------------------------------------*/ + +#define DM_CACHE_METADATA_BLOCK_SIZE 4096 + +/* FIXME: remove this restriction */ +/* + * The metadata device is currently limited in size. + * + * We have one block of index, which can hold 255 index entries. Each + * index entry contains allocation info about 16k metadata blocks. + */ +#define DM_CACHE_METADATA_MAX_SECTORS (255 * (1 << 14) * (DM_CACHE_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT))) + +/* + * A metadata device larger than 16GB triggers a warning. + */ +#define DM_CACHE_METADATA_MAX_SECTORS_WARNING (16 * (1024 * 1024 * 1024 >> SECTOR_SHIFT)) + +/*----------------------------------------------------------------*/ + +/* + * Ext[234]-style compat feature flags. + * + * A new feature which old metadata will still be compatible with should + * define a DM_CACHE_FEATURE_COMPAT_* flag (rarely useful). + * + * A new feature that is not compatible with old code should define a + * DM_CACHE_FEATURE_INCOMPAT_* flag and guard the relevant code with + * that flag. + * + * A new feature that is not compatible with old code accessing the + * metadata RDWR should define a DM_CACHE_FEATURE_RO_COMPAT_* flag and + * guard the relevant code with that flag. + * + * As these various flags are defined they should be added to the + * following masks. + */ +#define DM_CACHE_FEATURE_COMPAT_SUPP 0UL +#define DM_CACHE_FEATURE_COMPAT_RO_SUPP 0UL +#define DM_CACHE_FEATURE_INCOMPAT_SUPP 0UL + +/* + * Reopens or creates a new, empty metadata volume. + * Returns an ERR_PTR on failure. + */ +struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev, + sector_t data_block_size, + bool may_format_device, + size_t policy_hint_size); + +void dm_cache_metadata_close(struct dm_cache_metadata *cmd); + +/* + * The metadata needs to know how many cache blocks there are. We don't + * care about the origin, assuming the core target is giving us valid + * origin blocks to map to. + */ +int dm_cache_resize(struct dm_cache_metadata *cmd, dm_cblock_t new_cache_size); +dm_cblock_t dm_cache_size(struct dm_cache_metadata *cmd); + +int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd, + sector_t discard_block_size, + dm_oblock_t new_nr_entries); + +typedef int (*load_discard_fn)(void *context, sector_t discard_block_size, + dm_oblock_t dblock, bool discarded); +int dm_cache_load_discards(struct dm_cache_metadata *cmd, + load_discard_fn fn, void *context); + +int dm_cache_set_discard(struct dm_cache_metadata *cmd, dm_oblock_t dblock, bool discard); + +int dm_cache_remove_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock); +int dm_cache_insert_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock, dm_oblock_t oblock); +int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd); + +typedef int (*load_mapping_fn)(void *context, dm_oblock_t oblock, + dm_cblock_t cblock, bool dirty, + uint32_t hint, bool hint_valid); +int dm_cache_load_mappings(struct dm_cache_metadata *cmd, + struct dm_cache_policy *policy, + load_mapping_fn fn, + void *context); + +int dm_cache_set_dirty(struct dm_cache_metadata *cmd, dm_cblock_t cblock, bool dirty); + +struct dm_cache_statistics { + uint32_t read_hits; + uint32_t read_misses; + uint32_t write_hits; + uint32_t write_misses; +}; + +void dm_cache_metadata_get_stats(struct dm_cache_metadata *cmd, + struct dm_cache_statistics *stats); +void dm_cache_metadata_set_stats(struct dm_cache_metadata *cmd, + struct dm_cache_statistics *stats); + +int dm_cache_commit(struct dm_cache_metadata *cmd, bool clean_shutdown); + +int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd, + dm_block_t *result); + +int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd, + dm_block_t *result); + +void dm_cache_dump(struct dm_cache_metadata *cmd); + +/* + * The policy is invited to save a 32bit hint value for every cblock (eg, + * for a hit count). These are stored against the policy name. If + * policies are changed, then hints will be lost. If the machine crashes, + * hints will be lost. + * + * The hints are indexed by the cblock, but many policies will not + * neccessarily have a fast way of accessing efficiently via cblock. So + * rather than querying the policy for each cblock, we let it walk its data + * structures and fill in the hints in whatever order it wishes. + */ +int dm_cache_write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *p); + +/* + * Query method. Are all the blocks in the cache clean? + */ +int dm_cache_metadata_all_clean(struct dm_cache_metadata *cmd, bool *result); + +/*----------------------------------------------------------------*/ + +#endif /* DM_CACHE_METADATA_H */ diff --git a/drivers/md/dm-cache-policy-cleaner.c b/drivers/md/dm-cache-policy-cleaner.c new file mode 100644 index 00000000000..b04d1f904d0 --- /dev/null +++ b/drivers/md/dm-cache-policy-cleaner.c @@ -0,0 +1,467 @@ +/* + * Copyright (C) 2012 Red Hat. All rights reserved. + * + * writeback cache policy supporting flushing out dirty cache blocks. + * + * This file is released under the GPL. + */ + +#include "dm-cache-policy.h" +#include "dm.h" + +#include <linux/hash.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> + +/*----------------------------------------------------------------*/ + +#define DM_MSG_PREFIX "cache cleaner" + +/* Cache entry struct. */ +struct wb_cache_entry { + struct list_head list; + struct hlist_node hlist; + + dm_oblock_t oblock; + dm_cblock_t cblock; + bool dirty:1; + bool pending:1; +}; + +struct hash { + struct hlist_head *table; + dm_block_t hash_bits; + unsigned nr_buckets; +}; + +struct policy { + struct dm_cache_policy policy; + spinlock_t lock; + + struct list_head free; + struct list_head clean; + struct list_head clean_pending; + struct list_head dirty; + + /* + * We know exactly how many cblocks will be needed, + * so we can allocate them up front. + */ + dm_cblock_t cache_size, nr_cblocks_allocated; + struct wb_cache_entry *cblocks; + struct hash chash; +}; + +/*----------------------------------------------------------------------------*/ + +/* + * Low-level functions. + */ +static unsigned next_power(unsigned n, unsigned min) +{ + return roundup_pow_of_two(max(n, min)); +} + +static struct policy *to_policy(struct dm_cache_policy *p) +{ + return container_of(p, struct policy, policy); +} + +static struct list_head *list_pop(struct list_head *q) +{ + struct list_head *r = q->next; + + list_del(r); + + return r; +} + +/*----------------------------------------------------------------------------*/ + +/* Allocate/free various resources. */ +static int alloc_hash(struct hash *hash, unsigned elts) +{ + hash->nr_buckets = next_power(elts >> 4, 16); + hash->hash_bits = ffs(hash->nr_buckets) - 1; + hash->table = vzalloc(sizeof(*hash->table) * hash->nr_buckets); + + return hash->table ? 0 : -ENOMEM; +} + +static void free_hash(struct hash *hash) +{ + vfree(hash->table); +} + +static int alloc_cache_blocks_with_hash(struct policy *p, dm_cblock_t cache_size) +{ + int r = -ENOMEM; + + p->cblocks = vzalloc(sizeof(*p->cblocks) * from_cblock(cache_size)); + if (p->cblocks) { + unsigned u = from_cblock(cache_size); + + while (u--) + list_add(&p->cblocks[u].list, &p->free); + + p->nr_cblocks_allocated = 0; + + /* Cache entries hash. */ + r = alloc_hash(&p->chash, from_cblock(cache_size)); + if (r) + vfree(p->cblocks); + } + + return r; +} + +static void free_cache_blocks_and_hash(struct policy *p) +{ + free_hash(&p->chash); + vfree(p->cblocks); +} + +static struct wb_cache_entry *alloc_cache_entry(struct policy *p) +{ + struct wb_cache_entry *e; + + BUG_ON(from_cblock(p->nr_cblocks_allocated) >= from_cblock(p->cache_size)); + + e = list_entry(list_pop(&p->free), struct wb_cache_entry, list); + p->nr_cblocks_allocated = to_cblock(from_cblock(p->nr_cblocks_allocated) + 1); + + return e; +} + +/*----------------------------------------------------------------------------*/ + +/* Hash functions (lookup, insert, remove). */ +static struct wb_cache_entry *lookup_cache_entry(struct policy *p, dm_oblock_t oblock) +{ + struct hash *hash = &p->chash; + unsigned h = hash_64(from_oblock(oblock), hash->hash_bits); + struct wb_cache_entry *cur; + struct hlist_head *bucket = &hash->table[h]; + + hlist_for_each_entry(cur, bucket, hlist) { + if (cur->oblock == oblock) { + /* Move upfront bucket for faster access. */ + hlist_del(&cur->hlist); + hlist_add_head(&cur->hlist, bucket); + return cur; + } + } + + return NULL; +} + +static void insert_cache_hash_entry(struct policy *p, struct wb_cache_entry *e) +{ + unsigned h = hash_64(from_oblock(e->oblock), p->chash.hash_bits); + + hlist_add_head(&e->hlist, &p->chash.table[h]); +} + +static void remove_cache_hash_entry(struct wb_cache_entry *e) +{ + hlist_del(&e->hlist); +} + +/* Public interface (see dm-cache-policy.h */ +static int wb_map(struct dm_cache_policy *pe, dm_oblock_t oblock, + bool can_block, bool can_migrate, bool discarded_oblock, + struct bio *bio, struct policy_result *result) +{ + struct policy *p = to_policy(pe); + struct wb_cache_entry *e; + unsigned long flags; + + result->op = POLICY_MISS; + + if (can_block) + spin_lock_irqsave(&p->lock, flags); + + else if (!spin_trylock_irqsave(&p->lock, flags)) + return -EWOULDBLOCK; + + e = lookup_cache_entry(p, oblock); + if (e) { + result->op = POLICY_HIT; + result->cblock = e->cblock; + + } + + spin_unlock_irqrestore(&p->lock, flags); + + return 0; +} + +static int wb_lookup(struct dm_cache_policy *pe, dm_oblock_t oblock, dm_cblock_t *cblock) +{ + int r; + struct policy *p = to_policy(pe); + struct wb_cache_entry *e; + unsigned long flags; + + if (!spin_trylock_irqsave(&p->lock, flags)) + return -EWOULDBLOCK; + + e = lookup_cache_entry(p, oblock); + if (e) { + *cblock = e->cblock; + r = 0; + + } else + r = -ENOENT; + + spin_unlock_irqrestore(&p->lock, flags); + + return r; +} + +static void __set_clear_dirty(struct dm_cache_policy *pe, dm_oblock_t oblock, bool set) +{ + struct policy *p = to_policy(pe); + struct wb_cache_entry *e; + + e = lookup_cache_entry(p, oblock); + BUG_ON(!e); + + if (set) { + if (!e->dirty) { + e->dirty = true; + list_move(&e->list, &p->dirty); + } + + } else { + if (e->dirty) { + e->pending = false; + e->dirty = false; + list_move(&e->list, &p->clean); + } + } +} + +static void wb_set_dirty(struct dm_cache_policy *pe, dm_oblock_t oblock) +{ + struct policy *p = to_policy(pe); + unsigned long flags; + + spin_lock_irqsave(&p->lock, flags); + __set_clear_dirty(pe, oblock, true); + spin_unlock_irqrestore(&p->lock, flags); +} + +static void wb_clear_dirty(struct dm_cache_policy *pe, dm_oblock_t oblock) +{ + struct policy *p = to_policy(pe); + unsigned long flags; + + spin_lock_irqsave(&p->lock, flags); + __set_clear_dirty(pe, oblock, false); + spin_unlock_irqrestore(&p->lock, flags); +} + +static void add_cache_entry(struct policy *p, struct wb_cache_entry *e) +{ + insert_cache_hash_entry(p, e); + if (e->dirty) + list_add(&e->list, &p->dirty); + else + list_add(&e->list, &p->clean); +} + +static int wb_load_mapping(struct dm_cache_policy *pe, + dm_oblock_t oblock, dm_cblock_t cblock, + uint32_t hint, bool hint_valid) +{ + int r; + struct policy *p = to_policy(pe); + struct wb_cache_entry *e = alloc_cache_entry(p); + + if (e) { + e->cblock = cblock; + e->oblock = oblock; + e->dirty = false; /* blocks default to clean */ + add_cache_entry(p, e); + r = 0; + + } else + r = -ENOMEM; + + return r; +} + +static void wb_destroy(struct dm_cache_policy *pe) +{ + struct policy *p = to_policy(pe); + + free_cache_blocks_and_hash(p); + kfree(p); +} + +static struct wb_cache_entry *__wb_force_remove_mapping(struct policy *p, dm_oblock_t oblock) +{ + struct wb_cache_entry *r = lookup_cache_entry(p, oblock); + + BUG_ON(!r); + + remove_cache_hash_entry(r); + list_del(&r->list); + + return r; +} + +static void wb_remove_mapping(struct dm_cache_policy *pe, dm_oblock_t oblock) +{ + struct policy *p = to_policy(pe); + struct wb_cache_entry *e; + unsigned long flags; + + spin_lock_irqsave(&p->lock, flags); + e = __wb_force_remove_mapping(p, oblock); + list_add_tail(&e->list, &p->free); + BUG_ON(!from_cblock(p->nr_cblocks_allocated)); + p->nr_cblocks_allocated = to_cblock(from_cblock(p->nr_cblocks_allocated) - 1); + spin_unlock_irqrestore(&p->lock, flags); +} + +static void wb_force_mapping(struct dm_cache_policy *pe, + dm_oblock_t current_oblock, dm_oblock_t oblock) +{ + struct policy *p = to_policy(pe); + struct wb_cache_entry *e; + unsigned long flags; + + spin_lock_irqsave(&p->lock, flags); + e = __wb_force_remove_mapping(p, current_oblock); + e->oblock = oblock; + add_cache_entry(p, e); + spin_unlock_irqrestore(&p->lock, flags); +} + +static struct wb_cache_entry *get_next_dirty_entry(struct policy *p) +{ + struct list_head *l; + struct wb_cache_entry *r; + + if (list_empty(&p->dirty)) + return NULL; + + l = list_pop(&p->dirty); + r = container_of(l, struct wb_cache_entry, list); + list_add(l, &p->clean_pending); + + return r; +} + +static int wb_writeback_work(struct dm_cache_policy *pe, + dm_oblock_t *oblock, + dm_cblock_t *cblock) +{ + int r = -ENOENT; + struct policy *p = to_policy(pe); + struct wb_cache_entry *e; + unsigned long flags; + + spin_lock_irqsave(&p->lock, flags); + + e = get_next_dirty_entry(p); + if (e) { + *oblock = e->oblock; + *cblock = e->cblock; + r = 0; + } + + spin_unlock_irqrestore(&p->lock, flags); + + return r; +} + +static dm_cblock_t wb_residency(struct dm_cache_policy *pe) +{ + return to_policy(pe)->nr_cblocks_allocated; +} + +/* Init the policy plugin interface function pointers. */ +static void init_policy_functions(struct policy *p) +{ + p->policy.destroy = wb_destroy; + p->policy.map = wb_map; + p->policy.lookup = wb_lookup; + p->policy.set_dirty = wb_set_dirty; + p->policy.clear_dirty = wb_clear_dirty; + p->policy.load_mapping = wb_load_mapping; + p->policy.walk_mappings = NULL; + p->policy.remove_mapping = wb_remove_mapping; + p->policy.writeback_work = wb_writeback_work; + p->policy.force_mapping = wb_force_mapping; + p->policy.residency = wb_residency; + p->policy.tick = NULL; +} + +static struct dm_cache_policy *wb_create(dm_cblock_t cache_size, + sector_t origin_size, + sector_t cache_block_size) +{ + int r; + struct policy *p = kzalloc(sizeof(*p), GFP_KERNEL); + + if (!p) + return NULL; + + init_policy_functions(p); + INIT_LIST_HEAD(&p->free); + INIT_LIST_HEAD(&p->clean); + INIT_LIST_HEAD(&p->clean_pending); + INIT_LIST_HEAD(&p->dirty); + + p->cache_size = cache_size; + spin_lock_init(&p->lock); + + /* Allocate cache entry structs and add them to free list. */ + r = alloc_cache_blocks_with_hash(p, cache_size); + if (!r) + return &p->policy; + + kfree(p); + + return NULL; +} +/*----------------------------------------------------------------------------*/ + +static struct dm_cache_policy_type wb_policy_type = { + .name = "cleaner", + .version = {1, 0, 0}, + .hint_size = 0, + .owner = THIS_MODULE, + .create = wb_create +}; + +static int __init wb_init(void) +{ + int r = dm_cache_policy_register(&wb_policy_type); + + if (r < 0) + DMERR("register failed %d", r); + else + DMINFO("version %u.%u.%u loaded", + wb_policy_type.version[0], + wb_policy_type.version[1], + wb_policy_type.version[2]); + + return r; +} + +static void __exit wb_exit(void) +{ + dm_cache_policy_unregister(&wb_policy_type); +} + +module_init(wb_init); +module_exit(wb_exit); + +MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("cleaner cache policy"); diff --git a/drivers/md/dm-cache-policy-internal.h b/drivers/md/dm-cache-policy-internal.h new file mode 100644 index 00000000000..2256a1f24f7 --- /dev/null +++ b/drivers/md/dm-cache-policy-internal.h @@ -0,0 +1,131 @@ +/* + * Copyright (C) 2012 Red Hat. All rights reserved. + * + * This file is released under the GPL. + */ + +#ifndef DM_CACHE_POLICY_INTERNAL_H +#define DM_CACHE_POLICY_INTERNAL_H + +#include "dm-cache-policy.h" + +/*----------------------------------------------------------------*/ + +/* + * Little inline functions that simplify calling the policy methods. + */ +static inline int policy_map(struct dm_cache_policy *p, dm_oblock_t oblock, + bool can_block, bool can_migrate, bool discarded_oblock, + struct bio *bio, struct policy_result *result) +{ + return p->map(p, oblock, can_block, can_migrate, discarded_oblock, bio, result); +} + +static inline int policy_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) +{ + BUG_ON(!p->lookup); + return p->lookup(p, oblock, cblock); +} + +static inline void policy_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) +{ + if (p->set_dirty) + p->set_dirty(p, oblock); +} + +static inline void policy_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) +{ + if (p->clear_dirty) + p->clear_dirty(p, oblock); +} + +static inline int policy_load_mapping(struct dm_cache_policy *p, + dm_oblock_t oblock, dm_cblock_t cblock, + uint32_t hint, bool hint_valid) +{ + return p->load_mapping(p, oblock, cblock, hint, hint_valid); +} + +static inline int policy_walk_mappings(struct dm_cache_policy *p, + policy_walk_fn fn, void *context) +{ + return p->walk_mappings ? p->walk_mappings(p, fn, context) : 0; +} + +static inline int policy_writeback_work(struct dm_cache_policy *p, + dm_oblock_t *oblock, + dm_cblock_t *cblock) +{ + return p->writeback_work ? p->writeback_work(p, oblock, cblock) : -ENOENT; +} + +static inline void policy_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) +{ + p->remove_mapping(p, oblock); +} + +static inline int policy_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock) +{ + return p->remove_cblock(p, cblock); +} + +static inline void policy_force_mapping(struct dm_cache_policy *p, + dm_oblock_t current_oblock, dm_oblock_t new_oblock) +{ + return p->force_mapping(p, current_oblock, new_oblock); +} + +static inline dm_cblock_t policy_residency(struct dm_cache_policy *p) +{ + return p->residency(p); +} + +static inline void policy_tick(struct dm_cache_policy *p) +{ + if (p->tick) + return p->tick(p); +} + +static inline int policy_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen) +{ + ssize_t sz = 0; + if (p->emit_config_values) + return p->emit_config_values(p, result, maxlen); + + DMEMIT("0"); + return 0; +} + +static inline int policy_set_config_value(struct dm_cache_policy *p, + const char *key, const char *value) +{ + return p->set_config_value ? p->set_config_value(p, key, value) : -EINVAL; +} + +/*----------------------------------------------------------------*/ + +/* + * Creates a new cache policy given a policy name, a cache size, an origin size and the block size. + */ +struct dm_cache_policy *dm_cache_policy_create(const char *name, dm_cblock_t cache_size, + sector_t origin_size, sector_t block_size); + +/* + * Destroys the policy. This drops references to the policy module as well + * as calling it's destroy method. So always use this rather than calling + * the policy->destroy method directly. + */ +void dm_cache_policy_destroy(struct dm_cache_policy *p); + +/* + * In case we've forgotten. + */ +const char *dm_cache_policy_get_name(struct dm_cache_policy *p); + +const unsigned *dm_cache_policy_get_version(struct dm_cache_policy *p); + +size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p); + +/*----------------------------------------------------------------*/ + +#endif /* DM_CACHE_POLICY_INTERNAL_H */ diff --git a/drivers/md/dm-cache-policy-mq.c b/drivers/md/dm-cache-policy-mq.c new file mode 100644 index 00000000000..0e385e40909 --- /dev/null +++ b/drivers/md/dm-cache-policy-mq.c @@ -0,0 +1,1333 @@ +/* + * Copyright (C) 2012 Red Hat. All rights reserved. + * + * This file is released under the GPL. + */ + +#include "dm-cache-policy.h" +#include "dm.h" + +#include <linux/hash.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> + +#define DM_MSG_PREFIX "cache-policy-mq" + +static struct kmem_cache *mq_entry_cache; + +/*----------------------------------------------------------------*/ + +static unsigned next_power(unsigned n, unsigned min) +{ + return roundup_pow_of_two(max(n, min)); +} + +/*----------------------------------------------------------------*/ + +/* + * Large, sequential ios are probably better left on the origin device since + * spindles tend to have good bandwidth. + * + * The io_tracker tries to spot when the io is in one of these sequential + * modes. + * + * Two thresholds to switch between random and sequential io mode are defaulting + * as follows and can be adjusted via the constructor and message interfaces. + */ +#define RANDOM_THRESHOLD_DEFAULT 4 +#define SEQUENTIAL_THRESHOLD_DEFAULT 512 + +enum io_pattern { + PATTERN_SEQUENTIAL, + PATTERN_RANDOM +}; + +struct io_tracker { + enum io_pattern pattern; + + unsigned nr_seq_samples; + unsigned nr_rand_samples; + unsigned thresholds[2]; + + dm_oblock_t last_end_oblock; +}; + +static void iot_init(struct io_tracker *t, + int sequential_threshold, int random_threshold) +{ + t->pattern = PATTERN_RANDOM; + t->nr_seq_samples = 0; + t->nr_rand_samples = 0; + t->last_end_oblock = 0; + t->thresholds[PATTERN_RANDOM] = random_threshold; + t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold; +} + +static enum io_pattern iot_pattern(struct io_tracker *t) +{ + return t->pattern; +} + +static void iot_update_stats(struct io_tracker *t, struct bio *bio) +{ + if (bio->bi_iter.bi_sector == from_oblock(t->last_end_oblock) + 1) + t->nr_seq_samples++; + else { + /* + * Just one non-sequential IO is enough to reset the + * counters. + */ + if (t->nr_seq_samples) { + t->nr_seq_samples = 0; + t->nr_rand_samples = 0; + } + + t->nr_rand_samples++; + } + + t->last_end_oblock = to_oblock(bio_end_sector(bio) - 1); +} + +static void iot_check_for_pattern_switch(struct io_tracker *t) +{ + switch (t->pattern) { + case PATTERN_SEQUENTIAL: + if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) { + t->pattern = PATTERN_RANDOM; + t->nr_seq_samples = t->nr_rand_samples = 0; + } + break; + + case PATTERN_RANDOM: + if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) { + t->pattern = PATTERN_SEQUENTIAL; + t->nr_seq_samples = t->nr_rand_samples = 0; + } + break; + } +} + +static void iot_examine_bio(struct io_tracker *t, struct bio *bio) +{ + iot_update_stats(t, bio); + iot_check_for_pattern_switch(t); +} + +/*----------------------------------------------------------------*/ + + +/* + * This queue is divided up into different levels. Allowing us to push + * entries to the back of any of the levels. Think of it as a partially + * sorted queue. + */ +#define NR_QUEUE_LEVELS 16u + +struct queue { + struct list_head qs[NR_QUEUE_LEVELS]; +}; + +static void queue_init(struct queue *q) +{ + unsigned i; + + for (i = 0; i < NR_QUEUE_LEVELS; i++) + INIT_LIST_HEAD(q->qs + i); +} + +/* + * Checks to see if the queue is empty. + * FIXME: reduce cpu usage. + */ +static bool queue_empty(struct queue *q) +{ + unsigned i; + + for (i = 0; i < NR_QUEUE_LEVELS; i++) + if (!list_empty(q->qs + i)) + return false; + + return true; +} + +/* + * Insert an entry to the back of the given level. + */ +static void queue_push(struct queue *q, unsigned level, struct list_head *elt) +{ + list_add_tail(elt, q->qs + level); +} + +static void queue_remove(struct list_head *elt) +{ + list_del(elt); +} + +/* + * Shifts all regions down one level. This has no effect on the order of + * the queue. + */ +static void queue_shift_down(struct queue *q) +{ + unsigned level; + + for (level = 1; level < NR_QUEUE_LEVELS; level++) + list_splice_init(q->qs + level, q->qs + level - 1); +} + +/* + * Gives us the oldest entry of the lowest popoulated level. If the first + * level is emptied then we shift down one level. + */ +static struct list_head *queue_pop(struct queue *q) +{ + unsigned level; + struct list_head *r; + + for (level = 0; level < NR_QUEUE_LEVELS; level++) + if (!list_empty(q->qs + level)) { + r = q->qs[level].next; + list_del(r); + + /* have we just emptied the bottom level? */ + if (level == 0 && list_empty(q->qs)) + queue_shift_down(q); + + return r; + } + + return NULL; +} + +static struct list_head *list_pop(struct list_head *lh) +{ + struct list_head *r = lh->next; + + BUG_ON(!r); + list_del_init(r); + + return r; +} + +/*----------------------------------------------------------------*/ + +/* + * Describes a cache entry. Used in both the cache and the pre_cache. + */ +struct entry { + struct hlist_node hlist; + struct list_head list; + dm_oblock_t oblock; + + /* + * FIXME: pack these better + */ + bool dirty:1; + unsigned hit_count; + unsigned generation; + unsigned tick; +}; + +/* + * Rather than storing the cblock in an entry, we allocate all entries in + * an array, and infer the cblock from the entry position. + * + * Free entries are linked together into a list. + */ +struct entry_pool { + struct entry *entries, *entries_end; + struct list_head free; + unsigned nr_allocated; +}; + +static int epool_init(struct entry_pool *ep, unsigned nr_entries) +{ + unsigned i; + + ep->entries = vzalloc(sizeof(struct entry) * nr_entries); + if (!ep->entries) + return -ENOMEM; + + ep->entries_end = ep->entries + nr_entries; + + INIT_LIST_HEAD(&ep->free); + for (i = 0; i < nr_entries; i++) + list_add(&ep->entries[i].list, &ep->free); + + ep->nr_allocated = 0; + + return 0; +} + +static void epool_exit(struct entry_pool *ep) +{ + vfree(ep->entries); +} + +static struct entry *alloc_entry(struct entry_pool *ep) +{ + struct entry *e; + + if (list_empty(&ep->free)) + return NULL; + + e = list_entry(list_pop(&ep->free), struct entry, list); + INIT_LIST_HEAD(&e->list); + INIT_HLIST_NODE(&e->hlist); + ep->nr_allocated++; + + return e; +} + +/* + * This assumes the cblock hasn't already been allocated. + */ +static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock) +{ + struct entry *e = ep->entries + from_cblock(cblock); + + list_del_init(&e->list); + INIT_HLIST_NODE(&e->hlist); + ep->nr_allocated++; + + return e; +} + +static void free_entry(struct entry_pool *ep, struct entry *e) +{ + BUG_ON(!ep->nr_allocated); + ep->nr_allocated--; + INIT_HLIST_NODE(&e->hlist); + list_add(&e->list, &ep->free); +} + +/* + * Returns NULL if the entry is free. + */ +static struct entry *epool_find(struct entry_pool *ep, dm_cblock_t cblock) +{ + struct entry *e = ep->entries + from_cblock(cblock); + return !hlist_unhashed(&e->hlist) ? e : NULL; +} + +static bool epool_empty(struct entry_pool *ep) +{ + return list_empty(&ep->free); +} + +static bool in_pool(struct entry_pool *ep, struct entry *e) +{ + return e >= ep->entries && e < ep->entries_end; +} + +static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e) +{ + return to_cblock(e - ep->entries); +} + +/*----------------------------------------------------------------*/ + +struct mq_policy { + struct dm_cache_policy policy; + + /* protects everything */ + struct mutex lock; + dm_cblock_t cache_size; + struct io_tracker tracker; + + /* + * Entries come from two pools, one of pre-cache entries, and one + * for the cache proper. + */ + struct entry_pool pre_cache_pool; + struct entry_pool cache_pool; + + /* + * We maintain three queues of entries. The cache proper, + * consisting of a clean and dirty queue, contains the currently + * active mappings. Whereas the pre_cache tracks blocks that + * are being hit frequently and potential candidates for promotion + * to the cache. + */ + struct queue pre_cache; + struct queue cache_clean; + struct queue cache_dirty; + + /* + * Keeps track of time, incremented by the core. We use this to + * avoid attributing multiple hits within the same tick. + * + * Access to tick_protected should be done with the spin lock held. + * It's copied to tick at the start of the map function (within the + * mutex). + */ + spinlock_t tick_lock; + unsigned tick_protected; + unsigned tick; + + /* + * A count of the number of times the map function has been called + * and found an entry in the pre_cache or cache. Currently used to + * calculate the generation. + */ + unsigned hit_count; + + /* + * A generation is a longish period that is used to trigger some + * book keeping effects. eg, decrementing hit counts on entries. + * This is needed to allow the cache to evolve as io patterns + * change. + */ + unsigned generation; + unsigned generation_period; /* in lookups (will probably change) */ + + /* + * Entries in the pre_cache whose hit count passes the promotion + * threshold move to the cache proper. Working out the correct + * value for the promotion_threshold is crucial to this policy. + */ + unsigned promote_threshold; + + unsigned discard_promote_adjustment; + unsigned read_promote_adjustment; + unsigned write_promote_adjustment; + + /* + * The hash table allows us to quickly find an entry by origin + * block. Both pre_cache and cache entries are in here. + */ + unsigned nr_buckets; + dm_block_t hash_bits; + struct hlist_head *table; +}; + +#define DEFAULT_DISCARD_PROMOTE_ADJUSTMENT 1 +#define DEFAULT_READ_PROMOTE_ADJUSTMENT 4 +#define DEFAULT_WRITE_PROMOTE_ADJUSTMENT 8 + +/*----------------------------------------------------------------*/ + +/* + * Simple hash table implementation. Should replace with the standard hash + * table that's making its way upstream. + */ +static void hash_insert(struct mq_policy *mq, struct entry *e) +{ + unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits); + + hlist_add_head(&e->hlist, mq->table + h); +} + +static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock) +{ + unsigned h = hash_64(from_oblock(oblock), mq->hash_bits); + struct hlist_head *bucket = mq->table + h; + struct entry *e; + + hlist_for_each_entry(e, bucket, hlist) + if (e->oblock == oblock) { + hlist_del(&e->hlist); + hlist_add_head(&e->hlist, bucket); + return e; + } + + return NULL; +} + +static void hash_remove(struct entry *e) +{ + hlist_del(&e->hlist); +} + +/*----------------------------------------------------------------*/ + +static bool any_free_cblocks(struct mq_policy *mq) +{ + return !epool_empty(&mq->cache_pool); +} + +static bool any_clean_cblocks(struct mq_policy *mq) +{ + return !queue_empty(&mq->cache_clean); +} + +/*----------------------------------------------------------------*/ + +/* + * Now we get to the meat of the policy. This section deals with deciding + * when to to add entries to the pre_cache and cache, and move between + * them. + */ + +/* + * The queue level is based on the log2 of the hit count. + */ +static unsigned queue_level(struct entry *e) +{ + return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u); +} + +static bool in_cache(struct mq_policy *mq, struct entry *e) +{ + return in_pool(&mq->cache_pool, e); +} + +/* + * Inserts the entry into the pre_cache or the cache. Ensures the cache + * block is marked as allocated if necc. Inserts into the hash table. + * Sets the tick which records when the entry was last moved about. + */ +static void push(struct mq_policy *mq, struct entry *e) +{ + e->tick = mq->tick; + hash_insert(mq, e); + + if (in_cache(mq, e)) + queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean, + queue_level(e), &e->list); + else + queue_push(&mq->pre_cache, queue_level(e), &e->list); +} + +/* + * Removes an entry from pre_cache or cache. Removes from the hash table. + */ +static void del(struct mq_policy *mq, struct entry *e) +{ + queue_remove(&e->list); + hash_remove(e); +} + +/* + * Like del, except it removes the first entry in the queue (ie. the least + * recently used). + */ +static struct entry *pop(struct mq_policy *mq, struct queue *q) +{ + struct entry *e; + struct list_head *h = queue_pop(q); + + if (!h) + return NULL; + + e = container_of(h, struct entry, list); + hash_remove(e); + + return e; +} + +/* + * Has this entry already been updated? + */ +static bool updated_this_tick(struct mq_policy *mq, struct entry *e) +{ + return mq->tick == e->tick; +} + +/* + * The promotion threshold is adjusted every generation. As are the counts + * of the entries. + * + * At the moment the threshold is taken by averaging the hit counts of some + * of the entries in the cache (the first 20 entries across all levels in + * ascending order, giving preference to the clean entries at each level). + * + * We can be much cleverer than this though. For example, each promotion + * could bump up the threshold helping to prevent churn. Much more to do + * here. + */ + +#define MAX_TO_AVERAGE 20 + +static void check_generation(struct mq_policy *mq) +{ + unsigned total = 0, nr = 0, count = 0, level; + struct list_head *head; + struct entry *e; + + if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) { + mq->hit_count = 0; + mq->generation++; + + for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) { + head = mq->cache_clean.qs + level; + list_for_each_entry(e, head, list) { + nr++; + total += e->hit_count; + + if (++count >= MAX_TO_AVERAGE) + break; + } + + head = mq->cache_dirty.qs + level; + list_for_each_entry(e, head, list) { + nr++; + total += e->hit_count; + + if (++count >= MAX_TO_AVERAGE) + break; + } + } + + mq->promote_threshold = nr ? total / nr : 1; + if (mq->promote_threshold * nr < total) + mq->promote_threshold++; + } +} + +/* + * Whenever we use an entry we bump up it's hit counter, and push it to the + * back to it's current level. + */ +static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e) +{ + if (updated_this_tick(mq, e)) + return; + + e->hit_count++; + mq->hit_count++; + check_generation(mq); + + /* generation adjustment, to stop the counts increasing forever. */ + /* FIXME: divide? */ + /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */ + e->generation = mq->generation; + + del(mq, e); + push(mq, e); +} + +/* + * Demote the least recently used entry from the cache to the pre_cache. + * Returns the new cache entry to use, and the old origin block it was + * mapped to. + * + * We drop the hit count on the demoted entry back to 1 to stop it bouncing + * straight back into the cache if it's subsequently hit. There are + * various options here, and more experimentation would be good: + * + * - just forget about the demoted entry completely (ie. don't insert it + into the pre_cache). + * - divide the hit count rather that setting to some hard coded value. + * - set the hit count to a hard coded value other than 1, eg, is it better + * if it goes in at level 2? + */ +static int demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock) +{ + struct entry *demoted = pop(mq, &mq->cache_clean); + + if (!demoted) + /* + * We could get a block from mq->cache_dirty, but that + * would add extra latency to the triggering bio as it + * waits for the writeback. Better to not promote this + * time and hope there's a clean block next time this block + * is hit. + */ + return -ENOSPC; + + *oblock = demoted->oblock; + free_entry(&mq->cache_pool, demoted); + + /* + * We used to put the demoted block into the pre-cache, but I think + * it's simpler to just let it work it's way up from zero again. + * Stops blocks flickering in and out of the cache. + */ + + return 0; +} + +/* + * We modify the basic promotion_threshold depending on the specific io. + * + * If the origin block has been discarded then there's no cost to copy it + * to the cache. + * + * We bias towards reads, since they can be demoted at no cost if they + * haven't been dirtied. + */ +static unsigned adjusted_promote_threshold(struct mq_policy *mq, + bool discarded_oblock, int data_dir) +{ + if (data_dir == READ) + return mq->promote_threshold + mq->read_promote_adjustment; + + if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) { + /* + * We don't need to do any copying at all, so give this a + * very low threshold. + */ + return mq->discard_promote_adjustment; + } + + return mq->promote_threshold + mq->write_promote_adjustment; +} + +static bool should_promote(struct mq_policy *mq, struct entry *e, + bool discarded_oblock, int data_dir) +{ + return e->hit_count >= + adjusted_promote_threshold(mq, discarded_oblock, data_dir); +} + +static int cache_entry_found(struct mq_policy *mq, + struct entry *e, + struct policy_result *result) +{ + requeue_and_update_tick(mq, e); + + if (in_cache(mq, e)) { + result->op = POLICY_HIT; + result->cblock = infer_cblock(&mq->cache_pool, e); + } + + return 0; +} + +/* + * Moves an entry from the pre_cache to the cache. The main work is + * finding which cache block to use. + */ +static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e, + struct policy_result *result) +{ + int r; + struct entry *new_e; + + /* Ensure there's a free cblock in the cache */ + if (epool_empty(&mq->cache_pool)) { + result->op = POLICY_REPLACE; + r = demote_cblock(mq, &result->old_oblock); + if (r) { + result->op = POLICY_MISS; + return 0; + } + } else + result->op = POLICY_NEW; + + new_e = alloc_entry(&mq->cache_pool); + BUG_ON(!new_e); + + new_e->oblock = e->oblock; + new_e->dirty = false; + new_e->hit_count = e->hit_count; + new_e->generation = e->generation; + new_e->tick = e->tick; + + del(mq, e); + free_entry(&mq->pre_cache_pool, e); + push(mq, new_e); + + result->cblock = infer_cblock(&mq->cache_pool, new_e); + + return 0; +} + +static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e, + bool can_migrate, bool discarded_oblock, + int data_dir, struct policy_result *result) +{ + int r = 0; + bool updated = updated_this_tick(mq, e); + + if ((!discarded_oblock && updated) || + !should_promote(mq, e, discarded_oblock, data_dir)) { + requeue_and_update_tick(mq, e); + result->op = POLICY_MISS; + + } else if (!can_migrate) + r = -EWOULDBLOCK; + + else { + requeue_and_update_tick(mq, e); + r = pre_cache_to_cache(mq, e, result); + } + + return r; +} + +static void insert_in_pre_cache(struct mq_policy *mq, + dm_oblock_t oblock) +{ + struct entry *e = alloc_entry(&mq->pre_cache_pool); + + if (!e) + /* + * There's no spare entry structure, so we grab the least + * used one from the pre_cache. + */ + e = pop(mq, &mq->pre_cache); + + if (unlikely(!e)) { + DMWARN("couldn't pop from pre cache"); + return; + } + + e->dirty = false; + e->oblock = oblock; + e->hit_count = 1; + e->generation = mq->generation; + push(mq, e); +} + +static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock, + struct policy_result *result) +{ + int r; + struct entry *e; + + if (epool_empty(&mq->cache_pool)) { + result->op = POLICY_REPLACE; + r = demote_cblock(mq, &result->old_oblock); + if (unlikely(r)) { + result->op = POLICY_MISS; + insert_in_pre_cache(mq, oblock); + return; + } + + /* + * This will always succeed, since we've just demoted. + */ + e = alloc_entry(&mq->cache_pool); + BUG_ON(!e); + + } else { + e = alloc_entry(&mq->cache_pool); + result->op = POLICY_NEW; + } + + e->oblock = oblock; + e->dirty = false; + e->hit_count = 1; + e->generation = mq->generation; + push(mq, e); + + result->cblock = infer_cblock(&mq->cache_pool, e); +} + +static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock, + bool can_migrate, bool discarded_oblock, + int data_dir, struct policy_result *result) +{ + if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) <= 1) { + if (can_migrate) + insert_in_cache(mq, oblock, result); + else + return -EWOULDBLOCK; + } else { + insert_in_pre_cache(mq, oblock); + result->op = POLICY_MISS; + } + + return 0; +} + +/* + * Looks the oblock up in the hash table, then decides whether to put in + * pre_cache, or cache etc. + */ +static int map(struct mq_policy *mq, dm_oblock_t oblock, + bool can_migrate, bool discarded_oblock, + int data_dir, struct policy_result *result) +{ + int r = 0; + struct entry *e = hash_lookup(mq, oblock); + + if (e && in_cache(mq, e)) + r = cache_entry_found(mq, e, result); + + else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL) + result->op = POLICY_MISS; + + else if (e) + r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock, + data_dir, result); + + else + r = no_entry_found(mq, oblock, can_migrate, discarded_oblock, + data_dir, result); + + if (r == -EWOULDBLOCK) + result->op = POLICY_MISS; + + return r; +} + +/*----------------------------------------------------------------*/ + +/* + * Public interface, via the policy struct. See dm-cache-policy.h for a + * description of these. + */ + +static struct mq_policy *to_mq_policy(struct dm_cache_policy *p) +{ + return container_of(p, struct mq_policy, policy); +} + +static void mq_destroy(struct dm_cache_policy *p) +{ + struct mq_policy *mq = to_mq_policy(p); + + vfree(mq->table); + epool_exit(&mq->cache_pool); + epool_exit(&mq->pre_cache_pool); + kfree(mq); +} + +static void copy_tick(struct mq_policy *mq) +{ + unsigned long flags; + + spin_lock_irqsave(&mq->tick_lock, flags); + mq->tick = mq->tick_protected; + spin_unlock_irqrestore(&mq->tick_lock, flags); +} + +static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock, + bool can_block, bool can_migrate, bool discarded_oblock, + struct bio *bio, struct policy_result *result) +{ + int r; + struct mq_policy *mq = to_mq_policy(p); + + result->op = POLICY_MISS; + + if (can_block) + mutex_lock(&mq->lock); + else if (!mutex_trylock(&mq->lock)) + return -EWOULDBLOCK; + + copy_tick(mq); + + iot_examine_bio(&mq->tracker, bio); + r = map(mq, oblock, can_migrate, discarded_oblock, + bio_data_dir(bio), result); + + mutex_unlock(&mq->lock); + + return r; +} + +static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) +{ + int r; + struct mq_policy *mq = to_mq_policy(p); + struct entry *e; + + if (!mutex_trylock(&mq->lock)) + return -EWOULDBLOCK; + + e = hash_lookup(mq, oblock); + if (e && in_cache(mq, e)) { + *cblock = infer_cblock(&mq->cache_pool, e); + r = 0; + } else + r = -ENOENT; + + mutex_unlock(&mq->lock); + + return r; +} + +static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set) +{ + struct entry *e; + + e = hash_lookup(mq, oblock); + BUG_ON(!e || !in_cache(mq, e)); + + del(mq, e); + e->dirty = set; + push(mq, e); +} + +static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) +{ + struct mq_policy *mq = to_mq_policy(p); + + mutex_lock(&mq->lock); + __mq_set_clear_dirty(mq, oblock, true); + mutex_unlock(&mq->lock); +} + +static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) +{ + struct mq_policy *mq = to_mq_policy(p); + + mutex_lock(&mq->lock); + __mq_set_clear_dirty(mq, oblock, false); + mutex_unlock(&mq->lock); +} + +static int mq_load_mapping(struct dm_cache_policy *p, + dm_oblock_t oblock, dm_cblock_t cblock, + uint32_t hint, bool hint_valid) +{ + struct mq_policy *mq = to_mq_policy(p); + struct entry *e; + + e = alloc_particular_entry(&mq->cache_pool, cblock); + e->oblock = oblock; + e->dirty = false; /* this gets corrected in a minute */ + e->hit_count = hint_valid ? hint : 1; + e->generation = mq->generation; + push(mq, e); + + return 0; +} + +static int mq_save_hints(struct mq_policy *mq, struct queue *q, + policy_walk_fn fn, void *context) +{ + int r; + unsigned level; + struct entry *e; + + for (level = 0; level < NR_QUEUE_LEVELS; level++) + list_for_each_entry(e, q->qs + level, list) { + r = fn(context, infer_cblock(&mq->cache_pool, e), + e->oblock, e->hit_count); + if (r) + return r; + } + + return 0; +} + +static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, + void *context) +{ + struct mq_policy *mq = to_mq_policy(p); + int r = 0; + + mutex_lock(&mq->lock); + + r = mq_save_hints(mq, &mq->cache_clean, fn, context); + if (!r) + r = mq_save_hints(mq, &mq->cache_dirty, fn, context); + + mutex_unlock(&mq->lock); + + return r; +} + +static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock) +{ + struct entry *e; + + e = hash_lookup(mq, oblock); + BUG_ON(!e || !in_cache(mq, e)); + + del(mq, e); + free_entry(&mq->cache_pool, e); +} + +static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) +{ + struct mq_policy *mq = to_mq_policy(p); + + mutex_lock(&mq->lock); + __remove_mapping(mq, oblock); + mutex_unlock(&mq->lock); +} + +static int __remove_cblock(struct mq_policy *mq, dm_cblock_t cblock) +{ + struct entry *e = epool_find(&mq->cache_pool, cblock); + + if (!e) + return -ENODATA; + + del(mq, e); + free_entry(&mq->cache_pool, e); + + return 0; +} + +static int mq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock) +{ + int r; + struct mq_policy *mq = to_mq_policy(p); + + mutex_lock(&mq->lock); + r = __remove_cblock(mq, cblock); + mutex_unlock(&mq->lock); + + return r; +} + +static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock, + dm_cblock_t *cblock) +{ + struct entry *e = pop(mq, &mq->cache_dirty); + + if (!e) + return -ENODATA; + + *oblock = e->oblock; + *cblock = infer_cblock(&mq->cache_pool, e); + e->dirty = false; + push(mq, e); + + return 0; +} + +static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock, + dm_cblock_t *cblock) +{ + int r; + struct mq_policy *mq = to_mq_policy(p); + + mutex_lock(&mq->lock); + r = __mq_writeback_work(mq, oblock, cblock); + mutex_unlock(&mq->lock); + + return r; +} + +static void __force_mapping(struct mq_policy *mq, + dm_oblock_t current_oblock, dm_oblock_t new_oblock) +{ + struct entry *e = hash_lookup(mq, current_oblock); + + if (e && in_cache(mq, e)) { + del(mq, e); + e->oblock = new_oblock; + e->dirty = true; + push(mq, e); + } +} + +static void mq_force_mapping(struct dm_cache_policy *p, + dm_oblock_t current_oblock, dm_oblock_t new_oblock) +{ + struct mq_policy *mq = to_mq_policy(p); + + mutex_lock(&mq->lock); + __force_mapping(mq, current_oblock, new_oblock); + mutex_unlock(&mq->lock); +} + +static dm_cblock_t mq_residency(struct dm_cache_policy *p) +{ + dm_cblock_t r; + struct mq_policy *mq = to_mq_policy(p); + + mutex_lock(&mq->lock); + r = to_cblock(mq->cache_pool.nr_allocated); + mutex_unlock(&mq->lock); + + return r; +} + +static void mq_tick(struct dm_cache_policy *p) +{ + struct mq_policy *mq = to_mq_policy(p); + unsigned long flags; + + spin_lock_irqsave(&mq->tick_lock, flags); + mq->tick_protected++; + spin_unlock_irqrestore(&mq->tick_lock, flags); +} + +static int mq_set_config_value(struct dm_cache_policy *p, + const char *key, const char *value) +{ + struct mq_policy *mq = to_mq_policy(p); + unsigned long tmp; + + if (kstrtoul(value, 10, &tmp)) + return -EINVAL; + + if (!strcasecmp(key, "random_threshold")) { + mq->tracker.thresholds[PATTERN_RANDOM] = tmp; + + } else if (!strcasecmp(key, "sequential_threshold")) { + mq->tracker.thresholds[PATTERN_SEQUENTIAL] = tmp; + + } else if (!strcasecmp(key, "discard_promote_adjustment")) + mq->discard_promote_adjustment = tmp; + + else if (!strcasecmp(key, "read_promote_adjustment")) + mq->read_promote_adjustment = tmp; + + else if (!strcasecmp(key, "write_promote_adjustment")) + mq->write_promote_adjustment = tmp; + + else + return -EINVAL; + + return 0; +} + +static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen) +{ + ssize_t sz = 0; + struct mq_policy *mq = to_mq_policy(p); + + DMEMIT("10 random_threshold %u " + "sequential_threshold %u " + "discard_promote_adjustment %u " + "read_promote_adjustment %u " + "write_promote_adjustment %u", + mq->tracker.thresholds[PATTERN_RANDOM], + mq->tracker.thresholds[PATTERN_SEQUENTIAL], + mq->discard_promote_adjustment, + mq->read_promote_adjustment, + mq->write_promote_adjustment); + + return 0; +} + +/* Init the policy plugin interface function pointers. */ +static void init_policy_functions(struct mq_policy *mq) +{ + mq->policy.destroy = mq_destroy; + mq->policy.map = mq_map; + mq->policy.lookup = mq_lookup; + mq->policy.set_dirty = mq_set_dirty; + mq->policy.clear_dirty = mq_clear_dirty; + mq->policy.load_mapping = mq_load_mapping; + mq->policy.walk_mappings = mq_walk_mappings; + mq->policy.remove_mapping = mq_remove_mapping; + mq->policy.remove_cblock = mq_remove_cblock; + mq->policy.writeback_work = mq_writeback_work; + mq->policy.force_mapping = mq_force_mapping; + mq->policy.residency = mq_residency; + mq->policy.tick = mq_tick; + mq->policy.emit_config_values = mq_emit_config_values; + mq->policy.set_config_value = mq_set_config_value; +} + +static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, + sector_t origin_size, + sector_t cache_block_size) +{ + struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); + + if (!mq) + return NULL; + + init_policy_functions(mq); + iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT); + mq->cache_size = cache_size; + + if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) { + DMERR("couldn't initialize pool of pre-cache entries"); + goto bad_pre_cache_init; + } + + if (epool_init(&mq->cache_pool, from_cblock(cache_size))) { + DMERR("couldn't initialize pool of cache entries"); + goto bad_cache_init; + } + + mq->tick_protected = 0; + mq->tick = 0; + mq->hit_count = 0; + mq->generation = 0; + mq->promote_threshold = 0; + mq->discard_promote_adjustment = DEFAULT_DISCARD_PROMOTE_ADJUSTMENT; + mq->read_promote_adjustment = DEFAULT_READ_PROMOTE_ADJUSTMENT; + mq->write_promote_adjustment = DEFAULT_WRITE_PROMOTE_ADJUSTMENT; + mutex_init(&mq->lock); + spin_lock_init(&mq->tick_lock); + + queue_init(&mq->pre_cache); + queue_init(&mq->cache_clean); + queue_init(&mq->cache_dirty); + + mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U); + + mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16); + mq->hash_bits = ffs(mq->nr_buckets) - 1; + mq->table = vzalloc(sizeof(*mq->table) * mq->nr_buckets); + if (!mq->table) + goto bad_alloc_table; + + return &mq->policy; + +bad_alloc_table: + epool_exit(&mq->cache_pool); +bad_cache_init: + epool_exit(&mq->pre_cache_pool); +bad_pre_cache_init: + kfree(mq); + + return NULL; +} + +/*----------------------------------------------------------------*/ + +static struct dm_cache_policy_type mq_policy_type = { + .name = "mq", + .version = {1, 2, 0}, + .hint_size = 4, + .owner = THIS_MODULE, + .create = mq_create +}; + +static struct dm_cache_policy_type default_policy_type = { + .name = "default", + .version = {1, 2, 0}, + .hint_size = 4, + .owner = THIS_MODULE, + .create = mq_create, + .real = &mq_policy_type +}; + +static int __init mq_init(void) +{ + int r; + + mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry", + sizeof(struct entry), + __alignof__(struct entry), + 0, NULL); + if (!mq_entry_cache) + goto bad; + + r = dm_cache_policy_register(&mq_policy_type); + if (r) { + DMERR("register failed %d", r); + goto bad_register_mq; + } + + r = dm_cache_policy_register(&default_policy_type); + if (!r) { + DMINFO("version %u.%u.%u loaded", + mq_policy_type.version[0], + mq_policy_type.version[1], + mq_policy_type.version[2]); + return 0; + } + + DMERR("register failed (as default) %d", r); + + dm_cache_policy_unregister(&mq_policy_type); +bad_register_mq: + kmem_cache_destroy(mq_entry_cache); +bad: + return -ENOMEM; +} + +static void __exit mq_exit(void) +{ + dm_cache_policy_unregister(&mq_policy_type); + dm_cache_policy_unregister(&default_policy_type); + + kmem_cache_destroy(mq_entry_cache); +} + +module_init(mq_init); +module_exit(mq_exit); + +MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("mq cache policy"); + +MODULE_ALIAS("dm-cache-default"); diff --git a/drivers/md/dm-cache-policy.c b/drivers/md/dm-cache-policy.c new file mode 100644 index 00000000000..c1a3cee99b4 --- /dev/null +++ b/drivers/md/dm-cache-policy.c @@ -0,0 +1,173 @@ +/* + * Copyright (C) 2012 Red Hat. All rights reserved. + * + * This file is released under the GPL. + */ + +#include "dm-cache-policy-internal.h" +#include "dm.h" + +#include <linux/module.h> +#include <linux/slab.h> + +/*----------------------------------------------------------------*/ + +#define DM_MSG_PREFIX "cache-policy" + +static DEFINE_SPINLOCK(register_lock); +static LIST_HEAD(register_list); + +static struct dm_cache_policy_type *__find_policy(const char *name) +{ + struct dm_cache_policy_type *t; + + list_for_each_entry(t, ®ister_list, list) + if (!strcmp(t->name, name)) + return t; + + return NULL; +} + +static struct dm_cache_policy_type *__get_policy_once(const char *name) +{ + struct dm_cache_policy_type *t = __find_policy(name); + + if (t && !try_module_get(t->owner)) { + DMWARN("couldn't get module %s", name); + t = ERR_PTR(-EINVAL); + } + + return t; +} + +static struct dm_cache_policy_type *get_policy_once(const char *name) +{ + struct dm_cache_policy_type *t; + + spin_lock(®ister_lock); + t = __get_policy_once(name); + spin_unlock(®ister_lock); + + return t; +} + +static struct dm_cache_policy_type *get_policy(const char *name) +{ + struct dm_cache_policy_type *t; + + t = get_policy_once(name); + if (IS_ERR(t)) + return NULL; + + if (t) + return t; + + request_module("dm-cache-%s", name); + + t = get_policy_once(name); + if (IS_ERR(t)) + return NULL; + + return t; +} + +static void put_policy(struct dm_cache_policy_type *t) +{ + module_put(t->owner); +} + +int dm_cache_policy_register(struct dm_cache_policy_type *type) +{ + int r; + + /* One size fits all for now */ + if (type->hint_size != 0 && type->hint_size != 4) { + DMWARN("hint size must be 0 or 4 but %llu supplied.", (unsigned long long) type->hint_size); + return -EINVAL; + } + + spin_lock(®ister_lock); + if (__find_policy(type->name)) { + DMWARN("attempt to register policy under duplicate name %s", type->name); + r = -EINVAL; + } else { + list_add(&type->list, ®ister_list); + r = 0; + } + spin_unlock(®ister_lock); + + return r; +} +EXPORT_SYMBOL_GPL(dm_cache_policy_register); + +void dm_cache_policy_unregister(struct dm_cache_policy_type *type) +{ + spin_lock(®ister_lock); + list_del_init(&type->list); + spin_unlock(®ister_lock); +} +EXPORT_SYMBOL_GPL(dm_cache_policy_unregister); + +struct dm_cache_policy *dm_cache_policy_create(const char *name, + dm_cblock_t cache_size, + sector_t origin_size, + sector_t cache_block_size) +{ + struct dm_cache_policy *p = NULL; + struct dm_cache_policy_type *type; + + type = get_policy(name); + if (!type) { + DMWARN("unknown policy type"); + return ERR_PTR(-EINVAL); + } + + p = type->create(cache_size, origin_size, cache_block_size); + if (!p) { + put_policy(type); + return ERR_PTR(-ENOMEM); + } + p->private = type; + + return p; +} +EXPORT_SYMBOL_GPL(dm_cache_policy_create); + +void dm_cache_policy_destroy(struct dm_cache_policy *p) +{ + struct dm_cache_policy_type *t = p->private; + + p->destroy(p); + put_policy(t); +} +EXPORT_SYMBOL_GPL(dm_cache_policy_destroy); + +const char *dm_cache_policy_get_name(struct dm_cache_policy *p) +{ + struct dm_cache_policy_type *t = p->private; + + /* if t->real is set then an alias was used (e.g. "default") */ + if (t->real) + return t->real->name; + + return t->name; +} +EXPORT_SYMBOL_GPL(dm_cache_policy_get_name); + +const unsigned *dm_cache_policy_get_version(struct dm_cache_policy *p) +{ + struct dm_cache_policy_type *t = p->private; + + return t->version; +} +EXPORT_SYMBOL_GPL(dm_cache_policy_get_version); + +size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p) +{ + struct dm_cache_policy_type *t = p->private; + + return t->hint_size; +} +EXPORT_SYMBOL_GPL(dm_cache_policy_get_hint_size); + +/*----------------------------------------------------------------*/ diff --git a/drivers/md/dm-cache-policy.h b/drivers/md/dm-cache-policy.h new file mode 100644 index 00000000000..f50fe360c54 --- /dev/null +++ b/drivers/md/dm-cache-policy.h @@ -0,0 +1,249 @@ +/* + * Copyright (C) 2012 Red Hat. All rights reserved. + * + * This file is released under the GPL. + */ + +#ifndef DM_CACHE_POLICY_H +#define DM_CACHE_POLICY_H + +#include "dm-cache-block-types.h" + +#include <linux/device-mapper.h> + +/*----------------------------------------------------------------*/ + +/* FIXME: make it clear which methods are optional. Get debug policy to + * double check this at start. + */ + +/* + * The cache policy makes the important decisions about which blocks get to + * live on the faster cache device. + * + * When the core target has to remap a bio it calls the 'map' method of the + * policy. This returns an instruction telling the core target what to do. + * + * POLICY_HIT: + * That block is in the cache. Remap to the cache and carry on. + * + * POLICY_MISS: + * This block is on the origin device. Remap and carry on. + * + * POLICY_NEW: + * This block is currently on the origin device, but the policy wants to + * move it. The core should: + * + * - hold any further io to this origin block + * - copy the origin to the given cache block + * - release all the held blocks + * - remap the original block to the cache + * + * POLICY_REPLACE: + * This block is currently on the origin device. The policy wants to + * move it to the cache, with the added complication that the destination + * cache block needs a writeback first. The core should: + * + * - hold any further io to this origin block + * - hold any further io to the origin block that's being written back + * - writeback + * - copy new block to cache + * - release held blocks + * - remap bio to cache and reissue. + * + * Should the core run into trouble while processing a POLICY_NEW or + * POLICY_REPLACE instruction it will roll back the policies mapping using + * remove_mapping() or force_mapping(). These methods must not fail. This + * approach avoids having transactional semantics in the policy (ie, the + * core informing the policy when a migration is complete), and hence makes + * it easier to write new policies. + * + * In general policy methods should never block, except in the case of the + * map function when can_migrate is set. So be careful to implement using + * bounded, preallocated memory. + */ +enum policy_operation { + POLICY_HIT, + POLICY_MISS, + POLICY_NEW, + POLICY_REPLACE +}; + +/* + * This is the instruction passed back to the core target. + */ +struct policy_result { + enum policy_operation op; + dm_oblock_t old_oblock; /* POLICY_REPLACE */ + dm_cblock_t cblock; /* POLICY_HIT, POLICY_NEW, POLICY_REPLACE */ +}; + +typedef int (*policy_walk_fn)(void *context, dm_cblock_t cblock, + dm_oblock_t oblock, uint32_t hint); + +/* + * The cache policy object. Just a bunch of methods. It is envisaged that + * this structure will be embedded in a bigger, policy specific structure + * (ie. use container_of()). + */ +struct dm_cache_policy { + + /* + * FIXME: make it clear which methods are optional, and which may + * block. + */ + + /* + * Destroys this object. + */ + void (*destroy)(struct dm_cache_policy *p); + + /* + * See large comment above. + * + * oblock - the origin block we're interested in. + * + * can_block - indicates whether the current thread is allowed to + * block. -EWOULDBLOCK returned if it can't and would. + * + * can_migrate - gives permission for POLICY_NEW or POLICY_REPLACE + * instructions. If denied and the policy would have + * returned one of these instructions it should + * return -EWOULDBLOCK. + * + * discarded_oblock - indicates whether the whole origin block is + * in a discarded state (FIXME: better to tell the + * policy about this sooner, so it can recycle that + * cache block if it wants.) + * bio - the bio that triggered this call. + * result - gets filled in with the instruction. + * + * May only return 0, or -EWOULDBLOCK (if !can_migrate) + */ + int (*map)(struct dm_cache_policy *p, dm_oblock_t oblock, + bool can_block, bool can_migrate, bool discarded_oblock, + struct bio *bio, struct policy_result *result); + + /* + * Sometimes we want to see if a block is in the cache, without + * triggering any update of stats. (ie. it's not a real hit). + * + * Must not block. + * + * Returns 0 if in cache, -ENOENT if not, < 0 for other errors + * (-EWOULDBLOCK would be typical). + */ + int (*lookup)(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock); + + void (*set_dirty)(struct dm_cache_policy *p, dm_oblock_t oblock); + void (*clear_dirty)(struct dm_cache_policy *p, dm_oblock_t oblock); + + /* + * Called when a cache target is first created. Used to load a + * mapping from the metadata device into the policy. + */ + int (*load_mapping)(struct dm_cache_policy *p, dm_oblock_t oblock, + dm_cblock_t cblock, uint32_t hint, bool hint_valid); + + int (*walk_mappings)(struct dm_cache_policy *p, policy_walk_fn fn, + void *context); + + /* + * Override functions used on the error paths of the core target. + * They must succeed. + */ + void (*remove_mapping)(struct dm_cache_policy *p, dm_oblock_t oblock); + void (*force_mapping)(struct dm_cache_policy *p, dm_oblock_t current_oblock, + dm_oblock_t new_oblock); + + /* + * This is called via the invalidate_cblocks message. It is + * possible the particular cblock has already been removed due to a + * write io in passthrough mode. In which case this should return + * -ENODATA. + */ + int (*remove_cblock)(struct dm_cache_policy *p, dm_cblock_t cblock); + + /* + * Provide a dirty block to be written back by the core target. + * + * Returns: + * + * 0 and @cblock,@oblock: block to write back provided + * + * -ENODATA: no dirty blocks available + */ + int (*writeback_work)(struct dm_cache_policy *p, dm_oblock_t *oblock, dm_cblock_t *cblock); + + /* + * How full is the cache? + */ + dm_cblock_t (*residency)(struct dm_cache_policy *p); + + /* + * Because of where we sit in the block layer, we can be asked to + * map a lot of little bios that are all in the same block (no + * queue merging has occurred). To stop the policy being fooled by + * these the core target sends regular tick() calls to the policy. + * The policy should only count an entry as hit once per tick. + */ + void (*tick)(struct dm_cache_policy *p); + + /* + * Configuration. + */ + int (*emit_config_values)(struct dm_cache_policy *p, + char *result, unsigned maxlen); + int (*set_config_value)(struct dm_cache_policy *p, + const char *key, const char *value); + + /* + * Book keeping ptr for the policy register, not for general use. + */ + void *private; +}; + +/*----------------------------------------------------------------*/ + +/* + * We maintain a little register of the different policy types. + */ +#define CACHE_POLICY_NAME_SIZE 16 +#define CACHE_POLICY_VERSION_SIZE 3 + +struct dm_cache_policy_type { + /* For use by the register code only. */ + struct list_head list; + + /* + * Policy writers should fill in these fields. The name field is + * what gets passed on the target line to select your policy. + */ + char name[CACHE_POLICY_NAME_SIZE]; + unsigned version[CACHE_POLICY_VERSION_SIZE]; + + /* + * For use by an alias dm_cache_policy_type to point to the + * real dm_cache_policy_type. + */ + struct dm_cache_policy_type *real; + + /* + * Policies may store a hint for each each cache block. + * Currently the size of this hint must be 0 or 4 bytes but we + * expect to relax this in future. + */ + size_t hint_size; + + struct module *owner; + struct dm_cache_policy *(*create)(dm_cblock_t cache_size, + sector_t origin_size, + sector_t block_size); +}; + +int dm_cache_policy_register(struct dm_cache_policy_type *type); +void dm_cache_policy_unregister(struct dm_cache_policy_type *type); + +/*----------------------------------------------------------------*/ + +#endif /* DM_CACHE_POLICY_H */ diff --git a/drivers/md/dm-cache-target.c b/drivers/md/dm-cache-target.c new file mode 100644 index 00000000000..2c63326638b --- /dev/null +++ b/drivers/md/dm-cache-target.c @@ -0,0 +1,3121 @@ +/* + * Copyright (C) 2012 Red Hat. All rights reserved. + * + * This file is released under the GPL. + */ + +#include "dm.h" +#include "dm-bio-prison.h" +#include "dm-bio-record.h" +#include "dm-cache-metadata.h" + +#include <linux/dm-io.h> +#include <linux/dm-kcopyd.h> +#include <linux/init.h> +#include <linux/mempool.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> + +#define DM_MSG_PREFIX "cache" + +DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, + "A percentage of time allocated for copying to and/or from cache"); + +/*----------------------------------------------------------------*/ + +/* + * Glossary: + * + * oblock: index of an origin block + * cblock: index of a cache block + * promotion: movement of a block from origin to cache + * demotion: movement of a block from cache to origin + * migration: movement of a block between the origin and cache device, + * either direction + */ + +/*----------------------------------------------------------------*/ + +static size_t bitset_size_in_bytes(unsigned nr_entries) +{ + return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); +} + +static unsigned long *alloc_bitset(unsigned nr_entries) +{ + size_t s = bitset_size_in_bytes(nr_entries); + return vzalloc(s); +} + +static void clear_bitset(void *bitset, unsigned nr_entries) +{ + size_t s = bitset_size_in_bytes(nr_entries); + memset(bitset, 0, s); +} + +static void free_bitset(unsigned long *bits) +{ + vfree(bits); +} + +/*----------------------------------------------------------------*/ + +/* + * There are a couple of places where we let a bio run, but want to do some + * work before calling its endio function. We do this by temporarily + * changing the endio fn. + */ +struct dm_hook_info { + bio_end_io_t *bi_end_io; + void *bi_private; +}; + +static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, + bio_end_io_t *bi_end_io, void *bi_private) +{ + h->bi_end_io = bio->bi_end_io; + h->bi_private = bio->bi_private; + + bio->bi_end_io = bi_end_io; + bio->bi_private = bi_private; +} + +static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) +{ + bio->bi_end_io = h->bi_end_io; + bio->bi_private = h->bi_private; + + /* + * Must bump bi_remaining to allow bio to complete with + * restored bi_end_io. + */ + atomic_inc(&bio->bi_remaining); +} + +/*----------------------------------------------------------------*/ + +#define PRISON_CELLS 1024 +#define MIGRATION_POOL_SIZE 128 +#define COMMIT_PERIOD HZ +#define MIGRATION_COUNT_WINDOW 10 + +/* + * The block size of the device holding cache data must be + * between 32KB and 1GB. + */ +#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) +#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) + +/* + * FIXME: the cache is read/write for the time being. + */ +enum cache_metadata_mode { + CM_WRITE, /* metadata may be changed */ + CM_READ_ONLY, /* metadata may not be changed */ +}; + +enum cache_io_mode { + /* + * Data is written to cached blocks only. These blocks are marked + * dirty. If you lose the cache device you will lose data. + * Potential performance increase for both reads and writes. + */ + CM_IO_WRITEBACK, + + /* + * Data is written to both cache and origin. Blocks are never + * dirty. Potential performance benfit for reads only. + */ + CM_IO_WRITETHROUGH, + + /* + * A degraded mode useful for various cache coherency situations + * (eg, rolling back snapshots). Reads and writes always go to the + * origin. If a write goes to a cached oblock, then the cache + * block is invalidated. + */ + CM_IO_PASSTHROUGH +}; + +struct cache_features { + enum cache_metadata_mode mode; + enum cache_io_mode io_mode; +}; + +struct cache_stats { + atomic_t read_hit; + atomic_t read_miss; + atomic_t write_hit; + atomic_t write_miss; + atomic_t demotion; + atomic_t promotion; + atomic_t copies_avoided; + atomic_t cache_cell_clash; + atomic_t commit_count; + atomic_t discard_count; +}; + +/* + * Defines a range of cblocks, begin to (end - 1) are in the range. end is + * the one-past-the-end value. + */ +struct cblock_range { + dm_cblock_t begin; + dm_cblock_t end; +}; + +struct invalidation_request { + struct list_head list; + struct cblock_range *cblocks; + + atomic_t complete; + int err; + + wait_queue_head_t result_wait; +}; + +struct cache { + struct dm_target *ti; + struct dm_target_callbacks callbacks; + + struct dm_cache_metadata *cmd; + + /* + * Metadata is written to this device. + */ + struct dm_dev *metadata_dev; + + /* + * The slower of the two data devices. Typically a spindle. + */ + struct dm_dev *origin_dev; + + /* + * The faster of the two data devices. Typically an SSD. + */ + struct dm_dev *cache_dev; + + /* + * Size of the origin device in _complete_ blocks and native sectors. + */ + dm_oblock_t origin_blocks; + sector_t origin_sectors; + + /* + * Size of the cache device in blocks. + */ + dm_cblock_t cache_size; + + /* + * Fields for converting from sectors to blocks. + */ + uint32_t sectors_per_block; + int sectors_per_block_shift; + + spinlock_t lock; + struct bio_list deferred_bios; + struct bio_list deferred_flush_bios; + struct bio_list deferred_writethrough_bios; + struct list_head quiesced_migrations; + struct list_head completed_migrations; + struct list_head need_commit_migrations; + sector_t migration_threshold; + wait_queue_head_t migration_wait; + atomic_t nr_migrations; + + wait_queue_head_t quiescing_wait; + atomic_t quiescing; + atomic_t quiescing_ack; + + /* + * cache_size entries, dirty if set + */ + atomic_t nr_dirty; + unsigned long *dirty_bitset; + + /* + * origin_blocks entries, discarded if set. + */ + dm_oblock_t discard_nr_blocks; + unsigned long *discard_bitset; + + /* + * Rather than reconstructing the table line for the status we just + * save it and regurgitate. + */ + unsigned nr_ctr_args; + const char **ctr_args; + + struct dm_kcopyd_client *copier; + struct workqueue_struct *wq; + struct work_struct worker; + + struct delayed_work waker; + unsigned long last_commit_jiffies; + + struct dm_bio_prison *prison; + struct dm_deferred_set *all_io_ds; + + mempool_t *migration_pool; + struct dm_cache_migration *next_migration; + + struct dm_cache_policy *policy; + unsigned policy_nr_args; + + bool need_tick_bio:1; + bool sized:1; + bool invalidate:1; + bool commit_requested:1; + bool loaded_mappings:1; + bool loaded_discards:1; + + /* + * Cache features such as write-through. + */ + struct cache_features features; + + struct cache_stats stats; + + /* + * Invalidation fields. + */ + spinlock_t invalidation_lock; + struct list_head invalidation_requests; +}; + +struct per_bio_data { + bool tick:1; + unsigned req_nr:2; + struct dm_deferred_entry *all_io_entry; + struct dm_hook_info hook_info; + + /* + * writethrough fields. These MUST remain at the end of this + * structure and the 'cache' member must be the first as it + * is used to determine the offset of the writethrough fields. + */ + struct cache *cache; + dm_cblock_t cblock; + struct dm_bio_details bio_details; +}; + +struct dm_cache_migration { + struct list_head list; + struct cache *cache; + + unsigned long start_jiffies; + dm_oblock_t old_oblock; + dm_oblock_t new_oblock; + dm_cblock_t cblock; + + bool err:1; + bool writeback:1; + bool demote:1; + bool promote:1; + bool requeue_holder:1; + bool invalidate:1; + + struct dm_bio_prison_cell *old_ocell; + struct dm_bio_prison_cell *new_ocell; +}; + +/* + * Processing a bio in the worker thread may require these memory + * allocations. We prealloc to avoid deadlocks (the same worker thread + * frees them back to the mempool). + */ +struct prealloc { + struct dm_cache_migration *mg; + struct dm_bio_prison_cell *cell1; + struct dm_bio_prison_cell *cell2; +}; + +static void wake_worker(struct cache *cache) +{ + queue_work(cache->wq, &cache->worker); +} + +/*----------------------------------------------------------------*/ + +static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache) +{ + /* FIXME: change to use a local slab. */ + return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT); +} + +static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell) +{ + dm_bio_prison_free_cell(cache->prison, cell); +} + +static int prealloc_data_structs(struct cache *cache, struct prealloc *p) +{ + if (!p->mg) { + p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT); + if (!p->mg) + return -ENOMEM; + } + + if (!p->cell1) { + p->cell1 = alloc_prison_cell(cache); + if (!p->cell1) + return -ENOMEM; + } + + if (!p->cell2) { + p->cell2 = alloc_prison_cell(cache); + if (!p->cell2) + return -ENOMEM; + } + + return 0; +} + +static void prealloc_free_structs(struct cache *cache, struct prealloc *p) +{ + if (p->cell2) + free_prison_cell(cache, p->cell2); + + if (p->cell1) + free_prison_cell(cache, p->cell1); + + if (p->mg) + mempool_free(p->mg, cache->migration_pool); +} + +static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p) +{ + struct dm_cache_migration *mg = p->mg; + + BUG_ON(!mg); + p->mg = NULL; + + return mg; +} + +/* + * You must have a cell within the prealloc struct to return. If not this + * function will BUG() rather than returning NULL. + */ +static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p) +{ + struct dm_bio_prison_cell *r = NULL; + + if (p->cell1) { + r = p->cell1; + p->cell1 = NULL; + + } else if (p->cell2) { + r = p->cell2; + p->cell2 = NULL; + } else + BUG(); + + return r; +} + +/* + * You can't have more than two cells in a prealloc struct. BUG() will be + * called if you try and overfill. + */ +static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell) +{ + if (!p->cell2) + p->cell2 = cell; + + else if (!p->cell1) + p->cell1 = cell; + + else + BUG(); +} + +/*----------------------------------------------------------------*/ + +static void build_key(dm_oblock_t oblock, struct dm_cell_key *key) +{ + key->virtual = 0; + key->dev = 0; + key->block = from_oblock(oblock); +} + +/* + * The caller hands in a preallocated cell, and a free function for it. + * The cell will be freed if there's an error, or if it wasn't used because + * a cell with that key already exists. + */ +typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell); + +static int bio_detain(struct cache *cache, dm_oblock_t oblock, + struct bio *bio, struct dm_bio_prison_cell *cell_prealloc, + cell_free_fn free_fn, void *free_context, + struct dm_bio_prison_cell **cell_result) +{ + int r; + struct dm_cell_key key; + + build_key(oblock, &key); + r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result); + if (r) + free_fn(free_context, cell_prealloc); + + return r; +} + +static int get_cell(struct cache *cache, + dm_oblock_t oblock, + struct prealloc *structs, + struct dm_bio_prison_cell **cell_result) +{ + int r; + struct dm_cell_key key; + struct dm_bio_prison_cell *cell_prealloc; + + cell_prealloc = prealloc_get_cell(structs); + + build_key(oblock, &key); + r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result); + if (r) + prealloc_put_cell(structs, cell_prealloc); + + return r; +} + +/*----------------------------------------------------------------*/ + +static bool is_dirty(struct cache *cache, dm_cblock_t b) +{ + return test_bit(from_cblock(b), cache->dirty_bitset); +} + +static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) +{ + if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { + atomic_inc(&cache->nr_dirty); + policy_set_dirty(cache->policy, oblock); + } +} + +static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) +{ + if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { + policy_clear_dirty(cache->policy, oblock); + if (atomic_dec_return(&cache->nr_dirty) == 0) + dm_table_event(cache->ti->table); + } +} + +/*----------------------------------------------------------------*/ + +static bool block_size_is_power_of_two(struct cache *cache) +{ + return cache->sectors_per_block_shift >= 0; +} + +/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */ +#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6 +__always_inline +#endif +static dm_block_t block_div(dm_block_t b, uint32_t n) +{ + do_div(b, n); + + return b; +} + +static void set_discard(struct cache *cache, dm_oblock_t b) +{ + unsigned long flags; + + atomic_inc(&cache->stats.discard_count); + + spin_lock_irqsave(&cache->lock, flags); + set_bit(from_oblock(b), cache->discard_bitset); + spin_unlock_irqrestore(&cache->lock, flags); +} + +static void clear_discard(struct cache *cache, dm_oblock_t b) +{ + unsigned long flags; + + spin_lock_irqsave(&cache->lock, flags); + clear_bit(from_oblock(b), cache->discard_bitset); + spin_unlock_irqrestore(&cache->lock, flags); +} + +static bool is_discarded(struct cache *cache, dm_oblock_t b) +{ + int r; + unsigned long flags; + + spin_lock_irqsave(&cache->lock, flags); + r = test_bit(from_oblock(b), cache->discard_bitset); + spin_unlock_irqrestore(&cache->lock, flags); + + return r; +} + +static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) +{ + int r; + unsigned long flags; + + spin_lock_irqsave(&cache->lock, flags); + r = test_bit(from_oblock(b), cache->discard_bitset); + spin_unlock_irqrestore(&cache->lock, flags); + + return r; +} + +/*----------------------------------------------------------------*/ + +static void load_stats(struct cache *cache) +{ + struct dm_cache_statistics stats; + + dm_cache_metadata_get_stats(cache->cmd, &stats); + atomic_set(&cache->stats.read_hit, stats.read_hits); + atomic_set(&cache->stats.read_miss, stats.read_misses); + atomic_set(&cache->stats.write_hit, stats.write_hits); + atomic_set(&cache->stats.write_miss, stats.write_misses); +} + +static void save_stats(struct cache *cache) +{ + struct dm_cache_statistics stats; + + stats.read_hits = atomic_read(&cache->stats.read_hit); + stats.read_misses = atomic_read(&cache->stats.read_miss); + stats.write_hits = atomic_read(&cache->stats.write_hit); + stats.write_misses = atomic_read(&cache->stats.write_miss); + + dm_cache_metadata_set_stats(cache->cmd, &stats); +} + +/*---------------------------------------------------------------- + * Per bio data + *--------------------------------------------------------------*/ + +/* + * If using writeback, leave out struct per_bio_data's writethrough fields. + */ +#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache)) +#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data)) + +static bool writethrough_mode(struct cache_features *f) +{ + return f->io_mode == CM_IO_WRITETHROUGH; +} + +static bool writeback_mode(struct cache_features *f) +{ + return f->io_mode == CM_IO_WRITEBACK; +} + +static bool passthrough_mode(struct cache_features *f) +{ + return f->io_mode == CM_IO_PASSTHROUGH; +} + +static size_t get_per_bio_data_size(struct cache *cache) +{ + return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB; +} + +static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size) +{ + struct per_bio_data *pb = dm_per_bio_data(bio, data_size); + BUG_ON(!pb); + return pb; +} + +static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size) +{ + struct per_bio_data *pb = get_per_bio_data(bio, data_size); + + pb->tick = false; + pb->req_nr = dm_bio_get_target_bio_nr(bio); + pb->all_io_entry = NULL; + + return pb; +} + +/*---------------------------------------------------------------- + * Remapping + *--------------------------------------------------------------*/ +static void remap_to_origin(struct cache *cache, struct bio *bio) +{ + bio->bi_bdev = cache->origin_dev->bdev; +} + +static void remap_to_cache(struct cache *cache, struct bio *bio, + dm_cblock_t cblock) +{ + sector_t bi_sector = bio->bi_iter.bi_sector; + sector_t block = from_cblock(cblock); + + bio->bi_bdev = cache->cache_dev->bdev; + if (!block_size_is_power_of_two(cache)) + bio->bi_iter.bi_sector = + (block * cache->sectors_per_block) + + sector_div(bi_sector, cache->sectors_per_block); + else + bio->bi_iter.bi_sector = + (block << cache->sectors_per_block_shift) | + (bi_sector & (cache->sectors_per_block - 1)); +} + +static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) +{ + unsigned long flags; + size_t pb_data_size = get_per_bio_data_size(cache); + struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); + + spin_lock_irqsave(&cache->lock, flags); + if (cache->need_tick_bio && + !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) { + pb->tick = true; + cache->need_tick_bio = false; + } + spin_unlock_irqrestore(&cache->lock, flags); +} + +static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, + dm_oblock_t oblock) +{ + check_if_tick_bio_needed(cache, bio); + remap_to_origin(cache, bio); + if (bio_data_dir(bio) == WRITE) + clear_discard(cache, oblock); +} + +static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, + dm_oblock_t oblock, dm_cblock_t cblock) +{ + check_if_tick_bio_needed(cache, bio); + remap_to_cache(cache, bio, cblock); + if (bio_data_dir(bio) == WRITE) { + set_dirty(cache, oblock, cblock); + clear_discard(cache, oblock); + } +} + +static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) +{ + sector_t block_nr = bio->bi_iter.bi_sector; + + if (!block_size_is_power_of_two(cache)) + (void) sector_div(block_nr, cache->sectors_per_block); + else + block_nr >>= cache->sectors_per_block_shift; + + return to_oblock(block_nr); +} + +static int bio_triggers_commit(struct cache *cache, struct bio *bio) +{ + return bio->bi_rw & (REQ_FLUSH | REQ_FUA); +} + +static void issue(struct cache *cache, struct bio *bio) +{ + unsigned long flags; + + if (!bio_triggers_commit(cache, bio)) { + generic_make_request(bio); + return; + } + + /* + * Batch together any bios that trigger commits and then issue a + * single commit for them in do_worker(). + */ + spin_lock_irqsave(&cache->lock, flags); + cache->commit_requested = true; + bio_list_add(&cache->deferred_flush_bios, bio); + spin_unlock_irqrestore(&cache->lock, flags); +} + +static void defer_writethrough_bio(struct cache *cache, struct bio *bio) +{ + unsigned long flags; + + spin_lock_irqsave(&cache->lock, flags); + bio_list_add(&cache->deferred_writethrough_bios, bio); + spin_unlock_irqrestore(&cache->lock, flags); + + wake_worker(cache); +} + +static void writethrough_endio(struct bio *bio, int err) +{ + struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); + + dm_unhook_bio(&pb->hook_info, bio); + + if (err) { + bio_endio(bio, err); + return; + } + + dm_bio_restore(&pb->bio_details, bio); + remap_to_cache(pb->cache, bio, pb->cblock); + + /* + * We can't issue this bio directly, since we're in interrupt + * context. So it gets put on a bio list for processing by the + * worker thread. + */ + defer_writethrough_bio(pb->cache, bio); +} + +/* + * When running in writethrough mode we need to send writes to clean blocks + * to both the cache and origin devices. In future we'd like to clone the + * bio and send them in parallel, but for now we're doing them in + * series as this is easier. + */ +static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio, + dm_oblock_t oblock, dm_cblock_t cblock) +{ + struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); + + pb->cache = cache; + pb->cblock = cblock; + dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL); + dm_bio_record(&pb->bio_details, bio); + + remap_to_origin_clear_discard(pb->cache, bio, oblock); +} + +/*---------------------------------------------------------------- + * Migration processing + * + * Migration covers moving data from the origin device to the cache, or + * vice versa. + *--------------------------------------------------------------*/ +static void free_migration(struct dm_cache_migration *mg) +{ + mempool_free(mg, mg->cache->migration_pool); +} + +static void inc_nr_migrations(struct cache *cache) +{ + atomic_inc(&cache->nr_migrations); +} + +static void dec_nr_migrations(struct cache *cache) +{ + atomic_dec(&cache->nr_migrations); + + /* + * Wake the worker in case we're suspending the target. + */ + wake_up(&cache->migration_wait); +} + +static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, + bool holder) +{ + (holder ? dm_cell_release : dm_cell_release_no_holder) + (cache->prison, cell, &cache->deferred_bios); + free_prison_cell(cache, cell); +} + +static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, + bool holder) +{ + unsigned long flags; + + spin_lock_irqsave(&cache->lock, flags); + __cell_defer(cache, cell, holder); + spin_unlock_irqrestore(&cache->lock, flags); + + wake_worker(cache); +} + +static void cleanup_migration(struct dm_cache_migration *mg) +{ + struct cache *cache = mg->cache; + free_migration(mg); + dec_nr_migrations(cache); +} + +static void migration_failure(struct dm_cache_migration *mg) +{ + struct cache *cache = mg->cache; + + if (mg->writeback) { + DMWARN_LIMIT("writeback failed; couldn't copy block"); + set_dirty(cache, mg->old_oblock, mg->cblock); + cell_defer(cache, mg->old_ocell, false); + + } else if (mg->demote) { + DMWARN_LIMIT("demotion failed; couldn't copy block"); + policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock); + + cell_defer(cache, mg->old_ocell, mg->promote ? false : true); + if (mg->promote) + cell_defer(cache, mg->new_ocell, true); + } else { + DMWARN_LIMIT("promotion failed; couldn't copy block"); + policy_remove_mapping(cache->policy, mg->new_oblock); + cell_defer(cache, mg->new_ocell, true); + } + + cleanup_migration(mg); +} + +static void migration_success_pre_commit(struct dm_cache_migration *mg) +{ + unsigned long flags; + struct cache *cache = mg->cache; + + if (mg->writeback) { + cell_defer(cache, mg->old_ocell, false); + clear_dirty(cache, mg->old_oblock, mg->cblock); + cleanup_migration(mg); + return; + + } else if (mg->demote) { + if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) { + DMWARN_LIMIT("demotion failed; couldn't update on disk metadata"); + policy_force_mapping(cache->policy, mg->new_oblock, + mg->old_oblock); + if (mg->promote) + cell_defer(cache, mg->new_ocell, true); + cleanup_migration(mg); + return; + } + } else { + if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) { + DMWARN_LIMIT("promotion failed; couldn't update on disk metadata"); + policy_remove_mapping(cache->policy, mg->new_oblock); + cleanup_migration(mg); + return; + } + } + + spin_lock_irqsave(&cache->lock, flags); + list_add_tail(&mg->list, &cache->need_commit_migrations); + cache->commit_requested = true; + spin_unlock_irqrestore(&cache->lock, flags); +} + +static void migration_success_post_commit(struct dm_cache_migration *mg) +{ + unsigned long flags; + struct cache *cache = mg->cache; + + if (mg->writeback) { + DMWARN("writeback unexpectedly triggered commit"); + return; + + } else if (mg->demote) { + cell_defer(cache, mg->old_ocell, mg->promote ? false : true); + + if (mg->promote) { + mg->demote = false; + + spin_lock_irqsave(&cache->lock, flags); + list_add_tail(&mg->list, &cache->quiesced_migrations); + spin_unlock_irqrestore(&cache->lock, flags); + + } else { + if (mg->invalidate) + policy_remove_mapping(cache->policy, mg->old_oblock); + cleanup_migration(mg); + } + + } else { + if (mg->requeue_holder) + cell_defer(cache, mg->new_ocell, true); + else { + bio_endio(mg->new_ocell->holder, 0); + cell_defer(cache, mg->new_ocell, false); + } + clear_dirty(cache, mg->new_oblock, mg->cblock); + cleanup_migration(mg); + } +} + +static void copy_complete(int read_err, unsigned long write_err, void *context) +{ + unsigned long flags; + struct dm_cache_migration *mg = (struct dm_cache_migration *) context; + struct cache *cache = mg->cache; + + if (read_err || write_err) + mg->err = true; + + spin_lock_irqsave(&cache->lock, flags); + list_add_tail(&mg->list, &cache->completed_migrations); + spin_unlock_irqrestore(&cache->lock, flags); + + wake_worker(cache); +} + +static void issue_copy_real(struct dm_cache_migration *mg) +{ + int r; + struct dm_io_region o_region, c_region; + struct cache *cache = mg->cache; + sector_t cblock = from_cblock(mg->cblock); + + o_region.bdev = cache->origin_dev->bdev; + o_region.count = cache->sectors_per_block; + + c_region.bdev = cache->cache_dev->bdev; + c_region.sector = cblock * cache->sectors_per_block; + c_region.count = cache->sectors_per_block; + + if (mg->writeback || mg->demote) { + /* demote */ + o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block; + r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg); + } else { + /* promote */ + o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block; + r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg); + } + + if (r < 0) { + DMERR_LIMIT("issuing migration failed"); + migration_failure(mg); + } +} + +static void overwrite_endio(struct bio *bio, int err) +{ + struct dm_cache_migration *mg = bio->bi_private; + struct cache *cache = mg->cache; + size_t pb_data_size = get_per_bio_data_size(cache); + struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); + unsigned long flags; + + dm_unhook_bio(&pb->hook_info, bio); + + if (err) + mg->err = true; + + mg->requeue_holder = false; + + spin_lock_irqsave(&cache->lock, flags); + list_add_tail(&mg->list, &cache->completed_migrations); + spin_unlock_irqrestore(&cache->lock, flags); + + wake_worker(cache); +} + +static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio) +{ + size_t pb_data_size = get_per_bio_data_size(mg->cache); + struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); + + dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); + remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock); + generic_make_request(bio); +} + +static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) +{ + return (bio_data_dir(bio) == WRITE) && + (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); +} + +static void avoid_copy(struct dm_cache_migration *mg) +{ + atomic_inc(&mg->cache->stats.copies_avoided); + migration_success_pre_commit(mg); +} + +static void issue_copy(struct dm_cache_migration *mg) +{ + bool avoid; + struct cache *cache = mg->cache; + + if (mg->writeback || mg->demote) + avoid = !is_dirty(cache, mg->cblock) || + is_discarded_oblock(cache, mg->old_oblock); + else { + struct bio *bio = mg->new_ocell->holder; + + avoid = is_discarded_oblock(cache, mg->new_oblock); + + if (!avoid && bio_writes_complete_block(cache, bio)) { + issue_overwrite(mg, bio); + return; + } + } + + avoid ? avoid_copy(mg) : issue_copy_real(mg); +} + +static void complete_migration(struct dm_cache_migration *mg) +{ + if (mg->err) + migration_failure(mg); + else + migration_success_pre_commit(mg); +} + +static void process_migrations(struct cache *cache, struct list_head *head, + void (*fn)(struct dm_cache_migration *)) +{ + unsigned long flags; + struct list_head list; + struct dm_cache_migration *mg, *tmp; + + INIT_LIST_HEAD(&list); + spin_lock_irqsave(&cache->lock, flags); + list_splice_init(head, &list); + spin_unlock_irqrestore(&cache->lock, flags); + + list_for_each_entry_safe(mg, tmp, &list, list) + fn(mg); +} + +static void __queue_quiesced_migration(struct dm_cache_migration *mg) +{ + list_add_tail(&mg->list, &mg->cache->quiesced_migrations); +} + +static void queue_quiesced_migration(struct dm_cache_migration *mg) +{ + unsigned long flags; + struct cache *cache = mg->cache; + + spin_lock_irqsave(&cache->lock, flags); + __queue_quiesced_migration(mg); + spin_unlock_irqrestore(&cache->lock, flags); + + wake_worker(cache); +} + +static void queue_quiesced_migrations(struct cache *cache, struct list_head *work) +{ + unsigned long flags; + struct dm_cache_migration *mg, *tmp; + + spin_lock_irqsave(&cache->lock, flags); + list_for_each_entry_safe(mg, tmp, work, list) + __queue_quiesced_migration(mg); + spin_unlock_irqrestore(&cache->lock, flags); + + wake_worker(cache); +} + +static void check_for_quiesced_migrations(struct cache *cache, + struct per_bio_data *pb) +{ + struct list_head work; + + if (!pb->all_io_entry) + return; + + INIT_LIST_HEAD(&work); + if (pb->all_io_entry) + dm_deferred_entry_dec(pb->all_io_entry, &work); + + if (!list_empty(&work)) + queue_quiesced_migrations(cache, &work); +} + +static void quiesce_migration(struct dm_cache_migration *mg) +{ + if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list)) + queue_quiesced_migration(mg); +} + +static void promote(struct cache *cache, struct prealloc *structs, + dm_oblock_t oblock, dm_cblock_t cblock, + struct dm_bio_prison_cell *cell) +{ + struct dm_cache_migration *mg = prealloc_get_migration(structs); + + mg->err = false; + mg->writeback = false; + mg->demote = false; + mg->promote = true; + mg->requeue_holder = true; + mg->invalidate = false; + mg->cache = cache; + mg->new_oblock = oblock; + mg->cblock = cblock; + mg->old_ocell = NULL; + mg->new_ocell = cell; + mg->start_jiffies = jiffies; + + inc_nr_migrations(cache); + quiesce_migration(mg); +} + +static void writeback(struct cache *cache, struct prealloc *structs, + dm_oblock_t oblock, dm_cblock_t cblock, + struct dm_bio_prison_cell *cell) +{ + struct dm_cache_migration *mg = prealloc_get_migration(structs); + + mg->err = false; + mg->writeback = true; + mg->demote = false; + mg->promote = false; + mg->requeue_holder = true; + mg->invalidate = false; + mg->cache = cache; + mg->old_oblock = oblock; + mg->cblock = cblock; + mg->old_ocell = cell; + mg->new_ocell = NULL; + mg->start_jiffies = jiffies; + + inc_nr_migrations(cache); + quiesce_migration(mg); +} + +static void demote_then_promote(struct cache *cache, struct prealloc *structs, + dm_oblock_t old_oblock, dm_oblock_t new_oblock, + dm_cblock_t cblock, + struct dm_bio_prison_cell *old_ocell, + struct dm_bio_prison_cell *new_ocell) +{ + struct dm_cache_migration *mg = prealloc_get_migration(structs); + + mg->err = false; + mg->writeback = false; + mg->demote = true; + mg->promote = true; + mg->requeue_holder = true; + mg->invalidate = false; + mg->cache = cache; + mg->old_oblock = old_oblock; + mg->new_oblock = new_oblock; + mg->cblock = cblock; + mg->old_ocell = old_ocell; + mg->new_ocell = new_ocell; + mg->start_jiffies = jiffies; + + inc_nr_migrations(cache); + quiesce_migration(mg); +} + +/* + * Invalidate a cache entry. No writeback occurs; any changes in the cache + * block are thrown away. + */ +static void invalidate(struct cache *cache, struct prealloc *structs, + dm_oblock_t oblock, dm_cblock_t cblock, + struct dm_bio_prison_cell *cell) +{ + struct dm_cache_migration *mg = prealloc_get_migration(structs); + + mg->err = false; + mg->writeback = false; + mg->demote = true; + mg->promote = false; + mg->requeue_holder = true; + mg->invalidate = true; + mg->cache = cache; + mg->old_oblock = oblock; + mg->cblock = cblock; + mg->old_ocell = cell; + mg->new_ocell = NULL; + mg->start_jiffies = jiffies; + + inc_nr_migrations(cache); + quiesce_migration(mg); +} + +/*---------------------------------------------------------------- + * bio processing + *--------------------------------------------------------------*/ +static void defer_bio(struct cache *cache, struct bio *bio) +{ + unsigned long flags; + + spin_lock_irqsave(&cache->lock, flags); + bio_list_add(&cache->deferred_bios, bio); + spin_unlock_irqrestore(&cache->lock, flags); + + wake_worker(cache); +} + +static void process_flush_bio(struct cache *cache, struct bio *bio) +{ + size_t pb_data_size = get_per_bio_data_size(cache); + struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); + + BUG_ON(bio->bi_iter.bi_size); + if (!pb->req_nr) + remap_to_origin(cache, bio); + else + remap_to_cache(cache, bio, 0); + + issue(cache, bio); +} + +/* + * People generally discard large parts of a device, eg, the whole device + * when formatting. Splitting these large discards up into cache block + * sized ios and then quiescing (always neccessary for discard) takes too + * long. + * + * We keep it simple, and allow any size of discard to come in, and just + * mark off blocks on the discard bitset. No passdown occurs! + * + * To implement passdown we need to change the bio_prison such that a cell + * can have a key that spans many blocks. + */ +static void process_discard_bio(struct cache *cache, struct bio *bio) +{ + dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector, + cache->sectors_per_block); + dm_block_t end_block = bio_end_sector(bio); + dm_block_t b; + + end_block = block_div(end_block, cache->sectors_per_block); + + for (b = start_block; b < end_block; b++) + set_discard(cache, to_oblock(b)); + + bio_endio(bio, 0); +} + +static bool spare_migration_bandwidth(struct cache *cache) +{ + sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) * + cache->sectors_per_block; + return current_volume < cache->migration_threshold; +} + +static void inc_hit_counter(struct cache *cache, struct bio *bio) +{ + atomic_inc(bio_data_dir(bio) == READ ? + &cache->stats.read_hit : &cache->stats.write_hit); +} + +static void inc_miss_counter(struct cache *cache, struct bio *bio) +{ + atomic_inc(bio_data_dir(bio) == READ ? + &cache->stats.read_miss : &cache->stats.write_miss); +} + +static void issue_cache_bio(struct cache *cache, struct bio *bio, + struct per_bio_data *pb, + dm_oblock_t oblock, dm_cblock_t cblock) +{ + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); + remap_to_cache_dirty(cache, bio, oblock, cblock); + issue(cache, bio); +} + +static void process_bio(struct cache *cache, struct prealloc *structs, + struct bio *bio) +{ + int r; + bool release_cell = true; + dm_oblock_t block = get_bio_block(cache, bio); + struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell; + struct policy_result lookup_result; + size_t pb_data_size = get_per_bio_data_size(cache); + struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); + bool discarded_block = is_discarded_oblock(cache, block); + bool passthrough = passthrough_mode(&cache->features); + bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache)); + + /* + * Check to see if that block is currently migrating. + */ + cell_prealloc = prealloc_get_cell(structs); + r = bio_detain(cache, block, bio, cell_prealloc, + (cell_free_fn) prealloc_put_cell, + structs, &new_ocell); + if (r > 0) + return; + + r = policy_map(cache->policy, block, true, can_migrate, discarded_block, + bio, &lookup_result); + + if (r == -EWOULDBLOCK) + /* migration has been denied */ + lookup_result.op = POLICY_MISS; + + switch (lookup_result.op) { + case POLICY_HIT: + if (passthrough) { + inc_miss_counter(cache, bio); + + /* + * Passthrough always maps to the origin, + * invalidating any cache blocks that are written + * to. + */ + + if (bio_data_dir(bio) == WRITE) { + atomic_inc(&cache->stats.demotion); + invalidate(cache, structs, block, lookup_result.cblock, new_ocell); + release_cell = false; + + } else { + /* FIXME: factor out issue_origin() */ + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); + remap_to_origin_clear_discard(cache, bio, block); + issue(cache, bio); + } + } else { + inc_hit_counter(cache, bio); + + if (bio_data_dir(bio) == WRITE && + writethrough_mode(&cache->features) && + !is_dirty(cache, lookup_result.cblock)) { + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); + remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); + issue(cache, bio); + } else + issue_cache_bio(cache, bio, pb, block, lookup_result.cblock); + } + + break; + + case POLICY_MISS: + inc_miss_counter(cache, bio); + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); + remap_to_origin_clear_discard(cache, bio, block); + issue(cache, bio); + break; + + case POLICY_NEW: + atomic_inc(&cache->stats.promotion); + promote(cache, structs, block, lookup_result.cblock, new_ocell); + release_cell = false; + break; + + case POLICY_REPLACE: + cell_prealloc = prealloc_get_cell(structs); + r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc, + (cell_free_fn) prealloc_put_cell, + structs, &old_ocell); + if (r > 0) { + /* + * We have to be careful to avoid lock inversion of + * the cells. So we back off, and wait for the + * old_ocell to become free. + */ + policy_force_mapping(cache->policy, block, + lookup_result.old_oblock); + atomic_inc(&cache->stats.cache_cell_clash); + break; + } + atomic_inc(&cache->stats.demotion); + atomic_inc(&cache->stats.promotion); + + demote_then_promote(cache, structs, lookup_result.old_oblock, + block, lookup_result.cblock, + old_ocell, new_ocell); + release_cell = false; + break; + + default: + DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__, + (unsigned) lookup_result.op); + bio_io_error(bio); + } + + if (release_cell) + cell_defer(cache, new_ocell, false); +} + +static int need_commit_due_to_time(struct cache *cache) +{ + return jiffies < cache->last_commit_jiffies || + jiffies > cache->last_commit_jiffies + COMMIT_PERIOD; +} + +static int commit_if_needed(struct cache *cache) +{ + int r = 0; + + if ((cache->commit_requested || need_commit_due_to_time(cache)) && + dm_cache_changed_this_transaction(cache->cmd)) { + atomic_inc(&cache->stats.commit_count); + cache->commit_requested = false; + r = dm_cache_commit(cache->cmd, false); + cache->last_commit_jiffies = jiffies; + } + + return r; +} + +static void process_deferred_bios(struct cache *cache) +{ + unsigned long flags; + struct bio_list bios; + struct bio *bio; + struct prealloc structs; + + memset(&structs, 0, sizeof(structs)); + bio_list_init(&bios); + + spin_lock_irqsave(&cache->lock, flags); + bio_list_merge(&bios, &cache->deferred_bios); + bio_list_init(&cache->deferred_bios); + spin_unlock_irqrestore(&cache->lock, flags); + + while (!bio_list_empty(&bios)) { + /* + * If we've got no free migration structs, and processing + * this bio might require one, we pause until there are some + * prepared mappings to process. + */ + if (prealloc_data_structs(cache, &structs)) { + spin_lock_irqsave(&cache->lock, flags); + bio_list_merge(&cache->deferred_bios, &bios); + spin_unlock_irqrestore(&cache->lock, flags); + break; + } + + bio = bio_list_pop(&bios); + + if (bio->bi_rw & REQ_FLUSH) + process_flush_bio(cache, bio); + else if (bio->bi_rw & REQ_DISCARD) + process_discard_bio(cache, bio); + else + process_bio(cache, &structs, bio); + } + + prealloc_free_structs(cache, &structs); +} + +static void process_deferred_flush_bios(struct cache *cache, bool submit_bios) +{ + unsigned long flags; + struct bio_list bios; + struct bio *bio; + + bio_list_init(&bios); + + spin_lock_irqsave(&cache->lock, flags); + bio_list_merge(&bios, &cache->deferred_flush_bios); + bio_list_init(&cache->deferred_flush_bios); + spin_unlock_irqrestore(&cache->lock, flags); + + while ((bio = bio_list_pop(&bios))) + submit_bios ? generic_make_request(bio) : bio_io_error(bio); +} + +static void process_deferred_writethrough_bios(struct cache *cache) +{ + unsigned long flags; + struct bio_list bios; + struct bio *bio; + + bio_list_init(&bios); + + spin_lock_irqsave(&cache->lock, flags); + bio_list_merge(&bios, &cache->deferred_writethrough_bios); + bio_list_init(&cache->deferred_writethrough_bios); + spin_unlock_irqrestore(&cache->lock, flags); + + while ((bio = bio_list_pop(&bios))) + generic_make_request(bio); +} + +static void writeback_some_dirty_blocks(struct cache *cache) +{ + int r = 0; + dm_oblock_t oblock; + dm_cblock_t cblock; + struct prealloc structs; + struct dm_bio_prison_cell *old_ocell; + + memset(&structs, 0, sizeof(structs)); + + while (spare_migration_bandwidth(cache)) { + if (prealloc_data_structs(cache, &structs)) + break; + + r = policy_writeback_work(cache->policy, &oblock, &cblock); + if (r) + break; + + r = get_cell(cache, oblock, &structs, &old_ocell); + if (r) { + policy_set_dirty(cache->policy, oblock); + break; + } + + writeback(cache, &structs, oblock, cblock, old_ocell); + } + + prealloc_free_structs(cache, &structs); +} + +/*---------------------------------------------------------------- + * Invalidations. + * Dropping something from the cache *without* writing back. + *--------------------------------------------------------------*/ + +static void process_invalidation_request(struct cache *cache, struct invalidation_request *req) +{ + int r = 0; + uint64_t begin = from_cblock(req->cblocks->begin); + uint64_t end = from_cblock(req->cblocks->end); + + while (begin != end) { + r = policy_remove_cblock(cache->policy, to_cblock(begin)); + if (!r) { + r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin)); + if (r) + break; + + } else if (r == -ENODATA) { + /* harmless, already unmapped */ + r = 0; + + } else { + DMERR("policy_remove_cblock failed"); + break; + } + + begin++; + } + + cache->commit_requested = true; + + req->err = r; + atomic_set(&req->complete, 1); + + wake_up(&req->result_wait); +} + +static void process_invalidation_requests(struct cache *cache) +{ + struct list_head list; + struct invalidation_request *req, *tmp; + + INIT_LIST_HEAD(&list); + spin_lock(&cache->invalidation_lock); + list_splice_init(&cache->invalidation_requests, &list); + spin_unlock(&cache->invalidation_lock); + + list_for_each_entry_safe (req, tmp, &list, list) + process_invalidation_request(cache, req); +} + +/*---------------------------------------------------------------- + * Main worker loop + *--------------------------------------------------------------*/ +static bool is_quiescing(struct cache *cache) +{ + return atomic_read(&cache->quiescing); +} + +static void ack_quiescing(struct cache *cache) +{ + if (is_quiescing(cache)) { + atomic_inc(&cache->quiescing_ack); + wake_up(&cache->quiescing_wait); + } +} + +static void wait_for_quiescing_ack(struct cache *cache) +{ + wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack)); +} + +static void start_quiescing(struct cache *cache) +{ + atomic_inc(&cache->quiescing); + wait_for_quiescing_ack(cache); +} + +static void stop_quiescing(struct cache *cache) +{ + atomic_set(&cache->quiescing, 0); + atomic_set(&cache->quiescing_ack, 0); +} + +static void wait_for_migrations(struct cache *cache) +{ + wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations)); +} + +static void stop_worker(struct cache *cache) +{ + cancel_delayed_work(&cache->waker); + flush_workqueue(cache->wq); +} + +static void requeue_deferred_io(struct cache *cache) +{ + struct bio *bio; + struct bio_list bios; + + bio_list_init(&bios); + bio_list_merge(&bios, &cache->deferred_bios); + bio_list_init(&cache->deferred_bios); + + while ((bio = bio_list_pop(&bios))) + bio_endio(bio, DM_ENDIO_REQUEUE); +} + +static int more_work(struct cache *cache) +{ + if (is_quiescing(cache)) + return !list_empty(&cache->quiesced_migrations) || + !list_empty(&cache->completed_migrations) || + !list_empty(&cache->need_commit_migrations); + else + return !bio_list_empty(&cache->deferred_bios) || + !bio_list_empty(&cache->deferred_flush_bios) || + !bio_list_empty(&cache->deferred_writethrough_bios) || + !list_empty(&cache->quiesced_migrations) || + !list_empty(&cache->completed_migrations) || + !list_empty(&cache->need_commit_migrations) || + cache->invalidate; +} + +static void do_worker(struct work_struct *ws) +{ + struct cache *cache = container_of(ws, struct cache, worker); + + do { + if (!is_quiescing(cache)) { + writeback_some_dirty_blocks(cache); + process_deferred_writethrough_bios(cache); + process_deferred_bios(cache); + process_invalidation_requests(cache); + } + + process_migrations(cache, &cache->quiesced_migrations, issue_copy); + process_migrations(cache, &cache->completed_migrations, complete_migration); + + if (commit_if_needed(cache)) { + process_deferred_flush_bios(cache, false); + + /* + * FIXME: rollback metadata or just go into a + * failure mode and error everything + */ + } else { + process_deferred_flush_bios(cache, true); + process_migrations(cache, &cache->need_commit_migrations, + migration_success_post_commit); + } + + ack_quiescing(cache); + + } while (more_work(cache)); +} + +/* + * We want to commit periodically so that not too much + * unwritten metadata builds up. + */ +static void do_waker(struct work_struct *ws) +{ + struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); + policy_tick(cache->policy); + wake_worker(cache); + queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); +} + +/*----------------------------------------------------------------*/ + +static int is_congested(struct dm_dev *dev, int bdi_bits) +{ + struct request_queue *q = bdev_get_queue(dev->bdev); + return bdi_congested(&q->backing_dev_info, bdi_bits); +} + +static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits) +{ + struct cache *cache = container_of(cb, struct cache, callbacks); + + return is_congested(cache->origin_dev, bdi_bits) || + is_congested(cache->cache_dev, bdi_bits); +} + +/*---------------------------------------------------------------- + * Target methods + *--------------------------------------------------------------*/ + +/* + * This function gets called on the error paths of the constructor, so we + * have to cope with a partially initialised struct. + */ +static void destroy(struct cache *cache) +{ + unsigned i; + + if (cache->next_migration) + mempool_free(cache->next_migration, cache->migration_pool); + + if (cache->migration_pool) + mempool_destroy(cache->migration_pool); + + if (cache->all_io_ds) + dm_deferred_set_destroy(cache->all_io_ds); + + if (cache->prison) + dm_bio_prison_destroy(cache->prison); + + if (cache->wq) + destroy_workqueue(cache->wq); + + if (cache->dirty_bitset) + free_bitset(cache->dirty_bitset); + + if (cache->discard_bitset) + free_bitset(cache->discard_bitset); + + if (cache->copier) + dm_kcopyd_client_destroy(cache->copier); + + if (cache->cmd) + dm_cache_metadata_close(cache->cmd); + + if (cache->metadata_dev) + dm_put_device(cache->ti, cache->metadata_dev); + + if (cache->origin_dev) + dm_put_device(cache->ti, cache->origin_dev); + + if (cache->cache_dev) + dm_put_device(cache->ti, cache->cache_dev); + + if (cache->policy) + dm_cache_policy_destroy(cache->policy); + + for (i = 0; i < cache->nr_ctr_args ; i++) + kfree(cache->ctr_args[i]); + kfree(cache->ctr_args); + + kfree(cache); +} + +static void cache_dtr(struct dm_target *ti) +{ + struct cache *cache = ti->private; + + destroy(cache); +} + +static sector_t get_dev_size(struct dm_dev *dev) +{ + return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; +} + +/*----------------------------------------------------------------*/ + +/* + * Construct a cache device mapping. + * + * cache <metadata dev> <cache dev> <origin dev> <block size> + * <#feature args> [<feature arg>]* + * <policy> <#policy args> [<policy arg>]* + * + * metadata dev : fast device holding the persistent metadata + * cache dev : fast device holding cached data blocks + * origin dev : slow device holding original data blocks + * block size : cache unit size in sectors + * + * #feature args : number of feature arguments passed + * feature args : writethrough. (The default is writeback.) + * + * policy : the replacement policy to use + * #policy args : an even number of policy arguments corresponding + * to key/value pairs passed to the policy + * policy args : key/value pairs passed to the policy + * E.g. 'sequential_threshold 1024' + * See cache-policies.txt for details. + * + * Optional feature arguments are: + * writethrough : write through caching that prohibits cache block + * content from being different from origin block content. + * Without this argument, the default behaviour is to write + * back cache block contents later for performance reasons, + * so they may differ from the corresponding origin blocks. + */ +struct cache_args { + struct dm_target *ti; + + struct dm_dev *metadata_dev; + + struct dm_dev *cache_dev; + sector_t cache_sectors; + + struct dm_dev *origin_dev; + sector_t origin_sectors; + + uint32_t block_size; + + const char *policy_name; + int policy_argc; + const char **policy_argv; + + struct cache_features features; +}; + +static void destroy_cache_args(struct cache_args *ca) +{ + if (ca->metadata_dev) + dm_put_device(ca->ti, ca->metadata_dev); + + if (ca->cache_dev) + dm_put_device(ca->ti, ca->cache_dev); + + if (ca->origin_dev) + dm_put_device(ca->ti, ca->origin_dev); + + kfree(ca); +} + +static bool at_least_one_arg(struct dm_arg_set *as, char **error) +{ + if (!as->argc) { + *error = "Insufficient args"; + return false; + } + + return true; +} + +static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, + char **error) +{ + int r; + sector_t metadata_dev_size; + char b[BDEVNAME_SIZE]; + + if (!at_least_one_arg(as, error)) + return -EINVAL; + + r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, + &ca->metadata_dev); + if (r) { + *error = "Error opening metadata device"; + return r; + } + + metadata_dev_size = get_dev_size(ca->metadata_dev); + if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) + DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", + bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); + + return 0; +} + +static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, + char **error) +{ + int r; + + if (!at_least_one_arg(as, error)) + return -EINVAL; + + r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, + &ca->cache_dev); + if (r) { + *error = "Error opening cache device"; + return r; + } + ca->cache_sectors = get_dev_size(ca->cache_dev); + + return 0; +} + +static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, + char **error) +{ + int r; + + if (!at_least_one_arg(as, error)) + return -EINVAL; + + r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, + &ca->origin_dev); + if (r) { + *error = "Error opening origin device"; + return r; + } + + ca->origin_sectors = get_dev_size(ca->origin_dev); + if (ca->ti->len > ca->origin_sectors) { + *error = "Device size larger than cached device"; + return -EINVAL; + } + + return 0; +} + +static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, + char **error) +{ + unsigned long block_size; + + if (!at_least_one_arg(as, error)) + return -EINVAL; + + if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || + block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || + block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || + block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { + *error = "Invalid data block size"; + return -EINVAL; + } + + if (block_size > ca->cache_sectors) { + *error = "Data block size is larger than the cache device"; + return -EINVAL; + } + + ca->block_size = block_size; + + return 0; +} + +static void init_features(struct cache_features *cf) +{ + cf->mode = CM_WRITE; + cf->io_mode = CM_IO_WRITEBACK; +} + +static int parse_features(struct cache_args *ca, struct dm_arg_set *as, + char **error) +{ + static struct dm_arg _args[] = { + {0, 1, "Invalid number of cache feature arguments"}, + }; + + int r; + unsigned argc; + const char *arg; + struct cache_features *cf = &ca->features; + + init_features(cf); + + r = dm_read_arg_group(_args, as, &argc, error); + if (r) + return -EINVAL; + + while (argc--) { + arg = dm_shift_arg(as); + + if (!strcasecmp(arg, "writeback")) + cf->io_mode = CM_IO_WRITEBACK; + + else if (!strcasecmp(arg, "writethrough")) + cf->io_mode = CM_IO_WRITETHROUGH; + + else if (!strcasecmp(arg, "passthrough")) + cf->io_mode = CM_IO_PASSTHROUGH; + + else { + *error = "Unrecognised cache feature requested"; + return -EINVAL; + } + } + + return 0; +} + +static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, + char **error) +{ + static struct dm_arg _args[] = { + {0, 1024, "Invalid number of policy arguments"}, + }; + + int r; + + if (!at_least_one_arg(as, error)) + return -EINVAL; + + ca->policy_name = dm_shift_arg(as); + + r = dm_read_arg_group(_args, as, &ca->policy_argc, error); + if (r) + return -EINVAL; + + ca->policy_argv = (const char **)as->argv; + dm_consume_args(as, ca->policy_argc); + + return 0; +} + +static int parse_cache_args(struct cache_args *ca, int argc, char **argv, + char **error) +{ + int r; + struct dm_arg_set as; + + as.argc = argc; + as.argv = argv; + + r = parse_metadata_dev(ca, &as, error); + if (r) + return r; + + r = parse_cache_dev(ca, &as, error); + if (r) + return r; + + r = parse_origin_dev(ca, &as, error); + if (r) + return r; + + r = parse_block_size(ca, &as, error); + if (r) + return r; + + r = parse_features(ca, &as, error); + if (r) + return r; + + r = parse_policy(ca, &as, error); + if (r) + return r; + + return 0; +} + +/*----------------------------------------------------------------*/ + +static struct kmem_cache *migration_cache; + +#define NOT_CORE_OPTION 1 + +static int process_config_option(struct cache *cache, const char *key, const char *value) +{ + unsigned long tmp; + + if (!strcasecmp(key, "migration_threshold")) { + if (kstrtoul(value, 10, &tmp)) + return -EINVAL; + + cache->migration_threshold = tmp; + return 0; + } + + return NOT_CORE_OPTION; +} + +static int set_config_value(struct cache *cache, const char *key, const char *value) +{ + int r = process_config_option(cache, key, value); + + if (r == NOT_CORE_OPTION) + r = policy_set_config_value(cache->policy, key, value); + + if (r) + DMWARN("bad config value for %s: %s", key, value); + + return r; +} + +static int set_config_values(struct cache *cache, int argc, const char **argv) +{ + int r = 0; + + if (argc & 1) { + DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); + return -EINVAL; + } + + while (argc) { + r = set_config_value(cache, argv[0], argv[1]); + if (r) + break; + + argc -= 2; + argv += 2; + } + + return r; +} + +static int create_cache_policy(struct cache *cache, struct cache_args *ca, + char **error) +{ + struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, + cache->cache_size, + cache->origin_sectors, + cache->sectors_per_block); + if (IS_ERR(p)) { + *error = "Error creating cache's policy"; + return PTR_ERR(p); + } + cache->policy = p; + + return 0; +} + +#define DEFAULT_MIGRATION_THRESHOLD 2048 + +static int cache_create(struct cache_args *ca, struct cache **result) +{ + int r = 0; + char **error = &ca->ti->error; + struct cache *cache; + struct dm_target *ti = ca->ti; + dm_block_t origin_blocks; + struct dm_cache_metadata *cmd; + bool may_format = ca->features.mode == CM_WRITE; + + cache = kzalloc(sizeof(*cache), GFP_KERNEL); + if (!cache) + return -ENOMEM; + + cache->ti = ca->ti; + ti->private = cache; + ti->num_flush_bios = 2; + ti->flush_supported = true; + + ti->num_discard_bios = 1; + ti->discards_supported = true; + ti->discard_zeroes_data_unsupported = true; + /* Discard bios must be split on a block boundary */ + ti->split_discard_bios = true; + + cache->features = ca->features; + ti->per_bio_data_size = get_per_bio_data_size(cache); + + cache->callbacks.congested_fn = cache_is_congested; + dm_table_add_target_callbacks(ti->table, &cache->callbacks); + + cache->metadata_dev = ca->metadata_dev; + cache->origin_dev = ca->origin_dev; + cache->cache_dev = ca->cache_dev; + + ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; + + /* FIXME: factor out this whole section */ + origin_blocks = cache->origin_sectors = ca->origin_sectors; + origin_blocks = block_div(origin_blocks, ca->block_size); + cache->origin_blocks = to_oblock(origin_blocks); + + cache->sectors_per_block = ca->block_size; + if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { + r = -EINVAL; + goto bad; + } + + if (ca->block_size & (ca->block_size - 1)) { + dm_block_t cache_size = ca->cache_sectors; + + cache->sectors_per_block_shift = -1; + cache_size = block_div(cache_size, ca->block_size); + cache->cache_size = to_cblock(cache_size); + } else { + cache->sectors_per_block_shift = __ffs(ca->block_size); + cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift); + } + + r = create_cache_policy(cache, ca, error); + if (r) + goto bad; + + cache->policy_nr_args = ca->policy_argc; + cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; + + r = set_config_values(cache, ca->policy_argc, ca->policy_argv); + if (r) { + *error = "Error setting cache policy's config values"; + goto bad; + } + + cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, + ca->block_size, may_format, + dm_cache_policy_get_hint_size(cache->policy)); + if (IS_ERR(cmd)) { + *error = "Error creating metadata object"; + r = PTR_ERR(cmd); + goto bad; + } + cache->cmd = cmd; + + if (passthrough_mode(&cache->features)) { + bool all_clean; + + r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); + if (r) { + *error = "dm_cache_metadata_all_clean() failed"; + goto bad; + } + + if (!all_clean) { + *error = "Cannot enter passthrough mode unless all blocks are clean"; + r = -EINVAL; + goto bad; + } + } + + spin_lock_init(&cache->lock); + bio_list_init(&cache->deferred_bios); + bio_list_init(&cache->deferred_flush_bios); + bio_list_init(&cache->deferred_writethrough_bios); + INIT_LIST_HEAD(&cache->quiesced_migrations); + INIT_LIST_HEAD(&cache->completed_migrations); + INIT_LIST_HEAD(&cache->need_commit_migrations); + atomic_set(&cache->nr_migrations, 0); + init_waitqueue_head(&cache->migration_wait); + + init_waitqueue_head(&cache->quiescing_wait); + atomic_set(&cache->quiescing, 0); + atomic_set(&cache->quiescing_ack, 0); + + r = -ENOMEM; + atomic_set(&cache->nr_dirty, 0); + cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); + if (!cache->dirty_bitset) { + *error = "could not allocate dirty bitset"; + goto bad; + } + clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); + + cache->discard_nr_blocks = cache->origin_blocks; + cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks)); + if (!cache->discard_bitset) { + *error = "could not allocate discard bitset"; + goto bad; + } + clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks)); + + cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); + if (IS_ERR(cache->copier)) { + *error = "could not create kcopyd client"; + r = PTR_ERR(cache->copier); + goto bad; + } + + cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); + if (!cache->wq) { + *error = "could not create workqueue for metadata object"; + goto bad; + } + INIT_WORK(&cache->worker, do_worker); + INIT_DELAYED_WORK(&cache->waker, do_waker); + cache->last_commit_jiffies = jiffies; + + cache->prison = dm_bio_prison_create(PRISON_CELLS); + if (!cache->prison) { + *error = "could not create bio prison"; + goto bad; + } + + cache->all_io_ds = dm_deferred_set_create(); + if (!cache->all_io_ds) { + *error = "could not create all_io deferred set"; + goto bad; + } + + cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE, + migration_cache); + if (!cache->migration_pool) { + *error = "Error creating cache's migration mempool"; + goto bad; + } + + cache->next_migration = NULL; + + cache->need_tick_bio = true; + cache->sized = false; + cache->invalidate = false; + cache->commit_requested = false; + cache->loaded_mappings = false; + cache->loaded_discards = false; + + load_stats(cache); + + atomic_set(&cache->stats.demotion, 0); + atomic_set(&cache->stats.promotion, 0); + atomic_set(&cache->stats.copies_avoided, 0); + atomic_set(&cache->stats.cache_cell_clash, 0); + atomic_set(&cache->stats.commit_count, 0); + atomic_set(&cache->stats.discard_count, 0); + + spin_lock_init(&cache->invalidation_lock); + INIT_LIST_HEAD(&cache->invalidation_requests); + + *result = cache; + return 0; + +bad: + destroy(cache); + return r; +} + +static int copy_ctr_args(struct cache *cache, int argc, const char **argv) +{ + unsigned i; + const char **copy; + + copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); + if (!copy) + return -ENOMEM; + for (i = 0; i < argc; i++) { + copy[i] = kstrdup(argv[i], GFP_KERNEL); + if (!copy[i]) { + while (i--) + kfree(copy[i]); + kfree(copy); + return -ENOMEM; + } + } + + cache->nr_ctr_args = argc; + cache->ctr_args = copy; + + return 0; +} + +static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) +{ + int r = -EINVAL; + struct cache_args *ca; + struct cache *cache = NULL; + + ca = kzalloc(sizeof(*ca), GFP_KERNEL); + if (!ca) { + ti->error = "Error allocating memory for cache"; + return -ENOMEM; + } + ca->ti = ti; + + r = parse_cache_args(ca, argc, argv, &ti->error); + if (r) + goto out; + + r = cache_create(ca, &cache); + if (r) + goto out; + + r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); + if (r) { + destroy(cache); + goto out; + } + + ti->private = cache; + +out: + destroy_cache_args(ca); + return r; +} + +static int cache_map(struct dm_target *ti, struct bio *bio) +{ + struct cache *cache = ti->private; + + int r; + dm_oblock_t block = get_bio_block(cache, bio); + size_t pb_data_size = get_per_bio_data_size(cache); + bool can_migrate = false; + bool discarded_block; + struct dm_bio_prison_cell *cell; + struct policy_result lookup_result; + struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size); + + if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { + /* + * This can only occur if the io goes to a partial block at + * the end of the origin device. We don't cache these. + * Just remap to the origin and carry on. + */ + remap_to_origin(cache, bio); + return DM_MAPIO_REMAPPED; + } + + if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) { + defer_bio(cache, bio); + return DM_MAPIO_SUBMITTED; + } + + /* + * Check to see if that block is currently migrating. + */ + cell = alloc_prison_cell(cache); + if (!cell) { + defer_bio(cache, bio); + return DM_MAPIO_SUBMITTED; + } + + r = bio_detain(cache, block, bio, cell, + (cell_free_fn) free_prison_cell, + cache, &cell); + if (r) { + if (r < 0) + defer_bio(cache, bio); + + return DM_MAPIO_SUBMITTED; + } + + discarded_block = is_discarded_oblock(cache, block); + + r = policy_map(cache->policy, block, false, can_migrate, discarded_block, + bio, &lookup_result); + if (r == -EWOULDBLOCK) { + cell_defer(cache, cell, true); + return DM_MAPIO_SUBMITTED; + + } else if (r) { + DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r); + bio_io_error(bio); + return DM_MAPIO_SUBMITTED; + } + + r = DM_MAPIO_REMAPPED; + switch (lookup_result.op) { + case POLICY_HIT: + if (passthrough_mode(&cache->features)) { + if (bio_data_dir(bio) == WRITE) { + /* + * We need to invalidate this block, so + * defer for the worker thread. + */ + cell_defer(cache, cell, true); + r = DM_MAPIO_SUBMITTED; + + } else { + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); + inc_miss_counter(cache, bio); + remap_to_origin_clear_discard(cache, bio, block); + + cell_defer(cache, cell, false); + } + + } else { + inc_hit_counter(cache, bio); + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); + + if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) && + !is_dirty(cache, lookup_result.cblock)) + remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); + else + remap_to_cache_dirty(cache, bio, block, lookup_result.cblock); + + cell_defer(cache, cell, false); + } + break; + + case POLICY_MISS: + inc_miss_counter(cache, bio); + pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); + + if (pb->req_nr != 0) { + /* + * This is a duplicate writethrough io that is no + * longer needed because the block has been demoted. + */ + bio_endio(bio, 0); + cell_defer(cache, cell, false); + return DM_MAPIO_SUBMITTED; + } else { + remap_to_origin_clear_discard(cache, bio, block); + cell_defer(cache, cell, false); + } + break; + + default: + DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__, + (unsigned) lookup_result.op); + bio_io_error(bio); + r = DM_MAPIO_SUBMITTED; + } + + return r; +} + +static int cache_end_io(struct dm_target *ti, struct bio *bio, int error) +{ + struct cache *cache = ti->private; + unsigned long flags; + size_t pb_data_size = get_per_bio_data_size(cache); + struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); + + if (pb->tick) { + policy_tick(cache->policy); + + spin_lock_irqsave(&cache->lock, flags); + cache->need_tick_bio = true; + spin_unlock_irqrestore(&cache->lock, flags); + } + + check_for_quiesced_migrations(cache, pb); + + return 0; +} + +static int write_dirty_bitset(struct cache *cache) +{ + unsigned i, r; + + for (i = 0; i < from_cblock(cache->cache_size); i++) { + r = dm_cache_set_dirty(cache->cmd, to_cblock(i), + is_dirty(cache, to_cblock(i))); + if (r) + return r; + } + + return 0; +} + +static int write_discard_bitset(struct cache *cache) +{ + unsigned i, r; + + r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block, + cache->origin_blocks); + if (r) { + DMERR("could not resize on-disk discard bitset"); + return r; + } + + for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) { + r = dm_cache_set_discard(cache->cmd, to_oblock(i), + is_discarded(cache, to_oblock(i))); + if (r) + return r; + } + + return 0; +} + +/* + * returns true on success + */ +static bool sync_metadata(struct cache *cache) +{ + int r1, r2, r3, r4; + + r1 = write_dirty_bitset(cache); + if (r1) + DMERR("could not write dirty bitset"); + + r2 = write_discard_bitset(cache); + if (r2) + DMERR("could not write discard bitset"); + + save_stats(cache); + + r3 = dm_cache_write_hints(cache->cmd, cache->policy); + if (r3) + DMERR("could not write hints"); + + /* + * If writing the above metadata failed, we still commit, but don't + * set the clean shutdown flag. This will effectively force every + * dirty bit to be set on reload. + */ + r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3); + if (r4) + DMERR("could not write cache metadata. Data loss may occur."); + + return !r1 && !r2 && !r3 && !r4; +} + +static void cache_postsuspend(struct dm_target *ti) +{ + struct cache *cache = ti->private; + + start_quiescing(cache); + wait_for_migrations(cache); + stop_worker(cache); + requeue_deferred_io(cache); + stop_quiescing(cache); + + (void) sync_metadata(cache); +} + +static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, + bool dirty, uint32_t hint, bool hint_valid) +{ + int r; + struct cache *cache = context; + + r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid); + if (r) + return r; + + if (dirty) + set_dirty(cache, oblock, cblock); + else + clear_dirty(cache, oblock, cblock); + + return 0; +} + +static int load_discard(void *context, sector_t discard_block_size, + dm_oblock_t oblock, bool discard) +{ + struct cache *cache = context; + + if (discard) + set_discard(cache, oblock); + else + clear_discard(cache, oblock); + + return 0; +} + +static dm_cblock_t get_cache_dev_size(struct cache *cache) +{ + sector_t size = get_dev_size(cache->cache_dev); + (void) sector_div(size, cache->sectors_per_block); + return to_cblock(size); +} + +static bool can_resize(struct cache *cache, dm_cblock_t new_size) +{ + if (from_cblock(new_size) > from_cblock(cache->cache_size)) + return true; + + /* + * We can't drop a dirty block when shrinking the cache. + */ + while (from_cblock(new_size) < from_cblock(cache->cache_size)) { + new_size = to_cblock(from_cblock(new_size) + 1); + if (is_dirty(cache, new_size)) { + DMERR("unable to shrink cache; cache block %llu is dirty", + (unsigned long long) from_cblock(new_size)); + return false; + } + } + + return true; +} + +static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) +{ + int r; + + r = dm_cache_resize(cache->cmd, new_size); + if (r) { + DMERR("could not resize cache metadata"); + return r; + } + + cache->cache_size = new_size; + + return 0; +} + +static int cache_preresume(struct dm_target *ti) +{ + int r = 0; + struct cache *cache = ti->private; + dm_cblock_t csize = get_cache_dev_size(cache); + + /* + * Check to see if the cache has resized. + */ + if (!cache->sized) { + r = resize_cache_dev(cache, csize); + if (r) + return r; + + cache->sized = true; + + } else if (csize != cache->cache_size) { + if (!can_resize(cache, csize)) + return -EINVAL; + + r = resize_cache_dev(cache, csize); + if (r) + return r; + } + + if (!cache->loaded_mappings) { + r = dm_cache_load_mappings(cache->cmd, cache->policy, + load_mapping, cache); + if (r) { + DMERR("could not load cache mappings"); + return r; + } + + cache->loaded_mappings = true; + } + + if (!cache->loaded_discards) { + r = dm_cache_load_discards(cache->cmd, load_discard, cache); + if (r) { + DMERR("could not load origin discards"); + return r; + } + + cache->loaded_discards = true; + } + + return r; +} + +static void cache_resume(struct dm_target *ti) +{ + struct cache *cache = ti->private; + + cache->need_tick_bio = true; + do_waker(&cache->waker.work); +} + +/* + * Status format: + * + * <metadata block size> <#used metadata blocks>/<#total metadata blocks> + * <cache block size> <#used cache blocks>/<#total cache blocks> + * <#read hits> <#read misses> <#write hits> <#write misses> + * <#demotions> <#promotions> <#dirty> + * <#features> <features>* + * <#core args> <core args> + * <policy name> <#policy args> <policy args>* + */ +static void cache_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) +{ + int r = 0; + unsigned i; + ssize_t sz = 0; + dm_block_t nr_free_blocks_metadata = 0; + dm_block_t nr_blocks_metadata = 0; + char buf[BDEVNAME_SIZE]; + struct cache *cache = ti->private; + dm_cblock_t residency; + + switch (type) { + case STATUSTYPE_INFO: + /* Commit to ensure statistics aren't out-of-date */ + if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) { + r = dm_cache_commit(cache->cmd, false); + if (r) + DMERR("could not commit metadata for accurate status"); + } + + r = dm_cache_get_free_metadata_block_count(cache->cmd, + &nr_free_blocks_metadata); + if (r) { + DMERR("could not get metadata free block count"); + goto err; + } + + r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); + if (r) { + DMERR("could not get metadata device size"); + goto err; + } + + residency = policy_residency(cache->policy); + + DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ", + (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT), + (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), + (unsigned long long)nr_blocks_metadata, + cache->sectors_per_block, + (unsigned long long) from_cblock(residency), + (unsigned long long) from_cblock(cache->cache_size), + (unsigned) atomic_read(&cache->stats.read_hit), + (unsigned) atomic_read(&cache->stats.read_miss), + (unsigned) atomic_read(&cache->stats.write_hit), + (unsigned) atomic_read(&cache->stats.write_miss), + (unsigned) atomic_read(&cache->stats.demotion), + (unsigned) atomic_read(&cache->stats.promotion), + (unsigned long) atomic_read(&cache->nr_dirty)); + + if (writethrough_mode(&cache->features)) + DMEMIT("1 writethrough "); + + else if (passthrough_mode(&cache->features)) + DMEMIT("1 passthrough "); + + else if (writeback_mode(&cache->features)) + DMEMIT("1 writeback "); + + else { + DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode); + goto err; + } + + DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); + + DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); + if (sz < maxlen) { + r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz); + if (r) + DMERR("policy_emit_config_values returned %d", r); + } + + break; + + case STATUSTYPE_TABLE: + format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); + DMEMIT("%s ", buf); + format_dev_t(buf, cache->cache_dev->bdev->bd_dev); + DMEMIT("%s ", buf); + format_dev_t(buf, cache->origin_dev->bdev->bd_dev); + DMEMIT("%s", buf); + + for (i = 0; i < cache->nr_ctr_args - 1; i++) + DMEMIT(" %s", cache->ctr_args[i]); + if (cache->nr_ctr_args) + DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); + } + + return; + +err: + DMEMIT("Error"); +} + +/* + * A cache block range can take two forms: + * + * i) A single cblock, eg. '3456' + * ii) A begin and end cblock with dots between, eg. 123-234 + */ +static int parse_cblock_range(struct cache *cache, const char *str, + struct cblock_range *result) +{ + char dummy; + uint64_t b, e; + int r; + + /* + * Try and parse form (ii) first. + */ + r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); + if (r < 0) + return r; + + if (r == 2) { + result->begin = to_cblock(b); + result->end = to_cblock(e); + return 0; + } + + /* + * That didn't work, try form (i). + */ + r = sscanf(str, "%llu%c", &b, &dummy); + if (r < 0) + return r; + + if (r == 1) { + result->begin = to_cblock(b); + result->end = to_cblock(from_cblock(result->begin) + 1u); + return 0; + } + + DMERR("invalid cblock range '%s'", str); + return -EINVAL; +} + +static int validate_cblock_range(struct cache *cache, struct cblock_range *range) +{ + uint64_t b = from_cblock(range->begin); + uint64_t e = from_cblock(range->end); + uint64_t n = from_cblock(cache->cache_size); + + if (b >= n) { + DMERR("begin cblock out of range: %llu >= %llu", b, n); + return -EINVAL; + } + + if (e > n) { + DMERR("end cblock out of range: %llu > %llu", e, n); + return -EINVAL; + } + + if (b >= e) { + DMERR("invalid cblock range: %llu >= %llu", b, e); + return -EINVAL; + } + + return 0; +} + +static int request_invalidation(struct cache *cache, struct cblock_range *range) +{ + struct invalidation_request req; + + INIT_LIST_HEAD(&req.list); + req.cblocks = range; + atomic_set(&req.complete, 0); + req.err = 0; + init_waitqueue_head(&req.result_wait); + + spin_lock(&cache->invalidation_lock); + list_add(&req.list, &cache->invalidation_requests); + spin_unlock(&cache->invalidation_lock); + wake_worker(cache); + + wait_event(req.result_wait, atomic_read(&req.complete)); + return req.err; +} + +static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, + const char **cblock_ranges) +{ + int r = 0; + unsigned i; + struct cblock_range range; + + if (!passthrough_mode(&cache->features)) { + DMERR("cache has to be in passthrough mode for invalidation"); + return -EPERM; + } + + for (i = 0; i < count; i++) { + r = parse_cblock_range(cache, cblock_ranges[i], &range); + if (r) + break; + + r = validate_cblock_range(cache, &range); + if (r) + break; + + /* + * Pass begin and end origin blocks to the worker and wake it. + */ + r = request_invalidation(cache, &range); + if (r) + break; + } + + return r; +} + +/* + * Supports + * "<key> <value>" + * and + * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* + * + * The key migration_threshold is supported by the cache target core. + */ +static int cache_message(struct dm_target *ti, unsigned argc, char **argv) +{ + struct cache *cache = ti->private; + + if (!argc) + return -EINVAL; + + if (!strcasecmp(argv[0], "invalidate_cblocks")) + return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); + + if (argc != 2) + return -EINVAL; + + return set_config_value(cache, argv[0], argv[1]); +} + +static int cache_iterate_devices(struct dm_target *ti, + iterate_devices_callout_fn fn, void *data) +{ + int r = 0; + struct cache *cache = ti->private; + + r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); + if (!r) + r = fn(ti, cache->origin_dev, 0, ti->len, data); + + return r; +} + +/* + * We assume I/O is going to the origin (which is the volume + * more likely to have restrictions e.g. by being striped). + * (Looking up the exact location of the data would be expensive + * and could always be out of date by the time the bio is submitted.) + */ +static int cache_bvec_merge(struct dm_target *ti, + struct bvec_merge_data *bvm, + struct bio_vec *biovec, int max_size) +{ + struct cache *cache = ti->private; + struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev); + + if (!q->merge_bvec_fn) + return max_size; + + bvm->bi_bdev = cache->origin_dev->bdev; + return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); +} + +static void set_discard_limits(struct cache *cache, struct queue_limits *limits) +{ + /* + * FIXME: these limits may be incompatible with the cache device + */ + limits->max_discard_sectors = cache->sectors_per_block; + limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT; +} + +static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) +{ + struct cache *cache = ti->private; + uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; + + /* + * If the system-determined stacked limits are compatible with the + * cache's blocksize (io_opt is a factor) do not override them. + */ + if (io_opt_sectors < cache->sectors_per_block || + do_div(io_opt_sectors, cache->sectors_per_block)) { + blk_limits_io_min(limits, 0); + blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); + } + set_discard_limits(cache, limits); +} + +/*----------------------------------------------------------------*/ + +static struct target_type cache_target = { + .name = "cache", + .version = {1, 4, 0}, + .module = THIS_MODULE, + .ctr = cache_ctr, + .dtr = cache_dtr, + .map = cache_map, + .end_io = cache_end_io, + .postsuspend = cache_postsuspend, + .preresume = cache_preresume, + .resume = cache_resume, + .status = cache_status, + .message = cache_message, + .iterate_devices = cache_iterate_devices, + .merge = cache_bvec_merge, + .io_hints = cache_io_hints, +}; + +static int __init dm_cache_init(void) +{ + int r; + + r = dm_register_target(&cache_target); + if (r) { + DMERR("cache target registration failed: %d", r); + return r; + } + + migration_cache = KMEM_CACHE(dm_cache_migration, 0); + if (!migration_cache) { + dm_unregister_target(&cache_target); + return -ENOMEM; + } + + return 0; +} + +static void __exit dm_cache_exit(void) +{ + dm_unregister_target(&cache_target); + kmem_cache_destroy(migration_cache); +} + +module_init(dm_cache_init); +module_exit(dm_cache_exit); + +MODULE_DESCRIPTION(DM_NAME " cache target"); +MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); +MODULE_LICENSE("GPL"); diff --git a/drivers/md/dm-crypt.c b/drivers/md/dm-crypt.c index f7369f9d859..4cba2d808af 100644 --- a/drivers/md/dm-crypt.c +++ b/drivers/md/dm-crypt.c @@ -1,7 +1,8 @@ /* - * Copyright (C) 2003 Christophe Saout <christophe@saout.de> + * Copyright (C) 2003 Jana Saout <jana@saout.de> * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved. + * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com> * * This file is released under the GPL. */ @@ -18,7 +19,6 @@ #include <linux/crypto.h> #include <linux/workqueue.h> #include <linux/backing-dev.h> -#include <linux/percpu.h> #include <linux/atomic.h> #include <linux/scatterlist.h> #include <asm/page.h> @@ -38,12 +38,11 @@ struct convert_context { struct completion restart; struct bio *bio_in; struct bio *bio_out; - unsigned int offset_in; - unsigned int offset_out; - unsigned int idx_in; - unsigned int idx_out; + struct bvec_iter iter_in; + struct bvec_iter iter_out; sector_t cc_sector; atomic_t cc_pending; + struct ablkcipher_request *req; }; /* @@ -98,6 +97,13 @@ struct iv_lmk_private { u8 *seed; }; +#define TCW_WHITENING_SIZE 16 +struct iv_tcw_private { + struct crypto_shash *crc32_tfm; + u8 *iv_seed; + u8 *whitening; +}; + /* * Crypt: maps a linear range of a block device * and encrypts / decrypts at the same time. @@ -105,15 +111,7 @@ struct iv_lmk_private { enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID }; /* - * Duplicated per-CPU state for cipher. - */ -struct crypt_cpu { - struct ablkcipher_request *req; -}; - -/* - * The fields in here must be read only after initialization, - * changing state should be in crypt_cpu. + * The fields in here must be read only after initialization. */ struct crypt_config { struct dm_dev *dev; @@ -139,16 +137,11 @@ struct crypt_config { struct iv_essiv_private essiv; struct iv_benbi_private benbi; struct iv_lmk_private lmk; + struct iv_tcw_private tcw; } iv_gen_private; sector_t iv_offset; unsigned int iv_size; - /* - * Duplicated per cpu state. Access through - * per_cpu_ptr() only. - */ - struct crypt_cpu __percpu *cpu; - /* ESSIV: struct crypto_cipher *essiv_tfm */ void *iv_private; struct crypto_ablkcipher **tfms; @@ -171,7 +164,8 @@ struct crypt_config { unsigned long flags; unsigned int key_size; - unsigned int key_parts; + unsigned int key_parts; /* independent parts in key buffer */ + unsigned int key_extra_size; /* additional keys length */ u8 key[0]; }; @@ -184,11 +178,6 @@ static void clone_init(struct dm_crypt_io *, struct bio *); static void kcryptd_queue_crypt(struct dm_crypt_io *io); static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq); -static struct crypt_cpu *this_crypt_config(struct crypt_config *cc) -{ - return this_cpu_ptr(cc->cpu); -} - /* * Use this to access cipher attributes that are the same for each CPU. */ @@ -230,6 +219,16 @@ static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc) * version 3: the same as version 2 with additional IV seed * (it uses 65 keys, last key is used as IV seed) * + * tcw: Compatible implementation of the block chaining mode used + * by the TrueCrypt device encryption system (prior to version 4.1). + * For more info see: http://www.truecrypt.org + * It operates on full 512 byte sectors and uses CBC + * with an IV derived from initial key and the sector number. + * In addition, whitening value is applied on every sector, whitening + * is calculated from initial key, sector number and mixed using CRC32. + * Note that this encryption scheme is vulnerable to watermarking attacks + * and should be used for old compatible containers access only. + * * plumb: unimplemented, see: * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 */ @@ -530,7 +529,7 @@ static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, char ctx[crypto_shash_descsize(lmk->hash_tfm)]; } sdesc; struct md5_state md5state; - u32 buf[4]; + __le32 buf[4]; int i, r; sdesc.desc.tfm = lmk->hash_tfm; @@ -608,6 +607,153 @@ static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, return r; } +static void crypt_iv_tcw_dtr(struct crypt_config *cc) +{ + struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; + + kzfree(tcw->iv_seed); + tcw->iv_seed = NULL; + kzfree(tcw->whitening); + tcw->whitening = NULL; + + if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm)) + crypto_free_shash(tcw->crc32_tfm); + tcw->crc32_tfm = NULL; +} + +static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, + const char *opts) +{ + struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; + + if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { + ti->error = "Wrong key size for TCW"; + return -EINVAL; + } + + tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0); + if (IS_ERR(tcw->crc32_tfm)) { + ti->error = "Error initializing CRC32 in TCW"; + return PTR_ERR(tcw->crc32_tfm); + } + + tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); + tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); + if (!tcw->iv_seed || !tcw->whitening) { + crypt_iv_tcw_dtr(cc); + ti->error = "Error allocating seed storage in TCW"; + return -ENOMEM; + } + + return 0; +} + +static int crypt_iv_tcw_init(struct crypt_config *cc) +{ + struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; + int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; + + memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); + memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], + TCW_WHITENING_SIZE); + + return 0; +} + +static int crypt_iv_tcw_wipe(struct crypt_config *cc) +{ + struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; + + memset(tcw->iv_seed, 0, cc->iv_size); + memset(tcw->whitening, 0, TCW_WHITENING_SIZE); + + return 0; +} + +static int crypt_iv_tcw_whitening(struct crypt_config *cc, + struct dm_crypt_request *dmreq, + u8 *data) +{ + struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; + u64 sector = cpu_to_le64((u64)dmreq->iv_sector); + u8 buf[TCW_WHITENING_SIZE]; + struct { + struct shash_desc desc; + char ctx[crypto_shash_descsize(tcw->crc32_tfm)]; + } sdesc; + int i, r; + + /* xor whitening with sector number */ + memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE); + crypto_xor(buf, (u8 *)§or, 8); + crypto_xor(&buf[8], (u8 *)§or, 8); + + /* calculate crc32 for every 32bit part and xor it */ + sdesc.desc.tfm = tcw->crc32_tfm; + sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; + for (i = 0; i < 4; i++) { + r = crypto_shash_init(&sdesc.desc); + if (r) + goto out; + r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4); + if (r) + goto out; + r = crypto_shash_final(&sdesc.desc, &buf[i * 4]); + if (r) + goto out; + } + crypto_xor(&buf[0], &buf[12], 4); + crypto_xor(&buf[4], &buf[8], 4); + + /* apply whitening (8 bytes) to whole sector */ + for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) + crypto_xor(data + i * 8, buf, 8); +out: + memset(buf, 0, sizeof(buf)); + return r; +} + +static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, + struct dm_crypt_request *dmreq) +{ + struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; + u64 sector = cpu_to_le64((u64)dmreq->iv_sector); + u8 *src; + int r = 0; + + /* Remove whitening from ciphertext */ + if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { + src = kmap_atomic(sg_page(&dmreq->sg_in)); + r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset); + kunmap_atomic(src); + } + + /* Calculate IV */ + memcpy(iv, tcw->iv_seed, cc->iv_size); + crypto_xor(iv, (u8 *)§or, 8); + if (cc->iv_size > 8) + crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8); + + return r; +} + +static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, + struct dm_crypt_request *dmreq) +{ + u8 *dst; + int r; + + if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) + return 0; + + /* Apply whitening on ciphertext */ + dst = kmap_atomic(sg_page(&dmreq->sg_out)); + r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset); + kunmap_atomic(dst); + + return r; +} + static struct crypt_iv_operations crypt_iv_plain_ops = { .generator = crypt_iv_plain_gen }; @@ -643,6 +789,15 @@ static struct crypt_iv_operations crypt_iv_lmk_ops = { .post = crypt_iv_lmk_post }; +static struct crypt_iv_operations crypt_iv_tcw_ops = { + .ctr = crypt_iv_tcw_ctr, + .dtr = crypt_iv_tcw_dtr, + .init = crypt_iv_tcw_init, + .wipe = crypt_iv_tcw_wipe, + .generator = crypt_iv_tcw_gen, + .post = crypt_iv_tcw_post +}; + static void crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx, struct bio *bio_out, struct bio *bio_in, @@ -650,10 +805,10 @@ static void crypt_convert_init(struct crypt_config *cc, { ctx->bio_in = bio_in; ctx->bio_out = bio_out; - ctx->offset_in = 0; - ctx->offset_out = 0; - ctx->idx_in = bio_in ? bio_in->bi_idx : 0; - ctx->idx_out = bio_out ? bio_out->bi_idx : 0; + if (bio_in) + ctx->iter_in = bio_in->bi_iter; + if (bio_out) + ctx->iter_out = bio_out->bi_iter; ctx->cc_sector = sector + cc->iv_offset; init_completion(&ctx->restart); } @@ -681,8 +836,8 @@ static int crypt_convert_block(struct crypt_config *cc, struct convert_context *ctx, struct ablkcipher_request *req) { - struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in); - struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out); + struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); + struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); struct dm_crypt_request *dmreq; u8 *iv; int r; @@ -693,24 +848,15 @@ static int crypt_convert_block(struct crypt_config *cc, dmreq->iv_sector = ctx->cc_sector; dmreq->ctx = ctx; sg_init_table(&dmreq->sg_in, 1); - sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, - bv_in->bv_offset + ctx->offset_in); + sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT, + bv_in.bv_offset); sg_init_table(&dmreq->sg_out, 1); - sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, - bv_out->bv_offset + ctx->offset_out); - - ctx->offset_in += 1 << SECTOR_SHIFT; - if (ctx->offset_in >= bv_in->bv_len) { - ctx->offset_in = 0; - ctx->idx_in++; - } + sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT, + bv_out.bv_offset); - ctx->offset_out += 1 << SECTOR_SHIFT; - if (ctx->offset_out >= bv_out->bv_len) { - ctx->offset_out = 0; - ctx->idx_out++; - } + bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT); + bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT); if (cc->iv_gen_ops) { r = cc->iv_gen_ops->generator(cc, iv, dmreq); @@ -738,16 +884,15 @@ static void kcryptd_async_done(struct crypto_async_request *async_req, static void crypt_alloc_req(struct crypt_config *cc, struct convert_context *ctx) { - struct crypt_cpu *this_cc = this_crypt_config(cc); unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1); - if (!this_cc->req) - this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO); + if (!ctx->req) + ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO); - ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]); - ablkcipher_request_set_callback(this_cc->req, + ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]); + ablkcipher_request_set_callback(ctx->req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, - kcryptd_async_done, dmreq_of_req(cc, this_cc->req)); + kcryptd_async_done, dmreq_of_req(cc, ctx->req)); } /* @@ -756,28 +901,26 @@ static void crypt_alloc_req(struct crypt_config *cc, static int crypt_convert(struct crypt_config *cc, struct convert_context *ctx) { - struct crypt_cpu *this_cc = this_crypt_config(cc); int r; atomic_set(&ctx->cc_pending, 1); - while(ctx->idx_in < ctx->bio_in->bi_vcnt && - ctx->idx_out < ctx->bio_out->bi_vcnt) { + while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { crypt_alloc_req(cc, ctx); atomic_inc(&ctx->cc_pending); - r = crypt_convert_block(cc, ctx, this_cc->req); + r = crypt_convert_block(cc, ctx, ctx->req); switch (r) { /* async */ case -EBUSY: wait_for_completion(&ctx->restart); - INIT_COMPLETION(ctx->restart); + reinit_completion(&ctx->restart); /* fall through*/ case -EINPROGRESS: - this_cc->req = NULL; + ctx->req = NULL; ctx->cc_sector++; continue; @@ -845,7 +988,7 @@ static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size, size -= len; } - if (!clone->bi_size) { + if (!clone->bi_iter.bi_size) { bio_put(clone); return NULL; } @@ -858,8 +1001,7 @@ static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) unsigned int i; struct bio_vec *bv; - for (i = 0; i < clone->bi_vcnt; i++) { - bv = bio_iovec_idx(clone, i); + bio_for_each_segment_all(bv, clone, i) { BUG_ON(!bv->bv_page); mempool_free(bv->bv_page, cc->page_pool); bv->bv_page = NULL; @@ -877,6 +1019,7 @@ static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc, io->sector = sector; io->error = 0; io->base_io = NULL; + io->ctx.req = NULL; atomic_set(&io->io_pending, 0); return io; @@ -902,6 +1045,8 @@ static void crypt_dec_pending(struct dm_crypt_io *io) if (!atomic_dec_and_test(&io->io_pending)) return; + if (io->ctx.req) + mempool_free(io->ctx.req, cc->req_pool); mempool_free(io, cc->io_pool); if (likely(!base_io)) @@ -986,7 +1131,7 @@ static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) crypt_inc_pending(io); clone_init(io, clone); - clone->bi_sector = cc->start + io->sector; + clone->bi_iter.bi_sector = cc->start + io->sector; generic_make_request(clone); return 0; @@ -1032,9 +1177,9 @@ static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) } /* crypt_convert should have filled the clone bio */ - BUG_ON(io->ctx.idx_out < clone->bi_vcnt); + BUG_ON(io->ctx.iter_out.bi_size); - clone->bi_sector = cc->start + io->sector; + clone->bi_iter.bi_sector = cc->start + io->sector; if (async) kcryptd_queue_io(io); @@ -1049,7 +1194,7 @@ static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) struct dm_crypt_io *new_io; int crypt_finished; unsigned out_of_pages = 0; - unsigned remaining = io->base_bio->bi_size; + unsigned remaining = io->base_bio->bi_iter.bi_size; sector_t sector = io->sector; int r; @@ -1071,9 +1216,9 @@ static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) } io->ctx.bio_out = clone; - io->ctx.idx_out = 0; + io->ctx.iter_out = clone->bi_iter; - remaining -= clone->bi_size; + remaining -= clone->bi_iter.bi_size; sector += bio_sectors(clone); crypt_inc_pending(io); @@ -1115,8 +1260,7 @@ static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) crypt_inc_pending(new_io); crypt_convert_init(cc, &new_io->ctx, NULL, io->base_bio, sector); - new_io->ctx.idx_in = io->ctx.idx_in; - new_io->ctx.offset_in = io->ctx.offset_in; + new_io->ctx.iter_in = io->ctx.iter_in; /* * Fragments after the first use the base_io @@ -1234,20 +1378,6 @@ static int crypt_decode_key(u8 *key, char *hex, unsigned int size) return 0; } -/* - * Encode key into its hex representation - */ -static void crypt_encode_key(char *hex, u8 *key, unsigned int size) -{ - unsigned int i; - - for (i = 0; i < size; i++) { - sprintf(hex, "%02x", *key); - hex += 2; - key++; - } -} - static void crypt_free_tfms(struct crypt_config *cc) { unsigned i; @@ -1289,9 +1419,12 @@ static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) static int crypt_setkey_allcpus(struct crypt_config *cc) { - unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count); + unsigned subkey_size; int err = 0, i, r; + /* Ignore extra keys (which are used for IV etc) */ + subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); + for (i = 0; i < cc->tfms_count; i++) { r = crypto_ablkcipher_setkey(cc->tfms[i], cc->key + (i * subkey_size), @@ -1341,8 +1474,6 @@ static int crypt_wipe_key(struct crypt_config *cc) static void crypt_dtr(struct dm_target *ti) { struct crypt_config *cc = ti->private; - struct crypt_cpu *cpu_cc; - int cpu; ti->private = NULL; @@ -1354,13 +1485,6 @@ static void crypt_dtr(struct dm_target *ti) if (cc->crypt_queue) destroy_workqueue(cc->crypt_queue); - if (cc->cpu) - for_each_possible_cpu(cpu) { - cpu_cc = per_cpu_ptr(cc->cpu, cpu); - if (cpu_cc->req) - mempool_free(cpu_cc->req, cc->req_pool); - } - crypt_free_tfms(cc); if (cc->bs) @@ -1379,9 +1503,6 @@ static void crypt_dtr(struct dm_target *ti) if (cc->dev) dm_put_device(ti, cc->dev); - if (cc->cpu) - free_percpu(cc->cpu); - kzfree(cc->cipher); kzfree(cc->cipher_string); @@ -1424,6 +1545,7 @@ static int crypt_ctr_cipher(struct dm_target *ti, return -EINVAL; } cc->key_parts = cc->tfms_count; + cc->key_extra_size = 0; cc->cipher = kstrdup(cipher, GFP_KERNEL); if (!cc->cipher) @@ -1436,13 +1558,6 @@ static int crypt_ctr_cipher(struct dm_target *ti, if (tmp) DMWARN("Ignoring unexpected additional cipher options"); - cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)), - __alignof__(struct crypt_cpu)); - if (!cc->cpu) { - ti->error = "Cannot allocate per cpu state"; - goto bad_mem; - } - /* * For compatibility with the original dm-crypt mapping format, if * only the cipher name is supplied, use cbc-plain. @@ -1475,13 +1590,6 @@ static int crypt_ctr_cipher(struct dm_target *ti, goto bad; } - /* Initialize and set key */ - ret = crypt_set_key(cc, key); - if (ret < 0) { - ti->error = "Error decoding and setting key"; - goto bad; - } - /* Initialize IV */ cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc)); if (cc->iv_size) @@ -1508,18 +1616,33 @@ static int crypt_ctr_cipher(struct dm_target *ti, cc->iv_gen_ops = &crypt_iv_null_ops; else if (strcmp(ivmode, "lmk") == 0) { cc->iv_gen_ops = &crypt_iv_lmk_ops; - /* Version 2 and 3 is recognised according + /* + * Version 2 and 3 is recognised according * to length of provided multi-key string. * If present (version 3), last key is used as IV seed. + * All keys (including IV seed) are always the same size. */ - if (cc->key_size % cc->key_parts) + if (cc->key_size % cc->key_parts) { cc->key_parts++; + cc->key_extra_size = cc->key_size / cc->key_parts; + } + } else if (strcmp(ivmode, "tcw") == 0) { + cc->iv_gen_ops = &crypt_iv_tcw_ops; + cc->key_parts += 2; /* IV + whitening */ + cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; } else { ret = -EINVAL; ti->error = "Invalid IV mode"; goto bad; } + /* Initialize and set key */ + ret = crypt_set_key(cc, key); + if (ret < 0) { + ti->error = "Error decoding and setting key"; + goto bad; + } + /* Allocate IV */ if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); @@ -1651,7 +1774,7 @@ static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) if (opt_params == 1 && opt_string && !strcasecmp(opt_string, "allow_discards")) - ti->num_discard_requests = 1; + ti->num_discard_bios = 1; else if (opt_params) { ret = -EINVAL; ti->error = "Invalid feature arguments"; @@ -1660,26 +1783,20 @@ static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) } ret = -ENOMEM; - cc->io_queue = alloc_workqueue("kcryptd_io", - WQ_NON_REENTRANT| - WQ_MEM_RECLAIM, - 1); + cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1); if (!cc->io_queue) { ti->error = "Couldn't create kcryptd io queue"; goto bad; } cc->crypt_queue = alloc_workqueue("kcryptd", - WQ_NON_REENTRANT| - WQ_CPU_INTENSIVE| - WQ_MEM_RECLAIM, - 1); + WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1); if (!cc->crypt_queue) { ti->error = "Couldn't create kcryptd queue"; goto bad; } - ti->num_flush_requests = 1; + ti->num_flush_bios = 1; ti->discard_zeroes_data_unsupported = true; return 0; @@ -1702,11 +1819,12 @@ static int crypt_map(struct dm_target *ti, struct bio *bio) if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) { bio->bi_bdev = cc->dev->bdev; if (bio_sectors(bio)) - bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector); + bio->bi_iter.bi_sector = cc->start + + dm_target_offset(ti, bio->bi_iter.bi_sector); return DM_MAPIO_REMAPPED; } - io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector)); + io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); if (bio_data_dir(io->base_bio) == READ) { if (kcryptd_io_read(io, GFP_NOWAIT)) @@ -1717,11 +1835,11 @@ static int crypt_map(struct dm_target *ti, struct bio *bio) return DM_MAPIO_SUBMITTED; } -static int crypt_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void crypt_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { struct crypt_config *cc = ti->private; - unsigned int sz = 0; + unsigned i, sz = 0; switch (type) { case STATUSTYPE_INFO: @@ -1731,27 +1849,20 @@ static int crypt_status(struct dm_target *ti, status_type_t type, case STATUSTYPE_TABLE: DMEMIT("%s ", cc->cipher_string); - if (cc->key_size > 0) { - if ((maxlen - sz) < ((cc->key_size << 1) + 1)) - return -ENOMEM; - - crypt_encode_key(result + sz, cc->key, cc->key_size); - sz += cc->key_size << 1; - } else { - if (sz >= maxlen) - return -ENOMEM; - result[sz++] = '-'; - } + if (cc->key_size > 0) + for (i = 0; i < cc->key_size; i++) + DMEMIT("%02x", cc->key[i]); + else + DMEMIT("-"); DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, cc->dev->name, (unsigned long long)cc->start); - if (ti->num_discard_requests) + if (ti->num_discard_bios) DMEMIT(" 1 allow_discards"); break; } - return 0; } static void crypt_postsuspend(struct dm_target *ti) @@ -1845,7 +1956,7 @@ static int crypt_iterate_devices(struct dm_target *ti, static struct target_type crypt_target = { .name = "crypt", - .version = {1, 12, 0}, + .version = {1, 13, 0}, .module = THIS_MODULE, .ctr = crypt_ctr, .dtr = crypt_dtr, @@ -1885,6 +1996,6 @@ static void __exit dm_crypt_exit(void) module_init(dm_crypt_init); module_exit(dm_crypt_exit); -MODULE_AUTHOR("Christophe Saout <christophe@saout.de>"); +MODULE_AUTHOR("Jana Saout <jana@saout.de>"); MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); MODULE_LICENSE("GPL"); diff --git a/drivers/md/dm-delay.c b/drivers/md/dm-delay.c index cc1bd048acb..42c3a27a14c 100644 --- a/drivers/md/dm-delay.c +++ b/drivers/md/dm-delay.c @@ -20,10 +20,10 @@ struct delay_c { struct timer_list delay_timer; struct mutex timer_lock; + struct workqueue_struct *kdelayd_wq; struct work_struct flush_expired_bios; struct list_head delayed_bios; atomic_t may_delay; - mempool_t *delayed_pool; struct dm_dev *dev_read; sector_t start_read; @@ -39,20 +39,16 @@ struct delay_c { struct dm_delay_info { struct delay_c *context; struct list_head list; - struct bio *bio; unsigned long expires; }; static DEFINE_MUTEX(delayed_bios_lock); -static struct workqueue_struct *kdelayd_wq; -static struct kmem_cache *delayed_cache; - static void handle_delayed_timer(unsigned long data) { struct delay_c *dc = (struct delay_c *)data; - queue_work(kdelayd_wq, &dc->flush_expired_bios); + queue_work(dc->kdelayd_wq, &dc->flush_expired_bios); } static void queue_timeout(struct delay_c *dc, unsigned long expires) @@ -87,13 +83,14 @@ static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all) mutex_lock(&delayed_bios_lock); list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) { if (flush_all || time_after_eq(jiffies, delayed->expires)) { + struct bio *bio = dm_bio_from_per_bio_data(delayed, + sizeof(struct dm_delay_info)); list_del(&delayed->list); - bio_list_add(&flush_bios, delayed->bio); - if ((bio_data_dir(delayed->bio) == WRITE)) + bio_list_add(&flush_bios, bio); + if ((bio_data_dir(bio) == WRITE)) delayed->context->writes--; else delayed->context->reads--; - mempool_free(delayed, dc->delayed_pool); continue; } @@ -185,10 +182,10 @@ static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv) } out: - dc->delayed_pool = mempool_create_slab_pool(128, delayed_cache); - if (!dc->delayed_pool) { - DMERR("Couldn't create delayed bio pool."); - goto bad_dev_write; + dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0); + if (!dc->kdelayd_wq) { + DMERR("Couldn't start kdelayd"); + goto bad_queue; } setup_timer(&dc->delay_timer, handle_delayed_timer, (unsigned long)dc); @@ -198,12 +195,13 @@ out: mutex_init(&dc->timer_lock); atomic_set(&dc->may_delay, 1); - ti->num_flush_requests = 1; - ti->num_discard_requests = 1; + ti->num_flush_bios = 1; + ti->num_discard_bios = 1; + ti->per_bio_data_size = sizeof(struct dm_delay_info); ti->private = dc; return 0; -bad_dev_write: +bad_queue: if (dc->dev_write) dm_put_device(ti, dc->dev_write); bad_dev_read: @@ -217,14 +215,13 @@ static void delay_dtr(struct dm_target *ti) { struct delay_c *dc = ti->private; - flush_workqueue(kdelayd_wq); + destroy_workqueue(dc->kdelayd_wq); dm_put_device(ti, dc->dev_read); if (dc->dev_write) dm_put_device(ti, dc->dev_write); - mempool_destroy(dc->delayed_pool); kfree(dc); } @@ -236,10 +233,9 @@ static int delay_bio(struct delay_c *dc, int delay, struct bio *bio) if (!delay || !atomic_read(&dc->may_delay)) return 1; - delayed = mempool_alloc(dc->delayed_pool, GFP_NOIO); + delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info)); delayed->context = dc; - delayed->bio = bio; delayed->expires = expires = jiffies + (delay * HZ / 1000); mutex_lock(&delayed_bios_lock); @@ -281,20 +277,21 @@ static int delay_map(struct dm_target *ti, struct bio *bio) if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) { bio->bi_bdev = dc->dev_write->bdev; if (bio_sectors(bio)) - bio->bi_sector = dc->start_write + - dm_target_offset(ti, bio->bi_sector); + bio->bi_iter.bi_sector = dc->start_write + + dm_target_offset(ti, bio->bi_iter.bi_sector); return delay_bio(dc, dc->write_delay, bio); } bio->bi_bdev = dc->dev_read->bdev; - bio->bi_sector = dc->start_read + dm_target_offset(ti, bio->bi_sector); + bio->bi_iter.bi_sector = dc->start_read + + dm_target_offset(ti, bio->bi_iter.bi_sector); return delay_bio(dc, dc->read_delay, bio); } -static int delay_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void delay_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { struct delay_c *dc = ti->private; int sz = 0; @@ -314,8 +311,6 @@ static int delay_status(struct dm_target *ti, status_type_t type, dc->write_delay); break; } - - return 0; } static int delay_iterate_devices(struct dm_target *ti, @@ -337,7 +332,7 @@ out: static struct target_type delay_target = { .name = "delay", - .version = {1, 2, 0}, + .version = {1, 2, 1}, .module = THIS_MODULE, .ctr = delay_ctr, .dtr = delay_dtr, @@ -350,19 +345,7 @@ static struct target_type delay_target = { static int __init dm_delay_init(void) { - int r = -ENOMEM; - - kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0); - if (!kdelayd_wq) { - DMERR("Couldn't start kdelayd"); - goto bad_queue; - } - - delayed_cache = KMEM_CACHE(dm_delay_info, 0); - if (!delayed_cache) { - DMERR("Couldn't create delayed bio cache."); - goto bad_memcache; - } + int r; r = dm_register_target(&delay_target); if (r < 0) { @@ -373,18 +356,12 @@ static int __init dm_delay_init(void) return 0; bad_register: - kmem_cache_destroy(delayed_cache); -bad_memcache: - destroy_workqueue(kdelayd_wq); -bad_queue: return r; } static void __exit dm_delay_exit(void) { dm_unregister_target(&delay_target); - kmem_cache_destroy(delayed_cache); - destroy_workqueue(kdelayd_wq); } /* Module hooks */ diff --git a/drivers/md/dm-era-target.c b/drivers/md/dm-era-target.c new file mode 100644 index 00000000000..ad913cd4ade --- /dev/null +++ b/drivers/md/dm-era-target.c @@ -0,0 +1,1747 @@ +#include "dm.h" +#include "persistent-data/dm-transaction-manager.h" +#include "persistent-data/dm-bitset.h" +#include "persistent-data/dm-space-map.h" + +#include <linux/dm-io.h> +#include <linux/dm-kcopyd.h> +#include <linux/init.h> +#include <linux/mempool.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> + +#define DM_MSG_PREFIX "era" + +#define SUPERBLOCK_LOCATION 0 +#define SUPERBLOCK_MAGIC 2126579579 +#define SUPERBLOCK_CSUM_XOR 146538381 +#define MIN_ERA_VERSION 1 +#define MAX_ERA_VERSION 1 +#define INVALID_WRITESET_ROOT SUPERBLOCK_LOCATION +#define MIN_BLOCK_SIZE 8 + +/*---------------------------------------------------------------- + * Writeset + *--------------------------------------------------------------*/ +struct writeset_metadata { + uint32_t nr_bits; + dm_block_t root; +}; + +struct writeset { + struct writeset_metadata md; + + /* + * An in core copy of the bits to save constantly doing look ups on + * disk. + */ + unsigned long *bits; +}; + +/* + * This does not free off the on disk bitset as this will normally be done + * after digesting into the era array. + */ +static void writeset_free(struct writeset *ws) +{ + vfree(ws->bits); +} + +static int setup_on_disk_bitset(struct dm_disk_bitset *info, + unsigned nr_bits, dm_block_t *root) +{ + int r; + + r = dm_bitset_empty(info, root); + if (r) + return r; + + return dm_bitset_resize(info, *root, 0, nr_bits, false, root); +} + +static size_t bitset_size(unsigned nr_bits) +{ + return sizeof(unsigned long) * dm_div_up(nr_bits, BITS_PER_LONG); +} + +/* + * Allocates memory for the in core bitset. + */ +static int writeset_alloc(struct writeset *ws, dm_block_t nr_blocks) +{ + ws->md.nr_bits = nr_blocks; + ws->md.root = INVALID_WRITESET_ROOT; + ws->bits = vzalloc(bitset_size(nr_blocks)); + if (!ws->bits) { + DMERR("%s: couldn't allocate in memory bitset", __func__); + return -ENOMEM; + } + + return 0; +} + +/* + * Wipes the in-core bitset, and creates a new on disk bitset. + */ +static int writeset_init(struct dm_disk_bitset *info, struct writeset *ws) +{ + int r; + + memset(ws->bits, 0, bitset_size(ws->md.nr_bits)); + + r = setup_on_disk_bitset(info, ws->md.nr_bits, &ws->md.root); + if (r) { + DMERR("%s: setup_on_disk_bitset failed", __func__); + return r; + } + + return 0; +} + +static bool writeset_marked(struct writeset *ws, dm_block_t block) +{ + return test_bit(block, ws->bits); +} + +static int writeset_marked_on_disk(struct dm_disk_bitset *info, + struct writeset_metadata *m, dm_block_t block, + bool *result) +{ + dm_block_t old = m->root; + + /* + * The bitset was flushed when it was archived, so we know there'll + * be no change to the root. + */ + int r = dm_bitset_test_bit(info, m->root, block, &m->root, result); + if (r) { + DMERR("%s: dm_bitset_test_bit failed", __func__); + return r; + } + + BUG_ON(m->root != old); + + return r; +} + +/* + * Returns < 0 on error, 0 if the bit wasn't previously set, 1 if it was. + */ +static int writeset_test_and_set(struct dm_disk_bitset *info, + struct writeset *ws, uint32_t block) +{ + int r; + + if (!test_and_set_bit(block, ws->bits)) { + r = dm_bitset_set_bit(info, ws->md.root, block, &ws->md.root); + if (r) { + /* FIXME: fail mode */ + return r; + } + + return 0; + } + + return 1; +} + +/*---------------------------------------------------------------- + * On disk metadata layout + *--------------------------------------------------------------*/ +#define SPACE_MAP_ROOT_SIZE 128 +#define UUID_LEN 16 + +struct writeset_disk { + __le32 nr_bits; + __le64 root; +} __packed; + +struct superblock_disk { + __le32 csum; + __le32 flags; + __le64 blocknr; + + __u8 uuid[UUID_LEN]; + __le64 magic; + __le32 version; + + __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; + + __le32 data_block_size; + __le32 metadata_block_size; + __le32 nr_blocks; + + __le32 current_era; + struct writeset_disk current_writeset; + + /* + * Only these two fields are valid within the metadata snapshot. + */ + __le64 writeset_tree_root; + __le64 era_array_root; + + __le64 metadata_snap; +} __packed; + +/*---------------------------------------------------------------- + * Superblock validation + *--------------------------------------------------------------*/ +static void sb_prepare_for_write(struct dm_block_validator *v, + struct dm_block *b, + size_t sb_block_size) +{ + struct superblock_disk *disk = dm_block_data(b); + + disk->blocknr = cpu_to_le64(dm_block_location(b)); + disk->csum = cpu_to_le32(dm_bm_checksum(&disk->flags, + sb_block_size - sizeof(__le32), + SUPERBLOCK_CSUM_XOR)); +} + +static int check_metadata_version(struct superblock_disk *disk) +{ + uint32_t metadata_version = le32_to_cpu(disk->version); + if (metadata_version < MIN_ERA_VERSION || metadata_version > MAX_ERA_VERSION) { + DMERR("Era metadata version %u found, but only versions between %u and %u supported.", + metadata_version, MIN_ERA_VERSION, MAX_ERA_VERSION); + return -EINVAL; + } + + return 0; +} + +static int sb_check(struct dm_block_validator *v, + struct dm_block *b, + size_t sb_block_size) +{ + struct superblock_disk *disk = dm_block_data(b); + __le32 csum_le; + + if (dm_block_location(b) != le64_to_cpu(disk->blocknr)) { + DMERR("sb_check failed: blocknr %llu: wanted %llu", + le64_to_cpu(disk->blocknr), + (unsigned long long)dm_block_location(b)); + return -ENOTBLK; + } + + if (le64_to_cpu(disk->magic) != SUPERBLOCK_MAGIC) { + DMERR("sb_check failed: magic %llu: wanted %llu", + le64_to_cpu(disk->magic), + (unsigned long long) SUPERBLOCK_MAGIC); + return -EILSEQ; + } + + csum_le = cpu_to_le32(dm_bm_checksum(&disk->flags, + sb_block_size - sizeof(__le32), + SUPERBLOCK_CSUM_XOR)); + if (csum_le != disk->csum) { + DMERR("sb_check failed: csum %u: wanted %u", + le32_to_cpu(csum_le), le32_to_cpu(disk->csum)); + return -EILSEQ; + } + + return check_metadata_version(disk); +} + +static struct dm_block_validator sb_validator = { + .name = "superblock", + .prepare_for_write = sb_prepare_for_write, + .check = sb_check +}; + +/*---------------------------------------------------------------- + * Low level metadata handling + *--------------------------------------------------------------*/ +#define DM_ERA_METADATA_BLOCK_SIZE 4096 +#define DM_ERA_METADATA_CACHE_SIZE 64 +#define ERA_MAX_CONCURRENT_LOCKS 5 + +struct era_metadata { + struct block_device *bdev; + struct dm_block_manager *bm; + struct dm_space_map *sm; + struct dm_transaction_manager *tm; + + dm_block_t block_size; + uint32_t nr_blocks; + + uint32_t current_era; + + /* + * We preallocate 2 writesets. When an era rolls over we + * switch between them. This means the allocation is done at + * preresume time, rather than on the io path. + */ + struct writeset writesets[2]; + struct writeset *current_writeset; + + dm_block_t writeset_tree_root; + dm_block_t era_array_root; + + struct dm_disk_bitset bitset_info; + struct dm_btree_info writeset_tree_info; + struct dm_array_info era_array_info; + + dm_block_t metadata_snap; + + /* + * A flag that is set whenever a writeset has been archived. + */ + bool archived_writesets; + + /* + * Reading the space map root can fail, so we read it into this + * buffer before the superblock is locked and updated. + */ + __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; +}; + +static int superblock_read_lock(struct era_metadata *md, + struct dm_block **sblock) +{ + return dm_bm_read_lock(md->bm, SUPERBLOCK_LOCATION, + &sb_validator, sblock); +} + +static int superblock_lock_zero(struct era_metadata *md, + struct dm_block **sblock) +{ + return dm_bm_write_lock_zero(md->bm, SUPERBLOCK_LOCATION, + &sb_validator, sblock); +} + +static int superblock_lock(struct era_metadata *md, + struct dm_block **sblock) +{ + return dm_bm_write_lock(md->bm, SUPERBLOCK_LOCATION, + &sb_validator, sblock); +} + +/* FIXME: duplication with cache and thin */ +static int superblock_all_zeroes(struct dm_block_manager *bm, bool *result) +{ + int r; + unsigned i; + struct dm_block *b; + __le64 *data_le, zero = cpu_to_le64(0); + unsigned sb_block_size = dm_bm_block_size(bm) / sizeof(__le64); + + /* + * We can't use a validator here - it may be all zeroes. + */ + r = dm_bm_read_lock(bm, SUPERBLOCK_LOCATION, NULL, &b); + if (r) + return r; + + data_le = dm_block_data(b); + *result = true; + for (i = 0; i < sb_block_size; i++) { + if (data_le[i] != zero) { + *result = false; + break; + } + } + + return dm_bm_unlock(b); +} + +/*----------------------------------------------------------------*/ + +static void ws_pack(const struct writeset_metadata *core, struct writeset_disk *disk) +{ + disk->nr_bits = cpu_to_le32(core->nr_bits); + disk->root = cpu_to_le64(core->root); +} + +static void ws_unpack(const struct writeset_disk *disk, struct writeset_metadata *core) +{ + core->nr_bits = le32_to_cpu(disk->nr_bits); + core->root = le64_to_cpu(disk->root); +} + +static void ws_inc(void *context, const void *value) +{ + struct era_metadata *md = context; + struct writeset_disk ws_d; + dm_block_t b; + + memcpy(&ws_d, value, sizeof(ws_d)); + b = le64_to_cpu(ws_d.root); + + dm_tm_inc(md->tm, b); +} + +static void ws_dec(void *context, const void *value) +{ + struct era_metadata *md = context; + struct writeset_disk ws_d; + dm_block_t b; + + memcpy(&ws_d, value, sizeof(ws_d)); + b = le64_to_cpu(ws_d.root); + + dm_bitset_del(&md->bitset_info, b); +} + +static int ws_eq(void *context, const void *value1, const void *value2) +{ + return !memcmp(value1, value2, sizeof(struct writeset_metadata)); +} + +/*----------------------------------------------------------------*/ + +static void setup_writeset_tree_info(struct era_metadata *md) +{ + struct dm_btree_value_type *vt = &md->writeset_tree_info.value_type; + md->writeset_tree_info.tm = md->tm; + md->writeset_tree_info.levels = 1; + vt->context = md; + vt->size = sizeof(struct writeset_disk); + vt->inc = ws_inc; + vt->dec = ws_dec; + vt->equal = ws_eq; +} + +static void setup_era_array_info(struct era_metadata *md) + +{ + struct dm_btree_value_type vt; + vt.context = NULL; + vt.size = sizeof(__le32); + vt.inc = NULL; + vt.dec = NULL; + vt.equal = NULL; + + dm_array_info_init(&md->era_array_info, md->tm, &vt); +} + +static void setup_infos(struct era_metadata *md) +{ + dm_disk_bitset_init(md->tm, &md->bitset_info); + setup_writeset_tree_info(md); + setup_era_array_info(md); +} + +/*----------------------------------------------------------------*/ + +static int create_fresh_metadata(struct era_metadata *md) +{ + int r; + + r = dm_tm_create_with_sm(md->bm, SUPERBLOCK_LOCATION, + &md->tm, &md->sm); + if (r < 0) { + DMERR("dm_tm_create_with_sm failed"); + return r; + } + + setup_infos(md); + + r = dm_btree_empty(&md->writeset_tree_info, &md->writeset_tree_root); + if (r) { + DMERR("couldn't create new writeset tree"); + goto bad; + } + + r = dm_array_empty(&md->era_array_info, &md->era_array_root); + if (r) { + DMERR("couldn't create era array"); + goto bad; + } + + return 0; + +bad: + dm_sm_destroy(md->sm); + dm_tm_destroy(md->tm); + + return r; +} + +static int save_sm_root(struct era_metadata *md) +{ + int r; + size_t metadata_len; + + r = dm_sm_root_size(md->sm, &metadata_len); + if (r < 0) + return r; + + return dm_sm_copy_root(md->sm, &md->metadata_space_map_root, + metadata_len); +} + +static void copy_sm_root(struct era_metadata *md, struct superblock_disk *disk) +{ + memcpy(&disk->metadata_space_map_root, + &md->metadata_space_map_root, + sizeof(md->metadata_space_map_root)); +} + +/* + * Writes a superblock, including the static fields that don't get updated + * with every commit (possible optimisation here). 'md' should be fully + * constructed when this is called. + */ +static void prepare_superblock(struct era_metadata *md, struct superblock_disk *disk) +{ + disk->magic = cpu_to_le64(SUPERBLOCK_MAGIC); + disk->flags = cpu_to_le32(0ul); + + /* FIXME: can't keep blanking the uuid (uuid is currently unused though) */ + memset(disk->uuid, 0, sizeof(disk->uuid)); + disk->version = cpu_to_le32(MAX_ERA_VERSION); + + copy_sm_root(md, disk); + + disk->data_block_size = cpu_to_le32(md->block_size); + disk->metadata_block_size = cpu_to_le32(DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT); + disk->nr_blocks = cpu_to_le32(md->nr_blocks); + disk->current_era = cpu_to_le32(md->current_era); + + ws_pack(&md->current_writeset->md, &disk->current_writeset); + disk->writeset_tree_root = cpu_to_le64(md->writeset_tree_root); + disk->era_array_root = cpu_to_le64(md->era_array_root); + disk->metadata_snap = cpu_to_le64(md->metadata_snap); +} + +static int write_superblock(struct era_metadata *md) +{ + int r; + struct dm_block *sblock; + struct superblock_disk *disk; + + r = save_sm_root(md); + if (r) { + DMERR("%s: save_sm_root failed", __func__); + return r; + } + + r = superblock_lock_zero(md, &sblock); + if (r) + return r; + + disk = dm_block_data(sblock); + prepare_superblock(md, disk); + + return dm_tm_commit(md->tm, sblock); +} + +/* + * Assumes block_size and the infos are set. + */ +static int format_metadata(struct era_metadata *md) +{ + int r; + + r = create_fresh_metadata(md); + if (r) + return r; + + r = write_superblock(md); + if (r) { + dm_sm_destroy(md->sm); + dm_tm_destroy(md->tm); + return r; + } + + return 0; +} + +static int open_metadata(struct era_metadata *md) +{ + int r; + struct dm_block *sblock; + struct superblock_disk *disk; + + r = superblock_read_lock(md, &sblock); + if (r) { + DMERR("couldn't read_lock superblock"); + return r; + } + + disk = dm_block_data(sblock); + r = dm_tm_open_with_sm(md->bm, SUPERBLOCK_LOCATION, + disk->metadata_space_map_root, + sizeof(disk->metadata_space_map_root), + &md->tm, &md->sm); + if (r) { + DMERR("dm_tm_open_with_sm failed"); + goto bad; + } + + setup_infos(md); + + md->block_size = le32_to_cpu(disk->data_block_size); + md->nr_blocks = le32_to_cpu(disk->nr_blocks); + md->current_era = le32_to_cpu(disk->current_era); + + md->writeset_tree_root = le64_to_cpu(disk->writeset_tree_root); + md->era_array_root = le64_to_cpu(disk->era_array_root); + md->metadata_snap = le64_to_cpu(disk->metadata_snap); + md->archived_writesets = true; + + return dm_bm_unlock(sblock); + +bad: + dm_bm_unlock(sblock); + return r; +} + +static int open_or_format_metadata(struct era_metadata *md, + bool may_format) +{ + int r; + bool unformatted = false; + + r = superblock_all_zeroes(md->bm, &unformatted); + if (r) + return r; + + if (unformatted) + return may_format ? format_metadata(md) : -EPERM; + + return open_metadata(md); +} + +static int create_persistent_data_objects(struct era_metadata *md, + bool may_format) +{ + int r; + + md->bm = dm_block_manager_create(md->bdev, DM_ERA_METADATA_BLOCK_SIZE, + DM_ERA_METADATA_CACHE_SIZE, + ERA_MAX_CONCURRENT_LOCKS); + if (IS_ERR(md->bm)) { + DMERR("could not create block manager"); + return PTR_ERR(md->bm); + } + + r = open_or_format_metadata(md, may_format); + if (r) + dm_block_manager_destroy(md->bm); + + return r; +} + +static void destroy_persistent_data_objects(struct era_metadata *md) +{ + dm_sm_destroy(md->sm); + dm_tm_destroy(md->tm); + dm_block_manager_destroy(md->bm); +} + +/* + * This waits until all era_map threads have picked up the new filter. + */ +static void swap_writeset(struct era_metadata *md, struct writeset *new_writeset) +{ + rcu_assign_pointer(md->current_writeset, new_writeset); + synchronize_rcu(); +} + +/*---------------------------------------------------------------- + * Writesets get 'digested' into the main era array. + * + * We're using a coroutine here so the worker thread can do the digestion, + * thus avoiding synchronisation of the metadata. Digesting a whole + * writeset in one go would cause too much latency. + *--------------------------------------------------------------*/ +struct digest { + uint32_t era; + unsigned nr_bits, current_bit; + struct writeset_metadata writeset; + __le32 value; + struct dm_disk_bitset info; + + int (*step)(struct era_metadata *, struct digest *); +}; + +static int metadata_digest_lookup_writeset(struct era_metadata *md, + struct digest *d); + +static int metadata_digest_remove_writeset(struct era_metadata *md, + struct digest *d) +{ + int r; + uint64_t key = d->era; + + r = dm_btree_remove(&md->writeset_tree_info, md->writeset_tree_root, + &key, &md->writeset_tree_root); + if (r) { + DMERR("%s: dm_btree_remove failed", __func__); + return r; + } + + d->step = metadata_digest_lookup_writeset; + return 0; +} + +#define INSERTS_PER_STEP 100 + +static int metadata_digest_transcribe_writeset(struct era_metadata *md, + struct digest *d) +{ + int r; + bool marked; + unsigned b, e = min(d->current_bit + INSERTS_PER_STEP, d->nr_bits); + + for (b = d->current_bit; b < e; b++) { + r = writeset_marked_on_disk(&d->info, &d->writeset, b, &marked); + if (r) { + DMERR("%s: writeset_marked_on_disk failed", __func__); + return r; + } + + if (!marked) + continue; + + __dm_bless_for_disk(&d->value); + r = dm_array_set_value(&md->era_array_info, md->era_array_root, + b, &d->value, &md->era_array_root); + if (r) { + DMERR("%s: dm_array_set_value failed", __func__); + return r; + } + } + + if (b == d->nr_bits) + d->step = metadata_digest_remove_writeset; + else + d->current_bit = b; + + return 0; +} + +static int metadata_digest_lookup_writeset(struct era_metadata *md, + struct digest *d) +{ + int r; + uint64_t key; + struct writeset_disk disk; + + r = dm_btree_find_lowest_key(&md->writeset_tree_info, + md->writeset_tree_root, &key); + if (r < 0) + return r; + + d->era = key; + + r = dm_btree_lookup(&md->writeset_tree_info, + md->writeset_tree_root, &key, &disk); + if (r) { + if (r == -ENODATA) { + d->step = NULL; + return 0; + } + + DMERR("%s: dm_btree_lookup failed", __func__); + return r; + } + + ws_unpack(&disk, &d->writeset); + d->value = cpu_to_le32(key); + + d->nr_bits = min(d->writeset.nr_bits, md->nr_blocks); + d->current_bit = 0; + d->step = metadata_digest_transcribe_writeset; + + return 0; +} + +static int metadata_digest_start(struct era_metadata *md, struct digest *d) +{ + if (d->step) + return 0; + + memset(d, 0, sizeof(*d)); + + /* + * We initialise another bitset info to avoid any caching side + * effects with the previous one. + */ + dm_disk_bitset_init(md->tm, &d->info); + d->step = metadata_digest_lookup_writeset; + + return 0; +} + +/*---------------------------------------------------------------- + * High level metadata interface. Target methods should use these, and not + * the lower level ones. + *--------------------------------------------------------------*/ +static struct era_metadata *metadata_open(struct block_device *bdev, + sector_t block_size, + bool may_format) +{ + int r; + struct era_metadata *md = kzalloc(sizeof(*md), GFP_KERNEL); + + if (!md) + return NULL; + + md->bdev = bdev; + md->block_size = block_size; + + md->writesets[0].md.root = INVALID_WRITESET_ROOT; + md->writesets[1].md.root = INVALID_WRITESET_ROOT; + md->current_writeset = &md->writesets[0]; + + r = create_persistent_data_objects(md, may_format); + if (r) { + kfree(md); + return ERR_PTR(r); + } + + return md; +} + +static void metadata_close(struct era_metadata *md) +{ + destroy_persistent_data_objects(md); + kfree(md); +} + +static bool valid_nr_blocks(dm_block_t n) +{ + /* + * dm_bitset restricts us to 2^32. test_bit & co. restrict us + * further to 2^31 - 1 + */ + return n < (1ull << 31); +} + +static int metadata_resize(struct era_metadata *md, void *arg) +{ + int r; + dm_block_t *new_size = arg; + __le32 value; + + if (!valid_nr_blocks(*new_size)) { + DMERR("Invalid number of origin blocks %llu", + (unsigned long long) *new_size); + return -EINVAL; + } + + writeset_free(&md->writesets[0]); + writeset_free(&md->writesets[1]); + + r = writeset_alloc(&md->writesets[0], *new_size); + if (r) { + DMERR("%s: writeset_alloc failed for writeset 0", __func__); + return r; + } + + r = writeset_alloc(&md->writesets[1], *new_size); + if (r) { + DMERR("%s: writeset_alloc failed for writeset 1", __func__); + return r; + } + + value = cpu_to_le32(0u); + __dm_bless_for_disk(&value); + r = dm_array_resize(&md->era_array_info, md->era_array_root, + md->nr_blocks, *new_size, + &value, &md->era_array_root); + if (r) { + DMERR("%s: dm_array_resize failed", __func__); + return r; + } + + md->nr_blocks = *new_size; + return 0; +} + +static int metadata_era_archive(struct era_metadata *md) +{ + int r; + uint64_t keys[1]; + struct writeset_disk value; + + r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root, + &md->current_writeset->md.root); + if (r) { + DMERR("%s: dm_bitset_flush failed", __func__); + return r; + } + + ws_pack(&md->current_writeset->md, &value); + md->current_writeset->md.root = INVALID_WRITESET_ROOT; + + keys[0] = md->current_era; + __dm_bless_for_disk(&value); + r = dm_btree_insert(&md->writeset_tree_info, md->writeset_tree_root, + keys, &value, &md->writeset_tree_root); + if (r) { + DMERR("%s: couldn't insert writeset into btree", __func__); + /* FIXME: fail mode */ + return r; + } + + md->archived_writesets = true; + + return 0; +} + +static struct writeset *next_writeset(struct era_metadata *md) +{ + return (md->current_writeset == &md->writesets[0]) ? + &md->writesets[1] : &md->writesets[0]; +} + +static int metadata_new_era(struct era_metadata *md) +{ + int r; + struct writeset *new_writeset = next_writeset(md); + + r = writeset_init(&md->bitset_info, new_writeset); + if (r) { + DMERR("%s: writeset_init failed", __func__); + return r; + } + + swap_writeset(md, new_writeset); + md->current_era++; + + return 0; +} + +static int metadata_era_rollover(struct era_metadata *md) +{ + int r; + + if (md->current_writeset->md.root != INVALID_WRITESET_ROOT) { + r = metadata_era_archive(md); + if (r) { + DMERR("%s: metadata_archive_era failed", __func__); + /* FIXME: fail mode? */ + return r; + } + } + + r = metadata_new_era(md); + if (r) { + DMERR("%s: new era failed", __func__); + /* FIXME: fail mode */ + return r; + } + + return 0; +} + +static bool metadata_current_marked(struct era_metadata *md, dm_block_t block) +{ + bool r; + struct writeset *ws; + + rcu_read_lock(); + ws = rcu_dereference(md->current_writeset); + r = writeset_marked(ws, block); + rcu_read_unlock(); + + return r; +} + +static int metadata_commit(struct era_metadata *md) +{ + int r; + struct dm_block *sblock; + + if (md->current_writeset->md.root != SUPERBLOCK_LOCATION) { + r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root, + &md->current_writeset->md.root); + if (r) { + DMERR("%s: bitset flush failed", __func__); + return r; + } + } + + r = save_sm_root(md); + if (r) { + DMERR("%s: save_sm_root failed", __func__); + return r; + } + + r = dm_tm_pre_commit(md->tm); + if (r) { + DMERR("%s: pre commit failed", __func__); + return r; + } + + r = superblock_lock(md, &sblock); + if (r) { + DMERR("%s: superblock lock failed", __func__); + return r; + } + + prepare_superblock(md, dm_block_data(sblock)); + + return dm_tm_commit(md->tm, sblock); +} + +static int metadata_checkpoint(struct era_metadata *md) +{ + /* + * For now we just rollover, but later I want to put a check in to + * avoid this if the filter is still pretty fresh. + */ + return metadata_era_rollover(md); +} + +/* + * Metadata snapshots allow userland to access era data. + */ +static int metadata_take_snap(struct era_metadata *md) +{ + int r, inc; + struct dm_block *clone; + + if (md->metadata_snap != SUPERBLOCK_LOCATION) { + DMERR("%s: metadata snapshot already exists", __func__); + return -EINVAL; + } + + r = metadata_era_rollover(md); + if (r) { + DMERR("%s: era rollover failed", __func__); + return r; + } + + r = metadata_commit(md); + if (r) { + DMERR("%s: pre commit failed", __func__); + return r; + } + + r = dm_sm_inc_block(md->sm, SUPERBLOCK_LOCATION); + if (r) { + DMERR("%s: couldn't increment superblock", __func__); + return r; + } + + r = dm_tm_shadow_block(md->tm, SUPERBLOCK_LOCATION, + &sb_validator, &clone, &inc); + if (r) { + DMERR("%s: couldn't shadow superblock", __func__); + dm_sm_dec_block(md->sm, SUPERBLOCK_LOCATION); + return r; + } + BUG_ON(!inc); + + r = dm_sm_inc_block(md->sm, md->writeset_tree_root); + if (r) { + DMERR("%s: couldn't inc writeset tree root", __func__); + dm_tm_unlock(md->tm, clone); + return r; + } + + r = dm_sm_inc_block(md->sm, md->era_array_root); + if (r) { + DMERR("%s: couldn't inc era tree root", __func__); + dm_sm_dec_block(md->sm, md->writeset_tree_root); + dm_tm_unlock(md->tm, clone); + return r; + } + + md->metadata_snap = dm_block_location(clone); + + r = dm_tm_unlock(md->tm, clone); + if (r) { + DMERR("%s: couldn't unlock clone", __func__); + md->metadata_snap = SUPERBLOCK_LOCATION; + return r; + } + + return 0; +} + +static int metadata_drop_snap(struct era_metadata *md) +{ + int r; + dm_block_t location; + struct dm_block *clone; + struct superblock_disk *disk; + + if (md->metadata_snap == SUPERBLOCK_LOCATION) { + DMERR("%s: no snap to drop", __func__); + return -EINVAL; + } + + r = dm_tm_read_lock(md->tm, md->metadata_snap, &sb_validator, &clone); + if (r) { + DMERR("%s: couldn't read lock superblock clone", __func__); + return r; + } + + /* + * Whatever happens now we'll commit with no record of the metadata + * snap. + */ + md->metadata_snap = SUPERBLOCK_LOCATION; + + disk = dm_block_data(clone); + r = dm_btree_del(&md->writeset_tree_info, + le64_to_cpu(disk->writeset_tree_root)); + if (r) { + DMERR("%s: error deleting writeset tree clone", __func__); + dm_tm_unlock(md->tm, clone); + return r; + } + + r = dm_array_del(&md->era_array_info, le64_to_cpu(disk->era_array_root)); + if (r) { + DMERR("%s: error deleting era array clone", __func__); + dm_tm_unlock(md->tm, clone); + return r; + } + + location = dm_block_location(clone); + dm_tm_unlock(md->tm, clone); + + return dm_sm_dec_block(md->sm, location); +} + +struct metadata_stats { + dm_block_t used; + dm_block_t total; + dm_block_t snap; + uint32_t era; +}; + +static int metadata_get_stats(struct era_metadata *md, void *ptr) +{ + int r; + struct metadata_stats *s = ptr; + dm_block_t nr_free, nr_total; + + r = dm_sm_get_nr_free(md->sm, &nr_free); + if (r) { + DMERR("dm_sm_get_nr_free returned %d", r); + return r; + } + + r = dm_sm_get_nr_blocks(md->sm, &nr_total); + if (r) { + DMERR("dm_pool_get_metadata_dev_size returned %d", r); + return r; + } + + s->used = nr_total - nr_free; + s->total = nr_total; + s->snap = md->metadata_snap; + s->era = md->current_era; + + return 0; +} + +/*----------------------------------------------------------------*/ + +struct era { + struct dm_target *ti; + struct dm_target_callbacks callbacks; + + struct dm_dev *metadata_dev; + struct dm_dev *origin_dev; + + dm_block_t nr_blocks; + uint32_t sectors_per_block; + int sectors_per_block_shift; + struct era_metadata *md; + + struct workqueue_struct *wq; + struct work_struct worker; + + spinlock_t deferred_lock; + struct bio_list deferred_bios; + + spinlock_t rpc_lock; + struct list_head rpc_calls; + + struct digest digest; + atomic_t suspended; +}; + +struct rpc { + struct list_head list; + + int (*fn0)(struct era_metadata *); + int (*fn1)(struct era_metadata *, void *); + void *arg; + int result; + + struct completion complete; +}; + +/*---------------------------------------------------------------- + * Remapping. + *---------------------------------------------------------------*/ +static bool block_size_is_power_of_two(struct era *era) +{ + return era->sectors_per_block_shift >= 0; +} + +static dm_block_t get_block(struct era *era, struct bio *bio) +{ + sector_t block_nr = bio->bi_iter.bi_sector; + + if (!block_size_is_power_of_two(era)) + (void) sector_div(block_nr, era->sectors_per_block); + else + block_nr >>= era->sectors_per_block_shift; + + return block_nr; +} + +static void remap_to_origin(struct era *era, struct bio *bio) +{ + bio->bi_bdev = era->origin_dev->bdev; +} + +/*---------------------------------------------------------------- + * Worker thread + *--------------------------------------------------------------*/ +static void wake_worker(struct era *era) +{ + if (!atomic_read(&era->suspended)) + queue_work(era->wq, &era->worker); +} + +static void process_old_eras(struct era *era) +{ + int r; + + if (!era->digest.step) + return; + + r = era->digest.step(era->md, &era->digest); + if (r < 0) { + DMERR("%s: digest step failed, stopping digestion", __func__); + era->digest.step = NULL; + + } else if (era->digest.step) + wake_worker(era); +} + +static void process_deferred_bios(struct era *era) +{ + int r; + struct bio_list deferred_bios, marked_bios; + struct bio *bio; + bool commit_needed = false; + bool failed = false; + + bio_list_init(&deferred_bios); + bio_list_init(&marked_bios); + + spin_lock(&era->deferred_lock); + bio_list_merge(&deferred_bios, &era->deferred_bios); + bio_list_init(&era->deferred_bios); + spin_unlock(&era->deferred_lock); + + while ((bio = bio_list_pop(&deferred_bios))) { + r = writeset_test_and_set(&era->md->bitset_info, + era->md->current_writeset, + get_block(era, bio)); + if (r < 0) { + /* + * This is bad news, we need to rollback. + * FIXME: finish. + */ + failed = true; + + } else if (r == 0) + commit_needed = true; + + bio_list_add(&marked_bios, bio); + } + + if (commit_needed) { + r = metadata_commit(era->md); + if (r) + failed = true; + } + + if (failed) + while ((bio = bio_list_pop(&marked_bios))) + bio_io_error(bio); + else + while ((bio = bio_list_pop(&marked_bios))) + generic_make_request(bio); +} + +static void process_rpc_calls(struct era *era) +{ + int r; + bool need_commit = false; + struct list_head calls; + struct rpc *rpc, *tmp; + + INIT_LIST_HEAD(&calls); + spin_lock(&era->rpc_lock); + list_splice_init(&era->rpc_calls, &calls); + spin_unlock(&era->rpc_lock); + + list_for_each_entry_safe(rpc, tmp, &calls, list) { + rpc->result = rpc->fn0 ? rpc->fn0(era->md) : rpc->fn1(era->md, rpc->arg); + need_commit = true; + } + + if (need_commit) { + r = metadata_commit(era->md); + if (r) + list_for_each_entry_safe(rpc, tmp, &calls, list) + rpc->result = r; + } + + list_for_each_entry_safe(rpc, tmp, &calls, list) + complete(&rpc->complete); +} + +static void kick_off_digest(struct era *era) +{ + if (era->md->archived_writesets) { + era->md->archived_writesets = false; + metadata_digest_start(era->md, &era->digest); + } +} + +static void do_work(struct work_struct *ws) +{ + struct era *era = container_of(ws, struct era, worker); + + kick_off_digest(era); + process_old_eras(era); + process_deferred_bios(era); + process_rpc_calls(era); +} + +static void defer_bio(struct era *era, struct bio *bio) +{ + spin_lock(&era->deferred_lock); + bio_list_add(&era->deferred_bios, bio); + spin_unlock(&era->deferred_lock); + + wake_worker(era); +} + +/* + * Make an rpc call to the worker to change the metadata. + */ +static int perform_rpc(struct era *era, struct rpc *rpc) +{ + rpc->result = 0; + init_completion(&rpc->complete); + + spin_lock(&era->rpc_lock); + list_add(&rpc->list, &era->rpc_calls); + spin_unlock(&era->rpc_lock); + + wake_worker(era); + wait_for_completion(&rpc->complete); + + return rpc->result; +} + +static int in_worker0(struct era *era, int (*fn)(struct era_metadata *)) +{ + struct rpc rpc; + rpc.fn0 = fn; + rpc.fn1 = NULL; + + return perform_rpc(era, &rpc); +} + +static int in_worker1(struct era *era, + int (*fn)(struct era_metadata *, void *), void *arg) +{ + struct rpc rpc; + rpc.fn0 = NULL; + rpc.fn1 = fn; + rpc.arg = arg; + + return perform_rpc(era, &rpc); +} + +static void start_worker(struct era *era) +{ + atomic_set(&era->suspended, 0); +} + +static void stop_worker(struct era *era) +{ + atomic_set(&era->suspended, 1); + flush_workqueue(era->wq); +} + +/*---------------------------------------------------------------- + * Target methods + *--------------------------------------------------------------*/ +static int dev_is_congested(struct dm_dev *dev, int bdi_bits) +{ + struct request_queue *q = bdev_get_queue(dev->bdev); + return bdi_congested(&q->backing_dev_info, bdi_bits); +} + +static int era_is_congested(struct dm_target_callbacks *cb, int bdi_bits) +{ + struct era *era = container_of(cb, struct era, callbacks); + return dev_is_congested(era->origin_dev, bdi_bits); +} + +static void era_destroy(struct era *era) +{ + if (era->md) + metadata_close(era->md); + + if (era->wq) + destroy_workqueue(era->wq); + + if (era->origin_dev) + dm_put_device(era->ti, era->origin_dev); + + if (era->metadata_dev) + dm_put_device(era->ti, era->metadata_dev); + + kfree(era); +} + +static dm_block_t calc_nr_blocks(struct era *era) +{ + return dm_sector_div_up(era->ti->len, era->sectors_per_block); +} + +static bool valid_block_size(dm_block_t block_size) +{ + bool greater_than_zero = block_size > 0; + bool multiple_of_min_block_size = (block_size & (MIN_BLOCK_SIZE - 1)) == 0; + + return greater_than_zero && multiple_of_min_block_size; +} + +/* + * <metadata dev> <data dev> <data block size (sectors)> + */ +static int era_ctr(struct dm_target *ti, unsigned argc, char **argv) +{ + int r; + char dummy; + struct era *era; + struct era_metadata *md; + + if (argc != 3) { + ti->error = "Invalid argument count"; + return -EINVAL; + } + + era = kzalloc(sizeof(*era), GFP_KERNEL); + if (!era) { + ti->error = "Error allocating era structure"; + return -ENOMEM; + } + + era->ti = ti; + + r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &era->metadata_dev); + if (r) { + ti->error = "Error opening metadata device"; + era_destroy(era); + return -EINVAL; + } + + r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &era->origin_dev); + if (r) { + ti->error = "Error opening data device"; + era_destroy(era); + return -EINVAL; + } + + r = sscanf(argv[2], "%u%c", &era->sectors_per_block, &dummy); + if (r != 1) { + ti->error = "Error parsing block size"; + era_destroy(era); + return -EINVAL; + } + + r = dm_set_target_max_io_len(ti, era->sectors_per_block); + if (r) { + ti->error = "could not set max io len"; + era_destroy(era); + return -EINVAL; + } + + if (!valid_block_size(era->sectors_per_block)) { + ti->error = "Invalid block size"; + era_destroy(era); + return -EINVAL; + } + if (era->sectors_per_block & (era->sectors_per_block - 1)) + era->sectors_per_block_shift = -1; + else + era->sectors_per_block_shift = __ffs(era->sectors_per_block); + + md = metadata_open(era->metadata_dev->bdev, era->sectors_per_block, true); + if (IS_ERR(md)) { + ti->error = "Error reading metadata"; + era_destroy(era); + return PTR_ERR(md); + } + era->md = md; + + era->nr_blocks = calc_nr_blocks(era); + + r = metadata_resize(era->md, &era->nr_blocks); + if (r) { + ti->error = "couldn't resize metadata"; + era_destroy(era); + return -ENOMEM; + } + + era->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); + if (!era->wq) { + ti->error = "could not create workqueue for metadata object"; + era_destroy(era); + return -ENOMEM; + } + INIT_WORK(&era->worker, do_work); + + spin_lock_init(&era->deferred_lock); + bio_list_init(&era->deferred_bios); + + spin_lock_init(&era->rpc_lock); + INIT_LIST_HEAD(&era->rpc_calls); + + ti->private = era; + ti->num_flush_bios = 1; + ti->flush_supported = true; + + ti->num_discard_bios = 1; + ti->discards_supported = true; + era->callbacks.congested_fn = era_is_congested; + dm_table_add_target_callbacks(ti->table, &era->callbacks); + + return 0; +} + +static void era_dtr(struct dm_target *ti) +{ + era_destroy(ti->private); +} + +static int era_map(struct dm_target *ti, struct bio *bio) +{ + struct era *era = ti->private; + dm_block_t block = get_block(era, bio); + + /* + * All bios get remapped to the origin device. We do this now, but + * it may not get issued until later. Depending on whether the + * block is marked in this era. + */ + remap_to_origin(era, bio); + + /* + * REQ_FLUSH bios carry no data, so we're not interested in them. + */ + if (!(bio->bi_rw & REQ_FLUSH) && + (bio_data_dir(bio) == WRITE) && + !metadata_current_marked(era->md, block)) { + defer_bio(era, bio); + return DM_MAPIO_SUBMITTED; + } + + return DM_MAPIO_REMAPPED; +} + +static void era_postsuspend(struct dm_target *ti) +{ + int r; + struct era *era = ti->private; + + r = in_worker0(era, metadata_era_archive); + if (r) { + DMERR("%s: couldn't archive current era", __func__); + /* FIXME: fail mode */ + } + + stop_worker(era); +} + +static int era_preresume(struct dm_target *ti) +{ + int r; + struct era *era = ti->private; + dm_block_t new_size = calc_nr_blocks(era); + + if (era->nr_blocks != new_size) { + r = in_worker1(era, metadata_resize, &new_size); + if (r) + return r; + + era->nr_blocks = new_size; + } + + start_worker(era); + + r = in_worker0(era, metadata_new_era); + if (r) { + DMERR("%s: metadata_era_rollover failed", __func__); + return r; + } + + return 0; +} + +/* + * Status format: + * + * <metadata block size> <#used metadata blocks>/<#total metadata blocks> + * <current era> <held metadata root | '-'> + */ +static void era_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) +{ + int r; + struct era *era = ti->private; + ssize_t sz = 0; + struct metadata_stats stats; + char buf[BDEVNAME_SIZE]; + + switch (type) { + case STATUSTYPE_INFO: + r = in_worker1(era, metadata_get_stats, &stats); + if (r) + goto err; + + DMEMIT("%u %llu/%llu %u", + (unsigned) (DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT), + (unsigned long long) stats.used, + (unsigned long long) stats.total, + (unsigned) stats.era); + + if (stats.snap != SUPERBLOCK_LOCATION) + DMEMIT(" %llu", stats.snap); + else + DMEMIT(" -"); + break; + + case STATUSTYPE_TABLE: + format_dev_t(buf, era->metadata_dev->bdev->bd_dev); + DMEMIT("%s ", buf); + format_dev_t(buf, era->origin_dev->bdev->bd_dev); + DMEMIT("%s %u", buf, era->sectors_per_block); + break; + } + + return; + +err: + DMEMIT("Error"); +} + +static int era_message(struct dm_target *ti, unsigned argc, char **argv) +{ + struct era *era = ti->private; + + if (argc != 1) { + DMERR("incorrect number of message arguments"); + return -EINVAL; + } + + if (!strcasecmp(argv[0], "checkpoint")) + return in_worker0(era, metadata_checkpoint); + + if (!strcasecmp(argv[0], "take_metadata_snap")) + return in_worker0(era, metadata_take_snap); + + if (!strcasecmp(argv[0], "drop_metadata_snap")) + return in_worker0(era, metadata_drop_snap); + + DMERR("unsupported message '%s'", argv[0]); + return -EINVAL; +} + +static sector_t get_dev_size(struct dm_dev *dev) +{ + return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; +} + +static int era_iterate_devices(struct dm_target *ti, + iterate_devices_callout_fn fn, void *data) +{ + struct era *era = ti->private; + return fn(ti, era->origin_dev, 0, get_dev_size(era->origin_dev), data); +} + +static int era_merge(struct dm_target *ti, struct bvec_merge_data *bvm, + struct bio_vec *biovec, int max_size) +{ + struct era *era = ti->private; + struct request_queue *q = bdev_get_queue(era->origin_dev->bdev); + + if (!q->merge_bvec_fn) + return max_size; + + bvm->bi_bdev = era->origin_dev->bdev; + + return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); +} + +static void era_io_hints(struct dm_target *ti, struct queue_limits *limits) +{ + struct era *era = ti->private; + uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; + + /* + * If the system-determined stacked limits are compatible with the + * era device's blocksize (io_opt is a factor) do not override them. + */ + if (io_opt_sectors < era->sectors_per_block || + do_div(io_opt_sectors, era->sectors_per_block)) { + blk_limits_io_min(limits, 0); + blk_limits_io_opt(limits, era->sectors_per_block << SECTOR_SHIFT); + } +} + +/*----------------------------------------------------------------*/ + +static struct target_type era_target = { + .name = "era", + .version = {1, 0, 0}, + .module = THIS_MODULE, + .ctr = era_ctr, + .dtr = era_dtr, + .map = era_map, + .postsuspend = era_postsuspend, + .preresume = era_preresume, + .status = era_status, + .message = era_message, + .iterate_devices = era_iterate_devices, + .merge = era_merge, + .io_hints = era_io_hints +}; + +static int __init dm_era_init(void) +{ + int r; + + r = dm_register_target(&era_target); + if (r) { + DMERR("era target registration failed: %d", r); + return r; + } + + return 0; +} + +static void __exit dm_era_exit(void) +{ + dm_unregister_target(&era_target); +} + +module_init(dm_era_init); +module_exit(dm_era_exit); + +MODULE_DESCRIPTION(DM_NAME " era target"); +MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); +MODULE_LICENSE("GPL"); diff --git a/drivers/md/dm-flakey.c b/drivers/md/dm-flakey.c index 9721f2ffb1a..b257e46876d 100644 --- a/drivers/md/dm-flakey.c +++ b/drivers/md/dm-flakey.c @@ -176,7 +176,7 @@ static int flakey_ctr(struct dm_target *ti, unsigned int argc, char **argv) fc = kzalloc(sizeof(*fc), GFP_KERNEL); if (!fc) { - ti->error = "Cannot allocate linear context"; + ti->error = "Cannot allocate context"; return -ENOMEM; } fc->start_time = jiffies; @@ -216,8 +216,8 @@ static int flakey_ctr(struct dm_target *ti, unsigned int argc, char **argv) goto bad; } - ti->num_flush_requests = 1; - ti->num_discard_requests = 1; + ti->num_flush_bios = 1; + ti->num_discard_bios = 1; ti->per_bio_data_size = sizeof(struct per_bio_data); ti->private = fc; return 0; @@ -248,7 +248,8 @@ static void flakey_map_bio(struct dm_target *ti, struct bio *bio) bio->bi_bdev = fc->dev->bdev; if (bio_sectors(bio)) - bio->bi_sector = flakey_map_sector(ti, bio->bi_sector); + bio->bi_iter.bi_sector = + flakey_map_sector(ti, bio->bi_iter.bi_sector); } static void corrupt_bio_data(struct bio *bio, struct flakey_c *fc) @@ -265,8 +266,8 @@ static void corrupt_bio_data(struct bio *bio, struct flakey_c *fc) DMDEBUG("Corrupting data bio=%p by writing %u to byte %u " "(rw=%c bi_rw=%lu bi_sector=%llu cur_bytes=%u)\n", bio, fc->corrupt_bio_value, fc->corrupt_bio_byte, - (bio_data_dir(bio) == WRITE) ? 'w' : 'r', - bio->bi_rw, (unsigned long long)bio->bi_sector, bio_bytes); + (bio_data_dir(bio) == WRITE) ? 'w' : 'r', bio->bi_rw, + (unsigned long long)bio->bi_iter.bi_sector, bio_bytes); } } @@ -337,8 +338,8 @@ static int flakey_end_io(struct dm_target *ti, struct bio *bio, int error) return error; } -static int flakey_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void flakey_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { unsigned sz = 0; struct flakey_c *fc = ti->private; @@ -368,7 +369,6 @@ static int flakey_status(struct dm_target *ti, status_type_t type, break; } - return 0; } static int flakey_ioctl(struct dm_target *ti, unsigned int cmd, unsigned long arg) @@ -411,7 +411,7 @@ static int flakey_iterate_devices(struct dm_target *ti, iterate_devices_callout_ static struct target_type flakey_target = { .name = "flakey", - .version = {1, 3, 0}, + .version = {1, 3, 1}, .module = THIS_MODULE, .ctr = flakey_ctr, .dtr = flakey_dtr, diff --git a/drivers/md/dm-io.c b/drivers/md/dm-io.c index ea49834377c..db404a0f7e2 100644 --- a/drivers/md/dm-io.c +++ b/drivers/md/dm-io.c @@ -10,6 +10,7 @@ #include <linux/device-mapper.h> #include <linux/bio.h> +#include <linux/completion.h> #include <linux/mempool.h> #include <linux/module.h> #include <linux/sched.h> @@ -19,8 +20,6 @@ #define DM_MSG_PREFIX "io" #define DM_IO_MAX_REGIONS BITS_PER_LONG -#define MIN_IOS 16 -#define MIN_BIOS 16 struct dm_io_client { mempool_t *pool; @@ -34,7 +33,7 @@ struct dm_io_client { struct io { unsigned long error_bits; atomic_t count; - struct task_struct *sleeper; + struct completion *wait; struct dm_io_client *client; io_notify_fn callback; void *context; @@ -50,16 +49,17 @@ static struct kmem_cache *_dm_io_cache; struct dm_io_client *dm_io_client_create(void) { struct dm_io_client *client; + unsigned min_ios = dm_get_reserved_bio_based_ios(); client = kmalloc(sizeof(*client), GFP_KERNEL); if (!client) return ERR_PTR(-ENOMEM); - client->pool = mempool_create_slab_pool(MIN_IOS, _dm_io_cache); + client->pool = mempool_create_slab_pool(min_ios, _dm_io_cache); if (!client->pool) goto bad; - client->bios = bioset_create(MIN_BIOS, 0); + client->bios = bioset_create(min_ios, 0); if (!client->bios) goto bad; @@ -122,8 +122,8 @@ static void dec_count(struct io *io, unsigned int region, int error) invalidate_kernel_vmap_range(io->vma_invalidate_address, io->vma_invalidate_size); - if (io->sleeper) - wake_up_process(io->sleeper); + if (io->wait) + complete(io->wait); else { unsigned long r = io->error_bits; @@ -202,26 +202,28 @@ static void list_dp_init(struct dpages *dp, struct page_list *pl, unsigned offse /* * Functions for getting the pages from a bvec. */ -static void bvec_get_page(struct dpages *dp, - struct page **p, unsigned long *len, unsigned *offset) +static void bio_get_page(struct dpages *dp, struct page **p, + unsigned long *len, unsigned *offset) { - struct bio_vec *bvec = (struct bio_vec *) dp->context_ptr; + struct bio_vec *bvec = dp->context_ptr; *p = bvec->bv_page; - *len = bvec->bv_len; - *offset = bvec->bv_offset; + *len = bvec->bv_len - dp->context_u; + *offset = bvec->bv_offset + dp->context_u; } -static void bvec_next_page(struct dpages *dp) +static void bio_next_page(struct dpages *dp) { - struct bio_vec *bvec = (struct bio_vec *) dp->context_ptr; + struct bio_vec *bvec = dp->context_ptr; dp->context_ptr = bvec + 1; + dp->context_u = 0; } -static void bvec_dp_init(struct dpages *dp, struct bio_vec *bvec) +static void bio_dp_init(struct dpages *dp, struct bio *bio) { - dp->get_page = bvec_get_page; - dp->next_page = bvec_next_page; - dp->context_ptr = bvec; + dp->get_page = bio_get_page; + dp->next_page = bio_next_page; + dp->context_ptr = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); + dp->context_u = bio->bi_iter.bi_bvec_done; } /* @@ -305,14 +307,14 @@ static void do_region(int rw, unsigned region, struct dm_io_region *where, dm_sector_div_up(remaining, (PAGE_SIZE >> SECTOR_SHIFT))); bio = bio_alloc_bioset(GFP_NOIO, num_bvecs, io->client->bios); - bio->bi_sector = where->sector + (where->count - remaining); + bio->bi_iter.bi_sector = where->sector + (where->count - remaining); bio->bi_bdev = where->bdev; bio->bi_end_io = endio; store_io_and_region_in_bio(bio, io, region); if (rw & REQ_DISCARD) { num_sectors = min_t(sector_t, q->limits.max_discard_sectors, remaining); - bio->bi_size = num_sectors << SECTOR_SHIFT; + bio->bi_iter.bi_size = num_sectors << SECTOR_SHIFT; remaining -= num_sectors; } else if (rw & REQ_WRITE_SAME) { /* @@ -321,7 +323,7 @@ static void do_region(int rw, unsigned region, struct dm_io_region *where, dp->get_page(dp, &page, &len, &offset); bio_add_page(bio, page, logical_block_size, offset); num_sectors = min_t(sector_t, q->limits.max_write_same_sectors, remaining); - bio->bi_size = num_sectors << SECTOR_SHIFT; + bio->bi_iter.bi_size = num_sectors << SECTOR_SHIFT; offset = 0; remaining -= num_sectors; @@ -386,6 +388,7 @@ static int sync_io(struct dm_io_client *client, unsigned int num_regions, */ volatile char io_[sizeof(struct io) + __alignof__(struct io) - 1]; struct io *io = (struct io *)PTR_ALIGN(&io_, __alignof__(struct io)); + DECLARE_COMPLETION_ONSTACK(wait); if (num_regions > 1 && (rw & RW_MASK) != WRITE) { WARN_ON(1); @@ -394,7 +397,7 @@ static int sync_io(struct dm_io_client *client, unsigned int num_regions, io->error_bits = 0; atomic_set(&io->count, 1); /* see dispatch_io() */ - io->sleeper = current; + io->wait = &wait; io->client = client; io->vma_invalidate_address = dp->vma_invalidate_address; @@ -402,15 +405,7 @@ static int sync_io(struct dm_io_client *client, unsigned int num_regions, dispatch_io(rw, num_regions, where, dp, io, 1); - while (1) { - set_current_state(TASK_UNINTERRUPTIBLE); - - if (!atomic_read(&io->count)) - break; - - io_schedule(); - } - set_current_state(TASK_RUNNING); + wait_for_completion_io(&wait); if (error_bits) *error_bits = io->error_bits; @@ -433,7 +428,7 @@ static int async_io(struct dm_io_client *client, unsigned int num_regions, io = mempool_alloc(client->pool, GFP_NOIO); io->error_bits = 0; atomic_set(&io->count, 1); /* see dispatch_io() */ - io->sleeper = NULL; + io->wait = NULL; io->client = client; io->callback = fn; io->context = context; @@ -458,8 +453,8 @@ static int dp_init(struct dm_io_request *io_req, struct dpages *dp, list_dp_init(dp, io_req->mem.ptr.pl, io_req->mem.offset); break; - case DM_IO_BVEC: - bvec_dp_init(dp, io_req->mem.ptr.bvec); + case DM_IO_BIO: + bio_dp_init(dp, io_req->mem.ptr.bio); break; case DM_IO_VMA: diff --git a/drivers/md/dm-ioctl.c b/drivers/md/dm-ioctl.c index 0666b5d14b8..51521429fb5 100644 --- a/drivers/md/dm-ioctl.c +++ b/drivers/md/dm-ioctl.c @@ -36,6 +36,14 @@ struct hash_cell { struct dm_table *new_map; }; +/* + * A dummy definition to make RCU happy. + * struct dm_table should never be dereferenced in this file. + */ +struct dm_table { + int undefined__; +}; + struct vers_iter { size_t param_size; struct dm_target_versions *vers, *old_vers; @@ -49,7 +57,7 @@ struct vers_iter { static struct list_head _name_buckets[NUM_BUCKETS]; static struct list_head _uuid_buckets[NUM_BUCKETS]; -static void dm_hash_remove_all(int keep_open_devices); +static void dm_hash_remove_all(bool keep_open_devices, bool mark_deferred, bool only_deferred); /* * Guards access to both hash tables. @@ -78,7 +86,7 @@ static int dm_hash_init(void) static void dm_hash_exit(void) { - dm_hash_remove_all(0); + dm_hash_remove_all(false, false, false); } /*----------------------------------------------------------------- @@ -242,9 +250,10 @@ static int dm_hash_insert(const char *name, const char *uuid, struct mapped_devi return -EBUSY; } -static void __hash_remove(struct hash_cell *hc) +static struct dm_table *__hash_remove(struct hash_cell *hc) { struct dm_table *table; + int srcu_idx; /* remove from the dev hash */ list_del(&hc->uuid_list); @@ -253,23 +262,26 @@ static void __hash_remove(struct hash_cell *hc) dm_set_mdptr(hc->md, NULL); mutex_unlock(&dm_hash_cells_mutex); - table = dm_get_live_table(hc->md); - if (table) { + table = dm_get_live_table(hc->md, &srcu_idx); + if (table) dm_table_event(table); - dm_table_put(table); - } + dm_put_live_table(hc->md, srcu_idx); + table = NULL; if (hc->new_map) - dm_table_destroy(hc->new_map); + table = hc->new_map; dm_put(hc->md); free_cell(hc); + + return table; } -static void dm_hash_remove_all(int keep_open_devices) +static void dm_hash_remove_all(bool keep_open_devices, bool mark_deferred, bool only_deferred) { int i, dev_skipped; struct hash_cell *hc; struct mapped_device *md; + struct dm_table *t; retry: dev_skipped = 0; @@ -281,16 +293,21 @@ retry: md = hc->md; dm_get(md); - if (keep_open_devices && dm_lock_for_deletion(md)) { + if (keep_open_devices && + dm_lock_for_deletion(md, mark_deferred, only_deferred)) { dm_put(md); dev_skipped++; continue; } - __hash_remove(hc); + t = __hash_remove(hc); up_write(&_hash_lock); + if (t) { + dm_sync_table(md); + dm_table_destroy(t); + } dm_put(md); if (likely(keep_open_devices)) dm_destroy(md); @@ -356,6 +373,7 @@ static struct mapped_device *dm_hash_rename(struct dm_ioctl *param, struct dm_table *table; struct mapped_device *md; unsigned change_uuid = (param->flags & DM_UUID_FLAG) ? 1 : 0; + int srcu_idx; /* * duplicate new. @@ -418,11 +436,10 @@ static struct mapped_device *dm_hash_rename(struct dm_ioctl *param, /* * Wake up any dm event waiters. */ - table = dm_get_live_table(hc->md); - if (table) { + table = dm_get_live_table(hc->md, &srcu_idx); + if (table) dm_table_event(table); - dm_table_put(table); - } + dm_put_live_table(hc->md, srcu_idx); if (!dm_kobject_uevent(hc->md, KOBJ_CHANGE, param->event_nr)) param->flags |= DM_UEVENT_GENERATED_FLAG; @@ -434,6 +451,11 @@ static struct mapped_device *dm_hash_rename(struct dm_ioctl *param, return md; } +void dm_deferred_remove(void) +{ + dm_hash_remove_all(true, false, true); +} + /*----------------------------------------------------------------- * Implementation of the ioctl commands *---------------------------------------------------------------*/ @@ -445,7 +467,7 @@ typedef int (*ioctl_fn)(struct dm_ioctl *param, size_t param_size); static int remove_all(struct dm_ioctl *param, size_t param_size) { - dm_hash_remove_all(1); + dm_hash_remove_all(true, !!(param->flags & DM_DEFERRED_REMOVE), false); param->data_size = 0; return 0; } @@ -620,11 +642,14 @@ static int check_name(const char *name) * _hash_lock without first calling dm_table_put, because dm_table_destroy * waits for this dm_table_put and could be called under this lock. */ -static struct dm_table *dm_get_inactive_table(struct mapped_device *md) +static struct dm_table *dm_get_inactive_table(struct mapped_device *md, int *srcu_idx) { struct hash_cell *hc; struct dm_table *table = NULL; + /* increment rcu count, we don't care about the table pointer */ + dm_get_live_table(md, srcu_idx); + down_read(&_hash_lock); hc = dm_get_mdptr(md); if (!hc || hc->md != md) { @@ -633,8 +658,6 @@ static struct dm_table *dm_get_inactive_table(struct mapped_device *md) } table = hc->new_map; - if (table) - dm_table_get(table); out: up_read(&_hash_lock); @@ -643,10 +666,11 @@ out: } static struct dm_table *dm_get_live_or_inactive_table(struct mapped_device *md, - struct dm_ioctl *param) + struct dm_ioctl *param, + int *srcu_idx) { return (param->flags & DM_QUERY_INACTIVE_TABLE_FLAG) ? - dm_get_inactive_table(md) : dm_get_live_table(md); + dm_get_inactive_table(md, srcu_idx) : dm_get_live_table(md, srcu_idx); } /* @@ -657,6 +681,7 @@ static void __dev_status(struct mapped_device *md, struct dm_ioctl *param) { struct gendisk *disk = dm_disk(md); struct dm_table *table; + int srcu_idx; param->flags &= ~(DM_SUSPEND_FLAG | DM_READONLY_FLAG | DM_ACTIVE_PRESENT_FLAG); @@ -664,6 +689,9 @@ static void __dev_status(struct mapped_device *md, struct dm_ioctl *param) if (dm_suspended_md(md)) param->flags |= DM_SUSPEND_FLAG; + if (dm_test_deferred_remove_flag(md)) + param->flags |= DM_DEFERRED_REMOVE; + param->dev = huge_encode_dev(disk_devt(disk)); /* @@ -676,26 +704,27 @@ static void __dev_status(struct mapped_device *md, struct dm_ioctl *param) param->event_nr = dm_get_event_nr(md); param->target_count = 0; - table = dm_get_live_table(md); + table = dm_get_live_table(md, &srcu_idx); if (table) { if (!(param->flags & DM_QUERY_INACTIVE_TABLE_FLAG)) { if (get_disk_ro(disk)) param->flags |= DM_READONLY_FLAG; param->target_count = dm_table_get_num_targets(table); } - dm_table_put(table); param->flags |= DM_ACTIVE_PRESENT_FLAG; } + dm_put_live_table(md, srcu_idx); if (param->flags & DM_QUERY_INACTIVE_TABLE_FLAG) { - table = dm_get_inactive_table(md); + int srcu_idx; + table = dm_get_inactive_table(md, &srcu_idx); if (table) { if (!(dm_table_get_mode(table) & FMODE_WRITE)) param->flags |= DM_READONLY_FLAG; param->target_count = dm_table_get_num_targets(table); - dm_table_put(table); } + dm_put_live_table(md, srcu_idx); } } @@ -796,6 +825,7 @@ static int dev_remove(struct dm_ioctl *param, size_t param_size) struct hash_cell *hc; struct mapped_device *md; int r; + struct dm_table *t; down_write(&_hash_lock); hc = __find_device_hash_cell(param); @@ -811,17 +841,29 @@ static int dev_remove(struct dm_ioctl *param, size_t param_size) /* * Ensure the device is not open and nothing further can open it. */ - r = dm_lock_for_deletion(md); + r = dm_lock_for_deletion(md, !!(param->flags & DM_DEFERRED_REMOVE), false); if (r) { + if (r == -EBUSY && param->flags & DM_DEFERRED_REMOVE) { + up_write(&_hash_lock); + dm_put(md); + return 0; + } DMDEBUG_LIMIT("unable to remove open device %s", hc->name); up_write(&_hash_lock); dm_put(md); return r; } - __hash_remove(hc); + t = __hash_remove(hc); up_write(&_hash_lock); + if (t) { + dm_sync_table(md); + dm_table_destroy(t); + } + + param->flags &= ~DM_DEFERRED_REMOVE; + if (!dm_kobject_uevent(md, KOBJ_REMOVE, param->event_nr)) param->flags |= DM_UEVENT_GENERATED_FLAG; @@ -851,7 +893,7 @@ static int dev_rename(struct dm_ioctl *param, size_t param_size) unsigned change_uuid = (param->flags & DM_UUID_FLAG) ? 1 : 0; if (new_data < param->data || - invalid_str(new_data, (void *) param + param_size) || + invalid_str(new_data, (void *) param + param_size) || !*new_data || strlen(new_data) > (change_uuid ? DM_UUID_LEN - 1 : DM_NAME_LEN - 1)) { DMWARN("Invalid new mapped device name or uuid string supplied."); return -EINVAL; @@ -986,6 +1028,7 @@ static int do_resume(struct dm_ioctl *param) old_map = dm_swap_table(md, new_map); if (IS_ERR(old_map)) { + dm_sync_table(md); dm_table_destroy(new_map); dm_put(md); return PTR_ERR(old_map); @@ -1003,6 +1046,10 @@ static int do_resume(struct dm_ioctl *param) param->flags |= DM_UEVENT_GENERATED_FLAG; } + /* + * Since dm_swap_table synchronizes RCU, nobody should be in + * read-side critical section already. + */ if (old_map) dm_table_destroy(old_map); @@ -1067,6 +1114,7 @@ static void retrieve_status(struct dm_table *table, num_targets = dm_table_get_num_targets(table); for (i = 0; i < num_targets; i++) { struct dm_target *ti = dm_table_get_target(table, i); + size_t l; remaining = len - (outptr - outbuf); if (remaining <= sizeof(struct dm_target_spec)) { @@ -1093,14 +1141,17 @@ static void retrieve_status(struct dm_table *table, if (ti->type->status) { if (param->flags & DM_NOFLUSH_FLAG) status_flags |= DM_STATUS_NOFLUSH_FLAG; - if (ti->type->status(ti, type, status_flags, outptr, remaining)) { - param->flags |= DM_BUFFER_FULL_FLAG; - break; - } + ti->type->status(ti, type, status_flags, outptr, remaining); } else outptr[0] = '\0'; - outptr += strlen(outptr) + 1; + l = strlen(outptr) + 1; + if (l == remaining) { + param->flags |= DM_BUFFER_FULL_FLAG; + break; + } + + outptr += l; used = param->data_start + (outptr - outbuf); outptr = align_ptr(outptr); @@ -1121,6 +1172,7 @@ static int dev_wait(struct dm_ioctl *param, size_t param_size) int r = 0; struct mapped_device *md; struct dm_table *table; + int srcu_idx; md = find_device(param); if (!md) @@ -1141,11 +1193,10 @@ static int dev_wait(struct dm_ioctl *param, size_t param_size) */ __dev_status(md, param); - table = dm_get_live_or_inactive_table(md, param); - if (table) { + table = dm_get_live_or_inactive_table(md, param, &srcu_idx); + if (table) retrieve_status(table, param, param_size); - dm_table_put(table); - } + dm_put_live_table(md, srcu_idx); out: dm_put(md); @@ -1217,7 +1268,7 @@ static int table_load(struct dm_ioctl *param, size_t param_size) { int r; struct hash_cell *hc; - struct dm_table *t; + struct dm_table *t, *old_map = NULL; struct mapped_device *md; struct target_type *immutable_target_type; @@ -1227,44 +1278,37 @@ static int table_load(struct dm_ioctl *param, size_t param_size) r = dm_table_create(&t, get_mode(param), param->target_count, md); if (r) - goto out; + goto err; + /* Protect md->type and md->queue against concurrent table loads. */ + dm_lock_md_type(md); r = populate_table(t, param, param_size); - if (r) { - dm_table_destroy(t); - goto out; - } + if (r) + goto err_unlock_md_type; immutable_target_type = dm_get_immutable_target_type(md); if (immutable_target_type && (immutable_target_type != dm_table_get_immutable_target_type(t))) { DMWARN("can't replace immutable target type %s", immutable_target_type->name); - dm_table_destroy(t); r = -EINVAL; - goto out; + goto err_unlock_md_type; } - /* Protect md->type and md->queue against concurrent table loads. */ - dm_lock_md_type(md); if (dm_get_md_type(md) == DM_TYPE_NONE) /* Initial table load: acquire type of table. */ dm_set_md_type(md, dm_table_get_type(t)); else if (dm_get_md_type(md) != dm_table_get_type(t)) { DMWARN("can't change device type after initial table load."); - dm_table_destroy(t); - dm_unlock_md_type(md); r = -EINVAL; - goto out; + goto err_unlock_md_type; } /* setup md->queue to reflect md's type (may block) */ r = dm_setup_md_queue(md); if (r) { DMWARN("unable to set up device queue for new table."); - dm_table_destroy(t); - dm_unlock_md_type(md); - goto out; + goto err_unlock_md_type; } dm_unlock_md_type(md); @@ -1273,21 +1317,33 @@ static int table_load(struct dm_ioctl *param, size_t param_size) hc = dm_get_mdptr(md); if (!hc || hc->md != md) { DMWARN("device has been removed from the dev hash table."); - dm_table_destroy(t); up_write(&_hash_lock); r = -ENXIO; - goto out; + goto err_destroy_table; } if (hc->new_map) - dm_table_destroy(hc->new_map); + old_map = hc->new_map; hc->new_map = t; up_write(&_hash_lock); param->flags |= DM_INACTIVE_PRESENT_FLAG; __dev_status(md, param); -out: + if (old_map) { + dm_sync_table(md); + dm_table_destroy(old_map); + } + + dm_put(md); + + return 0; + +err_unlock_md_type: + dm_unlock_md_type(md); +err_destroy_table: + dm_table_destroy(t); +err: dm_put(md); return r; @@ -1297,6 +1353,7 @@ static int table_clear(struct dm_ioctl *param, size_t param_size) { struct hash_cell *hc; struct mapped_device *md; + struct dm_table *old_map = NULL; down_write(&_hash_lock); @@ -1308,7 +1365,7 @@ static int table_clear(struct dm_ioctl *param, size_t param_size) } if (hc->new_map) { - dm_table_destroy(hc->new_map); + old_map = hc->new_map; hc->new_map = NULL; } @@ -1317,6 +1374,10 @@ static int table_clear(struct dm_ioctl *param, size_t param_size) __dev_status(hc->md, param); md = hc->md; up_write(&_hash_lock); + if (old_map) { + dm_sync_table(md); + dm_table_destroy(old_map); + } dm_put(md); return 0; @@ -1366,6 +1427,7 @@ static int table_deps(struct dm_ioctl *param, size_t param_size) { struct mapped_device *md; struct dm_table *table; + int srcu_idx; md = find_device(param); if (!md) @@ -1373,11 +1435,10 @@ static int table_deps(struct dm_ioctl *param, size_t param_size) __dev_status(md, param); - table = dm_get_live_or_inactive_table(md, param); - if (table) { + table = dm_get_live_or_inactive_table(md, param, &srcu_idx); + if (table) retrieve_deps(table, param, param_size); - dm_table_put(table); - } + dm_put_live_table(md, srcu_idx); dm_put(md); @@ -1392,6 +1453,7 @@ static int table_status(struct dm_ioctl *param, size_t param_size) { struct mapped_device *md; struct dm_table *table; + int srcu_idx; md = find_device(param); if (!md) @@ -1399,11 +1461,10 @@ static int table_status(struct dm_ioctl *param, size_t param_size) __dev_status(md, param); - table = dm_get_live_or_inactive_table(md, param); - if (table) { + table = dm_get_live_or_inactive_table(md, param, &srcu_idx); + if (table) retrieve_status(table, param, param_size); - dm_table_put(table); - } + dm_put_live_table(md, srcu_idx); dm_put(md); @@ -1411,6 +1472,36 @@ static int table_status(struct dm_ioctl *param, size_t param_size) } /* + * Process device-mapper dependent messages. Messages prefixed with '@' + * are processed by the DM core. All others are delivered to the target. + * Returns a number <= 1 if message was processed by device mapper. + * Returns 2 if message should be delivered to the target. + */ +static int message_for_md(struct mapped_device *md, unsigned argc, char **argv, + char *result, unsigned maxlen) +{ + int r; + + if (**argv != '@') + return 2; /* no '@' prefix, deliver to target */ + + if (!strcasecmp(argv[0], "@cancel_deferred_remove")) { + if (argc != 1) { + DMERR("Invalid arguments for @cancel_deferred_remove"); + return -EINVAL; + } + return dm_cancel_deferred_remove(md); + } + + r = dm_stats_message(md, argc, argv, result, maxlen); + if (r < 2) + return r; + + DMERR("Unsupported message sent to DM core: %s", argv[0]); + return -EINVAL; +} + +/* * Pass a message to the target that's at the supplied device offset. */ static int target_message(struct dm_ioctl *param, size_t param_size) @@ -1421,6 +1512,9 @@ static int target_message(struct dm_ioctl *param, size_t param_size) struct dm_table *table; struct dm_target *ti; struct dm_target_msg *tmsg = (void *) param + param->data_start; + size_t maxlen; + char *result = get_result_buffer(param, param_size, &maxlen); + int srcu_idx; md = find_device(param); if (!md) @@ -1444,10 +1538,14 @@ static int target_message(struct dm_ioctl *param, size_t param_size) goto out_argv; } - table = dm_get_live_table(md); - if (!table) + r = message_for_md(md, argc, argv, result, maxlen); + if (r <= 1) goto out_argv; + table = dm_get_live_table(md, &srcu_idx); + if (!table) + goto out_table; + if (dm_deleting_md(md)) { r = -ENXIO; goto out_table; @@ -1465,48 +1563,72 @@ static int target_message(struct dm_ioctl *param, size_t param_size) } out_table: - dm_table_put(table); + dm_put_live_table(md, srcu_idx); out_argv: kfree(argv); out: - param->data_size = 0; + if (r >= 0) + __dev_status(md, param); + + if (r == 1) { + param->flags |= DM_DATA_OUT_FLAG; + if (dm_message_test_buffer_overflow(result, maxlen)) + param->flags |= DM_BUFFER_FULL_FLAG; + else + param->data_size = param->data_start + strlen(result) + 1; + r = 0; + } + dm_put(md); return r; } +/* + * The ioctl parameter block consists of two parts, a dm_ioctl struct + * followed by a data buffer. This flag is set if the second part, + * which has a variable size, is not used by the function processing + * the ioctl. + */ +#define IOCTL_FLAGS_NO_PARAMS 1 + /*----------------------------------------------------------------- * Implementation of open/close/ioctl on the special char * device. *---------------------------------------------------------------*/ -static ioctl_fn lookup_ioctl(unsigned int cmd) +static ioctl_fn lookup_ioctl(unsigned int cmd, int *ioctl_flags) { static struct { int cmd; + int flags; ioctl_fn fn; } _ioctls[] = { - {DM_VERSION_CMD, NULL}, /* version is dealt with elsewhere */ - {DM_REMOVE_ALL_CMD, remove_all}, - {DM_LIST_DEVICES_CMD, list_devices}, - - {DM_DEV_CREATE_CMD, dev_create}, - {DM_DEV_REMOVE_CMD, dev_remove}, - {DM_DEV_RENAME_CMD, dev_rename}, - {DM_DEV_SUSPEND_CMD, dev_suspend}, - {DM_DEV_STATUS_CMD, dev_status}, - {DM_DEV_WAIT_CMD, dev_wait}, - - {DM_TABLE_LOAD_CMD, table_load}, - {DM_TABLE_CLEAR_CMD, table_clear}, - {DM_TABLE_DEPS_CMD, table_deps}, - {DM_TABLE_STATUS_CMD, table_status}, - - {DM_LIST_VERSIONS_CMD, list_versions}, - - {DM_TARGET_MSG_CMD, target_message}, - {DM_DEV_SET_GEOMETRY_CMD, dev_set_geometry} + {DM_VERSION_CMD, 0, NULL}, /* version is dealt with elsewhere */ + {DM_REMOVE_ALL_CMD, IOCTL_FLAGS_NO_PARAMS, remove_all}, + {DM_LIST_DEVICES_CMD, 0, list_devices}, + + {DM_DEV_CREATE_CMD, IOCTL_FLAGS_NO_PARAMS, dev_create}, + {DM_DEV_REMOVE_CMD, IOCTL_FLAGS_NO_PARAMS, dev_remove}, + {DM_DEV_RENAME_CMD, 0, dev_rename}, + {DM_DEV_SUSPEND_CMD, IOCTL_FLAGS_NO_PARAMS, dev_suspend}, + {DM_DEV_STATUS_CMD, IOCTL_FLAGS_NO_PARAMS, dev_status}, + {DM_DEV_WAIT_CMD, 0, dev_wait}, + + {DM_TABLE_LOAD_CMD, 0, table_load}, + {DM_TABLE_CLEAR_CMD, IOCTL_FLAGS_NO_PARAMS, table_clear}, + {DM_TABLE_DEPS_CMD, 0, table_deps}, + {DM_TABLE_STATUS_CMD, 0, table_status}, + + {DM_LIST_VERSIONS_CMD, 0, list_versions}, + + {DM_TARGET_MSG_CMD, 0, target_message}, + {DM_DEV_SET_GEOMETRY_CMD, 0, dev_set_geometry} }; - return (cmd >= ARRAY_SIZE(_ioctls)) ? NULL : _ioctls[cmd].fn; + if (unlikely(cmd >= ARRAY_SIZE(_ioctls))) + return NULL; + + *ioctl_flags = _ioctls[cmd].flags; + return _ioctls[cmd].fn; } /* @@ -1543,7 +1665,8 @@ static int check_version(unsigned int cmd, struct dm_ioctl __user *user) return r; } -#define DM_PARAMS_VMALLOC 0x0001 /* Params alloced with vmalloc not kmalloc */ +#define DM_PARAMS_KMALLOC 0x0001 /* Params alloced with kmalloc */ +#define DM_PARAMS_VMALLOC 0x0002 /* Params alloced with vmalloc */ #define DM_WIPE_BUFFER 0x0010 /* Wipe input buffer before returning from ioctl */ static void free_params(struct dm_ioctl *param, size_t param_size, int param_flags) @@ -1551,66 +1674,83 @@ static void free_params(struct dm_ioctl *param, size_t param_size, int param_fla if (param_flags & DM_WIPE_BUFFER) memset(param, 0, param_size); + if (param_flags & DM_PARAMS_KMALLOC) + kfree(param); if (param_flags & DM_PARAMS_VMALLOC) vfree(param); - else - kfree(param); } -static int copy_params(struct dm_ioctl __user *user, struct dm_ioctl **param, int *param_flags) +static int copy_params(struct dm_ioctl __user *user, struct dm_ioctl *param_kernel, + int ioctl_flags, + struct dm_ioctl **param, int *param_flags) { - struct dm_ioctl tmp, *dmi; + struct dm_ioctl *dmi; int secure_data; + const size_t minimum_data_size = sizeof(*param_kernel) - sizeof(param_kernel->data); - if (copy_from_user(&tmp, user, sizeof(tmp) - sizeof(tmp.data))) + if (copy_from_user(param_kernel, user, minimum_data_size)) return -EFAULT; - if (tmp.data_size < (sizeof(tmp) - sizeof(tmp.data))) + if (param_kernel->data_size < minimum_data_size) return -EINVAL; - secure_data = tmp.flags & DM_SECURE_DATA_FLAG; + secure_data = param_kernel->flags & DM_SECURE_DATA_FLAG; *param_flags = secure_data ? DM_WIPE_BUFFER : 0; + if (ioctl_flags & IOCTL_FLAGS_NO_PARAMS) { + dmi = param_kernel; + dmi->data_size = minimum_data_size; + goto data_copied; + } + /* * Try to avoid low memory issues when a device is suspended. * Use kmalloc() rather than vmalloc() when we can. */ dmi = NULL; - if (tmp.data_size <= KMALLOC_MAX_SIZE) - dmi = kmalloc(tmp.data_size, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); + if (param_kernel->data_size <= KMALLOC_MAX_SIZE) { + dmi = kmalloc(param_kernel->data_size, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); + if (dmi) + *param_flags |= DM_PARAMS_KMALLOC; + } if (!dmi) { - dmi = __vmalloc(tmp.data_size, GFP_NOIO | __GFP_REPEAT | __GFP_HIGH, PAGE_KERNEL); - *param_flags |= DM_PARAMS_VMALLOC; + unsigned noio_flag; + noio_flag = memalloc_noio_save(); + dmi = __vmalloc(param_kernel->data_size, GFP_NOIO | __GFP_REPEAT | __GFP_HIGH | __GFP_HIGHMEM, PAGE_KERNEL); + memalloc_noio_restore(noio_flag); + if (dmi) + *param_flags |= DM_PARAMS_VMALLOC; } if (!dmi) { - if (secure_data && clear_user(user, tmp.data_size)) + if (secure_data && clear_user(user, param_kernel->data_size)) return -EFAULT; return -ENOMEM; } - if (copy_from_user(dmi, user, tmp.data_size)) + if (copy_from_user(dmi, user, param_kernel->data_size)) goto bad; +data_copied: /* * Abort if something changed the ioctl data while it was being copied. */ - if (dmi->data_size != tmp.data_size) { + if (dmi->data_size != param_kernel->data_size) { DMERR("rejecting ioctl: data size modified while processing parameters"); goto bad; } /* Wipe the user buffer so we do not return it to userspace */ - if (secure_data && clear_user(user, tmp.data_size)) + if (secure_data && clear_user(user, param_kernel->data_size)) goto bad; *param = dmi; return 0; bad: - free_params(dmi, tmp.data_size, *param_flags); + free_params(dmi, param_kernel->data_size, *param_flags); return -EFAULT; } @@ -1621,6 +1761,7 @@ static int validate_params(uint cmd, struct dm_ioctl *param) param->flags &= ~DM_BUFFER_FULL_FLAG; param->flags &= ~DM_UEVENT_GENERATED_FLAG; param->flags &= ~DM_SECURE_DATA_FLAG; + param->flags &= ~DM_DATA_OUT_FLAG; /* Ignores parameters */ if (cmd == DM_REMOVE_ALL_CMD || @@ -1648,11 +1789,13 @@ static int validate_params(uint cmd, struct dm_ioctl *param) static int ctl_ioctl(uint command, struct dm_ioctl __user *user) { int r = 0; + int ioctl_flags; int param_flags; unsigned int cmd; struct dm_ioctl *uninitialized_var(param); ioctl_fn fn = NULL; size_t input_param_size; + struct dm_ioctl param_kernel; /* only root can play with this */ if (!capable(CAP_SYS_ADMIN)) @@ -1677,7 +1820,7 @@ static int ctl_ioctl(uint command, struct dm_ioctl __user *user) if (cmd == DM_VERSION_CMD) return 0; - fn = lookup_ioctl(cmd); + fn = lookup_ioctl(cmd, &ioctl_flags); if (!fn) { DMWARN("dm_ctl_ioctl: unknown command 0x%x", command); return -ENOTTY; @@ -1686,7 +1829,7 @@ static int ctl_ioctl(uint command, struct dm_ioctl __user *user) /* * Copy the parameters into kernel space. */ - r = copy_params(user, ¶m, ¶m_flags); + r = copy_params(user, ¶m_kernel, ioctl_flags, ¶m, ¶m_flags); if (r) return r; @@ -1699,6 +1842,10 @@ static int ctl_ioctl(uint command, struct dm_ioctl __user *user) param->data_size = sizeof(*param); r = fn(param, input_param_size); + if (unlikely(param->flags & DM_BUFFER_FULL_FLAG) && + unlikely(ioctl_flags & IOCTL_FLAGS_NO_PARAMS)) + DMERR("ioctl %d tried to output some data but has IOCTL_FLAGS_NO_PARAMS set", cmd); + /* * Copy the results back to userland. */ diff --git a/drivers/md/dm-kcopyd.c b/drivers/md/dm-kcopyd.c index 68c02673263..3a7cade5e27 100644 --- a/drivers/md/dm-kcopyd.c +++ b/drivers/md/dm-kcopyd.c @@ -22,6 +22,7 @@ #include <linux/vmalloc.h> #include <linux/workqueue.h> #include <linux/mutex.h> +#include <linux/delay.h> #include <linux/device-mapper.h> #include <linux/dm-kcopyd.h> @@ -51,6 +52,8 @@ struct dm_kcopyd_client { struct workqueue_struct *kcopyd_wq; struct work_struct kcopyd_work; + struct dm_kcopyd_throttle *throttle; + /* * We maintain three lists of jobs: * @@ -68,6 +71,117 @@ struct dm_kcopyd_client { static struct page_list zero_page_list; +static DEFINE_SPINLOCK(throttle_spinlock); + +/* + * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period. + * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided + * by 2. + */ +#define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ + +/* + * Sleep this number of milliseconds. + * + * The value was decided experimentally. + * Smaller values seem to cause an increased copy rate above the limit. + * The reason for this is unknown but possibly due to jiffies rounding errors + * or read/write cache inside the disk. + */ +#define SLEEP_MSEC 100 + +/* + * Maximum number of sleep events. There is a theoretical livelock if more + * kcopyd clients do work simultaneously which this limit avoids. + */ +#define MAX_SLEEPS 10 + +static void io_job_start(struct dm_kcopyd_throttle *t) +{ + unsigned throttle, now, difference; + int slept = 0, skew; + + if (unlikely(!t)) + return; + +try_again: + spin_lock_irq(&throttle_spinlock); + + throttle = ACCESS_ONCE(t->throttle); + + if (likely(throttle >= 100)) + goto skip_limit; + + now = jiffies; + difference = now - t->last_jiffies; + t->last_jiffies = now; + if (t->num_io_jobs) + t->io_period += difference; + t->total_period += difference; + + /* + * Maintain sane values if we got a temporary overflow. + */ + if (unlikely(t->io_period > t->total_period)) + t->io_period = t->total_period; + + if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) { + int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT); + t->total_period >>= shift; + t->io_period >>= shift; + } + + skew = t->io_period - throttle * t->total_period / 100; + + if (unlikely(skew > 0) && slept < MAX_SLEEPS) { + slept++; + spin_unlock_irq(&throttle_spinlock); + msleep(SLEEP_MSEC); + goto try_again; + } + +skip_limit: + t->num_io_jobs++; + + spin_unlock_irq(&throttle_spinlock); +} + +static void io_job_finish(struct dm_kcopyd_throttle *t) +{ + unsigned long flags; + + if (unlikely(!t)) + return; + + spin_lock_irqsave(&throttle_spinlock, flags); + + t->num_io_jobs--; + + if (likely(ACCESS_ONCE(t->throttle) >= 100)) + goto skip_limit; + + if (!t->num_io_jobs) { + unsigned now, difference; + + now = jiffies; + difference = now - t->last_jiffies; + t->last_jiffies = now; + + t->io_period += difference; + t->total_period += difference; + + /* + * Maintain sane values if we got a temporary overflow. + */ + if (unlikely(t->io_period > t->total_period)) + t->io_period = t->total_period; + } + +skip_limit: + spin_unlock_irqrestore(&throttle_spinlock, flags); +} + + static void wake(struct dm_kcopyd_client *kc) { queue_work(kc->kcopyd_wq, &kc->kcopyd_work); @@ -348,6 +462,8 @@ static void complete_io(unsigned long error, void *context) struct kcopyd_job *job = (struct kcopyd_job *) context; struct dm_kcopyd_client *kc = job->kc; + io_job_finish(kc->throttle); + if (error) { if (job->rw & WRITE) job->write_err |= error; @@ -389,6 +505,8 @@ static int run_io_job(struct kcopyd_job *job) .client = job->kc->io_client, }; + io_job_start(job->kc->throttle); + if (job->rw == READ) r = dm_io(&io_req, 1, &job->source, NULL); else @@ -695,7 +813,7 @@ int kcopyd_cancel(struct kcopyd_job *job, int block) /*----------------------------------------------------------------- * Client setup *---------------------------------------------------------------*/ -struct dm_kcopyd_client *dm_kcopyd_client_create(void) +struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle) { int r = -ENOMEM; struct dm_kcopyd_client *kc; @@ -708,14 +826,14 @@ struct dm_kcopyd_client *dm_kcopyd_client_create(void) INIT_LIST_HEAD(&kc->complete_jobs); INIT_LIST_HEAD(&kc->io_jobs); INIT_LIST_HEAD(&kc->pages_jobs); + kc->throttle = throttle; kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache); if (!kc->job_pool) goto bad_slab; INIT_WORK(&kc->kcopyd_work, do_work); - kc->kcopyd_wq = alloc_workqueue("kcopyd", - WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); + kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0); if (!kc->kcopyd_wq) goto bad_workqueue; diff --git a/drivers/md/dm-linear.c b/drivers/md/dm-linear.c index 328cad5617a..53e848c1093 100644 --- a/drivers/md/dm-linear.c +++ b/drivers/md/dm-linear.c @@ -53,9 +53,9 @@ static int linear_ctr(struct dm_target *ti, unsigned int argc, char **argv) goto bad; } - ti->num_flush_requests = 1; - ti->num_discard_requests = 1; - ti->num_write_same_requests = 1; + ti->num_flush_bios = 1; + ti->num_discard_bios = 1; + ti->num_write_same_bios = 1; ti->private = lc; return 0; @@ -85,7 +85,8 @@ static void linear_map_bio(struct dm_target *ti, struct bio *bio) bio->bi_bdev = lc->dev->bdev; if (bio_sectors(bio)) - bio->bi_sector = linear_map_sector(ti, bio->bi_sector); + bio->bi_iter.bi_sector = + linear_map_sector(ti, bio->bi_iter.bi_sector); } static int linear_map(struct dm_target *ti, struct bio *bio) @@ -95,8 +96,8 @@ static int linear_map(struct dm_target *ti, struct bio *bio) return DM_MAPIO_REMAPPED; } -static int linear_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void linear_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { struct linear_c *lc = (struct linear_c *) ti->private; @@ -110,7 +111,6 @@ static int linear_status(struct dm_target *ti, status_type_t type, (unsigned long long)lc->start); break; } - return 0; } static int linear_ioctl(struct dm_target *ti, unsigned int cmd, @@ -155,7 +155,7 @@ static int linear_iterate_devices(struct dm_target *ti, static struct target_type linear_target = { .name = "linear", - .version = {1, 2, 0}, + .version = {1, 2, 1}, .module = THIS_MODULE, .ctr = linear_ctr, .dtr = linear_dtr, diff --git a/drivers/md/dm-log-userspace-base.c b/drivers/md/dm-log-userspace-base.c index 9429159d9ee..b953db6cc22 100644 --- a/drivers/md/dm-log-userspace-base.c +++ b/drivers/md/dm-log-userspace-base.c @@ -10,10 +10,11 @@ #include <linux/device-mapper.h> #include <linux/dm-log-userspace.h> #include <linux/module.h> +#include <linux/workqueue.h> #include "dm-log-userspace-transfer.h" -#define DM_LOG_USERSPACE_VSN "1.1.0" +#define DM_LOG_USERSPACE_VSN "1.3.0" struct flush_entry { int type; @@ -58,6 +59,18 @@ struct log_c { spinlock_t flush_lock; struct list_head mark_list; struct list_head clear_list; + + /* + * Workqueue for flush of clear region requests. + */ + struct workqueue_struct *dmlog_wq; + struct delayed_work flush_log_work; + atomic_t sched_flush; + + /* + * Combine userspace flush and mark requests for efficiency. + */ + uint32_t integrated_flush; }; static mempool_t *flush_entry_pool; @@ -122,6 +135,9 @@ static int build_constructor_string(struct dm_target *ti, *ctr_str = NULL; + /* + * Determine overall size of the string. + */ for (i = 0, str_size = 0; i < argc; i++) str_size += strlen(argv[i]) + 1; /* +1 for space between args */ @@ -141,18 +157,39 @@ static int build_constructor_string(struct dm_target *ti, return str_size; } +static void do_flush(struct work_struct *work) +{ + int r; + struct log_c *lc = container_of(work, struct log_c, flush_log_work.work); + + atomic_set(&lc->sched_flush, 0); + + r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH, NULL, 0, NULL, NULL); + + if (r) + dm_table_event(lc->ti->table); +} + /* * userspace_ctr * * argv contains: - * <UUID> <other args> - * Where 'other args' is the userspace implementation specific log - * arguments. An example might be: - * <UUID> clustered-disk <arg count> <log dev> <region_size> [[no]sync] + * <UUID> [integrated_flush] <other args> + * Where 'other args' are the userspace implementation-specific log + * arguments. + * + * Example: + * <UUID> [integrated_flush] clustered-disk <arg count> <log dev> + * <region_size> [[no]sync] + * + * This module strips off the <UUID> and uses it for identification + * purposes when communicating with userspace about a log. * - * So, this module will strip off the <UUID> for identification purposes - * when communicating with userspace about a log; but will pass on everything - * else. + * If integrated_flush is defined, the kernel combines flush + * and mark requests. + * + * The rest of the line, beginning with 'clustered-disk', is passed + * to the userspace ctr function. */ static int userspace_ctr(struct dm_dirty_log *log, struct dm_target *ti, unsigned argc, char **argv) @@ -188,12 +225,22 @@ static int userspace_ctr(struct dm_dirty_log *log, struct dm_target *ti, return -EINVAL; } + lc->usr_argc = argc; + strncpy(lc->uuid, argv[0], DM_UUID_LEN); + argc--; + argv++; spin_lock_init(&lc->flush_lock); INIT_LIST_HEAD(&lc->mark_list); INIT_LIST_HEAD(&lc->clear_list); - str_size = build_constructor_string(ti, argc - 1, argv + 1, &ctr_str); + if (!strcasecmp(argv[0], "integrated_flush")) { + lc->integrated_flush = 1; + argc--; + argv++; + } + + str_size = build_constructor_string(ti, argc, argv, &ctr_str); if (str_size < 0) { kfree(lc); return str_size; @@ -246,6 +293,19 @@ static int userspace_ctr(struct dm_dirty_log *log, struct dm_target *ti, DMERR("Failed to register %s with device-mapper", devices_rdata); } + + if (lc->integrated_flush) { + lc->dmlog_wq = alloc_workqueue("dmlogd", WQ_MEM_RECLAIM, 0); + if (!lc->dmlog_wq) { + DMERR("couldn't start dmlogd"); + r = -ENOMEM; + goto out; + } + + INIT_DELAYED_WORK(&lc->flush_log_work, do_flush); + atomic_set(&lc->sched_flush, 0); + } + out: kfree(devices_rdata); if (r) { @@ -253,7 +313,6 @@ out: kfree(ctr_str); } else { lc->usr_argv_str = ctr_str; - lc->usr_argc = argc; log->context = lc; } @@ -264,9 +323,16 @@ static void userspace_dtr(struct dm_dirty_log *log) { struct log_c *lc = log->context; + if (lc->integrated_flush) { + /* flush workqueue */ + if (atomic_read(&lc->sched_flush)) + flush_delayed_work(&lc->flush_log_work); + + destroy_workqueue(lc->dmlog_wq); + } + (void) dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_DTR, - NULL, 0, - NULL, NULL); + NULL, 0, NULL, NULL); if (lc->log_dev) dm_put_device(lc->ti, lc->log_dev); @@ -283,8 +349,7 @@ static int userspace_presuspend(struct dm_dirty_log *log) struct log_c *lc = log->context; r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_PRESUSPEND, - NULL, 0, - NULL, NULL); + NULL, 0, NULL, NULL); return r; } @@ -294,9 +359,14 @@ static int userspace_postsuspend(struct dm_dirty_log *log) int r; struct log_c *lc = log->context; + /* + * Run planned flush earlier. + */ + if (lc->integrated_flush && atomic_read(&lc->sched_flush)) + flush_delayed_work(&lc->flush_log_work); + r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_POSTSUSPEND, - NULL, 0, - NULL, NULL); + NULL, 0, NULL, NULL); return r; } @@ -308,8 +378,7 @@ static int userspace_resume(struct dm_dirty_log *log) lc->in_sync_hint = 0; r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_RESUME, - NULL, 0, - NULL, NULL); + NULL, 0, NULL, NULL); return r; } @@ -405,7 +474,8 @@ static int flush_one_by_one(struct log_c *lc, struct list_head *flush_list) return r; } -static int flush_by_group(struct log_c *lc, struct list_head *flush_list) +static int flush_by_group(struct log_c *lc, struct list_head *flush_list, + int flush_with_payload) { int r = 0; int count; @@ -431,15 +501,29 @@ static int flush_by_group(struct log_c *lc, struct list_head *flush_list) break; } - r = userspace_do_request(lc, lc->uuid, type, - (char *)(group), - count * sizeof(uint64_t), - NULL, NULL); - if (r) { - /* Group send failed. Attempt one-by-one. */ - list_splice_init(&tmp_list, flush_list); - r = flush_one_by_one(lc, flush_list); - break; + if (flush_with_payload) { + r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH, + (char *)(group), + count * sizeof(uint64_t), + NULL, NULL); + /* + * Integrated flush failed. + */ + if (r) + break; + } else { + r = userspace_do_request(lc, lc->uuid, type, + (char *)(group), + count * sizeof(uint64_t), + NULL, NULL); + if (r) { + /* + * Group send failed. Attempt one-by-one. + */ + list_splice_init(&tmp_list, flush_list); + r = flush_one_by_one(lc, flush_list); + break; + } } } @@ -476,6 +560,8 @@ static int userspace_flush(struct dm_dirty_log *log) struct log_c *lc = log->context; LIST_HEAD(mark_list); LIST_HEAD(clear_list); + int mark_list_is_empty; + int clear_list_is_empty; struct flush_entry *fe, *tmp_fe; spin_lock_irqsave(&lc->flush_lock, flags); @@ -483,23 +569,51 @@ static int userspace_flush(struct dm_dirty_log *log) list_splice_init(&lc->clear_list, &clear_list); spin_unlock_irqrestore(&lc->flush_lock, flags); - if (list_empty(&mark_list) && list_empty(&clear_list)) + mark_list_is_empty = list_empty(&mark_list); + clear_list_is_empty = list_empty(&clear_list); + + if (mark_list_is_empty && clear_list_is_empty) return 0; - r = flush_by_group(lc, &mark_list); + r = flush_by_group(lc, &clear_list, 0); if (r) - goto fail; + goto out; - r = flush_by_group(lc, &clear_list); + if (!lc->integrated_flush) { + r = flush_by_group(lc, &mark_list, 0); + if (r) + goto out; + r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH, + NULL, 0, NULL, NULL); + goto out; + } + + /* + * Send integrated flush request with mark_list as payload. + */ + r = flush_by_group(lc, &mark_list, 1); if (r) - goto fail; + goto out; - r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH, - NULL, 0, NULL, NULL); + if (mark_list_is_empty && !atomic_read(&lc->sched_flush)) { + /* + * When there are only clear region requests, + * we schedule a flush in the future. + */ + queue_delayed_work(lc->dmlog_wq, &lc->flush_log_work, 3 * HZ); + atomic_set(&lc->sched_flush, 1); + } else { + /* + * Cancel pending flush because we + * have already flushed in mark_region. + */ + cancel_delayed_work(&lc->flush_log_work); + atomic_set(&lc->sched_flush, 0); + } -fail: +out: /* - * We can safely remove these entries, even if failure. + * We can safely remove these entries, even after failure. * Calling code will receive an error and will know that * the log facility has failed. */ @@ -603,8 +717,7 @@ static int userspace_get_resync_work(struct dm_dirty_log *log, region_t *region) rdata_size = sizeof(pkg); r = userspace_do_request(lc, lc->uuid, DM_ULOG_GET_RESYNC_WORK, - NULL, 0, - (char *)&pkg, &rdata_size); + NULL, 0, (char *)&pkg, &rdata_size); *region = pkg.r; return (r) ? r : (int)pkg.i; @@ -630,8 +743,7 @@ static void userspace_set_region_sync(struct dm_dirty_log *log, pkg.i = (int64_t)in_sync; r = userspace_do_request(lc, lc->uuid, DM_ULOG_SET_REGION_SYNC, - (char *)&pkg, sizeof(pkg), - NULL, NULL); + (char *)&pkg, sizeof(pkg), NULL, NULL); /* * It would be nice to be able to report failures. @@ -657,8 +769,7 @@ static region_t userspace_get_sync_count(struct dm_dirty_log *log) rdata_size = sizeof(sync_count); r = userspace_do_request(lc, lc->uuid, DM_ULOG_GET_SYNC_COUNT, - NULL, 0, - (char *)&sync_count, &rdata_size); + NULL, 0, (char *)&sync_count, &rdata_size); if (r) return 0; @@ -685,8 +796,7 @@ static int userspace_status(struct dm_dirty_log *log, status_type_t status_type, switch (status_type) { case STATUSTYPE_INFO: r = userspace_do_request(lc, lc->uuid, DM_ULOG_STATUS_INFO, - NULL, 0, - result, &sz); + NULL, 0, result, &sz); if (r) { sz = 0; @@ -699,8 +809,10 @@ static int userspace_status(struct dm_dirty_log *log, status_type_t status_type, BUG_ON(!table_args); /* There will always be a ' ' */ table_args++; - DMEMIT("%s %u %s %s ", log->type->name, lc->usr_argc, - lc->uuid, table_args); + DMEMIT("%s %u %s ", log->type->name, lc->usr_argc, lc->uuid); + if (lc->integrated_flush) + DMEMIT("integrated_flush "); + DMEMIT("%s ", table_args); break; } return (r) ? 0 : (int)sz; diff --git a/drivers/md/dm-log-userspace-transfer.c b/drivers/md/dm-log-userspace-transfer.c index 08d9a207259..b428c0ae63d 100644 --- a/drivers/md/dm-log-userspace-transfer.c +++ b/drivers/md/dm-log-userspace-transfer.c @@ -66,7 +66,7 @@ static int dm_ulog_sendto_server(struct dm_ulog_request *tfr) msg->seq = tfr->seq; msg->len = sizeof(struct dm_ulog_request) + tfr->data_size; - r = cn_netlink_send(msg, 0, gfp_any()); + r = cn_netlink_send(msg, 0, 0, gfp_any()); return r; } diff --git a/drivers/md/dm-mpath.c b/drivers/md/dm-mpath.c index 573bd04591b..f4167b013d9 100644 --- a/drivers/md/dm-mpath.c +++ b/drivers/md/dm-mpath.c @@ -7,6 +7,7 @@ #include <linux/device-mapper.h> +#include "dm.h" #include "dm-path-selector.h" #include "dm-uevent.h" @@ -86,15 +87,12 @@ struct multipath { unsigned queue_if_no_path:1; /* Queue I/O if last path fails? */ unsigned saved_queue_if_no_path:1; /* Saved state during suspension */ unsigned retain_attached_hw_handler:1; /* If there's already a hw_handler present, don't change it. */ + unsigned pg_init_disabled:1; /* pg_init is not currently allowed */ unsigned pg_init_retries; /* Number of times to retry pg_init */ unsigned pg_init_count; /* Number of times pg_init called */ unsigned pg_init_delay_msecs; /* Number of msecs before pg_init retry */ - unsigned queue_size; - struct work_struct process_queued_ios; - struct list_head queued_ios; - struct work_struct trigger_event; /* @@ -116,14 +114,12 @@ struct dm_mpath_io { typedef int (*action_fn) (struct pgpath *pgpath); -#define MIN_IOS 256 /* Mempool size */ - static struct kmem_cache *_mpio_cache; static struct workqueue_struct *kmultipathd, *kmpath_handlerd; -static void process_queued_ios(struct work_struct *work); static void trigger_event(struct work_struct *work); static void activate_path(struct work_struct *work); +static int __pgpath_busy(struct pgpath *pgpath); /*----------------------------------------------- @@ -190,19 +186,18 @@ static void free_priority_group(struct priority_group *pg, static struct multipath *alloc_multipath(struct dm_target *ti) { struct multipath *m; + unsigned min_ios = dm_get_reserved_rq_based_ios(); m = kzalloc(sizeof(*m), GFP_KERNEL); if (m) { INIT_LIST_HEAD(&m->priority_groups); - INIT_LIST_HEAD(&m->queued_ios); spin_lock_init(&m->lock); m->queue_io = 1; m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT; - INIT_WORK(&m->process_queued_ios, process_queued_ios); INIT_WORK(&m->trigger_event, trigger_event); init_waitqueue_head(&m->pg_init_wait); mutex_init(&m->work_mutex); - m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache); + m->mpio_pool = mempool_create_slab_pool(min_ios, _mpio_cache); if (!m->mpio_pool) { kfree(m); return NULL; @@ -255,13 +250,21 @@ static void clear_mapinfo(struct multipath *m, union map_info *info) * Path selection *-----------------------------------------------*/ -static void __pg_init_all_paths(struct multipath *m) +static int __pg_init_all_paths(struct multipath *m) { struct pgpath *pgpath; unsigned long pg_init_delay = 0; + if (m->pg_init_in_progress || m->pg_init_disabled) + return 0; + m->pg_init_count++; m->pg_init_required = 0; + + /* Check here to reset pg_init_required */ + if (!m->current_pg) + return 0; + if (m->pg_init_delay_retry) pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ? m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS); @@ -273,6 +276,7 @@ static void __pg_init_all_paths(struct multipath *m) pg_init_delay)) m->pg_init_in_progress++; } + return m->pg_init_in_progress; } static void __switch_pg(struct multipath *m, struct pgpath *pgpath) @@ -364,19 +368,26 @@ failed: */ static int __must_push_back(struct multipath *m) { - return (m->queue_if_no_path != m->saved_queue_if_no_path && - dm_noflush_suspending(m->ti)); + return (m->queue_if_no_path || + (m->queue_if_no_path != m->saved_queue_if_no_path && + dm_noflush_suspending(m->ti))); } -static int map_io(struct multipath *m, struct request *clone, - union map_info *map_context, unsigned was_queued) +#define pg_ready(m) (!(m)->queue_io && !(m)->pg_init_required) + +/* + * Map cloned requests + */ +static int multipath_map(struct dm_target *ti, struct request *clone, + union map_info *map_context) { - int r = DM_MAPIO_REMAPPED; + struct multipath *m = (struct multipath *) ti->private; + int r = DM_MAPIO_REQUEUE; size_t nr_bytes = blk_rq_bytes(clone); unsigned long flags; struct pgpath *pgpath; struct block_device *bdev; - struct dm_mpath_io *mpio = map_context->ptr; + struct dm_mpath_io *mpio; spin_lock_irqsave(&m->lock, flags); @@ -387,35 +398,33 @@ static int map_io(struct multipath *m, struct request *clone, pgpath = m->current_pgpath; - if (was_queued) - m->queue_size--; - - if ((pgpath && m->queue_io) || - (!pgpath && m->queue_if_no_path)) { - /* Queue for the daemon to resubmit */ - list_add_tail(&clone->queuelist, &m->queued_ios); - m->queue_size++; - if ((m->pg_init_required && !m->pg_init_in_progress) || - !m->queue_io) - queue_work(kmultipathd, &m->process_queued_ios); - pgpath = NULL; - r = DM_MAPIO_SUBMITTED; - } else if (pgpath) { - bdev = pgpath->path.dev->bdev; - clone->q = bdev_get_queue(bdev); - clone->rq_disk = bdev->bd_disk; - } else if (__must_push_back(m)) - r = DM_MAPIO_REQUEUE; - else - r = -EIO; /* Failed */ + if (!pgpath) { + if (!__must_push_back(m)) + r = -EIO; /* Failed */ + goto out_unlock; + } + if (!pg_ready(m)) { + __pg_init_all_paths(m); + goto out_unlock; + } + if (set_mapinfo(m, map_context) < 0) + /* ENOMEM, requeue */ + goto out_unlock; + bdev = pgpath->path.dev->bdev; + clone->q = bdev_get_queue(bdev); + clone->rq_disk = bdev->bd_disk; + clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; + mpio = map_context->ptr; mpio->pgpath = pgpath; mpio->nr_bytes = nr_bytes; - - if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io) - pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path, + if (pgpath->pg->ps.type->start_io) + pgpath->pg->ps.type->start_io(&pgpath->pg->ps, + &pgpath->path, nr_bytes); + r = DM_MAPIO_REMAPPED; +out_unlock: spin_unlock_irqrestore(&m->lock, flags); return r; @@ -436,73 +445,12 @@ static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path, else m->saved_queue_if_no_path = queue_if_no_path; m->queue_if_no_path = queue_if_no_path; - if (!m->queue_if_no_path && m->queue_size) - queue_work(kmultipathd, &m->process_queued_ios); - spin_unlock_irqrestore(&m->lock, flags); - return 0; -} - -/*----------------------------------------------------------------- - * The multipath daemon is responsible for resubmitting queued ios. - *---------------------------------------------------------------*/ - -static void dispatch_queued_ios(struct multipath *m) -{ - int r; - unsigned long flags; - union map_info *info; - struct request *clone, *n; - LIST_HEAD(cl); - - spin_lock_irqsave(&m->lock, flags); - list_splice_init(&m->queued_ios, &cl); - spin_unlock_irqrestore(&m->lock, flags); - - list_for_each_entry_safe(clone, n, &cl, queuelist) { - list_del_init(&clone->queuelist); - - info = dm_get_rq_mapinfo(clone); - - r = map_io(m, clone, info, 1); - if (r < 0) { - clear_mapinfo(m, info); - dm_kill_unmapped_request(clone, r); - } else if (r == DM_MAPIO_REMAPPED) - dm_dispatch_request(clone); - else if (r == DM_MAPIO_REQUEUE) { - clear_mapinfo(m, info); - dm_requeue_unmapped_request(clone); - } - } -} - -static void process_queued_ios(struct work_struct *work) -{ - struct multipath *m = - container_of(work, struct multipath, process_queued_ios); - struct pgpath *pgpath = NULL; - unsigned must_queue = 1; - unsigned long flags; - - spin_lock_irqsave(&m->lock, flags); - - if (!m->current_pgpath) - __choose_pgpath(m, 0); - - pgpath = m->current_pgpath; - - if ((pgpath && !m->queue_io) || - (!pgpath && !m->queue_if_no_path)) - must_queue = 0; + if (!queue_if_no_path) + dm_table_run_md_queue_async(m->ti->table); - if (m->pg_init_required && !m->pg_init_in_progress && pgpath) - __pg_init_all_paths(m); - - spin_unlock_irqrestore(&m->lock, flags); - if (!must_queue) - dispatch_queued_ios(m); + return 0; } /* @@ -905,8 +853,9 @@ static int multipath_ctr(struct dm_target *ti, unsigned int argc, goto bad; } - ti->num_flush_requests = 1; - ti->num_discard_requests = 1; + ti->num_flush_bios = 1; + ti->num_discard_bios = 1; + ti->num_write_same_bios = 1; return 0; @@ -941,10 +890,20 @@ static void multipath_wait_for_pg_init_completion(struct multipath *m) static void flush_multipath_work(struct multipath *m) { + unsigned long flags; + + spin_lock_irqsave(&m->lock, flags); + m->pg_init_disabled = 1; + spin_unlock_irqrestore(&m->lock, flags); + flush_workqueue(kmpath_handlerd); multipath_wait_for_pg_init_completion(m); flush_workqueue(kmultipathd); flush_work(&m->trigger_event); + + spin_lock_irqsave(&m->lock, flags); + m->pg_init_disabled = 0; + spin_unlock_irqrestore(&m->lock, flags); } static void multipath_dtr(struct dm_target *ti) @@ -956,27 +915,6 @@ static void multipath_dtr(struct dm_target *ti) } /* - * Map cloned requests - */ -static int multipath_map(struct dm_target *ti, struct request *clone, - union map_info *map_context) -{ - int r; - struct multipath *m = (struct multipath *) ti->private; - - if (set_mapinfo(m, map_context) < 0) - /* ENOMEM, requeue */ - return DM_MAPIO_REQUEUE; - - clone->cmd_flags |= REQ_FAILFAST_TRANSPORT; - r = map_io(m, clone, map_context, 0); - if (r < 0 || r == DM_MAPIO_REQUEUE) - clear_mapinfo(m, map_context); - - return r; -} - -/* * Take a path out of use. */ static int fail_path(struct pgpath *pgpath) @@ -1016,7 +954,7 @@ out: */ static int reinstate_path(struct pgpath *pgpath) { - int r = 0; + int r = 0, run_queue = 0; unsigned long flags; struct multipath *m = pgpath->pg->m; @@ -1038,9 +976,9 @@ static int reinstate_path(struct pgpath *pgpath) pgpath->is_active = 1; - if (!m->nr_valid_paths++ && m->queue_size) { + if (!m->nr_valid_paths++) { m->current_pgpath = NULL; - queue_work(kmultipathd, &m->process_queued_ios); + run_queue = 1; } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) { if (queue_work(kmpath_handlerd, &pgpath->activate_path.work)) m->pg_init_in_progress++; @@ -1053,6 +991,8 @@ static int reinstate_path(struct pgpath *pgpath) out: spin_unlock_irqrestore(&m->lock, flags); + if (run_queue) + dm_table_run_md_queue_async(m->ti->table); return r; } @@ -1163,7 +1103,7 @@ static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath) spin_lock_irqsave(&m->lock, flags); - if (m->pg_init_count <= m->pg_init_retries) + if (m->pg_init_count <= m->pg_init_retries && !m->pg_init_disabled) m->pg_init_required = 1; else limit_reached = 1; @@ -1236,11 +1176,12 @@ static void pg_init_done(void *data, int errors) /* Activations of other paths are still on going */ goto out; - if (!m->pg_init_required) - m->queue_io = 0; - - m->pg_init_delay_retry = delay_retry; - queue_work(kmultipathd, &m->process_queued_ios); + if (m->pg_init_required) { + m->pg_init_delay_retry = delay_retry; + if (__pg_init_all_paths(m)) + goto out; + } + m->queue_io = 0; /* * Wake up any thread waiting to suspend. @@ -1256,8 +1197,26 @@ static void activate_path(struct work_struct *work) struct pgpath *pgpath = container_of(work, struct pgpath, activate_path.work); - scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), - pg_init_done, pgpath); + if (pgpath->is_active) + scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev), + pg_init_done, pgpath); + else + pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED); +} + +static int noretry_error(int error) +{ + switch (error) { + case -EOPNOTSUPP: + case -EREMOTEIO: + case -EILSEQ: + case -ENODATA: + case -ENOSPC: + return 1; + } + + /* Anything else could be a path failure, so should be retried */ + return 0; } /* @@ -1283,7 +1242,7 @@ static int do_end_io(struct multipath *m, struct request *clone, if (!error && !clone->errors) return 0; /* I/O complete */ - if (error == -EOPNOTSUPP || error == -EREMOTEIO || error == -EILSEQ) + if (noretry_error(error)) return error; if (mpio->pgpath) @@ -1378,8 +1337,8 @@ static void multipath_resume(struct dm_target *ti) * [priority selector-name num_ps_args [ps_args]* * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+ */ -static int multipath_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void multipath_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { int sz = 0; unsigned long flags; @@ -1393,7 +1352,7 @@ static int multipath_status(struct dm_target *ti, status_type_t type, /* Features */ if (type == STATUSTYPE_INFO) - DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count); + DMEMIT("2 %u %u ", m->queue_io, m->pg_init_count); else { DMEMIT("%u ", m->queue_if_no_path + (m->pg_init_retries > 0) * 2 + @@ -1485,8 +1444,6 @@ static int multipath_status(struct dm_target *ti, status_type_t type, } spin_unlock_irqrestore(&m->lock, flags); - - return 0; } static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) @@ -1514,7 +1471,7 @@ static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) } if (argc != 2) { - DMWARN("Unrecognised multipath message received."); + DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc); goto out; } @@ -1532,7 +1489,7 @@ static int multipath_message(struct dm_target *ti, unsigned argc, char **argv) else if (!strcasecmp(argv[0], "fail_path")) action = fail_path; else { - DMWARN("Unrecognised multipath message received."); + DMWARN("Unrecognised multipath message received: %s", argv[0]); goto out; } @@ -1562,7 +1519,6 @@ static int multipath_ioctl(struct dm_target *ti, unsigned int cmd, unsigned long flags; int r; -again: bdev = NULL; mode = 0; r = 0; @@ -1580,7 +1536,7 @@ again: } if ((pgpath && m->queue_io) || (!pgpath && m->queue_if_no_path)) - r = -EAGAIN; + r = -ENOTCONN; else if (!bdev) r = -EIO; @@ -1589,13 +1545,22 @@ again: /* * Only pass ioctls through if the device sizes match exactly. */ - if (!r && ti->len != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT) - r = scsi_verify_blk_ioctl(NULL, cmd); + if (!bdev || ti->len != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT) { + int err = scsi_verify_blk_ioctl(NULL, cmd); + if (err) + r = err; + } - if (r == -EAGAIN && !fatal_signal_pending(current)) { - queue_work(kmultipathd, &m->process_queued_ios); - msleep(10); - goto again; + if (r == -ENOTCONN && !fatal_signal_pending(current)) { + spin_lock_irqsave(&m->lock, flags); + if (!m->current_pg) { + /* Path status changed, redo selection */ + __choose_pgpath(m, 0); + } + if (m->pg_init_required) + __pg_init_all_paths(m); + spin_unlock_irqrestore(&m->lock, flags); + dm_table_run_md_queue_async(m->ti->table); } return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg); @@ -1646,6 +1611,12 @@ static int multipath_busy(struct dm_target *ti) spin_lock_irqsave(&m->lock, flags); + /* pg_init in progress or no paths available */ + if (m->pg_init_in_progress || + (!m->nr_valid_paths && m->queue_if_no_path)) { + busy = 1; + goto out; + } /* Guess which priority_group will be used at next mapping time */ if (unlikely(!m->current_pgpath && m->next_pg)) pg = m->next_pg; @@ -1695,7 +1666,7 @@ out: *---------------------------------------------------------------*/ static struct target_type multipath_target = { .name = "multipath", - .version = {1, 5, 0}, + .version = {1, 7, 0}, .module = THIS_MODULE, .ctr = multipath_ctr, .dtr = multipath_dtr, diff --git a/drivers/md/dm-raid.c b/drivers/md/dm-raid.c index 3d8984edeff..4880b69e2e9 100644 --- a/drivers/md/dm-raid.c +++ b/drivers/md/dm-raid.c @@ -91,15 +91,44 @@ static struct raid_type { {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE} }; +static char *raid10_md_layout_to_format(int layout) +{ + /* + * Bit 16 and 17 stand for "offset" and "use_far_sets" + * Refer to MD's raid10.c for details + */ + if ((layout & 0x10000) && (layout & 0x20000)) + return "offset"; + + if ((layout & 0xFF) > 1) + return "near"; + + return "far"; +} + static unsigned raid10_md_layout_to_copies(int layout) { - return layout & 0xFF; + if ((layout & 0xFF) > 1) + return layout & 0xFF; + return (layout >> 8) & 0xFF; } static int raid10_format_to_md_layout(char *format, unsigned copies) { - /* 1 "far" copy, and 'copies' "near" copies */ - return (1 << 8) | (copies & 0xFF); + unsigned n = 1, f = 1; + + if (!strcmp("near", format)) + n = copies; + else + f = copies; + + if (!strcmp("offset", format)) + return 0x30000 | (f << 8) | n; + + if (!strcmp("far", format)) + return 0x20000 | (f << 8) | n; + + return (f << 8) | n; } static struct raid_type *get_raid_type(char *name) @@ -340,24 +369,23 @@ static int validate_region_size(struct raid_set *rs, unsigned long region_size) } /* - * validate_rebuild_devices + * validate_raid_redundancy * @rs * - * Determine if the devices specified for rebuild can result in a valid - * usable array that is capable of rebuilding the given devices. + * Determine if there are enough devices in the array that haven't + * failed (or are being rebuilt) to form a usable array. * * Returns: 0 on success, -EINVAL on failure. */ -static int validate_rebuild_devices(struct raid_set *rs) +static int validate_raid_redundancy(struct raid_set *rs) { unsigned i, rebuild_cnt = 0; - unsigned rebuilds_per_group, copies, d; - - if (!(rs->print_flags & DMPF_REBUILD)) - return 0; + unsigned rebuilds_per_group = 0, copies, d; + unsigned group_size, last_group_start; for (i = 0; i < rs->md.raid_disks; i++) - if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) + if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || + !rs->dev[i].rdev.sb_page) rebuild_cnt++; switch (rs->raid_type->level) { @@ -381,9 +409,6 @@ static int validate_rebuild_devices(struct raid_set *rs) * as long as the failed devices occur in different mirror * groups (i.e. different stripes). * - * Right now, we only allow for "near" copies. When other - * formats are added, we will have to check those too. - * * When checking "near" format, make sure no adjacent devices * have failed beyond what can be handled. In addition to the * simple case where the number of devices is a multiple of the @@ -393,27 +418,51 @@ static int validate_rebuild_devices(struct raid_set *rs) * A A B B C * C D D E E */ - rebuilds_per_group = 0; - for (i = 0; i < rs->md.raid_disks * copies; i++) { - d = i % rs->md.raid_disks; - if (!test_bit(In_sync, &rs->dev[d].rdev.flags) && - (++rebuilds_per_group >= copies)) - goto too_many; - if (!((i + 1) % copies)) + if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) { + for (i = 0; i < rs->md.raid_disks * copies; i++) { + if (!(i % copies)) + rebuilds_per_group = 0; + d = i % rs->md.raid_disks; + if ((!rs->dev[d].rdev.sb_page || + !test_bit(In_sync, &rs->dev[d].rdev.flags)) && + (++rebuilds_per_group >= copies)) + goto too_many; + } + break; + } + + /* + * When checking "far" and "offset" formats, we need to ensure + * that the device that holds its copy is not also dead or + * being rebuilt. (Note that "far" and "offset" formats only + * support two copies right now. These formats also only ever + * use the 'use_far_sets' variant.) + * + * This check is somewhat complicated by the need to account + * for arrays that are not a multiple of (far) copies. This + * results in the need to treat the last (potentially larger) + * set differently. + */ + group_size = (rs->md.raid_disks / copies); + last_group_start = (rs->md.raid_disks / group_size) - 1; + last_group_start *= group_size; + for (i = 0; i < rs->md.raid_disks; i++) { + if (!(i % copies) && !(i > last_group_start)) rebuilds_per_group = 0; + if ((!rs->dev[i].rdev.sb_page || + !test_bit(In_sync, &rs->dev[i].rdev.flags)) && + (++rebuilds_per_group >= copies)) + goto too_many; } break; default: - DMERR("The rebuild parameter is not supported for %s", - rs->raid_type->name); - rs->ti->error = "Rebuild not supported for this RAID type"; - return -EINVAL; + if (rebuild_cnt) + return -EINVAL; } return 0; too_many: - rs->ti->error = "Too many rebuild devices specified"; return -EINVAL; } @@ -438,7 +487,7 @@ too_many: * * RAID10-only options: * [raid10_copies <# copies>] Number of copies. (Default: 2) - * [raid10_format <near>] Layout algorithm. (Default: near) + * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) */ static int parse_raid_params(struct raid_set *rs, char **argv, unsigned num_raid_params) @@ -455,7 +504,7 @@ static int parse_raid_params(struct raid_set *rs, char **argv, * First, parse the in-order required arguments * "chunk_size" is the only argument of this type. */ - if ((strict_strtoul(argv[0], 10, &value) < 0)) { + if ((kstrtoul(argv[0], 10, &value) < 0)) { rs->ti->error = "Bad chunk size"; return -EINVAL; } else if (rs->raid_type->level == 1) { @@ -525,7 +574,9 @@ static int parse_raid_params(struct raid_set *rs, char **argv, rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; return -EINVAL; } - if (strcmp("near", argv[i])) { + if (strcmp("near", argv[i]) && + strcmp("far", argv[i]) && + strcmp("offset", argv[i])) { rs->ti->error = "Invalid 'raid10_format' value given"; return -EINVAL; } @@ -534,7 +585,7 @@ static int parse_raid_params(struct raid_set *rs, char **argv, continue; } - if (strict_strtoul(argv[i], 10, &value) < 0) { + if (kstrtoul(argv[i], 10, &value) < 0) { rs->ti->error = "Bad numerical argument given in raid params"; return -EINVAL; } @@ -649,6 +700,15 @@ static int parse_raid_params(struct raid_set *rs, char **argv, return -EINVAL; } + /* + * If the format is not "near", we only support + * two copies at the moment. + */ + if (strcmp("near", raid10_format) && (raid10_copies > 2)) { + rs->ti->error = "Too many copies for given RAID10 format."; + return -EINVAL; + } + /* (Len * #mirrors) / #devices */ sectors_per_dev = rs->ti->len * raid10_copies; sector_div(sectors_per_dev, rs->md.raid_disks); @@ -664,9 +724,6 @@ static int parse_raid_params(struct raid_set *rs, char **argv, } rs->md.dev_sectors = sectors_per_dev; - if (validate_rebuild_devices(rs)) - return -EINVAL; - /* Assume there are no metadata devices until the drives are parsed */ rs->md.persistent = 0; rs->md.external = 1; @@ -862,17 +919,30 @@ static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev) /* * Reshaping is not currently allowed */ - if ((le32_to_cpu(sb->level) != mddev->level) || - (le32_to_cpu(sb->layout) != mddev->layout) || - (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) { - DMERR("Reshaping arrays not yet supported."); + if (le32_to_cpu(sb->level) != mddev->level) { + DMERR("Reshaping arrays not yet supported. (RAID level change)"); + return -EINVAL; + } + if (le32_to_cpu(sb->layout) != mddev->layout) { + DMERR("Reshaping arrays not yet supported. (RAID layout change)"); + DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout); + DMERR(" Old layout: %s w/ %d copies", + raid10_md_layout_to_format(le32_to_cpu(sb->layout)), + raid10_md_layout_to_copies(le32_to_cpu(sb->layout))); + DMERR(" New layout: %s w/ %d copies", + raid10_md_layout_to_format(mddev->layout), + raid10_md_layout_to_copies(mddev->layout)); + return -EINVAL; + } + if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) { + DMERR("Reshaping arrays not yet supported. (stripe sectors change)"); return -EINVAL; } /* We can only change the number of devices in RAID1 right now */ if ((rs->raid_type->level != 1) && (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { - DMERR("Reshaping arrays not yet supported."); + DMERR("Reshaping arrays not yet supported. (device count change)"); return -EINVAL; } @@ -995,28 +1065,10 @@ static int super_validate(struct mddev *mddev, struct md_rdev *rdev) static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) { int ret; - unsigned redundancy = 0; struct raid_dev *dev; struct md_rdev *rdev, *tmp, *freshest; struct mddev *mddev = &rs->md; - switch (rs->raid_type->level) { - case 1: - redundancy = rs->md.raid_disks - 1; - break; - case 4: - case 5: - case 6: - redundancy = rs->raid_type->parity_devs; - break; - case 10: - redundancy = raid10_md_layout_to_copies(mddev->layout) - 1; - break; - default: - ti->error = "Unknown RAID type"; - return -EINVAL; - } - freshest = NULL; rdev_for_each_safe(rdev, tmp, mddev) { /* @@ -1045,44 +1097,43 @@ static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) break; default: dev = container_of(rdev, struct raid_dev, rdev); - if (redundancy--) { - if (dev->meta_dev) - dm_put_device(ti, dev->meta_dev); - - dev->meta_dev = NULL; - rdev->meta_bdev = NULL; + if (dev->meta_dev) + dm_put_device(ti, dev->meta_dev); - if (rdev->sb_page) - put_page(rdev->sb_page); + dev->meta_dev = NULL; + rdev->meta_bdev = NULL; - rdev->sb_page = NULL; + if (rdev->sb_page) + put_page(rdev->sb_page); - rdev->sb_loaded = 0; + rdev->sb_page = NULL; - /* - * We might be able to salvage the data device - * even though the meta device has failed. For - * now, we behave as though '- -' had been - * set for this device in the table. - */ - if (dev->data_dev) - dm_put_device(ti, dev->data_dev); + rdev->sb_loaded = 0; - dev->data_dev = NULL; - rdev->bdev = NULL; + /* + * We might be able to salvage the data device + * even though the meta device has failed. For + * now, we behave as though '- -' had been + * set for this device in the table. + */ + if (dev->data_dev) + dm_put_device(ti, dev->data_dev); - list_del(&rdev->same_set); + dev->data_dev = NULL; + rdev->bdev = NULL; - continue; - } - ti->error = "Failed to load superblock"; - return ret; + list_del(&rdev->same_set); } } if (!freshest) return 0; + if (validate_raid_redundancy(rs)) { + rs->ti->error = "Insufficient redundancy to activate array"; + return -EINVAL; + } + /* * Validation of the freshest device provides the source of * validation for the remaining devices. @@ -1130,7 +1181,7 @@ static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) argv++; /* number of RAID parameters */ - if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) { + if (kstrtoul(argv[0], 10, &num_raid_params) < 0) { ti->error = "Cannot understand number of RAID parameters"; return -EINVAL; } @@ -1143,7 +1194,7 @@ static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) return -EINVAL; } - if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || + if ((kstrtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || (num_raid_devs >= INT_MAX)) { ti->error = "Cannot understand number of raid devices"; return -EINVAL; @@ -1178,7 +1229,7 @@ static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) INIT_WORK(&rs->md.event_work, do_table_event); ti->private = rs; - ti->num_flush_requests = 1; + ti->num_flush_bios = 1; mutex_lock(&rs->md.reconfig_mutex); ret = md_run(&rs->md); @@ -1228,8 +1279,33 @@ static int raid_map(struct dm_target *ti, struct bio *bio) return DM_MAPIO_SUBMITTED; } -static int raid_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static const char *decipher_sync_action(struct mddev *mddev) +{ + if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) + return "frozen"; + + if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || + (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { + if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) + return "reshape"; + + if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { + if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) + return "resync"; + else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) + return "check"; + return "repair"; + } + + if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) + return "recover"; + } + + return "idle"; +} + +static void raid_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { struct raid_set *rs = ti->private; unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ @@ -1247,8 +1323,18 @@ static int raid_status(struct dm_target *ti, status_type_t type, sync = rs->md.recovery_cp; if (sync >= rs->md.resync_max_sectors) { + /* + * Sync complete. + */ array_in_sync = 1; sync = rs->md.resync_max_sectors; + } else if (test_bit(MD_RECOVERY_REQUESTED, &rs->md.recovery)) { + /* + * If "check" or "repair" is occurring, the array has + * undergone and initial sync and the health characters + * should not be 'a' anymore. + */ + array_in_sync = 1; } else { /* * The array may be doing an initial sync, or it may @@ -1260,6 +1346,7 @@ static int raid_status(struct dm_target *ti, status_type_t type, if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) array_in_sync = 1; } + /* * Status characters: * 'D' = Dead/Failed device @@ -1288,6 +1375,22 @@ static int raid_status(struct dm_target *ti, status_type_t type, (unsigned long long) sync, (unsigned long long) rs->md.resync_max_sectors); + /* + * Sync action: + * See Documentation/device-mapper/dm-raid.c for + * information on each of these states. + */ + DMEMIT(" %s", decipher_sync_action(&rs->md)); + + /* + * resync_mismatches/mismatch_cnt + * This field shows the number of discrepancies found when + * performing a "check" of the array. + */ + DMEMIT(" %llu", + (strcmp(rs->md.last_sync_action, "check")) ? 0 : + (unsigned long long) + atomic64_read(&rs->md.resync_mismatches)); break; case STATUSTYPE_TABLE: /* The string you would use to construct this array */ @@ -1356,7 +1459,8 @@ static int raid_status(struct dm_target *ti, status_type_t type, raid10_md_layout_to_copies(rs->md.layout)); if (rs->print_flags & DMPF_RAID10_FORMAT) - DMEMIT(" raid10_format near"); + DMEMIT(" raid10_format %s", + raid10_md_layout_to_format(rs->md.layout)); DMEMIT(" %d", rs->md.raid_disks); for (i = 0; i < rs->md.raid_disks; i++) { @@ -1371,11 +1475,64 @@ static int raid_status(struct dm_target *ti, status_type_t type, DMEMIT(" -"); } } +} + +static int raid_message(struct dm_target *ti, unsigned argc, char **argv) +{ + struct raid_set *rs = ti->private; + struct mddev *mddev = &rs->md; + + if (!strcasecmp(argv[0], "reshape")) { + DMERR("Reshape not supported."); + return -EINVAL; + } + + if (!mddev->pers || !mddev->pers->sync_request) + return -EINVAL; + + if (!strcasecmp(argv[0], "frozen")) + set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); + else + clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); + + if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { + if (mddev->sync_thread) { + set_bit(MD_RECOVERY_INTR, &mddev->recovery); + md_reap_sync_thread(mddev); + } + } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || + test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) + return -EBUSY; + else if (!strcasecmp(argv[0], "resync")) + set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); + else if (!strcasecmp(argv[0], "recover")) { + set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); + set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); + } else { + if (!strcasecmp(argv[0], "check")) + set_bit(MD_RECOVERY_CHECK, &mddev->recovery); + else if (!!strcasecmp(argv[0], "repair")) + return -EINVAL; + set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); + set_bit(MD_RECOVERY_SYNC, &mddev->recovery); + } + if (mddev->ro == 2) { + /* A write to sync_action is enough to justify + * canceling read-auto mode + */ + mddev->ro = 0; + if (!mddev->suspended) + md_wakeup_thread(mddev->sync_thread); + } + set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); + if (!mddev->suspended) + md_wakeup_thread(mddev->thread); return 0; } -static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) +static int raid_iterate_devices(struct dm_target *ti, + iterate_devices_callout_fn fn, void *data) { struct raid_set *rs = ti->private; unsigned i; @@ -1416,6 +1573,62 @@ static void raid_postsuspend(struct dm_target *ti) mddev_suspend(&rs->md); } +static void attempt_restore_of_faulty_devices(struct raid_set *rs) +{ + int i; + uint64_t failed_devices, cleared_failed_devices = 0; + unsigned long flags; + struct dm_raid_superblock *sb; + struct md_rdev *r; + + for (i = 0; i < rs->md.raid_disks; i++) { + r = &rs->dev[i].rdev; + if (test_bit(Faulty, &r->flags) && r->sb_page && + sync_page_io(r, 0, r->sb_size, r->sb_page, READ, 1)) { + DMINFO("Faulty %s device #%d has readable super block." + " Attempting to revive it.", + rs->raid_type->name, i); + + /* + * Faulty bit may be set, but sometimes the array can + * be suspended before the personalities can respond + * by removing the device from the array (i.e. calling + * 'hot_remove_disk'). If they haven't yet removed + * the failed device, its 'raid_disk' number will be + * '>= 0' - meaning we must call this function + * ourselves. + */ + if ((r->raid_disk >= 0) && + (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0)) + /* Failed to revive this device, try next */ + continue; + + r->raid_disk = i; + r->saved_raid_disk = i; + flags = r->flags; + clear_bit(Faulty, &r->flags); + clear_bit(WriteErrorSeen, &r->flags); + clear_bit(In_sync, &r->flags); + if (r->mddev->pers->hot_add_disk(r->mddev, r)) { + r->raid_disk = -1; + r->saved_raid_disk = -1; + r->flags = flags; + } else { + r->recovery_offset = 0; + cleared_failed_devices |= 1 << i; + } + } + } + if (cleared_failed_devices) { + rdev_for_each(r, &rs->md) { + sb = page_address(r->sb_page); + failed_devices = le64_to_cpu(sb->failed_devices); + failed_devices &= ~cleared_failed_devices; + sb->failed_devices = cpu_to_le64(failed_devices); + } + } +} + static void raid_resume(struct dm_target *ti) { struct raid_set *rs = ti->private; @@ -1424,6 +1637,13 @@ static void raid_resume(struct dm_target *ti) if (!rs->bitmap_loaded) { bitmap_load(&rs->md); rs->bitmap_loaded = 1; + } else { + /* + * A secondary resume while the device is active. + * Take this opportunity to check whether any failed + * devices are reachable again. + */ + attempt_restore_of_faulty_devices(rs); } clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); @@ -1432,12 +1652,13 @@ static void raid_resume(struct dm_target *ti) static struct target_type raid_target = { .name = "raid", - .version = {1, 4, 0}, + .version = {1, 5, 2}, .module = THIS_MODULE, .ctr = raid_ctr, .dtr = raid_dtr, .map = raid_map, .status = raid_status, + .message = raid_message, .iterate_devices = raid_iterate_devices, .io_hints = raid_io_hints, .presuspend = raid_presuspend, @@ -1447,6 +1668,10 @@ static struct target_type raid_target = { static int __init dm_raid_init(void) { + DMINFO("Loading target version %u.%u.%u", + raid_target.version[0], + raid_target.version[1], + raid_target.version[2]); return dm_register_target(&raid_target); } diff --git a/drivers/md/dm-raid1.c b/drivers/md/dm-raid1.c index fa519185ebb..7dfdb5c746d 100644 --- a/drivers/md/dm-raid1.c +++ b/drivers/md/dm-raid1.c @@ -82,6 +82,9 @@ struct mirror_set { struct mirror mirror[0]; }; +DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(raid1_resync_throttle, + "A percentage of time allocated for raid resynchronization"); + static void wakeup_mirrord(void *context) { struct mirror_set *ms = context; @@ -429,7 +432,7 @@ static int mirror_available(struct mirror_set *ms, struct bio *bio) region_t region = dm_rh_bio_to_region(ms->rh, bio); if (log->type->in_sync(log, region, 0)) - return choose_mirror(ms, bio->bi_sector) ? 1 : 0; + return choose_mirror(ms, bio->bi_iter.bi_sector) ? 1 : 0; return 0; } @@ -439,15 +442,15 @@ static int mirror_available(struct mirror_set *ms, struct bio *bio) */ static sector_t map_sector(struct mirror *m, struct bio *bio) { - if (unlikely(!bio->bi_size)) + if (unlikely(!bio->bi_iter.bi_size)) return 0; - return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector); + return m->offset + dm_target_offset(m->ms->ti, bio->bi_iter.bi_sector); } static void map_bio(struct mirror *m, struct bio *bio) { bio->bi_bdev = m->dev->bdev; - bio->bi_sector = map_sector(m, bio); + bio->bi_iter.bi_sector = map_sector(m, bio); } static void map_region(struct dm_io_region *io, struct mirror *m, @@ -455,7 +458,7 @@ static void map_region(struct dm_io_region *io, struct mirror *m, { io->bdev = m->dev->bdev; io->sector = map_sector(m, bio); - io->count = bio->bi_size >> 9; + io->count = bio_sectors(bio); } static void hold_bio(struct mirror_set *ms, struct bio *bio) @@ -523,8 +526,8 @@ static void read_async_bio(struct mirror *m, struct bio *bio) struct dm_io_region io; struct dm_io_request io_req = { .bi_rw = READ, - .mem.type = DM_IO_BVEC, - .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, + .mem.type = DM_IO_BIO, + .mem.ptr.bio = bio, .notify.fn = read_callback, .notify.context = bio, .client = m->ms->io_client, @@ -556,7 +559,7 @@ static void do_reads(struct mirror_set *ms, struct bio_list *reads) * We can only read balance if the region is in sync. */ if (likely(region_in_sync(ms, region, 1))) - m = choose_mirror(ms, bio->bi_sector); + m = choose_mirror(ms, bio->bi_iter.bi_sector); else if (m && atomic_read(&m->error_count)) m = NULL; @@ -626,8 +629,8 @@ static void do_write(struct mirror_set *ms, struct bio *bio) struct mirror *m; struct dm_io_request io_req = { .bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA), - .mem.type = DM_IO_BVEC, - .mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx, + .mem.type = DM_IO_BIO, + .mem.ptr.bio = bio, .notify.fn = write_callback, .notify.context = bio, .client = ms->io_client, @@ -1072,13 +1075,12 @@ static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) if (r) goto err_free_context; - ti->num_flush_requests = 1; - ti->num_discard_requests = 1; + ti->num_flush_bios = 1; + ti->num_discard_bios = 1; ti->per_bio_data_size = sizeof(struct dm_raid1_bio_record); ti->discard_zeroes_data_unsupported = true; - ms->kmirrord_wq = alloc_workqueue("kmirrord", - WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); + ms->kmirrord_wq = alloc_workqueue("kmirrord", WQ_MEM_RECLAIM, 0); if (!ms->kmirrord_wq) { DMERR("couldn't start kmirrord"); r = -ENOMEM; @@ -1111,7 +1113,7 @@ static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv) goto err_destroy_wq; } - ms->kcopyd_client = dm_kcopyd_client_create(); + ms->kcopyd_client = dm_kcopyd_client_create(&dm_kcopyd_throttle); if (IS_ERR(ms->kcopyd_client)) { r = PTR_ERR(ms->kcopyd_client); goto err_destroy_wq; @@ -1179,7 +1181,7 @@ static int mirror_map(struct dm_target *ti, struct bio *bio) * The region is in-sync and we can perform reads directly. * Store enough information so we can retry if it fails. */ - m = choose_mirror(ms, bio->bi_sector); + m = choose_mirror(ms, bio->bi_iter.bi_sector); if (unlikely(!m)) return -EIO; @@ -1242,6 +1244,9 @@ static int mirror_end_io(struct dm_target *ti, struct bio *bio, int error) dm_bio_restore(bd, bio); bio_record->details.bi_bdev = NULL; + + atomic_inc(&bio->bi_remaining); + queue_bio(ms, bio, rw); return DM_ENDIO_INCOMPLETE; } @@ -1347,8 +1352,8 @@ static char device_status_char(struct mirror *m) } -static int mirror_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void mirror_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { unsigned int m, sz = 0; struct mirror_set *ms = (struct mirror_set *) ti->private; @@ -1383,8 +1388,6 @@ static int mirror_status(struct dm_target *ti, status_type_t type, if (ms->features & DM_RAID1_HANDLE_ERRORS) DMEMIT(" 1 handle_errors"); } - - return 0; } static int mirror_iterate_devices(struct dm_target *ti, @@ -1403,7 +1406,7 @@ static int mirror_iterate_devices(struct dm_target *ti, static struct target_type mirror_target = { .name = "mirror", - .version = {1, 13, 1}, + .version = {1, 13, 2}, .module = THIS_MODULE, .ctr = mirror_ctr, .dtr = mirror_dtr, diff --git a/drivers/md/dm-region-hash.c b/drivers/md/dm-region-hash.c index 69732e03eb3..b929fd5f498 100644 --- a/drivers/md/dm-region-hash.c +++ b/drivers/md/dm-region-hash.c @@ -126,7 +126,8 @@ EXPORT_SYMBOL_GPL(dm_rh_region_to_sector); region_t dm_rh_bio_to_region(struct dm_region_hash *rh, struct bio *bio) { - return dm_rh_sector_to_region(rh, bio->bi_sector - rh->target_begin); + return dm_rh_sector_to_region(rh, bio->bi_iter.bi_sector - + rh->target_begin); } EXPORT_SYMBOL_GPL(dm_rh_bio_to_region); diff --git a/drivers/md/dm-snap-persistent.c b/drivers/md/dm-snap-persistent.c index 3ac415675b6..d6e88178d22 100644 --- a/drivers/md/dm-snap-persistent.c +++ b/drivers/md/dm-snap-persistent.c @@ -13,10 +13,13 @@ #include <linux/export.h> #include <linux/slab.h> #include <linux/dm-io.h> +#include "dm-bufio.h" #define DM_MSG_PREFIX "persistent snapshot" #define DM_CHUNK_SIZE_DEFAULT_SECTORS 32 /* 16KB */ +#define DM_PREFETCH_CHUNKS 12 + /*----------------------------------------------------------------- * Persistent snapshots, by persistent we mean that the snapshot * will survive a reboot. @@ -256,7 +259,8 @@ static int chunk_io(struct pstore *ps, void *area, chunk_t chunk, int rw, */ INIT_WORK_ONSTACK(&req.work, do_metadata); queue_work(ps->metadata_wq, &req.work); - flush_work(&req.work); + flush_workqueue(ps->metadata_wq); + destroy_work_on_stack(&req.work); return req.result; } @@ -269,6 +273,14 @@ static chunk_t area_location(struct pstore *ps, chunk_t area) return NUM_SNAPSHOT_HDR_CHUNKS + ((ps->exceptions_per_area + 1) * area); } +static void skip_metadata(struct pstore *ps) +{ + uint32_t stride = ps->exceptions_per_area + 1; + chunk_t next_free = ps->next_free; + if (sector_div(next_free, stride) == NUM_SNAPSHOT_HDR_CHUNKS) + ps->next_free++; +} + /* * Read or write a metadata area. Remembering to skip the first * chunk which holds the header. @@ -393,17 +405,18 @@ static int write_header(struct pstore *ps) /* * Access functions for the disk exceptions, these do the endian conversions. */ -static struct disk_exception *get_exception(struct pstore *ps, uint32_t index) +static struct disk_exception *get_exception(struct pstore *ps, void *ps_area, + uint32_t index) { BUG_ON(index >= ps->exceptions_per_area); - return ((struct disk_exception *) ps->area) + index; + return ((struct disk_exception *) ps_area) + index; } -static void read_exception(struct pstore *ps, +static void read_exception(struct pstore *ps, void *ps_area, uint32_t index, struct core_exception *result) { - struct disk_exception *de = get_exception(ps, index); + struct disk_exception *de = get_exception(ps, ps_area, index); /* copy it */ result->old_chunk = le64_to_cpu(de->old_chunk); @@ -413,7 +426,7 @@ static void read_exception(struct pstore *ps, static void write_exception(struct pstore *ps, uint32_t index, struct core_exception *e) { - struct disk_exception *de = get_exception(ps, index); + struct disk_exception *de = get_exception(ps, ps->area, index); /* copy it */ de->old_chunk = cpu_to_le64(e->old_chunk); @@ -422,7 +435,7 @@ static void write_exception(struct pstore *ps, static void clear_exception(struct pstore *ps, uint32_t index) { - struct disk_exception *de = get_exception(ps, index); + struct disk_exception *de = get_exception(ps, ps->area, index); /* clear it */ de->old_chunk = 0; @@ -434,7 +447,7 @@ static void clear_exception(struct pstore *ps, uint32_t index) * 'full' is filled in to indicate if the area has been * filled. */ -static int insert_exceptions(struct pstore *ps, +static int insert_exceptions(struct pstore *ps, void *ps_area, int (*callback)(void *callback_context, chunk_t old, chunk_t new), void *callback_context, @@ -448,7 +461,7 @@ static int insert_exceptions(struct pstore *ps, *full = 1; for (i = 0; i < ps->exceptions_per_area; i++) { - read_exception(ps, i, &e); + read_exception(ps, ps_area, i, &e); /* * If the new_chunk is pointing at the start of @@ -485,24 +498,75 @@ static int read_exceptions(struct pstore *ps, void *callback_context) { int r, full = 1; + struct dm_bufio_client *client; + chunk_t prefetch_area = 0; + + client = dm_bufio_client_create(dm_snap_cow(ps->store->snap)->bdev, + ps->store->chunk_size << SECTOR_SHIFT, + 1, 0, NULL, NULL); + + if (IS_ERR(client)) + return PTR_ERR(client); + + /* + * Setup for one current buffer + desired readahead buffers. + */ + dm_bufio_set_minimum_buffers(client, 1 + DM_PREFETCH_CHUNKS); /* * Keeping reading chunks and inserting exceptions until * we find a partially full area. */ for (ps->current_area = 0; full; ps->current_area++) { - r = area_io(ps, READ); - if (r) - return r; + struct dm_buffer *bp; + void *area; + chunk_t chunk; + + if (unlikely(prefetch_area < ps->current_area)) + prefetch_area = ps->current_area; + + if (DM_PREFETCH_CHUNKS) do { + chunk_t pf_chunk = area_location(ps, prefetch_area); + if (unlikely(pf_chunk >= dm_bufio_get_device_size(client))) + break; + dm_bufio_prefetch(client, pf_chunk, 1); + prefetch_area++; + if (unlikely(!prefetch_area)) + break; + } while (prefetch_area <= ps->current_area + DM_PREFETCH_CHUNKS); + + chunk = area_location(ps, ps->current_area); + + area = dm_bufio_read(client, chunk, &bp); + if (unlikely(IS_ERR(area))) { + r = PTR_ERR(area); + goto ret_destroy_bufio; + } - r = insert_exceptions(ps, callback, callback_context, &full); - if (r) - return r; + r = insert_exceptions(ps, area, callback, callback_context, + &full); + + if (!full) + memcpy(ps->area, area, ps->store->chunk_size << SECTOR_SHIFT); + + dm_bufio_release(bp); + + dm_bufio_forget(client, chunk); + + if (unlikely(r)) + goto ret_destroy_bufio; } ps->current_area--; - return 0; + skip_metadata(ps); + + r = 0; + +ret_destroy_bufio: + dm_bufio_client_destroy(client); + + return r; } static struct pstore *get_info(struct dm_exception_store *store) @@ -616,8 +680,6 @@ static int persistent_prepare_exception(struct dm_exception_store *store, struct dm_exception *e) { struct pstore *ps = get_info(store); - uint32_t stride; - chunk_t next_free; sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev); /* Is there enough room ? */ @@ -630,10 +692,8 @@ static int persistent_prepare_exception(struct dm_exception_store *store, * Move onto the next free pending, making sure to take * into account the location of the metadata chunks. */ - stride = (ps->exceptions_per_area + 1); - next_free = ++ps->next_free; - if (sector_div(next_free, stride) == 1) - ps->next_free++; + ps->next_free++; + skip_metadata(ps); atomic_inc(&ps->pending_count); return 0; @@ -727,7 +787,7 @@ static int persistent_prepare_merge(struct dm_exception_store *store, ps->current_committed = ps->exceptions_per_area; } - read_exception(ps, ps->current_committed - 1, &ce); + read_exception(ps, ps->area, ps->current_committed - 1, &ce); *last_old_chunk = ce.old_chunk; *last_new_chunk = ce.new_chunk; @@ -737,8 +797,8 @@ static int persistent_prepare_merge(struct dm_exception_store *store, */ for (nr_consecutive = 1; nr_consecutive < ps->current_committed; nr_consecutive++) { - read_exception(ps, ps->current_committed - 1 - nr_consecutive, - &ce); + read_exception(ps, ps->area, + ps->current_committed - 1 - nr_consecutive, &ce); if (ce.old_chunk != *last_old_chunk - nr_consecutive || ce.new_chunk != *last_new_chunk - nr_consecutive) break; diff --git a/drivers/md/dm-snap.c b/drivers/md/dm-snap.c index 59fc18ae52c..5bd2290cfb1 100644 --- a/drivers/md/dm-snap.c +++ b/drivers/md/dm-snap.c @@ -66,6 +66,18 @@ struct dm_snapshot { atomic_t pending_exceptions_count; + /* Protected by "lock" */ + sector_t exception_start_sequence; + + /* Protected by kcopyd single-threaded callback */ + sector_t exception_complete_sequence; + + /* + * A list of pending exceptions that completed out of order. + * Protected by kcopyd single-threaded callback. + */ + struct list_head out_of_order_list; + mempool_t *pending_pool; struct dm_exception_table pending; @@ -124,6 +136,9 @@ struct dm_snapshot { #define RUNNING_MERGE 0 #define SHUTDOWN_MERGE 1 +DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, + "A percentage of time allocated for copy on write"); + struct dm_dev *dm_snap_origin(struct dm_snapshot *s) { return s->origin; @@ -170,6 +185,14 @@ struct dm_snap_pending_exception { */ int started; + /* There was copying error. */ + int copy_error; + + /* A sequence number, it is used for in-order completion. */ + sector_t exception_sequence; + + struct list_head out_of_order_entry; + /* * For writing a complete chunk, bypassing the copy. */ @@ -227,12 +250,11 @@ static void stop_tracking_chunk(struct dm_snapshot *s, struct bio *bio) static int __chunk_is_tracked(struct dm_snapshot *s, chunk_t chunk) { struct dm_snap_tracked_chunk *c; - struct hlist_node *hn; int found = 0; spin_lock_irq(&s->tracked_chunk_lock); - hlist_for_each_entry(c, hn, + hlist_for_each_entry(c, &s->tracked_chunk_hash[DM_TRACKED_CHUNK_HASH(chunk)], node) { if (c->chunk == chunk) { found = 1; @@ -588,12 +610,12 @@ static struct dm_exception *dm_lookup_exception(struct dm_exception_table *et, return NULL; } -static struct dm_exception *alloc_completed_exception(void) +static struct dm_exception *alloc_completed_exception(gfp_t gfp) { struct dm_exception *e; - e = kmem_cache_alloc(exception_cache, GFP_NOIO); - if (!e) + e = kmem_cache_alloc(exception_cache, gfp); + if (!e && gfp == GFP_NOIO) e = kmem_cache_alloc(exception_cache, GFP_ATOMIC); return e; @@ -620,7 +642,7 @@ static void free_pending_exception(struct dm_snap_pending_exception *pe) struct dm_snapshot *s = pe->snap; mempool_free(pe, s->pending_pool); - smp_mb__before_atomic_dec(); + smp_mb__before_atomic(); atomic_dec(&s->pending_exceptions_count); } @@ -675,7 +697,7 @@ static int dm_add_exception(void *context, chunk_t old, chunk_t new) struct dm_snapshot *s = context; struct dm_exception *e; - e = alloc_completed_exception(); + e = alloc_completed_exception(GFP_KERNEL); if (!e) return -ENOMEM; @@ -723,17 +745,16 @@ static int calc_max_buckets(void) */ static int init_hash_tables(struct dm_snapshot *s) { - sector_t hash_size, cow_dev_size, origin_dev_size, max_buckets; + sector_t hash_size, cow_dev_size, max_buckets; /* * Calculate based on the size of the original volume or * the COW volume... */ cow_dev_size = get_dev_size(s->cow->bdev); - origin_dev_size = get_dev_size(s->origin->bdev); max_buckets = calc_max_buckets(); - hash_size = min(origin_dev_size, cow_dev_size) >> s->store->chunk_shift; + hash_size = cow_dev_size >> s->store->chunk_shift; hash_size = min(hash_size, max_buckets); if (hash_size < 64) @@ -762,7 +783,7 @@ static int init_hash_tables(struct dm_snapshot *s) static void merge_shutdown(struct dm_snapshot *s) { clear_bit_unlock(RUNNING_MERGE, &s->state_bits); - smp_mb__after_clear_bit(); + smp_mb__after_atomic(); wake_up_bit(&s->state_bits, RUNNING_MERGE); } @@ -1038,7 +1059,7 @@ static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv) int i; int r = -EINVAL; char *origin_path, *cow_path; - unsigned args_used, num_flush_requests = 1; + unsigned args_used, num_flush_bios = 1; fmode_t origin_mode = FMODE_READ; if (argc != 4) { @@ -1048,7 +1069,7 @@ static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv) } if (dm_target_is_snapshot_merge(ti)) { - num_flush_requests = 2; + num_flush_bios = 2; origin_mode = FMODE_WRITE; } @@ -1093,6 +1114,9 @@ static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv) s->valid = 1; s->active = 0; atomic_set(&s->pending_exceptions_count, 0); + s->exception_start_sequence = 0; + s->exception_complete_sequence = 0; + INIT_LIST_HEAD(&s->out_of_order_list); init_rwsem(&s->lock); INIT_LIST_HEAD(&s->list); spin_lock_init(&s->pe_lock); @@ -1109,7 +1133,7 @@ static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv) goto bad_hash_tables; } - s->kcopyd_client = dm_kcopyd_client_create(); + s->kcopyd_client = dm_kcopyd_client_create(&dm_kcopyd_throttle); if (IS_ERR(s->kcopyd_client)) { r = PTR_ERR(s->kcopyd_client); ti->error = "Could not create kcopyd client"; @@ -1119,6 +1143,7 @@ static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv) s->pending_pool = mempool_create_slab_pool(MIN_IOS, pending_cache); if (!s->pending_pool) { ti->error = "Could not allocate mempool for pending exceptions"; + r = -ENOMEM; goto bad_pending_pool; } @@ -1128,7 +1153,7 @@ static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv) spin_lock_init(&s->tracked_chunk_lock); ti->private = s; - ti->num_flush_requests = num_flush_requests; + ti->num_flush_bios = num_flush_bios; ti->per_bio_data_size = sizeof(struct dm_snap_tracked_chunk); /* Add snapshot to the list of snapshots for this origin */ @@ -1380,7 +1405,7 @@ static void pending_complete(struct dm_snap_pending_exception *pe, int success) goto out; } - e = alloc_completed_exception(); + e = alloc_completed_exception(GFP_NOIO); if (!e) { down_write(&s->lock); __invalidate_snapshot(s, -ENOMEM); @@ -1413,6 +1438,7 @@ out: if (full_bio) { full_bio->bi_end_io = pe->full_bio_end_io; full_bio->bi_private = pe->full_bio_private; + atomic_inc(&full_bio->bi_remaining); } free_pending_exception(pe); @@ -1441,6 +1467,19 @@ static void commit_callback(void *context, int success) pending_complete(pe, success); } +static void complete_exception(struct dm_snap_pending_exception *pe) +{ + struct dm_snapshot *s = pe->snap; + + if (unlikely(pe->copy_error)) + pending_complete(pe, 0); + + else + /* Update the metadata if we are persistent */ + s->store->type->commit_exception(s->store, &pe->e, + commit_callback, pe); +} + /* * Called when the copy I/O has finished. kcopyd actually runs * this code so don't block. @@ -1450,13 +1489,32 @@ static void copy_callback(int read_err, unsigned long write_err, void *context) struct dm_snap_pending_exception *pe = context; struct dm_snapshot *s = pe->snap; - if (read_err || write_err) - pending_complete(pe, 0); + pe->copy_error = read_err || write_err; - else - /* Update the metadata if we are persistent */ - s->store->type->commit_exception(s->store, &pe->e, - commit_callback, pe); + if (pe->exception_sequence == s->exception_complete_sequence) { + s->exception_complete_sequence++; + complete_exception(pe); + + while (!list_empty(&s->out_of_order_list)) { + pe = list_entry(s->out_of_order_list.next, + struct dm_snap_pending_exception, out_of_order_entry); + if (pe->exception_sequence != s->exception_complete_sequence) + break; + s->exception_complete_sequence++; + list_del(&pe->out_of_order_entry); + complete_exception(pe); + } + } else { + struct list_head *lh; + struct dm_snap_pending_exception *pe2; + + list_for_each_prev(lh, &s->out_of_order_list) { + pe2 = list_entry(lh, struct dm_snap_pending_exception, out_of_order_entry); + if (pe2->exception_sequence < pe->exception_sequence) + break; + } + list_add(&pe->out_of_order_entry, lh); + } } /* @@ -1551,6 +1609,8 @@ __find_pending_exception(struct dm_snapshot *s, return NULL; } + pe->exception_sequence = s->exception_start_sequence++; + dm_insert_exception(&s->pending, &pe->e); return pe; @@ -1560,11 +1620,10 @@ static void remap_exception(struct dm_snapshot *s, struct dm_exception *e, struct bio *bio, chunk_t chunk) { bio->bi_bdev = s->cow->bdev; - bio->bi_sector = chunk_to_sector(s->store, - dm_chunk_number(e->new_chunk) + - (chunk - e->old_chunk)) + - (bio->bi_sector & - s->store->chunk_mask); + bio->bi_iter.bi_sector = + chunk_to_sector(s->store, dm_chunk_number(e->new_chunk) + + (chunk - e->old_chunk)) + + (bio->bi_iter.bi_sector & s->store->chunk_mask); } static int snapshot_map(struct dm_target *ti, struct bio *bio) @@ -1582,7 +1641,7 @@ static int snapshot_map(struct dm_target *ti, struct bio *bio) return DM_MAPIO_REMAPPED; } - chunk = sector_to_chunk(s->store, bio->bi_sector); + chunk = sector_to_chunk(s->store, bio->bi_iter.bi_sector); /* Full snapshots are not usable */ /* To get here the table must be live so s->active is always set. */ @@ -1643,7 +1702,8 @@ static int snapshot_map(struct dm_target *ti, struct bio *bio) r = DM_MAPIO_SUBMITTED; if (!pe->started && - bio->bi_size == (s->store->chunk_size << SECTOR_SHIFT)) { + bio->bi_iter.bi_size == + (s->store->chunk_size << SECTOR_SHIFT)) { pe->started = 1; up_write(&s->lock); start_full_bio(pe, bio); @@ -1692,14 +1752,14 @@ static int snapshot_merge_map(struct dm_target *ti, struct bio *bio) init_tracked_chunk(bio); if (bio->bi_rw & REQ_FLUSH) { - if (!dm_bio_get_target_request_nr(bio)) + if (!dm_bio_get_target_bio_nr(bio)) bio->bi_bdev = s->origin->bdev; else bio->bi_bdev = s->cow->bdev; return DM_MAPIO_REMAPPED; } - chunk = sector_to_chunk(s->store, bio->bi_sector); + chunk = sector_to_chunk(s->store, bio->bi_iter.bi_sector); down_write(&s->lock); @@ -1837,8 +1897,8 @@ static void snapshot_merge_resume(struct dm_target *ti) start_merge(s); } -static int snapshot_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void snapshot_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { unsigned sz = 0; struct dm_snapshot *snap = ti->private; @@ -1884,8 +1944,6 @@ static int snapshot_status(struct dm_target *ti, status_type_t type, maxlen - sz); break; } - - return 0; } static int snapshot_iterate_devices(struct dm_target *ti, @@ -2038,7 +2096,7 @@ static int do_origin(struct dm_dev *origin, struct bio *bio) down_read(&_origins_lock); o = __lookup_origin(origin->bdev); if (o) - r = __origin_write(&o->snapshots, bio->bi_sector, bio); + r = __origin_write(&o->snapshots, bio->bi_iter.bi_sector, bio); up_read(&_origins_lock); return r; @@ -2083,6 +2141,11 @@ static int origin_write_extent(struct dm_snapshot *merging_snap, * Origin: maps a linear range of a device, with hooks for snapshotting. */ +struct dm_origin { + struct dm_dev *dev; + unsigned split_boundary; +}; + /* * Construct an origin mapping: <dev_path> * The context for an origin is merely a 'struct dm_dev *' @@ -2091,41 +2154,65 @@ static int origin_write_extent(struct dm_snapshot *merging_snap, static int origin_ctr(struct dm_target *ti, unsigned int argc, char **argv) { int r; - struct dm_dev *dev; + struct dm_origin *o; if (argc != 1) { ti->error = "origin: incorrect number of arguments"; return -EINVAL; } - r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &dev); + o = kmalloc(sizeof(struct dm_origin), GFP_KERNEL); + if (!o) { + ti->error = "Cannot allocate private origin structure"; + r = -ENOMEM; + goto bad_alloc; + } + + r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &o->dev); if (r) { ti->error = "Cannot get target device"; - return r; + goto bad_open; } - ti->private = dev; - ti->num_flush_requests = 1; + ti->private = o; + ti->num_flush_bios = 1; return 0; + +bad_open: + kfree(o); +bad_alloc: + return r; } static void origin_dtr(struct dm_target *ti) { - struct dm_dev *dev = ti->private; - dm_put_device(ti, dev); + struct dm_origin *o = ti->private; + dm_put_device(ti, o->dev); + kfree(o); } static int origin_map(struct dm_target *ti, struct bio *bio) { - struct dm_dev *dev = ti->private; - bio->bi_bdev = dev->bdev; + struct dm_origin *o = ti->private; + unsigned available_sectors; + + bio->bi_bdev = o->dev->bdev; - if (bio->bi_rw & REQ_FLUSH) + if (unlikely(bio->bi_rw & REQ_FLUSH)) return DM_MAPIO_REMAPPED; + if (bio_rw(bio) != WRITE) + return DM_MAPIO_REMAPPED; + + available_sectors = o->split_boundary - + ((unsigned)bio->bi_iter.bi_sector & (o->split_boundary - 1)); + + if (bio_sectors(bio) > available_sectors) + dm_accept_partial_bio(bio, available_sectors); + /* Only tell snapshots if this is a write */ - return (bio_rw(bio) == WRITE) ? do_origin(dev, bio) : DM_MAPIO_REMAPPED; + return do_origin(o->dev, bio); } /* @@ -2134,15 +2221,15 @@ static int origin_map(struct dm_target *ti, struct bio *bio) */ static void origin_resume(struct dm_target *ti) { - struct dm_dev *dev = ti->private; + struct dm_origin *o = ti->private; - ti->max_io_len = get_origin_minimum_chunksize(dev->bdev); + o->split_boundary = get_origin_minimum_chunksize(o->dev->bdev); } -static int origin_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void origin_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { - struct dm_dev *dev = ti->private; + struct dm_origin *o = ti->private; switch (type) { case STATUSTYPE_INFO: @@ -2150,23 +2237,21 @@ static int origin_status(struct dm_target *ti, status_type_t type, break; case STATUSTYPE_TABLE: - snprintf(result, maxlen, "%s", dev->name); + snprintf(result, maxlen, "%s", o->dev->name); break; } - - return 0; } static int origin_merge(struct dm_target *ti, struct bvec_merge_data *bvm, struct bio_vec *biovec, int max_size) { - struct dm_dev *dev = ti->private; - struct request_queue *q = bdev_get_queue(dev->bdev); + struct dm_origin *o = ti->private; + struct request_queue *q = bdev_get_queue(o->dev->bdev); if (!q->merge_bvec_fn) return max_size; - bvm->bi_bdev = dev->bdev; + bvm->bi_bdev = o->dev->bdev; return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); } @@ -2174,14 +2259,14 @@ static int origin_merge(struct dm_target *ti, struct bvec_merge_data *bvm, static int origin_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { - struct dm_dev *dev = ti->private; + struct dm_origin *o = ti->private; - return fn(ti, dev, 0, ti->len, data); + return fn(ti, o->dev, 0, ti->len, data); } static struct target_type origin_target = { .name = "snapshot-origin", - .version = {1, 8, 0}, + .version = {1, 8, 1}, .module = THIS_MODULE, .ctr = origin_ctr, .dtr = origin_dtr, @@ -2194,7 +2279,7 @@ static struct target_type origin_target = { static struct target_type snapshot_target = { .name = "snapshot", - .version = {1, 11, 0}, + .version = {1, 12, 0}, .module = THIS_MODULE, .ctr = snapshot_ctr, .dtr = snapshot_dtr, @@ -2307,3 +2392,5 @@ module_exit(dm_snapshot_exit); MODULE_DESCRIPTION(DM_NAME " snapshot target"); MODULE_AUTHOR("Joe Thornber"); MODULE_LICENSE("GPL"); +MODULE_ALIAS("dm-snapshot-origin"); +MODULE_ALIAS("dm-snapshot-merge"); diff --git a/drivers/md/dm-stats.c b/drivers/md/dm-stats.c new file mode 100644 index 00000000000..28a90122a5a --- /dev/null +++ b/drivers/md/dm-stats.c @@ -0,0 +1,981 @@ +#include <linux/errno.h> +#include <linux/numa.h> +#include <linux/slab.h> +#include <linux/rculist.h> +#include <linux/threads.h> +#include <linux/preempt.h> +#include <linux/irqflags.h> +#include <linux/vmalloc.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/device-mapper.h> + +#include "dm.h" +#include "dm-stats.h" + +#define DM_MSG_PREFIX "stats" + +static int dm_stat_need_rcu_barrier; + +/* + * Using 64-bit values to avoid overflow (which is a + * problem that block/genhd.c's IO accounting has). + */ +struct dm_stat_percpu { + unsigned long long sectors[2]; + unsigned long long ios[2]; + unsigned long long merges[2]; + unsigned long long ticks[2]; + unsigned long long io_ticks[2]; + unsigned long long io_ticks_total; + unsigned long long time_in_queue; +}; + +struct dm_stat_shared { + atomic_t in_flight[2]; + unsigned long stamp; + struct dm_stat_percpu tmp; +}; + +struct dm_stat { + struct list_head list_entry; + int id; + size_t n_entries; + sector_t start; + sector_t end; + sector_t step; + const char *program_id; + const char *aux_data; + struct rcu_head rcu_head; + size_t shared_alloc_size; + size_t percpu_alloc_size; + struct dm_stat_percpu *stat_percpu[NR_CPUS]; + struct dm_stat_shared stat_shared[0]; +}; + +struct dm_stats_last_position { + sector_t last_sector; + unsigned last_rw; +}; + +/* + * A typo on the command line could possibly make the kernel run out of memory + * and crash. To prevent the crash we account all used memory. We fail if we + * exhaust 1/4 of all memory or 1/2 of vmalloc space. + */ +#define DM_STATS_MEMORY_FACTOR 4 +#define DM_STATS_VMALLOC_FACTOR 2 + +static DEFINE_SPINLOCK(shared_memory_lock); + +static unsigned long shared_memory_amount; + +static bool __check_shared_memory(size_t alloc_size) +{ + size_t a; + + a = shared_memory_amount + alloc_size; + if (a < shared_memory_amount) + return false; + if (a >> PAGE_SHIFT > totalram_pages / DM_STATS_MEMORY_FACTOR) + return false; +#ifdef CONFIG_MMU + if (a > (VMALLOC_END - VMALLOC_START) / DM_STATS_VMALLOC_FACTOR) + return false; +#endif + return true; +} + +static bool check_shared_memory(size_t alloc_size) +{ + bool ret; + + spin_lock_irq(&shared_memory_lock); + + ret = __check_shared_memory(alloc_size); + + spin_unlock_irq(&shared_memory_lock); + + return ret; +} + +static bool claim_shared_memory(size_t alloc_size) +{ + spin_lock_irq(&shared_memory_lock); + + if (!__check_shared_memory(alloc_size)) { + spin_unlock_irq(&shared_memory_lock); + return false; + } + + shared_memory_amount += alloc_size; + + spin_unlock_irq(&shared_memory_lock); + + return true; +} + +static void free_shared_memory(size_t alloc_size) +{ + unsigned long flags; + + spin_lock_irqsave(&shared_memory_lock, flags); + + if (WARN_ON_ONCE(shared_memory_amount < alloc_size)) { + spin_unlock_irqrestore(&shared_memory_lock, flags); + DMCRIT("Memory usage accounting bug."); + return; + } + + shared_memory_amount -= alloc_size; + + spin_unlock_irqrestore(&shared_memory_lock, flags); +} + +static void *dm_kvzalloc(size_t alloc_size, int node) +{ + void *p; + + if (!claim_shared_memory(alloc_size)) + return NULL; + + if (alloc_size <= KMALLOC_MAX_SIZE) { + p = kzalloc_node(alloc_size, GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN, node); + if (p) + return p; + } + p = vzalloc_node(alloc_size, node); + if (p) + return p; + + free_shared_memory(alloc_size); + + return NULL; +} + +static void dm_kvfree(void *ptr, size_t alloc_size) +{ + if (!ptr) + return; + + free_shared_memory(alloc_size); + + if (is_vmalloc_addr(ptr)) + vfree(ptr); + else + kfree(ptr); +} + +static void dm_stat_free(struct rcu_head *head) +{ + int cpu; + struct dm_stat *s = container_of(head, struct dm_stat, rcu_head); + + kfree(s->program_id); + kfree(s->aux_data); + for_each_possible_cpu(cpu) + dm_kvfree(s->stat_percpu[cpu], s->percpu_alloc_size); + dm_kvfree(s, s->shared_alloc_size); +} + +static int dm_stat_in_flight(struct dm_stat_shared *shared) +{ + return atomic_read(&shared->in_flight[READ]) + + atomic_read(&shared->in_flight[WRITE]); +} + +void dm_stats_init(struct dm_stats *stats) +{ + int cpu; + struct dm_stats_last_position *last; + + mutex_init(&stats->mutex); + INIT_LIST_HEAD(&stats->list); + stats->last = alloc_percpu(struct dm_stats_last_position); + for_each_possible_cpu(cpu) { + last = per_cpu_ptr(stats->last, cpu); + last->last_sector = (sector_t)ULLONG_MAX; + last->last_rw = UINT_MAX; + } +} + +void dm_stats_cleanup(struct dm_stats *stats) +{ + size_t ni; + struct dm_stat *s; + struct dm_stat_shared *shared; + + while (!list_empty(&stats->list)) { + s = container_of(stats->list.next, struct dm_stat, list_entry); + list_del(&s->list_entry); + for (ni = 0; ni < s->n_entries; ni++) { + shared = &s->stat_shared[ni]; + if (WARN_ON(dm_stat_in_flight(shared))) { + DMCRIT("leaked in-flight counter at index %lu " + "(start %llu, end %llu, step %llu): reads %d, writes %d", + (unsigned long)ni, + (unsigned long long)s->start, + (unsigned long long)s->end, + (unsigned long long)s->step, + atomic_read(&shared->in_flight[READ]), + atomic_read(&shared->in_flight[WRITE])); + } + } + dm_stat_free(&s->rcu_head); + } + free_percpu(stats->last); +} + +static int dm_stats_create(struct dm_stats *stats, sector_t start, sector_t end, + sector_t step, const char *program_id, const char *aux_data, + void (*suspend_callback)(struct mapped_device *), + void (*resume_callback)(struct mapped_device *), + struct mapped_device *md) +{ + struct list_head *l; + struct dm_stat *s, *tmp_s; + sector_t n_entries; + size_t ni; + size_t shared_alloc_size; + size_t percpu_alloc_size; + struct dm_stat_percpu *p; + int cpu; + int ret_id; + int r; + + if (end < start || !step) + return -EINVAL; + + n_entries = end - start; + if (dm_sector_div64(n_entries, step)) + n_entries++; + + if (n_entries != (size_t)n_entries || !(size_t)(n_entries + 1)) + return -EOVERFLOW; + + shared_alloc_size = sizeof(struct dm_stat) + (size_t)n_entries * sizeof(struct dm_stat_shared); + if ((shared_alloc_size - sizeof(struct dm_stat)) / sizeof(struct dm_stat_shared) != n_entries) + return -EOVERFLOW; + + percpu_alloc_size = (size_t)n_entries * sizeof(struct dm_stat_percpu); + if (percpu_alloc_size / sizeof(struct dm_stat_percpu) != n_entries) + return -EOVERFLOW; + + if (!check_shared_memory(shared_alloc_size + num_possible_cpus() * percpu_alloc_size)) + return -ENOMEM; + + s = dm_kvzalloc(shared_alloc_size, NUMA_NO_NODE); + if (!s) + return -ENOMEM; + + s->n_entries = n_entries; + s->start = start; + s->end = end; + s->step = step; + s->shared_alloc_size = shared_alloc_size; + s->percpu_alloc_size = percpu_alloc_size; + + s->program_id = kstrdup(program_id, GFP_KERNEL); + if (!s->program_id) { + r = -ENOMEM; + goto out; + } + s->aux_data = kstrdup(aux_data, GFP_KERNEL); + if (!s->aux_data) { + r = -ENOMEM; + goto out; + } + + for (ni = 0; ni < n_entries; ni++) { + atomic_set(&s->stat_shared[ni].in_flight[READ], 0); + atomic_set(&s->stat_shared[ni].in_flight[WRITE], 0); + } + + for_each_possible_cpu(cpu) { + p = dm_kvzalloc(percpu_alloc_size, cpu_to_node(cpu)); + if (!p) { + r = -ENOMEM; + goto out; + } + s->stat_percpu[cpu] = p; + } + + /* + * Suspend/resume to make sure there is no i/o in flight, + * so that newly created statistics will be exact. + * + * (note: we couldn't suspend earlier because we must not + * allocate memory while suspended) + */ + suspend_callback(md); + + mutex_lock(&stats->mutex); + s->id = 0; + list_for_each(l, &stats->list) { + tmp_s = container_of(l, struct dm_stat, list_entry); + if (WARN_ON(tmp_s->id < s->id)) { + r = -EINVAL; + goto out_unlock_resume; + } + if (tmp_s->id > s->id) + break; + if (unlikely(s->id == INT_MAX)) { + r = -ENFILE; + goto out_unlock_resume; + } + s->id++; + } + ret_id = s->id; + list_add_tail_rcu(&s->list_entry, l); + mutex_unlock(&stats->mutex); + + resume_callback(md); + + return ret_id; + +out_unlock_resume: + mutex_unlock(&stats->mutex); + resume_callback(md); +out: + dm_stat_free(&s->rcu_head); + return r; +} + +static struct dm_stat *__dm_stats_find(struct dm_stats *stats, int id) +{ + struct dm_stat *s; + + list_for_each_entry(s, &stats->list, list_entry) { + if (s->id > id) + break; + if (s->id == id) + return s; + } + + return NULL; +} + +static int dm_stats_delete(struct dm_stats *stats, int id) +{ + struct dm_stat *s; + int cpu; + + mutex_lock(&stats->mutex); + + s = __dm_stats_find(stats, id); + if (!s) { + mutex_unlock(&stats->mutex); + return -ENOENT; + } + + list_del_rcu(&s->list_entry); + mutex_unlock(&stats->mutex); + + /* + * vfree can't be called from RCU callback + */ + for_each_possible_cpu(cpu) + if (is_vmalloc_addr(s->stat_percpu)) + goto do_sync_free; + if (is_vmalloc_addr(s)) { +do_sync_free: + synchronize_rcu_expedited(); + dm_stat_free(&s->rcu_head); + } else { + ACCESS_ONCE(dm_stat_need_rcu_barrier) = 1; + call_rcu(&s->rcu_head, dm_stat_free); + } + return 0; +} + +static int dm_stats_list(struct dm_stats *stats, const char *program, + char *result, unsigned maxlen) +{ + struct dm_stat *s; + sector_t len; + unsigned sz = 0; + + /* + * Output format: + * <region_id>: <start_sector>+<length> <step> <program_id> <aux_data> + */ + + mutex_lock(&stats->mutex); + list_for_each_entry(s, &stats->list, list_entry) { + if (!program || !strcmp(program, s->program_id)) { + len = s->end - s->start; + DMEMIT("%d: %llu+%llu %llu %s %s\n", s->id, + (unsigned long long)s->start, + (unsigned long long)len, + (unsigned long long)s->step, + s->program_id, + s->aux_data); + } + } + mutex_unlock(&stats->mutex); + + return 1; +} + +static void dm_stat_round(struct dm_stat_shared *shared, struct dm_stat_percpu *p) +{ + /* + * This is racy, but so is part_round_stats_single. + */ + unsigned long now = jiffies; + unsigned in_flight_read; + unsigned in_flight_write; + unsigned long difference = now - shared->stamp; + + if (!difference) + return; + in_flight_read = (unsigned)atomic_read(&shared->in_flight[READ]); + in_flight_write = (unsigned)atomic_read(&shared->in_flight[WRITE]); + if (in_flight_read) + p->io_ticks[READ] += difference; + if (in_flight_write) + p->io_ticks[WRITE] += difference; + if (in_flight_read + in_flight_write) { + p->io_ticks_total += difference; + p->time_in_queue += (in_flight_read + in_flight_write) * difference; + } + shared->stamp = now; +} + +static void dm_stat_for_entry(struct dm_stat *s, size_t entry, + unsigned long bi_rw, sector_t len, bool merged, + bool end, unsigned long duration) +{ + unsigned long idx = bi_rw & REQ_WRITE; + struct dm_stat_shared *shared = &s->stat_shared[entry]; + struct dm_stat_percpu *p; + + /* + * For strict correctness we should use local_irq_save/restore + * instead of preempt_disable/enable. + * + * preempt_disable/enable is racy if the driver finishes bios + * from non-interrupt context as well as from interrupt context + * or from more different interrupts. + * + * On 64-bit architectures the race only results in not counting some + * events, so it is acceptable. On 32-bit architectures the race could + * cause the counter going off by 2^32, so we need to do proper locking + * there. + * + * part_stat_lock()/part_stat_unlock() have this race too. + */ +#if BITS_PER_LONG == 32 + unsigned long flags; + local_irq_save(flags); +#else + preempt_disable(); +#endif + p = &s->stat_percpu[smp_processor_id()][entry]; + + if (!end) { + dm_stat_round(shared, p); + atomic_inc(&shared->in_flight[idx]); + } else { + dm_stat_round(shared, p); + atomic_dec(&shared->in_flight[idx]); + p->sectors[idx] += len; + p->ios[idx] += 1; + p->merges[idx] += merged; + p->ticks[idx] += duration; + } + +#if BITS_PER_LONG == 32 + local_irq_restore(flags); +#else + preempt_enable(); +#endif +} + +static void __dm_stat_bio(struct dm_stat *s, unsigned long bi_rw, + sector_t bi_sector, sector_t end_sector, + bool end, unsigned long duration, + struct dm_stats_aux *stats_aux) +{ + sector_t rel_sector, offset, todo, fragment_len; + size_t entry; + + if (end_sector <= s->start || bi_sector >= s->end) + return; + if (unlikely(bi_sector < s->start)) { + rel_sector = 0; + todo = end_sector - s->start; + } else { + rel_sector = bi_sector - s->start; + todo = end_sector - bi_sector; + } + if (unlikely(end_sector > s->end)) + todo -= (end_sector - s->end); + + offset = dm_sector_div64(rel_sector, s->step); + entry = rel_sector; + do { + if (WARN_ON_ONCE(entry >= s->n_entries)) { + DMCRIT("Invalid area access in region id %d", s->id); + return; + } + fragment_len = todo; + if (fragment_len > s->step - offset) + fragment_len = s->step - offset; + dm_stat_for_entry(s, entry, bi_rw, fragment_len, + stats_aux->merged, end, duration); + todo -= fragment_len; + entry++; + offset = 0; + } while (unlikely(todo != 0)); +} + +void dm_stats_account_io(struct dm_stats *stats, unsigned long bi_rw, + sector_t bi_sector, unsigned bi_sectors, bool end, + unsigned long duration, struct dm_stats_aux *stats_aux) +{ + struct dm_stat *s; + sector_t end_sector; + struct dm_stats_last_position *last; + + if (unlikely(!bi_sectors)) + return; + + end_sector = bi_sector + bi_sectors; + + if (!end) { + /* + * A race condition can at worst result in the merged flag being + * misrepresented, so we don't have to disable preemption here. + */ + last = __this_cpu_ptr(stats->last); + stats_aux->merged = + (bi_sector == (ACCESS_ONCE(last->last_sector) && + ((bi_rw & (REQ_WRITE | REQ_DISCARD)) == + (ACCESS_ONCE(last->last_rw) & (REQ_WRITE | REQ_DISCARD))) + )); + ACCESS_ONCE(last->last_sector) = end_sector; + ACCESS_ONCE(last->last_rw) = bi_rw; + } + + rcu_read_lock(); + + list_for_each_entry_rcu(s, &stats->list, list_entry) + __dm_stat_bio(s, bi_rw, bi_sector, end_sector, end, duration, stats_aux); + + rcu_read_unlock(); +} + +static void __dm_stat_init_temporary_percpu_totals(struct dm_stat_shared *shared, + struct dm_stat *s, size_t x) +{ + int cpu; + struct dm_stat_percpu *p; + + local_irq_disable(); + p = &s->stat_percpu[smp_processor_id()][x]; + dm_stat_round(shared, p); + local_irq_enable(); + + memset(&shared->tmp, 0, sizeof(shared->tmp)); + for_each_possible_cpu(cpu) { + p = &s->stat_percpu[cpu][x]; + shared->tmp.sectors[READ] += ACCESS_ONCE(p->sectors[READ]); + shared->tmp.sectors[WRITE] += ACCESS_ONCE(p->sectors[WRITE]); + shared->tmp.ios[READ] += ACCESS_ONCE(p->ios[READ]); + shared->tmp.ios[WRITE] += ACCESS_ONCE(p->ios[WRITE]); + shared->tmp.merges[READ] += ACCESS_ONCE(p->merges[READ]); + shared->tmp.merges[WRITE] += ACCESS_ONCE(p->merges[WRITE]); + shared->tmp.ticks[READ] += ACCESS_ONCE(p->ticks[READ]); + shared->tmp.ticks[WRITE] += ACCESS_ONCE(p->ticks[WRITE]); + shared->tmp.io_ticks[READ] += ACCESS_ONCE(p->io_ticks[READ]); + shared->tmp.io_ticks[WRITE] += ACCESS_ONCE(p->io_ticks[WRITE]); + shared->tmp.io_ticks_total += ACCESS_ONCE(p->io_ticks_total); + shared->tmp.time_in_queue += ACCESS_ONCE(p->time_in_queue); + } +} + +static void __dm_stat_clear(struct dm_stat *s, size_t idx_start, size_t idx_end, + bool init_tmp_percpu_totals) +{ + size_t x; + struct dm_stat_shared *shared; + struct dm_stat_percpu *p; + + for (x = idx_start; x < idx_end; x++) { + shared = &s->stat_shared[x]; + if (init_tmp_percpu_totals) + __dm_stat_init_temporary_percpu_totals(shared, s, x); + local_irq_disable(); + p = &s->stat_percpu[smp_processor_id()][x]; + p->sectors[READ] -= shared->tmp.sectors[READ]; + p->sectors[WRITE] -= shared->tmp.sectors[WRITE]; + p->ios[READ] -= shared->tmp.ios[READ]; + p->ios[WRITE] -= shared->tmp.ios[WRITE]; + p->merges[READ] -= shared->tmp.merges[READ]; + p->merges[WRITE] -= shared->tmp.merges[WRITE]; + p->ticks[READ] -= shared->tmp.ticks[READ]; + p->ticks[WRITE] -= shared->tmp.ticks[WRITE]; + p->io_ticks[READ] -= shared->tmp.io_ticks[READ]; + p->io_ticks[WRITE] -= shared->tmp.io_ticks[WRITE]; + p->io_ticks_total -= shared->tmp.io_ticks_total; + p->time_in_queue -= shared->tmp.time_in_queue; + local_irq_enable(); + } +} + +static int dm_stats_clear(struct dm_stats *stats, int id) +{ + struct dm_stat *s; + + mutex_lock(&stats->mutex); + + s = __dm_stats_find(stats, id); + if (!s) { + mutex_unlock(&stats->mutex); + return -ENOENT; + } + + __dm_stat_clear(s, 0, s->n_entries, true); + + mutex_unlock(&stats->mutex); + + return 1; +} + +/* + * This is like jiffies_to_msec, but works for 64-bit values. + */ +static unsigned long long dm_jiffies_to_msec64(unsigned long long j) +{ + unsigned long long result = 0; + unsigned mult; + + if (j) + result = jiffies_to_msecs(j & 0x3fffff); + if (j >= 1 << 22) { + mult = jiffies_to_msecs(1 << 22); + result += (unsigned long long)mult * (unsigned long long)jiffies_to_msecs((j >> 22) & 0x3fffff); + } + if (j >= 1ULL << 44) + result += (unsigned long long)mult * (unsigned long long)mult * (unsigned long long)jiffies_to_msecs(j >> 44); + + return result; +} + +static int dm_stats_print(struct dm_stats *stats, int id, + size_t idx_start, size_t idx_len, + bool clear, char *result, unsigned maxlen) +{ + unsigned sz = 0; + struct dm_stat *s; + size_t x; + sector_t start, end, step; + size_t idx_end; + struct dm_stat_shared *shared; + + /* + * Output format: + * <start_sector>+<length> counters + */ + + mutex_lock(&stats->mutex); + + s = __dm_stats_find(stats, id); + if (!s) { + mutex_unlock(&stats->mutex); + return -ENOENT; + } + + idx_end = idx_start + idx_len; + if (idx_end < idx_start || + idx_end > s->n_entries) + idx_end = s->n_entries; + + if (idx_start > idx_end) + idx_start = idx_end; + + step = s->step; + start = s->start + (step * idx_start); + + for (x = idx_start; x < idx_end; x++, start = end) { + shared = &s->stat_shared[x]; + end = start + step; + if (unlikely(end > s->end)) + end = s->end; + + __dm_stat_init_temporary_percpu_totals(shared, s, x); + + DMEMIT("%llu+%llu %llu %llu %llu %llu %llu %llu %llu %llu %d %llu %llu %llu %llu\n", + (unsigned long long)start, + (unsigned long long)step, + shared->tmp.ios[READ], + shared->tmp.merges[READ], + shared->tmp.sectors[READ], + dm_jiffies_to_msec64(shared->tmp.ticks[READ]), + shared->tmp.ios[WRITE], + shared->tmp.merges[WRITE], + shared->tmp.sectors[WRITE], + dm_jiffies_to_msec64(shared->tmp.ticks[WRITE]), + dm_stat_in_flight(shared), + dm_jiffies_to_msec64(shared->tmp.io_ticks_total), + dm_jiffies_to_msec64(shared->tmp.time_in_queue), + dm_jiffies_to_msec64(shared->tmp.io_ticks[READ]), + dm_jiffies_to_msec64(shared->tmp.io_ticks[WRITE])); + + if (unlikely(sz + 1 >= maxlen)) + goto buffer_overflow; + } + + if (clear) + __dm_stat_clear(s, idx_start, idx_end, false); + +buffer_overflow: + mutex_unlock(&stats->mutex); + + return 1; +} + +static int dm_stats_set_aux(struct dm_stats *stats, int id, const char *aux_data) +{ + struct dm_stat *s; + const char *new_aux_data; + + mutex_lock(&stats->mutex); + + s = __dm_stats_find(stats, id); + if (!s) { + mutex_unlock(&stats->mutex); + return -ENOENT; + } + + new_aux_data = kstrdup(aux_data, GFP_KERNEL); + if (!new_aux_data) { + mutex_unlock(&stats->mutex); + return -ENOMEM; + } + + kfree(s->aux_data); + s->aux_data = new_aux_data; + + mutex_unlock(&stats->mutex); + + return 0; +} + +static int message_stats_create(struct mapped_device *md, + unsigned argc, char **argv, + char *result, unsigned maxlen) +{ + int id; + char dummy; + unsigned long long start, end, len, step; + unsigned divisor; + const char *program_id, *aux_data; + + /* + * Input format: + * <range> <step> [<program_id> [<aux_data>]] + */ + + if (argc < 3 || argc > 5) + return -EINVAL; + + if (!strcmp(argv[1], "-")) { + start = 0; + len = dm_get_size(md); + if (!len) + len = 1; + } else if (sscanf(argv[1], "%llu+%llu%c", &start, &len, &dummy) != 2 || + start != (sector_t)start || len != (sector_t)len) + return -EINVAL; + + end = start + len; + if (start >= end) + return -EINVAL; + + if (sscanf(argv[2], "/%u%c", &divisor, &dummy) == 1) { + step = end - start; + if (do_div(step, divisor)) + step++; + if (!step) + step = 1; + } else if (sscanf(argv[2], "%llu%c", &step, &dummy) != 1 || + step != (sector_t)step || !step) + return -EINVAL; + + program_id = "-"; + aux_data = "-"; + + if (argc > 3) + program_id = argv[3]; + + if (argc > 4) + aux_data = argv[4]; + + /* + * If a buffer overflow happens after we created the region, + * it's too late (the userspace would retry with a larger + * buffer, but the region id that caused the overflow is already + * leaked). So we must detect buffer overflow in advance. + */ + snprintf(result, maxlen, "%d", INT_MAX); + if (dm_message_test_buffer_overflow(result, maxlen)) + return 1; + + id = dm_stats_create(dm_get_stats(md), start, end, step, program_id, aux_data, + dm_internal_suspend, dm_internal_resume, md); + if (id < 0) + return id; + + snprintf(result, maxlen, "%d", id); + + return 1; +} + +static int message_stats_delete(struct mapped_device *md, + unsigned argc, char **argv) +{ + int id; + char dummy; + + if (argc != 2) + return -EINVAL; + + if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0) + return -EINVAL; + + return dm_stats_delete(dm_get_stats(md), id); +} + +static int message_stats_clear(struct mapped_device *md, + unsigned argc, char **argv) +{ + int id; + char dummy; + + if (argc != 2) + return -EINVAL; + + if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0) + return -EINVAL; + + return dm_stats_clear(dm_get_stats(md), id); +} + +static int message_stats_list(struct mapped_device *md, + unsigned argc, char **argv, + char *result, unsigned maxlen) +{ + int r; + const char *program = NULL; + + if (argc < 1 || argc > 2) + return -EINVAL; + + if (argc > 1) { + program = kstrdup(argv[1], GFP_KERNEL); + if (!program) + return -ENOMEM; + } + + r = dm_stats_list(dm_get_stats(md), program, result, maxlen); + + kfree(program); + + return r; +} + +static int message_stats_print(struct mapped_device *md, + unsigned argc, char **argv, bool clear, + char *result, unsigned maxlen) +{ + int id; + char dummy; + unsigned long idx_start = 0, idx_len = ULONG_MAX; + + if (argc != 2 && argc != 4) + return -EINVAL; + + if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0) + return -EINVAL; + + if (argc > 3) { + if (strcmp(argv[2], "-") && + sscanf(argv[2], "%lu%c", &idx_start, &dummy) != 1) + return -EINVAL; + if (strcmp(argv[3], "-") && + sscanf(argv[3], "%lu%c", &idx_len, &dummy) != 1) + return -EINVAL; + } + + return dm_stats_print(dm_get_stats(md), id, idx_start, idx_len, clear, + result, maxlen); +} + +static int message_stats_set_aux(struct mapped_device *md, + unsigned argc, char **argv) +{ + int id; + char dummy; + + if (argc != 3) + return -EINVAL; + + if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0) + return -EINVAL; + + return dm_stats_set_aux(dm_get_stats(md), id, argv[2]); +} + +int dm_stats_message(struct mapped_device *md, unsigned argc, char **argv, + char *result, unsigned maxlen) +{ + int r; + + if (dm_request_based(md)) { + DMWARN("Statistics are only supported for bio-based devices"); + return -EOPNOTSUPP; + } + + /* All messages here must start with '@' */ + if (!strcasecmp(argv[0], "@stats_create")) + r = message_stats_create(md, argc, argv, result, maxlen); + else if (!strcasecmp(argv[0], "@stats_delete")) + r = message_stats_delete(md, argc, argv); + else if (!strcasecmp(argv[0], "@stats_clear")) + r = message_stats_clear(md, argc, argv); + else if (!strcasecmp(argv[0], "@stats_list")) + r = message_stats_list(md, argc, argv, result, maxlen); + else if (!strcasecmp(argv[0], "@stats_print")) + r = message_stats_print(md, argc, argv, false, result, maxlen); + else if (!strcasecmp(argv[0], "@stats_print_clear")) + r = message_stats_print(md, argc, argv, true, result, maxlen); + else if (!strcasecmp(argv[0], "@stats_set_aux")) + r = message_stats_set_aux(md, argc, argv); + else + return 2; /* this wasn't a stats message */ + + if (r == -EINVAL) + DMWARN("Invalid parameters for message %s", argv[0]); + + return r; +} + +int __init dm_statistics_init(void) +{ + shared_memory_amount = 0; + dm_stat_need_rcu_barrier = 0; + return 0; +} + +void dm_statistics_exit(void) +{ + if (dm_stat_need_rcu_barrier) + rcu_barrier(); + if (WARN_ON(shared_memory_amount)) + DMCRIT("shared_memory_amount leaked: %lu", shared_memory_amount); +} + +module_param_named(stats_current_allocated_bytes, shared_memory_amount, ulong, S_IRUGO); +MODULE_PARM_DESC(stats_current_allocated_bytes, "Memory currently used by statistics"); diff --git a/drivers/md/dm-stats.h b/drivers/md/dm-stats.h new file mode 100644 index 00000000000..e7c4984bf23 --- /dev/null +++ b/drivers/md/dm-stats.h @@ -0,0 +1,40 @@ +#ifndef DM_STATS_H +#define DM_STATS_H + +#include <linux/types.h> +#include <linux/mutex.h> +#include <linux/list.h> + +int dm_statistics_init(void); +void dm_statistics_exit(void); + +struct dm_stats { + struct mutex mutex; + struct list_head list; /* list of struct dm_stat */ + struct dm_stats_last_position __percpu *last; + sector_t last_sector; + unsigned last_rw; +}; + +struct dm_stats_aux { + bool merged; +}; + +void dm_stats_init(struct dm_stats *st); +void dm_stats_cleanup(struct dm_stats *st); + +struct mapped_device; + +int dm_stats_message(struct mapped_device *md, unsigned argc, char **argv, + char *result, unsigned maxlen); + +void dm_stats_account_io(struct dm_stats *stats, unsigned long bi_rw, + sector_t bi_sector, unsigned bi_sectors, bool end, + unsigned long duration, struct dm_stats_aux *aux); + +static inline bool dm_stats_used(struct dm_stats *st) +{ + return !list_empty(&st->list); +} + +#endif diff --git a/drivers/md/dm-stripe.c b/drivers/md/dm-stripe.c index c89cde86d40..d1600d2aa2e 100644 --- a/drivers/md/dm-stripe.c +++ b/drivers/md/dm-stripe.c @@ -4,6 +4,7 @@ * This file is released under the GPL. */ +#include "dm.h" #include <linux/device-mapper.h> #include <linux/module.h> @@ -94,7 +95,7 @@ static int get_stripe(struct dm_target *ti, struct stripe_c *sc, static int stripe_ctr(struct dm_target *ti, unsigned int argc, char **argv) { struct stripe_c *sc; - sector_t width; + sector_t width, tmp_len; uint32_t stripes; uint32_t chunk_size; int r; @@ -116,15 +117,16 @@ static int stripe_ctr(struct dm_target *ti, unsigned int argc, char **argv) } width = ti->len; - if (sector_div(width, chunk_size)) { + if (sector_div(width, stripes)) { ti->error = "Target length not divisible by " - "chunk size"; + "number of stripes"; return -EINVAL; } - if (sector_div(width, stripes)) { + tmp_len = width; + if (sector_div(tmp_len, chunk_size)) { ti->error = "Target length not divisible by " - "number of stripes"; + "chunk size"; return -EINVAL; } @@ -160,9 +162,9 @@ static int stripe_ctr(struct dm_target *ti, unsigned int argc, char **argv) if (r) return r; - ti->num_flush_requests = stripes; - ti->num_discard_requests = stripes; - ti->num_write_same_requests = stripes; + ti->num_flush_bios = stripes; + ti->num_discard_bios = stripes; + ti->num_write_same_bios = stripes; sc->chunk_size = chunk_size; if (chunk_size & (chunk_size - 1)) @@ -257,13 +259,15 @@ static int stripe_map_range(struct stripe_c *sc, struct bio *bio, { sector_t begin, end; - stripe_map_range_sector(sc, bio->bi_sector, target_stripe, &begin); - stripe_map_range_sector(sc, bio->bi_sector + bio_sectors(bio), + stripe_map_range_sector(sc, bio->bi_iter.bi_sector, + target_stripe, &begin); + stripe_map_range_sector(sc, bio_end_sector(bio), target_stripe, &end); if (begin < end) { bio->bi_bdev = sc->stripe[target_stripe].dev->bdev; - bio->bi_sector = begin + sc->stripe[target_stripe].physical_start; - bio->bi_size = to_bytes(end - begin); + bio->bi_iter.bi_sector = begin + + sc->stripe[target_stripe].physical_start; + bio->bi_iter.bi_size = to_bytes(end - begin); return DM_MAPIO_REMAPPED; } else { /* The range doesn't map to the target stripe */ @@ -276,24 +280,25 @@ static int stripe_map(struct dm_target *ti, struct bio *bio) { struct stripe_c *sc = ti->private; uint32_t stripe; - unsigned target_request_nr; + unsigned target_bio_nr; if (bio->bi_rw & REQ_FLUSH) { - target_request_nr = dm_bio_get_target_request_nr(bio); - BUG_ON(target_request_nr >= sc->stripes); - bio->bi_bdev = sc->stripe[target_request_nr].dev->bdev; + target_bio_nr = dm_bio_get_target_bio_nr(bio); + BUG_ON(target_bio_nr >= sc->stripes); + bio->bi_bdev = sc->stripe[target_bio_nr].dev->bdev; return DM_MAPIO_REMAPPED; } if (unlikely(bio->bi_rw & REQ_DISCARD) || unlikely(bio->bi_rw & REQ_WRITE_SAME)) { - target_request_nr = dm_bio_get_target_request_nr(bio); - BUG_ON(target_request_nr >= sc->stripes); - return stripe_map_range(sc, bio, target_request_nr); + target_bio_nr = dm_bio_get_target_bio_nr(bio); + BUG_ON(target_bio_nr >= sc->stripes); + return stripe_map_range(sc, bio, target_bio_nr); } - stripe_map_sector(sc, bio->bi_sector, &stripe, &bio->bi_sector); + stripe_map_sector(sc, bio->bi_iter.bi_sector, + &stripe, &bio->bi_iter.bi_sector); - bio->bi_sector += sc->stripe[stripe].physical_start; + bio->bi_iter.bi_sector += sc->stripe[stripe].physical_start; bio->bi_bdev = sc->stripe[stripe].dev->bdev; return DM_MAPIO_REMAPPED; @@ -312,8 +317,8 @@ static int stripe_map(struct dm_target *ti, struct bio *bio) * */ -static int stripe_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void stripe_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { struct stripe_c *sc = (struct stripe_c *) ti->private; char buffer[sc->stripes + 1]; @@ -340,7 +345,6 @@ static int stripe_status(struct dm_target *ti, status_type_t type, (unsigned long long)sc->stripe[i].physical_start); break; } - return 0; } static int stripe_end_io(struct dm_target *ti, struct bio *bio, int error) @@ -428,7 +432,7 @@ static int stripe_merge(struct dm_target *ti, struct bvec_merge_data *bvm, static struct target_type stripe_target = { .name = "striped", - .version = {1, 5, 0}, + .version = {1, 5, 1}, .module = THIS_MODULE, .ctr = stripe_ctr, .dtr = stripe_dtr, diff --git a/drivers/md/dm-switch.c b/drivers/md/dm-switch.c new file mode 100644 index 00000000000..09a688b3d48 --- /dev/null +++ b/drivers/md/dm-switch.c @@ -0,0 +1,538 @@ +/* + * Copyright (C) 2010-2012 by Dell Inc. All rights reserved. + * Copyright (C) 2011-2013 Red Hat, Inc. + * + * This file is released under the GPL. + * + * dm-switch is a device-mapper target that maps IO to underlying block + * devices efficiently when there are a large number of fixed-sized + * address regions but there is no simple pattern to allow for a compact + * mapping representation such as dm-stripe. + */ + +#include <linux/device-mapper.h> + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/vmalloc.h> + +#define DM_MSG_PREFIX "switch" + +/* + * One region_table_slot_t holds <region_entries_per_slot> region table + * entries each of which is <region_table_entry_bits> in size. + */ +typedef unsigned long region_table_slot_t; + +/* + * A device with the offset to its start sector. + */ +struct switch_path { + struct dm_dev *dmdev; + sector_t start; +}; + +/* + * Context block for a dm switch device. + */ +struct switch_ctx { + struct dm_target *ti; + + unsigned nr_paths; /* Number of paths in path_list. */ + + unsigned region_size; /* Region size in 512-byte sectors */ + unsigned long nr_regions; /* Number of regions making up the device */ + signed char region_size_bits; /* log2 of region_size or -1 */ + + unsigned char region_table_entry_bits; /* Number of bits in one region table entry */ + unsigned char region_entries_per_slot; /* Number of entries in one region table slot */ + signed char region_entries_per_slot_bits; /* log2 of region_entries_per_slot or -1 */ + + region_table_slot_t *region_table; /* Region table */ + + /* + * Array of dm devices to switch between. + */ + struct switch_path path_list[0]; +}; + +static struct switch_ctx *alloc_switch_ctx(struct dm_target *ti, unsigned nr_paths, + unsigned region_size) +{ + struct switch_ctx *sctx; + + sctx = kzalloc(sizeof(struct switch_ctx) + nr_paths * sizeof(struct switch_path), + GFP_KERNEL); + if (!sctx) + return NULL; + + sctx->ti = ti; + sctx->region_size = region_size; + + ti->private = sctx; + + return sctx; +} + +static int alloc_region_table(struct dm_target *ti, unsigned nr_paths) +{ + struct switch_ctx *sctx = ti->private; + sector_t nr_regions = ti->len; + sector_t nr_slots; + + if (!(sctx->region_size & (sctx->region_size - 1))) + sctx->region_size_bits = __ffs(sctx->region_size); + else + sctx->region_size_bits = -1; + + sctx->region_table_entry_bits = 1; + while (sctx->region_table_entry_bits < sizeof(region_table_slot_t) * 8 && + (region_table_slot_t)1 << sctx->region_table_entry_bits < nr_paths) + sctx->region_table_entry_bits++; + + sctx->region_entries_per_slot = (sizeof(region_table_slot_t) * 8) / sctx->region_table_entry_bits; + if (!(sctx->region_entries_per_slot & (sctx->region_entries_per_slot - 1))) + sctx->region_entries_per_slot_bits = __ffs(sctx->region_entries_per_slot); + else + sctx->region_entries_per_slot_bits = -1; + + if (sector_div(nr_regions, sctx->region_size)) + nr_regions++; + + sctx->nr_regions = nr_regions; + if (sctx->nr_regions != nr_regions || sctx->nr_regions >= ULONG_MAX) { + ti->error = "Region table too large"; + return -EINVAL; + } + + nr_slots = nr_regions; + if (sector_div(nr_slots, sctx->region_entries_per_slot)) + nr_slots++; + + if (nr_slots > ULONG_MAX / sizeof(region_table_slot_t)) { + ti->error = "Region table too large"; + return -EINVAL; + } + + sctx->region_table = vmalloc(nr_slots * sizeof(region_table_slot_t)); + if (!sctx->region_table) { + ti->error = "Cannot allocate region table"; + return -ENOMEM; + } + + return 0; +} + +static void switch_get_position(struct switch_ctx *sctx, unsigned long region_nr, + unsigned long *region_index, unsigned *bit) +{ + if (sctx->region_entries_per_slot_bits >= 0) { + *region_index = region_nr >> sctx->region_entries_per_slot_bits; + *bit = region_nr & (sctx->region_entries_per_slot - 1); + } else { + *region_index = region_nr / sctx->region_entries_per_slot; + *bit = region_nr % sctx->region_entries_per_slot; + } + + *bit *= sctx->region_table_entry_bits; +} + +/* + * Find which path to use at given offset. + */ +static unsigned switch_get_path_nr(struct switch_ctx *sctx, sector_t offset) +{ + unsigned long region_index; + unsigned bit, path_nr; + sector_t p; + + p = offset; + if (sctx->region_size_bits >= 0) + p >>= sctx->region_size_bits; + else + sector_div(p, sctx->region_size); + + switch_get_position(sctx, p, ®ion_index, &bit); + path_nr = (ACCESS_ONCE(sctx->region_table[region_index]) >> bit) & + ((1 << sctx->region_table_entry_bits) - 1); + + /* This can only happen if the processor uses non-atomic stores. */ + if (unlikely(path_nr >= sctx->nr_paths)) + path_nr = 0; + + return path_nr; +} + +static void switch_region_table_write(struct switch_ctx *sctx, unsigned long region_nr, + unsigned value) +{ + unsigned long region_index; + unsigned bit; + region_table_slot_t pte; + + switch_get_position(sctx, region_nr, ®ion_index, &bit); + + pte = sctx->region_table[region_index]; + pte &= ~((((region_table_slot_t)1 << sctx->region_table_entry_bits) - 1) << bit); + pte |= (region_table_slot_t)value << bit; + sctx->region_table[region_index] = pte; +} + +/* + * Fill the region table with an initial round robin pattern. + */ +static void initialise_region_table(struct switch_ctx *sctx) +{ + unsigned path_nr = 0; + unsigned long region_nr; + + for (region_nr = 0; region_nr < sctx->nr_regions; region_nr++) { + switch_region_table_write(sctx, region_nr, path_nr); + if (++path_nr >= sctx->nr_paths) + path_nr = 0; + } +} + +static int parse_path(struct dm_arg_set *as, struct dm_target *ti) +{ + struct switch_ctx *sctx = ti->private; + unsigned long long start; + int r; + + r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table), + &sctx->path_list[sctx->nr_paths].dmdev); + if (r) { + ti->error = "Device lookup failed"; + return r; + } + + if (kstrtoull(dm_shift_arg(as), 10, &start) || start != (sector_t)start) { + ti->error = "Invalid device starting offset"; + dm_put_device(ti, sctx->path_list[sctx->nr_paths].dmdev); + return -EINVAL; + } + + sctx->path_list[sctx->nr_paths].start = start; + + sctx->nr_paths++; + + return 0; +} + +/* + * Destructor: Don't free the dm_target, just the ti->private data (if any). + */ +static void switch_dtr(struct dm_target *ti) +{ + struct switch_ctx *sctx = ti->private; + + while (sctx->nr_paths--) + dm_put_device(ti, sctx->path_list[sctx->nr_paths].dmdev); + + vfree(sctx->region_table); + kfree(sctx); +} + +/* + * Constructor arguments: + * <num_paths> <region_size> <num_optional_args> [<optional_args>...] + * [<dev_path> <offset>]+ + * + * Optional args are to allow for future extension: currently this + * parameter must be 0. + */ +static int switch_ctr(struct dm_target *ti, unsigned argc, char **argv) +{ + static struct dm_arg _args[] = { + {1, (KMALLOC_MAX_SIZE - sizeof(struct switch_ctx)) / sizeof(struct switch_path), "Invalid number of paths"}, + {1, UINT_MAX, "Invalid region size"}, + {0, 0, "Invalid number of optional args"}, + }; + + struct switch_ctx *sctx; + struct dm_arg_set as; + unsigned nr_paths, region_size, nr_optional_args; + int r; + + as.argc = argc; + as.argv = argv; + + r = dm_read_arg(_args, &as, &nr_paths, &ti->error); + if (r) + return -EINVAL; + + r = dm_read_arg(_args + 1, &as, ®ion_size, &ti->error); + if (r) + return r; + + r = dm_read_arg_group(_args + 2, &as, &nr_optional_args, &ti->error); + if (r) + return r; + /* parse optional arguments here, if we add any */ + + if (as.argc != nr_paths * 2) { + ti->error = "Incorrect number of path arguments"; + return -EINVAL; + } + + sctx = alloc_switch_ctx(ti, nr_paths, region_size); + if (!sctx) { + ti->error = "Cannot allocate redirection context"; + return -ENOMEM; + } + + r = dm_set_target_max_io_len(ti, region_size); + if (r) + goto error; + + while (as.argc) { + r = parse_path(&as, ti); + if (r) + goto error; + } + + r = alloc_region_table(ti, nr_paths); + if (r) + goto error; + + initialise_region_table(sctx); + + /* For UNMAP, sending the request down any path is sufficient */ + ti->num_discard_bios = 1; + + return 0; + +error: + switch_dtr(ti); + + return r; +} + +static int switch_map(struct dm_target *ti, struct bio *bio) +{ + struct switch_ctx *sctx = ti->private; + sector_t offset = dm_target_offset(ti, bio->bi_iter.bi_sector); + unsigned path_nr = switch_get_path_nr(sctx, offset); + + bio->bi_bdev = sctx->path_list[path_nr].dmdev->bdev; + bio->bi_iter.bi_sector = sctx->path_list[path_nr].start + offset; + + return DM_MAPIO_REMAPPED; +} + +/* + * We need to parse hex numbers in the message as quickly as possible. + * + * This table-based hex parser improves performance. + * It improves a time to load 1000000 entries compared to the condition-based + * parser. + * table-based parser condition-based parser + * PA-RISC 0.29s 0.31s + * Opteron 0.0495s 0.0498s + */ +static const unsigned char hex_table[256] = { +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255, +255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, +255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 +}; + +static __always_inline unsigned long parse_hex(const char **string) +{ + unsigned char d; + unsigned long r = 0; + + while ((d = hex_table[(unsigned char)**string]) < 16) { + r = (r << 4) | d; + (*string)++; + } + + return r; +} + +static int process_set_region_mappings(struct switch_ctx *sctx, + unsigned argc, char **argv) +{ + unsigned i; + unsigned long region_index = 0; + + for (i = 1; i < argc; i++) { + unsigned long path_nr; + const char *string = argv[i]; + + if (*string == ':') + region_index++; + else { + region_index = parse_hex(&string); + if (unlikely(*string != ':')) { + DMWARN("invalid set_region_mappings argument: '%s'", argv[i]); + return -EINVAL; + } + } + + string++; + if (unlikely(!*string)) { + DMWARN("invalid set_region_mappings argument: '%s'", argv[i]); + return -EINVAL; + } + + path_nr = parse_hex(&string); + if (unlikely(*string)) { + DMWARN("invalid set_region_mappings argument: '%s'", argv[i]); + return -EINVAL; + } + if (unlikely(region_index >= sctx->nr_regions)) { + DMWARN("invalid set_region_mappings region number: %lu >= %lu", region_index, sctx->nr_regions); + return -EINVAL; + } + if (unlikely(path_nr >= sctx->nr_paths)) { + DMWARN("invalid set_region_mappings device: %lu >= %u", path_nr, sctx->nr_paths); + return -EINVAL; + } + + switch_region_table_write(sctx, region_index, path_nr); + } + + return 0; +} + +/* + * Messages are processed one-at-a-time. + * + * Only set_region_mappings is supported. + */ +static int switch_message(struct dm_target *ti, unsigned argc, char **argv) +{ + static DEFINE_MUTEX(message_mutex); + + struct switch_ctx *sctx = ti->private; + int r = -EINVAL; + + mutex_lock(&message_mutex); + + if (!strcasecmp(argv[0], "set_region_mappings")) + r = process_set_region_mappings(sctx, argc, argv); + else + DMWARN("Unrecognised message received."); + + mutex_unlock(&message_mutex); + + return r; +} + +static void switch_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) +{ + struct switch_ctx *sctx = ti->private; + unsigned sz = 0; + int path_nr; + + switch (type) { + case STATUSTYPE_INFO: + result[0] = '\0'; + break; + + case STATUSTYPE_TABLE: + DMEMIT("%u %u 0", sctx->nr_paths, sctx->region_size); + for (path_nr = 0; path_nr < sctx->nr_paths; path_nr++) + DMEMIT(" %s %llu", sctx->path_list[path_nr].dmdev->name, + (unsigned long long)sctx->path_list[path_nr].start); + break; + } +} + +/* + * Switch ioctl: + * + * Passthrough all ioctls to the path for sector 0 + */ +static int switch_ioctl(struct dm_target *ti, unsigned cmd, + unsigned long arg) +{ + struct switch_ctx *sctx = ti->private; + struct block_device *bdev; + fmode_t mode; + unsigned path_nr; + int r = 0; + + path_nr = switch_get_path_nr(sctx, 0); + + bdev = sctx->path_list[path_nr].dmdev->bdev; + mode = sctx->path_list[path_nr].dmdev->mode; + + /* + * Only pass ioctls through if the device sizes match exactly. + */ + if (ti->len + sctx->path_list[path_nr].start != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT) + r = scsi_verify_blk_ioctl(NULL, cmd); + + return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg); +} + +static int switch_iterate_devices(struct dm_target *ti, + iterate_devices_callout_fn fn, void *data) +{ + struct switch_ctx *sctx = ti->private; + int path_nr; + int r; + + for (path_nr = 0; path_nr < sctx->nr_paths; path_nr++) { + r = fn(ti, sctx->path_list[path_nr].dmdev, + sctx->path_list[path_nr].start, ti->len, data); + if (r) + return r; + } + + return 0; +} + +static struct target_type switch_target = { + .name = "switch", + .version = {1, 0, 0}, + .module = THIS_MODULE, + .ctr = switch_ctr, + .dtr = switch_dtr, + .map = switch_map, + .message = switch_message, + .status = switch_status, + .ioctl = switch_ioctl, + .iterate_devices = switch_iterate_devices, +}; + +static int __init dm_switch_init(void) +{ + int r; + + r = dm_register_target(&switch_target); + if (r < 0) + DMERR("dm_register_target() failed %d", r); + + return r; +} + +static void __exit dm_switch_exit(void) +{ + dm_unregister_target(&switch_target); +} + +module_init(dm_switch_init); +module_exit(dm_switch_exit); + +MODULE_DESCRIPTION(DM_NAME " dynamic path switching target"); +MODULE_AUTHOR("Kevin D. O'Kelley <Kevin_OKelley@dell.com>"); +MODULE_AUTHOR("Narendran Ganapathy <Narendran_Ganapathy@dell.com>"); +MODULE_AUTHOR("Jim Ramsay <Jim_Ramsay@dell.com>"); +MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); +MODULE_LICENSE("GPL"); diff --git a/drivers/md/dm-sysfs.c b/drivers/md/dm-sysfs.c index 84d2b91e4ef..c62c5ab6aed 100644 --- a/drivers/md/dm-sysfs.c +++ b/drivers/md/dm-sysfs.c @@ -86,6 +86,7 @@ static const struct sysfs_ops dm_sysfs_ops = { static struct kobj_type dm_ktype = { .sysfs_ops = &dm_sysfs_ops, .default_attrs = dm_attrs, + .release = dm_kobject_release, }; /* @@ -104,5 +105,7 @@ int dm_sysfs_init(struct mapped_device *md) */ void dm_sysfs_exit(struct mapped_device *md) { - kobject_put(dm_kobject(md)); + struct kobject *kobj = dm_kobject(md); + kobject_put(kobj); + wait_for_completion(dm_get_completion_from_kobject(kobj)); } diff --git a/drivers/md/dm-table.c b/drivers/md/dm-table.c index daf25d0890b..5f59f1e3e5b 100644 --- a/drivers/md/dm-table.c +++ b/drivers/md/dm-table.c @@ -26,22 +26,8 @@ #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) -/* - * The table has always exactly one reference from either mapped_device->map - * or hash_cell->new_map. This reference is not counted in table->holders. - * A pair of dm_create_table/dm_destroy_table functions is used for table - * creation/destruction. - * - * Temporary references from the other code increase table->holders. A pair - * of dm_table_get/dm_table_put functions is used to manipulate it. - * - * When the table is about to be destroyed, we wait for table->holders to - * drop to zero. - */ - struct dm_table { struct mapped_device *md; - atomic_t holders; unsigned type; /* btree table */ @@ -169,7 +155,6 @@ static int alloc_targets(struct dm_table *t, unsigned int num) { sector_t *n_highs; struct dm_target *n_targets; - int n = t->num_targets; /* * Allocate both the target array and offset array at once. @@ -183,12 +168,7 @@ static int alloc_targets(struct dm_table *t, unsigned int num) n_targets = (struct dm_target *) (n_highs + num); - if (n) { - memcpy(n_highs, t->highs, sizeof(*n_highs) * n); - memcpy(n_targets, t->targets, sizeof(*n_targets) * n); - } - - memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); + memset(n_highs, -1, sizeof(*n_highs) * num); vfree(t->highs); t->num_allocated = num; @@ -208,16 +188,19 @@ int dm_table_create(struct dm_table **result, fmode_t mode, INIT_LIST_HEAD(&t->devices); INIT_LIST_HEAD(&t->target_callbacks); - atomic_set(&t->holders, 0); if (!num_targets) num_targets = KEYS_PER_NODE; num_targets = dm_round_up(num_targets, KEYS_PER_NODE); + if (!num_targets) { + kfree(t); + return -ENOMEM; + } + if (alloc_targets(t, num_targets)) { kfree(t); - t = NULL; return -ENOMEM; } @@ -247,10 +230,6 @@ void dm_table_destroy(struct dm_table *t) if (!t) return; - while (atomic_read(&t->holders)) - msleep(1); - smp_mb(); - /* free the indexes */ if (t->depth >= 2) vfree(t->index[t->depth - 2]); @@ -275,33 +254,6 @@ void dm_table_destroy(struct dm_table *t) kfree(t); } -void dm_table_get(struct dm_table *t) -{ - atomic_inc(&t->holders); -} -EXPORT_SYMBOL(dm_table_get); - -void dm_table_put(struct dm_table *t) -{ - if (!t) - return; - - smp_mb__before_atomic_dec(); - atomic_dec(&t->holders); -} -EXPORT_SYMBOL(dm_table_put); - -/* - * Checks to see if we need to extend highs or targets. - */ -static inline int check_space(struct dm_table *t) -{ - if (t->num_targets >= t->num_allocated) - return alloc_targets(t, t->num_allocated * 2); - - return 0; -} - /* * See if we've already got a device in the list. */ @@ -513,8 +465,8 @@ int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, } EXPORT_SYMBOL(dm_get_device); -int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, - sector_t start, sector_t len, void *data) +static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, + sector_t start, sector_t len, void *data) { struct queue_limits *limits = data; struct block_device *bdev = dev->bdev; @@ -547,7 +499,6 @@ int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, (unsigned int) (PAGE_SIZE >> 9)); return 0; } -EXPORT_SYMBOL_GPL(dm_set_device_limits); /* * Decrement a device's use count and remove it if necessary. @@ -581,14 +532,28 @@ static int adjoin(struct dm_table *table, struct dm_target *ti) /* * Used to dynamically allocate the arg array. + * + * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must + * process messages even if some device is suspended. These messages have a + * small fixed number of arguments. + * + * On the other hand, dm-switch needs to process bulk data using messages and + * excessive use of GFP_NOIO could cause trouble. */ static char **realloc_argv(unsigned *array_size, char **old_argv) { char **argv; unsigned new_size; + gfp_t gfp; - new_size = *array_size ? *array_size * 2 : 64; - argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); + if (*array_size) { + new_size = *array_size * 2; + gfp = GFP_KERNEL; + } else { + new_size = 8; + gfp = GFP_NOIO; + } + argv = kmalloc(new_size * sizeof(*argv), gfp); if (argv) { memcpy(argv, old_argv, *array_size * sizeof(*argv)); *array_size = new_size; @@ -748,8 +713,7 @@ int dm_table_add_target(struct dm_table *t, const char *type, return -EINVAL; } - if ((r = check_space(t))) - return r; + BUG_ON(t->num_targets >= t->num_allocated); tgt = t->targets + t->num_targets; memset(tgt, 0, sizeof(*tgt)); @@ -823,8 +787,8 @@ int dm_table_add_target(struct dm_table *t, const char *type, t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; - if (!tgt->num_discard_requests && tgt->discards_supported) - DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.", + if (!tgt->num_discard_bios && tgt->discards_supported) + DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", dm_device_name(t->md), type); return 0; @@ -896,14 +860,17 @@ EXPORT_SYMBOL(dm_consume_args); static int dm_table_set_type(struct dm_table *t) { unsigned i; - unsigned bio_based = 0, request_based = 0; + unsigned bio_based = 0, request_based = 0, hybrid = 0; struct dm_target *tgt; struct dm_dev_internal *dd; struct list_head *devices; + unsigned live_md_type; for (i = 0; i < t->num_targets; i++) { tgt = t->targets + i; - if (dm_target_request_based(tgt)) + if (dm_target_hybrid(tgt)) + hybrid = 1; + else if (dm_target_request_based(tgt)) request_based = 1; else bio_based = 1; @@ -915,6 +882,19 @@ static int dm_table_set_type(struct dm_table *t) } } + if (hybrid && !bio_based && !request_based) { + /* + * The targets can work either way. + * Determine the type from the live device. + * Default to bio-based if device is new. + */ + live_md_type = dm_get_md_type(t->md); + if (live_md_type == DM_TYPE_REQUEST_BASED) + request_based = 1; + else + bio_based = 1; + } + if (bio_based) { /* We must use this table as bio-based */ t->type = DM_TYPE_BIO_BASED; @@ -964,7 +944,7 @@ bool dm_table_request_based(struct dm_table *t) return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; } -int dm_table_alloc_md_mempools(struct dm_table *t) +static int dm_table_alloc_md_mempools(struct dm_table *t) { unsigned type = dm_table_get_type(t); unsigned per_bio_data_size = 0; @@ -1360,7 +1340,7 @@ static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) while (i < dm_table_get_num_targets(t)) { ti = dm_table_get_target(t, i++); - if (!ti->num_flush_requests) + if (!ti->num_flush_bios) continue; if (ti->flush_supported) @@ -1439,11 +1419,11 @@ static bool dm_table_supports_write_same(struct dm_table *t) while (i < dm_table_get_num_targets(t)) { ti = dm_table_get_target(t, i++); - if (!ti->num_write_same_requests) + if (!ti->num_write_same_bios) return false; if (!ti->type->iterate_devices || - !ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) + ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) return false; } @@ -1568,8 +1548,11 @@ int dm_table_resume_targets(struct dm_table *t) continue; r = ti->type->preresume(ti); - if (r) + if (r) { + DMERR("%s: %s: preresume failed, error = %d", + dm_device_name(t->md), ti->type->name, r); return r; + } } for (i = 0; i < t->num_targets; i++) { @@ -1634,6 +1617,25 @@ struct mapped_device *dm_table_get_md(struct dm_table *t) } EXPORT_SYMBOL(dm_table_get_md); +void dm_table_run_md_queue_async(struct dm_table *t) +{ + struct mapped_device *md; + struct request_queue *queue; + unsigned long flags; + + if (!dm_table_request_based(t)) + return; + + md = dm_table_get_md(t); + queue = dm_get_md_queue(md); + if (queue) { + spin_lock_irqsave(queue->queue_lock, flags); + blk_run_queue_async(queue); + spin_unlock_irqrestore(queue->queue_lock, flags); + } +} +EXPORT_SYMBOL(dm_table_run_md_queue_async); + static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, sector_t start, sector_t len, void *data) { @@ -1657,7 +1659,7 @@ bool dm_table_supports_discards(struct dm_table *t) while (i < dm_table_get_num_targets(t)) { ti = dm_table_get_target(t, i++); - if (!ti->num_discard_requests) + if (!ti->num_discard_bios) continue; if (ti->discards_supported) diff --git a/drivers/md/dm-target.c b/drivers/md/dm-target.c index 617d21a7725..242e3cec397 100644 --- a/drivers/md/dm-target.c +++ b/drivers/md/dm-target.c @@ -116,7 +116,7 @@ static int io_err_ctr(struct dm_target *tt, unsigned int argc, char **args) /* * Return error for discards instead of -EOPNOTSUPP */ - tt->num_discard_requests = 1; + tt->num_discard_bios = 1; return 0; } @@ -131,12 +131,19 @@ static int io_err_map(struct dm_target *tt, struct bio *bio) return -EIO; } +static int io_err_map_rq(struct dm_target *ti, struct request *clone, + union map_info *map_context) +{ + return -EIO; +} + static struct target_type error_target = { .name = "error", - .version = {1, 1, 0}, + .version = {1, 2, 0}, .ctr = io_err_ctr, .dtr = io_err_dtr, .map = io_err_map, + .map_rq = io_err_map_rq, }; int __init dm_target_init(void) diff --git a/drivers/md/dm-thin-metadata.c b/drivers/md/dm-thin-metadata.c index 4d6e85367b8..e9d33ad59df 100644 --- a/drivers/md/dm-thin-metadata.c +++ b/drivers/md/dm-thin-metadata.c @@ -76,7 +76,7 @@ #define THIN_SUPERBLOCK_MAGIC 27022010 #define THIN_SUPERBLOCK_LOCATION 0 -#define THIN_VERSION 1 +#define THIN_VERSION 2 #define THIN_METADATA_CACHE_SIZE 64 #define SECTOR_TO_BLOCK_SHIFT 3 @@ -192,6 +192,13 @@ struct dm_pool_metadata { * operation possible in this state is the closing of the device. */ bool fail_io:1; + + /* + * Reading the space map roots can fail, so we read it into these + * buffers before the superblock is locked and updated. + */ + __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; + __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; }; struct dm_thin_device { @@ -280,7 +287,7 @@ static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) *t = v & ((1 << 24) - 1); } -static void data_block_inc(void *context, void *value_le) +static void data_block_inc(void *context, const void *value_le) { struct dm_space_map *sm = context; __le64 v_le; @@ -292,7 +299,7 @@ static void data_block_inc(void *context, void *value_le) dm_sm_inc_block(sm, b); } -static void data_block_dec(void *context, void *value_le) +static void data_block_dec(void *context, const void *value_le) { struct dm_space_map *sm = context; __le64 v_le; @@ -304,7 +311,7 @@ static void data_block_dec(void *context, void *value_le) dm_sm_dec_block(sm, b); } -static int data_block_equal(void *context, void *value1_le, void *value2_le) +static int data_block_equal(void *context, const void *value1_le, const void *value2_le) { __le64 v1_le, v2_le; uint64_t b1, b2; @@ -318,7 +325,7 @@ static int data_block_equal(void *context, void *value1_le, void *value2_le) return b1 == b2; } -static void subtree_inc(void *context, void *value) +static void subtree_inc(void *context, const void *value) { struct dm_btree_info *info = context; __le64 root_le; @@ -329,7 +336,7 @@ static void subtree_inc(void *context, void *value) dm_tm_inc(info->tm, root); } -static void subtree_dec(void *context, void *value) +static void subtree_dec(void *context, const void *value) { struct dm_btree_info *info = context; __le64 root_le; @@ -341,7 +348,7 @@ static void subtree_dec(void *context, void *value) DMERR("btree delete failed\n"); } -static int subtree_equal(void *context, void *value1_le, void *value2_le) +static int subtree_equal(void *context, const void *value1_le, const void *value2_le) { __le64 v1_le, v2_le; memcpy(&v1_le, value1_le, sizeof(v1_le)); @@ -431,26 +438,53 @@ static void __setup_btree_details(struct dm_pool_metadata *pmd) pmd->details_info.value_type.equal = NULL; } +static int save_sm_roots(struct dm_pool_metadata *pmd) +{ + int r; + size_t len; + + r = dm_sm_root_size(pmd->metadata_sm, &len); + if (r < 0) + return r; + + r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); + if (r < 0) + return r; + + r = dm_sm_root_size(pmd->data_sm, &len); + if (r < 0) + return r; + + return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); +} + +static void copy_sm_roots(struct dm_pool_metadata *pmd, + struct thin_disk_superblock *disk) +{ + memcpy(&disk->metadata_space_map_root, + &pmd->metadata_space_map_root, + sizeof(pmd->metadata_space_map_root)); + + memcpy(&disk->data_space_map_root, + &pmd->data_space_map_root, + sizeof(pmd->data_space_map_root)); +} + static int __write_initial_superblock(struct dm_pool_metadata *pmd) { int r; struct dm_block *sblock; - size_t metadata_len, data_len; struct thin_disk_superblock *disk_super; sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; if (bdev_size > THIN_METADATA_MAX_SECTORS) bdev_size = THIN_METADATA_MAX_SECTORS; - r = dm_sm_root_size(pmd->metadata_sm, &metadata_len); - if (r < 0) - return r; - - r = dm_sm_root_size(pmd->data_sm, &data_len); + r = dm_sm_commit(pmd->data_sm); if (r < 0) return r; - r = dm_sm_commit(pmd->data_sm); + r = save_sm_roots(pmd); if (r < 0) return r; @@ -471,27 +505,15 @@ static int __write_initial_superblock(struct dm_pool_metadata *pmd) disk_super->trans_id = 0; disk_super->held_root = 0; - r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root, - metadata_len); - if (r < 0) - goto bad_locked; - - r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root, - data_len); - if (r < 0) - goto bad_locked; + copy_sm_roots(pmd, disk_super); disk_super->data_mapping_root = cpu_to_le64(pmd->root); disk_super->device_details_root = cpu_to_le64(pmd->details_root); - disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT); + disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); return dm_tm_commit(pmd->tm, sblock); - -bad_locked: - dm_bm_unlock(sblock); - return r; } static int __format_metadata(struct dm_pool_metadata *pmd) @@ -591,6 +613,15 @@ static int __open_metadata(struct dm_pool_metadata *pmd) disk_super = dm_block_data(sblock); + /* Verify the data block size hasn't changed */ + if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { + DMERR("changing the data block size (from %u to %llu) is not supported", + le32_to_cpu(disk_super->data_block_size), + (unsigned long long)pmd->data_block_size); + r = -EINVAL; + goto bad_unlock_sblock; + } + r = __check_incompat_features(disk_super, pmd); if (r < 0) goto bad_unlock_sblock; @@ -651,7 +682,7 @@ static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool f { int r; - pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE, + pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, THIN_METADATA_CACHE_SIZE, THIN_MAX_CONCURRENT_LOCKS); if (IS_ERR(pmd->bm)) { @@ -769,6 +800,10 @@ static int __commit_transaction(struct dm_pool_metadata *pmd) if (r < 0) return r; + r = save_sm_roots(pmd); + if (r < 0) + return r; + r = superblock_lock(pmd, &sblock); if (r) return r; @@ -780,21 +815,9 @@ static int __commit_transaction(struct dm_pool_metadata *pmd) disk_super->trans_id = cpu_to_le64(pmd->trans_id); disk_super->flags = cpu_to_le32(pmd->flags); - r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root, - metadata_len); - if (r < 0) - goto out_locked; - - r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root, - data_len); - if (r < 0) - goto out_locked; + copy_sm_roots(pmd, disk_super); return dm_tm_commit(pmd->tm, sblock); - -out_locked: - dm_bm_unlock(sblock); - return r; } struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, @@ -1349,6 +1372,12 @@ dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) return td->id; } +/* + * Check whether @time (of block creation) is older than @td's last snapshot. + * If so then the associated block is shared with the last snapshot device. + * Any block on a device created *after* the device last got snapshotted is + * necessarily not shared. + */ static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) { return td->snapshotted_time > time; @@ -1458,6 +1487,20 @@ int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) return r; } +int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) +{ + int r; + uint32_t ref_count; + + down_read(&pmd->root_lock); + r = dm_sm_get_count(pmd->data_sm, b, &ref_count); + if (!r) + *result = (ref_count != 0); + up_read(&pmd->root_lock); + + return r; +} + bool dm_thin_changed_this_transaction(struct dm_thin_device *td) { int r; @@ -1469,6 +1512,23 @@ bool dm_thin_changed_this_transaction(struct dm_thin_device *td) return r; } +bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) +{ + bool r = false; + struct dm_thin_device *td, *tmp; + + down_read(&pmd->root_lock); + list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { + if (td->changed) { + r = td->changed; + break; + } + } + up_read(&pmd->root_lock); + + return r; +} + bool dm_thin_aborted_changes(struct dm_thin_device *td) { bool r; @@ -1645,12 +1705,12 @@ int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, return r; } -static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) +static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) { int r; dm_block_t old_count; - r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count); + r = dm_sm_get_nr_blocks(sm, &old_count); if (r) return r; @@ -1658,11 +1718,11 @@ static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) return 0; if (new_count < old_count) { - DMERR("cannot reduce size of data device"); + DMERR("cannot reduce size of space map"); return -EINVAL; } - return dm_sm_extend(pmd->data_sm, new_count - old_count); + return dm_sm_extend(sm, new_count - old_count); } int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) @@ -1671,7 +1731,19 @@ int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) down_write(&pmd->root_lock); if (!pmd->fail_io) - r = __resize_data_dev(pmd, new_count); + r = __resize_space_map(pmd->data_sm, new_count); + up_write(&pmd->root_lock); + + return r; +} + +int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) +{ + int r = -EINVAL; + + down_write(&pmd->root_lock); + if (!pmd->fail_io) + r = __resize_space_map(pmd->metadata_sm, new_count); up_write(&pmd->root_lock); return r; @@ -1684,3 +1756,60 @@ void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) dm_bm_set_read_only(pmd->bm); up_write(&pmd->root_lock); } + +void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) +{ + down_write(&pmd->root_lock); + pmd->read_only = false; + dm_bm_set_read_write(pmd->bm); + up_write(&pmd->root_lock); +} + +int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, + dm_block_t threshold, + dm_sm_threshold_fn fn, + void *context) +{ + int r; + + down_write(&pmd->root_lock); + r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); + up_write(&pmd->root_lock); + + return r; +} + +int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) +{ + int r; + struct dm_block *sblock; + struct thin_disk_superblock *disk_super; + + down_write(&pmd->root_lock); + pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; + + r = superblock_lock(pmd, &sblock); + if (r) { + DMERR("couldn't read superblock"); + goto out; + } + + disk_super = dm_block_data(sblock); + disk_super->flags = cpu_to_le32(pmd->flags); + + dm_bm_unlock(sblock); +out: + up_write(&pmd->root_lock); + return r; +} + +bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) +{ + bool needs_check; + + down_read(&pmd->root_lock); + needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; + up_read(&pmd->root_lock); + + return needs_check; +} diff --git a/drivers/md/dm-thin-metadata.h b/drivers/md/dm-thin-metadata.h index 0cecc370288..e3c857db195 100644 --- a/drivers/md/dm-thin-metadata.h +++ b/drivers/md/dm-thin-metadata.h @@ -8,16 +8,15 @@ #define DM_THIN_METADATA_H #include "persistent-data/dm-block-manager.h" +#include "persistent-data/dm-space-map.h" +#include "persistent-data/dm-space-map-metadata.h" -#define THIN_METADATA_BLOCK_SIZE 4096 +#define THIN_METADATA_BLOCK_SIZE DM_SM_METADATA_BLOCK_SIZE /* * The metadata device is currently limited in size. - * - * We have one block of index, which can hold 255 index entries. Each - * index entry contains allocation info about 16k metadata blocks. */ -#define THIN_METADATA_MAX_SECTORS (255 * (1 << 14) * (THIN_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT))) +#define THIN_METADATA_MAX_SECTORS DM_SM_METADATA_MAX_SECTORS /* * A metadata device larger than 16GB triggers a warning. @@ -26,6 +25,11 @@ /*----------------------------------------------------------------*/ +/* + * Thin metadata superblock flags. + */ +#define THIN_METADATA_NEEDS_CHECK_FLAG (1 << 0) + struct dm_pool_metadata; struct dm_thin_device; @@ -130,7 +134,7 @@ dm_thin_id dm_thin_dev_id(struct dm_thin_device *td); struct dm_thin_lookup_result { dm_block_t block; - unsigned shared:1; + bool shared:1; }; /* @@ -160,6 +164,8 @@ int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block); */ bool dm_thin_changed_this_transaction(struct dm_thin_device *td); +bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd); + bool dm_thin_aborted_changes(struct dm_thin_device *td); int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, @@ -180,17 +186,32 @@ int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result); int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result); +int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result); + /* * Returns -ENOSPC if the new size is too small and already allocated * blocks would be lost. */ int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_size); +int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_size); /* * Flicks the underlying block manager into read only mode, so you know * that nothing is changing. */ void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd); +void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd); + +int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, + dm_block_t threshold, + dm_sm_threshold_fn fn, + void *context); + +/* + * Updates the superblock immediately. + */ +int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd); +bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd); /*----------------------------------------------------------------*/ diff --git a/drivers/md/dm-thin.c b/drivers/md/dm-thin.c index 675ae527401..fc9c848a60c 100644 --- a/drivers/md/dm-thin.c +++ b/drivers/md/dm-thin.c @@ -12,9 +12,11 @@ #include <linux/dm-io.h> #include <linux/dm-kcopyd.h> #include <linux/list.h> +#include <linux/rculist.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> +#include <linux/rbtree.h> #define DM_MSG_PREFIX "thin" @@ -25,6 +27,12 @@ #define MAPPING_POOL_SIZE 1024 #define PRISON_CELLS 1024 #define COMMIT_PERIOD HZ +#define NO_SPACE_TIMEOUT_SECS 60 + +static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; + +DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, + "A percentage of time allocated for copy on write"); /* * The block size of the device holding pool data must be @@ -127,10 +135,11 @@ static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, struct dm_thin_new_mapping; /* - * The pool runs in 3 modes. Ordered in degraded order for comparisons. + * The pool runs in 4 modes. Ordered in degraded order for comparisons. */ enum pool_mode { PM_WRITE, /* metadata may be changed */ + PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ PM_READ_ONLY, /* metadata may not be changed */ PM_FAIL, /* all I/O fails */ }; @@ -141,6 +150,7 @@ struct pool_features { bool zero_new_blocks:1; bool discard_enabled:1; bool discard_passdown:1; + bool error_if_no_space:1; }; struct thin_c; @@ -160,8 +170,7 @@ struct pool { int sectors_per_block_shift; struct pool_features pf; - unsigned low_water_triggered:1; /* A dm event has been sent */ - unsigned no_free_space:1; /* A -ENOSPC warning has been issued */ + bool low_water_triggered:1; /* A dm event has been sent */ struct dm_bio_prison *prison; struct dm_kcopyd_client *copier; @@ -169,17 +178,16 @@ struct pool { struct workqueue_struct *wq; struct work_struct worker; struct delayed_work waker; + struct delayed_work no_space_timeout; unsigned long last_commit_jiffies; unsigned ref_count; spinlock_t lock; - struct bio_list deferred_bios; struct bio_list deferred_flush_bios; struct list_head prepared_mappings; struct list_head prepared_discards; - - struct bio_list retry_on_resume_list; + struct list_head active_thins; struct dm_deferred_set *shared_read_ds; struct dm_deferred_set *all_io_ds; @@ -195,7 +203,7 @@ struct pool { }; static enum pool_mode get_pool_mode(struct pool *pool); -static void set_pool_mode(struct pool *pool, enum pool_mode mode); +static void metadata_operation_failed(struct pool *pool, const char *op, int r); /* * Target context for a pool. @@ -216,17 +224,107 @@ struct pool_c { * Target context for a thin. */ struct thin_c { + struct list_head list; struct dm_dev *pool_dev; struct dm_dev *origin_dev; dm_thin_id dev_id; struct pool *pool; struct dm_thin_device *td; + bool requeue_mode:1; + spinlock_t lock; + struct bio_list deferred_bio_list; + struct bio_list retry_on_resume_list; + struct rb_root sort_bio_list; /* sorted list of deferred bios */ + + /* + * Ensures the thin is not destroyed until the worker has finished + * iterating the active_thins list. + */ + atomic_t refcount; + struct completion can_destroy; }; /*----------------------------------------------------------------*/ /* + * wake_worker() is used when new work is queued and when pool_resume is + * ready to continue deferred IO processing. + */ +static void wake_worker(struct pool *pool) +{ + queue_work(pool->wq, &pool->worker); +} + +/*----------------------------------------------------------------*/ + +static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, + struct dm_bio_prison_cell **cell_result) +{ + int r; + struct dm_bio_prison_cell *cell_prealloc; + + /* + * Allocate a cell from the prison's mempool. + * This might block but it can't fail. + */ + cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); + + r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); + if (r) + /* + * We reused an old cell; we can get rid of + * the new one. + */ + dm_bio_prison_free_cell(pool->prison, cell_prealloc); + + return r; +} + +static void cell_release(struct pool *pool, + struct dm_bio_prison_cell *cell, + struct bio_list *bios) +{ + dm_cell_release(pool->prison, cell, bios); + dm_bio_prison_free_cell(pool->prison, cell); +} + +static void cell_release_no_holder(struct pool *pool, + struct dm_bio_prison_cell *cell, + struct bio_list *bios) +{ + dm_cell_release_no_holder(pool->prison, cell, bios); + dm_bio_prison_free_cell(pool->prison, cell); +} + +static void cell_defer_no_holder_no_free(struct thin_c *tc, + struct dm_bio_prison_cell *cell) +{ + struct pool *pool = tc->pool; + unsigned long flags; + + spin_lock_irqsave(&tc->lock, flags); + dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list); + spin_unlock_irqrestore(&tc->lock, flags); + + wake_worker(pool); +} + +static void cell_error_with_code(struct pool *pool, + struct dm_bio_prison_cell *cell, int error_code) +{ + dm_cell_error(pool->prison, cell, error_code); + dm_bio_prison_free_cell(pool->prison, cell); +} + +static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) +{ + cell_error_with_code(pool, cell, -EIO); +} + +/*----------------------------------------------------------------*/ + +/* * A global list of pools that uses a struct mapped_device as a key. */ static struct dm_thin_pool_table { @@ -291,36 +389,57 @@ struct dm_thin_endio_hook { struct dm_deferred_entry *shared_read_entry; struct dm_deferred_entry *all_io_entry; struct dm_thin_new_mapping *overwrite_mapping; + struct rb_node rb_node; }; -static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) +static void requeue_bio_list(struct thin_c *tc, struct bio_list *master) { struct bio *bio; struct bio_list bios; + unsigned long flags; bio_list_init(&bios); + + spin_lock_irqsave(&tc->lock, flags); bio_list_merge(&bios, master); bio_list_init(master); + spin_unlock_irqrestore(&tc->lock, flags); - while ((bio = bio_list_pop(&bios))) { - struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); - - if (h->tc == tc) - bio_endio(bio, DM_ENDIO_REQUEUE); - else - bio_list_add(master, bio); - } + while ((bio = bio_list_pop(&bios))) + bio_endio(bio, DM_ENDIO_REQUEUE); } static void requeue_io(struct thin_c *tc) { - struct pool *pool = tc->pool; + requeue_bio_list(tc, &tc->deferred_bio_list); + requeue_bio_list(tc, &tc->retry_on_resume_list); +} + +static void error_thin_retry_list(struct thin_c *tc) +{ + struct bio *bio; unsigned long flags; + struct bio_list bios; - spin_lock_irqsave(&pool->lock, flags); - __requeue_bio_list(tc, &pool->deferred_bios); - __requeue_bio_list(tc, &pool->retry_on_resume_list); - spin_unlock_irqrestore(&pool->lock, flags); + bio_list_init(&bios); + + spin_lock_irqsave(&tc->lock, flags); + bio_list_merge(&bios, &tc->retry_on_resume_list); + bio_list_init(&tc->retry_on_resume_list); + spin_unlock_irqrestore(&tc->lock, flags); + + while ((bio = bio_list_pop(&bios))) + bio_io_error(bio); +} + +static void error_retry_list(struct pool *pool) +{ + struct thin_c *tc; + + rcu_read_lock(); + list_for_each_entry_rcu(tc, &pool->active_thins, list) + error_thin_retry_list(tc); + rcu_read_unlock(); } /* @@ -330,14 +449,20 @@ static void requeue_io(struct thin_c *tc) * target. */ +static bool block_size_is_power_of_two(struct pool *pool) +{ + return pool->sectors_per_block_shift >= 0; +} + static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) { - sector_t block_nr = bio->bi_sector; + struct pool *pool = tc->pool; + sector_t block_nr = bio->bi_iter.bi_sector; - if (tc->pool->sectors_per_block_shift < 0) - (void) sector_div(block_nr, tc->pool->sectors_per_block); + if (block_size_is_power_of_two(pool)) + block_nr >>= pool->sectors_per_block_shift; else - block_nr >>= tc->pool->sectors_per_block_shift; + (void) sector_div(block_nr, pool->sectors_per_block); return block_nr; } @@ -345,15 +470,16 @@ static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) { struct pool *pool = tc->pool; - sector_t bi_sector = bio->bi_sector; + sector_t bi_sector = bio->bi_iter.bi_sector; bio->bi_bdev = tc->pool_dev->bdev; - if (tc->pool->sectors_per_block_shift < 0) - bio->bi_sector = (block * pool->sectors_per_block) + - sector_div(bi_sector, pool->sectors_per_block); + if (block_size_is_power_of_two(pool)) + bio->bi_iter.bi_sector = + (block << pool->sectors_per_block_shift) | + (bi_sector & (pool->sectors_per_block - 1)); else - bio->bi_sector = (block << pool->sectors_per_block_shift) | - (bi_sector & (pool->sectors_per_block - 1)); + bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + + sector_div(bi_sector, pool->sectors_per_block); } static void remap_to_origin(struct thin_c *tc, struct bio *bio) @@ -420,15 +546,6 @@ static void remap_and_issue(struct thin_c *tc, struct bio *bio, issue(tc, bio); } -/* - * wake_worker() is used when new work is queued and when pool_resume is - * ready to continue deferred IO processing. - */ -static void wake_worker(struct pool *pool) -{ - queue_work(pool->wq, &pool->worker); -} - /*----------------------------------------------------------------*/ /* @@ -437,15 +554,16 @@ static void wake_worker(struct pool *pool) struct dm_thin_new_mapping { struct list_head list; - unsigned quiesced:1; - unsigned prepared:1; - unsigned pass_discard:1; + bool quiesced:1; + bool prepared:1; + bool pass_discard:1; + bool definitely_not_shared:1; + int err; struct thin_c *tc; dm_block_t virt_block; dm_block_t data_block; struct dm_bio_prison_cell *cell, *cell2; - int err; /* * If the bio covers the whole area of a block then we can avoid @@ -462,7 +580,7 @@ static void __maybe_add_mapping(struct dm_thin_new_mapping *m) struct pool *pool = m->tc->pool; if (m->quiesced && m->prepared) { - list_add(&m->list, &pool->prepared_mappings); + list_add_tail(&m->list, &pool->prepared_mappings); wake_worker(pool); } } @@ -476,7 +594,7 @@ static void copy_complete(int read_err, unsigned long write_err, void *context) m->err = read_err || write_err ? -EIO : 0; spin_lock_irqsave(&pool->lock, flags); - m->prepared = 1; + m->prepared = true; __maybe_add_mapping(m); spin_unlock_irqrestore(&pool->lock, flags); } @@ -491,7 +609,7 @@ static void overwrite_endio(struct bio *bio, int err) m->err = err; spin_lock_irqsave(&pool->lock, flags); - m->prepared = 1; + m->prepared = true; __maybe_add_mapping(m); spin_unlock_irqrestore(&pool->lock, flags); } @@ -514,48 +632,54 @@ static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) struct pool *pool = tc->pool; unsigned long flags; - spin_lock_irqsave(&pool->lock, flags); - dm_cell_release(cell, &pool->deferred_bios); - spin_unlock_irqrestore(&tc->pool->lock, flags); + spin_lock_irqsave(&tc->lock, flags); + cell_release(pool, cell, &tc->deferred_bio_list); + spin_unlock_irqrestore(&tc->lock, flags); wake_worker(pool); } /* - * Same as cell_defer except it omits the original holder of the cell. + * Same as cell_defer above, except it omits the original holder of the cell. */ static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) { struct pool *pool = tc->pool; unsigned long flags; - spin_lock_irqsave(&pool->lock, flags); - dm_cell_release_no_holder(cell, &pool->deferred_bios); - spin_unlock_irqrestore(&pool->lock, flags); + spin_lock_irqsave(&tc->lock, flags); + cell_release_no_holder(pool, cell, &tc->deferred_bio_list); + spin_unlock_irqrestore(&tc->lock, flags); wake_worker(pool); } static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) { - if (m->bio) + if (m->bio) { m->bio->bi_end_io = m->saved_bi_end_io; - dm_cell_error(m->cell); + atomic_inc(&m->bio->bi_remaining); + } + cell_error(m->tc->pool, m->cell); list_del(&m->list); mempool_free(m, m->tc->pool->mapping_pool); } + static void process_prepared_mapping(struct dm_thin_new_mapping *m) { struct thin_c *tc = m->tc; + struct pool *pool = tc->pool; struct bio *bio; int r; bio = m->bio; - if (bio) + if (bio) { bio->bi_end_io = m->saved_bi_end_io; + atomic_inc(&bio->bi_remaining); + } if (m->err) { - dm_cell_error(m->cell); + cell_error(pool, m->cell); goto out; } @@ -566,8 +690,8 @@ static void process_prepared_mapping(struct dm_thin_new_mapping *m) */ r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); if (r) { - DMERR_LIMIT("dm_thin_insert_block() failed"); - dm_cell_error(m->cell); + metadata_operation_failed(pool, "dm_thin_insert_block", r); + cell_error(pool, m->cell); goto out; } @@ -585,7 +709,7 @@ static void process_prepared_mapping(struct dm_thin_new_mapping *m) out: list_del(&m->list); - mempool_free(m, tc->pool->mapping_pool); + mempool_free(m, pool->mapping_pool); } static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) @@ -607,7 +731,15 @@ static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) cell_defer_no_holder(tc, m->cell2); if (m->pass_discard) - remap_and_issue(tc, m->bio, m->data_block); + if (m->definitely_not_shared) + remap_and_issue(tc, m->bio, m->data_block); + else { + bool used = false; + if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) + bio_endio(m->bio, 0); + else + remap_and_issue(tc, m->bio, m->data_block); + } else bio_endio(m->bio, 0); @@ -647,7 +779,8 @@ static void process_prepared(struct pool *pool, struct list_head *head, */ static int io_overlaps_block(struct pool *pool, struct bio *bio) { - return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT); + return bio->bi_iter.bi_size == + (pool->sectors_per_block << SECTOR_SHIFT); } static int io_overwrites_block(struct pool *pool, struct bio *bio) @@ -675,13 +808,17 @@ static int ensure_next_mapping(struct pool *pool) static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) { - struct dm_thin_new_mapping *r = pool->next_mapping; + struct dm_thin_new_mapping *m = pool->next_mapping; BUG_ON(!pool->next_mapping); + memset(m, 0, sizeof(struct dm_thin_new_mapping)); + INIT_LIST_HEAD(&m->list); + m->bio = NULL; + pool->next_mapping = NULL; - return r; + return m; } static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, @@ -693,18 +830,13 @@ static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, struct pool *pool = tc->pool; struct dm_thin_new_mapping *m = get_next_mapping(pool); - INIT_LIST_HEAD(&m->list); - m->quiesced = 0; - m->prepared = 0; m->tc = tc; m->virt_block = virt_block; m->data_block = data_dest; m->cell = cell; - m->err = 0; - m->bio = NULL; if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) - m->quiesced = 1; + m->quiesced = true; /* * IO to pool_dev remaps to the pool target's data_dev. @@ -736,7 +868,7 @@ static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, if (r < 0) { mempool_free(m, pool->mapping_pool); DMERR_LIMIT("dm_kcopyd_copy() failed"); - dm_cell_error(cell); + cell_error(pool, cell); } } } @@ -764,15 +896,12 @@ static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, struct pool *pool = tc->pool; struct dm_thin_new_mapping *m = get_next_mapping(pool); - INIT_LIST_HEAD(&m->list); - m->quiesced = 1; - m->prepared = 0; + m->quiesced = true; + m->prepared = false; m->tc = tc; m->virt_block = virt_block; m->data_block = data_block; m->cell = cell; - m->err = 0; - m->bio = NULL; /* * If the whole block of data is being overwritten or we are not @@ -802,92 +931,88 @@ static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, if (r < 0) { mempool_free(m, pool->mapping_pool); DMERR_LIMIT("dm_kcopyd_zero() failed"); - dm_cell_error(cell); + cell_error(pool, cell); } } } -static int commit(struct pool *pool) -{ - int r; - - r = dm_pool_commit_metadata(pool->pmd); - if (r) - DMERR_LIMIT("commit failed: error = %d", r); - - return r; -} - /* * A non-zero return indicates read_only or fail_io mode. * Many callers don't care about the return value. */ -static int commit_or_fallback(struct pool *pool) +static int commit(struct pool *pool) { int r; - if (get_pool_mode(pool) != PM_WRITE) + if (get_pool_mode(pool) >= PM_READ_ONLY) return -EINVAL; - r = commit(pool); + r = dm_pool_commit_metadata(pool->pmd); if (r) - set_pool_mode(pool, PM_READ_ONLY); + metadata_operation_failed(pool, "dm_pool_commit_metadata", r); return r; } -static int alloc_data_block(struct thin_c *tc, dm_block_t *result) +static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) { - int r; - dm_block_t free_blocks; unsigned long flags; - struct pool *pool = tc->pool; - - r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); - if (r) - return r; if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { - DMWARN("%s: reached low water mark, sending event.", + DMWARN("%s: reached low water mark for data device: sending event.", dm_device_name(pool->pool_md)); spin_lock_irqsave(&pool->lock, flags); - pool->low_water_triggered = 1; + pool->low_water_triggered = true; spin_unlock_irqrestore(&pool->lock, flags); dm_table_event(pool->ti->table); } +} + +static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); + +static int alloc_data_block(struct thin_c *tc, dm_block_t *result) +{ + int r; + dm_block_t free_blocks; + struct pool *pool = tc->pool; + + if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) + return -EINVAL; + + r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); + if (r) { + metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); + return r; + } + + check_low_water_mark(pool, free_blocks); if (!free_blocks) { - if (pool->no_free_space) - return -ENOSPC; - else { - /* - * Try to commit to see if that will free up some - * more space. - */ - (void) commit_or_fallback(pool); + /* + * Try to commit to see if that will free up some + * more space. + */ + r = commit(pool); + if (r) + return r; - r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); - if (r) - return r; + r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); + if (r) { + metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); + return r; + } - /* - * If we still have no space we set a flag to avoid - * doing all this checking and return -ENOSPC. - */ - if (!free_blocks) { - DMWARN("%s: no free space available.", - dm_device_name(pool->pool_md)); - spin_lock_irqsave(&pool->lock, flags); - pool->no_free_space = 1; - spin_unlock_irqrestore(&pool->lock, flags); - return -ENOSPC; - } + if (!free_blocks) { + set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); + return -ENOSPC; } } r = dm_pool_alloc_data_block(pool->pmd, result); - if (r) + if (r) { + metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); return r; + } return 0; } @@ -900,24 +1025,68 @@ static void retry_on_resume(struct bio *bio) { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); struct thin_c *tc = h->tc; - struct pool *pool = tc->pool; unsigned long flags; - spin_lock_irqsave(&pool->lock, flags); - bio_list_add(&pool->retry_on_resume_list, bio); - spin_unlock_irqrestore(&pool->lock, flags); + spin_lock_irqsave(&tc->lock, flags); + bio_list_add(&tc->retry_on_resume_list, bio); + spin_unlock_irqrestore(&tc->lock, flags); +} + +static int should_error_unserviceable_bio(struct pool *pool) +{ + enum pool_mode m = get_pool_mode(pool); + + switch (m) { + case PM_WRITE: + /* Shouldn't get here */ + DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); + return -EIO; + + case PM_OUT_OF_DATA_SPACE: + return pool->pf.error_if_no_space ? -ENOSPC : 0; + + case PM_READ_ONLY: + case PM_FAIL: + return -EIO; + default: + /* Shouldn't get here */ + DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); + return -EIO; + } } -static void no_space(struct dm_bio_prison_cell *cell) +static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) +{ + int error = should_error_unserviceable_bio(pool); + + if (error) + bio_endio(bio, error); + else + retry_on_resume(bio); +} + +static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) { struct bio *bio; struct bio_list bios; + int error; + + error = should_error_unserviceable_bio(pool); + if (error) { + cell_error_with_code(pool, cell, error); + return; + } bio_list_init(&bios); - dm_cell_release(cell, &bios); + cell_release(pool, cell, &bios); - while ((bio = bio_list_pop(&bios))) - retry_on_resume(bio); + error = should_error_unserviceable_bio(pool); + if (error) + while ((bio = bio_list_pop(&bios))) + bio_endio(bio, error); + else + while ((bio = bio_list_pop(&bios))) + retry_on_resume(bio); } static void process_discard(struct thin_c *tc, struct bio *bio) @@ -932,7 +1101,7 @@ static void process_discard(struct thin_c *tc, struct bio *bio) struct dm_thin_new_mapping *m; build_virtual_key(tc->td, block, &key); - if (dm_bio_detain(tc->pool->prison, &key, bio, &cell)) + if (bio_detain(tc->pool, &key, bio, &cell)) return; r = dm_thin_find_block(tc->td, block, 1, &lookup_result); @@ -944,7 +1113,7 @@ static void process_discard(struct thin_c *tc, struct bio *bio) * on this block. */ build_data_key(tc->td, lookup_result.block, &key2); - if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) { + if (bio_detain(tc->pool, &key2, bio, &cell2)) { cell_defer_no_holder(tc, cell); break; } @@ -956,17 +1125,17 @@ static void process_discard(struct thin_c *tc, struct bio *bio) */ m = get_next_mapping(pool); m->tc = tc; - m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown; + m->pass_discard = pool->pf.discard_passdown; + m->definitely_not_shared = !lookup_result.shared; m->virt_block = block; m->data_block = lookup_result.block; m->cell = cell; m->cell2 = cell2; - m->err = 0; m->bio = bio; if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { spin_lock_irqsave(&pool->lock, flags); - list_add(&m->list, &pool->prepared_discards); + list_add_tail(&m->list, &pool->prepared_discards); spin_unlock_irqrestore(&pool->lock, flags); wake_worker(pool); } @@ -1011,6 +1180,7 @@ static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, { int r; dm_block_t data_block; + struct pool *pool = tc->pool; r = alloc_data_block(tc, &data_block); switch (r) { @@ -1020,13 +1190,13 @@ static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, break; case -ENOSPC: - no_space(cell); + retry_bios_on_resume(pool, cell); break; default: DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", __func__, r); - dm_cell_error(cell); + cell_error(pool, cell); break; } } @@ -1044,10 +1214,10 @@ static void process_shared_bio(struct thin_c *tc, struct bio *bio, * of being broken so we have nothing further to do here. */ build_data_key(tc->td, lookup_result->block, &key); - if (dm_bio_detain(pool->prison, &key, bio, &cell)) + if (bio_detain(pool, &key, bio, &cell)) return; - if (bio_data_dir(bio) == WRITE && bio->bi_size) + if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) break_sharing(tc, bio, block, &key, lookup_result, cell); else { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); @@ -1065,12 +1235,13 @@ static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block { int r; dm_block_t data_block; + struct pool *pool = tc->pool; /* * Remap empty bios (flushes) immediately, without provisioning. */ - if (!bio->bi_size) { - inc_all_io_entry(tc->pool, bio); + if (!bio->bi_iter.bi_size) { + inc_all_io_entry(pool, bio); cell_defer_no_holder(tc, cell); remap_and_issue(tc, bio, 0); @@ -1097,14 +1268,13 @@ static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block break; case -ENOSPC: - no_space(cell); + retry_bios_on_resume(pool, cell); break; default: DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", __func__, r); - set_pool_mode(tc->pool, PM_READ_ONLY); - dm_cell_error(cell); + cell_error(pool, cell); break; } } @@ -1112,6 +1282,7 @@ static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block static void process_bio(struct thin_c *tc, struct bio *bio) { int r; + struct pool *pool = tc->pool; dm_block_t block = get_bio_block(tc, bio); struct dm_bio_prison_cell *cell; struct dm_cell_key key; @@ -1122,7 +1293,7 @@ static void process_bio(struct thin_c *tc, struct bio *bio) * being provisioned so we have nothing further to do here. */ build_virtual_key(tc->td, block, &key); - if (dm_bio_detain(tc->pool->prison, &key, bio, &cell)) + if (bio_detain(pool, &key, bio, &cell)) return; r = dm_thin_find_block(tc->td, block, 1, &lookup_result); @@ -1130,9 +1301,9 @@ static void process_bio(struct thin_c *tc, struct bio *bio) case 0: if (lookup_result.shared) { process_shared_bio(tc, bio, block, &lookup_result); - cell_defer_no_holder(tc, cell); + cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ } else { - inc_all_io_entry(tc->pool, bio); + inc_all_io_entry(pool, bio); cell_defer_no_holder(tc, cell); remap_and_issue(tc, bio, lookup_result.block); @@ -1141,7 +1312,7 @@ static void process_bio(struct thin_c *tc, struct bio *bio) case -ENODATA: if (bio_data_dir(bio) == READ && tc->origin_dev) { - inc_all_io_entry(tc->pool, bio); + inc_all_io_entry(pool, bio); cell_defer_no_holder(tc, cell); remap_to_origin_and_issue(tc, bio); @@ -1168,8 +1339,8 @@ static void process_bio_read_only(struct thin_c *tc, struct bio *bio) r = dm_thin_find_block(tc->td, block, 1, &lookup_result); switch (r) { case 0: - if (lookup_result.shared && (rw == WRITE) && bio->bi_size) - bio_io_error(bio); + if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) + handle_unserviceable_bio(tc->pool, bio); else { inc_all_io_entry(tc->pool, bio); remap_and_issue(tc, bio, lookup_result.block); @@ -1178,7 +1349,7 @@ static void process_bio_read_only(struct thin_c *tc, struct bio *bio) case -ENODATA: if (rw != READ) { - bio_io_error(bio); + handle_unserviceable_bio(tc->pool, bio); break; } @@ -1200,44 +1371,131 @@ static void process_bio_read_only(struct thin_c *tc, struct bio *bio) } } +static void process_bio_success(struct thin_c *tc, struct bio *bio) +{ + bio_endio(bio, 0); +} + static void process_bio_fail(struct thin_c *tc, struct bio *bio) { bio_io_error(bio); } +/* + * FIXME: should we also commit due to size of transaction, measured in + * metadata blocks? + */ static int need_commit_due_to_time(struct pool *pool) { return jiffies < pool->last_commit_jiffies || jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; } -static void process_deferred_bios(struct pool *pool) +#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) +#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) + +static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) { + struct rb_node **rbp, *parent; + struct dm_thin_endio_hook *pbd; + sector_t bi_sector = bio->bi_iter.bi_sector; + + rbp = &tc->sort_bio_list.rb_node; + parent = NULL; + while (*rbp) { + parent = *rbp; + pbd = thin_pbd(parent); + + if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) + rbp = &(*rbp)->rb_left; + else + rbp = &(*rbp)->rb_right; + } + + pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); + rb_link_node(&pbd->rb_node, parent, rbp); + rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); +} + +static void __extract_sorted_bios(struct thin_c *tc) +{ + struct rb_node *node; + struct dm_thin_endio_hook *pbd; + struct bio *bio; + + for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { + pbd = thin_pbd(node); + bio = thin_bio(pbd); + + bio_list_add(&tc->deferred_bio_list, bio); + rb_erase(&pbd->rb_node, &tc->sort_bio_list); + } + + WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); +} + +static void __sort_thin_deferred_bios(struct thin_c *tc) +{ + struct bio *bio; + struct bio_list bios; + + bio_list_init(&bios); + bio_list_merge(&bios, &tc->deferred_bio_list); + bio_list_init(&tc->deferred_bio_list); + + /* Sort deferred_bio_list using rb-tree */ + while ((bio = bio_list_pop(&bios))) + __thin_bio_rb_add(tc, bio); + + /* + * Transfer the sorted bios in sort_bio_list back to + * deferred_bio_list to allow lockless submission of + * all bios. + */ + __extract_sorted_bios(tc); +} + +static void process_thin_deferred_bios(struct thin_c *tc) +{ + struct pool *pool = tc->pool; unsigned long flags; struct bio *bio; struct bio_list bios; + struct blk_plug plug; + + if (tc->requeue_mode) { + requeue_bio_list(tc, &tc->deferred_bio_list); + return; + } bio_list_init(&bios); - spin_lock_irqsave(&pool->lock, flags); - bio_list_merge(&bios, &pool->deferred_bios); - bio_list_init(&pool->deferred_bios); - spin_unlock_irqrestore(&pool->lock, flags); + spin_lock_irqsave(&tc->lock, flags); - while ((bio = bio_list_pop(&bios))) { - struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); - struct thin_c *tc = h->tc; + if (bio_list_empty(&tc->deferred_bio_list)) { + spin_unlock_irqrestore(&tc->lock, flags); + return; + } + + __sort_thin_deferred_bios(tc); + + bio_list_merge(&bios, &tc->deferred_bio_list); + bio_list_init(&tc->deferred_bio_list); + + spin_unlock_irqrestore(&tc->lock, flags); + blk_start_plug(&plug); + while ((bio = bio_list_pop(&bios))) { /* * If we've got no free new_mapping structs, and processing * this bio might require one, we pause until there are some * prepared mappings to process. */ if (ensure_next_mapping(pool)) { - spin_lock_irqsave(&pool->lock, flags); - bio_list_merge(&pool->deferred_bios, &bios); - spin_unlock_irqrestore(&pool->lock, flags); - + spin_lock_irqsave(&tc->lock, flags); + bio_list_add(&tc->deferred_bio_list, bio); + bio_list_merge(&tc->deferred_bio_list, &bios); + spin_unlock_irqrestore(&tc->lock, flags); break; } @@ -1246,6 +1504,60 @@ static void process_deferred_bios(struct pool *pool) else pool->process_bio(tc, bio); } + blk_finish_plug(&plug); +} + +static void thin_get(struct thin_c *tc); +static void thin_put(struct thin_c *tc); + +/* + * We can't hold rcu_read_lock() around code that can block. So we + * find a thin with the rcu lock held; bump a refcount; then drop + * the lock. + */ +static struct thin_c *get_first_thin(struct pool *pool) +{ + struct thin_c *tc = NULL; + + rcu_read_lock(); + if (!list_empty(&pool->active_thins)) { + tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); + thin_get(tc); + } + rcu_read_unlock(); + + return tc; +} + +static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) +{ + struct thin_c *old_tc = tc; + + rcu_read_lock(); + list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { + thin_get(tc); + thin_put(old_tc); + rcu_read_unlock(); + return tc; + } + thin_put(old_tc); + rcu_read_unlock(); + + return NULL; +} + +static void process_deferred_bios(struct pool *pool) +{ + unsigned long flags; + struct bio *bio; + struct bio_list bios; + struct thin_c *tc; + + tc = get_first_thin(pool); + while (tc) { + process_thin_deferred_bios(tc); + tc = get_next_thin(pool, tc); + } /* * If there are any deferred flush bios, we must commit @@ -1257,10 +1569,11 @@ static void process_deferred_bios(struct pool *pool) bio_list_init(&pool->deferred_flush_bios); spin_unlock_irqrestore(&pool->lock, flags); - if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) + if (bio_list_empty(&bios) && + !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) return; - if (commit_or_fallback(pool)) { + if (commit(pool)) { while ((bio = bio_list_pop(&bios))) bio_io_error(bio); return; @@ -1291,6 +1604,81 @@ static void do_waker(struct work_struct *ws) queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); } +/* + * We're holding onto IO to allow userland time to react. After the + * timeout either the pool will have been resized (and thus back in + * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. + */ +static void do_no_space_timeout(struct work_struct *ws) +{ + struct pool *pool = container_of(to_delayed_work(ws), struct pool, + no_space_timeout); + + if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) + set_pool_mode(pool, PM_READ_ONLY); +} + +/*----------------------------------------------------------------*/ + +struct pool_work { + struct work_struct worker; + struct completion complete; +}; + +static struct pool_work *to_pool_work(struct work_struct *ws) +{ + return container_of(ws, struct pool_work, worker); +} + +static void pool_work_complete(struct pool_work *pw) +{ + complete(&pw->complete); +} + +static void pool_work_wait(struct pool_work *pw, struct pool *pool, + void (*fn)(struct work_struct *)) +{ + INIT_WORK_ONSTACK(&pw->worker, fn); + init_completion(&pw->complete); + queue_work(pool->wq, &pw->worker); + wait_for_completion(&pw->complete); +} + +/*----------------------------------------------------------------*/ + +struct noflush_work { + struct pool_work pw; + struct thin_c *tc; +}; + +static struct noflush_work *to_noflush(struct work_struct *ws) +{ + return container_of(to_pool_work(ws), struct noflush_work, pw); +} + +static void do_noflush_start(struct work_struct *ws) +{ + struct noflush_work *w = to_noflush(ws); + w->tc->requeue_mode = true; + requeue_io(w->tc); + pool_work_complete(&w->pw); +} + +static void do_noflush_stop(struct work_struct *ws) +{ + struct noflush_work *w = to_noflush(ws); + w->tc->requeue_mode = false; + pool_work_complete(&w->pw); +} + +static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) +{ + struct noflush_work w; + + w.tc = tc; + pool_work_wait(&w.pw, tc->pool, fn); +} + /*----------------------------------------------------------------*/ static enum pool_mode get_pool_mode(struct pool *pool) @@ -1298,43 +1686,127 @@ static enum pool_mode get_pool_mode(struct pool *pool) return pool->pf.mode; } -static void set_pool_mode(struct pool *pool, enum pool_mode mode) +static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) { - int r; + dm_table_event(pool->ti->table); + DMINFO("%s: switching pool to %s mode", + dm_device_name(pool->pool_md), new_mode); +} - pool->pf.mode = mode; +static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) +{ + struct pool_c *pt = pool->ti->private; + bool needs_check = dm_pool_metadata_needs_check(pool->pmd); + enum pool_mode old_mode = get_pool_mode(pool); + unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; - switch (mode) { + /* + * Never allow the pool to transition to PM_WRITE mode if user + * intervention is required to verify metadata and data consistency. + */ + if (new_mode == PM_WRITE && needs_check) { + DMERR("%s: unable to switch pool to write mode until repaired.", + dm_device_name(pool->pool_md)); + if (old_mode != new_mode) + new_mode = old_mode; + else + new_mode = PM_READ_ONLY; + } + /* + * If we were in PM_FAIL mode, rollback of metadata failed. We're + * not going to recover without a thin_repair. So we never let the + * pool move out of the old mode. + */ + if (old_mode == PM_FAIL) + new_mode = old_mode; + + switch (new_mode) { case PM_FAIL: - DMERR("switching pool to failure mode"); + if (old_mode != new_mode) + notify_of_pool_mode_change(pool, "failure"); + dm_pool_metadata_read_only(pool->pmd); pool->process_bio = process_bio_fail; pool->process_discard = process_bio_fail; pool->process_prepared_mapping = process_prepared_mapping_fail; pool->process_prepared_discard = process_prepared_discard_fail; + + error_retry_list(pool); break; case PM_READ_ONLY: - DMERR("switching pool to read-only mode"); - r = dm_pool_abort_metadata(pool->pmd); - if (r) { - DMERR("aborting transaction failed"); - set_pool_mode(pool, PM_FAIL); - } else { - dm_pool_metadata_read_only(pool->pmd); - pool->process_bio = process_bio_read_only; - pool->process_discard = process_discard; - pool->process_prepared_mapping = process_prepared_mapping_fail; - pool->process_prepared_discard = process_prepared_discard_passdown; - } + if (old_mode != new_mode) + notify_of_pool_mode_change(pool, "read-only"); + dm_pool_metadata_read_only(pool->pmd); + pool->process_bio = process_bio_read_only; + pool->process_discard = process_bio_success; + pool->process_prepared_mapping = process_prepared_mapping_fail; + pool->process_prepared_discard = process_prepared_discard_passdown; + + error_retry_list(pool); + break; + + case PM_OUT_OF_DATA_SPACE: + /* + * Ideally we'd never hit this state; the low water mark + * would trigger userland to extend the pool before we + * completely run out of data space. However, many small + * IOs to unprovisioned space can consume data space at an + * alarming rate. Adjust your low water mark if you're + * frequently seeing this mode. + */ + if (old_mode != new_mode) + notify_of_pool_mode_change(pool, "out-of-data-space"); + pool->process_bio = process_bio_read_only; + pool->process_discard = process_discard; + pool->process_prepared_mapping = process_prepared_mapping; + pool->process_prepared_discard = process_prepared_discard_passdown; + + if (!pool->pf.error_if_no_space && no_space_timeout) + queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); break; case PM_WRITE: + if (old_mode != new_mode) + notify_of_pool_mode_change(pool, "write"); + dm_pool_metadata_read_write(pool->pmd); pool->process_bio = process_bio; pool->process_discard = process_discard; pool->process_prepared_mapping = process_prepared_mapping; pool->process_prepared_discard = process_prepared_discard; break; } + + pool->pf.mode = new_mode; + /* + * The pool mode may have changed, sync it so bind_control_target() + * doesn't cause an unexpected mode transition on resume. + */ + pt->adjusted_pf.mode = new_mode; +} + +static void abort_transaction(struct pool *pool) +{ + const char *dev_name = dm_device_name(pool->pool_md); + + DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); + if (dm_pool_abort_metadata(pool->pmd)) { + DMERR("%s: failed to abort metadata transaction", dev_name); + set_pool_mode(pool, PM_FAIL); + } + + if (dm_pool_metadata_set_needs_check(pool->pmd)) { + DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); + set_pool_mode(pool, PM_FAIL); + } +} + +static void metadata_operation_failed(struct pool *pool, const char *op, int r) +{ + DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", + dm_device_name(pool->pool_md), op, r); + + abort_transaction(pool); + set_pool_mode(pool, PM_READ_ONLY); } /*----------------------------------------------------------------*/ @@ -1351,9 +1823,9 @@ static void thin_defer_bio(struct thin_c *tc, struct bio *bio) unsigned long flags; struct pool *pool = tc->pool; - spin_lock_irqsave(&pool->lock, flags); - bio_list_add(&pool->deferred_bios, bio); - spin_unlock_irqrestore(&pool->lock, flags); + spin_lock_irqsave(&tc->lock, flags); + bio_list_add(&tc->deferred_bio_list, bio); + spin_unlock_irqrestore(&tc->lock, flags); wake_worker(pool); } @@ -1378,11 +1850,17 @@ static int thin_bio_map(struct dm_target *ti, struct bio *bio) dm_block_t block = get_bio_block(tc, bio); struct dm_thin_device *td = tc->td; struct dm_thin_lookup_result result; - struct dm_bio_prison_cell *cell1, *cell2; + struct dm_bio_prison_cell cell1, cell2; + struct dm_bio_prison_cell *cell_result; struct dm_cell_key key; thin_hook_bio(tc, bio); + if (tc->requeue_mode) { + bio_endio(bio, DM_ENDIO_REQUEUE); + return DM_MAPIO_SUBMITTED; + } + if (get_pool_mode(tc->pool) == PM_FAIL) { bio_io_error(bio); return DM_MAPIO_SUBMITTED; @@ -1420,18 +1898,18 @@ static int thin_bio_map(struct dm_target *ti, struct bio *bio) } build_virtual_key(tc->td, block, &key); - if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1)) + if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) return DM_MAPIO_SUBMITTED; build_data_key(tc->td, result.block, &key); - if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) { - cell_defer_no_holder(tc, cell1); + if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { + cell_defer_no_holder_no_free(tc, &cell1); return DM_MAPIO_SUBMITTED; } inc_all_io_entry(tc->pool, bio); - cell_defer_no_holder(tc, cell2); - cell_defer_no_holder(tc, cell1); + cell_defer_no_holder_no_free(tc, &cell2); + cell_defer_no_holder_no_free(tc, &cell1); remap(tc, bio, result.block); return DM_MAPIO_REMAPPED; @@ -1440,9 +1918,9 @@ static int thin_bio_map(struct dm_target *ti, struct bio *bio) if (get_pool_mode(tc->pool) == PM_READ_ONLY) { /* * This block isn't provisioned, and we have no way - * of doing so. Just error it. + * of doing so. */ - bio_io_error(bio); + handle_unserviceable_bio(tc->pool, bio); return DM_MAPIO_SUBMITTED; } /* fall through */ @@ -1468,26 +1946,29 @@ static int thin_bio_map(struct dm_target *ti, struct bio *bio) static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) { - int r; - unsigned long flags; struct pool_c *pt = container_of(cb, struct pool_c, callbacks); + struct request_queue *q; - spin_lock_irqsave(&pt->pool->lock, flags); - r = !bio_list_empty(&pt->pool->retry_on_resume_list); - spin_unlock_irqrestore(&pt->pool->lock, flags); - - if (!r) { - struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); - r = bdi_congested(&q->backing_dev_info, bdi_bits); - } + if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) + return 1; - return r; + q = bdev_get_queue(pt->data_dev->bdev); + return bdi_congested(&q->backing_dev_info, bdi_bits); } -static void __requeue_bios(struct pool *pool) +static void requeue_bios(struct pool *pool) { - bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); - bio_list_init(&pool->retry_on_resume_list); + unsigned long flags; + struct thin_c *tc; + + rcu_read_lock(); + list_for_each_entry_rcu(tc, &pool->active_thins, list) { + spin_lock_irqsave(&tc->lock, flags); + bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); + bio_list_init(&tc->retry_on_resume_list); + spin_unlock_irqrestore(&tc->lock, flags); + } + rcu_read_unlock(); } /*---------------------------------------------------------------- @@ -1500,6 +1981,11 @@ static bool data_dev_supports_discard(struct pool_c *pt) return q && blk_queue_discard(q); } +static bool is_factor(sector_t block_size, uint32_t n) +{ + return !sector_div(block_size, n); +} + /* * If discard_passdown was enabled verify that the data device * supports discards. Disable discard_passdown if not. @@ -1525,7 +2011,7 @@ static void disable_passdown_if_not_supported(struct pool_c *pt) else if (data_limits->discard_granularity > block_size) reason = "discard granularity larger than a block"; - else if (block_size & (data_limits->discard_granularity - 1)) + else if (!is_factor(block_size, data_limits->discard_granularity)) reason = "discard granularity not a factor of block size"; if (reason) { @@ -1539,17 +2025,21 @@ static int bind_control_target(struct pool *pool, struct dm_target *ti) struct pool_c *pt = ti->private; /* - * We want to make sure that degraded pools are never upgraded. + * We want to make sure that a pool in PM_FAIL mode is never upgraded. */ - enum pool_mode old_mode = pool->pf.mode; + enum pool_mode old_mode = get_pool_mode(pool); enum pool_mode new_mode = pt->adjusted_pf.mode; - if (old_mode > new_mode) - new_mode = old_mode; + /* + * Don't change the pool's mode until set_pool_mode() below. + * Otherwise the pool's process_* function pointers may + * not match the desired pool mode. + */ + pt->adjusted_pf.mode = old_mode; pool->ti = ti; - pool->low_water_blocks = pt->low_water_blocks; pool->pf = pt->adjusted_pf; + pool->low_water_blocks = pt->low_water_blocks; set_pool_mode(pool, new_mode); @@ -1572,6 +2062,7 @@ static void pool_features_init(struct pool_features *pf) pf->zero_new_blocks = true; pf->discard_enabled = true; pf->discard_passdown = true; + pf->error_if_no_space = false; } static void __pool_destroy(struct pool *pool) @@ -1636,7 +2127,7 @@ static struct pool *pool_create(struct mapped_device *pool_md, goto bad_prison; } - pool->copier = dm_kcopyd_client_create(); + pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); if (IS_ERR(pool->copier)) { r = PTR_ERR(pool->copier); *error = "Error creating pool's kcopyd client"; @@ -1657,14 +2148,13 @@ static struct pool *pool_create(struct mapped_device *pool_md, INIT_WORK(&pool->worker, do_worker); INIT_DELAYED_WORK(&pool->waker, do_waker); + INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); spin_lock_init(&pool->lock); - bio_list_init(&pool->deferred_bios); bio_list_init(&pool->deferred_flush_bios); INIT_LIST_HEAD(&pool->prepared_mappings); INIT_LIST_HEAD(&pool->prepared_discards); - pool->low_water_triggered = 0; - pool->no_free_space = 0; - bio_list_init(&pool->retry_on_resume_list); + INIT_LIST_HEAD(&pool->active_thins); + pool->low_water_triggered = false; pool->shared_read_ds = dm_deferred_set_create(); if (!pool->shared_read_ds) { @@ -1788,7 +2278,7 @@ static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, const char *arg_name; static struct dm_arg _args[] = { - {0, 3, "Invalid number of pool feature arguments"}, + {0, 4, "Invalid number of pool feature arguments"}, }; /* @@ -1817,6 +2307,9 @@ static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, else if (!strcasecmp(arg_name, "read_only")) pf->mode = PM_READ_ONLY; + else if (!strcasecmp(arg_name, "error_if_no_space")) + pf->error_if_no_space = true; + else { ti->error = "Unrecognised pool feature requested"; r = -EINVAL; @@ -1827,6 +2320,67 @@ static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, return r; } +static void metadata_low_callback(void *context) +{ + struct pool *pool = context; + + DMWARN("%s: reached low water mark for metadata device: sending event.", + dm_device_name(pool->pool_md)); + + dm_table_event(pool->ti->table); +} + +static sector_t get_dev_size(struct block_device *bdev) +{ + return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; +} + +static void warn_if_metadata_device_too_big(struct block_device *bdev) +{ + sector_t metadata_dev_size = get_dev_size(bdev); + char buffer[BDEVNAME_SIZE]; + + if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) + DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", + bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); +} + +static sector_t get_metadata_dev_size(struct block_device *bdev) +{ + sector_t metadata_dev_size = get_dev_size(bdev); + + if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) + metadata_dev_size = THIN_METADATA_MAX_SECTORS; + + return metadata_dev_size; +} + +static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) +{ + sector_t metadata_dev_size = get_metadata_dev_size(bdev); + + sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); + + return metadata_dev_size; +} + +/* + * When a metadata threshold is crossed a dm event is triggered, and + * userland should respond by growing the metadata device. We could let + * userland set the threshold, like we do with the data threshold, but I'm + * not sure they know enough to do this well. + */ +static dm_block_t calc_metadata_threshold(struct pool_c *pt) +{ + /* + * 4M is ample for all ops with the possible exception of thin + * device deletion which is harmless if it fails (just retry the + * delete after you've grown the device). + */ + dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; + return min((dm_block_t)1024ULL /* 4M */, quarter); +} + /* * thin-pool <metadata dev> <data dev> * <data block size (sectors)> @@ -1837,6 +2391,8 @@ static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. * ignore_discard: disable discard * no_discard_passdown: don't pass discards down to the data device + * read_only: Don't allow any changes to be made to the pool metadata. + * error_if_no_space: error IOs, instead of queueing, if no space. */ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) { @@ -1849,8 +2405,7 @@ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) unsigned long block_size; dm_block_t low_water_blocks; struct dm_dev *metadata_dev; - sector_t metadata_dev_size; - char b[BDEVNAME_SIZE]; + fmode_t metadata_mode; /* * FIXME Remove validation from scope of lock. @@ -1862,19 +2417,27 @@ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) r = -EINVAL; goto out_unlock; } + as.argc = argc; as.argv = argv; - r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); + /* + * Set default pool features. + */ + pool_features_init(&pf); + + dm_consume_args(&as, 4); + r = parse_pool_features(&as, &pf, ti); + if (r) + goto out_unlock; + + metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); + r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); if (r) { ti->error = "Error opening metadata block device"; goto out_unlock; } - - metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; - if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) - DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", - bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); + warn_if_metadata_device_too_big(metadata_dev->bdev); r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); if (r) { @@ -1897,16 +2460,6 @@ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) goto out; } - /* - * Set default pool features. - */ - pool_features_init(&pf); - - dm_consume_args(&as, 4); - r = parse_pool_features(&as, &pf, ti); - if (r) - goto out; - pt = kzalloc(sizeof(*pt), GFP_KERNEL); if (!pt) { r = -ENOMEM; @@ -1938,15 +2491,16 @@ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) pt->data_dev = data_dev; pt->low_water_blocks = low_water_blocks; pt->adjusted_pf = pt->requested_pf = pf; - ti->num_flush_requests = 1; + ti->num_flush_bios = 1; /* * Only need to enable discards if the pool should pass * them down to the data device. The thin device's discard * processing will cause mappings to be removed from the btree. */ + ti->discard_zeroes_data_unsupported = true; if (pf.discard_enabled && pf.discard_passdown) { - ti->num_discard_requests = 1; + ti->num_discard_bios = 1; /* * Setting 'discards_supported' circumvents the normal @@ -1954,10 +2508,16 @@ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) * thin devices' discard limits consistent). */ ti->discards_supported = true; - ti->discard_zeroes_data_unsupported = true; } ti->private = pt; + r = dm_pool_register_metadata_threshold(pt->pool->pmd, + calc_metadata_threshold(pt), + metadata_low_callback, + pool); + if (r) + goto out_free_pt; + pt->callbacks.congested_fn = pool_is_congested; dm_table_add_target_callbacks(ti->table, &pt->callbacks); @@ -1997,6 +2557,101 @@ static int pool_map(struct dm_target *ti, struct bio *bio) return r; } +static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) +{ + int r; + struct pool_c *pt = ti->private; + struct pool *pool = pt->pool; + sector_t data_size = ti->len; + dm_block_t sb_data_size; + + *need_commit = false; + + (void) sector_div(data_size, pool->sectors_per_block); + + r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); + if (r) { + DMERR("%s: failed to retrieve data device size", + dm_device_name(pool->pool_md)); + return r; + } + + if (data_size < sb_data_size) { + DMERR("%s: pool target (%llu blocks) too small: expected %llu", + dm_device_name(pool->pool_md), + (unsigned long long)data_size, sb_data_size); + return -EINVAL; + + } else if (data_size > sb_data_size) { + if (dm_pool_metadata_needs_check(pool->pmd)) { + DMERR("%s: unable to grow the data device until repaired.", + dm_device_name(pool->pool_md)); + return 0; + } + + if (sb_data_size) + DMINFO("%s: growing the data device from %llu to %llu blocks", + dm_device_name(pool->pool_md), + sb_data_size, (unsigned long long)data_size); + r = dm_pool_resize_data_dev(pool->pmd, data_size); + if (r) { + metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); + return r; + } + + *need_commit = true; + } + + return 0; +} + +static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) +{ + int r; + struct pool_c *pt = ti->private; + struct pool *pool = pt->pool; + dm_block_t metadata_dev_size, sb_metadata_dev_size; + + *need_commit = false; + + metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); + + r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); + if (r) { + DMERR("%s: failed to retrieve metadata device size", + dm_device_name(pool->pool_md)); + return r; + } + + if (metadata_dev_size < sb_metadata_dev_size) { + DMERR("%s: metadata device (%llu blocks) too small: expected %llu", + dm_device_name(pool->pool_md), + metadata_dev_size, sb_metadata_dev_size); + return -EINVAL; + + } else if (metadata_dev_size > sb_metadata_dev_size) { + if (dm_pool_metadata_needs_check(pool->pmd)) { + DMERR("%s: unable to grow the metadata device until repaired.", + dm_device_name(pool->pool_md)); + return 0; + } + + warn_if_metadata_device_too_big(pool->md_dev); + DMINFO("%s: growing the metadata device from %llu to %llu blocks", + dm_device_name(pool->pool_md), + sb_metadata_dev_size, metadata_dev_size); + r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); + if (r) { + metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); + return r; + } + + *need_commit = true; + } + + return 0; +} + /* * Retrieves the number of blocks of the data device from * the superblock and compares it to the actual device size, @@ -2011,10 +2666,9 @@ static int pool_map(struct dm_target *ti, struct bio *bio) static int pool_preresume(struct dm_target *ti) { int r; + bool need_commit1, need_commit2; struct pool_c *pt = ti->private; struct pool *pool = pt->pool; - sector_t data_size = ti->len; - dm_block_t sb_data_size; /* * Take control of the pool object. @@ -2023,30 +2677,16 @@ static int pool_preresume(struct dm_target *ti) if (r) return r; - (void) sector_div(data_size, pool->sectors_per_block); - - r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); - if (r) { - DMERR("failed to retrieve data device size"); + r = maybe_resize_data_dev(ti, &need_commit1); + if (r) return r; - } - - if (data_size < sb_data_size) { - DMERR("pool target too small, is %llu blocks (expected %llu)", - (unsigned long long)data_size, sb_data_size); - return -EINVAL; - } else if (data_size > sb_data_size) { - r = dm_pool_resize_data_dev(pool->pmd, data_size); - if (r) { - DMERR("failed to resize data device"); - /* FIXME Stricter than necessary: Rollback transaction instead here */ - set_pool_mode(pool, PM_READ_ONLY); - return r; - } + r = maybe_resize_metadata_dev(ti, &need_commit2); + if (r) + return r; - (void) commit_or_fallback(pool); - } + if (need_commit1 || need_commit2) + (void) commit(pool); return 0; } @@ -2058,10 +2698,9 @@ static void pool_resume(struct dm_target *ti) unsigned long flags; spin_lock_irqsave(&pool->lock, flags); - pool->low_water_triggered = 0; - pool->no_free_space = 0; - __requeue_bios(pool); + pool->low_water_triggered = false; spin_unlock_irqrestore(&pool->lock, flags); + requeue_bios(pool); do_waker(&pool->waker.work); } @@ -2072,8 +2711,9 @@ static void pool_postsuspend(struct dm_target *ti) struct pool *pool = pt->pool; cancel_delayed_work(&pool->waker); + cancel_delayed_work(&pool->no_space_timeout); flush_workqueue(pool->wq); - (void) commit_or_fallback(pool); + (void) commit(pool); } static int check_arg_count(unsigned argc, unsigned args_required) @@ -2207,7 +2847,7 @@ static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct if (r) return r; - (void) commit_or_fallback(pool); + (void) commit(pool); r = dm_pool_reserve_metadata_snap(pool->pmd); if (r) @@ -2269,7 +2909,7 @@ static int pool_message(struct dm_target *ti, unsigned argc, char **argv) DMWARN("Unrecognised thin pool target message received: %s", argv[0]); if (!r) - (void) commit_or_fallback(pool); + (void) commit(pool); return r; } @@ -2278,7 +2918,8 @@ static void emit_flags(struct pool_features *pf, char *result, unsigned sz, unsigned maxlen) { unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + - !pf->discard_passdown + (pf->mode == PM_READ_ONLY); + !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + + pf->error_if_no_space; DMEMIT("%u ", count); if (!pf->zero_new_blocks) @@ -2292,6 +2933,9 @@ static void emit_flags(struct pool_features *pf, char *result, if (pf->mode == PM_READ_ONLY) DMEMIT("read_only "); + + if (pf->error_if_no_space) + DMEMIT("error_if_no_space "); } /* @@ -2299,8 +2943,8 @@ static void emit_flags(struct pool_features *pf, char *result, * <transaction id> <used metadata sectors>/<total metadata sectors> * <used data sectors>/<total data sectors> <held metadata root> */ -static int pool_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void pool_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { int r; unsigned sz = 0; @@ -2324,34 +2968,49 @@ static int pool_status(struct dm_target *ti, status_type_t type, /* Commit to ensure statistics aren't out-of-date */ if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) - (void) commit_or_fallback(pool); + (void) commit(pool); - r = dm_pool_get_metadata_transaction_id(pool->pmd, - &transaction_id); - if (r) - return r; + r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); + if (r) { + DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", + dm_device_name(pool->pool_md), r); + goto err; + } - r = dm_pool_get_free_metadata_block_count(pool->pmd, - &nr_free_blocks_metadata); - if (r) - return r; + r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); + if (r) { + DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", + dm_device_name(pool->pool_md), r); + goto err; + } r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); - if (r) - return r; + if (r) { + DMERR("%s: dm_pool_get_metadata_dev_size returned %d", + dm_device_name(pool->pool_md), r); + goto err; + } - r = dm_pool_get_free_block_count(pool->pmd, - &nr_free_blocks_data); - if (r) - return r; + r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); + if (r) { + DMERR("%s: dm_pool_get_free_block_count returned %d", + dm_device_name(pool->pool_md), r); + goto err; + } r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); - if (r) - return r; + if (r) { + DMERR("%s: dm_pool_get_data_dev_size returned %d", + dm_device_name(pool->pool_md), r); + goto err; + } r = dm_pool_get_metadata_snap(pool->pmd, &held_root); - if (r) - return r; + if (r) { + DMERR("%s: dm_pool_get_metadata_snap returned %d", + dm_device_name(pool->pool_md), r); + goto err; + } DMEMIT("%llu %llu/%llu %llu/%llu ", (unsigned long long)transaction_id, @@ -2365,17 +3024,24 @@ static int pool_status(struct dm_target *ti, status_type_t type, else DMEMIT("- "); - if (pool->pf.mode == PM_READ_ONLY) + if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) + DMEMIT("out_of_data_space "); + else if (pool->pf.mode == PM_READ_ONLY) DMEMIT("ro "); else DMEMIT("rw "); if (!pool->pf.discard_enabled) - DMEMIT("ignore_discard"); + DMEMIT("ignore_discard "); else if (pool->pf.discard_passdown) - DMEMIT("discard_passdown"); + DMEMIT("discard_passdown "); + else + DMEMIT("no_discard_passdown "); + + if (pool->pf.error_if_no_space) + DMEMIT("error_if_no_space "); else - DMEMIT("no_discard_passdown"); + DMEMIT("queue_if_no_space "); break; @@ -2388,8 +3054,10 @@ static int pool_status(struct dm_target *ti, status_type_t type, emit_flags(&pt->requested_pf, result, sz, maxlen); break; } + return; - return 0; +err: + DMEMIT("Error"); } static int pool_iterate_devices(struct dm_target *ti, @@ -2414,11 +3082,6 @@ static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); } -static bool block_size_is_power_of_two(struct pool *pool) -{ - return pool->sectors_per_block_shift >= 0; -} - static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) { struct pool *pool = pt->pool; @@ -2431,33 +3094,43 @@ static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) */ if (pt->adjusted_pf.discard_passdown) { data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; - limits->discard_granularity = data_limits->discard_granularity; - } else if (block_size_is_power_of_two(pool)) + limits->discard_granularity = max(data_limits->discard_granularity, + pool->sectors_per_block << SECTOR_SHIFT); + } else limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; - else - /* - * Use largest power of 2 that is a factor of sectors_per_block - * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS. - */ - limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1), - DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT; } static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct pool_c *pt = ti->private; struct pool *pool = pt->pool; + uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; - blk_limits_io_min(limits, 0); - blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); + /* + * If the system-determined stacked limits are compatible with the + * pool's blocksize (io_opt is a factor) do not override them. + */ + if (io_opt_sectors < pool->sectors_per_block || + do_div(io_opt_sectors, pool->sectors_per_block)) { + blk_limits_io_min(limits, 0); + blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); + } /* * pt->adjusted_pf is a staging area for the actual features to use. * They get transferred to the live pool in bind_control_target() * called from pool_preresume(). */ - if (!pt->adjusted_pf.discard_enabled) + if (!pt->adjusted_pf.discard_enabled) { + /* + * Must explicitly disallow stacking discard limits otherwise the + * block layer will stack them if pool's data device has support. + * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the + * user to see that, so make sure to set all discard limits to 0. + */ + limits->discard_granularity = 0; return; + } disable_passdown_if_not_supported(pt); @@ -2468,7 +3141,7 @@ static struct target_type pool_target = { .name = "thin-pool", .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | DM_TARGET_IMMUTABLE, - .version = {1, 6, 0}, + .version = {1, 12, 0}, .module = THIS_MODULE, .ctr = pool_ctr, .dtr = pool_dtr, @@ -2486,9 +3159,29 @@ static struct target_type pool_target = { /*---------------------------------------------------------------- * Thin target methods *--------------------------------------------------------------*/ +static void thin_get(struct thin_c *tc) +{ + atomic_inc(&tc->refcount); +} + +static void thin_put(struct thin_c *tc) +{ + if (atomic_dec_and_test(&tc->refcount)) + complete(&tc->can_destroy); +} + static void thin_dtr(struct dm_target *ti) { struct thin_c *tc = ti->private; + unsigned long flags; + + thin_put(tc); + wait_for_completion(&tc->can_destroy); + + spin_lock_irqsave(&tc->pool->lock, flags); + list_del_rcu(&tc->list); + spin_unlock_irqrestore(&tc->pool->lock, flags); + synchronize_rcu(); mutex_lock(&dm_thin_pool_table.mutex); @@ -2520,6 +3213,7 @@ static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) struct thin_c *tc; struct dm_dev *pool_dev, *origin_dev; struct mapped_device *pool_md; + unsigned long flags; mutex_lock(&dm_thin_pool_table.mutex); @@ -2535,6 +3229,10 @@ static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) r = -ENOMEM; goto out_unlock; } + spin_lock_init(&tc->lock); + bio_list_init(&tc->deferred_bio_list); + bio_list_init(&tc->retry_on_resume_list); + tc->sort_bio_list = RB_ROOT; if (argc == 3) { r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); @@ -2575,6 +3273,7 @@ static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) if (get_pool_mode(tc->pool) == PM_FAIL) { ti->error = "Couldn't open thin device, Pool is in fail mode"; + r = -EINVAL; goto bad_thin_open; } @@ -2586,27 +3285,43 @@ static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); if (r) - goto bad_thin_open; + goto bad_target_max_io_len; - ti->num_flush_requests = 1; + ti->num_flush_bios = 1; ti->flush_supported = true; ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); /* In case the pool supports discards, pass them on. */ + ti->discard_zeroes_data_unsupported = true; if (tc->pool->pf.discard_enabled) { ti->discards_supported = true; - ti->num_discard_requests = 1; - ti->discard_zeroes_data_unsupported = true; - /* Discard requests must be split on a block boundary */ - ti->split_discard_requests = true; + ti->num_discard_bios = 1; + /* Discard bios must be split on a block boundary */ + ti->split_discard_bios = true; } dm_put(pool_md); mutex_unlock(&dm_thin_pool_table.mutex); + atomic_set(&tc->refcount, 1); + init_completion(&tc->can_destroy); + + spin_lock_irqsave(&tc->pool->lock, flags); + list_add_tail_rcu(&tc->list, &tc->pool->active_thins); + spin_unlock_irqrestore(&tc->pool->lock, flags); + /* + * This synchronize_rcu() call is needed here otherwise we risk a + * wake_worker() call finding no bios to process (because the newly + * added tc isn't yet visible). So this reduces latency since we + * aren't then dependent on the periodic commit to wake_worker(). + */ + synchronize_rcu(); + return 0; +bad_target_max_io_len: + dm_pool_close_thin_device(tc->td); bad_thin_open: __pool_dec(tc->pool); bad_pool_lookup: @@ -2626,7 +3341,7 @@ out_unlock: static int thin_map(struct dm_target *ti, struct bio *bio) { - bio->bi_sector = dm_target_offset(ti, bio->bi_sector); + bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); return thin_bio_map(ti, bio); } @@ -2646,7 +3361,7 @@ static int thin_endio(struct dm_target *ti, struct bio *bio, int err) spin_lock_irqsave(&pool->lock, flags); list_for_each_entry_safe(m, tmp, &work, list) { list_del(&m->list); - m->quiesced = 1; + m->quiesced = true; __maybe_add_mapping(m); } spin_unlock_irqrestore(&pool->lock, flags); @@ -2658,7 +3373,7 @@ static int thin_endio(struct dm_target *ti, struct bio *bio, int err) if (!list_empty(&work)) { spin_lock_irqsave(&pool->lock, flags); list_for_each_entry_safe(m, tmp, &work, list) - list_add(&m->list, &pool->prepared_discards); + list_add_tail(&m->list, &pool->prepared_discards); spin_unlock_irqrestore(&pool->lock, flags); wake_worker(pool); } @@ -2667,17 +3382,30 @@ static int thin_endio(struct dm_target *ti, struct bio *bio, int err) return 0; } -static void thin_postsuspend(struct dm_target *ti) +static void thin_presuspend(struct dm_target *ti) { + struct thin_c *tc = ti->private; + if (dm_noflush_suspending(ti)) - requeue_io((struct thin_c *)ti->private); + noflush_work(tc, do_noflush_start); +} + +static void thin_postsuspend(struct dm_target *ti) +{ + struct thin_c *tc = ti->private; + + /* + * The dm_noflush_suspending flag has been cleared by now, so + * unfortunately we must always run this. + */ + noflush_work(tc, do_noflush_stop); } /* * <nr mapped sectors> <highest mapped sector> */ -static int thin_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void thin_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { int r; ssize_t sz = 0; @@ -2687,7 +3415,7 @@ static int thin_status(struct dm_target *ti, status_type_t type, if (get_pool_mode(tc->pool) == PM_FAIL) { DMEMIT("Fail"); - return 0; + return; } if (!tc->td) @@ -2696,12 +3424,16 @@ static int thin_status(struct dm_target *ti, status_type_t type, switch (type) { case STATUSTYPE_INFO: r = dm_thin_get_mapped_count(tc->td, &mapped); - if (r) - return r; + if (r) { + DMERR("dm_thin_get_mapped_count returned %d", r); + goto err; + } r = dm_thin_get_highest_mapped_block(tc->td, &highest); - if (r < 0) - return r; + if (r < 0) { + DMERR("dm_thin_get_highest_mapped_block returned %d", r); + goto err; + } DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); if (r) @@ -2721,7 +3453,10 @@ static int thin_status(struct dm_target *ti, status_type_t type, } } - return 0; + return; + +err: + DMEMIT("Error"); } static int thin_iterate_devices(struct dm_target *ti, @@ -2746,28 +3481,18 @@ static int thin_iterate_devices(struct dm_target *ti, return 0; } -/* - * A thin device always inherits its queue limits from its pool. - */ -static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) -{ - struct thin_c *tc = ti->private; - - *limits = bdev_get_queue(tc->pool_dev->bdev)->limits; -} - static struct target_type thin_target = { .name = "thin", - .version = {1, 6, 0}, + .version = {1, 12, 0}, .module = THIS_MODULE, .ctr = thin_ctr, .dtr = thin_dtr, .map = thin_map, .end_io = thin_endio, + .presuspend = thin_presuspend, .postsuspend = thin_postsuspend, .status = thin_status, .iterate_devices = thin_iterate_devices, - .io_hints = thin_io_hints, }; /*----------------------------------------------------------------*/ @@ -2813,6 +3538,9 @@ static void dm_thin_exit(void) module_init(dm_thin_init); module_exit(dm_thin_exit); +module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); + MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); MODULE_LICENSE("GPL"); diff --git a/drivers/md/dm-verity.c b/drivers/md/dm-verity.c index 52cde982164..7a7bab8947a 100644 --- a/drivers/md/dm-verity.c +++ b/drivers/md/dm-verity.c @@ -73,15 +73,10 @@ struct dm_verity_io { sector_t block; unsigned n_blocks; - /* saved bio vector */ - struct bio_vec *io_vec; - unsigned io_vec_size; + struct bvec_iter iter; struct work_struct work; - /* A space for short vectors; longer vectors are allocated separately. */ - struct bio_vec io_vec_inline[DM_VERITY_IO_VEC_INLINE]; - /* * Three variably-size fields follow this struct: * @@ -93,6 +88,13 @@ struct dm_verity_io { */ }; +struct dm_verity_prefetch_work { + struct work_struct work; + struct dm_verity *v; + sector_t block; + unsigned n_blocks; +}; + static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io) { return (struct shash_desc *)(io + 1); @@ -277,9 +279,10 @@ release_ret_r: static int verity_verify_io(struct dm_verity_io *io) { struct dm_verity *v = io->v; + struct bio *bio = dm_bio_from_per_bio_data(io, + v->ti->per_bio_data_size); unsigned b; int i; - unsigned vector = 0, offset = 0; for (b = 0; b < io->n_blocks; b++) { struct shash_desc *desc; @@ -327,31 +330,25 @@ test_block_hash: return r; } } - todo = 1 << v->data_dev_block_bits; do { - struct bio_vec *bv; u8 *page; unsigned len; + struct bio_vec bv = bio_iter_iovec(bio, io->iter); - BUG_ON(vector >= io->io_vec_size); - bv = &io->io_vec[vector]; - page = kmap_atomic(bv->bv_page); - len = bv->bv_len - offset; + page = kmap_atomic(bv.bv_page); + len = bv.bv_len; if (likely(len >= todo)) len = todo; - r = crypto_shash_update(desc, - page + bv->bv_offset + offset, len); + r = crypto_shash_update(desc, page + bv.bv_offset, len); kunmap_atomic(page); + if (r < 0) { DMERR("crypto_shash_update failed: %d", r); return r; } - offset += len; - if (likely(offset == bv->bv_len)) { - offset = 0; - vector++; - } + + bio_advance_iter(bio, &io->iter, len); todo -= len; } while (todo); @@ -376,8 +373,6 @@ test_block_hash: return -EIO; } } - BUG_ON(vector != io->io_vec_size); - BUG_ON(offset); return 0; } @@ -393,10 +388,7 @@ static void verity_finish_io(struct dm_verity_io *io, int error) bio->bi_end_io = io->orig_bi_end_io; bio->bi_private = io->orig_bi_private; - if (io->io_vec != io->io_vec_inline) - mempool_free(io->io_vec, v->vec_mempool); - - bio_endio(bio, error); + bio_endio_nodec(bio, error); } static void verity_work(struct work_struct *w) @@ -424,15 +416,18 @@ static void verity_end_io(struct bio *bio, int error) * The root buffer is not prefetched, it is assumed that it will be cached * all the time. */ -static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io) +static void verity_prefetch_io(struct work_struct *work) { + struct dm_verity_prefetch_work *pw = + container_of(work, struct dm_verity_prefetch_work, work); + struct dm_verity *v = pw->v; int i; for (i = v->levels - 2; i >= 0; i--) { sector_t hash_block_start; sector_t hash_block_end; - verity_hash_at_level(v, io->block, i, &hash_block_start, NULL); - verity_hash_at_level(v, io->block + io->n_blocks - 1, i, &hash_block_end, NULL); + verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); + verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); if (!i) { unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster); @@ -441,7 +436,7 @@ static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io) goto no_prefetch_cluster; if (unlikely(cluster & (cluster - 1))) - cluster = 1 << (fls(cluster) - 1); + cluster = 1 << __fls(cluster); hash_block_start &= ~(sector_t)(cluster - 1); hash_block_end |= cluster - 1; @@ -452,6 +447,25 @@ no_prefetch_cluster: dm_bufio_prefetch(v->bufio, hash_block_start, hash_block_end - hash_block_start + 1); } + + kfree(pw); +} + +static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io) +{ + struct dm_verity_prefetch_work *pw; + + pw = kmalloc(sizeof(struct dm_verity_prefetch_work), + GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); + + if (!pw) + return; + + INIT_WORK(&pw->work, verity_prefetch_io); + pw->v = v; + pw->block = io->block; + pw->n_blocks = io->n_blocks; + queue_work(v->verify_wq, &pw->work); } /* @@ -464,15 +478,15 @@ static int verity_map(struct dm_target *ti, struct bio *bio) struct dm_verity_io *io; bio->bi_bdev = v->data_dev->bdev; - bio->bi_sector = verity_map_sector(v, bio->bi_sector); + bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); - if (((unsigned)bio->bi_sector | bio_sectors(bio)) & + if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { DMERR_LIMIT("unaligned io"); return -EIO; } - if ((bio->bi_sector + bio_sectors(bio)) >> + if (bio_end_sector(bio) >> (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { DMERR_LIMIT("io out of range"); return -EIO; @@ -485,20 +499,14 @@ static int verity_map(struct dm_target *ti, struct bio *bio) io->v = v; io->orig_bi_end_io = bio->bi_end_io; io->orig_bi_private = bio->bi_private; - io->block = bio->bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); - io->n_blocks = bio->bi_size >> v->data_dev_block_bits; + io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); + io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; bio->bi_end_io = verity_end_io; bio->bi_private = io; - io->io_vec_size = bio->bi_vcnt - bio->bi_idx; - if (io->io_vec_size < DM_VERITY_IO_VEC_INLINE) - io->io_vec = io->io_vec_inline; - else - io->io_vec = mempool_alloc(v->vec_mempool, GFP_NOIO); - memcpy(io->io_vec, bio_iovec(bio), - io->io_vec_size * sizeof(struct bio_vec)); + io->iter = bio->bi_iter; - verity_prefetch_io(v, io); + verity_submit_prefetch(v, io); generic_make_request(bio); @@ -508,8 +516,8 @@ static int verity_map(struct dm_target *ti, struct bio *bio) /* * Status: V (valid) or C (corruption found) */ -static int verity_status(struct dm_target *ti, status_type_t type, - unsigned status_flags, char *result, unsigned maxlen) +static void verity_status(struct dm_target *ti, status_type_t type, + unsigned status_flags, char *result, unsigned maxlen) { struct dm_verity *v = ti->private; unsigned sz = 0; @@ -540,8 +548,6 @@ static int verity_status(struct dm_target *ti, status_type_t type, DMEMIT("%02x", v->salt[x]); break; } - - return 0; } static int verity_ioctl(struct dm_target *ti, unsigned cmd, @@ -668,8 +674,8 @@ static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) goto bad; } - if (sscanf(argv[0], "%d%c", &num, &dummy) != 1 || - num < 0 || num > 1) { + if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || + num > 1) { ti->error = "Invalid version"; r = -EINVAL; goto bad; @@ -696,7 +702,7 @@ static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) r = -EINVAL; goto bad; } - v->data_dev_block_bits = ffs(num) - 1; + v->data_dev_block_bits = __ffs(num); if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || !num || (num & (num - 1)) || @@ -706,7 +712,7 @@ static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) r = -EINVAL; goto bad; } - v->hash_dev_block_bits = ffs(num) - 1; + v->hash_dev_block_bits = __ffs(num); if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) @@ -785,7 +791,7 @@ static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) } v->hash_per_block_bits = - fls((1 << v->hash_dev_block_bits) / v->digest_size) - 1; + __fls((1 << v->hash_dev_block_bits) / v->digest_size); v->levels = 0; if (v->data_blocks) @@ -804,9 +810,8 @@ static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) for (i = v->levels - 1; i >= 0; i--) { sector_t s; v->hash_level_block[i] = hash_position; - s = verity_position_at_level(v, v->data_blocks, i); - s = (s >> v->hash_per_block_bits) + - !!(s & ((1 << v->hash_per_block_bits) - 1)); + s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) + >> ((i + 1) * v->hash_per_block_bits); if (hash_position + s < hash_position) { ti->error = "Hash device offset overflow"; r = -E2BIG; @@ -860,7 +865,7 @@ bad: static struct target_type verity_target = { .name = "verity", - .version = {1, 1, 0}, + .version = {1, 2, 0}, .module = THIS_MODULE, .ctr = verity_ctr, .dtr = verity_dtr, diff --git a/drivers/md/dm-zero.c b/drivers/md/dm-zero.c index 69a5c3b3b34..b9a64bbce30 100644 --- a/drivers/md/dm-zero.c +++ b/drivers/md/dm-zero.c @@ -1,5 +1,5 @@ /* - * Copyright (C) 2003 Christophe Saout <christophe@saout.de> + * Copyright (C) 2003 Jana Saout <jana@saout.de> * * This file is released under the GPL. */ @@ -25,7 +25,7 @@ static int zero_ctr(struct dm_target *ti, unsigned int argc, char **argv) /* * Silently drop discards, avoiding -EOPNOTSUPP. */ - ti->num_discard_requests = 1; + ti->num_discard_bios = 1; return 0; } @@ -79,6 +79,6 @@ static void __exit dm_zero_exit(void) module_init(dm_zero_init) module_exit(dm_zero_exit) -MODULE_AUTHOR("Christophe Saout <christophe@saout.de>"); +MODULE_AUTHOR("Jana Saout <jana@saout.de>"); MODULE_DESCRIPTION(DM_NAME " dummy target returning zeros"); MODULE_LICENSE("GPL"); diff --git a/drivers/md/dm.c b/drivers/md/dm.c index c72e4d5a961..32b958dbc49 100644 --- a/drivers/md/dm.c +++ b/drivers/md/dm.c @@ -49,6 +49,13 @@ static unsigned int _major = 0; static DEFINE_IDR(_minor_idr); static DEFINE_SPINLOCK(_minor_lock); + +static void do_deferred_remove(struct work_struct *w); + +static DECLARE_WORK(deferred_remove_work, do_deferred_remove); + +static struct workqueue_struct *deferred_remove_workqueue; + /* * For bio-based dm. * One of these is allocated per bio. @@ -60,6 +67,7 @@ struct dm_io { struct bio *bio; unsigned long start_time; spinlock_t endio_lock; + struct dm_stats_aux stats_aux; }; /* @@ -88,13 +96,6 @@ struct dm_rq_clone_bio_info { struct bio clone; }; -union map_info *dm_get_mapinfo(struct bio *bio) -{ - if (bio && bio->bi_private) - return &((struct dm_target_io *)bio->bi_private)->info; - return NULL; -} - union map_info *dm_get_rq_mapinfo(struct request *rq) { if (rq && rq->end_io_data) @@ -115,17 +116,32 @@ EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); #define DMF_DELETING 4 #define DMF_NOFLUSH_SUSPENDING 5 #define DMF_MERGE_IS_OPTIONAL 6 +#define DMF_DEFERRED_REMOVE 7 + +/* + * A dummy definition to make RCU happy. + * struct dm_table should never be dereferenced in this file. + */ +struct dm_table { + int undefined__; +}; /* * Work processed by per-device workqueue. */ struct mapped_device { - struct rw_semaphore io_lock; + struct srcu_struct io_barrier; struct mutex suspend_lock; - rwlock_t map_lock; atomic_t holders; atomic_t open_count; + /* + * The current mapping. + * Use dm_get_live_table{_fast} or take suspend_lock for + * dereference. + */ + struct dm_table *map; + unsigned long flags; struct request_queue *queue; @@ -155,15 +171,9 @@ struct mapped_device { struct workqueue_struct *wq; /* - * The current mapping. - */ - struct dm_table *map; - - /* * io objects are allocated from here. */ mempool_t *io_pool; - mempool_t *tio_pool; struct bio_set *bs; @@ -185,11 +195,13 @@ struct mapped_device { /* forced geometry settings */ struct hd_geometry geometry; - /* sysfs handle */ - struct kobject kobj; + /* kobject and completion */ + struct dm_kobject_holder kobj_holder; /* zero-length flush that will be cloned and submitted to targets */ struct bio flush_bio; + + struct dm_stats stats; }; /* @@ -197,19 +209,57 @@ struct mapped_device { */ struct dm_md_mempools { mempool_t *io_pool; - mempool_t *tio_pool; struct bio_set *bs; }; -#define MIN_IOS 256 +#define RESERVED_BIO_BASED_IOS 16 +#define RESERVED_REQUEST_BASED_IOS 256 +#define RESERVED_MAX_IOS 1024 static struct kmem_cache *_io_cache; static struct kmem_cache *_rq_tio_cache; /* - * Unused now, and needs to be deleted. But since io_pool is overloaded and it's - * still used for _io_cache, I'm leaving this for a later cleanup + * Bio-based DM's mempools' reserved IOs set by the user. + */ +static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; + +/* + * Request-based DM's mempools' reserved IOs set by the user. */ -static struct kmem_cache *_rq_bio_info_cache; +static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; + +static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, + unsigned def, unsigned max) +{ + unsigned ios = ACCESS_ONCE(*reserved_ios); + unsigned modified_ios = 0; + + if (!ios) + modified_ios = def; + else if (ios > max) + modified_ios = max; + + if (modified_ios) { + (void)cmpxchg(reserved_ios, ios, modified_ios); + ios = modified_ios; + } + + return ios; +} + +unsigned dm_get_reserved_bio_based_ios(void) +{ + return __dm_get_reserved_ios(&reserved_bio_based_ios, + RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); +} +EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); + +unsigned dm_get_reserved_rq_based_ios(void) +{ + return __dm_get_reserved_ios(&reserved_rq_based_ios, + RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); +} +EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); static int __init local_init(void) { @@ -224,28 +274,30 @@ static int __init local_init(void) if (!_rq_tio_cache) goto out_free_io_cache; - _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); - if (!_rq_bio_info_cache) - goto out_free_rq_tio_cache; - r = dm_uevent_init(); if (r) - goto out_free_rq_bio_info_cache; + goto out_free_rq_tio_cache; + + deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); + if (!deferred_remove_workqueue) { + r = -ENOMEM; + goto out_uevent_exit; + } _major = major; r = register_blkdev(_major, _name); if (r < 0) - goto out_uevent_exit; + goto out_free_workqueue; if (!_major) _major = r; return 0; +out_free_workqueue: + destroy_workqueue(deferred_remove_workqueue); out_uevent_exit: dm_uevent_exit(); -out_free_rq_bio_info_cache: - kmem_cache_destroy(_rq_bio_info_cache); out_free_rq_tio_cache: kmem_cache_destroy(_rq_tio_cache); out_free_io_cache: @@ -256,7 +308,9 @@ out_free_io_cache: static void local_exit(void) { - kmem_cache_destroy(_rq_bio_info_cache); + flush_scheduled_work(); + destroy_workqueue(deferred_remove_workqueue); + kmem_cache_destroy(_rq_tio_cache); kmem_cache_destroy(_io_cache); unregister_blkdev(_major, _name); @@ -275,6 +329,7 @@ static int (*_inits[])(void) __initdata = { dm_io_init, dm_kcopyd_init, dm_interface_init, + dm_statistics_init, }; static void (*_exits[])(void) = { @@ -285,6 +340,7 @@ static void (*_exits[])(void) = { dm_io_exit, dm_kcopyd_exit, dm_interface_exit, + dm_statistics_exit, }; static int __init dm_init(void) @@ -318,7 +374,6 @@ static void __exit dm_exit(void) /* * Should be empty by this point. */ - idr_remove_all(&_minor_idr); idr_destroy(&_minor_idr); } @@ -355,18 +410,19 @@ out: return md ? 0 : -ENXIO; } -static int dm_blk_close(struct gendisk *disk, fmode_t mode) +static void dm_blk_close(struct gendisk *disk, fmode_t mode) { struct mapped_device *md = disk->private_data; spin_lock(&_minor_lock); - atomic_dec(&md->open_count); + if (atomic_dec_and_test(&md->open_count) && + (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) + queue_work(deferred_remove_workqueue, &deferred_remove_work); + dm_put(md); spin_unlock(&_minor_lock); - - return 0; } int dm_open_count(struct mapped_device *md) @@ -377,14 +433,18 @@ int dm_open_count(struct mapped_device *md) /* * Guarantees nothing is using the device before it's deleted. */ -int dm_lock_for_deletion(struct mapped_device *md) +int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) { int r = 0; spin_lock(&_minor_lock); - if (dm_open_count(md)) + if (dm_open_count(md)) { r = -EBUSY; + if (mark_deferred) + set_bit(DMF_DEFERRED_REMOVE, &md->flags); + } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) + r = -EEXIST; else set_bit(DMF_DELETING, &md->flags); @@ -393,6 +453,42 @@ int dm_lock_for_deletion(struct mapped_device *md) return r; } +int dm_cancel_deferred_remove(struct mapped_device *md) +{ + int r = 0; + + spin_lock(&_minor_lock); + + if (test_bit(DMF_DELETING, &md->flags)) + r = -EBUSY; + else + clear_bit(DMF_DEFERRED_REMOVE, &md->flags); + + spin_unlock(&_minor_lock); + + return r; +} + +static void do_deferred_remove(struct work_struct *w) +{ + dm_deferred_remove(); +} + +sector_t dm_get_size(struct mapped_device *md) +{ + return get_capacity(md->disk); +} + +struct request_queue *dm_get_md_queue(struct mapped_device *md) +{ + return md->queue; +} + +struct dm_stats *dm_get_stats(struct mapped_device *md) +{ + return &md->stats; +} + static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct mapped_device *md = bdev->bd_disk->private_data; @@ -404,10 +500,14 @@ static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct mapped_device *md = bdev->bd_disk->private_data; - struct dm_table *map = dm_get_live_table(md); + int srcu_idx; + struct dm_table *map; struct dm_target *tgt; int r = -ENOTTY; +retry: + map = dm_get_live_table(md, &srcu_idx); + if (!map || !dm_table_get_size(map)) goto out; @@ -426,7 +526,12 @@ static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, r = tgt->type->ioctl(tgt, cmd, arg); out: - dm_table_put(map); + dm_put_live_table(md, srcu_idx); + + if (r == -ENOTCONN) { + msleep(10); + goto retry; + } return r; } @@ -449,12 +554,12 @@ static void free_tio(struct mapped_device *md, struct dm_target_io *tio) static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, gfp_t gfp_mask) { - return mempool_alloc(md->tio_pool, gfp_mask); + return mempool_alloc(md->io_pool, gfp_mask); } static void free_rq_tio(struct dm_rq_target_io *tio) { - mempool_free(tio, tio->md->tio_pool); + mempool_free(tio, tio->md->io_pool); } static int md_in_flight(struct mapped_device *md) @@ -466,8 +571,9 @@ static int md_in_flight(struct mapped_device *md) static void start_io_acct(struct dm_io *io) { struct mapped_device *md = io->md; + struct bio *bio = io->bio; int cpu; - int rw = bio_data_dir(io->bio); + int rw = bio_data_dir(bio); io->start_time = jiffies; @@ -476,6 +582,10 @@ static void start_io_acct(struct dm_io *io) part_stat_unlock(); atomic_set(&dm_disk(md)->part0.in_flight[rw], atomic_inc_return(&md->pending[rw])); + + if (unlikely(dm_stats_used(&md->stats))) + dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, + bio_sectors(bio), false, 0, &io->stats_aux); } static void end_io_acct(struct dm_io *io) @@ -491,6 +601,10 @@ static void end_io_acct(struct dm_io *io) part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); part_stat_unlock(); + if (unlikely(dm_stats_used(&md->stats))) + dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, + bio_sectors(bio), true, duration, &io->stats_aux); + /* * After this is decremented the bio must not be touched if it is * a flush. @@ -520,20 +634,39 @@ static void queue_io(struct mapped_device *md, struct bio *bio) /* * Everyone (including functions in this file), should use this * function to access the md->map field, and make sure they call - * dm_table_put() when finished. + * dm_put_live_table() when finished. */ -struct dm_table *dm_get_live_table(struct mapped_device *md) +struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) { - struct dm_table *t; - unsigned long flags; + *srcu_idx = srcu_read_lock(&md->io_barrier); + + return srcu_dereference(md->map, &md->io_barrier); +} + +void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) +{ + srcu_read_unlock(&md->io_barrier, srcu_idx); +} + +void dm_sync_table(struct mapped_device *md) +{ + synchronize_srcu(&md->io_barrier); + synchronize_rcu_expedited(); +} - read_lock_irqsave(&md->map_lock, flags); - t = md->map; - if (t) - dm_table_get(t); - read_unlock_irqrestore(&md->map_lock, flags); +/* + * A fast alternative to dm_get_live_table/dm_put_live_table. + * The caller must not block between these two functions. + */ +static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) +{ + rcu_read_lock(); + return rcu_dereference(md->map); +} - return t; +static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) +{ + rcu_read_unlock(); } /* @@ -618,7 +751,7 @@ static void dec_pending(struct dm_io *io, int error) if (io_error == DM_ENDIO_REQUEUE) return; - if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { + if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { /* * Preflush done for flush with data, reissue * without REQ_FLUSH. @@ -633,10 +766,18 @@ static void dec_pending(struct dm_io *io, int error) } } +static void disable_write_same(struct mapped_device *md) +{ + struct queue_limits *limits = dm_get_queue_limits(md); + + /* device doesn't really support WRITE SAME, disable it */ + limits->max_write_same_sectors = 0; +} + static void clone_endio(struct bio *bio, int error) { int r = 0; - struct dm_target_io *tio = bio->bi_private; + struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); struct dm_io *io = tio->io; struct mapped_device *md = tio->io->md; dm_endio_fn endio = tio->ti->type->end_io; @@ -661,6 +802,10 @@ static void clone_endio(struct bio *bio, int error) } } + if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && + !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) + disable_write_same(md); + free_tio(md, tio); dec_pending(io, error); } @@ -670,10 +815,11 @@ static void clone_endio(struct bio *bio, int error) */ static void end_clone_bio(struct bio *clone, int error) { - struct dm_rq_clone_bio_info *info = clone->bi_private; + struct dm_rq_clone_bio_info *info = + container_of(clone, struct dm_rq_clone_bio_info, clone); struct dm_rq_target_io *tio = info->tio; struct bio *bio = info->orig; - unsigned int nr_bytes = info->orig->bi_size; + unsigned int nr_bytes = info->orig->bi_iter.bi_size; bio_put(clone); @@ -854,6 +1000,10 @@ static void dm_done(struct request *clone, int error, bool mapped) r = rq_end_io(tio->ti, clone, error, &tio->info); } + if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && + !clone->q->limits.max_write_same_sectors)) + disable_write_same(tio->md); + if (r <= 0) /* The target wants to complete the I/O */ dm_end_request(clone, r); @@ -987,15 +1137,55 @@ int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) } EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); -static void __map_bio(struct dm_target *ti, struct dm_target_io *tio) +/* + * A target may call dm_accept_partial_bio only from the map routine. It is + * allowed for all bio types except REQ_FLUSH. + * + * dm_accept_partial_bio informs the dm that the target only wants to process + * additional n_sectors sectors of the bio and the rest of the data should be + * sent in a next bio. + * + * A diagram that explains the arithmetics: + * +--------------------+---------------+-------+ + * | 1 | 2 | 3 | + * +--------------------+---------------+-------+ + * + * <-------------- *tio->len_ptr ---------------> + * <------- bi_size -------> + * <-- n_sectors --> + * + * Region 1 was already iterated over with bio_advance or similar function. + * (it may be empty if the target doesn't use bio_advance) + * Region 2 is the remaining bio size that the target wants to process. + * (it may be empty if region 1 is non-empty, although there is no reason + * to make it empty) + * The target requires that region 3 is to be sent in the next bio. + * + * If the target wants to receive multiple copies of the bio (via num_*bios, etc), + * the partially processed part (the sum of regions 1+2) must be the same for all + * copies of the bio. + */ +void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) +{ + struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); + unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; + BUG_ON(bio->bi_rw & REQ_FLUSH); + BUG_ON(bi_size > *tio->len_ptr); + BUG_ON(n_sectors > bi_size); + *tio->len_ptr -= bi_size - n_sectors; + bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; +} +EXPORT_SYMBOL_GPL(dm_accept_partial_bio); + +static void __map_bio(struct dm_target_io *tio) { int r; sector_t sector; struct mapped_device *md; struct bio *clone = &tio->clone; + struct dm_target *ti = tio->ti; clone->bi_end_io = clone_endio; - clone->bi_private = tio; /* * Map the clone. If r == 0 we don't need to do @@ -1003,7 +1193,7 @@ static void __map_bio(struct dm_target *ti, struct dm_target_io *tio) * this io. */ atomic_inc(&tio->io->io_count); - sector = clone->bi_sector; + sector = clone->bi_iter.bi_sector; r = ti->type->map(ti, clone); if (r == DM_MAPIO_REMAPPED) { /* the bio has been remapped so dispatch it */ @@ -1029,66 +1219,38 @@ struct clone_info { struct bio *bio; struct dm_io *io; sector_t sector; - sector_t sector_count; - unsigned short idx; + unsigned sector_count; }; -/* - * Creates a little bio that just does part of a bvec. - */ -static void split_bvec(struct dm_target_io *tio, struct bio *bio, - sector_t sector, unsigned short idx, unsigned int offset, - unsigned int len, struct bio_set *bs) +static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) { - struct bio *clone = &tio->clone; - struct bio_vec *bv = bio->bi_io_vec + idx; - - *clone->bi_io_vec = *bv; - - clone->bi_sector = sector; - clone->bi_bdev = bio->bi_bdev; - clone->bi_rw = bio->bi_rw; - clone->bi_vcnt = 1; - clone->bi_size = to_bytes(len); - clone->bi_io_vec->bv_offset = offset; - clone->bi_io_vec->bv_len = clone->bi_size; - clone->bi_flags |= 1 << BIO_CLONED; - - if (bio_integrity(bio)) { - bio_integrity_clone(clone, bio, GFP_NOIO); - bio_integrity_trim(clone, - bio_sector_offset(bio, idx, offset), len); - } + bio->bi_iter.bi_sector = sector; + bio->bi_iter.bi_size = to_bytes(len); } /* * Creates a bio that consists of range of complete bvecs. */ static void clone_bio(struct dm_target_io *tio, struct bio *bio, - sector_t sector, unsigned short idx, - unsigned short bv_count, unsigned int len, - struct bio_set *bs) + sector_t sector, unsigned len) { struct bio *clone = &tio->clone; - __bio_clone(clone, bio); - clone->bi_sector = sector; - clone->bi_idx = idx; - clone->bi_vcnt = idx + bv_count; - clone->bi_size = to_bytes(len); - clone->bi_flags &= ~(1 << BIO_SEG_VALID); + __bio_clone_fast(clone, bio); - if (bio_integrity(bio)) { + if (bio_integrity(bio)) bio_integrity_clone(clone, bio, GFP_NOIO); - if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) - bio_integrity_trim(clone, - bio_sector_offset(bio, idx, 0), len); - } + bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); + clone->bi_iter.bi_size = to_bytes(len); + + if (bio_integrity(bio)) + bio_integrity_trim(clone, 0, len); } static struct dm_target_io *alloc_tio(struct clone_info *ci, - struct dm_target *ti, int nr_iovecs) + struct dm_target *ti, int nr_iovecs, + unsigned target_bio_nr) { struct dm_target_io *tio; struct bio *clone; @@ -1098,96 +1260,101 @@ static struct dm_target_io *alloc_tio(struct clone_info *ci, tio->io = ci->io; tio->ti = ti; - memset(&tio->info, 0, sizeof(tio->info)); - tio->target_request_nr = 0; + tio->target_bio_nr = target_bio_nr; return tio; } -static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, - unsigned request_nr, sector_t len) +static void __clone_and_map_simple_bio(struct clone_info *ci, + struct dm_target *ti, + unsigned target_bio_nr, unsigned *len) { - struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs); + struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); struct bio *clone = &tio->clone; - tio->target_request_nr = request_nr; + tio->len_ptr = len; /* * Discard requests require the bio's inline iovecs be initialized. * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush * and discard, so no need for concern about wasted bvec allocations. */ + __bio_clone_fast(clone, ci->bio); + if (len) + bio_setup_sector(clone, ci->sector, *len); - __bio_clone(clone, ci->bio); - if (len) { - clone->bi_sector = ci->sector; - clone->bi_size = to_bytes(len); - } - - __map_bio(ti, tio); + __map_bio(tio); } -static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, - unsigned num_requests, sector_t len) +static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, + unsigned num_bios, unsigned *len) { - unsigned request_nr; + unsigned target_bio_nr; - for (request_nr = 0; request_nr < num_requests; request_nr++) - __issue_target_request(ci, ti, request_nr, len); + for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) + __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); } -static int __clone_and_map_empty_flush(struct clone_info *ci) +static int __send_empty_flush(struct clone_info *ci) { unsigned target_nr = 0; struct dm_target *ti; BUG_ON(bio_has_data(ci->bio)); while ((ti = dm_table_get_target(ci->map, target_nr++))) - __issue_target_requests(ci, ti, ti->num_flush_requests, 0); + __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); return 0; } -/* - * Perform all io with a single clone. - */ -static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) +static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, + sector_t sector, unsigned *len) { struct bio *bio = ci->bio; struct dm_target_io *tio; + unsigned target_bio_nr; + unsigned num_target_bios = 1; - tio = alloc_tio(ci, ti, bio->bi_max_vecs); - clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx, - ci->sector_count, ci->md->bs); - __map_bio(ti, tio); - ci->sector_count = 0; + /* + * Does the target want to receive duplicate copies of the bio? + */ + if (bio_data_dir(bio) == WRITE && ti->num_write_bios) + num_target_bios = ti->num_write_bios(ti, bio); + + for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { + tio = alloc_tio(ci, ti, 0, target_bio_nr); + tio->len_ptr = len; + clone_bio(tio, bio, sector, *len); + __map_bio(tio); + } } -typedef unsigned (*get_num_requests_fn)(struct dm_target *ti); +typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); -static unsigned get_num_discard_requests(struct dm_target *ti) +static unsigned get_num_discard_bios(struct dm_target *ti) { - return ti->num_discard_requests; + return ti->num_discard_bios; } -static unsigned get_num_write_same_requests(struct dm_target *ti) +static unsigned get_num_write_same_bios(struct dm_target *ti) { - return ti->num_write_same_requests; + return ti->num_write_same_bios; } typedef bool (*is_split_required_fn)(struct dm_target *ti); static bool is_split_required_for_discard(struct dm_target *ti) { - return ti->split_discard_requests; + return ti->split_discard_bios; } -static int __clone_and_map_changing_extent_only(struct clone_info *ci, - get_num_requests_fn get_num_requests, - is_split_required_fn is_split_required) +static int __send_changing_extent_only(struct clone_info *ci, + get_num_bios_fn get_num_bios, + is_split_required_fn is_split_required) { struct dm_target *ti; - sector_t len; + unsigned len; + unsigned num_bios; do { ti = dm_table_find_target(ci->map, ci->sector); @@ -1200,15 +1367,16 @@ static int __clone_and_map_changing_extent_only(struct clone_info *ci, * reconfiguration might also have changed that since the * check was performed. */ - if (!get_num_requests || !get_num_requests(ti)) + num_bios = get_num_bios ? get_num_bios(ti) : 0; + if (!num_bios) return -EOPNOTSUPP; if (is_split_required && !is_split_required(ti)) - len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); + len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); else - len = min(ci->sector_count, max_io_len(ci->sector, ti)); + len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); - __issue_target_requests(ci, ti, ti->num_discard_requests, len); + __send_duplicate_bios(ci, ti, num_bios, &len); ci->sector += len; } while (ci->sector_count -= len); @@ -1216,120 +1384,60 @@ static int __clone_and_map_changing_extent_only(struct clone_info *ci, return 0; } -static int __clone_and_map_discard(struct clone_info *ci) +static int __send_discard(struct clone_info *ci) { - return __clone_and_map_changing_extent_only(ci, get_num_discard_requests, - is_split_required_for_discard); + return __send_changing_extent_only(ci, get_num_discard_bios, + is_split_required_for_discard); } -static int __clone_and_map_write_same(struct clone_info *ci) +static int __send_write_same(struct clone_info *ci) { - return __clone_and_map_changing_extent_only(ci, get_num_write_same_requests, NULL); + return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); } -static int __clone_and_map(struct clone_info *ci) +/* + * Select the correct strategy for processing a non-flush bio. + */ +static int __split_and_process_non_flush(struct clone_info *ci) { struct bio *bio = ci->bio; struct dm_target *ti; - sector_t len = 0, max; - struct dm_target_io *tio; + unsigned len; if (unlikely(bio->bi_rw & REQ_DISCARD)) - return __clone_and_map_discard(ci); + return __send_discard(ci); else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) - return __clone_and_map_write_same(ci); + return __send_write_same(ci); ti = dm_table_find_target(ci->map, ci->sector); if (!dm_target_is_valid(ti)) return -EIO; - max = max_io_len(ci->sector, ti); - - if (ci->sector_count <= max) { - /* - * Optimise for the simple case where we can do all of - * the remaining io with a single clone. - */ - __clone_and_map_simple(ci, ti); - - } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { - /* - * There are some bvecs that don't span targets. - * Do as many of these as possible. - */ - int i; - sector_t remaining = max; - sector_t bv_len; + len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); - for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { - bv_len = to_sector(bio->bi_io_vec[i].bv_len); + __clone_and_map_data_bio(ci, ti, ci->sector, &len); - if (bv_len > remaining) - break; - - remaining -= bv_len; - len += bv_len; - } - - tio = alloc_tio(ci, ti, bio->bi_max_vecs); - clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len, - ci->md->bs); - __map_bio(ti, tio); - - ci->sector += len; - ci->sector_count -= len; - ci->idx = i; - - } else { - /* - * Handle a bvec that must be split between two or more targets. - */ - struct bio_vec *bv = bio->bi_io_vec + ci->idx; - sector_t remaining = to_sector(bv->bv_len); - unsigned int offset = 0; - - do { - if (offset) { - ti = dm_table_find_target(ci->map, ci->sector); - if (!dm_target_is_valid(ti)) - return -EIO; - - max = max_io_len(ci->sector, ti); - } - - len = min(remaining, max); - - tio = alloc_tio(ci, ti, 1); - split_bvec(tio, bio, ci->sector, ci->idx, - bv->bv_offset + offset, len, ci->md->bs); - - __map_bio(ti, tio); - - ci->sector += len; - ci->sector_count -= len; - offset += to_bytes(len); - } while (remaining -= len); - - ci->idx++; - } + ci->sector += len; + ci->sector_count -= len; return 0; } /* - * Split the bio into several clones and submit it to targets. + * Entry point to split a bio into clones and submit them to the targets. */ -static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) +static void __split_and_process_bio(struct mapped_device *md, + struct dm_table *map, struct bio *bio) { struct clone_info ci; int error = 0; - ci.map = dm_get_live_table(md); - if (unlikely(!ci.map)) { + if (unlikely(!map)) { bio_io_error(bio); return; } + ci.map = map; ci.md = md; ci.io = alloc_io(md); ci.io->error = 0; @@ -1337,25 +1445,24 @@ static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) ci.io->bio = bio; ci.io->md = md; spin_lock_init(&ci.io->endio_lock); - ci.sector = bio->bi_sector; - ci.idx = bio->bi_idx; + ci.sector = bio->bi_iter.bi_sector; start_io_acct(ci.io); + if (bio->bi_rw & REQ_FLUSH) { ci.bio = &ci.md->flush_bio; ci.sector_count = 0; - error = __clone_and_map_empty_flush(&ci); + error = __send_empty_flush(&ci); /* dec_pending submits any data associated with flush */ } else { ci.bio = bio; ci.sector_count = bio_sectors(bio); while (ci.sector_count && !error) - error = __clone_and_map(&ci); + error = __split_and_process_non_flush(&ci); } /* drop the extra reference count */ dec_pending(ci.io, error); - dm_table_put(ci.map); } /*----------------------------------------------------------------- * CRUD END @@ -1366,7 +1473,7 @@ static int dm_merge_bvec(struct request_queue *q, struct bio_vec *biovec) { struct mapped_device *md = q->queuedata; - struct dm_table *map = dm_get_live_table(md); + struct dm_table *map = dm_get_live_table_fast(md); struct dm_target *ti; sector_t max_sectors; int max_size = 0; @@ -1376,7 +1483,7 @@ static int dm_merge_bvec(struct request_queue *q, ti = dm_table_find_target(map, bvm->bi_sector); if (!dm_target_is_valid(ti)) - goto out_table; + goto out; /* * Find maximum amount of I/O that won't need splitting @@ -1402,13 +1509,10 @@ static int dm_merge_bvec(struct request_queue *q, * just one page. */ else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) - max_size = 0; -out_table: - dm_table_put(map); - out: + dm_put_live_table_fast(md); /* * Always allow an entire first page */ @@ -1427,8 +1531,10 @@ static void _dm_request(struct request_queue *q, struct bio *bio) int rw = bio_data_dir(bio); struct mapped_device *md = q->queuedata; int cpu; + int srcu_idx; + struct dm_table *map; - down_read(&md->io_lock); + map = dm_get_live_table(md, &srcu_idx); cpu = part_stat_lock(); part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); @@ -1437,7 +1543,7 @@ static void _dm_request(struct request_queue *q, struct bio *bio) /* if we're suspended, we have to queue this io for later */ if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { - up_read(&md->io_lock); + dm_put_live_table(md, srcu_idx); if (bio_rw(bio) != READA) queue_io(md, bio); @@ -1446,12 +1552,12 @@ static void _dm_request(struct request_queue *q, struct bio *bio) return; } - __split_and_process_bio(md, bio); - up_read(&md->io_lock); + __split_and_process_bio(md, map, bio); + dm_put_live_table(md, srcu_idx); return; } -static int dm_request_based(struct mapped_device *md) +int dm_request_based(struct mapped_device *md) { return blk_queue_stackable(md->queue); } @@ -1490,7 +1596,6 @@ static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, info->orig = bio_orig; info->tio = tio; bio->bi_end_io = end_clone_bio; - bio->bi_private = info; return 0; } @@ -1508,7 +1613,6 @@ static int setup_clone(struct request *clone, struct request *rq, clone->cmd = rq->cmd; clone->cmd_len = rq->cmd_len; clone->sense = rq->sense; - clone->buffer = rq->buffer; clone->end_io = end_clone_request; clone->end_io_data = tio; @@ -1633,7 +1737,8 @@ static struct request *dm_start_request(struct mapped_device *md, struct request static void dm_request_fn(struct request_queue *q) { struct mapped_device *md = q->queuedata; - struct dm_table *map = dm_get_live_table(md); + int srcu_idx; + struct dm_table *map = dm_get_live_table(md, &srcu_idx); struct dm_target *ti; struct request *rq, *clone; sector_t pos; @@ -1688,7 +1793,7 @@ requeued: delay_and_out: blk_delay_queue(q, HZ / 10); out: - dm_table_put(map); + dm_put_live_table(md, srcu_idx); } int dm_underlying_device_busy(struct request_queue *q) @@ -1701,14 +1806,14 @@ static int dm_lld_busy(struct request_queue *q) { int r; struct mapped_device *md = q->queuedata; - struct dm_table *map = dm_get_live_table(md); + struct dm_table *map = dm_get_live_table_fast(md); if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) r = 1; else r = dm_table_any_busy_target(map); - dm_table_put(map); + dm_put_live_table_fast(md); return r; } @@ -1720,7 +1825,7 @@ static int dm_any_congested(void *congested_data, int bdi_bits) struct dm_table *map; if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { - map = dm_get_live_table(md); + map = dm_get_live_table_fast(md); if (map) { /* * Request-based dm cares about only own queue for @@ -1731,9 +1836,8 @@ static int dm_any_congested(void *congested_data, int bdi_bits) bdi_bits; else r = dm_table_any_congested(map, bdi_bits); - - dm_table_put(map); } + dm_put_live_table_fast(md); } return r; @@ -1754,62 +1858,38 @@ static void free_minor(int minor) */ static int specific_minor(int minor) { - int r, m; + int r; if (minor >= (1 << MINORBITS)) return -EINVAL; - r = idr_pre_get(&_minor_idr, GFP_KERNEL); - if (!r) - return -ENOMEM; - + idr_preload(GFP_KERNEL); spin_lock(&_minor_lock); - if (idr_find(&_minor_idr, minor)) { - r = -EBUSY; - goto out; - } + r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); - r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); - if (r) - goto out; - - if (m != minor) { - idr_remove(&_minor_idr, m); - r = -EBUSY; - goto out; - } - -out: spin_unlock(&_minor_lock); - return r; + idr_preload_end(); + if (r < 0) + return r == -ENOSPC ? -EBUSY : r; + return 0; } static int next_free_minor(int *minor) { - int r, m; - - r = idr_pre_get(&_minor_idr, GFP_KERNEL); - if (!r) - return -ENOMEM; + int r; + idr_preload(GFP_KERNEL); spin_lock(&_minor_lock); - r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); - if (r) - goto out; - - if (m >= (1 << MINORBITS)) { - idr_remove(&_minor_idr, m); - r = -ENOSPC; - goto out; - } - - *minor = m; + r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); -out: spin_unlock(&_minor_lock); - return r; + idr_preload_end(); + if (r < 0) + return r; + *minor = r; + return 0; } static const struct block_device_operations dm_blk_dops; @@ -1862,12 +1942,14 @@ static struct mapped_device *alloc_dev(int minor) if (r < 0) goto bad_minor; + r = init_srcu_struct(&md->io_barrier); + if (r < 0) + goto bad_io_barrier; + md->type = DM_TYPE_NONE; - init_rwsem(&md->io_lock); mutex_init(&md->suspend_lock); mutex_init(&md->type_lock); spin_lock_init(&md->deferred_lock); - rwlock_init(&md->map_lock); atomic_set(&md->holders, 1); atomic_set(&md->open_count, 0); atomic_set(&md->event_nr, 0); @@ -1890,6 +1972,7 @@ static struct mapped_device *alloc_dev(int minor) init_waitqueue_head(&md->wait); INIT_WORK(&md->work, dm_wq_work); init_waitqueue_head(&md->eventq); + init_completion(&md->kobj_holder.completion); md->disk->major = _major; md->disk->first_minor = minor; @@ -1900,8 +1983,7 @@ static struct mapped_device *alloc_dev(int minor) add_disk(md->disk); format_dev_t(md->name, MKDEV(_major, minor)); - md->wq = alloc_workqueue("kdmflush", - WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); + md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); if (!md->wq) goto bad_thread; @@ -1913,6 +1995,8 @@ static struct mapped_device *alloc_dev(int minor) md->flush_bio.bi_bdev = md->bdev; md->flush_bio.bi_rw = WRITE_FLUSH; + dm_stats_init(&md->stats); + /* Populate the mapping, nobody knows we exist yet */ spin_lock(&_minor_lock); old_md = idr_replace(&_minor_idr, md, minor); @@ -1930,6 +2014,8 @@ bad_thread: bad_disk: blk_cleanup_queue(md->queue); bad_queue: + cleanup_srcu_struct(&md->io_barrier); +bad_io_barrier: free_minor(minor); bad_minor: module_put(THIS_MODULE); @@ -1947,14 +2033,13 @@ static void free_dev(struct mapped_device *md) unlock_fs(md); bdput(md->bdev); destroy_workqueue(md->wq); - if (md->tio_pool) - mempool_destroy(md->tio_pool); if (md->io_pool) mempool_destroy(md->io_pool); if (md->bs) bioset_free(md->bs); blk_integrity_unregister(md->disk); del_gendisk(md->disk); + cleanup_srcu_struct(&md->io_barrier); free_minor(minor); spin_lock(&_minor_lock); @@ -1963,6 +2048,7 @@ static void free_dev(struct mapped_device *md) put_disk(md->disk); blk_cleanup_queue(md->queue); + dm_stats_cleanup(&md->stats); module_put(THIS_MODULE); kfree(md); } @@ -1971,24 +2057,33 @@ static void __bind_mempools(struct mapped_device *md, struct dm_table *t) { struct dm_md_mempools *p = dm_table_get_md_mempools(t); - if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs) { - /* - * The md already has necessary mempools. Reload just the - * bioset because front_pad may have changed because - * a different table was loaded. - */ - bioset_free(md->bs); - md->bs = p->bs; - p->bs = NULL; + if (md->io_pool && md->bs) { + /* The md already has necessary mempools. */ + if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { + /* + * Reload bioset because front_pad may have changed + * because a different table was loaded. + */ + bioset_free(md->bs); + md->bs = p->bs; + p->bs = NULL; + } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { + /* + * There's no need to reload with request-based dm + * because the size of front_pad doesn't change. + * Note for future: If you are to reload bioset, + * prep-ed requests in the queue may refer + * to bio from the old bioset, so you must walk + * through the queue to unprep. + */ + } goto out; } - BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); + BUG_ON(!p || md->io_pool || md->bs); md->io_pool = p->io_pool; p->io_pool = NULL; - md->tio_pool = p->tio_pool; - p->tio_pool = NULL; md->bs = p->bs; p->bs = NULL; @@ -2088,7 +2183,6 @@ static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, struct dm_table *old_map; struct request_queue *q = md->queue; sector_t size; - unsigned long flags; int merge_is_optional; size = dm_table_get_size(t); @@ -2096,7 +2190,7 @@ static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, /* * Wipe any geometry if the size of the table changed. */ - if (size != get_capacity(md->disk)) + if (size != dm_get_size(md)) memset(&md->geometry, 0, sizeof(md->geometry)); __set_size(md, size); @@ -2117,9 +2211,8 @@ static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, merge_is_optional = dm_table_merge_is_optional(t); - write_lock_irqsave(&md->map_lock, flags); old_map = md->map; - md->map = t; + rcu_assign_pointer(md->map, t); md->immutable_target_type = dm_table_get_immutable_target_type(t); dm_table_set_restrictions(t, q, limits); @@ -2127,7 +2220,7 @@ static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); else clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); - write_unlock_irqrestore(&md->map_lock, flags); + dm_sync_table(md); return old_map; } @@ -2138,15 +2231,13 @@ static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, static struct dm_table *__unbind(struct mapped_device *md) { struct dm_table *map = md->map; - unsigned long flags; if (!map) return NULL; dm_table_event_callback(map, NULL, NULL); - write_lock_irqsave(&md->map_lock, flags); - md->map = NULL; - write_unlock_irqrestore(&md->map_lock, flags); + RCU_INIT_POINTER(md->map, NULL); + dm_sync_table(md); return map; } @@ -2184,11 +2275,13 @@ void dm_unlock_md_type(struct mapped_device *md) void dm_set_md_type(struct mapped_device *md, unsigned type) { + BUG_ON(!mutex_is_locked(&md->type_lock)); md->type = type; } unsigned dm_get_md_type(struct mapped_device *md) { + BUG_ON(!mutex_is_locked(&md->type_lock)); return md->type; } @@ -2198,6 +2291,17 @@ struct target_type *dm_get_immutable_target_type(struct mapped_device *md) } /* + * The queue_limits are only valid as long as you have a reference + * count on 'md'. + */ +struct queue_limits *dm_get_queue_limits(struct mapped_device *md) +{ + BUG_ON(!atomic_read(&md->holders)); + return &md->queue->limits; +} +EXPORT_SYMBOL_GPL(dm_get_queue_limits); + +/* * Fully initialize a request-based queue (->elevator, ->request_fn, etc). */ static int dm_init_request_based_queue(struct mapped_device *md) @@ -2298,11 +2402,12 @@ EXPORT_SYMBOL_GPL(dm_device_name); static void __dm_destroy(struct mapped_device *md, bool wait) { struct dm_table *map; + int srcu_idx; might_sleep(); spin_lock(&_minor_lock); - map = dm_get_live_table(md); + map = dm_get_live_table(md, &srcu_idx); idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); set_bit(DMF_FREEING, &md->flags); spin_unlock(&_minor_lock); @@ -2312,6 +2417,9 @@ static void __dm_destroy(struct mapped_device *md, bool wait) dm_table_postsuspend_targets(map); } + /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ + dm_put_live_table(md, srcu_idx); + /* * Rare, but there may be I/O requests still going to complete, * for example. Wait for all references to disappear. @@ -2326,7 +2434,6 @@ static void __dm_destroy(struct mapped_device *md, bool wait) dm_device_name(md), atomic_read(&md->holders)); dm_sysfs_exit(md); - dm_table_put(map); dm_table_destroy(__unbind(md)); free_dev(md); } @@ -2383,8 +2490,10 @@ static void dm_wq_work(struct work_struct *work) struct mapped_device *md = container_of(work, struct mapped_device, work); struct bio *c; + int srcu_idx; + struct dm_table *map; - down_read(&md->io_lock); + map = dm_get_live_table(md, &srcu_idx); while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { spin_lock_irq(&md->deferred_lock); @@ -2394,23 +2503,19 @@ static void dm_wq_work(struct work_struct *work) if (!c) break; - up_read(&md->io_lock); - if (dm_request_based(md)) generic_make_request(c); else - __split_and_process_bio(md, c); - - down_read(&md->io_lock); + __split_and_process_bio(md, map, c); } - up_read(&md->io_lock); + dm_put_live_table(md, srcu_idx); } static void dm_queue_flush(struct mapped_device *md) { clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); - smp_mb__after_clear_bit(); + smp_mb__after_atomic(); queue_work(md->wq, &md->work); } @@ -2419,7 +2524,7 @@ static void dm_queue_flush(struct mapped_device *md) */ struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) { - struct dm_table *live_map, *map = ERR_PTR(-EINVAL); + struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); struct queue_limits limits; int r; @@ -2436,16 +2541,18 @@ struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) * reappear. */ if (dm_table_has_no_data_devices(table)) { - live_map = dm_get_live_table(md); + live_map = dm_get_live_table_fast(md); if (live_map) limits = md->queue->limits; - dm_table_put(live_map); + dm_put_live_table_fast(md); } - r = dm_calculate_queue_limits(table, &limits); - if (r) { - map = ERR_PTR(r); - goto out; + if (!live_map) { + r = dm_calculate_queue_limits(table, &limits); + if (r) { + map = ERR_PTR(r); + goto out; + } } map = __bind(md, table, &limits); @@ -2517,7 +2624,7 @@ int dm_suspend(struct mapped_device *md, unsigned suspend_flags) goto out_unlock; } - map = dm_get_live_table(md); + map = md->map; /* * DMF_NOFLUSH_SUSPENDING must be set before presuspend. @@ -2538,7 +2645,7 @@ int dm_suspend(struct mapped_device *md, unsigned suspend_flags) if (!noflush && do_lockfs) { r = lock_fs(md); if (r) - goto out; + goto out_unlock; } /* @@ -2553,9 +2660,8 @@ int dm_suspend(struct mapped_device *md, unsigned suspend_flags) * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call * flush_workqueue(md->wq). */ - down_write(&md->io_lock); set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); - up_write(&md->io_lock); + synchronize_srcu(&md->io_barrier); /* * Stop md->queue before flushing md->wq in case request-based @@ -2573,10 +2679,9 @@ int dm_suspend(struct mapped_device *md, unsigned suspend_flags) */ r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); - down_write(&md->io_lock); if (noflush) clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); - up_write(&md->io_lock); + synchronize_srcu(&md->io_barrier); /* were we interrupted ? */ if (r < 0) { @@ -2586,7 +2691,7 @@ int dm_suspend(struct mapped_device *md, unsigned suspend_flags) start_queue(md->queue); unlock_fs(md); - goto out; /* pushback list is already flushed, so skip flush */ + goto out_unlock; /* pushback list is already flushed, so skip flush */ } /* @@ -2599,9 +2704,6 @@ int dm_suspend(struct mapped_device *md, unsigned suspend_flags) dm_table_postsuspend_targets(map); -out: - dm_table_put(map); - out_unlock: mutex_unlock(&md->suspend_lock); return r; @@ -2616,7 +2718,7 @@ int dm_resume(struct mapped_device *md) if (!dm_suspended_md(md)) goto out; - map = dm_get_live_table(md); + map = md->map; if (!map || !dm_table_get_size(map)) goto out; @@ -2640,12 +2742,43 @@ int dm_resume(struct mapped_device *md) r = 0; out: - dm_table_put(map); mutex_unlock(&md->suspend_lock); return r; } +/* + * Internal suspend/resume works like userspace-driven suspend. It waits + * until all bios finish and prevents issuing new bios to the target drivers. + * It may be used only from the kernel. + * + * Internal suspend holds md->suspend_lock, which prevents interaction with + * userspace-driven suspend. + */ + +void dm_internal_suspend(struct mapped_device *md) +{ + mutex_lock(&md->suspend_lock); + if (dm_suspended_md(md)) + return; + + set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); + synchronize_srcu(&md->io_barrier); + flush_workqueue(md->wq); + dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); +} + +void dm_internal_resume(struct mapped_device *md) +{ + if (dm_suspended_md(md)) + goto done; + + dm_queue_flush(md); + +done: + mutex_unlock(&md->suspend_lock); +} + /*----------------------------------------------------------------- * Event notification. *---------------------------------------------------------------*/ @@ -2701,20 +2834,14 @@ struct gendisk *dm_disk(struct mapped_device *md) struct kobject *dm_kobject(struct mapped_device *md) { - return &md->kobj; + return &md->kobj_holder.kobj; } -/* - * struct mapped_device should not be exported outside of dm.c - * so use this check to verify that kobj is part of md structure - */ struct mapped_device *dm_get_from_kobject(struct kobject *kobj) { struct mapped_device *md; - md = container_of(kobj, struct mapped_device, kobj); - if (&md->kobj != kobj) - return NULL; + md = container_of(kobj, struct mapped_device, kobj_holder.kobj); if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) @@ -2729,6 +2856,11 @@ int dm_suspended_md(struct mapped_device *md) return test_bit(DMF_SUSPENDED, &md->flags); } +int dm_test_deferred_remove_flag(struct mapped_device *md) +{ + return test_bit(DMF_DEFERRED_REMOVE, &md->flags); +} + int dm_suspended(struct dm_target *ti) { return dm_suspended_md(dm_table_get_md(ti->table)); @@ -2743,52 +2875,42 @@ EXPORT_SYMBOL_GPL(dm_noflush_suspending); struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) { - struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); - unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; + struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); + struct kmem_cache *cachep; + unsigned int pool_size; + unsigned int front_pad; if (!pools) return NULL; - per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io)); + if (type == DM_TYPE_BIO_BASED) { + cachep = _io_cache; + pool_size = dm_get_reserved_bio_based_ios(); + front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); + } else if (type == DM_TYPE_REQUEST_BASED) { + cachep = _rq_tio_cache; + pool_size = dm_get_reserved_rq_based_ios(); + front_pad = offsetof(struct dm_rq_clone_bio_info, clone); + /* per_bio_data_size is not used. See __bind_mempools(). */ + WARN_ON(per_bio_data_size != 0); + } else + goto out; - pools->io_pool = (type == DM_TYPE_BIO_BASED) ? - mempool_create_slab_pool(MIN_IOS, _io_cache) : - mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); + pools->io_pool = mempool_create_slab_pool(pool_size, cachep); if (!pools->io_pool) - goto free_pools_and_out; - - pools->tio_pool = NULL; - if (type == DM_TYPE_REQUEST_BASED) { - pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); - if (!pools->tio_pool) - goto free_io_pool_and_out; - } + goto out; - pools->bs = (type == DM_TYPE_BIO_BASED) ? - bioset_create(pool_size, - per_bio_data_size + offsetof(struct dm_target_io, clone)) : - bioset_create(pool_size, - offsetof(struct dm_rq_clone_bio_info, clone)); + pools->bs = bioset_create(pool_size, front_pad); if (!pools->bs) - goto free_tio_pool_and_out; + goto out; if (integrity && bioset_integrity_create(pools->bs, pool_size)) - goto free_bioset_and_out; + goto out; return pools; -free_bioset_and_out: - bioset_free(pools->bs); - -free_tio_pool_and_out: - if (pools->tio_pool) - mempool_destroy(pools->tio_pool); - -free_io_pool_and_out: - mempool_destroy(pools->io_pool); - -free_pools_and_out: - kfree(pools); +out: + dm_free_md_mempools(pools); return NULL; } @@ -2801,9 +2923,6 @@ void dm_free_md_mempools(struct dm_md_mempools *pools) if (pools->io_pool) mempool_destroy(pools->io_pool); - if (pools->tio_pool) - mempool_destroy(pools->tio_pool); - if (pools->bs) bioset_free(pools->bs); @@ -2818,8 +2937,6 @@ static const struct block_device_operations dm_blk_dops = { .owner = THIS_MODULE }; -EXPORT_SYMBOL(dm_get_mapinfo); - /* * module hooks */ @@ -2828,6 +2945,13 @@ module_exit(dm_exit); module_param(major, uint, 0); MODULE_PARM_DESC(major, "The major number of the device mapper"); + +module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); + +module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); + MODULE_DESCRIPTION(DM_NAME " driver"); MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); MODULE_LICENSE("GPL"); diff --git a/drivers/md/dm.h b/drivers/md/dm.h index 45b97da1bd0..ed76126aac5 100644 --- a/drivers/md/dm.h +++ b/drivers/md/dm.h @@ -15,6 +15,10 @@ #include <linux/list.h> #include <linux/blkdev.h> #include <linux/hdreg.h> +#include <linux/completion.h> +#include <linux/kobject.h> + +#include "dm-stats.h" /* * Suspend feature flags @@ -69,7 +73,6 @@ unsigned dm_table_get_type(struct dm_table *t); struct target_type *dm_table_get_immutable_target_type(struct dm_table *t); bool dm_table_request_based(struct dm_table *t); bool dm_table_supports_discards(struct dm_table *t); -int dm_table_alloc_md_mempools(struct dm_table *t); void dm_table_free_md_mempools(struct dm_table *t); struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t); @@ -89,10 +92,21 @@ int dm_setup_md_queue(struct mapped_device *md); #define dm_target_is_valid(t) ((t)->table) /* + * To check whether the target type is bio-based or not (request-based). + */ +#define dm_target_bio_based(t) ((t)->type->map != NULL) + +/* * To check whether the target type is request-based or not (bio-based). */ #define dm_target_request_based(t) ((t)->type->map_rq != NULL) +/* + * To check whether the target type is a hybrid (capable of being + * either request-based or bio-based). + */ +#define dm_target_hybrid(t) (dm_target_bio_based(t) && dm_target_request_based(t)) + /*----------------------------------------------------------------- * A registry of target types. *---------------------------------------------------------------*/ @@ -116,6 +130,16 @@ int dm_deleting_md(struct mapped_device *md); int dm_suspended_md(struct mapped_device *md); /* + * Test if the device is scheduled for deferred remove. + */ +int dm_test_deferred_remove_flag(struct mapped_device *md); + +/* + * Try to remove devices marked for deferred removal. + */ +void dm_deferred_remove(void); + +/* * The device-mapper can be driven through one of two interfaces; * ioctl or filesystem, depending which patch you have applied. */ @@ -125,12 +149,27 @@ void dm_interface_exit(void); /* * sysfs interface */ +struct dm_kobject_holder { + struct kobject kobj; + struct completion completion; +}; + +static inline struct completion *dm_get_completion_from_kobject(struct kobject *kobj) +{ + return &container_of(kobj, struct dm_kobject_holder, kobj)->completion; +} + int dm_sysfs_init(struct mapped_device *md); void dm_sysfs_exit(struct mapped_device *md); struct kobject *dm_kobject(struct mapped_device *md); struct mapped_device *dm_get_from_kobject(struct kobject *kobj); /* + * The kobject helper + */ +void dm_kobject_release(struct kobject *kobj); + +/* * Targets for linear and striped mappings */ int dm_linear_init(void); @@ -145,11 +184,19 @@ void dm_stripe_exit(void); void dm_destroy(struct mapped_device *md); void dm_destroy_immediate(struct mapped_device *md); int dm_open_count(struct mapped_device *md); -int dm_lock_for_deletion(struct mapped_device *md); +int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred); +int dm_cancel_deferred_remove(struct mapped_device *md); +int dm_request_based(struct mapped_device *md); +sector_t dm_get_size(struct mapped_device *md); +struct request_queue *dm_get_md_queue(struct mapped_device *md); +struct dm_stats *dm_get_stats(struct mapped_device *md); int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, unsigned cookie); +void dm_internal_suspend(struct mapped_device *md); +void dm_internal_resume(struct mapped_device *md); + int dm_io_init(void); void dm_io_exit(void); @@ -162,4 +209,15 @@ void dm_kcopyd_exit(void); struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size); void dm_free_md_mempools(struct dm_md_mempools *pools); +/* + * Helpers that are used by DM core + */ +unsigned dm_get_reserved_bio_based_ios(void); +unsigned dm_get_reserved_rq_based_ios(void); + +static inline bool dm_message_test_buffer_overflow(char *result, unsigned maxlen) +{ + return !maxlen || strlen(result) + 1 >= maxlen; +} + #endif diff --git a/drivers/md/faulty.c b/drivers/md/faulty.c index 5e7dc772f5d..e8b4574956c 100644 --- a/drivers/md/faulty.c +++ b/drivers/md/faulty.c @@ -74,8 +74,8 @@ static void faulty_fail(struct bio *bio, int error) { struct bio *b = bio->bi_private; - b->bi_size = bio->bi_size; - b->bi_sector = bio->bi_sector; + b->bi_iter.bi_size = bio->bi_iter.bi_size; + b->bi_iter.bi_sector = bio->bi_iter.bi_sector; bio_put(bio); @@ -185,28 +185,31 @@ static void make_request(struct mddev *mddev, struct bio *bio) return; } - if (check_sector(conf, bio->bi_sector, bio->bi_sector+(bio->bi_size>>9), - WRITE)) + if (check_sector(conf, bio->bi_iter.bi_sector, + bio_end_sector(bio), WRITE)) failit = 1; if (check_mode(conf, WritePersistent)) { - add_sector(conf, bio->bi_sector, WritePersistent); + add_sector(conf, bio->bi_iter.bi_sector, + WritePersistent); failit = 1; } if (check_mode(conf, WriteTransient)) failit = 1; } else { /* read request */ - if (check_sector(conf, bio->bi_sector, bio->bi_sector + (bio->bi_size>>9), - READ)) + if (check_sector(conf, bio->bi_iter.bi_sector, + bio_end_sector(bio), READ)) failit = 1; if (check_mode(conf, ReadTransient)) failit = 1; if (check_mode(conf, ReadPersistent)) { - add_sector(conf, bio->bi_sector, ReadPersistent); + add_sector(conf, bio->bi_iter.bi_sector, + ReadPersistent); failit = 1; } if (check_mode(conf, ReadFixable)) { - add_sector(conf, bio->bi_sector, ReadFixable); + add_sector(conf, bio->bi_iter.bi_sector, + ReadFixable); failit = 1; } } diff --git a/drivers/md/linear.c b/drivers/md/linear.c index 21014836bdb..56f534b4a2d 100644 --- a/drivers/md/linear.c +++ b/drivers/md/linear.c @@ -288,66 +288,65 @@ static int linear_stop (struct mddev *mddev) static void linear_make_request(struct mddev *mddev, struct bio *bio) { + char b[BDEVNAME_SIZE]; struct dev_info *tmp_dev; - sector_t start_sector; + struct bio *split; + sector_t start_sector, end_sector, data_offset; if (unlikely(bio->bi_rw & REQ_FLUSH)) { md_flush_request(mddev, bio); return; } - rcu_read_lock(); - tmp_dev = which_dev(mddev, bio->bi_sector); - start_sector = tmp_dev->end_sector - tmp_dev->rdev->sectors; - - - if (unlikely(bio->bi_sector >= (tmp_dev->end_sector) - || (bio->bi_sector < start_sector))) { - char b[BDEVNAME_SIZE]; - - printk(KERN_ERR - "md/linear:%s: make_request: Sector %llu out of bounds on " - "dev %s: %llu sectors, offset %llu\n", - mdname(mddev), - (unsigned long long)bio->bi_sector, - bdevname(tmp_dev->rdev->bdev, b), - (unsigned long long)tmp_dev->rdev->sectors, - (unsigned long long)start_sector); - rcu_read_unlock(); - bio_io_error(bio); - return; - } - if (unlikely(bio->bi_sector + (bio->bi_size >> 9) > - tmp_dev->end_sector)) { - /* This bio crosses a device boundary, so we have to - * split it. - */ - struct bio_pair *bp; - sector_t end_sector = tmp_dev->end_sector; + do { + rcu_read_lock(); - rcu_read_unlock(); - - bp = bio_split(bio, end_sector - bio->bi_sector); + tmp_dev = which_dev(mddev, bio->bi_iter.bi_sector); + start_sector = tmp_dev->end_sector - tmp_dev->rdev->sectors; + end_sector = tmp_dev->end_sector; + data_offset = tmp_dev->rdev->data_offset; + bio->bi_bdev = tmp_dev->rdev->bdev; - linear_make_request(mddev, &bp->bio1); - linear_make_request(mddev, &bp->bio2); - bio_pair_release(bp); - return; - } - - bio->bi_bdev = tmp_dev->rdev->bdev; - bio->bi_sector = bio->bi_sector - start_sector - + tmp_dev->rdev->data_offset; - rcu_read_unlock(); + rcu_read_unlock(); - if (unlikely((bio->bi_rw & REQ_DISCARD) && - !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) { - /* Just ignore it */ - bio_endio(bio, 0); - return; - } + if (unlikely(bio->bi_iter.bi_sector >= end_sector || + bio->bi_iter.bi_sector < start_sector)) + goto out_of_bounds; + + if (unlikely(bio_end_sector(bio) > end_sector)) { + /* This bio crosses a device boundary, so we have to + * split it. + */ + split = bio_split(bio, end_sector - + bio->bi_iter.bi_sector, + GFP_NOIO, fs_bio_set); + bio_chain(split, bio); + } else { + split = bio; + } - generic_make_request(bio); + split->bi_iter.bi_sector = split->bi_iter.bi_sector - + start_sector + data_offset; + + if (unlikely((split->bi_rw & REQ_DISCARD) && + !blk_queue_discard(bdev_get_queue(split->bi_bdev)))) { + /* Just ignore it */ + bio_endio(split, 0); + } else + generic_make_request(split); + } while (split != bio); + return; + +out_of_bounds: + printk(KERN_ERR + "md/linear:%s: make_request: Sector %llu out of bounds on " + "dev %s: %llu sectors, offset %llu\n", + mdname(mddev), + (unsigned long long)bio->bi_iter.bi_sector, + bdevname(tmp_dev->rdev->bdev, b), + (unsigned long long)tmp_dev->rdev->sectors, + (unsigned long long)start_sector); + bio_io_error(bio); } static void linear_status (struct seq_file *seq, struct mddev *mddev) diff --git a/drivers/md/md.c b/drivers/md/md.c index 3db3d1b271f..32fc19c540d 100644 --- a/drivers/md/md.c +++ b/drivers/md/md.c @@ -72,6 +72,9 @@ static DECLARE_WAIT_QUEUE_HEAD(resync_wait); static struct workqueue_struct *md_wq; static struct workqueue_struct *md_misc_wq; +static int remove_and_add_spares(struct mddev *mddev, + struct md_rdev *this); + #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } /* @@ -109,7 +112,7 @@ static inline int speed_max(struct mddev *mddev) static struct ctl_table_header *raid_table_header; -static ctl_table raid_table[] = { +static struct ctl_table raid_table[] = { { .procname = "speed_limit_min", .data = &sysctl_speed_limit_min, @@ -127,7 +130,7 @@ static ctl_table raid_table[] = { { } }; -static ctl_table raid_dir_table[] = { +static struct ctl_table raid_dir_table[] = { { .procname = "raid", .maxlen = 0, @@ -137,7 +140,7 @@ static ctl_table raid_dir_table[] = { { } }; -static ctl_table raid_root_table[] = { +static struct ctl_table raid_root_table[] = { { .procname = "dev", .maxlen = 0, @@ -180,55 +183,6 @@ struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, } EXPORT_SYMBOL_GPL(bio_clone_mddev); -void md_trim_bio(struct bio *bio, int offset, int size) -{ - /* 'bio' is a cloned bio which we need to trim to match - * the given offset and size. - * This requires adjusting bi_sector, bi_size, and bi_io_vec - */ - int i; - struct bio_vec *bvec; - int sofar = 0; - - size <<= 9; - if (offset == 0 && size == bio->bi_size) - return; - - bio->bi_sector += offset; - bio->bi_size = size; - offset <<= 9; - clear_bit(BIO_SEG_VALID, &bio->bi_flags); - - while (bio->bi_idx < bio->bi_vcnt && - bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { - /* remove this whole bio_vec */ - offset -= bio->bi_io_vec[bio->bi_idx].bv_len; - bio->bi_idx++; - } - if (bio->bi_idx < bio->bi_vcnt) { - bio->bi_io_vec[bio->bi_idx].bv_offset += offset; - bio->bi_io_vec[bio->bi_idx].bv_len -= offset; - } - /* avoid any complications with bi_idx being non-zero*/ - if (bio->bi_idx) { - memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, - (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); - bio->bi_vcnt -= bio->bi_idx; - bio->bi_idx = 0; - } - /* Make sure vcnt and last bv are not too big */ - bio_for_each_segment(bvec, bio, i) { - if (sofar + bvec->bv_len > size) - bvec->bv_len = size - sofar; - if (bvec->bv_len == 0) { - bio->bi_vcnt = i; - break; - } - sofar += bvec->bv_len; - } -} -EXPORT_SYMBOL_GPL(md_trim_bio); - /* * We have a system wide 'event count' that is incremented * on any 'interesting' event, and readers of /proc/mdstat @@ -307,6 +261,10 @@ static void md_make_request(struct request_queue *q, struct bio *bio) bio_io_error(bio); return; } + if (mddev->ro == 1 && unlikely(rw == WRITE)) { + bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); + return; + } smp_rmb(); /* Ensure implications of 'active' are visible */ rcu_read_lock(); if (mddev->suspended) { @@ -435,7 +393,7 @@ static void md_submit_flush_data(struct work_struct *ws) struct mddev *mddev = container_of(ws, struct mddev, flush_work); struct bio *bio = mddev->flush_bio; - if (bio->bi_size == 0) + if (bio->bi_iter.bi_size == 0) /* an empty barrier - all done */ bio_endio(bio, 0); else { @@ -523,6 +481,7 @@ void mddev_init(struct mddev *mddev) init_waitqueue_head(&mddev->recovery_wait); mddev->reshape_position = MaxSector; mddev->reshape_backwards = 0; + mddev->last_sync_action = "none"; mddev->resync_min = 0; mddev->resync_max = MaxSector; mddev->level = LEVEL_NONE; @@ -603,11 +562,19 @@ static struct mddev * mddev_find(dev_t unit) goto retry; } -static inline int mddev_lock(struct mddev * mddev) +static inline int __must_check mddev_lock(struct mddev * mddev) { return mutex_lock_interruptible(&mddev->reconfig_mutex); } +/* Sometimes we need to take the lock in a situation where + * failure due to interrupts is not acceptable. + */ +static inline void mddev_lock_nointr(struct mddev * mddev) +{ + mutex_lock(&mddev->reconfig_mutex); +} + static inline int mddev_is_locked(struct mddev *mddev) { return mutex_is_locked(&mddev->reconfig_mutex); @@ -787,7 +754,7 @@ void md_super_write(struct mddev *mddev, struct md_rdev *rdev, struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; - bio->bi_sector = sector; + bio->bi_iter.bi_sector = sector; bio_add_page(bio, page, size, 0); bio->bi_private = rdev; bio->bi_end_io = super_written; @@ -809,36 +776,24 @@ void md_super_wait(struct mddev *mddev) finish_wait(&mddev->sb_wait, &wq); } -static void bi_complete(struct bio *bio, int error) -{ - complete((struct completion*)bio->bi_private); -} - int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, struct page *page, int rw, bool metadata_op) { struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); - struct completion event; int ret; - rw |= REQ_SYNC; - bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev; if (metadata_op) - bio->bi_sector = sector + rdev->sb_start; + bio->bi_iter.bi_sector = sector + rdev->sb_start; else if (rdev->mddev->reshape_position != MaxSector && (rdev->mddev->reshape_backwards == (sector >= rdev->mddev->reshape_position))) - bio->bi_sector = sector + rdev->new_data_offset; + bio->bi_iter.bi_sector = sector + rdev->new_data_offset; else - bio->bi_sector = sector + rdev->data_offset; + bio->bi_iter.bi_sector = sector + rdev->data_offset; bio_add_page(bio, page, size, 0); - init_completion(&event); - bio->bi_private = &event; - bio->bi_end_io = bi_complete; - submit_bio(rw, bio); - wait_for_completion(&event); + submit_bio_wait(rw, bio); ret = test_bit(BIO_UPTODATE, &bio->bi_flags); bio_put(bio); @@ -1120,6 +1075,7 @@ static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) rdev->raid_disk = -1; clear_bit(Faulty, &rdev->flags); clear_bit(In_sync, &rdev->flags); + clear_bit(Bitmap_sync, &rdev->flags); clear_bit(WriteMostly, &rdev->flags); if (mddev->raid_disks == 0) { @@ -1181,7 +1137,7 @@ static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) mddev->bitmap_info.offset = mddev->bitmap_info.default_offset; mddev->bitmap_info.space = - mddev->bitmap_info.space; + mddev->bitmap_info.default_space; } } else if (mddev->pers == NULL) { @@ -1198,6 +1154,8 @@ static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) */ if (ev1 < mddev->bitmap->events_cleared) return 0; + if (ev1 < mddev->events) + set_bit(Bitmap_sync, &rdev->flags); } else { if (ev1 < mddev->events) /* just a hot-add of a new device, leave raid_disk at -1 */ @@ -1213,6 +1171,7 @@ static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) desc->raid_disk < mddev->raid_disks */) { set_bit(In_sync, &rdev->flags); rdev->raid_disk = desc->raid_disk; + rdev->saved_raid_disk = desc->raid_disk; } else if (desc->state & (1<<MD_DISK_ACTIVE)) { /* active but not in sync implies recovery up to * reshape position. We don't know exactly where @@ -1560,8 +1519,8 @@ static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_ sector, count, 1) == 0) return -EINVAL; } - } else if (sb->bblog_offset == 0) - rdev->badblocks.shift = -1; + } else if (sb->bblog_offset != 0) + rdev->badblocks.shift = 0; if (!refdev) { ret = 1; @@ -1606,6 +1565,7 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) rdev->raid_disk = -1; clear_bit(Faulty, &rdev->flags); clear_bit(In_sync, &rdev->flags); + clear_bit(Bitmap_sync, &rdev->flags); clear_bit(WriteMostly, &rdev->flags); if (mddev->raid_disks == 0) { @@ -1688,6 +1648,8 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) */ if (ev1 < mddev->bitmap->events_cleared) return 0; + if (ev1 < mddev->events) + set_bit(Bitmap_sync, &rdev->flags); } else { if (ev1 < mddev->events) /* just a hot-add of a new device, leave raid_disk at -1 */ @@ -1708,10 +1670,14 @@ static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) set_bit(Faulty, &rdev->flags); break; default: + rdev->saved_raid_disk = role; if ((le32_to_cpu(sb->feature_map) & - MD_FEATURE_RECOVERY_OFFSET)) + MD_FEATURE_RECOVERY_OFFSET)) { rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); - else + if (!(le32_to_cpu(sb->feature_map) & + MD_FEATURE_RECOVERY_BITMAP)) + rdev->saved_raid_disk = -1; + } else set_bit(In_sync, &rdev->flags); rdev->raid_disk = role; break; @@ -1773,6 +1739,9 @@ static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); + if (rdev->saved_raid_disk >= 0 && mddev->bitmap) + sb->feature_map |= + cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); } if (test_bit(Replacement, &rdev->flags)) sb->feature_map |= @@ -2407,6 +2376,11 @@ static void md_update_sb(struct mddev * mddev, int force_change) int nospares = 0; int any_badblocks_changed = 0; + if (mddev->ro) { + if (force_change) + set_bit(MD_CHANGE_DEVS, &mddev->flags); + return; + } repeat: /* First make sure individual recovery_offsets are correct */ rdev_for_each(rdev, mddev) { @@ -2509,8 +2483,7 @@ repeat: if (rdev->sb_loaded != 1) continue; /* no noise on spare devices */ - if (!test_bit(Faulty, &rdev->flags) && - rdev->saved_raid_disk == -1) { + if (!test_bit(Faulty, &rdev->flags)) { md_super_write(mddev,rdev, rdev->sb_start, rdev->sb_size, rdev->sb_page); @@ -2526,11 +2499,9 @@ repeat: rdev->badblocks.size = 0; } - } else if (test_bit(Faulty, &rdev->flags)) + } else pr_debug("md: %s (skipping faulty)\n", bdevname(rdev->bdev, b)); - else - pr_debug("(skipping incremental s/r "); if (mddev->level == LEVEL_MULTIPATH) /* only need to write one superblock... */ @@ -2646,6 +2617,8 @@ state_store(struct md_rdev *rdev, const char *buf, size_t len) * blocked - sets the Blocked flags * -blocked - clears the Blocked and possibly simulates an error * insync - sets Insync providing device isn't active + * -insync - clear Insync for a device with a slot assigned, + * so that it gets rebuilt based on bitmap * write_error - sets WriteErrorSeen * -write_error - clears WriteErrorSeen */ @@ -2694,6 +2667,11 @@ state_store(struct md_rdev *rdev, const char *buf, size_t len) } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { set_bit(In_sync, &rdev->flags); err = 0; + } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) { + clear_bit(In_sync, &rdev->flags); + rdev->saved_raid_disk = rdev->raid_disk; + rdev->raid_disk = -1; + err = 0; } else if (cmd_match(buf, "write_error")) { set_bit(WriteErrorSeen, &rdev->flags); err = 0; @@ -2796,12 +2774,10 @@ slot_store(struct md_rdev *rdev, const char *buf, size_t len) /* personality does all needed checks */ if (rdev->mddev->pers->hot_remove_disk == NULL) return -EINVAL; - err = rdev->mddev->pers-> - hot_remove_disk(rdev->mddev, rdev); - if (err) - return err; - sysfs_unlink_rdev(rdev->mddev, rdev); - rdev->raid_disk = -1; + clear_bit(Blocked, &rdev->flags); + remove_and_add_spares(rdev->mddev, rdev); + if (rdev->raid_disk >= 0) + return -EBUSY; set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); md_wakeup_thread(rdev->mddev->thread); } else if (rdev->mddev->pers) { @@ -2828,6 +2804,7 @@ slot_store(struct md_rdev *rdev, const char *buf, size_t len) else rdev->saved_raid_disk = -1; clear_bit(In_sync, &rdev->flags); + clear_bit(Bitmap_sync, &rdev->flags); err = rdev->mddev->pers-> hot_add_disk(rdev->mddev, rdev); if (err) { @@ -2866,7 +2843,7 @@ static ssize_t offset_store(struct md_rdev *rdev, const char *buf, size_t len) { unsigned long long offset; - if (strict_strtoull(buf, 10, &offset) < 0) + if (kstrtoull(buf, 10, &offset) < 0) return -EINVAL; if (rdev->mddev->pers && rdev->raid_disk >= 0) return -EBUSY; @@ -2894,7 +2871,7 @@ static ssize_t new_offset_store(struct md_rdev *rdev, unsigned long long new_offset; struct mddev *mddev = rdev->mddev; - if (strict_strtoull(buf, 10, &new_offset) < 0) + if (kstrtoull(buf, 10, &new_offset) < 0) return -EINVAL; if (mddev->sync_thread) @@ -2960,7 +2937,7 @@ static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) unsigned long long blocks; sector_t new; - if (strict_strtoull(buf, 10, &blocks) < 0) + if (kstrtoull(buf, 10, &blocks) < 0) return -EINVAL; if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) @@ -2994,6 +2971,9 @@ rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) } else if (!sectors) sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - rdev->data_offset; + if (!my_mddev->pers->resize) + /* Cannot change size for RAID0 or Linear etc */ + return -EINVAL; } if (sectors < my_mddev->dev_sectors) return -EINVAL; /* component must fit device */ @@ -3013,7 +2993,7 @@ rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) for_each_mddev(mddev, tmp) { struct md_rdev *rdev2; - mddev_lock(mddev); + mddev_lock_nointr(mddev); rdev_for_each(rdev2, mddev) if (rdev->bdev == rdev2->bdev && rdev != rdev2 && @@ -3029,7 +3009,7 @@ rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) break; } } - mddev_lock(my_mddev); + mddev_lock_nointr(my_mddev); if (overlap) { /* Someone else could have slipped in a size * change here, but doing so is just silly. @@ -3065,7 +3045,7 @@ static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_ if (cmd_match(buf, "none")) recovery_start = MaxSector; - else if (strict_strtoull(buf, 10, &recovery_start)) + else if (kstrtoull(buf, 10, &recovery_start)) return -EINVAL; if (rdev->mddev->pers && @@ -3214,7 +3194,7 @@ int md_rdev_init(struct md_rdev *rdev) * be used - I wonder if that matters */ rdev->badblocks.count = 0; - rdev->badblocks.shift = 0; + rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); seqlock_init(&rdev->badblocks.lock); if (rdev->badblocks.page == NULL) @@ -3286,9 +3266,6 @@ static struct md_rdev *md_import_device(dev_t newdev, int super_format, int supe goto abort_free; } } - if (super_format == -1) - /* hot-add for 0.90, or non-persistent: so no badblocks */ - rdev->badblocks.shift = -1; return rdev; @@ -3427,7 +3404,7 @@ safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) mddev->safemode_delay = (msec*HZ)/1000; if (mddev->safemode_delay == 0) mddev->safemode_delay = 1; - if (mddev->safemode_delay < old_delay) + if (mddev->safemode_delay < old_delay || old_delay == 0) md_safemode_timeout((unsigned long)mddev); } return len; @@ -3471,6 +3448,8 @@ level_store(struct mddev *mddev, const char *buf, size_t len) mddev->level = LEVEL_NONE; return rv; } + if (mddev->ro) + return -EROFS; /* request to change the personality. Need to ensure: * - array is not engaged in resync/recovery/reshape @@ -3496,7 +3475,7 @@ level_store(struct mddev *mddev, const char *buf, size_t len) if (clevel[len-1] == '\n') len--; clevel[len] = 0; - if (strict_strtol(clevel, 10, &level)) + if (kstrtol(clevel, 10, &level)) level = LEVEL_NONE; if (request_module("md-%s", clevel) != 0) @@ -3553,7 +3532,7 @@ level_store(struct mddev *mddev, const char *buf, size_t len) printk(KERN_WARNING "md: cannot register extra attributes for %s\n", mdname(mddev)); - mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); + mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); } if (mddev->pers->sync_request != NULL && pers->sync_request == NULL) { @@ -3618,9 +3597,12 @@ level_store(struct mddev *mddev, const char *buf, size_t len) mddev->in_sync = 1; del_timer_sync(&mddev->safemode_timer); } + blk_set_stacking_limits(&mddev->queue->limits); pers->run(mddev); set_bit(MD_CHANGE_DEVS, &mddev->flags); mddev_resume(mddev); + if (!mddev->thread) + md_update_sb(mddev, 1); sysfs_notify(&mddev->kobj, NULL, "level"); md_new_event(mddev); return rv; @@ -3654,6 +3636,8 @@ layout_store(struct mddev *mddev, const char *buf, size_t len) int err; if (mddev->pers->check_reshape == NULL) return -EBUSY; + if (mddev->ro) + return -EROFS; mddev->new_layout = n; err = mddev->pers->check_reshape(mddev); if (err) { @@ -3743,6 +3727,8 @@ chunk_size_store(struct mddev *mddev, const char *buf, size_t len) int err; if (mddev->pers->check_reshape == NULL) return -EBUSY; + if (mddev->ro) + return -EROFS; mddev->new_chunk_sectors = n >> 9; err = mddev->pers->check_reshape(mddev); if (err) { @@ -4218,8 +4204,6 @@ action_show(struct mddev *mddev, char *page) return sprintf(page, "%s\n", type); } -static void reap_sync_thread(struct mddev *mddev); - static ssize_t action_store(struct mddev *mddev, const char *page, size_t len) { @@ -4234,7 +4218,7 @@ action_store(struct mddev *mddev, const char *page, size_t len) if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); - reap_sync_thread(mddev); + md_reap_sync_thread(mddev); } } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) @@ -4273,6 +4257,17 @@ action_store(struct mddev *mddev, const char *page, size_t len) return len; } +static struct md_sysfs_entry md_scan_mode = +__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); + +static ssize_t +last_sync_action_show(struct mddev *mddev, char *page) +{ + return sprintf(page, "%s\n", mddev->last_sync_action); +} + +static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); + static ssize_t mismatch_cnt_show(struct mddev *mddev, char *page) { @@ -4281,10 +4276,6 @@ mismatch_cnt_show(struct mddev *mddev, char *page) atomic64_read(&mddev->resync_mismatches)); } -static struct md_sysfs_entry md_scan_mode = -__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); - - static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); static ssize_t @@ -4357,7 +4348,7 @@ sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) { long n; - if (strict_strtol(buf, 10, &n)) + if (kstrtol(buf, 10, &n)) return -EINVAL; if (n != 0 && n != 1) @@ -4425,7 +4416,7 @@ static ssize_t min_sync_store(struct mddev *mddev, const char *buf, size_t len) { unsigned long long min; - if (strict_strtoull(buf, 10, &min)) + if (kstrtoull(buf, 10, &min)) return -EINVAL; if (min > mddev->resync_max) return -EINVAL; @@ -4462,7 +4453,7 @@ max_sync_store(struct mddev *mddev, const char *buf, size_t len) mddev->resync_max = MaxSector; else { unsigned long long max; - if (strict_strtoull(buf, 10, &max)) + if (kstrtoull(buf, 10, &max)) return -EINVAL; if (max < mddev->resync_min) return -EINVAL; @@ -4687,6 +4678,7 @@ static struct attribute *md_default_attrs[] = { static struct attribute *md_redundancy_attrs[] = { &md_scan_mode.attr, + &md_last_scan_mode.attr, &md_mismatches.attr, &md_sync_min.attr, &md_sync_max.attr, @@ -5136,7 +5128,7 @@ int md_run(struct mddev *mddev) set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); - if (mddev->flags) + if (mddev->flags & MD_UPDATE_SB_FLAGS) md_update_sb(mddev, 0); md_new_event(mddev); @@ -5195,32 +5187,6 @@ static int restart_array(struct mddev *mddev) return 0; } -/* similar to deny_write_access, but accounts for our holding a reference - * to the file ourselves */ -static int deny_bitmap_write_access(struct file * file) -{ - struct inode *inode = file->f_mapping->host; - - spin_lock(&inode->i_lock); - if (atomic_read(&inode->i_writecount) > 1) { - spin_unlock(&inode->i_lock); - return -ETXTBSY; - } - atomic_set(&inode->i_writecount, -1); - spin_unlock(&inode->i_lock); - - return 0; -} - -void restore_bitmap_write_access(struct file *file) -{ - struct inode *inode = file->f_mapping->host; - - spin_lock(&inode->i_lock); - atomic_set(&inode->i_writecount, 1); - spin_unlock(&inode->i_lock); -} - static void md_clean(struct mddev *mddev) { mddev->array_sectors = 0; @@ -5269,10 +5235,10 @@ static void md_clean(struct mddev *mddev) static void __md_stop_writes(struct mddev *mddev) { + set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (mddev->sync_thread) { - set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); set_bit(MD_RECOVERY_INTR, &mddev->recovery); - reap_sync_thread(mddev); + md_reap_sync_thread(mddev); } del_timer_sync(&mddev->safemode_timer); @@ -5280,7 +5246,8 @@ static void __md_stop_writes(struct mddev *mddev) bitmap_flush(mddev); md_super_wait(mddev); - if (!mddev->in_sync || mddev->flags) { + if (mddev->ro == 0 && + (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { /* mark array as shutdown cleanly */ mddev->in_sync = 1; md_update_sb(mddev, 1); @@ -5289,7 +5256,7 @@ static void __md_stop_writes(struct mddev *mddev) void md_stop_writes(struct mddev *mddev) { - mddev_lock(mddev); + mddev_lock_nointr(mddev); __md_stop_writes(mddev); mddev_unlock(mddev); } @@ -5322,14 +5289,35 @@ EXPORT_SYMBOL_GPL(md_stop); static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) { int err = 0; + int did_freeze = 0; + + if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { + did_freeze = 1; + set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); + md_wakeup_thread(mddev->thread); + } + if (mddev->sync_thread) { + set_bit(MD_RECOVERY_INTR, &mddev->recovery); + /* Thread might be blocked waiting for metadata update + * which will now never happen */ + wake_up_process(mddev->sync_thread->tsk); + } + mddev_unlock(mddev); + wait_event(resync_wait, mddev->sync_thread == NULL); + mddev_lock_nointr(mddev); + mutex_lock(&mddev->open_mutex); - if (atomic_read(&mddev->openers) > !!bdev) { + if (atomic_read(&mddev->openers) > !!bdev || + mddev->sync_thread || + (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { printk("md: %s still in use.\n",mdname(mddev)); + if (did_freeze) { + clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); + md_wakeup_thread(mddev->thread); + } err = -EBUSY; goto out; } - if (bdev) - sync_blockdev(bdev); if (mddev->pers) { __md_stop_writes(mddev); @@ -5340,7 +5328,7 @@ static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) set_disk_ro(mddev->gendisk, 1); clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); sysfs_notify_dirent_safe(mddev->sysfs_state); - err = 0; + err = 0; } out: mutex_unlock(&mddev->open_mutex); @@ -5356,22 +5344,36 @@ static int do_md_stop(struct mddev * mddev, int mode, { struct gendisk *disk = mddev->gendisk; struct md_rdev *rdev; + int did_freeze = 0; + + if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { + did_freeze = 1; + set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); + md_wakeup_thread(mddev->thread); + } + if (mddev->sync_thread) { + set_bit(MD_RECOVERY_INTR, &mddev->recovery); + /* Thread might be blocked waiting for metadata update + * which will now never happen */ + wake_up_process(mddev->sync_thread->tsk); + } + mddev_unlock(mddev); + wait_event(resync_wait, mddev->sync_thread == NULL); + mddev_lock_nointr(mddev); mutex_lock(&mddev->open_mutex); if (atomic_read(&mddev->openers) > !!bdev || - mddev->sysfs_active) { + mddev->sysfs_active || + mddev->sync_thread || + (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { printk("md: %s still in use.\n",mdname(mddev)); mutex_unlock(&mddev->open_mutex); + if (did_freeze) { + clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); + md_wakeup_thread(mddev->thread); + } return -EBUSY; } - if (bdev) - /* It is possible IO was issued on some other - * open file which was closed before we took ->open_mutex. - * As that was not the last close __blkdev_put will not - * have called sync_blockdev, so we must. - */ - sync_blockdev(bdev); - if (mddev->pers) { if (mddev->ro) set_disk_ro(disk, 0); @@ -5405,7 +5407,6 @@ static int do_md_stop(struct mddev * mddev, int mode, bitmap_destroy(mddev); if (mddev->bitmap_info.file) { - restore_bitmap_write_access(mddev->bitmap_info.file); fput(mddev->bitmap_info.file); mddev->bitmap_info.file = NULL; } @@ -5598,7 +5599,7 @@ static int get_array_info(struct mddev * mddev, void __user * arg) if (mddev->in_sync) info.state = (1<<MD_SB_CLEAN); if (mddev->bitmap && mddev->bitmap_info.offset) - info.state = (1<<MD_SB_BITMAP_PRESENT); + info.state |= (1<<MD_SB_BITMAP_PRESENT); info.active_disks = insync; info.working_disks = working; info.failed_disks = failed; @@ -5619,10 +5620,7 @@ static int get_bitmap_file(struct mddev * mddev, void __user * arg) char *ptr, *buf = NULL; int err = -ENOMEM; - if (md_allow_write(mddev)) - file = kmalloc(sizeof(*file), GFP_NOIO); - else - file = kmalloc(sizeof(*file), GFP_KERNEL); + file = kmalloc(sizeof(*file), GFP_NOIO); if (!file) goto out; @@ -5760,8 +5758,10 @@ static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) info->raid_disk < mddev->raid_disks) { rdev->raid_disk = info->raid_disk; set_bit(In_sync, &rdev->flags); + clear_bit(Bitmap_sync, &rdev->flags); } else rdev->raid_disk = -1; + rdev->saved_raid_disk = rdev->raid_disk; } else super_types[mddev->major_version]. validate_super(mddev, rdev); @@ -5774,11 +5774,6 @@ static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) return -EINVAL; } - if (test_bit(In_sync, &rdev->flags)) - rdev->saved_raid_disk = rdev->raid_disk; - else - rdev->saved_raid_disk = -1; - clear_bit(In_sync, &rdev->flags); /* just to be sure */ if (info->state & (1<<MD_DISK_WRITEMOSTLY)) set_bit(WriteMostly, &rdev->flags); @@ -5803,7 +5798,7 @@ static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) else sysfs_notify_dirent_safe(rdev->sysfs_state); - md_update_sb(mddev, 1); + set_bit(MD_CHANGE_DEVS, &mddev->flags); if (mddev->degraded) set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); @@ -5870,6 +5865,9 @@ static int hot_remove_disk(struct mddev * mddev, dev_t dev) if (!rdev) return -ENXIO; + clear_bit(Blocked, &rdev->flags); + remove_and_add_spares(mddev, rdev); + if (rdev->raid_disk >= 0) goto busy; @@ -5960,7 +5958,7 @@ abort_export: static int set_bitmap_file(struct mddev *mddev, int fd) { - int err; + int err = 0; if (mddev->pers) { if (!mddev->pers->quiesce) @@ -5972,6 +5970,7 @@ static int set_bitmap_file(struct mddev *mddev, int fd) if (fd >= 0) { + struct inode *inode; if (mddev->bitmap) return -EEXIST; /* cannot add when bitmap is present */ mddev->bitmap_info.file = fget(fd); @@ -5982,10 +5981,21 @@ static int set_bitmap_file(struct mddev *mddev, int fd) return -EBADF; } - err = deny_bitmap_write_access(mddev->bitmap_info.file); - if (err) { + inode = mddev->bitmap_info.file->f_mapping->host; + if (!S_ISREG(inode->i_mode)) { + printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", + mdname(mddev)); + err = -EBADF; + } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) { + printk(KERN_ERR "%s: error: bitmap file must open for write\n", + mdname(mddev)); + err = -EBADF; + } else if (atomic_read(&inode->i_writecount) != 1) { printk(KERN_ERR "%s: error: bitmap file is already in use\n", mdname(mddev)); + err = -EBUSY; + } + if (err) { fput(mddev->bitmap_info.file); mddev->bitmap_info.file = NULL; return err; @@ -6008,10 +6018,8 @@ static int set_bitmap_file(struct mddev *mddev, int fd) mddev->pers->quiesce(mddev, 0); } if (fd < 0) { - if (mddev->bitmap_info.file) { - restore_bitmap_write_access(mddev->bitmap_info.file); + if (mddev->bitmap_info.file) fput(mddev->bitmap_info.file); - } mddev->bitmap_info.file = NULL; } @@ -6133,6 +6141,8 @@ static int update_size(struct mddev *mddev, sector_t num_sectors) */ if (mddev->sync_thread) return -EBUSY; + if (mddev->ro) + return -EROFS; rdev_for_each(rdev, mddev) { sector_t avail = rdev->sectors; @@ -6155,6 +6165,8 @@ static int update_raid_disks(struct mddev *mddev, int raid_disks) /* change the number of raid disks */ if (mddev->pers->check_reshape == NULL) return -EINVAL; + if (mddev->ro) + return -EROFS; if (raid_disks <= 0 || (mddev->max_disks && raid_disks >= mddev->max_disks)) return -EINVAL; @@ -6325,6 +6337,32 @@ static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) return 0; } +static inline bool md_ioctl_valid(unsigned int cmd) +{ + switch (cmd) { + case ADD_NEW_DISK: + case BLKROSET: + case GET_ARRAY_INFO: + case GET_BITMAP_FILE: + case GET_DISK_INFO: + case HOT_ADD_DISK: + case HOT_REMOVE_DISK: + case PRINT_RAID_DEBUG: + case RAID_AUTORUN: + case RAID_VERSION: + case RESTART_ARRAY_RW: + case RUN_ARRAY: + case SET_ARRAY_INFO: + case SET_BITMAP_FILE: + case SET_DISK_FAULTY: + case STOP_ARRAY: + case STOP_ARRAY_RO: + return true; + default: + return false; + } +} + static int md_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { @@ -6333,6 +6371,9 @@ static int md_ioctl(struct block_device *bdev, fmode_t mode, struct mddev *mddev = NULL; int ro; + if (!md_ioctl_valid(cmd)) + return -ENOTTY; + switch (cmd) { case RAID_VERSION: case GET_ARRAY_INFO: @@ -6402,6 +6443,26 @@ static int md_ioctl(struct block_device *bdev, fmode_t mode, /* need to ensure md_delayed_delete() has completed */ flush_workqueue(md_misc_wq); + if (cmd == HOT_REMOVE_DISK) + /* need to ensure recovery thread has run */ + wait_event_interruptible_timeout(mddev->sb_wait, + !test_bit(MD_RECOVERY_NEEDED, + &mddev->flags), + msecs_to_jiffies(5000)); + if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { + /* Need to flush page cache, and ensure no-one else opens + * and writes + */ + mutex_lock(&mddev->open_mutex); + if (atomic_read(&mddev->openers) > 1) { + mutex_unlock(&mddev->open_mutex); + err = -EBUSY; + goto abort; + } + set_bit(MD_STILL_CLOSED, &mddev->flags); + mutex_unlock(&mddev->open_mutex); + sync_blockdev(bdev); + } err = mddev_lock(mddev); if (err) { printk(KERN_INFO @@ -6483,6 +6544,28 @@ static int md_ioctl(struct block_device *bdev, fmode_t mode, err = md_set_readonly(mddev, bdev); goto done_unlock; + case HOT_REMOVE_DISK: + err = hot_remove_disk(mddev, new_decode_dev(arg)); + goto done_unlock; + + case ADD_NEW_DISK: + /* We can support ADD_NEW_DISK on read-only arrays + * on if we are re-adding a preexisting device. + * So require mddev->pers and MD_DISK_SYNC. + */ + if (mddev->pers) { + mdu_disk_info_t info; + if (copy_from_user(&info, argp, sizeof(info))) + err = -EFAULT; + else if (!(info.state & (1<<MD_DISK_SYNC))) + /* Need to clear read-only for this */ + break; + else + err = add_new_disk(mddev, &info); + goto done_unlock; + } + break; + case BLKROSET: if (get_user(ro, (int __user *)(arg))) { err = -EFAULT; @@ -6525,7 +6608,17 @@ static int md_ioctl(struct block_device *bdev, fmode_t mode, mddev->ro = 0; sysfs_notify_dirent_safe(mddev->sysfs_state); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); - md_wakeup_thread(mddev->thread); + /* mddev_unlock will wake thread */ + /* If a device failed while we were read-only, we + * need to make sure the metadata is updated now. + */ + if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { + mddev_unlock(mddev); + wait_event(mddev->sb_wait, + !test_bit(MD_CHANGE_DEVS, &mddev->flags) && + !test_bit(MD_CHANGE_PENDING, &mddev->flags)); + mddev_lock_nointr(mddev); + } } else { err = -EROFS; goto abort_unlock; @@ -6543,10 +6636,6 @@ static int md_ioctl(struct block_device *bdev, fmode_t mode, goto done_unlock; } - case HOT_REMOVE_DISK: - err = hot_remove_disk(mddev, new_decode_dev(arg)); - goto done_unlock; - case HOT_ADD_DISK: err = hot_add_disk(mddev, new_decode_dev(arg)); goto done_unlock; @@ -6627,6 +6716,7 @@ static int md_open(struct block_device *bdev, fmode_t mode) err = 0; atomic_inc(&mddev->openers); + clear_bit(MD_STILL_CLOSED, &mddev->flags); mutex_unlock(&mddev->open_mutex); check_disk_change(bdev); @@ -6634,15 +6724,13 @@ static int md_open(struct block_device *bdev, fmode_t mode) return err; } -static int md_release(struct gendisk *disk, fmode_t mode) +static void md_release(struct gendisk *disk, fmode_t mode) { struct mddev *mddev = disk->private_data; BUG_ON(!mddev); atomic_dec(&mddev->openers); mddev_put(mddev); - - return 0; } static int md_media_changed(struct gendisk *disk) @@ -7087,11 +7175,14 @@ static int md_seq_open(struct inode *inode, struct file *file) return error; } +static int md_unloading; static unsigned int mdstat_poll(struct file *filp, poll_table *wait) { struct seq_file *seq = filp->private_data; int mask; + if (md_unloading) + return POLLIN|POLLRDNORM|POLLERR|POLLPRI;; poll_wait(filp, &md_event_waiters, wait); /* always allow read */ @@ -7294,27 +7385,33 @@ void md_do_sync(struct md_thread *thread) sector_t last_check; int skipped = 0; struct md_rdev *rdev; - char *desc; + char *desc, *action = NULL; struct blk_plug plug; /* just incase thread restarts... */ if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) return; - if (mddev->ro) /* never try to sync a read-only array */ + if (mddev->ro) {/* never try to sync a read-only array */ + set_bit(MD_RECOVERY_INTR, &mddev->recovery); return; + } if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { - if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) + if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { desc = "data-check"; - else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) + action = "check"; + } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { desc = "requested-resync"; - else + action = "repair"; + } else desc = "resync"; } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) desc = "reshape"; else desc = "recovery"; + mddev->last_sync_action = action ?: desc; + /* we overload curr_resync somewhat here. * 0 == not engaged in resync at all * 2 == checking that there is no conflict with another sync @@ -7335,9 +7432,6 @@ void md_do_sync(struct md_thread *thread) mddev->curr_resync = 2; try_again: - if (kthread_should_stop()) - set_bit(MD_RECOVERY_INTR, &mddev->recovery); - if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) goto skip; for_each_mddev(mddev2, tmp) { @@ -7362,7 +7456,7 @@ void md_do_sync(struct md_thread *thread) * be caught by 'softlockup' */ prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); - if (!kthread_should_stop() && + if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && mddev2->curr_resync >= mddev->curr_resync) { printk(KERN_INFO "md: delaying %s of %s" " until %s has finished (they" @@ -7407,6 +7501,19 @@ void md_do_sync(struct md_thread *thread) rdev->recovery_offset < j) j = rdev->recovery_offset; rcu_read_unlock(); + + /* If there is a bitmap, we need to make sure all + * writes that started before we added a spare + * complete before we start doing a recovery. + * Otherwise the write might complete and (via + * bitmap_endwrite) set a bit in the bitmap after the + * recovery has checked that bit and skipped that + * region. + */ + if (mddev->bitmap) { + mddev->pers->quiesce(mddev, 1); + mddev->pers->quiesce(mddev, 0); + } } printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); @@ -7438,7 +7545,7 @@ void md_do_sync(struct md_thread *thread) last_check = 0; if (j>2) { - printk(KERN_INFO + printk(KERN_INFO "md: resuming %s of %s from checkpoint.\n", desc, mdname(mddev)); mddev->curr_resync = j; @@ -7475,7 +7582,8 @@ void md_do_sync(struct md_thread *thread) sysfs_notify(&mddev->kobj, NULL, "sync_completed"); } - while (j >= mddev->resync_max && !kthread_should_stop()) { + while (j >= mddev->resync_max && + !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { /* As this condition is controlled by user-space, * we can block indefinitely, so use '_interruptible' * to avoid triggering warnings. @@ -7483,17 +7591,18 @@ void md_do_sync(struct md_thread *thread) flush_signals(current); /* just in case */ wait_event_interruptible(mddev->recovery_wait, mddev->resync_max > j - || kthread_should_stop()); + || test_bit(MD_RECOVERY_INTR, + &mddev->recovery)); } - if (kthread_should_stop()) - goto interrupted; + if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) + break; sectors = mddev->pers->sync_request(mddev, j, &skipped, currspeed < speed_min(mddev)); if (sectors == 0) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); - goto out; + break; } if (!skipped) { /* actual IO requested */ @@ -7530,10 +7639,8 @@ void md_do_sync(struct md_thread *thread) last_mark = next; } - - if (kthread_should_stop()) - goto interrupted; - + if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) + break; /* * this loop exits only if either when we are slower than @@ -7556,11 +7663,12 @@ void md_do_sync(struct md_thread *thread) } } } - printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); + printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, + test_bit(MD_RECOVERY_INTR, &mddev->recovery) + ? "interrupted" : "done"); /* * this also signals 'finished resyncing' to md_stop */ - out: blk_finish_plug(&plug); wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); @@ -7614,27 +7722,19 @@ void md_do_sync(struct md_thread *thread) set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); return; - - interrupted: - /* - * got a signal, exit. - */ - printk(KERN_INFO - "md: md_do_sync() got signal ... exiting\n"); - set_bit(MD_RECOVERY_INTR, &mddev->recovery); - goto out; - } EXPORT_SYMBOL_GPL(md_do_sync); -static int remove_and_add_spares(struct mddev *mddev) +static int remove_and_add_spares(struct mddev *mddev, + struct md_rdev *this) { struct md_rdev *rdev; int spares = 0; int removed = 0; rdev_for_each(rdev, mddev) - if (rdev->raid_disk >= 0 && + if ((this == NULL || rdev == this) && + rdev->raid_disk >= 0 && !test_bit(Blocked, &rdev->flags) && (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) && @@ -7646,79 +7746,43 @@ static int remove_and_add_spares(struct mddev *mddev) removed++; } } - if (removed) - sysfs_notify(&mddev->kobj, NULL, - "degraded"); + if (removed && mddev->kobj.sd) + sysfs_notify(&mddev->kobj, NULL, "degraded"); + if (this) + goto no_add; rdev_for_each(rdev, mddev) { if (rdev->raid_disk >= 0 && !test_bit(In_sync, &rdev->flags) && !test_bit(Faulty, &rdev->flags)) spares++; - if (rdev->raid_disk < 0 - && !test_bit(Faulty, &rdev->flags)) { + if (rdev->raid_disk >= 0) + continue; + if (test_bit(Faulty, &rdev->flags)) + continue; + if (mddev->ro && + ! (rdev->saved_raid_disk >= 0 && + !test_bit(Bitmap_sync, &rdev->flags))) + continue; + + if (rdev->saved_raid_disk < 0) rdev->recovery_offset = 0; - if (mddev->pers-> - hot_add_disk(mddev, rdev) == 0) { - if (sysfs_link_rdev(mddev, rdev)) - /* failure here is OK */; - spares++; - md_new_event(mddev); - set_bit(MD_CHANGE_DEVS, &mddev->flags); - } + if (mddev->pers-> + hot_add_disk(mddev, rdev) == 0) { + if (sysfs_link_rdev(mddev, rdev)) + /* failure here is OK */; + spares++; + md_new_event(mddev); + set_bit(MD_CHANGE_DEVS, &mddev->flags); } } +no_add: if (removed) set_bit(MD_CHANGE_DEVS, &mddev->flags); return spares; } -static void reap_sync_thread(struct mddev *mddev) -{ - struct md_rdev *rdev; - - /* resync has finished, collect result */ - md_unregister_thread(&mddev->sync_thread); - if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && - !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { - /* success...*/ - /* activate any spares */ - if (mddev->pers->spare_active(mddev)) { - sysfs_notify(&mddev->kobj, NULL, - "degraded"); - set_bit(MD_CHANGE_DEVS, &mddev->flags); - } - } - if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && - mddev->pers->finish_reshape) - mddev->pers->finish_reshape(mddev); - - /* If array is no-longer degraded, then any saved_raid_disk - * information must be scrapped. Also if any device is now - * In_sync we must scrape the saved_raid_disk for that device - * do the superblock for an incrementally recovered device - * written out. - */ - rdev_for_each(rdev, mddev) - if (!mddev->degraded || - test_bit(In_sync, &rdev->flags)) - rdev->saved_raid_disk = -1; - - md_update_sb(mddev, 1); - clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); - clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); - clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); - clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); - clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); - /* flag recovery needed just to double check */ - set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); - sysfs_notify_dirent_safe(mddev->sysfs_action); - md_new_event(mddev); - if (mddev->event_work.func) - queue_work(md_misc_wq, &mddev->event_work); -} - /* * This routine is regularly called by all per-raid-array threads to * deal with generic issues like resync and super-block update. @@ -7761,7 +7825,7 @@ void md_check_recovery(struct mddev *mddev) if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return; if ( ! ( - (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || + (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || test_bit(MD_RECOVERY_DONE, &mddev->recovery) || (mddev->external == 0 && mddev->safemode == 1) || @@ -7774,21 +7838,19 @@ void md_check_recovery(struct mddev *mddev) int spares = 0; if (mddev->ro) { - /* Only thing we do on a ro array is remove - * failed devices. + /* On a read-only array we can: + * - remove failed devices + * - add already-in_sync devices if the array itself + * is in-sync. + * As we only add devices that are already in-sync, + * we can activate the spares immediately. */ - struct md_rdev *rdev; - rdev_for_each(rdev, mddev) - if (rdev->raid_disk >= 0 && - !test_bit(Blocked, &rdev->flags) && - test_bit(Faulty, &rdev->flags) && - atomic_read(&rdev->nr_pending)==0) { - if (mddev->pers->hot_remove_disk( - mddev, rdev) == 0) { - sysfs_unlink_rdev(mddev, rdev); - rdev->raid_disk = -1; - } - } + remove_and_add_spares(mddev, NULL); + /* There is no thread, but we need to call + * ->spare_active and clear saved_raid_disk + */ + set_bit(MD_RECOVERY_INTR, &mddev->recovery); + md_reap_sync_thread(mddev); clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } @@ -7811,7 +7873,7 @@ void md_check_recovery(struct mddev *mddev) sysfs_notify_dirent_safe(mddev->sysfs_state); } - if (mddev->flags) + if (mddev->flags & MD_UPDATE_SB_FLAGS) md_update_sb(mddev, 0); if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && @@ -7821,7 +7883,7 @@ void md_check_recovery(struct mddev *mddev) goto unlock; } if (mddev->sync_thread) { - reap_sync_thread(mddev); + md_reap_sync_thread(mddev); goto unlock; } /* Set RUNNING before clearing NEEDED to avoid @@ -7852,7 +7914,7 @@ void md_check_recovery(struct mddev *mddev) goto unlock; set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); - } else if ((spares = remove_and_add_spares(mddev))) { + } else if ((spares = remove_and_add_spares(mddev, NULL))) { clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); @@ -7891,6 +7953,8 @@ void md_check_recovery(struct mddev *mddev) md_new_event(mddev); } unlock: + wake_up(&mddev->sb_wait); + if (!mddev->sync_thread) { clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); if (test_and_clear_bit(MD_RECOVERY_RECOVER, @@ -7902,6 +7966,48 @@ void md_check_recovery(struct mddev *mddev) } } +void md_reap_sync_thread(struct mddev *mddev) +{ + struct md_rdev *rdev; + + /* resync has finished, collect result */ + md_unregister_thread(&mddev->sync_thread); + wake_up(&resync_wait); + if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && + !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { + /* success...*/ + /* activate any spares */ + if (mddev->pers->spare_active(mddev)) { + sysfs_notify(&mddev->kobj, NULL, + "degraded"); + set_bit(MD_CHANGE_DEVS, &mddev->flags); + } + } + if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && + mddev->pers->finish_reshape) + mddev->pers->finish_reshape(mddev); + + /* If array is no-longer degraded, then any saved_raid_disk + * information must be scrapped. + */ + if (!mddev->degraded) + rdev_for_each(rdev, mddev) + rdev->saved_raid_disk = -1; + + md_update_sb(mddev, 1); + clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); + clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); + clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); + clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); + clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); + /* flag recovery needed just to double check */ + set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); + sysfs_notify_dirent_safe(mddev->sysfs_action); + md_new_event(mddev); + if (mddev->event_work.func) + queue_work(md_misc_wq, &mddev->event_work); +} + void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) { sysfs_notify_dirent_safe(rdev->sysfs_state); @@ -8040,6 +8146,7 @@ static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, u64 *p; int lo, hi; int rv = 1; + unsigned long flags; if (bb->shift < 0) /* badblocks are disabled */ @@ -8054,7 +8161,7 @@ static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, sectors = next - s; } - write_seqlock_irq(&bb->lock); + write_seqlock_irqsave(&bb->lock, flags); p = bb->page; lo = 0; @@ -8170,7 +8277,7 @@ static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, bb->changed = 1; if (!acknowledged) bb->unacked_exist = 1; - write_sequnlock_irq(&bb->lock); + write_sequnlock_irqrestore(&bb->lock, flags); return rv; } @@ -8249,7 +8356,7 @@ static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) if (a < s) { /* we need to split this range */ if (bb->count >= MD_MAX_BADBLOCKS) { - rv = 0; + rv = -ENOSPC; goto out; } memmove(p+lo+1, p+lo, (bb->count - lo) * 8); @@ -8435,7 +8542,8 @@ static int md_notify_reboot(struct notifier_block *this, if (mddev_trylock(mddev)) { if (mddev->pers) __md_stop_writes(mddev); - mddev->safemode = 2; + if (mddev->persistent) + mddev->safemode = 2; mddev_unlock(mddev); } need_delay = 1; @@ -8577,6 +8685,7 @@ static __exit void md_exit(void) { struct mddev *mddev; struct list_head *tmp; + int delay = 1; blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); @@ -8585,7 +8694,19 @@ static __exit void md_exit(void) unregister_blkdev(mdp_major, "mdp"); unregister_reboot_notifier(&md_notifier); unregister_sysctl_table(raid_table_header); + + /* We cannot unload the modules while some process is + * waiting for us in select() or poll() - wake them up + */ + md_unloading = 1; + while (waitqueue_active(&md_event_waiters)) { + /* not safe to leave yet */ + wake_up(&md_event_waiters); + msleep(delay); + delay += delay; + } remove_proc_entry("mdstat", NULL); + for_each_mddev(mddev, tmp) { export_array(mddev); mddev->hold_active = 0; @@ -8627,6 +8748,7 @@ EXPORT_SYMBOL(md_register_thread); EXPORT_SYMBOL(md_unregister_thread); EXPORT_SYMBOL(md_wakeup_thread); EXPORT_SYMBOL(md_check_recovery); +EXPORT_SYMBOL(md_reap_sync_thread); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MD RAID framework"); MODULE_ALIAS("md"); diff --git a/drivers/md/md.h b/drivers/md/md.h index eca59c3074e..a49d991f3fe 100644 --- a/drivers/md/md.h +++ b/drivers/md/md.h @@ -106,7 +106,7 @@ struct md_rdev { */ struct work_struct del_work; /* used for delayed sysfs removal */ - struct sysfs_dirent *sysfs_state; /* handle for 'state' + struct kernfs_node *sysfs_state; /* handle for 'state' * sysfs entry */ struct badblocks { @@ -129,6 +129,9 @@ struct md_rdev { enum flag_bits { Faulty, /* device is known to have a fault */ In_sync, /* device is in_sync with rest of array */ + Bitmap_sync, /* ..actually, not quite In_sync. Need a + * bitmap-based recovery to get fully in sync + */ Unmerged, /* device is being added to array and should * be considerred for bvec_merge_fn but not * yet for actual IO @@ -204,12 +207,16 @@ struct mddev { struct md_personality *pers; dev_t unit; int md_minor; - struct list_head disks; + struct list_head disks; unsigned long flags; #define MD_CHANGE_DEVS 0 /* Some device status has changed */ #define MD_CHANGE_CLEAN 1 /* transition to or from 'clean' */ #define MD_CHANGE_PENDING 2 /* switch from 'clean' to 'active' in progress */ +#define MD_UPDATE_SB_FLAGS (1 | 2 | 4) /* If these are set, md_update_sb needed */ #define MD_ARRAY_FIRST_USE 3 /* First use of array, needs initialization */ +#define MD_STILL_CLOSED 4 /* If set, then array has not been opened since + * md_ioctl checked on it. + */ int suspended; atomic_t active_io; @@ -218,7 +225,7 @@ struct mddev { * are happening, so run/ * takeover/stop are not safe */ - int ready; /* See when safe to pass + int ready; /* See when safe to pass * IO requests down */ struct gendisk *gendisk; @@ -268,6 +275,14 @@ struct mddev { struct md_thread *thread; /* management thread */ struct md_thread *sync_thread; /* doing resync or reconstruct */ + + /* 'last_sync_action' is initialized to "none". It is set when a + * sync operation (i.e "data-check", "requested-resync", "resync", + * "recovery", or "reshape") is started. It holds this value even + * when the sync thread is "frozen" (interrupted) or "idle" (stopped + * or finished). It is overwritten when a new sync operation is begun. + */ + char *last_sync_action; sector_t curr_resync; /* last block scheduled */ /* As resync requests can complete out of order, we cannot easily track * how much resync has been completed. So we occasionally pause until @@ -364,10 +379,10 @@ struct mddev { sector_t resync_max; /* resync should pause * when it gets here */ - struct sysfs_dirent *sysfs_state; /* handle for 'array_state' + struct kernfs_node *sysfs_state; /* handle for 'array_state' * file in sysfs. */ - struct sysfs_dirent *sysfs_action; /* handle for 'sync_action' */ + struct kernfs_node *sysfs_action; /* handle for 'sync_action' */ struct work_struct del_work; /* used for delayed sysfs removal */ @@ -486,13 +501,13 @@ struct md_sysfs_entry { }; extern struct attribute_group md_bitmap_group; -static inline struct sysfs_dirent *sysfs_get_dirent_safe(struct sysfs_dirent *sd, char *name) +static inline struct kernfs_node *sysfs_get_dirent_safe(struct kernfs_node *sd, char *name) { if (sd) - return sysfs_get_dirent(sd, NULL, name); + return sysfs_get_dirent(sd, name); return sd; } -static inline void sysfs_notify_dirent_safe(struct sysfs_dirent *sd) +static inline void sysfs_notify_dirent_safe(struct kernfs_node *sd) { if (sd) sysfs_notify_dirent(sd); @@ -506,7 +521,7 @@ static inline char * mdname (struct mddev * mddev) static inline int sysfs_link_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; - if (!test_bit(Replacement, &rdev->flags)) { + if (!test_bit(Replacement, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); return sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); } else @@ -516,7 +531,7 @@ static inline int sysfs_link_rdev(struct mddev *mddev, struct md_rdev *rdev) static inline void sysfs_unlink_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; - if (!test_bit(Replacement, &rdev->flags)) { + if (!test_bit(Replacement, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); } @@ -567,6 +582,7 @@ extern struct md_thread *md_register_thread( extern void md_unregister_thread(struct md_thread **threadp); extern void md_wakeup_thread(struct md_thread *thread); extern void md_check_recovery(struct mddev *mddev); +extern void md_reap_sync_thread(struct mddev *mddev); extern void md_write_start(struct mddev *mddev, struct bio *bi); extern void md_write_end(struct mddev *mddev); extern void md_done_sync(struct mddev *mddev, int blocks, int ok); @@ -589,7 +605,6 @@ extern int md_check_no_bitmap(struct mddev *mddev); extern int md_integrity_register(struct mddev *mddev); extern void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev); extern int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale); -extern void restore_bitmap_write_access(struct file *file); extern void mddev_init(struct mddev *mddev); extern int md_run(struct mddev *mddev); @@ -604,7 +619,6 @@ extern struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, struct mddev *mddev); extern struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, struct mddev *mddev); -extern void md_trim_bio(struct bio *bio, int offset, int size); extern void md_unplug(struct blk_plug_cb *cb, bool from_schedule); static inline int mddev_check_plugged(struct mddev *mddev) diff --git a/drivers/md/multipath.c b/drivers/md/multipath.c index 1642eae75a3..849ad39f547 100644 --- a/drivers/md/multipath.c +++ b/drivers/md/multipath.c @@ -100,7 +100,7 @@ static void multipath_end_request(struct bio *bio, int error) md_error (mp_bh->mddev, rdev); printk(KERN_ERR "multipath: %s: rescheduling sector %llu\n", bdevname(rdev->bdev,b), - (unsigned long long)bio->bi_sector); + (unsigned long long)bio->bi_iter.bi_sector); multipath_reschedule_retry(mp_bh); } else multipath_end_bh_io(mp_bh, error); @@ -132,7 +132,7 @@ static void multipath_make_request(struct mddev *mddev, struct bio * bio) multipath = conf->multipaths + mp_bh->path; mp_bh->bio = *bio; - mp_bh->bio.bi_sector += multipath->rdev->data_offset; + mp_bh->bio.bi_iter.bi_sector += multipath->rdev->data_offset; mp_bh->bio.bi_bdev = multipath->rdev->bdev; mp_bh->bio.bi_rw |= REQ_FAILFAST_TRANSPORT; mp_bh->bio.bi_end_io = multipath_end_request; @@ -355,21 +355,22 @@ static void multipathd(struct md_thread *thread) spin_unlock_irqrestore(&conf->device_lock, flags); bio = &mp_bh->bio; - bio->bi_sector = mp_bh->master_bio->bi_sector; + bio->bi_iter.bi_sector = mp_bh->master_bio->bi_iter.bi_sector; if ((mp_bh->path = multipath_map (conf))<0) { printk(KERN_ALERT "multipath: %s: unrecoverable IO read" " error for block %llu\n", bdevname(bio->bi_bdev,b), - (unsigned long long)bio->bi_sector); + (unsigned long long)bio->bi_iter.bi_sector); multipath_end_bh_io(mp_bh, -EIO); } else { printk(KERN_ERR "multipath: %s: redirecting sector %llu" " to another IO path\n", bdevname(bio->bi_bdev,b), - (unsigned long long)bio->bi_sector); + (unsigned long long)bio->bi_iter.bi_sector); *bio = *(mp_bh->master_bio); - bio->bi_sector += conf->multipaths[mp_bh->path].rdev->data_offset; + bio->bi_iter.bi_sector += + conf->multipaths[mp_bh->path].rdev->data_offset; bio->bi_bdev = conf->multipaths[mp_bh->path].rdev->bdev; bio->bi_rw |= REQ_FAILFAST_TRANSPORT; bio->bi_end_io = multipath_end_request; diff --git a/drivers/md/persistent-data/Kconfig b/drivers/md/persistent-data/Kconfig index ceb359050a5..0c2dec7aec2 100644 --- a/drivers/md/persistent-data/Kconfig +++ b/drivers/md/persistent-data/Kconfig @@ -1,8 +1,18 @@ config DM_PERSISTENT_DATA tristate - depends on BLK_DEV_DM && EXPERIMENTAL + depends on BLK_DEV_DM select LIBCRC32C select DM_BUFIO ---help--- Library providing immutable on-disk data structure support for device-mapper targets such as the thin provisioning target. + +config DM_DEBUG_BLOCK_STACK_TRACING + boolean "Keep stack trace of persistent data block lock holders" + depends on STACKTRACE_SUPPORT && DM_PERSISTENT_DATA + select STACKTRACE + ---help--- + Enable this for messages that may help debug problems with the + block manager locking used by thin provisioning and caching. + + If unsure, say N. diff --git a/drivers/md/persistent-data/Makefile b/drivers/md/persistent-data/Makefile index d8e7cb767c1..ff528792c35 100644 --- a/drivers/md/persistent-data/Makefile +++ b/drivers/md/persistent-data/Makefile @@ -1,5 +1,7 @@ obj-$(CONFIG_DM_PERSISTENT_DATA) += dm-persistent-data.o dm-persistent-data-objs := \ + dm-array.o \ + dm-bitset.o \ dm-block-manager.o \ dm-space-map-common.o \ dm-space-map-disk.o \ diff --git a/drivers/md/persistent-data/dm-array.c b/drivers/md/persistent-data/dm-array.c new file mode 100644 index 00000000000..1d75b1dc1e2 --- /dev/null +++ b/drivers/md/persistent-data/dm-array.c @@ -0,0 +1,819 @@ +/* + * Copyright (C) 2012 Red Hat, Inc. + * + * This file is released under the GPL. + */ + +#include "dm-array.h" +#include "dm-space-map.h" +#include "dm-transaction-manager.h" + +#include <linux/export.h> +#include <linux/device-mapper.h> + +#define DM_MSG_PREFIX "array" + +/*----------------------------------------------------------------*/ + +/* + * The array is implemented as a fully populated btree, which points to + * blocks that contain the packed values. This is more space efficient + * than just using a btree since we don't store 1 key per value. + */ +struct array_block { + __le32 csum; + __le32 max_entries; + __le32 nr_entries; + __le32 value_size; + __le64 blocknr; /* Block this node is supposed to live in. */ +} __packed; + +/*----------------------------------------------------------------*/ + +/* + * Validator methods. As usual we calculate a checksum, and also write the + * block location into the header (paranoia about ssds remapping areas by + * mistake). + */ +#define CSUM_XOR 595846735 + +static void array_block_prepare_for_write(struct dm_block_validator *v, + struct dm_block *b, + size_t size_of_block) +{ + struct array_block *bh_le = dm_block_data(b); + + bh_le->blocknr = cpu_to_le64(dm_block_location(b)); + bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, + size_of_block - sizeof(__le32), + CSUM_XOR)); +} + +static int array_block_check(struct dm_block_validator *v, + struct dm_block *b, + size_t size_of_block) +{ + struct array_block *bh_le = dm_block_data(b); + __le32 csum_disk; + + if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) { + DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu", + (unsigned long long) le64_to_cpu(bh_le->blocknr), + (unsigned long long) dm_block_location(b)); + return -ENOTBLK; + } + + csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries, + size_of_block - sizeof(__le32), + CSUM_XOR)); + if (csum_disk != bh_le->csum) { + DMERR_LIMIT("array_block_check failed: csum %u != wanted %u", + (unsigned) le32_to_cpu(csum_disk), + (unsigned) le32_to_cpu(bh_le->csum)); + return -EILSEQ; + } + + return 0; +} + +static struct dm_block_validator array_validator = { + .name = "array", + .prepare_for_write = array_block_prepare_for_write, + .check = array_block_check +}; + +/*----------------------------------------------------------------*/ + +/* + * Functions for manipulating the array blocks. + */ + +/* + * Returns a pointer to a value within an array block. + * + * index - The index into _this_ specific block. + */ +static void *element_at(struct dm_array_info *info, struct array_block *ab, + unsigned index) +{ + unsigned char *entry = (unsigned char *) (ab + 1); + + entry += index * info->value_type.size; + + return entry; +} + +/* + * Utility function that calls one of the value_type methods on every value + * in an array block. + */ +static void on_entries(struct dm_array_info *info, struct array_block *ab, + void (*fn)(void *, const void *)) +{ + unsigned i, nr_entries = le32_to_cpu(ab->nr_entries); + + for (i = 0; i < nr_entries; i++) + fn(info->value_type.context, element_at(info, ab, i)); +} + +/* + * Increment every value in an array block. + */ +static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab) +{ + struct dm_btree_value_type *vt = &info->value_type; + + if (vt->inc) + on_entries(info, ab, vt->inc); +} + +/* + * Decrement every value in an array block. + */ +static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab) +{ + struct dm_btree_value_type *vt = &info->value_type; + + if (vt->dec) + on_entries(info, ab, vt->dec); +} + +/* + * Each array block can hold this many values. + */ +static uint32_t calc_max_entries(size_t value_size, size_t size_of_block) +{ + return (size_of_block - sizeof(struct array_block)) / value_size; +} + +/* + * Allocate a new array block. The caller will need to unlock block. + */ +static int alloc_ablock(struct dm_array_info *info, size_t size_of_block, + uint32_t max_entries, + struct dm_block **block, struct array_block **ab) +{ + int r; + + r = dm_tm_new_block(info->btree_info.tm, &array_validator, block); + if (r) + return r; + + (*ab) = dm_block_data(*block); + (*ab)->max_entries = cpu_to_le32(max_entries); + (*ab)->nr_entries = cpu_to_le32(0); + (*ab)->value_size = cpu_to_le32(info->value_type.size); + + return 0; +} + +/* + * Pad an array block out with a particular value. Every instance will + * cause an increment of the value_type. new_nr must always be more than + * the current number of entries. + */ +static void fill_ablock(struct dm_array_info *info, struct array_block *ab, + const void *value, unsigned new_nr) +{ + unsigned i; + uint32_t nr_entries; + struct dm_btree_value_type *vt = &info->value_type; + + BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); + BUG_ON(new_nr < le32_to_cpu(ab->nr_entries)); + + nr_entries = le32_to_cpu(ab->nr_entries); + for (i = nr_entries; i < new_nr; i++) { + if (vt->inc) + vt->inc(vt->context, value); + memcpy(element_at(info, ab, i), value, vt->size); + } + ab->nr_entries = cpu_to_le32(new_nr); +} + +/* + * Remove some entries from the back of an array block. Every value + * removed will be decremented. new_nr must be <= the current number of + * entries. + */ +static void trim_ablock(struct dm_array_info *info, struct array_block *ab, + unsigned new_nr) +{ + unsigned i; + uint32_t nr_entries; + struct dm_btree_value_type *vt = &info->value_type; + + BUG_ON(new_nr > le32_to_cpu(ab->max_entries)); + BUG_ON(new_nr > le32_to_cpu(ab->nr_entries)); + + nr_entries = le32_to_cpu(ab->nr_entries); + for (i = nr_entries; i > new_nr; i--) + if (vt->dec) + vt->dec(vt->context, element_at(info, ab, i - 1)); + ab->nr_entries = cpu_to_le32(new_nr); +} + +/* + * Read locks a block, and coerces it to an array block. The caller must + * unlock 'block' when finished. + */ +static int get_ablock(struct dm_array_info *info, dm_block_t b, + struct dm_block **block, struct array_block **ab) +{ + int r; + + r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block); + if (r) + return r; + + *ab = dm_block_data(*block); + return 0; +} + +/* + * Unlocks an array block. + */ +static int unlock_ablock(struct dm_array_info *info, struct dm_block *block) +{ + return dm_tm_unlock(info->btree_info.tm, block); +} + +/*----------------------------------------------------------------*/ + +/* + * Btree manipulation. + */ + +/* + * Looks up an array block in the btree, and then read locks it. + * + * index is the index of the index of the array_block, (ie. the array index + * / max_entries). + */ +static int lookup_ablock(struct dm_array_info *info, dm_block_t root, + unsigned index, struct dm_block **block, + struct array_block **ab) +{ + int r; + uint64_t key = index; + __le64 block_le; + + r = dm_btree_lookup(&info->btree_info, root, &key, &block_le); + if (r) + return r; + + return get_ablock(info, le64_to_cpu(block_le), block, ab); +} + +/* + * Insert an array block into the btree. The block is _not_ unlocked. + */ +static int insert_ablock(struct dm_array_info *info, uint64_t index, + struct dm_block *block, dm_block_t *root) +{ + __le64 block_le = cpu_to_le64(dm_block_location(block)); + + __dm_bless_for_disk(block_le); + return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root); +} + +/* + * Looks up an array block in the btree. Then shadows it, and updates the + * btree to point to this new shadow. 'root' is an input/output parameter + * for both the current root block, and the new one. + */ +static int shadow_ablock(struct dm_array_info *info, dm_block_t *root, + unsigned index, struct dm_block **block, + struct array_block **ab) +{ + int r, inc; + uint64_t key = index; + dm_block_t b; + __le64 block_le; + + /* + * lookup + */ + r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le); + if (r) + return r; + b = le64_to_cpu(block_le); + + /* + * shadow + */ + r = dm_tm_shadow_block(info->btree_info.tm, b, + &array_validator, block, &inc); + if (r) + return r; + + *ab = dm_block_data(*block); + if (inc) + inc_ablock_entries(info, *ab); + + /* + * Reinsert. + * + * The shadow op will often be a noop. Only insert if it really + * copied data. + */ + if (dm_block_location(*block) != b) { + /* + * dm_tm_shadow_block will have already decremented the old + * block, but it is still referenced by the btree. We + * increment to stop the insert decrementing it below zero + * when overwriting the old value. + */ + dm_tm_inc(info->btree_info.tm, b); + r = insert_ablock(info, index, *block, root); + } + + return r; +} + +/* + * Allocate an new array block, and fill it with some values. + */ +static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block, + uint32_t max_entries, + unsigned block_index, uint32_t nr, + const void *value, dm_block_t *root) +{ + int r; + struct dm_block *block; + struct array_block *ab; + + r = alloc_ablock(info, size_of_block, max_entries, &block, &ab); + if (r) + return r; + + fill_ablock(info, ab, value, nr); + r = insert_ablock(info, block_index, block, root); + unlock_ablock(info, block); + + return r; +} + +static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block, + unsigned begin_block, unsigned end_block, + unsigned max_entries, const void *value, + dm_block_t *root) +{ + int r = 0; + + for (; !r && begin_block != end_block; begin_block++) + r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root); + + return r; +} + +/* + * There are a bunch of functions involved with resizing an array. This + * structure holds information that commonly needed by them. Purely here + * to reduce parameter count. + */ +struct resize { + /* + * Describes the array. + */ + struct dm_array_info *info; + + /* + * The current root of the array. This gets updated. + */ + dm_block_t root; + + /* + * Metadata block size. Used to calculate the nr entries in an + * array block. + */ + size_t size_of_block; + + /* + * Maximum nr entries in an array block. + */ + unsigned max_entries; + + /* + * nr of completely full blocks in the array. + * + * 'old' refers to before the resize, 'new' after. + */ + unsigned old_nr_full_blocks, new_nr_full_blocks; + + /* + * Number of entries in the final block. 0 iff only full blocks in + * the array. + */ + unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block; + + /* + * The default value used when growing the array. + */ + const void *value; +}; + +/* + * Removes a consecutive set of array blocks from the btree. The values + * in block are decremented as a side effect of the btree remove. + * + * begin_index - the index of the first array block to remove. + * end_index - the one-past-the-end value. ie. this block is not removed. + */ +static int drop_blocks(struct resize *resize, unsigned begin_index, + unsigned end_index) +{ + int r; + + while (begin_index != end_index) { + uint64_t key = begin_index++; + r = dm_btree_remove(&resize->info->btree_info, resize->root, + &key, &resize->root); + if (r) + return r; + } + + return 0; +} + +/* + * Calculates how many blocks are needed for the array. + */ +static unsigned total_nr_blocks_needed(unsigned nr_full_blocks, + unsigned nr_entries_in_last_block) +{ + return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0); +} + +/* + * Shrink an array. + */ +static int shrink(struct resize *resize) +{ + int r; + unsigned begin, end; + struct dm_block *block; + struct array_block *ab; + + /* + * Lose some blocks from the back? + */ + if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) { + begin = total_nr_blocks_needed(resize->new_nr_full_blocks, + resize->new_nr_entries_in_last_block); + end = total_nr_blocks_needed(resize->old_nr_full_blocks, + resize->old_nr_entries_in_last_block); + + r = drop_blocks(resize, begin, end); + if (r) + return r; + } + + /* + * Trim the new tail block + */ + if (resize->new_nr_entries_in_last_block) { + r = shadow_ablock(resize->info, &resize->root, + resize->new_nr_full_blocks, &block, &ab); + if (r) + return r; + + trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block); + unlock_ablock(resize->info, block); + } + + return 0; +} + +/* + * Grow an array. + */ +static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries) +{ + int r; + struct dm_block *block; + struct array_block *ab; + + r = shadow_ablock(resize->info, &resize->root, + resize->old_nr_full_blocks, &block, &ab); + if (r) + return r; + + fill_ablock(resize->info, ab, resize->value, new_nr_entries); + unlock_ablock(resize->info, block); + + return r; +} + +static int grow_add_tail_block(struct resize *resize) +{ + return insert_new_ablock(resize->info, resize->size_of_block, + resize->max_entries, + resize->new_nr_full_blocks, + resize->new_nr_entries_in_last_block, + resize->value, &resize->root); +} + +static int grow_needs_more_blocks(struct resize *resize) +{ + int r; + unsigned old_nr_blocks = resize->old_nr_full_blocks; + + if (resize->old_nr_entries_in_last_block > 0) { + old_nr_blocks++; + + r = grow_extend_tail_block(resize, resize->max_entries); + if (r) + return r; + } + + r = insert_full_ablocks(resize->info, resize->size_of_block, + old_nr_blocks, + resize->new_nr_full_blocks, + resize->max_entries, resize->value, + &resize->root); + if (r) + return r; + + if (resize->new_nr_entries_in_last_block) + r = grow_add_tail_block(resize); + + return r; +} + +static int grow(struct resize *resize) +{ + if (resize->new_nr_full_blocks > resize->old_nr_full_blocks) + return grow_needs_more_blocks(resize); + + else if (resize->old_nr_entries_in_last_block) + return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block); + + else + return grow_add_tail_block(resize); +} + +/*----------------------------------------------------------------*/ + +/* + * These are the value_type functions for the btree elements, which point + * to array blocks. + */ +static void block_inc(void *context, const void *value) +{ + __le64 block_le; + struct dm_array_info *info = context; + + memcpy(&block_le, value, sizeof(block_le)); + dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le)); +} + +static void block_dec(void *context, const void *value) +{ + int r; + uint64_t b; + __le64 block_le; + uint32_t ref_count; + struct dm_block *block; + struct array_block *ab; + struct dm_array_info *info = context; + + memcpy(&block_le, value, sizeof(block_le)); + b = le64_to_cpu(block_le); + + r = dm_tm_ref(info->btree_info.tm, b, &ref_count); + if (r) { + DMERR_LIMIT("couldn't get reference count for block %llu", + (unsigned long long) b); + return; + } + + if (ref_count == 1) { + /* + * We're about to drop the last reference to this ablock. + * So we need to decrement the ref count of the contents. + */ + r = get_ablock(info, b, &block, &ab); + if (r) { + DMERR_LIMIT("couldn't get array block %llu", + (unsigned long long) b); + return; + } + + dec_ablock_entries(info, ab); + unlock_ablock(info, block); + } + + dm_tm_dec(info->btree_info.tm, b); +} + +static int block_equal(void *context, const void *value1, const void *value2) +{ + return !memcmp(value1, value2, sizeof(__le64)); +} + +/*----------------------------------------------------------------*/ + +void dm_array_info_init(struct dm_array_info *info, + struct dm_transaction_manager *tm, + struct dm_btree_value_type *vt) +{ + struct dm_btree_value_type *bvt = &info->btree_info.value_type; + + memcpy(&info->value_type, vt, sizeof(info->value_type)); + info->btree_info.tm = tm; + info->btree_info.levels = 1; + + bvt->context = info; + bvt->size = sizeof(__le64); + bvt->inc = block_inc; + bvt->dec = block_dec; + bvt->equal = block_equal; +} +EXPORT_SYMBOL_GPL(dm_array_info_init); + +int dm_array_empty(struct dm_array_info *info, dm_block_t *root) +{ + return dm_btree_empty(&info->btree_info, root); +} +EXPORT_SYMBOL_GPL(dm_array_empty); + +static int array_resize(struct dm_array_info *info, dm_block_t root, + uint32_t old_size, uint32_t new_size, + const void *value, dm_block_t *new_root) +{ + int r; + struct resize resize; + + if (old_size == new_size) + return 0; + + resize.info = info; + resize.root = root; + resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); + resize.max_entries = calc_max_entries(info->value_type.size, + resize.size_of_block); + + resize.old_nr_full_blocks = old_size / resize.max_entries; + resize.old_nr_entries_in_last_block = old_size % resize.max_entries; + resize.new_nr_full_blocks = new_size / resize.max_entries; + resize.new_nr_entries_in_last_block = new_size % resize.max_entries; + resize.value = value; + + r = ((new_size > old_size) ? grow : shrink)(&resize); + if (r) + return r; + + *new_root = resize.root; + return 0; +} + +int dm_array_resize(struct dm_array_info *info, dm_block_t root, + uint32_t old_size, uint32_t new_size, + const void *value, dm_block_t *new_root) + __dm_written_to_disk(value) +{ + int r = array_resize(info, root, old_size, new_size, value, new_root); + __dm_unbless_for_disk(value); + return r; +} +EXPORT_SYMBOL_GPL(dm_array_resize); + +int dm_array_del(struct dm_array_info *info, dm_block_t root) +{ + return dm_btree_del(&info->btree_info, root); +} +EXPORT_SYMBOL_GPL(dm_array_del); + +int dm_array_get_value(struct dm_array_info *info, dm_block_t root, + uint32_t index, void *value_le) +{ + int r; + struct dm_block *block; + struct array_block *ab; + size_t size_of_block; + unsigned entry, max_entries; + + size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); + max_entries = calc_max_entries(info->value_type.size, size_of_block); + + r = lookup_ablock(info, root, index / max_entries, &block, &ab); + if (r) + return r; + + entry = index % max_entries; + if (entry >= le32_to_cpu(ab->nr_entries)) + r = -ENODATA; + else + memcpy(value_le, element_at(info, ab, entry), + info->value_type.size); + + unlock_ablock(info, block); + return r; +} +EXPORT_SYMBOL_GPL(dm_array_get_value); + +static int array_set_value(struct dm_array_info *info, dm_block_t root, + uint32_t index, const void *value, dm_block_t *new_root) +{ + int r; + struct dm_block *block; + struct array_block *ab; + size_t size_of_block; + unsigned max_entries; + unsigned entry; + void *old_value; + struct dm_btree_value_type *vt = &info->value_type; + + size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm)); + max_entries = calc_max_entries(info->value_type.size, size_of_block); + + r = shadow_ablock(info, &root, index / max_entries, &block, &ab); + if (r) + return r; + *new_root = root; + + entry = index % max_entries; + if (entry >= le32_to_cpu(ab->nr_entries)) { + r = -ENODATA; + goto out; + } + + old_value = element_at(info, ab, entry); + if (vt->dec && + (!vt->equal || !vt->equal(vt->context, old_value, value))) { + vt->dec(vt->context, old_value); + if (vt->inc) + vt->inc(vt->context, value); + } + + memcpy(old_value, value, info->value_type.size); + +out: + unlock_ablock(info, block); + return r; +} + +int dm_array_set_value(struct dm_array_info *info, dm_block_t root, + uint32_t index, const void *value, dm_block_t *new_root) + __dm_written_to_disk(value) +{ + int r; + + r = array_set_value(info, root, index, value, new_root); + __dm_unbless_for_disk(value); + return r; +} +EXPORT_SYMBOL_GPL(dm_array_set_value); + +struct walk_info { + struct dm_array_info *info; + int (*fn)(void *context, uint64_t key, void *leaf); + void *context; +}; + +static int walk_ablock(void *context, uint64_t *keys, void *leaf) +{ + struct walk_info *wi = context; + + int r; + unsigned i; + __le64 block_le; + unsigned nr_entries, max_entries; + struct dm_block *block; + struct array_block *ab; + + memcpy(&block_le, leaf, sizeof(block_le)); + r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab); + if (r) + return r; + + max_entries = le32_to_cpu(ab->max_entries); + nr_entries = le32_to_cpu(ab->nr_entries); + for (i = 0; i < nr_entries; i++) { + r = wi->fn(wi->context, keys[0] * max_entries + i, + element_at(wi->info, ab, i)); + + if (r) + break; + } + + unlock_ablock(wi->info, block); + return r; +} + +int dm_array_walk(struct dm_array_info *info, dm_block_t root, + int (*fn)(void *, uint64_t key, void *leaf), + void *context) +{ + struct walk_info wi; + + wi.info = info; + wi.fn = fn; + wi.context = context; + + return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi); +} +EXPORT_SYMBOL_GPL(dm_array_walk); + +/*----------------------------------------------------------------*/ diff --git a/drivers/md/persistent-data/dm-array.h b/drivers/md/persistent-data/dm-array.h new file mode 100644 index 00000000000..ea177d6fa58 --- /dev/null +++ b/drivers/md/persistent-data/dm-array.h @@ -0,0 +1,166 @@ +/* + * Copyright (C) 2012 Red Hat, Inc. + * + * This file is released under the GPL. + */ +#ifndef _LINUX_DM_ARRAY_H +#define _LINUX_DM_ARRAY_H + +#include "dm-btree.h" + +/*----------------------------------------------------------------*/ + +/* + * The dm-array is a persistent version of an array. It packs the data + * more efficiently than a btree which will result in less disk space use, + * and a performance boost. The element get and set operations are still + * O(ln(n)), but with a much smaller constant. + * + * The value type structure is reused from the btree type to support proper + * reference counting of values. + * + * The arrays implicitly know their length, and bounds are checked for + * lookups and updated. It doesn't store this in an accessible place + * because it would waste a whole metadata block. Make sure you store the + * size along with the array root in your encompassing data. + * + * Array entries are indexed via an unsigned integer starting from zero. + * Arrays are not sparse; if you resize an array to have 'n' entries then + * 'n - 1' will be the last valid index. + * + * Typical use: + * + * a) initialise a dm_array_info structure. This describes the array + * values and ties it into a specific transaction manager. It holds no + * instance data; the same info can be used for many similar arrays if + * you wish. + * + * b) Get yourself a root. The root is the index of a block of data on the + * disk that holds a particular instance of an array. You may have a + * pre existing root in your metadata that you wish to use, or you may + * want to create a brand new, empty array with dm_array_empty(). + * + * Like the other data structures in this library, dm_array objects are + * immutable between transactions. Update functions will return you the + * root for a _new_ array. If you've incremented the old root, via + * dm_tm_inc(), before calling the update function you may continue to use + * it in parallel with the new root. + * + * c) resize an array with dm_array_resize(). + * + * d) Get a value from the array with dm_array_get_value(). + * + * e) Set a value in the array with dm_array_set_value(). + * + * f) Walk an array of values in index order with dm_array_walk(). More + * efficient than making many calls to dm_array_get_value(). + * + * g) Destroy the array with dm_array_del(). This tells the transaction + * manager that you're no longer using this data structure so it can + * recycle it's blocks. (dm_array_dec() would be a better name for it, + * but del is in keeping with dm_btree_del()). + */ + +/* + * Describes an array. Don't initialise this structure yourself, use the + * init function below. + */ +struct dm_array_info { + struct dm_transaction_manager *tm; + struct dm_btree_value_type value_type; + struct dm_btree_info btree_info; +}; + +/* + * Sets up a dm_array_info structure. You don't need to do anything with + * this structure when you finish using it. + * + * info - the structure being filled in. + * tm - the transaction manager that should supervise this structure. + * vt - describes the leaf values. + */ +void dm_array_info_init(struct dm_array_info *info, + struct dm_transaction_manager *tm, + struct dm_btree_value_type *vt); + +/* + * Create an empty, zero length array. + * + * info - describes the array + * root - on success this will be filled out with the root block + */ +int dm_array_empty(struct dm_array_info *info, dm_block_t *root); + +/* + * Resizes the array. + * + * info - describes the array + * root - the root block of the array on disk + * old_size - the caller is responsible for remembering the size of + * the array + * new_size - can be bigger or smaller than old_size + * value - if we're growing the array the new entries will have this value + * new_root - on success, points to the new root block + * + * If growing the inc function for 'value' will be called the appropriate + * number of times. So if the caller is holding a reference they may want + * to drop it. + */ +int dm_array_resize(struct dm_array_info *info, dm_block_t root, + uint32_t old_size, uint32_t new_size, + const void *value, dm_block_t *new_root) + __dm_written_to_disk(value); + +/* + * Frees a whole array. The value_type's decrement operation will be called + * for all values in the array + */ +int dm_array_del(struct dm_array_info *info, dm_block_t root); + +/* + * Lookup a value in the array + * + * info - describes the array + * root - root block of the array + * index - array index + * value - the value to be read. Will be in on-disk format of course. + * + * -ENODATA will be returned if the index is out of bounds. + */ +int dm_array_get_value(struct dm_array_info *info, dm_block_t root, + uint32_t index, void *value); + +/* + * Set an entry in the array. + * + * info - describes the array + * root - root block of the array + * index - array index + * value - value to be written to disk. Make sure you confirm the value is + * in on-disk format with__dm_bless_for_disk() before calling. + * new_root - the new root block + * + * The old value being overwritten will be decremented, the new value + * incremented. + * + * -ENODATA will be returned if the index is out of bounds. + */ +int dm_array_set_value(struct dm_array_info *info, dm_block_t root, + uint32_t index, const void *value, dm_block_t *new_root) + __dm_written_to_disk(value); + +/* + * Walk through all the entries in an array. + * + * info - describes the array + * root - root block of the array + * fn - called back for every element + * context - passed to the callback + */ +int dm_array_walk(struct dm_array_info *info, dm_block_t root, + int (*fn)(void *context, uint64_t key, void *leaf), + void *context); + +/*----------------------------------------------------------------*/ + +#endif /* _LINUX_DM_ARRAY_H */ diff --git a/drivers/md/persistent-data/dm-bitset.c b/drivers/md/persistent-data/dm-bitset.c new file mode 100644 index 00000000000..36f7cc2c710 --- /dev/null +++ b/drivers/md/persistent-data/dm-bitset.c @@ -0,0 +1,171 @@ +/* + * Copyright (C) 2012 Red Hat, Inc. + * + * This file is released under the GPL. + */ + +#include "dm-bitset.h" +#include "dm-transaction-manager.h" + +#include <linux/export.h> +#include <linux/device-mapper.h> + +#define DM_MSG_PREFIX "bitset" +#define BITS_PER_ARRAY_ENTRY 64 + +/*----------------------------------------------------------------*/ + +static struct dm_btree_value_type bitset_bvt = { + .context = NULL, + .size = sizeof(__le64), + .inc = NULL, + .dec = NULL, + .equal = NULL, +}; + +/*----------------------------------------------------------------*/ + +void dm_disk_bitset_init(struct dm_transaction_manager *tm, + struct dm_disk_bitset *info) +{ + dm_array_info_init(&info->array_info, tm, &bitset_bvt); + info->current_index_set = false; +} +EXPORT_SYMBOL_GPL(dm_disk_bitset_init); + +int dm_bitset_empty(struct dm_disk_bitset *info, dm_block_t *root) +{ + return dm_array_empty(&info->array_info, root); +} +EXPORT_SYMBOL_GPL(dm_bitset_empty); + +int dm_bitset_resize(struct dm_disk_bitset *info, dm_block_t root, + uint32_t old_nr_entries, uint32_t new_nr_entries, + bool default_value, dm_block_t *new_root) +{ + uint32_t old_blocks = dm_div_up(old_nr_entries, BITS_PER_ARRAY_ENTRY); + uint32_t new_blocks = dm_div_up(new_nr_entries, BITS_PER_ARRAY_ENTRY); + __le64 value = default_value ? cpu_to_le64(~0) : cpu_to_le64(0); + + __dm_bless_for_disk(&value); + return dm_array_resize(&info->array_info, root, old_blocks, new_blocks, + &value, new_root); +} +EXPORT_SYMBOL_GPL(dm_bitset_resize); + +int dm_bitset_del(struct dm_disk_bitset *info, dm_block_t root) +{ + return dm_array_del(&info->array_info, root); +} +EXPORT_SYMBOL_GPL(dm_bitset_del); + +int dm_bitset_flush(struct dm_disk_bitset *info, dm_block_t root, + dm_block_t *new_root) +{ + int r; + __le64 value; + + if (!info->current_index_set || !info->dirty) + return 0; + + value = cpu_to_le64(info->current_bits); + + __dm_bless_for_disk(&value); + r = dm_array_set_value(&info->array_info, root, info->current_index, + &value, new_root); + if (r) + return r; + + info->current_index_set = false; + info->dirty = false; + + return 0; +} +EXPORT_SYMBOL_GPL(dm_bitset_flush); + +static int read_bits(struct dm_disk_bitset *info, dm_block_t root, + uint32_t array_index) +{ + int r; + __le64 value; + + r = dm_array_get_value(&info->array_info, root, array_index, &value); + if (r) + return r; + + info->current_bits = le64_to_cpu(value); + info->current_index_set = true; + info->current_index = array_index; + info->dirty = false; + + return 0; +} + +static int get_array_entry(struct dm_disk_bitset *info, dm_block_t root, + uint32_t index, dm_block_t *new_root) +{ + int r; + unsigned array_index = index / BITS_PER_ARRAY_ENTRY; + + if (info->current_index_set) { + if (info->current_index == array_index) + return 0; + + r = dm_bitset_flush(info, root, new_root); + if (r) + return r; + } + + return read_bits(info, root, array_index); +} + +int dm_bitset_set_bit(struct dm_disk_bitset *info, dm_block_t root, + uint32_t index, dm_block_t *new_root) +{ + int r; + unsigned b = index % BITS_PER_ARRAY_ENTRY; + + r = get_array_entry(info, root, index, new_root); + if (r) + return r; + + set_bit(b, (unsigned long *) &info->current_bits); + info->dirty = true; + + return 0; +} +EXPORT_SYMBOL_GPL(dm_bitset_set_bit); + +int dm_bitset_clear_bit(struct dm_disk_bitset *info, dm_block_t root, + uint32_t index, dm_block_t *new_root) +{ + int r; + unsigned b = index % BITS_PER_ARRAY_ENTRY; + + r = get_array_entry(info, root, index, new_root); + if (r) + return r; + + clear_bit(b, (unsigned long *) &info->current_bits); + info->dirty = true; + + return 0; +} +EXPORT_SYMBOL_GPL(dm_bitset_clear_bit); + +int dm_bitset_test_bit(struct dm_disk_bitset *info, dm_block_t root, + uint32_t index, dm_block_t *new_root, bool *result) +{ + int r; + unsigned b = index % BITS_PER_ARRAY_ENTRY; + + r = get_array_entry(info, root, index, new_root); + if (r) + return r; + + *result = test_bit(b, (unsigned long *) &info->current_bits); + return 0; +} +EXPORT_SYMBOL_GPL(dm_bitset_test_bit); + +/*----------------------------------------------------------------*/ diff --git a/drivers/md/persistent-data/dm-bitset.h b/drivers/md/persistent-data/dm-bitset.h new file mode 100644 index 00000000000..c2287d672ef --- /dev/null +++ b/drivers/md/persistent-data/dm-bitset.h @@ -0,0 +1,166 @@ +/* + * Copyright (C) 2012 Red Hat, Inc. + * + * This file is released under the GPL. + */ +#ifndef _LINUX_DM_BITSET_H +#define _LINUX_DM_BITSET_H + +#include "dm-array.h" + +/*----------------------------------------------------------------*/ + +/* + * This bitset type is a thin wrapper round a dm_array of 64bit words. It + * uses a tiny, one word cache to reduce the number of array lookups and so + * increase performance. + * + * Like the dm-array that it's based on, the caller needs to keep track of + * the size of the bitset separately. The underlying dm-array implicitly + * knows how many words it's storing and will return -ENODATA if you try + * and access an out of bounds word. However, an out of bounds bit in the + * final word will _not_ be detected, you have been warned. + * + * Bits are indexed from zero. + + * Typical use: + * + * a) Initialise a dm_disk_bitset structure with dm_disk_bitset_init(). + * This describes the bitset and includes the cache. It's not called it + * dm_bitset_info in line with other data structures because it does + * include instance data. + * + * b) Get yourself a root. The root is the index of a block of data on the + * disk that holds a particular instance of an bitset. You may have a + * pre existing root in your metadata that you wish to use, or you may + * want to create a brand new, empty bitset with dm_bitset_empty(). + * + * Like the other data structures in this library, dm_bitset objects are + * immutable between transactions. Update functions will return you the + * root for a _new_ array. If you've incremented the old root, via + * dm_tm_inc(), before calling the update function you may continue to use + * it in parallel with the new root. + * + * Even read operations may trigger the cache to be flushed and as such + * return a root for a new, updated bitset. + * + * c) resize a bitset with dm_bitset_resize(). + * + * d) Set a bit with dm_bitset_set_bit(). + * + * e) Clear a bit with dm_bitset_clear_bit(). + * + * f) Test a bit with dm_bitset_test_bit(). + * + * g) Flush all updates from the cache with dm_bitset_flush(). + * + * h) Destroy the bitset with dm_bitset_del(). This tells the transaction + * manager that you're no longer using this data structure so it can + * recycle it's blocks. (dm_bitset_dec() would be a better name for it, + * but del is in keeping with dm_btree_del()). + */ + +/* + * Opaque object. Unlike dm_array_info, you should have one of these per + * bitset. Initialise with dm_disk_bitset_init(). + */ +struct dm_disk_bitset { + struct dm_array_info array_info; + + uint32_t current_index; + uint64_t current_bits; + + bool current_index_set:1; + bool dirty:1; +}; + +/* + * Sets up a dm_disk_bitset structure. You don't need to do anything with + * this structure when you finish using it. + * + * tm - the transaction manager that should supervise this structure + * info - the structure being initialised + */ +void dm_disk_bitset_init(struct dm_transaction_manager *tm, + struct dm_disk_bitset *info); + +/* + * Create an empty, zero length bitset. + * + * info - describes the bitset + * new_root - on success, points to the new root block + */ +int dm_bitset_empty(struct dm_disk_bitset *info, dm_block_t *new_root); + +/* + * Resize the bitset. + * + * info - describes the bitset + * old_root - the root block of the array on disk + * old_nr_entries - the number of bits in the old bitset + * new_nr_entries - the number of bits you want in the new bitset + * default_value - the value for any new bits + * new_root - on success, points to the new root block + */ +int dm_bitset_resize(struct dm_disk_bitset *info, dm_block_t old_root, + uint32_t old_nr_entries, uint32_t new_nr_entries, + bool default_value, dm_block_t *new_root); + +/* + * Frees the bitset. + */ +int dm_bitset_del(struct dm_disk_bitset *info, dm_block_t root); + +/* + * Set a bit. + * + * info - describes the bitset + * root - the root block of the bitset + * index - the bit index + * new_root - on success, points to the new root block + * + * -ENODATA will be returned if the index is out of bounds. + */ +int dm_bitset_set_bit(struct dm_disk_bitset *info, dm_block_t root, + uint32_t index, dm_block_t *new_root); + +/* + * Clears a bit. + * + * info - describes the bitset + * root - the root block of the bitset + * index - the bit index + * new_root - on success, points to the new root block + * + * -ENODATA will be returned if the index is out of bounds. + */ +int dm_bitset_clear_bit(struct dm_disk_bitset *info, dm_block_t root, + uint32_t index, dm_block_t *new_root); + +/* + * Tests a bit. + * + * info - describes the bitset + * root - the root block of the bitset + * index - the bit index + * new_root - on success, points to the new root block (cached values may have been written) + * result - the bit value you're after + * + * -ENODATA will be returned if the index is out of bounds. + */ +int dm_bitset_test_bit(struct dm_disk_bitset *info, dm_block_t root, + uint32_t index, dm_block_t *new_root, bool *result); + +/* + * Flush any cached changes to disk. + * + * info - describes the bitset + * root - the root block of the bitset + * new_root - on success, points to the new root block + */ +int dm_bitset_flush(struct dm_disk_bitset *info, dm_block_t root, + dm_block_t *new_root); + +/*----------------------------------------------------------------*/ + +#endif /* _LINUX_DM_BITSET_H */ diff --git a/drivers/md/persistent-data/dm-block-manager.c b/drivers/md/persistent-data/dm-block-manager.c index 28c3ed072a7..087411c95ff 100644 --- a/drivers/md/persistent-data/dm-block-manager.c +++ b/drivers/md/persistent-data/dm-block-manager.c @@ -104,7 +104,7 @@ static int __check_holder(struct block_lock *lock) for (i = 0; i < MAX_HOLDERS; i++) { if (lock->holders[i] == current) { - DMERR("recursive lock detected in pool metadata"); + DMERR("recursive lock detected in metadata"); #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING DMERR("previously held here:"); print_stack_trace(lock->traces + i, 4); @@ -595,24 +595,19 @@ int dm_bm_unlock(struct dm_block *b) } EXPORT_SYMBOL_GPL(dm_bm_unlock); -int dm_bm_flush_and_unlock(struct dm_block_manager *bm, - struct dm_block *superblock) +int dm_bm_flush(struct dm_block_manager *bm) { - int r; - if (bm->read_only) return -EPERM; - r = dm_bufio_write_dirty_buffers(bm->bufio); - if (unlikely(r)) { - dm_bm_unlock(superblock); - return r; - } - - dm_bm_unlock(superblock); - return dm_bufio_write_dirty_buffers(bm->bufio); } +EXPORT_SYMBOL_GPL(dm_bm_flush); + +void dm_bm_prefetch(struct dm_block_manager *bm, dm_block_t b) +{ + dm_bufio_prefetch(bm->bufio, b, 1); +} void dm_bm_set_read_only(struct dm_block_manager *bm) { @@ -620,6 +615,12 @@ void dm_bm_set_read_only(struct dm_block_manager *bm) } EXPORT_SYMBOL_GPL(dm_bm_set_read_only); +void dm_bm_set_read_write(struct dm_block_manager *bm) +{ + bm->read_only = false; +} +EXPORT_SYMBOL_GPL(dm_bm_set_read_write); + u32 dm_bm_checksum(const void *data, size_t len, u32 init_xor) { return crc32c(~(u32) 0, data, len) ^ init_xor; diff --git a/drivers/md/persistent-data/dm-block-manager.h b/drivers/md/persistent-data/dm-block-manager.h index be5bff61be2..1b95dfc1778 100644 --- a/drivers/md/persistent-data/dm-block-manager.h +++ b/drivers/md/persistent-data/dm-block-manager.h @@ -105,8 +105,12 @@ int dm_bm_unlock(struct dm_block *b); * * This method always blocks. */ -int dm_bm_flush_and_unlock(struct dm_block_manager *bm, - struct dm_block *superblock); +int dm_bm_flush(struct dm_block_manager *bm); + +/* + * Request data is prefetched into the cache. + */ +void dm_bm_prefetch(struct dm_block_manager *bm, dm_block_t b); /* * Switches the bm to a read only mode. Once read-only mode @@ -120,6 +124,7 @@ int dm_bm_flush_and_unlock(struct dm_block_manager *bm, * be returned if you do. */ void dm_bm_set_read_only(struct dm_block_manager *bm); +void dm_bm_set_read_write(struct dm_block_manager *bm); u32 dm_bm_checksum(const void *data, size_t len, u32 init_xor); diff --git a/drivers/md/persistent-data/dm-btree-internal.h b/drivers/md/persistent-data/dm-btree-internal.h index accbb05f17b..37d367bb9aa 100644 --- a/drivers/md/persistent-data/dm-btree-internal.h +++ b/drivers/md/persistent-data/dm-btree-internal.h @@ -64,6 +64,7 @@ struct ro_spine { void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info); int exit_ro_spine(struct ro_spine *s); int ro_step(struct ro_spine *s, dm_block_t new_child); +void ro_pop(struct ro_spine *s); struct btree_node *ro_node(struct ro_spine *s); struct shadow_spine { diff --git a/drivers/md/persistent-data/dm-btree-remove.c b/drivers/md/persistent-data/dm-btree-remove.c index c4f28133ef8..b88757cd0d1 100644 --- a/drivers/md/persistent-data/dm-btree-remove.c +++ b/drivers/md/persistent-data/dm-btree-remove.c @@ -139,15 +139,8 @@ struct child { struct btree_node *n; }; -static struct dm_btree_value_type le64_type = { - .context = NULL, - .size = sizeof(__le64), - .inc = NULL, - .dec = NULL, - .equal = NULL -}; - -static int init_child(struct dm_btree_info *info, struct btree_node *parent, +static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt, + struct btree_node *parent, unsigned index, struct child *result) { int r, inc; @@ -164,7 +157,7 @@ static int init_child(struct dm_btree_info *info, struct btree_node *parent, result->n = dm_block_data(result->block); if (inc) - inc_children(info->tm, result->n, &le64_type); + inc_children(info->tm, result->n, vt); *((__le64 *) value_ptr(parent, index)) = cpu_to_le64(dm_block_location(result->block)); @@ -236,7 +229,7 @@ static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent, } static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info, - unsigned left_index) + struct dm_btree_value_type *vt, unsigned left_index) { int r; struct btree_node *parent; @@ -244,11 +237,11 @@ static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info, parent = dm_block_data(shadow_current(s)); - r = init_child(info, parent, left_index, &left); + r = init_child(info, vt, parent, left_index, &left); if (r) return r; - r = init_child(info, parent, left_index + 1, &right); + r = init_child(info, vt, parent, left_index + 1, &right); if (r) { exit_child(info, &left); return r; @@ -368,7 +361,7 @@ static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent, } static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info, - unsigned left_index) + struct dm_btree_value_type *vt, unsigned left_index) { int r; struct btree_node *parent = dm_block_data(shadow_current(s)); @@ -377,17 +370,17 @@ static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info, /* * FIXME: fill out an array? */ - r = init_child(info, parent, left_index, &left); + r = init_child(info, vt, parent, left_index, &left); if (r) return r; - r = init_child(info, parent, left_index + 1, ¢er); + r = init_child(info, vt, parent, left_index + 1, ¢er); if (r) { exit_child(info, &left); return r; } - r = init_child(info, parent, left_index + 2, &right); + r = init_child(info, vt, parent, left_index + 2, &right); if (r) { exit_child(info, &left); exit_child(info, ¢er); @@ -434,7 +427,8 @@ static int get_nr_entries(struct dm_transaction_manager *tm, } static int rebalance_children(struct shadow_spine *s, - struct dm_btree_info *info, uint64_t key) + struct dm_btree_info *info, + struct dm_btree_value_type *vt, uint64_t key) { int i, r, has_left_sibling, has_right_sibling; uint32_t child_entries; @@ -472,13 +466,13 @@ static int rebalance_children(struct shadow_spine *s, has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1); if (!has_left_sibling) - r = rebalance2(s, info, i); + r = rebalance2(s, info, vt, i); else if (!has_right_sibling) - r = rebalance2(s, info, i - 1); + r = rebalance2(s, info, vt, i - 1); else - r = rebalance3(s, info, i - 1); + r = rebalance3(s, info, vt, i - 1); return r; } @@ -529,7 +523,7 @@ static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info, if (le32_to_cpu(n->header.flags) & LEAF_NODE) return do_leaf(n, key, index); - r = rebalance_children(s, info, key); + r = rebalance_children(s, info, vt, key); if (r) break; @@ -550,6 +544,14 @@ static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info, return r; } +static struct dm_btree_value_type le64_type = { + .context = NULL, + .size = sizeof(__le64), + .inc = NULL, + .dec = NULL, + .equal = NULL +}; + int dm_btree_remove(struct dm_btree_info *info, dm_block_t root, uint64_t *keys, dm_block_t *new_root) { diff --git a/drivers/md/persistent-data/dm-btree-spine.c b/drivers/md/persistent-data/dm-btree-spine.c index f199a0c4ed0..cf9fd676ae4 100644 --- a/drivers/md/persistent-data/dm-btree-spine.c +++ b/drivers/md/persistent-data/dm-btree-spine.c @@ -164,6 +164,13 @@ int ro_step(struct ro_spine *s, dm_block_t new_child) return r; } +void ro_pop(struct ro_spine *s) +{ + BUG_ON(!s->count); + --s->count; + unlock_block(s->info, s->nodes[s->count]); +} + struct btree_node *ro_node(struct ro_spine *s) { struct dm_block *block; diff --git a/drivers/md/persistent-data/dm-btree.c b/drivers/md/persistent-data/dm-btree.c index 4caf66918cd..416060c2570 100644 --- a/drivers/md/persistent-data/dm-btree.c +++ b/drivers/md/persistent-data/dm-btree.c @@ -161,6 +161,7 @@ struct frame { }; struct del_stack { + struct dm_btree_info *info; struct dm_transaction_manager *tm; int top; struct frame spine[MAX_SPINE_DEPTH]; @@ -183,6 +184,20 @@ static int unprocessed_frames(struct del_stack *s) return s->top >= 0; } +static void prefetch_children(struct del_stack *s, struct frame *f) +{ + unsigned i; + struct dm_block_manager *bm = dm_tm_get_bm(s->tm); + + for (i = 0; i < f->nr_children; i++) + dm_bm_prefetch(bm, value64(f->n, i)); +} + +static bool is_internal_level(struct dm_btree_info *info, struct frame *f) +{ + return f->level < (info->levels - 1); +} + static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) { int r; @@ -205,6 +220,7 @@ static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) dm_tm_dec(s->tm, b); else { + uint32_t flags; struct frame *f = s->spine + ++s->top; r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b); @@ -217,6 +233,10 @@ static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) f->level = level; f->nr_children = le32_to_cpu(f->n->header.nr_entries); f->current_child = 0; + + flags = le32_to_cpu(f->n->header.flags); + if (flags & INTERNAL_NODE || is_internal_level(s->info, f)) + prefetch_children(s, f); } return 0; @@ -230,11 +250,6 @@ static void pop_frame(struct del_stack *s) dm_tm_unlock(s->tm, f->b); } -static bool is_internal_level(struct dm_btree_info *info, struct frame *f) -{ - return f->level < (info->levels - 1); -} - int dm_btree_del(struct dm_btree_info *info, dm_block_t root) { int r; @@ -243,6 +258,7 @@ int dm_btree_del(struct dm_btree_info *info, dm_block_t root) s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; + s->info = info; s->tm = info->tm; s->top = -1; @@ -287,7 +303,7 @@ int dm_btree_del(struct dm_btree_info *info, dm_block_t root) info->value_type.dec(info->value_type.context, value_ptr(f->n, i)); } - f->current_child = f->nr_children; + pop_frame(s); } } @@ -754,8 +770,8 @@ EXPORT_SYMBOL_GPL(dm_btree_insert_notify); /*----------------------------------------------------------------*/ -static int find_highest_key(struct ro_spine *s, dm_block_t block, - uint64_t *result_key, dm_block_t *next_block) +static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest, + uint64_t *result_key, dm_block_t *next_block) { int i, r; uint32_t flags; @@ -772,7 +788,11 @@ static int find_highest_key(struct ro_spine *s, dm_block_t block, else i--; - *result_key = le64_to_cpu(ro_node(s)->keys[i]); + if (find_highest) + *result_key = le64_to_cpu(ro_node(s)->keys[i]); + else + *result_key = le64_to_cpu(ro_node(s)->keys[0]); + if (next_block || flags & INTERNAL_NODE) block = value64(ro_node(s), i); @@ -783,16 +803,16 @@ static int find_highest_key(struct ro_spine *s, dm_block_t block, return 0; } -int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, - uint64_t *result_keys) +static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root, + bool find_highest, uint64_t *result_keys) { int r = 0, count = 0, level; struct ro_spine spine; init_ro_spine(&spine, info); for (level = 0; level < info->levels; level++) { - r = find_highest_key(&spine, root, result_keys + level, - level == info->levels - 1 ? NULL : &root); + r = find_key(&spine, root, find_highest, result_keys + level, + level == info->levels - 1 ? NULL : &root); if (r == -ENODATA) { r = 0; break; @@ -806,4 +826,71 @@ int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, return r ? r : count; } + +int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, + uint64_t *result_keys) +{ + return dm_btree_find_key(info, root, true, result_keys); +} EXPORT_SYMBOL_GPL(dm_btree_find_highest_key); + +int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root, + uint64_t *result_keys) +{ + return dm_btree_find_key(info, root, false, result_keys); +} +EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key); + +/*----------------------------------------------------------------*/ + +/* + * FIXME: We shouldn't use a recursive algorithm when we have limited stack + * space. Also this only works for single level trees. + */ +static int walk_node(struct ro_spine *s, dm_block_t block, + int (*fn)(void *context, uint64_t *keys, void *leaf), + void *context) +{ + int r; + unsigned i, nr; + struct btree_node *n; + uint64_t keys; + + r = ro_step(s, block); + n = ro_node(s); + + nr = le32_to_cpu(n->header.nr_entries); + for (i = 0; i < nr; i++) { + if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) { + r = walk_node(s, value64(n, i), fn, context); + if (r) + goto out; + } else { + keys = le64_to_cpu(*key_ptr(n, i)); + r = fn(context, &keys, value_ptr(n, i)); + if (r) + goto out; + } + } + +out: + ro_pop(s); + return r; +} + +int dm_btree_walk(struct dm_btree_info *info, dm_block_t root, + int (*fn)(void *context, uint64_t *keys, void *leaf), + void *context) +{ + int r; + struct ro_spine spine; + + BUG_ON(info->levels > 1); + + init_ro_spine(&spine, info); + r = walk_node(&spine, root, fn, context); + exit_ro_spine(&spine); + + return r; +} +EXPORT_SYMBOL_GPL(dm_btree_walk); diff --git a/drivers/md/persistent-data/dm-btree.h b/drivers/md/persistent-data/dm-btree.h index a2cd50441ca..dacfc34180b 100644 --- a/drivers/md/persistent-data/dm-btree.h +++ b/drivers/md/persistent-data/dm-btree.h @@ -58,21 +58,21 @@ struct dm_btree_value_type { * somewhere.) This method is _not_ called for insertion of a new * value: It is assumed the ref count is already 1. */ - void (*inc)(void *context, void *value); + void (*inc)(void *context, const void *value); /* * This value is being deleted. The btree takes care of freeing * the memory pointed to by @value. Often the del function just * needs to decrement a reference count somewhere. */ - void (*dec)(void *context, void *value); + void (*dec)(void *context, const void *value); /* * A test for equality between two values. When a value is * overwritten with a new one, the old one has the dec method * called _unless_ the new and old value are deemed equal. */ - int (*equal)(void *context, void *value1, void *value2); + int (*equal)(void *context, const void *value1, const void *value2); }; /* @@ -137,9 +137,26 @@ int dm_btree_remove(struct dm_btree_info *info, dm_block_t root, /* * Returns < 0 on failure. Otherwise the number of key entries that have * been filled out. Remember trees can have zero entries, and as such have + * no lowest key. + */ +int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root, + uint64_t *result_keys); + +/* + * Returns < 0 on failure. Otherwise the number of key entries that have + * been filled out. Remember trees can have zero entries, and as such have * no highest key. */ int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, uint64_t *result_keys); +/* + * Iterate through the a btree, calling fn() on each entry. + * It only works for single level trees and is internally recursive, so + * monitor stack usage carefully. + */ +int dm_btree_walk(struct dm_btree_info *info, dm_block_t root, + int (*fn)(void *context, uint64_t *keys, void *leaf), + void *context); + #endif /* _LINUX_DM_BTREE_H */ diff --git a/drivers/md/persistent-data/dm-space-map-common.c b/drivers/md/persistent-data/dm-space-map-common.c index 3e7a88d99eb..aacbe70c2c2 100644 --- a/drivers/md/persistent-data/dm-space-map-common.c +++ b/drivers/md/persistent-data/dm-space-map-common.c @@ -245,6 +245,10 @@ int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks) return -EINVAL; } + /* + * We need to set this before the dm_tm_new_block() call below. + */ + ll->nr_blocks = nr_blocks; for (i = old_blocks; i < blocks; i++) { struct dm_block *b; struct disk_index_entry idx; @@ -252,6 +256,7 @@ int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks) r = dm_tm_new_block(ll->tm, &dm_sm_bitmap_validator, &b); if (r < 0) return r; + idx.blocknr = cpu_to_le64(dm_block_location(b)); r = dm_tm_unlock(ll->tm, b); @@ -266,7 +271,6 @@ int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks) return r; } - ll->nr_blocks = nr_blocks; return 0; } @@ -292,16 +296,11 @@ int sm_ll_lookup_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t *result) return dm_tm_unlock(ll->tm, blk); } -int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result) +static int sm_ll_lookup_big_ref_count(struct ll_disk *ll, dm_block_t b, + uint32_t *result) { __le32 le_rc; - int r = sm_ll_lookup_bitmap(ll, b, result); - - if (r) - return r; - - if (*result != 3) - return r; + int r; r = dm_btree_lookup(&ll->ref_count_info, ll->ref_count_root, &b, &le_rc); if (r < 0) @@ -312,6 +311,19 @@ int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result) return r; } +int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result) +{ + int r = sm_ll_lookup_bitmap(ll, b, result); + + if (r) + return r; + + if (*result != 3) + return r; + + return sm_ll_lookup_big_ref_count(ll, b, result); +} + int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin, dm_block_t end, dm_block_t *result) { @@ -372,11 +384,12 @@ int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin, return -ENOSPC; } -int sm_ll_insert(struct ll_disk *ll, dm_block_t b, - uint32_t ref_count, enum allocation_event *ev) +static int sm_ll_mutate(struct ll_disk *ll, dm_block_t b, + int (*mutator)(void *context, uint32_t old, uint32_t *new), + void *context, enum allocation_event *ev) { int r; - uint32_t bit, old; + uint32_t bit, old, ref_count; struct dm_block *nb; dm_block_t index = b; struct disk_index_entry ie_disk; @@ -399,6 +412,20 @@ int sm_ll_insert(struct ll_disk *ll, dm_block_t b, bm_le = dm_bitmap_data(nb); old = sm_lookup_bitmap(bm_le, bit); + if (old > 2) { + r = sm_ll_lookup_big_ref_count(ll, b, &old); + if (r < 0) { + dm_tm_unlock(ll->tm, nb); + return r; + } + } + + r = mutator(context, old, &ref_count); + if (r) { + dm_tm_unlock(ll->tm, nb); + return r; + } + if (ref_count <= 2) { sm_set_bitmap(bm_le, bit, ref_count); @@ -448,31 +475,43 @@ int sm_ll_insert(struct ll_disk *ll, dm_block_t b, return ll->save_ie(ll, index, &ie_disk); } -int sm_ll_inc(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev) +static int set_ref_count(void *context, uint32_t old, uint32_t *new) { - int r; - uint32_t rc; - - r = sm_ll_lookup(ll, b, &rc); - if (r) - return r; + *new = *((uint32_t *) context); + return 0; +} - return sm_ll_insert(ll, b, rc + 1, ev); +int sm_ll_insert(struct ll_disk *ll, dm_block_t b, + uint32_t ref_count, enum allocation_event *ev) +{ + return sm_ll_mutate(ll, b, set_ref_count, &ref_count, ev); } -int sm_ll_dec(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev) +static int inc_ref_count(void *context, uint32_t old, uint32_t *new) { - int r; - uint32_t rc; + *new = old + 1; + return 0; +} - r = sm_ll_lookup(ll, b, &rc); - if (r) - return r; +int sm_ll_inc(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev) +{ + return sm_ll_mutate(ll, b, inc_ref_count, NULL, ev); +} - if (!rc) +static int dec_ref_count(void *context, uint32_t old, uint32_t *new) +{ + if (!old) { + DMERR_LIMIT("unable to decrement a reference count below 0"); return -EINVAL; + } - return sm_ll_insert(ll, b, rc - 1, ev); + *new = old - 1; + return 0; +} + +int sm_ll_dec(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev) +{ + return sm_ll_mutate(ll, b, dec_ref_count, NULL, ev); } int sm_ll_commit(struct ll_disk *ll) diff --git a/drivers/md/persistent-data/dm-space-map-disk.c b/drivers/md/persistent-data/dm-space-map-disk.c index f6d29e614ab..cfbf9617e46 100644 --- a/drivers/md/persistent-data/dm-space-map-disk.c +++ b/drivers/md/persistent-data/dm-space-map-disk.c @@ -140,26 +140,10 @@ static int sm_disk_inc_block(struct dm_space_map *sm, dm_block_t b) static int sm_disk_dec_block(struct dm_space_map *sm, dm_block_t b) { - int r; - uint32_t old_count; enum allocation_event ev; struct sm_disk *smd = container_of(sm, struct sm_disk, sm); - r = sm_ll_dec(&smd->ll, b, &ev); - if (!r && (ev == SM_FREE)) { - /* - * It's only free if it's also free in the last - * transaction. - */ - r = sm_ll_lookup(&smd->old_ll, b, &old_count); - if (r) - return r; - - if (!old_count) - smd->nr_allocated_this_transaction--; - } - - return r; + return sm_ll_dec(&smd->ll, b, &ev); } static int sm_disk_new_block(struct dm_space_map *sm, dm_block_t *b) @@ -248,7 +232,8 @@ static struct dm_space_map ops = { .new_block = sm_disk_new_block, .commit = sm_disk_commit, .root_size = sm_disk_root_size, - .copy_root = sm_disk_copy_root + .copy_root = sm_disk_copy_root, + .register_threshold_callback = NULL }; struct dm_space_map *dm_sm_disk_create(struct dm_transaction_manager *tm, diff --git a/drivers/md/persistent-data/dm-space-map-metadata.c b/drivers/md/persistent-data/dm-space-map-metadata.c index 906cf3df71a..786b689bdfc 100644 --- a/drivers/md/persistent-data/dm-space-map-metadata.c +++ b/drivers/md/persistent-data/dm-space-map-metadata.c @@ -17,6 +17,55 @@ /*----------------------------------------------------------------*/ /* + * An edge triggered threshold. + */ +struct threshold { + bool threshold_set; + bool value_set; + dm_block_t threshold; + dm_block_t current_value; + dm_sm_threshold_fn fn; + void *context; +}; + +static void threshold_init(struct threshold *t) +{ + t->threshold_set = false; + t->value_set = false; +} + +static void set_threshold(struct threshold *t, dm_block_t value, + dm_sm_threshold_fn fn, void *context) +{ + t->threshold_set = true; + t->threshold = value; + t->fn = fn; + t->context = context; +} + +static bool below_threshold(struct threshold *t, dm_block_t value) +{ + return t->threshold_set && value <= t->threshold; +} + +static bool threshold_already_triggered(struct threshold *t) +{ + return t->value_set && below_threshold(t, t->current_value); +} + +static void check_threshold(struct threshold *t, dm_block_t value) +{ + if (below_threshold(t, value) && + !threshold_already_triggered(t)) + t->fn(t->context); + + t->value_set = true; + t->current_value = value; +} + +/*----------------------------------------------------------------*/ + +/* * Space map interface. * * The low level disk format is written using the standard btree and @@ -42,6 +91,69 @@ struct block_op { dm_block_t block; }; +struct bop_ring_buffer { + unsigned begin; + unsigned end; + struct block_op bops[MAX_RECURSIVE_ALLOCATIONS + 1]; +}; + +static void brb_init(struct bop_ring_buffer *brb) +{ + brb->begin = 0; + brb->end = 0; +} + +static bool brb_empty(struct bop_ring_buffer *brb) +{ + return brb->begin == brb->end; +} + +static unsigned brb_next(struct bop_ring_buffer *brb, unsigned old) +{ + unsigned r = old + 1; + return (r >= (sizeof(brb->bops) / sizeof(*brb->bops))) ? 0 : r; +} + +static int brb_push(struct bop_ring_buffer *brb, + enum block_op_type type, dm_block_t b) +{ + struct block_op *bop; + unsigned next = brb_next(brb, brb->end); + + /* + * We don't allow the last bop to be filled, this way we can + * differentiate between full and empty. + */ + if (next == brb->begin) + return -ENOMEM; + + bop = brb->bops + brb->end; + bop->type = type; + bop->block = b; + + brb->end = next; + + return 0; +} + +static int brb_pop(struct bop_ring_buffer *brb, struct block_op *result) +{ + struct block_op *bop; + + if (brb_empty(brb)) + return -ENODATA; + + bop = brb->bops + brb->begin; + result->type = bop->type; + result->block = bop->block; + + brb->begin = brb_next(brb, brb->begin); + + return 0; +} + +/*----------------------------------------------------------------*/ + struct sm_metadata { struct dm_space_map sm; @@ -52,23 +164,20 @@ struct sm_metadata { unsigned recursion_count; unsigned allocated_this_transaction; - unsigned nr_uncommitted; - struct block_op uncommitted[MAX_RECURSIVE_ALLOCATIONS]; + struct bop_ring_buffer uncommitted; + + struct threshold threshold; }; static int add_bop(struct sm_metadata *smm, enum block_op_type type, dm_block_t b) { - struct block_op *op; + int r = brb_push(&smm->uncommitted, type, b); - if (smm->nr_uncommitted == MAX_RECURSIVE_ALLOCATIONS) { + if (r) { DMERR("too many recursive allocations"); return -ENOMEM; } - op = smm->uncommitted + smm->nr_uncommitted++; - op->type = type; - op->block = b; - return 0; } @@ -107,11 +216,17 @@ static int out(struct sm_metadata *smm) return -ENOMEM; } - if (smm->recursion_count == 1 && smm->nr_uncommitted) { - while (smm->nr_uncommitted && !r) { - smm->nr_uncommitted--; - r = commit_bop(smm, smm->uncommitted + - smm->nr_uncommitted); + if (smm->recursion_count == 1) { + while (!brb_empty(&smm->uncommitted)) { + struct block_op bop; + + r = brb_pop(&smm->uncommitted, &bop); + if (r) { + DMERR("bug in bop ring buffer"); + break; + } + + r = commit_bop(smm, &bop); if (r) break; } @@ -144,12 +259,6 @@ static void sm_metadata_destroy(struct dm_space_map *sm) kfree(smm); } -static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks) -{ - DMERR("doesn't support extend"); - return -EINVAL; -} - static int sm_metadata_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count) { struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm); @@ -172,7 +281,8 @@ static int sm_metadata_get_nr_free(struct dm_space_map *sm, dm_block_t *count) static int sm_metadata_get_count(struct dm_space_map *sm, dm_block_t b, uint32_t *result) { - int r, i; + int r; + unsigned i; struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm); unsigned adjustment = 0; @@ -180,8 +290,10 @@ static int sm_metadata_get_count(struct dm_space_map *sm, dm_block_t b, * We may have some uncommitted adjustments to add. This list * should always be really short. */ - for (i = 0; i < smm->nr_uncommitted; i++) { - struct block_op *op = smm->uncommitted + i; + for (i = smm->uncommitted.begin; + i != smm->uncommitted.end; + i = brb_next(&smm->uncommitted, i)) { + struct block_op *op = smm->uncommitted.bops + i; if (op->block != b) continue; @@ -209,7 +321,8 @@ static int sm_metadata_get_count(struct dm_space_map *sm, dm_block_t b, static int sm_metadata_count_is_more_than_one(struct dm_space_map *sm, dm_block_t b, int *result) { - int r, i, adjustment = 0; + int r, adjustment = 0; + unsigned i; struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm); uint32_t rc; @@ -217,8 +330,11 @@ static int sm_metadata_count_is_more_than_one(struct dm_space_map *sm, * We may have some uncommitted adjustments to add. This list * should always be really short. */ - for (i = 0; i < smm->nr_uncommitted; i++) { - struct block_op *op = smm->uncommitted + i; + for (i = smm->uncommitted.begin; + i != smm->uncommitted.end; + i = brb_next(&smm->uncommitted, i)) { + + struct block_op *op = smm->uncommitted.bops + i; if (op->block != b) continue; @@ -335,9 +451,23 @@ static int sm_metadata_new_block_(struct dm_space_map *sm, dm_block_t *b) static int sm_metadata_new_block(struct dm_space_map *sm, dm_block_t *b) { + dm_block_t count; + struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm); + int r = sm_metadata_new_block_(sm, b); - if (r) - DMERR("unable to allocate new metadata block"); + if (r) { + DMERR_LIMIT("unable to allocate new metadata block"); + return r; + } + + r = sm_metadata_get_nr_free(sm, &count); + if (r) { + DMERR_LIMIT("couldn't get free block count"); + return r; + } + + check_threshold(&smm->threshold, count); + return r; } @@ -357,6 +487,18 @@ static int sm_metadata_commit(struct dm_space_map *sm) return 0; } +static int sm_metadata_register_threshold_callback(struct dm_space_map *sm, + dm_block_t threshold, + dm_sm_threshold_fn fn, + void *context) +{ + struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm); + + set_threshold(&smm->threshold, threshold, fn, context); + + return 0; +} + static int sm_metadata_root_size(struct dm_space_map *sm, size_t *result) { *result = sizeof(struct disk_sm_root); @@ -382,6 +524,8 @@ static int sm_metadata_copy_root(struct dm_space_map *sm, void *where_le, size_t return 0; } +static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks); + static struct dm_space_map ops = { .destroy = sm_metadata_destroy, .extend = sm_metadata_extend, @@ -395,7 +539,8 @@ static struct dm_space_map ops = { .new_block = sm_metadata_new_block, .commit = sm_metadata_commit, .root_size = sm_metadata_root_size, - .copy_root = sm_metadata_copy_root + .copy_root = sm_metadata_copy_root, + .register_threshold_callback = sm_metadata_register_threshold_callback }; /*----------------------------------------------------------------*/ @@ -410,7 +555,7 @@ static void sm_bootstrap_destroy(struct dm_space_map *sm) static int sm_bootstrap_extend(struct dm_space_map *sm, dm_block_t extra_blocks) { - DMERR("boostrap doesn't support extend"); + DMERR("bootstrap doesn't support extend"); return -EINVAL; } @@ -450,7 +595,7 @@ static int sm_bootstrap_count_is_more_than_one(struct dm_space_map *sm, static int sm_bootstrap_set_count(struct dm_space_map *sm, dm_block_t b, uint32_t count) { - DMERR("boostrap doesn't support set_count"); + DMERR("bootstrap doesn't support set_count"); return -EINVAL; } @@ -491,7 +636,7 @@ static int sm_bootstrap_commit(struct dm_space_map *sm) static int sm_bootstrap_root_size(struct dm_space_map *sm, size_t *result) { - DMERR("boostrap doesn't support root_size"); + DMERR("bootstrap doesn't support root_size"); return -EINVAL; } @@ -499,7 +644,7 @@ static int sm_bootstrap_root_size(struct dm_space_map *sm, size_t *result) static int sm_bootstrap_copy_root(struct dm_space_map *sm, void *where, size_t max) { - DMERR("boostrap doesn't support copy_root"); + DMERR("bootstrap doesn't support copy_root"); return -EINVAL; } @@ -517,11 +662,60 @@ static struct dm_space_map bootstrap_ops = { .new_block = sm_bootstrap_new_block, .commit = sm_bootstrap_commit, .root_size = sm_bootstrap_root_size, - .copy_root = sm_bootstrap_copy_root + .copy_root = sm_bootstrap_copy_root, + .register_threshold_callback = NULL }; /*----------------------------------------------------------------*/ +static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks) +{ + int r, i; + enum allocation_event ev; + struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm); + dm_block_t old_len = smm->ll.nr_blocks; + + /* + * Flick into a mode where all blocks get allocated in the new area. + */ + smm->begin = old_len; + memcpy(sm, &bootstrap_ops, sizeof(*sm)); + + /* + * Extend. + */ + r = sm_ll_extend(&smm->ll, extra_blocks); + if (r) + goto out; + + /* + * We repeatedly increment then commit until the commit doesn't + * allocate any new blocks. + */ + do { + for (i = old_len; !r && i < smm->begin; i++) { + r = sm_ll_inc(&smm->ll, i, &ev); + if (r) + goto out; + } + old_len = smm->begin; + + r = sm_ll_commit(&smm->ll); + if (r) + goto out; + + } while (old_len != smm->begin); + +out: + /* + * Switch back to normal behaviour. + */ + memcpy(sm, &ops, sizeof(*sm)); + return r; +} + +/*----------------------------------------------------------------*/ + struct dm_space_map *dm_sm_metadata_init(void) { struct sm_metadata *smm; @@ -548,7 +742,8 @@ int dm_sm_metadata_create(struct dm_space_map *sm, smm->begin = superblock + 1; smm->recursion_count = 0; smm->allocated_this_transaction = 0; - smm->nr_uncommitted = 0; + brb_init(&smm->uncommitted); + threshold_init(&smm->threshold); memcpy(&smm->sm, &bootstrap_ops, sizeof(smm->sm)); @@ -556,6 +751,8 @@ int dm_sm_metadata_create(struct dm_space_map *sm, if (r) return r; + if (nr_blocks > DM_SM_METADATA_MAX_BLOCKS) + nr_blocks = DM_SM_METADATA_MAX_BLOCKS; r = sm_ll_extend(&smm->ll, nr_blocks); if (r) return r; @@ -589,7 +786,8 @@ int dm_sm_metadata_open(struct dm_space_map *sm, smm->begin = 0; smm->recursion_count = 0; smm->allocated_this_transaction = 0; - smm->nr_uncommitted = 0; + brb_init(&smm->uncommitted); + threshold_init(&smm->threshold); memcpy(&smm->old_ll, &smm->ll, sizeof(smm->old_ll)); return 0; diff --git a/drivers/md/persistent-data/dm-space-map-metadata.h b/drivers/md/persistent-data/dm-space-map-metadata.h index 39bba0801cf..64df923974d 100644 --- a/drivers/md/persistent-data/dm-space-map-metadata.h +++ b/drivers/md/persistent-data/dm-space-map-metadata.h @@ -9,6 +9,17 @@ #include "dm-transaction-manager.h" +#define DM_SM_METADATA_BLOCK_SIZE (4096 >> SECTOR_SHIFT) + +/* + * The metadata device is currently limited in size. + * + * We have one block of index, which can hold 255 index entries. Each + * index entry contains allocation info about ~16k metadata blocks. + */ +#define DM_SM_METADATA_MAX_BLOCKS (255 * ((1 << 14) - 64)) +#define DM_SM_METADATA_MAX_SECTORS (DM_SM_METADATA_MAX_BLOCKS * DM_SM_METADATA_BLOCK_SIZE) + /* * Unfortunately we have to use two-phase construction due to the cycle * between the tm and sm. diff --git a/drivers/md/persistent-data/dm-space-map.h b/drivers/md/persistent-data/dm-space-map.h index 1cbfc6b1638..3e6d1153b7c 100644 --- a/drivers/md/persistent-data/dm-space-map.h +++ b/drivers/md/persistent-data/dm-space-map.h @@ -9,6 +9,8 @@ #include "dm-block-manager.h" +typedef void (*dm_sm_threshold_fn)(void *context); + /* * struct dm_space_map keeps a record of how many times each block in a device * is referenced. It needs to be fixed on disk as part of the transaction. @@ -59,6 +61,15 @@ struct dm_space_map { */ int (*root_size)(struct dm_space_map *sm, size_t *result); int (*copy_root)(struct dm_space_map *sm, void *copy_to_here_le, size_t len); + + /* + * You can register one threshold callback which is edge-triggered + * when the free space in the space map drops below the threshold. + */ + int (*register_threshold_callback)(struct dm_space_map *sm, + dm_block_t threshold, + dm_sm_threshold_fn fn, + void *context); }; /*----------------------------------------------------------------*/ @@ -131,4 +142,16 @@ static inline int dm_sm_copy_root(struct dm_space_map *sm, void *copy_to_here_le return sm->copy_root(sm, copy_to_here_le, len); } +static inline int dm_sm_register_threshold_callback(struct dm_space_map *sm, + dm_block_t threshold, + dm_sm_threshold_fn fn, + void *context) +{ + if (sm->register_threshold_callback) + return sm->register_threshold_callback(sm, threshold, fn, context); + + return -EINVAL; +} + + #endif /* _LINUX_DM_SPACE_MAP_H */ diff --git a/drivers/md/persistent-data/dm-transaction-manager.c b/drivers/md/persistent-data/dm-transaction-manager.c index d247a35da3c..3bc30a0ae3d 100644 --- a/drivers/md/persistent-data/dm-transaction-manager.c +++ b/drivers/md/persistent-data/dm-transaction-manager.c @@ -25,8 +25,8 @@ struct shadow_info { /* * It would be nice if we scaled with the size of transaction. */ -#define HASH_SIZE 256 -#define HASH_MASK (HASH_SIZE - 1) +#define DM_HASH_SIZE 256 +#define DM_HASH_MASK (DM_HASH_SIZE - 1) struct dm_transaction_manager { int is_clone; @@ -36,7 +36,7 @@ struct dm_transaction_manager { struct dm_space_map *sm; spinlock_t lock; - struct hlist_head buckets[HASH_SIZE]; + struct hlist_head buckets[DM_HASH_SIZE]; }; /*----------------------------------------------------------------*/ @@ -44,12 +44,11 @@ struct dm_transaction_manager { static int is_shadow(struct dm_transaction_manager *tm, dm_block_t b) { int r = 0; - unsigned bucket = dm_hash_block(b, HASH_MASK); + unsigned bucket = dm_hash_block(b, DM_HASH_MASK); struct shadow_info *si; - struct hlist_node *n; spin_lock(&tm->lock); - hlist_for_each_entry(si, n, tm->buckets + bucket, hlist) + hlist_for_each_entry(si, tm->buckets + bucket, hlist) if (si->where == b) { r = 1; break; @@ -71,7 +70,7 @@ static void insert_shadow(struct dm_transaction_manager *tm, dm_block_t b) si = kmalloc(sizeof(*si), GFP_NOIO); if (si) { si->where = b; - bucket = dm_hash_block(b, HASH_MASK); + bucket = dm_hash_block(b, DM_HASH_MASK); spin_lock(&tm->lock); hlist_add_head(&si->hlist, tm->buckets + bucket); spin_unlock(&tm->lock); @@ -81,14 +80,14 @@ static void insert_shadow(struct dm_transaction_manager *tm, dm_block_t b) static void wipe_shadow_table(struct dm_transaction_manager *tm) { struct shadow_info *si; - struct hlist_node *n, *tmp; + struct hlist_node *tmp; struct hlist_head *bucket; int i; spin_lock(&tm->lock); - for (i = 0; i < HASH_SIZE; i++) { + for (i = 0; i < DM_HASH_SIZE; i++) { bucket = tm->buckets + i; - hlist_for_each_entry_safe(si, n, tmp, bucket, hlist) + hlist_for_each_entry_safe(si, tmp, bucket, hlist) kfree(si); INIT_HLIST_HEAD(bucket); @@ -115,7 +114,7 @@ static struct dm_transaction_manager *dm_tm_create(struct dm_block_manager *bm, tm->sm = sm; spin_lock_init(&tm->lock); - for (i = 0; i < HASH_SIZE; i++) + for (i = 0; i < DM_HASH_SIZE; i++) INIT_HLIST_HEAD(tm->buckets + i); return tm; @@ -155,7 +154,7 @@ int dm_tm_pre_commit(struct dm_transaction_manager *tm) if (r < 0) return r; - return 0; + return dm_bm_flush(tm->bm); } EXPORT_SYMBOL_GPL(dm_tm_pre_commit); @@ -165,8 +164,9 @@ int dm_tm_commit(struct dm_transaction_manager *tm, struct dm_block *root) return -EWOULDBLOCK; wipe_shadow_table(tm); + dm_bm_unlock(root); - return dm_bm_flush_and_unlock(tm->bm, root); + return dm_bm_flush(tm->bm); } EXPORT_SYMBOL_GPL(dm_tm_commit); diff --git a/drivers/md/persistent-data/dm-transaction-manager.h b/drivers/md/persistent-data/dm-transaction-manager.h index b5b139076ca..2772ed2a781 100644 --- a/drivers/md/persistent-data/dm-transaction-manager.h +++ b/drivers/md/persistent-data/dm-transaction-manager.h @@ -38,18 +38,17 @@ struct dm_transaction_manager *dm_tm_create_non_blocking_clone(struct dm_transac /* * We use a 2-phase commit here. * - * i) In the first phase the block manager is told to start flushing, and - * the changes to the space map are written to disk. You should interrogate - * your particular space map to get detail of its root node etc. to be - * included in your superblock. + * i) Make all changes for the transaction *except* for the superblock. + * Then call dm_tm_pre_commit() to flush them to disk. * - * ii) @root will be committed last. You shouldn't use more than the - * first 512 bytes of @root if you wish the transaction to survive a power - * failure. You *must* have a write lock held on @root for both stage (i) - * and (ii). The commit will drop the write lock. + * ii) Lock your superblock. Update. Then call dm_tm_commit() which will + * unlock the superblock and flush it. No other blocks should be updated + * during this period. Care should be taken to never unlock a partially + * updated superblock; perform any operations that could fail *before* you + * take the superblock lock. */ int dm_tm_pre_commit(struct dm_transaction_manager *tm); -int dm_tm_commit(struct dm_transaction_manager *tm, struct dm_block *root); +int dm_tm_commit(struct dm_transaction_manager *tm, struct dm_block *superblock); /* * These methods are the only way to get hold of a writeable block. diff --git a/drivers/md/raid0.c b/drivers/md/raid0.c index 24b359717a7..407a99e46f6 100644 --- a/drivers/md/raid0.c +++ b/drivers/md/raid0.c @@ -175,7 +175,13 @@ static int create_strip_zones(struct mddev *mddev, struct r0conf **private_conf) rdev1->new_raid_disk = j; } - if (j < 0 || j >= mddev->raid_disks) { + if (j < 0) { + printk(KERN_ERR + "md/raid0:%s: remove inactive devices before converting to RAID0\n", + mdname(mddev)); + goto abort; + } + if (j >= mddev->raid_disks) { printk(KERN_ERR "md/raid0:%s: bad disk number %d - " "aborting!\n", mdname(mddev), j); goto abort; @@ -289,7 +295,7 @@ abort: kfree(conf->strip_zone); kfree(conf->devlist); kfree(conf); - *private_conf = NULL; + *private_conf = ERR_PTR(err); return err; } @@ -411,7 +417,8 @@ static sector_t raid0_size(struct mddev *mddev, sector_t sectors, int raid_disks "%s does not support generic reshape\n", __func__); rdev_for_each(rdev, mddev) - array_sectors += rdev->sectors; + array_sectors += (rdev->sectors & + ~(sector_t)(mddev->chunk_sectors-1)); return array_sectors; } @@ -494,76 +501,56 @@ static inline int is_io_in_chunk_boundary(struct mddev *mddev, unsigned int chunk_sects, struct bio *bio) { if (likely(is_power_of_2(chunk_sects))) { - return chunk_sects >= ((bio->bi_sector & (chunk_sects-1)) - + (bio->bi_size >> 9)); + return chunk_sects >= + ((bio->bi_iter.bi_sector & (chunk_sects-1)) + + bio_sectors(bio)); } else{ - sector_t sector = bio->bi_sector; + sector_t sector = bio->bi_iter.bi_sector; return chunk_sects >= (sector_div(sector, chunk_sects) - + (bio->bi_size >> 9)); + + bio_sectors(bio)); } } static void raid0_make_request(struct mddev *mddev, struct bio *bio) { - unsigned int chunk_sects; - sector_t sector_offset; struct strip_zone *zone; struct md_rdev *tmp_dev; + struct bio *split; if (unlikely(bio->bi_rw & REQ_FLUSH)) { md_flush_request(mddev, bio); return; } - chunk_sects = mddev->chunk_sectors; - if (unlikely(!is_io_in_chunk_boundary(mddev, chunk_sects, bio))) { - sector_t sector = bio->bi_sector; - struct bio_pair *bp; - /* Sanity check -- queue functions should prevent this happening */ - if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) || - bio->bi_idx != 0) - goto bad_map; - /* This is a one page bio that upper layers - * refuse to split for us, so we need to split it. - */ - if (likely(is_power_of_2(chunk_sects))) - bp = bio_split(bio, chunk_sects - (sector & - (chunk_sects-1))); - else - bp = bio_split(bio, chunk_sects - - sector_div(sector, chunk_sects)); - raid0_make_request(mddev, &bp->bio1); - raid0_make_request(mddev, &bp->bio2); - bio_pair_release(bp); - return; - } - - sector_offset = bio->bi_sector; - zone = find_zone(mddev->private, §or_offset); - tmp_dev = map_sector(mddev, zone, bio->bi_sector, - §or_offset); - bio->bi_bdev = tmp_dev->bdev; - bio->bi_sector = sector_offset + zone->dev_start + - tmp_dev->data_offset; - - if (unlikely((bio->bi_rw & REQ_DISCARD) && - !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) { - /* Just ignore it */ - bio_endio(bio, 0); - return; - } + do { + sector_t sector = bio->bi_iter.bi_sector; + unsigned chunk_sects = mddev->chunk_sectors; - generic_make_request(bio); - return; + unsigned sectors = chunk_sects - + (likely(is_power_of_2(chunk_sects)) + ? (sector & (chunk_sects-1)) + : sector_div(sector, chunk_sects)); -bad_map: - printk("md/raid0:%s: make_request bug: can't convert block across chunks" - " or bigger than %dk %llu %d\n", - mdname(mddev), chunk_sects / 2, - (unsigned long long)bio->bi_sector, bio->bi_size >> 10); + if (sectors < bio_sectors(bio)) { + split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set); + bio_chain(split, bio); + } else { + split = bio; + } - bio_io_error(bio); - return; + zone = find_zone(mddev->private, §or); + tmp_dev = map_sector(mddev, zone, sector, §or); + split->bi_bdev = tmp_dev->bdev; + split->bi_iter.bi_sector = sector + zone->dev_start + + tmp_dev->data_offset; + + if (unlikely((split->bi_rw & REQ_DISCARD) && + !blk_queue_discard(bdev_get_queue(split->bi_bdev)))) { + /* Just ignore it */ + bio_endio(split, 0); + } else + generic_make_request(split); + } while (split != bio); } static void raid0_status(struct seq_file *seq, struct mddev *mddev) @@ -591,6 +578,7 @@ static void *raid0_takeover_raid45(struct mddev *mddev) mdname(mddev)); return ERR_PTR(-EINVAL); } + rdev->sectors = mddev->dev_sectors; } /* Set new parameters */ diff --git a/drivers/md/raid1.c b/drivers/md/raid1.c index d5bddfc4010..56e24c072b6 100644 --- a/drivers/md/raid1.c +++ b/drivers/md/raid1.c @@ -66,7 +66,8 @@ */ static int max_queued_requests = 1024; -static void allow_barrier(struct r1conf *conf); +static void allow_barrier(struct r1conf *conf, sector_t start_next_window, + sector_t bi_sector); static void lower_barrier(struct r1conf *conf); static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) @@ -84,17 +85,19 @@ static void r1bio_pool_free(void *r1_bio, void *data) } #define RESYNC_BLOCK_SIZE (64*1024) -//#define RESYNC_BLOCK_SIZE PAGE_SIZE +#define RESYNC_DEPTH 32 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) -#define RESYNC_WINDOW (2048*1024) +#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) +#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) +#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) { struct pool_info *pi = data; - struct page *page; struct r1bio *r1_bio; struct bio *bio; + int need_pages; int i, j; r1_bio = r1bio_pool_alloc(gfp_flags, pi); @@ -117,19 +120,15 @@ static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) * RESYNC_PAGES for each bio. */ if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) - j = pi->raid_disks; + need_pages = pi->raid_disks; else - j = 1; - while(j--) { + need_pages = 1; + for (j = 0; j < need_pages; j++) { bio = r1_bio->bios[j]; - for (i = 0; i < RESYNC_PAGES; i++) { - page = alloc_page(gfp_flags); - if (unlikely(!page)) - goto out_free_pages; + bio->bi_vcnt = RESYNC_PAGES; - bio->bi_io_vec[i].bv_page = page; - bio->bi_vcnt = i+1; - } + if (bio_alloc_pages(bio, gfp_flags)) + goto out_free_pages; } /* If not user-requests, copy the page pointers to all bios */ if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { @@ -144,10 +143,13 @@ static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) return r1_bio; out_free_pages: - for (j=0 ; j < pi->raid_disks; j++) - for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) - put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); - j = -1; + while (--j >= 0) { + struct bio_vec *bv; + + bio_for_each_segment_all(bv, r1_bio->bios[j], i) + __free_page(bv->bv_page); + } + out_free_bio: while (++j < pi->raid_disks) bio_put(r1_bio->bios[j]); @@ -235,6 +237,8 @@ static void call_bio_endio(struct r1bio *r1_bio) struct bio *bio = r1_bio->master_bio; int done; struct r1conf *conf = r1_bio->mddev->private; + sector_t start_next_window = r1_bio->start_next_window; + sector_t bi_sector = bio->bi_iter.bi_sector; if (bio->bi_phys_segments) { unsigned long flags; @@ -242,6 +246,11 @@ static void call_bio_endio(struct r1bio *r1_bio) bio->bi_phys_segments--; done = (bio->bi_phys_segments == 0); spin_unlock_irqrestore(&conf->device_lock, flags); + /* + * make_request() might be waiting for + * bi_phys_segments to decrease + */ + wake_up(&conf->wait_barrier); } else done = 1; @@ -253,7 +262,7 @@ static void call_bio_endio(struct r1bio *r1_bio) * Wake up any possible resync thread that waits for the device * to go idle. */ - allow_barrier(conf); + allow_barrier(conf, start_next_window, bi_sector); } } @@ -265,9 +274,8 @@ static void raid_end_bio_io(struct r1bio *r1_bio) if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { pr_debug("raid1: sync end %s on sectors %llu-%llu\n", (bio_data_dir(bio) == WRITE) ? "write" : "read", - (unsigned long long) bio->bi_sector, - (unsigned long long) bio->bi_sector + - (bio->bi_size >> 9) - 1); + (unsigned long long) bio->bi_iter.bi_sector, + (unsigned long long) bio_end_sector(bio) - 1); call_bio_endio(r1_bio); } @@ -427,7 +435,17 @@ static void raid1_end_write_request(struct bio *bio, int error) r1_bio->bios[mirror] = NULL; to_put = bio; - set_bit(R1BIO_Uptodate, &r1_bio->state); + /* + * Do not set R1BIO_Uptodate if the current device is + * rebuilding or Faulty. This is because we cannot use + * such device for properly reading the data back (we could + * potentially use it, if the current write would have felt + * before rdev->recovery_offset, but for simplicity we don't + * check this here. + */ + if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && + !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) + set_bit(R1BIO_Uptodate, &r1_bio->state); /* Maybe we can clear some bad blocks. */ if (is_badblock(conf->mirrors[mirror].rdev, @@ -456,9 +474,8 @@ static void raid1_end_write_request(struct bio *bio, int error) struct bio *mbio = r1_bio->master_bio; pr_debug("raid1: behind end write sectors" " %llu-%llu\n", - (unsigned long long) mbio->bi_sector, - (unsigned long long) mbio->bi_sector + - (mbio->bi_size >> 9) - 1); + (unsigned long long) mbio->bi_iter.bi_sector, + (unsigned long long) bio_end_sector(mbio) - 1); call_bio_endio(r1_bio); } } @@ -814,8 +831,6 @@ static void flush_pending_writes(struct r1conf *conf) * there is no normal IO happeing. It must arrange to call * lower_barrier when the particular background IO completes. */ -#define RESYNC_DEPTH 32 - static void raise_barrier(struct r1conf *conf) { spin_lock_irq(&conf->resync_lock); @@ -827,9 +842,19 @@ static void raise_barrier(struct r1conf *conf) /* block any new IO from starting */ conf->barrier++; - /* Now wait for all pending IO to complete */ + /* For these conditions we must wait: + * A: while the array is in frozen state + * B: while barrier >= RESYNC_DEPTH, meaning resync reach + * the max count which allowed. + * C: next_resync + RESYNC_SECTORS > start_next_window, meaning + * next resync will reach to the window which normal bios are + * handling. + */ wait_event_lock_irq(conf->wait_barrier, - !conf->nr_pending && conf->barrier < RESYNC_DEPTH, + !conf->array_frozen && + conf->barrier < RESYNC_DEPTH && + (conf->start_next_window >= + conf->next_resync + RESYNC_SECTORS), conf->resync_lock); spin_unlock_irq(&conf->resync_lock); @@ -845,10 +870,33 @@ static void lower_barrier(struct r1conf *conf) wake_up(&conf->wait_barrier); } -static void wait_barrier(struct r1conf *conf) +static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) { + bool wait = false; + + if (conf->array_frozen || !bio) + wait = true; + else if (conf->barrier && bio_data_dir(bio) == WRITE) { + if (conf->next_resync < RESYNC_WINDOW_SECTORS) + wait = true; + else if ((conf->next_resync - RESYNC_WINDOW_SECTORS + >= bio_end_sector(bio)) || + (conf->next_resync + NEXT_NORMALIO_DISTANCE + <= bio->bi_iter.bi_sector)) + wait = false; + else + wait = true; + } + + return wait; +} + +static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) +{ + sector_t sector = 0; + spin_lock_irq(&conf->resync_lock); - if (conf->barrier) { + if (need_to_wait_for_sync(conf, bio)) { conf->nr_waiting++; /* Wait for the barrier to drop. * However if there are already pending @@ -860,45 +908,87 @@ static void wait_barrier(struct r1conf *conf) * count down. */ wait_event_lock_irq(conf->wait_barrier, - !conf->barrier || - (conf->nr_pending && + !conf->array_frozen && + (!conf->barrier || + ((conf->start_next_window < + conf->next_resync + RESYNC_SECTORS) && current->bio_list && - !bio_list_empty(current->bio_list)), + !bio_list_empty(current->bio_list))), conf->resync_lock); conf->nr_waiting--; } + + if (bio && bio_data_dir(bio) == WRITE) { + if (conf->next_resync + NEXT_NORMALIO_DISTANCE + <= bio->bi_iter.bi_sector) { + if (conf->start_next_window == MaxSector) + conf->start_next_window = + conf->next_resync + + NEXT_NORMALIO_DISTANCE; + + if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) + <= bio->bi_iter.bi_sector) + conf->next_window_requests++; + else + conf->current_window_requests++; + sector = conf->start_next_window; + } + } + conf->nr_pending++; spin_unlock_irq(&conf->resync_lock); + return sector; } -static void allow_barrier(struct r1conf *conf) +static void allow_barrier(struct r1conf *conf, sector_t start_next_window, + sector_t bi_sector) { unsigned long flags; + spin_lock_irqsave(&conf->resync_lock, flags); conf->nr_pending--; + if (start_next_window) { + if (start_next_window == conf->start_next_window) { + if (conf->start_next_window + NEXT_NORMALIO_DISTANCE + <= bi_sector) + conf->next_window_requests--; + else + conf->current_window_requests--; + } else + conf->current_window_requests--; + + if (!conf->current_window_requests) { + if (conf->next_window_requests) { + conf->current_window_requests = + conf->next_window_requests; + conf->next_window_requests = 0; + conf->start_next_window += + NEXT_NORMALIO_DISTANCE; + } else + conf->start_next_window = MaxSector; + } + } spin_unlock_irqrestore(&conf->resync_lock, flags); wake_up(&conf->wait_barrier); } -static void freeze_array(struct r1conf *conf) +static void freeze_array(struct r1conf *conf, int extra) { /* stop syncio and normal IO and wait for everything to * go quite. - * We increment barrier and nr_waiting, and then - * wait until nr_pending match nr_queued+1 + * We wait until nr_pending match nr_queued+extra * This is called in the context of one normal IO request * that has failed. Thus any sync request that might be pending * will be blocked by nr_pending, and we need to wait for * pending IO requests to complete or be queued for re-try. - * Thus the number queued (nr_queued) plus this request (1) + * Thus the number queued (nr_queued) plus this request (extra) * must match the number of pending IOs (nr_pending) before * we continue. */ spin_lock_irq(&conf->resync_lock); - conf->barrier++; - conf->nr_waiting++; + conf->array_frozen = 1; wait_event_lock_irq_cmd(conf->wait_barrier, - conf->nr_pending == conf->nr_queued+1, + conf->nr_pending == conf->nr_queued+extra, conf->resync_lock, flush_pending_writes(conf)); spin_unlock_irq(&conf->resync_lock); @@ -907,8 +997,7 @@ static void unfreeze_array(struct r1conf *conf) { /* reverse the effect of the freeze */ spin_lock_irq(&conf->resync_lock); - conf->barrier--; - conf->nr_waiting--; + conf->array_frozen = 0; wake_up(&conf->wait_barrier); spin_unlock_irq(&conf->resync_lock); } @@ -925,7 +1014,7 @@ static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) if (unlikely(!bvecs)) return; - bio_for_each_segment(bvec, bio, i) { + bio_for_each_segment_all(bvec, bio, i) { bvecs[i] = *bvec; bvecs[i].bv_page = alloc_page(GFP_NOIO); if (unlikely(!bvecs[i].bv_page)) @@ -945,7 +1034,8 @@ do_sync_io: if (bvecs[i].bv_page) put_page(bvecs[i].bv_page); kfree(bvecs); - pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); + pr_debug("%dB behind alloc failed, doing sync I/O\n", + bio->bi_iter.bi_size); } struct raid1_plug_cb { @@ -967,6 +1057,7 @@ static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) bio_list_merge(&conf->pending_bio_list, &plug->pending); conf->pending_count += plug->pending_cnt; spin_unlock_irq(&conf->device_lock); + wake_up(&conf->wait_barrier); md_wakeup_thread(mddev->thread); kfree(plug); return; @@ -980,7 +1071,12 @@ static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) while (bio) { /* submit pending writes */ struct bio *next = bio->bi_next; bio->bi_next = NULL; - generic_make_request(bio); + if (unlikely((bio->bi_rw & REQ_DISCARD) && + !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) + /* Just ignore it */ + bio_endio(bio, 0); + else + generic_make_request(bio); bio = next; } kfree(plug); @@ -1000,12 +1096,14 @@ static void make_request(struct mddev *mddev, struct bio * bio) const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); const unsigned long do_discard = (bio->bi_rw & (REQ_DISCARD | REQ_SECURE)); + const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); struct md_rdev *blocked_rdev; struct blk_plug_cb *cb; struct raid1_plug_cb *plug = NULL; int first_clone; int sectors_handled; int max_sectors; + sector_t start_next_window; /* * Register the new request and wait if the reconstruction @@ -1016,8 +1114,8 @@ static void make_request(struct mddev *mddev, struct bio * bio) md_write_start(mddev, bio); /* wait on superblock update early */ if (bio_data_dir(bio) == WRITE && - bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && - bio->bi_sector < mddev->suspend_hi) { + bio_end_sector(bio) > mddev->suspend_lo && + bio->bi_iter.bi_sector < mddev->suspend_hi) { /* As the suspend_* range is controlled by * userspace, we want an interruptible * wait. @@ -1027,15 +1125,15 @@ static void make_request(struct mddev *mddev, struct bio * bio) flush_signals(current); prepare_to_wait(&conf->wait_barrier, &w, TASK_INTERRUPTIBLE); - if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || - bio->bi_sector >= mddev->suspend_hi) + if (bio_end_sector(bio) <= mddev->suspend_lo || + bio->bi_iter.bi_sector >= mddev->suspend_hi) break; schedule(); } finish_wait(&conf->wait_barrier, &w); } - wait_barrier(conf); + start_next_window = wait_barrier(conf, bio); bitmap = mddev->bitmap; @@ -1047,10 +1145,10 @@ static void make_request(struct mddev *mddev, struct bio * bio) r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); r1_bio->master_bio = bio; - r1_bio->sectors = bio->bi_size >> 9; + r1_bio->sectors = bio_sectors(bio); r1_bio->state = 0; r1_bio->mddev = mddev; - r1_bio->sector = bio->bi_sector; + r1_bio->sector = bio->bi_iter.bi_sector; /* We might need to issue multiple reads to different * devices if there are bad blocks around, so we keep @@ -1090,12 +1188,13 @@ read_again: r1_bio->read_disk = rdisk; read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); - md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, - max_sectors); + bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, + max_sectors); r1_bio->bios[rdisk] = read_bio; - read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; + read_bio->bi_iter.bi_sector = r1_bio->sector + + mirror->rdev->data_offset; read_bio->bi_bdev = mirror->rdev->bdev; read_bio->bi_end_io = raid1_end_read_request; read_bio->bi_rw = READ | do_sync; @@ -1107,7 +1206,7 @@ read_again: */ sectors_handled = (r1_bio->sector + max_sectors - - bio->bi_sector); + - bio->bi_iter.bi_sector); r1_bio->sectors = max_sectors; spin_lock_irq(&conf->device_lock); if (bio->bi_phys_segments == 0) @@ -1125,10 +1224,11 @@ read_again: r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); r1_bio->master_bio = bio; - r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; + r1_bio->sectors = bio_sectors(bio) - sectors_handled; r1_bio->state = 0; r1_bio->mddev = mddev; - r1_bio->sector = bio->bi_sector + sectors_handled; + r1_bio->sector = bio->bi_iter.bi_sector + + sectors_handled; goto read_again; } else generic_make_request(read_bio); @@ -1156,6 +1256,7 @@ read_again: disks = conf->raid_disks * 2; retry_write: + r1_bio->start_next_window = start_next_window; blocked_rdev = NULL; rcu_read_lock(); max_sectors = r1_bio->sectors; @@ -1224,14 +1325,24 @@ read_again: if (unlikely(blocked_rdev)) { /* Wait for this device to become unblocked */ int j; + sector_t old = start_next_window; for (j = 0; j < i; j++) if (r1_bio->bios[j]) rdev_dec_pending(conf->mirrors[j].rdev, mddev); r1_bio->state = 0; - allow_barrier(conf); + allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); md_wait_for_blocked_rdev(blocked_rdev, mddev); - wait_barrier(conf); + start_next_window = wait_barrier(conf, bio); + /* + * We must make sure the multi r1bios of bio have + * the same value of bi_phys_segments + */ + if (bio->bi_phys_segments && old && + old != start_next_window) + /* Wait for the former r1bio(s) to complete */ + wait_event(conf->wait_barrier, + bio->bi_phys_segments == 1); goto retry_write; } @@ -1247,7 +1358,7 @@ read_again: bio->bi_phys_segments++; spin_unlock_irq(&conf->device_lock); } - sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; + sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; atomic_set(&r1_bio->remaining, 1); atomic_set(&r1_bio->behind_remaining, 0); @@ -1259,7 +1370,7 @@ read_again: continue; mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); - md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); + bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); if (first_clone) { /* do behind I/O ? @@ -1282,14 +1393,10 @@ read_again: struct bio_vec *bvec; int j; - /* Yes, I really want the '__' version so that - * we clear any unused pointer in the io_vec, rather - * than leave them unchanged. This is important - * because when we come to free the pages, we won't - * know the original bi_idx, so we just free - * them all + /* + * We trimmed the bio, so _all is legit */ - __bio_for_each_segment(bvec, mbio, j, 0) + bio_for_each_segment_all(bvec, mbio, j) bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) atomic_inc(&r1_bio->behind_remaining); @@ -1297,11 +1404,12 @@ read_again: r1_bio->bios[i] = mbio; - mbio->bi_sector = (r1_bio->sector + + mbio->bi_iter.bi_sector = (r1_bio->sector + conf->mirrors[i].rdev->data_offset); mbio->bi_bdev = conf->mirrors[i].rdev->bdev; mbio->bi_end_io = raid1_end_write_request; - mbio->bi_rw = WRITE | do_flush_fua | do_sync | do_discard; + mbio->bi_rw = + WRITE | do_flush_fua | do_sync | do_discard | do_same; mbio->bi_private = r1_bio; atomic_inc(&r1_bio->remaining); @@ -1326,17 +1434,17 @@ read_again: /* Mustn't call r1_bio_write_done before this next test, * as it could result in the bio being freed. */ - if (sectors_handled < (bio->bi_size >> 9)) { + if (sectors_handled < bio_sectors(bio)) { r1_bio_write_done(r1_bio); /* We need another r1_bio. It has already been counted * in bio->bi_phys_segments */ r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); r1_bio->master_bio = bio; - r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; + r1_bio->sectors = bio_sectors(bio) - sectors_handled; r1_bio->state = 0; r1_bio->mddev = mddev; - r1_bio->sector = bio->bi_sector + sectors_handled; + r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; goto retry_write; } @@ -1434,11 +1542,14 @@ static void print_conf(struct r1conf *conf) static void close_sync(struct r1conf *conf) { - wait_barrier(conf); - allow_barrier(conf); + wait_barrier(conf, NULL); + allow_barrier(conf, 0, 0); mempool_destroy(conf->r1buf_pool); conf->r1buf_pool = NULL; + + conf->next_resync = 0; + conf->start_next_window = MaxSector; } static int raid1_spare_active(struct mddev *mddev) @@ -1475,6 +1586,7 @@ static int raid1_spare_active(struct mddev *mddev) } } if (rdev + && rdev->recovery_offset == MaxSector && !test_bit(Faulty, &rdev->flags) && !test_and_set_bit(In_sync, &rdev->flags)) { count++; @@ -1515,8 +1627,9 @@ static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) p = conf->mirrors+mirror; if (!p->rdev) { - disk_stack_limits(mddev->gendisk, rdev->bdev, - rdev->data_offset << 9); + if (mddev->gendisk) + disk_stack_limits(mddev->gendisk, rdev->bdev, + rdev->data_offset << 9); p->head_position = 0; rdev->raid_disk = mirror; @@ -1550,12 +1663,12 @@ static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) * we wait for all outstanding requests to complete. */ synchronize_sched(); - raise_barrier(conf); - lower_barrier(conf); + freeze_array(conf, 0); + unfreeze_array(conf); clear_bit(Unmerged, &rdev->flags); } md_integrity_add_rdev(rdev, mddev); - if (blk_queue_discard(bdev_get_queue(rdev->bdev))) + if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); print_conf(conf); return err; @@ -1601,11 +1714,11 @@ static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) */ struct md_rdev *repl = conf->mirrors[conf->raid_disks + number].rdev; - raise_barrier(conf); + freeze_array(conf, 0); clear_bit(Replacement, &repl->flags); p->rdev = repl; conf->mirrors[conf->raid_disks + number].rdev = NULL; - lower_barrier(conf); + unfreeze_array(conf); clear_bit(WantReplacement, &rdev->flags); } else clear_bit(WantReplacement, &rdev->flags); @@ -1844,6 +1957,40 @@ static int process_checks(struct r1bio *r1_bio) int i; int vcnt; + /* Fix variable parts of all bios */ + vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); + for (i = 0; i < conf->raid_disks * 2; i++) { + int j; + int size; + int uptodate; + struct bio *b = r1_bio->bios[i]; + if (b->bi_end_io != end_sync_read) + continue; + /* fixup the bio for reuse, but preserve BIO_UPTODATE */ + uptodate = test_bit(BIO_UPTODATE, &b->bi_flags); + bio_reset(b); + if (!uptodate) + clear_bit(BIO_UPTODATE, &b->bi_flags); + b->bi_vcnt = vcnt; + b->bi_iter.bi_size = r1_bio->sectors << 9; + b->bi_iter.bi_sector = r1_bio->sector + + conf->mirrors[i].rdev->data_offset; + b->bi_bdev = conf->mirrors[i].rdev->bdev; + b->bi_end_io = end_sync_read; + b->bi_private = r1_bio; + + size = b->bi_iter.bi_size; + for (j = 0; j < vcnt ; j++) { + struct bio_vec *bi; + bi = &b->bi_io_vec[j]; + bi->bv_offset = 0; + if (size > PAGE_SIZE) + bi->bv_len = PAGE_SIZE; + else + bi->bv_len = size; + size -= PAGE_SIZE; + } + } for (primary = 0; primary < conf->raid_disks * 2; primary++) if (r1_bio->bios[primary]->bi_end_io == end_sync_read && test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { @@ -1852,17 +1999,18 @@ static int process_checks(struct r1bio *r1_bio) break; } r1_bio->read_disk = primary; - vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); for (i = 0; i < conf->raid_disks * 2; i++) { int j; struct bio *pbio = r1_bio->bios[primary]; struct bio *sbio = r1_bio->bios[i]; - int size; + int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags); - if (r1_bio->bios[i]->bi_end_io != end_sync_read) + if (sbio->bi_end_io != end_sync_read) continue; + /* Now we can 'fixup' the BIO_UPTODATE flag */ + set_bit(BIO_UPTODATE, &sbio->bi_flags); - if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { + if (uptodate) { for (j = vcnt; j-- ; ) { struct page *p, *s; p = pbio->bi_io_vec[j].bv_page; @@ -1877,37 +2025,14 @@ static int process_checks(struct r1bio *r1_bio) if (j >= 0) atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) - && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { + && uptodate)) { /* No need to write to this device. */ sbio->bi_end_io = NULL; rdev_dec_pending(conf->mirrors[i].rdev, mddev); continue; } - /* fixup the bio for reuse */ - sbio->bi_vcnt = vcnt; - sbio->bi_size = r1_bio->sectors << 9; - sbio->bi_idx = 0; - sbio->bi_phys_segments = 0; - sbio->bi_flags &= ~(BIO_POOL_MASK - 1); - sbio->bi_flags |= 1 << BIO_UPTODATE; - sbio->bi_next = NULL; - sbio->bi_sector = r1_bio->sector + - conf->mirrors[i].rdev->data_offset; - sbio->bi_bdev = conf->mirrors[i].rdev->bdev; - size = sbio->bi_size; - for (j = 0; j < vcnt ; j++) { - struct bio_vec *bi; - bi = &sbio->bi_io_vec[j]; - bi->bv_offset = 0; - if (size > PAGE_SIZE) - bi->bv_len = PAGE_SIZE; - else - bi->bv_len = size; - size -= PAGE_SIZE; - memcpy(page_address(bi->bv_page), - page_address(pbio->bi_io_vec[j].bv_page), - PAGE_SIZE); - } + + bio_copy_data(sbio, pbio); } return 0; } @@ -1944,7 +2069,7 @@ static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) wbio->bi_rw = WRITE; wbio->bi_end_io = end_sync_write; atomic_inc(&r1_bio->remaining); - md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); + md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); generic_make_request(wbio); } @@ -2056,32 +2181,11 @@ static void fix_read_error(struct r1conf *conf, int read_disk, } } -static void bi_complete(struct bio *bio, int error) -{ - complete((struct completion *)bio->bi_private); -} - -static int submit_bio_wait(int rw, struct bio *bio) -{ - struct completion event; - rw |= REQ_SYNC; - - init_completion(&event); - bio->bi_private = &event; - bio->bi_end_io = bi_complete; - submit_bio(rw, bio); - wait_for_completion(&event); - - return test_bit(BIO_UPTODATE, &bio->bi_flags); -} - static int narrow_write_error(struct r1bio *r1_bio, int i) { struct mddev *mddev = r1_bio->mddev; struct r1conf *conf = mddev->private; struct md_rdev *rdev = conf->mirrors[i].rdev; - int vcnt, idx; - struct bio_vec *vec; /* bio has the data to be written to device 'i' where * we just recently had a write error. @@ -2109,33 +2213,35 @@ static int narrow_write_error(struct r1bio *r1_bio, int i) & ~(sector_t)(block_sectors - 1)) - sector; - if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { - vcnt = r1_bio->behind_page_count; - vec = r1_bio->behind_bvecs; - idx = 0; - while (vec[idx].bv_page == NULL) - idx++; - } else { - vcnt = r1_bio->master_bio->bi_vcnt; - vec = r1_bio->master_bio->bi_io_vec; - idx = r1_bio->master_bio->bi_idx; - } while (sect_to_write) { struct bio *wbio; if (sectors > sect_to_write) sectors = sect_to_write; /* Write at 'sector' for 'sectors'*/ - wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); - memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); - wbio->bi_sector = r1_bio->sector; + if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { + unsigned vcnt = r1_bio->behind_page_count; + struct bio_vec *vec = r1_bio->behind_bvecs; + + while (!vec->bv_page) { + vec++; + vcnt--; + } + + wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); + memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); + + wbio->bi_vcnt = vcnt; + } else { + wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); + } + wbio->bi_rw = WRITE; - wbio->bi_vcnt = vcnt; - wbio->bi_size = r1_bio->sectors << 9; - wbio->bi_idx = idx; + wbio->bi_iter.bi_sector = r1_bio->sector; + wbio->bi_iter.bi_size = r1_bio->sectors << 9; - md_trim_bio(wbio, sector - r1_bio->sector, sectors); - wbio->bi_sector += rdev->data_offset; + bio_trim(wbio, sector - r1_bio->sector, sectors); + wbio->bi_iter.bi_sector += rdev->data_offset; wbio->bi_bdev = rdev->bdev; if (submit_bio_wait(WRITE, wbio) == 0) /* failure! */ @@ -2222,7 +2328,7 @@ static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) * frozen */ if (mddev->ro == 0) { - freeze_array(conf); + freeze_array(conf, 1); fix_read_error(conf, r1_bio->read_disk, r1_bio->sector, r1_bio->sectors); unfreeze_array(conf); @@ -2249,7 +2355,8 @@ read_more: } r1_bio->read_disk = disk; bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); - md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); + bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, + max_sectors); r1_bio->bios[r1_bio->read_disk] = bio; rdev = conf->mirrors[disk].rdev; printk_ratelimited(KERN_ERR @@ -2258,7 +2365,7 @@ read_more: mdname(mddev), (unsigned long long)r1_bio->sector, bdevname(rdev->bdev, b)); - bio->bi_sector = r1_bio->sector + rdev->data_offset; + bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; bio->bi_bdev = rdev->bdev; bio->bi_end_io = raid1_end_read_request; bio->bi_rw = READ | do_sync; @@ -2267,7 +2374,7 @@ read_more: /* Drat - have to split this up more */ struct bio *mbio = r1_bio->master_bio; int sectors_handled = (r1_bio->sector + max_sectors - - mbio->bi_sector); + - mbio->bi_iter.bi_sector); r1_bio->sectors = max_sectors; spin_lock_irq(&conf->device_lock); if (mbio->bi_phys_segments == 0) @@ -2281,12 +2388,12 @@ read_more: r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); r1_bio->master_bio = mbio; - r1_bio->sectors = (mbio->bi_size >> 9) - - sectors_handled; + r1_bio->sectors = bio_sectors(mbio) - sectors_handled; r1_bio->state = 0; set_bit(R1BIO_ReadError, &r1_bio->state); r1_bio->mddev = mddev; - r1_bio->sector = mbio->bi_sector + sectors_handled; + r1_bio->sector = mbio->bi_iter.bi_sector + + sectors_handled; goto read_more; } else @@ -2456,18 +2563,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipp for (i = 0; i < conf->raid_disks * 2; i++) { struct md_rdev *rdev; bio = r1_bio->bios[i]; - - /* take from bio_init */ - bio->bi_next = NULL; - bio->bi_flags &= ~(BIO_POOL_MASK-1); - bio->bi_flags |= 1 << BIO_UPTODATE; - bio->bi_rw = READ; - bio->bi_vcnt = 0; - bio->bi_idx = 0; - bio->bi_phys_segments = 0; - bio->bi_size = 0; - bio->bi_end_io = NULL; - bio->bi_private = NULL; + bio_reset(bio); rdev = rcu_dereference(conf->mirrors[i].rdev); if (rdev == NULL || @@ -2521,7 +2617,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipp } if (bio->bi_end_io) { atomic_inc(&rdev->nr_pending); - bio->bi_sector = sector_nr + rdev->data_offset; + bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; bio->bi_bdev = rdev->bdev; bio->bi_private = r1_bio; } @@ -2621,7 +2717,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipp continue; /* remove last page from this bio */ bio->bi_vcnt--; - bio->bi_size -= len; + bio->bi_iter.bi_size -= len; bio->bi_flags &= ~(1<< BIO_SEG_VALID); } goto bio_full; @@ -2734,6 +2830,9 @@ static struct r1conf *setup_conf(struct mddev *mddev) conf->pending_count = 0; conf->recovery_disabled = mddev->recovery_disabled - 1; + conf->start_next_window = MaxSector; + conf->current_window_requests = conf->next_window_requests = 0; + err = -EIO; for (i = 0; i < conf->raid_disks * 2; i++) { @@ -2818,6 +2917,9 @@ static int run(struct mddev *mddev) if (IS_ERR(conf)) return PTR_ERR(conf); + if (mddev->queue) + blk_queue_max_write_same_sectors(mddev->queue, 0); + rdev_for_each(rdev, mddev) { if (!mddev->gendisk) continue; @@ -2888,13 +2990,14 @@ static int stop(struct mddev *mddev) atomic_read(&bitmap->behind_writes) == 0); } - raise_barrier(conf); - lower_barrier(conf); + freeze_array(conf, 0); + unfreeze_array(conf); md_unregister_thread(&mddev->thread); if (conf->r1bio_pool) mempool_destroy(conf->r1bio_pool); kfree(conf->mirrors); + safe_put_page(conf->tmppage); kfree(conf->poolinfo); kfree(conf); mddev->private = NULL; @@ -2998,7 +3101,7 @@ static int raid1_reshape(struct mddev *mddev) return -ENOMEM; } - raise_barrier(conf); + freeze_array(conf, 0); /* ok, everything is stopped */ oldpool = conf->r1bio_pool; @@ -3029,7 +3132,7 @@ static int raid1_reshape(struct mddev *mddev) conf->raid_disks = mddev->raid_disks = raid_disks; mddev->delta_disks = 0; - lower_barrier(conf); + unfreeze_array(conf); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); @@ -3047,10 +3150,10 @@ static void raid1_quiesce(struct mddev *mddev, int state) wake_up(&conf->wait_barrier); break; case 1: - raise_barrier(conf); + freeze_array(conf, 0); break; case 0: - lower_barrier(conf); + unfreeze_array(conf); break; } } @@ -3067,7 +3170,8 @@ static void *raid1_takeover(struct mddev *mddev) mddev->new_chunk_sectors = 0; conf = setup_conf(mddev); if (!IS_ERR(conf)) - conf->barrier = 1; + /* Array must appear to be quiesced */ + conf->array_frozen = 1; return conf; } return ERR_PTR(-EINVAL); diff --git a/drivers/md/raid1.h b/drivers/md/raid1.h index 0ff3715fb7e..9bebca7bff2 100644 --- a/drivers/md/raid1.h +++ b/drivers/md/raid1.h @@ -41,6 +41,19 @@ struct r1conf { */ sector_t next_resync; + /* When raid1 starts resync, we divide array into four partitions + * |---------|--------------|---------------------|-------------| + * next_resync start_next_window end_window + * start_next_window = next_resync + NEXT_NORMALIO_DISTANCE + * end_window = start_next_window + NEXT_NORMALIO_DISTANCE + * current_window_requests means the count of normalIO between + * start_next_window and end_window. + * next_window_requests means the count of normalIO after end_window. + * */ + sector_t start_next_window; + int current_window_requests; + int next_window_requests; + spinlock_t device_lock; /* list of 'struct r1bio' that need to be processed by raid1d, @@ -65,6 +78,7 @@ struct r1conf { int nr_waiting; int nr_queued; int barrier; + int array_frozen; /* Set to 1 if a full sync is needed, (fresh device added). * Cleared when a sync completes. @@ -111,6 +125,7 @@ struct r1bio { * in this BehindIO request */ sector_t sector; + sector_t start_next_window; int sectors; unsigned long state; struct mddev *mddev; diff --git a/drivers/md/raid10.c b/drivers/md/raid10.c index 64d48249c03..cb882aae9e2 100644 --- a/drivers/md/raid10.c +++ b/drivers/md/raid10.c @@ -38,21 +38,36 @@ * near_copies (stored in low byte of layout) * far_copies (stored in second byte of layout) * far_offset (stored in bit 16 of layout ) + * use_far_sets (stored in bit 17 of layout ) * - * The data to be stored is divided into chunks using chunksize. - * Each device is divided into far_copies sections. - * In each section, chunks are laid out in a style similar to raid0, but - * near_copies copies of each chunk is stored (each on a different drive). - * The starting device for each section is offset near_copies from the starting - * device of the previous section. - * Thus they are (near_copies*far_copies) of each chunk, and each is on a different - * drive. - * near_copies and far_copies must be at least one, and their product is at most - * raid_disks. + * The data to be stored is divided into chunks using chunksize. Each device + * is divided into far_copies sections. In each section, chunks are laid out + * in a style similar to raid0, but near_copies copies of each chunk is stored + * (each on a different drive). The starting device for each section is offset + * near_copies from the starting device of the previous section. Thus there + * are (near_copies * far_copies) of each chunk, and each is on a different + * drive. near_copies and far_copies must be at least one, and their product + * is at most raid_disks. * * If far_offset is true, then the far_copies are handled a bit differently. - * The copies are still in different stripes, but instead of be very far apart - * on disk, there are adjacent stripes. + * The copies are still in different stripes, but instead of being very far + * apart on disk, there are adjacent stripes. + * + * The far and offset algorithms are handled slightly differently if + * 'use_far_sets' is true. In this case, the array's devices are grouped into + * sets that are (near_copies * far_copies) in size. The far copied stripes + * are still shifted by 'near_copies' devices, but this shifting stays confined + * to the set rather than the entire array. This is done to improve the number + * of device combinations that can fail without causing the array to fail. + * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk + * on a device): + * A B C D A B C D E + * ... ... + * D A B C E A B C D + * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): + * [A B] [C D] [A B] [C D E] + * |...| |...| |...| | ... | + * [B A] [D C] [B A] [E C D] */ /* @@ -82,7 +97,7 @@ static int max_queued_requests = 1024; static void allow_barrier(struct r10conf *conf); static void lower_barrier(struct r10conf *conf); -static int enough(struct r10conf *conf, int ignore); +static int _enough(struct r10conf *conf, int previous, int ignore); static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped); static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); @@ -377,11 +392,9 @@ static void raid10_end_read_request(struct bio *bio, int error) * than fail the last device. Here we redefine * "uptodate" to mean "Don't want to retry" */ - unsigned long flags; - spin_lock_irqsave(&conf->device_lock, flags); - if (!enough(conf, rdev->raid_disk)) + if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), + rdev->raid_disk)) uptodate = 1; - spin_unlock_irqrestore(&conf->device_lock, flags); } if (uptodate) { raid_end_bio_io(r10_bio); @@ -475,7 +488,17 @@ static void raid10_end_write_request(struct bio *bio, int error) sector_t first_bad; int bad_sectors; - set_bit(R10BIO_Uptodate, &r10_bio->state); + /* + * Do not set R10BIO_Uptodate if the current device is + * rebuilding or Faulty. This is because we cannot use + * such device for properly reading the data back (we could + * potentially use it, if the current write would have felt + * before rdev->recovery_offset, but for simplicity we don't + * check this here. + */ + if (test_bit(In_sync, &rdev->flags) && + !test_bit(Faulty, &rdev->flags)) + set_bit(R10BIO_Uptodate, &r10_bio->state); /* Maybe we can clear some bad blocks. */ if (is_badblock(rdev, @@ -535,6 +558,13 @@ static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) sector_t stripe; int dev; int slot = 0; + int last_far_set_start, last_far_set_size; + + last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; + last_far_set_start *= geo->far_set_size; + + last_far_set_size = geo->far_set_size; + last_far_set_size += (geo->raid_disks % geo->far_set_size); /* now calculate first sector/dev */ chunk = r10bio->sector >> geo->chunk_shift; @@ -551,15 +581,25 @@ static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) /* and calculate all the others */ for (n = 0; n < geo->near_copies; n++) { int d = dev; + int set; sector_t s = sector; - r10bio->devs[slot].addr = sector; r10bio->devs[slot].devnum = d; + r10bio->devs[slot].addr = s; slot++; for (f = 1; f < geo->far_copies; f++) { + set = d / geo->far_set_size; d += geo->near_copies; - if (d >= geo->raid_disks) - d -= geo->raid_disks; + + if ((geo->raid_disks % geo->far_set_size) && + (d > last_far_set_start)) { + d -= last_far_set_start; + d %= last_far_set_size; + d += last_far_set_start; + } else { + d %= geo->far_set_size; + d += geo->far_set_size * set; + } s += geo->stride; r10bio->devs[slot].devnum = d; r10bio->devs[slot].addr = s; @@ -595,6 +635,20 @@ static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) * or recovery, so reshape isn't happening */ struct geom *geo = &conf->geo; + int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; + int far_set_size = geo->far_set_size; + int last_far_set_start; + + if (geo->raid_disks % geo->far_set_size) { + last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; + last_far_set_start *= geo->far_set_size; + + if (dev >= last_far_set_start) { + far_set_size = geo->far_set_size; + far_set_size += (geo->raid_disks % geo->far_set_size); + far_set_start = last_far_set_start; + } + } offset = sector & geo->chunk_mask; if (geo->far_offset) { @@ -602,13 +656,13 @@ static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) chunk = sector >> geo->chunk_shift; fc = sector_div(chunk, geo->far_copies); dev -= fc * geo->near_copies; - if (dev < 0) - dev += geo->raid_disks; + if (dev < far_set_start) + dev += far_set_size; } else { while (sector >= geo->stride) { sector -= geo->stride; - if (dev < geo->near_copies) - dev += geo->raid_disks - geo->near_copies; + if (dev < (geo->near_copies + far_set_start)) + dev += far_set_size - geo->near_copies; else dev -= geo->near_copies; } @@ -1009,17 +1063,17 @@ static void allow_barrier(struct r10conf *conf) wake_up(&conf->wait_barrier); } -static void freeze_array(struct r10conf *conf) +static void freeze_array(struct r10conf *conf, int extra) { /* stop syncio and normal IO and wait for everything to * go quiet. * We increment barrier and nr_waiting, and then - * wait until nr_pending match nr_queued+1 + * wait until nr_pending match nr_queued+extra * This is called in the context of one normal IO request * that has failed. Thus any sync request that might be pending * will be blocked by nr_pending, and we need to wait for * pending IO requests to complete or be queued for re-try. - * Thus the number queued (nr_queued) plus this request (1) + * Thus the number queued (nr_queued) plus this request (extra) * must match the number of pending IOs (nr_pending) before * we continue. */ @@ -1027,7 +1081,7 @@ static void freeze_array(struct r10conf *conf) conf->barrier++; conf->nr_waiting++; wait_event_lock_irq_cmd(conf->wait_barrier, - conf->nr_pending == conf->nr_queued+1, + conf->nr_pending == conf->nr_queued+extra, conf->resync_lock, flush_pending_writes(conf)); @@ -1073,6 +1127,7 @@ static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) bio_list_merge(&conf->pending_bio_list, &plug->pending); conf->pending_count += plug->pending_cnt; spin_unlock_irq(&conf->device_lock); + wake_up(&conf->wait_barrier); md_wakeup_thread(mddev->thread); kfree(plug); return; @@ -1086,25 +1141,29 @@ static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) while (bio) { /* submit pending writes */ struct bio *next = bio->bi_next; bio->bi_next = NULL; - generic_make_request(bio); + if (unlikely((bio->bi_rw & REQ_DISCARD) && + !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) + /* Just ignore it */ + bio_endio(bio, 0); + else + generic_make_request(bio); bio = next; } kfree(plug); } -static void make_request(struct mddev *mddev, struct bio * bio) +static void __make_request(struct mddev *mddev, struct bio *bio) { struct r10conf *conf = mddev->private; struct r10bio *r10_bio; struct bio *read_bio; int i; - sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); - int chunk_sects = chunk_mask + 1; const int rw = bio_data_dir(bio); const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); const unsigned long do_fua = (bio->bi_rw & REQ_FUA); const unsigned long do_discard = (bio->bi_rw & (REQ_DISCARD | REQ_SECURE)); + const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); unsigned long flags; struct md_rdev *blocked_rdev; struct blk_plug_cb *cb; @@ -1113,62 +1172,6 @@ static void make_request(struct mddev *mddev, struct bio * bio) int max_sectors; int sectors; - if (unlikely(bio->bi_rw & REQ_FLUSH)) { - md_flush_request(mddev, bio); - return; - } - - /* If this request crosses a chunk boundary, we need to - * split it. This will only happen for 1 PAGE (or less) requests. - */ - if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) - > chunk_sects - && (conf->geo.near_copies < conf->geo.raid_disks - || conf->prev.near_copies < conf->prev.raid_disks))) { - struct bio_pair *bp; - /* Sanity check -- queue functions should prevent this happening */ - if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) || - bio->bi_idx != 0) - goto bad_map; - /* This is a one page bio that upper layers - * refuse to split for us, so we need to split it. - */ - bp = bio_split(bio, - chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); - - /* Each of these 'make_request' calls will call 'wait_barrier'. - * If the first succeeds but the second blocks due to the resync - * thread raising the barrier, we will deadlock because the - * IO to the underlying device will be queued in generic_make_request - * and will never complete, so will never reduce nr_pending. - * So increment nr_waiting here so no new raise_barriers will - * succeed, and so the second wait_barrier cannot block. - */ - spin_lock_irq(&conf->resync_lock); - conf->nr_waiting++; - spin_unlock_irq(&conf->resync_lock); - - make_request(mddev, &bp->bio1); - make_request(mddev, &bp->bio2); - - spin_lock_irq(&conf->resync_lock); - conf->nr_waiting--; - wake_up(&conf->wait_barrier); - spin_unlock_irq(&conf->resync_lock); - - bio_pair_release(bp); - return; - bad_map: - printk("md/raid10:%s: make_request bug: can't convert block across chunks" - " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, - (unsigned long long)bio->bi_sector, bio->bi_size >> 10); - - bio_io_error(bio); - return; - } - - md_write_start(mddev, bio); - /* * Register the new request and wait if the reconstruction * thread has put up a bar for new requests. @@ -1176,26 +1179,27 @@ static void make_request(struct mddev *mddev, struct bio * bio) */ wait_barrier(conf); - sectors = bio->bi_size >> 9; + sectors = bio_sectors(bio); while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && - bio->bi_sector < conf->reshape_progress && - bio->bi_sector + sectors > conf->reshape_progress) { + bio->bi_iter.bi_sector < conf->reshape_progress && + bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { /* IO spans the reshape position. Need to wait for * reshape to pass */ allow_barrier(conf); wait_event(conf->wait_barrier, - conf->reshape_progress <= bio->bi_sector || - conf->reshape_progress >= bio->bi_sector + sectors); + conf->reshape_progress <= bio->bi_iter.bi_sector || + conf->reshape_progress >= bio->bi_iter.bi_sector + + sectors); wait_barrier(conf); } if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && bio_data_dir(bio) == WRITE && (mddev->reshape_backwards - ? (bio->bi_sector < conf->reshape_safe && - bio->bi_sector + sectors > conf->reshape_progress) - : (bio->bi_sector + sectors > conf->reshape_safe && - bio->bi_sector < conf->reshape_progress))) { + ? (bio->bi_iter.bi_sector < conf->reshape_safe && + bio->bi_iter.bi_sector + sectors > conf->reshape_progress) + : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && + bio->bi_iter.bi_sector < conf->reshape_progress))) { /* Need to update reshape_position in metadata */ mddev->reshape_position = conf->reshape_progress; set_bit(MD_CHANGE_DEVS, &mddev->flags); @@ -1213,7 +1217,7 @@ static void make_request(struct mddev *mddev, struct bio * bio) r10_bio->sectors = sectors; r10_bio->mddev = mddev; - r10_bio->sector = bio->bi_sector; + r10_bio->sector = bio->bi_iter.bi_sector; r10_bio->state = 0; /* We might need to issue multiple reads to different @@ -1242,13 +1246,13 @@ read_again: slot = r10_bio->read_slot; read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); - md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, - max_sectors); + bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, + max_sectors); r10_bio->devs[slot].bio = read_bio; r10_bio->devs[slot].rdev = rdev; - read_bio->bi_sector = r10_bio->devs[slot].addr + + read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + choose_data_offset(r10_bio, rdev); read_bio->bi_bdev = rdev->bdev; read_bio->bi_end_io = raid10_end_read_request; @@ -1259,15 +1263,15 @@ read_again: /* Could not read all from this device, so we will * need another r10_bio. */ - sectors_handled = (r10_bio->sectors + max_sectors - - bio->bi_sector); + sectors_handled = (r10_bio->sector + max_sectors + - bio->bi_iter.bi_sector); r10_bio->sectors = max_sectors; spin_lock_irq(&conf->device_lock); if (bio->bi_phys_segments == 0) bio->bi_phys_segments = 2; else bio->bi_phys_segments++; - spin_unlock(&conf->device_lock); + spin_unlock_irq(&conf->device_lock); /* Cannot call generic_make_request directly * as that will be queued in __generic_make_request * and subsequent mempool_alloc might block @@ -1278,11 +1282,11 @@ read_again: r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); r10_bio->master_bio = bio; - r10_bio->sectors = ((bio->bi_size >> 9) - - sectors_handled); + r10_bio->sectors = bio_sectors(bio) - sectors_handled; r10_bio->state = 0; r10_bio->mddev = mddev; - r10_bio->sector = bio->bi_sector + sectors_handled; + r10_bio->sector = bio->bi_iter.bi_sector + + sectors_handled; goto read_again; } else generic_make_request(read_bio); @@ -1440,7 +1444,8 @@ retry_write: bio->bi_phys_segments++; spin_unlock_irq(&conf->device_lock); } - sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; + sectors_handled = r10_bio->sector + max_sectors - + bio->bi_iter.bi_sector; atomic_set(&r10_bio->remaining, 1); bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); @@ -1451,16 +1456,17 @@ retry_write: if (r10_bio->devs[i].bio) { struct md_rdev *rdev = conf->mirrors[d].rdev; mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); - md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, - max_sectors); + bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, + max_sectors); r10_bio->devs[i].bio = mbio; - mbio->bi_sector = (r10_bio->devs[i].addr+ + mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ choose_data_offset(r10_bio, rdev)); mbio->bi_bdev = rdev->bdev; mbio->bi_end_io = raid10_end_write_request; - mbio->bi_rw = WRITE | do_sync | do_fua | do_discard; + mbio->bi_rw = + WRITE | do_sync | do_fua | do_discard | do_same; mbio->bi_private = r10_bio; atomic_inc(&r10_bio->remaining); @@ -1493,16 +1499,17 @@ retry_write: rdev = conf->mirrors[d].rdev; } mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); - md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, - max_sectors); + bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, + max_sectors); r10_bio->devs[i].repl_bio = mbio; - mbio->bi_sector = (r10_bio->devs[i].addr + + mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + choose_data_offset( r10_bio, rdev)); mbio->bi_bdev = rdev->bdev; mbio->bi_end_io = raid10_end_write_request; - mbio->bi_rw = WRITE | do_sync | do_fua | do_discard; + mbio->bi_rw = + WRITE | do_sync | do_fua | do_discard | do_same; mbio->bi_private = r10_bio; atomic_inc(&r10_bio->remaining); @@ -1519,7 +1526,7 @@ retry_write: * after checking if we need to go around again. */ - if (sectors_handled < (bio->bi_size >> 9)) { + if (sectors_handled < bio_sectors(bio)) { one_write_done(r10_bio); /* We need another r10_bio. It has already been counted * in bio->bi_phys_segments. @@ -1527,14 +1534,54 @@ retry_write: r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); r10_bio->master_bio = bio; - r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; + r10_bio->sectors = bio_sectors(bio) - sectors_handled; r10_bio->mddev = mddev; - r10_bio->sector = bio->bi_sector + sectors_handled; + r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; r10_bio->state = 0; goto retry_write; } one_write_done(r10_bio); +} + +static void make_request(struct mddev *mddev, struct bio *bio) +{ + struct r10conf *conf = mddev->private; + sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); + int chunk_sects = chunk_mask + 1; + + struct bio *split; + + if (unlikely(bio->bi_rw & REQ_FLUSH)) { + md_flush_request(mddev, bio); + return; + } + + md_write_start(mddev, bio); + + + do { + + /* + * If this request crosses a chunk boundary, we need to split + * it. + */ + if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + + bio_sectors(bio) > chunk_sects + && (conf->geo.near_copies < conf->geo.raid_disks + || conf->prev.near_copies < + conf->prev.raid_disks))) { + split = bio_split(bio, chunk_sects - + (bio->bi_iter.bi_sector & + (chunk_sects - 1)), + GFP_NOIO, fs_bio_set); + bio_chain(split, bio); + } else { + split = bio; + } + + __make_request(mddev, split); + } while (split != bio); /* In case raid10d snuck in to freeze_array */ wake_up(&conf->wait_barrier); @@ -1569,37 +1616,58 @@ static void status(struct seq_file *seq, struct mddev *mddev) * Don't consider the device numbered 'ignore' * as we might be about to remove it. */ -static int _enough(struct r10conf *conf, struct geom *geo, int ignore) +static int _enough(struct r10conf *conf, int previous, int ignore) { int first = 0; + int has_enough = 0; + int disks, ncopies; + if (previous) { + disks = conf->prev.raid_disks; + ncopies = conf->prev.near_copies; + } else { + disks = conf->geo.raid_disks; + ncopies = conf->geo.near_copies; + } + rcu_read_lock(); do { int n = conf->copies; int cnt = 0; int this = first; while (n--) { - if (conf->mirrors[this].rdev && - this != ignore) + struct md_rdev *rdev; + if (this != ignore && + (rdev = rcu_dereference(conf->mirrors[this].rdev)) && + test_bit(In_sync, &rdev->flags)) cnt++; - this = (this+1) % geo->raid_disks; + this = (this+1) % disks; } if (cnt == 0) - return 0; - first = (first + geo->near_copies) % geo->raid_disks; + goto out; + first = (first + ncopies) % disks; } while (first != 0); - return 1; + has_enough = 1; +out: + rcu_read_unlock(); + return has_enough; } static int enough(struct r10conf *conf, int ignore) { - return _enough(conf, &conf->geo, ignore) && - _enough(conf, &conf->prev, ignore); + /* when calling 'enough', both 'prev' and 'geo' must + * be stable. + * This is ensured if ->reconfig_mutex or ->device_lock + * is held. + */ + return _enough(conf, 0, ignore) && + _enough(conf, 1, ignore); } static void error(struct mddev *mddev, struct md_rdev *rdev) { char b[BDEVNAME_SIZE]; struct r10conf *conf = mddev->private; + unsigned long flags; /* * If it is not operational, then we have already marked it as dead @@ -1607,18 +1675,18 @@ static void error(struct mddev *mddev, struct md_rdev *rdev) * next level up know. * else mark the drive as failed */ + spin_lock_irqsave(&conf->device_lock, flags); if (test_bit(In_sync, &rdev->flags) - && !enough(conf, rdev->raid_disk)) + && !enough(conf, rdev->raid_disk)) { /* * Don't fail the drive, just return an IO error. */ + spin_unlock_irqrestore(&conf->device_lock, flags); return; + } if (test_and_clear_bit(In_sync, &rdev->flags)) { - unsigned long flags; - spin_lock_irqsave(&conf->device_lock, flags); mddev->degraded++; - spin_unlock_irqrestore(&conf->device_lock, flags); - /* + /* * if recovery is running, make sure it aborts. */ set_bit(MD_RECOVERY_INTR, &mddev->recovery); @@ -1626,6 +1694,7 @@ static void error(struct mddev *mddev, struct md_rdev *rdev) set_bit(Blocked, &rdev->flags); set_bit(Faulty, &rdev->flags); set_bit(MD_CHANGE_DEVS, &mddev->flags); + spin_unlock_irqrestore(&conf->device_lock, flags); printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n" "md/raid10:%s: Operation continuing on %d devices.\n", @@ -1699,6 +1768,7 @@ static int raid10_spare_active(struct mddev *mddev) } sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); } else if (tmp->rdev + && tmp->rdev->recovery_offset == MaxSector && !test_bit(Faulty, &tmp->rdev->flags) && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { count++; @@ -1728,7 +1798,7 @@ static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) * very different from resync */ return -EBUSY; - if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) + if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) return -EINVAL; if (rdev->raid_disk >= 0) @@ -1756,15 +1826,17 @@ static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) set_bit(Replacement, &rdev->flags); rdev->raid_disk = mirror; err = 0; - disk_stack_limits(mddev->gendisk, rdev->bdev, - rdev->data_offset << 9); + if (mddev->gendisk) + disk_stack_limits(mddev->gendisk, rdev->bdev, + rdev->data_offset << 9); conf->fullsync = 1; rcu_assign_pointer(p->replacement, rdev); break; } - disk_stack_limits(mddev->gendisk, rdev->bdev, - rdev->data_offset << 9); + if (mddev->gendisk) + disk_stack_limits(mddev->gendisk, rdev->bdev, + rdev->data_offset << 9); p->head_position = 0; p->recovery_disabled = mddev->recovery_disabled - 1; @@ -1784,8 +1856,8 @@ static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) * we wait for all outstanding requests to complete. */ synchronize_sched(); - raise_barrier(conf, 0); - lower_barrier(conf); + freeze_array(conf, 0); + unfreeze_array(conf); clear_bit(Unmerged, &rdev->flags); } md_integrity_add_rdev(rdev, mddev); @@ -2012,11 +2084,17 @@ static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) * both 'first' and 'i', so we just compare them. * All vec entries are PAGE_SIZE; */ - for (j = 0; j < vcnt; j++) + int sectors = r10_bio->sectors; + for (j = 0; j < vcnt; j++) { + int len = PAGE_SIZE; + if (sectors < (len / 512)) + len = sectors * 512; if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), page_address(tbio->bi_io_vec[j].bv_page), - fbio->bi_io_vec[j].bv_len)) + len)) break; + sectors -= len/512; + } if (j == vcnt) continue; atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); @@ -2029,16 +2107,13 @@ static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) * First we need to fixup bv_offset, bv_len and * bi_vecs, as the read request might have corrupted these */ + bio_reset(tbio); + tbio->bi_vcnt = vcnt; - tbio->bi_size = r10_bio->sectors << 9; - tbio->bi_idx = 0; - tbio->bi_phys_segments = 0; - tbio->bi_flags &= ~(BIO_POOL_MASK - 1); - tbio->bi_flags |= 1 << BIO_UPTODATE; - tbio->bi_next = NULL; + tbio->bi_iter.bi_size = r10_bio->sectors << 9; tbio->bi_rw = WRITE; tbio->bi_private = r10_bio; - tbio->bi_sector = r10_bio->devs[i].addr; + tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; for (j=0; j < vcnt ; j++) { tbio->bi_io_vec[j].bv_offset = 0; @@ -2053,9 +2128,9 @@ static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) d = r10_bio->devs[i].devnum; atomic_inc(&conf->mirrors[d].rdev->nr_pending); atomic_inc(&r10_bio->remaining); - md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); + md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); - tbio->bi_sector += conf->mirrors[d].rdev->data_offset; + tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; tbio->bi_bdev = conf->mirrors[d].rdev->bdev; generic_make_request(tbio); } @@ -2078,7 +2153,7 @@ static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) d = r10_bio->devs[i].devnum; atomic_inc(&r10_bio->remaining); md_sync_acct(conf->mirrors[d].replacement->bdev, - tbio->bi_size >> 9); + bio_sectors(tbio)); generic_make_request(tbio); } @@ -2202,15 +2277,21 @@ static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) d = r10_bio->devs[1].devnum; wbio = r10_bio->devs[1].bio; wbio2 = r10_bio->devs[1].repl_bio; + /* Need to test wbio2->bi_end_io before we call + * generic_make_request as if the former is NULL, + * the latter is free to free wbio2. + */ + if (wbio2 && !wbio2->bi_end_io) + wbio2 = NULL; if (wbio->bi_end_io) { atomic_inc(&conf->mirrors[d].rdev->nr_pending); - md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); + md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); generic_make_request(wbio); } - if (wbio2 && wbio2->bi_end_io) { + if (wbio2) { atomic_inc(&conf->mirrors[d].replacement->nr_pending); md_sync_acct(conf->mirrors[d].replacement->bdev, - wbio2->bi_size >> 9); + bio_sectors(wbio2)); generic_make_request(wbio2); } } @@ -2481,25 +2562,6 @@ static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10 } } -static void bi_complete(struct bio *bio, int error) -{ - complete((struct completion *)bio->bi_private); -} - -static int submit_bio_wait(int rw, struct bio *bio) -{ - struct completion event; - rw |= REQ_SYNC; - - init_completion(&event); - bio->bi_private = &event; - bio->bi_end_io = bi_complete; - submit_bio(rw, bio); - wait_for_completion(&event); - - return test_bit(BIO_UPTODATE, &bio->bi_flags); -} - static int narrow_write_error(struct r10bio *r10_bio, int i) { struct bio *bio = r10_bio->master_bio; @@ -2538,8 +2600,8 @@ static int narrow_write_error(struct r10bio *r10_bio, int i) sectors = sect_to_write; /* Write at 'sector' for 'sectors' */ wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); - md_trim_bio(wbio, sector - bio->bi_sector, sectors); - wbio->bi_sector = (r10_bio->devs[i].addr+ + bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); + wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ choose_data_offset(r10_bio, rdev) + (sector - r10_bio->sector)); wbio->bi_bdev = rdev->bdev; @@ -2581,7 +2643,7 @@ static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) r10_bio->devs[slot].bio = NULL; if (mddev->ro == 0) { - freeze_array(conf); + freeze_array(conf, 1); fix_read_error(conf, mddev, r10_bio); unfreeze_array(conf); } else @@ -2611,12 +2673,10 @@ read_more: (unsigned long long)r10_bio->sector); bio = bio_clone_mddev(r10_bio->master_bio, GFP_NOIO, mddev); - md_trim_bio(bio, - r10_bio->sector - bio->bi_sector, - max_sectors); + bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); r10_bio->devs[slot].bio = bio; r10_bio->devs[slot].rdev = rdev; - bio->bi_sector = r10_bio->devs[slot].addr + bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + choose_data_offset(r10_bio, rdev); bio->bi_bdev = rdev->bdev; bio->bi_rw = READ | do_sync; @@ -2627,7 +2687,7 @@ read_more: struct bio *mbio = r10_bio->master_bio; int sectors_handled = r10_bio->sector + max_sectors - - mbio->bi_sector; + - mbio->bi_iter.bi_sector; r10_bio->sectors = max_sectors; spin_lock_irq(&conf->device_lock); if (mbio->bi_phys_segments == 0) @@ -2640,13 +2700,12 @@ read_more: r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); r10_bio->master_bio = mbio; - r10_bio->sectors = (mbio->bi_size >> 9) - - sectors_handled; + r10_bio->sectors = bio_sectors(mbio) - sectors_handled; r10_bio->state = 0; set_bit(R10BIO_ReadError, &r10_bio->state); r10_bio->mddev = mddev; - r10_bio->sector = mbio->bi_sector + r10_bio->sector = mbio->bi_iter.bi_sector + sectors_handled; goto read_more; @@ -2863,6 +2922,21 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, if (init_resync(conf)) return 0; + /* + * Allow skipping a full rebuild for incremental assembly + * of a clean array, like RAID1 does. + */ + if (mddev->bitmap == NULL && + mddev->recovery_cp == MaxSector && + mddev->reshape_position == MaxSector && + !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && + !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && + !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && + conf->fullsync == 0) { + *skipped = 1; + return mddev->dev_sectors - sector_nr; + } + skipped: max_sector = mddev->dev_sectors; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || @@ -3062,13 +3136,15 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, } } bio = r10_bio->devs[0].bio; + bio_reset(bio); bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_read; bio->bi_rw = READ; from_addr = r10_bio->devs[j].addr; - bio->bi_sector = from_addr + rdev->data_offset; + bio->bi_iter.bi_sector = from_addr + + rdev->data_offset; bio->bi_bdev = rdev->bdev; atomic_inc(&rdev->nr_pending); /* and we write to 'i' (if not in_sync) */ @@ -3086,12 +3162,13 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, rdev = mirror->rdev; if (!test_bit(In_sync, &rdev->flags)) { bio = r10_bio->devs[1].bio; + bio_reset(bio); bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_write; bio->bi_rw = WRITE; - bio->bi_sector = to_addr + bio->bi_iter.bi_sector = to_addr + rdev->data_offset; bio->bi_bdev = rdev->bdev; atomic_inc(&r10_bio->remaining); @@ -3114,12 +3191,14 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, if (rdev == NULL || bio == NULL || test_bit(Faulty, &rdev->flags)) break; + bio_reset(bio); bio->bi_next = biolist; biolist = bio; bio->bi_private = r10_bio; bio->bi_end_io = end_sync_write; bio->bi_rw = WRITE; - bio->bi_sector = to_addr + rdev->data_offset; + bio->bi_iter.bi_sector = to_addr + + rdev->data_offset; bio->bi_bdev = rdev->bdev; atomic_inc(&r10_bio->remaining); break; @@ -3127,10 +3206,6 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, if (j == conf->copies) { /* Cannot recover, so abort the recovery or * record a bad block */ - put_buf(r10_bio); - if (rb2) - atomic_dec(&rb2->remaining); - r10_bio = rb2; if (any_working) { /* problem is that there are bad blocks * on other device(s) @@ -3162,6 +3237,10 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, mirror->recovery_disabled = mddev->recovery_disabled; } + put_buf(r10_bio); + if (rb2) + atomic_dec(&rb2->remaining); + r10_bio = rb2; break; } } @@ -3212,7 +3291,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, r10_bio->devs[i].repl_bio->bi_end_io = NULL; bio = r10_bio->devs[i].bio; - bio->bi_end_io = NULL; + bio_reset(bio); clear_bit(BIO_UPTODATE, &bio->bi_flags); if (conf->mirrors[d].rdev == NULL || test_bit(Faulty, &conf->mirrors[d].rdev->flags)) @@ -3237,7 +3316,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, bio->bi_private = r10_bio; bio->bi_end_io = end_sync_read; bio->bi_rw = READ; - bio->bi_sector = sector + + bio->bi_iter.bi_sector = sector + conf->mirrors[d].rdev->data_offset; bio->bi_bdev = conf->mirrors[d].rdev->bdev; count++; @@ -3249,6 +3328,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, /* Need to set up for writing to the replacement */ bio = r10_bio->devs[i].repl_bio; + bio_reset(bio); clear_bit(BIO_UPTODATE, &bio->bi_flags); sector = r10_bio->devs[i].addr; @@ -3258,7 +3338,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, bio->bi_private = r10_bio; bio->bi_end_io = end_sync_write; bio->bi_rw = WRITE; - bio->bi_sector = sector + + bio->bi_iter.bi_sector = sector + conf->mirrors[d].replacement->data_offset; bio->bi_bdev = conf->mirrors[d].replacement->bdev; count++; @@ -3282,17 +3362,6 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, } } - for (bio = biolist; bio ; bio=bio->bi_next) { - - bio->bi_flags &= ~(BIO_POOL_MASK - 1); - if (bio->bi_end_io) - bio->bi_flags |= 1 << BIO_UPTODATE; - bio->bi_vcnt = 0; - bio->bi_idx = 0; - bio->bi_phys_segments = 0; - bio->bi_size = 0; - } - nr_sectors = 0; if (sector_nr + max_sync < max_sector) max_sector = sector_nr + max_sync; @@ -3316,7 +3385,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, bio2 = bio2->bi_next) { /* remove last page from this bio */ bio2->bi_vcnt--; - bio2->bi_size -= len; + bio2->bi_iter.bi_size -= len; bio2->bi_flags &= ~(1<< BIO_SEG_VALID); } goto bio_full; @@ -3337,6 +3406,7 @@ static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, if (bio->bi_end_io == end_sync_read) { md_sync_acct(bio->bi_bdev, nr_sectors); + set_bit(BIO_UPTODATE, &bio->bi_flags); generic_make_request(bio); } } @@ -3436,7 +3506,7 @@ static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) disks = mddev->raid_disks + mddev->delta_disks; break; } - if (layout >> 17) + if (layout >> 18) return -1; if (chunk < (PAGE_SIZE >> 9) || !is_power_of_2(chunk)) @@ -3448,6 +3518,7 @@ static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) geo->near_copies = nc; geo->far_copies = fc; geo->far_offset = fo; + geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; geo->chunk_mask = chunk - 1; geo->chunk_shift = ffz(~chunk); return nc*fc; @@ -3482,7 +3553,7 @@ static struct r10conf *setup_conf(struct mddev *mddev) /* FIXME calc properly */ conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + - max(0,mddev->delta_disks)), + max(0,-mddev->delta_disks)), GFP_KERNEL); if (!conf->mirrors) goto out; @@ -3569,6 +3640,7 @@ static int run(struct mddev *mddev) if (mddev->queue) { blk_queue_max_discard_sectors(mddev->queue, mddev->chunk_sectors); + blk_queue_max_write_same_sectors(mddev->queue, 0); blk_queue_io_min(mddev->queue, chunk_size); if (conf->geo.raid_disks % conf->geo.near_copies) blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); @@ -3640,7 +3712,7 @@ static int run(struct mddev *mddev) conf->geo.far_offset == 0) goto out_free_conf; if (conf->prev.far_copies != 1 && - conf->geo.far_offset == 0) + conf->prev.far_offset == 0) goto out_free_conf; } @@ -3663,7 +3735,8 @@ static int run(struct mddev *mddev) !test_bit(In_sync, &disk->rdev->flags)) { disk->head_position = 0; mddev->degraded++; - if (disk->rdev) + if (disk->rdev && + disk->rdev->saved_raid_disk < 0) conf->fullsync = 1; } disk->recovery_disabled = mddev->recovery_disabled - 1; @@ -3757,6 +3830,7 @@ static int stop(struct mddev *mddev) if (conf->r10bio_pool) mempool_destroy(conf->r10bio_pool); + safe_put_page(conf->tmppage); kfree(conf->mirrors); kfree(conf); mddev->private = NULL; @@ -4299,7 +4373,11 @@ static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, set_bit(MD_CHANGE_DEVS, &mddev->flags); md_wakeup_thread(mddev->thread); wait_event(mddev->sb_wait, mddev->flags == 0 || - kthread_should_stop()); + test_bit(MD_RECOVERY_INTR, &mddev->recovery)); + if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { + allow_barrier(conf); + return sectors_done; + } conf->reshape_safe = mddev->reshape_position; allow_barrier(conf); } @@ -4328,7 +4406,7 @@ read_more: read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); read_bio->bi_bdev = rdev->bdev; - read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr + read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr + rdev->data_offset); read_bio->bi_private = r10_bio; read_bio->bi_end_io = end_sync_read; @@ -4336,8 +4414,7 @@ read_more: read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); read_bio->bi_flags |= 1 << BIO_UPTODATE; read_bio->bi_vcnt = 0; - read_bio->bi_idx = 0; - read_bio->bi_size = 0; + read_bio->bi_iter.bi_size = 0; r10_bio->master_bio = read_bio; r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; @@ -4360,17 +4437,15 @@ read_more: } if (!rdev2 || test_bit(Faulty, &rdev2->flags)) continue; + + bio_reset(b); b->bi_bdev = rdev2->bdev; - b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; + b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + + rdev2->new_data_offset; b->bi_private = r10_bio; b->bi_end_io = end_reshape_write; b->bi_rw = WRITE; - b->bi_flags &= ~(BIO_POOL_MASK - 1); - b->bi_flags |= 1 << BIO_UPTODATE; b->bi_next = blist; - b->bi_vcnt = 0; - b->bi_idx = 0; - b->bi_size = 0; blist = b; } @@ -4393,7 +4468,7 @@ read_more: bio2 = bio2->bi_next) { /* Remove last page from this bio */ bio2->bi_vcnt--; - bio2->bi_size -= len; + bio2->bi_iter.bi_size -= len; bio2->bi_flags &= ~(1<<BIO_SEG_VALID); } goto bio_full; diff --git a/drivers/md/raid10.h b/drivers/md/raid10.h index 1054cf60234..157d69e83ff 100644 --- a/drivers/md/raid10.h +++ b/drivers/md/raid10.h @@ -33,6 +33,11 @@ struct r10conf { * far_offset, in which case it is * 1 stripe. */ + int far_set_size; /* The number of devices in a set, + * where a 'set' are devices that + * contain far/offset copies of + * each other. + */ int chunk_shift; /* shift from chunks to sectors */ sector_t chunk_mask; } prev, geo; diff --git a/drivers/md/raid5.c b/drivers/md/raid5.c index 19d77a02663..6234b2e8458 100644 --- a/drivers/md/raid5.c +++ b/drivers/md/raid5.c @@ -53,6 +53,7 @@ #include <linux/cpu.h> #include <linux/slab.h> #include <linux/ratelimit.h> +#include <linux/nodemask.h> #include <trace/events/block.h> #include "md.h" @@ -60,6 +61,10 @@ #include "raid0.h" #include "bitmap.h" +#define cpu_to_group(cpu) cpu_to_node(cpu) +#define ANY_GROUP NUMA_NO_NODE + +static struct workqueue_struct *raid5_wq; /* * Stripe cache */ @@ -72,6 +77,7 @@ #define BYPASS_THRESHOLD 1 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) #define HASH_MASK (NR_HASH - 1) +#define MAX_STRIPE_BATCH 8 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) { @@ -79,6 +85,42 @@ static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) return &conf->stripe_hashtbl[hash]; } +static inline int stripe_hash_locks_hash(sector_t sect) +{ + return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; +} + +static inline void lock_device_hash_lock(struct r5conf *conf, int hash) +{ + spin_lock_irq(conf->hash_locks + hash); + spin_lock(&conf->device_lock); +} + +static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) +{ + spin_unlock(&conf->device_lock); + spin_unlock_irq(conf->hash_locks + hash); +} + +static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) +{ + int i; + local_irq_disable(); + spin_lock(conf->hash_locks); + for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) + spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); + spin_lock(&conf->device_lock); +} + +static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) +{ + int i; + spin_unlock(&conf->device_lock); + for (i = NR_STRIPE_HASH_LOCKS; i; i--) + spin_unlock(conf->hash_locks + i - 1); + local_irq_enable(); +} + /* bio's attached to a stripe+device for I/O are linked together in bi_sector * order without overlap. There may be several bio's per stripe+device, and * a bio could span several devices. @@ -90,8 +132,8 @@ static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) */ static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) { - int sectors = bio->bi_size >> 9; - if (bio->bi_sector + sectors < sector + STRIPE_SECTORS) + int sectors = bio_sectors(bio); + if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) return bio->bi_next; else return NULL; @@ -183,7 +225,7 @@ static void return_io(struct bio *return_bi) return_bi = bi->bi_next; bi->bi_next = NULL; - bi->bi_size = 0; + bi->bi_iter.bi_size = 0; trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), bi, 0); bio_endio(bi, 0); @@ -200,21 +242,73 @@ static int stripe_operations_active(struct stripe_head *sh) test_bit(STRIPE_COMPUTE_RUN, &sh->state); } -static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) +static void raid5_wakeup_stripe_thread(struct stripe_head *sh) +{ + struct r5conf *conf = sh->raid_conf; + struct r5worker_group *group; + int thread_cnt; + int i, cpu = sh->cpu; + + if (!cpu_online(cpu)) { + cpu = cpumask_any(cpu_online_mask); + sh->cpu = cpu; + } + + if (list_empty(&sh->lru)) { + struct r5worker_group *group; + group = conf->worker_groups + cpu_to_group(cpu); + list_add_tail(&sh->lru, &group->handle_list); + group->stripes_cnt++; + sh->group = group; + } + + if (conf->worker_cnt_per_group == 0) { + md_wakeup_thread(conf->mddev->thread); + return; + } + + group = conf->worker_groups + cpu_to_group(sh->cpu); + + group->workers[0].working = true; + /* at least one worker should run to avoid race */ + queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); + + thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; + /* wakeup more workers */ + for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { + if (group->workers[i].working == false) { + group->workers[i].working = true; + queue_work_on(sh->cpu, raid5_wq, + &group->workers[i].work); + thread_cnt--; + } + } +} + +static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, + struct list_head *temp_inactive_list) { BUG_ON(!list_empty(&sh->lru)); BUG_ON(atomic_read(&conf->active_stripes)==0); if (test_bit(STRIPE_HANDLE, &sh->state)) { if (test_bit(STRIPE_DELAYED, &sh->state) && - !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) + !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { list_add_tail(&sh->lru, &conf->delayed_list); - else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && + if (atomic_read(&conf->preread_active_stripes) + < IO_THRESHOLD) + md_wakeup_thread(conf->mddev->thread); + } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && sh->bm_seq - conf->seq_write > 0) list_add_tail(&sh->lru, &conf->bitmap_list); else { clear_bit(STRIPE_DELAYED, &sh->state); clear_bit(STRIPE_BIT_DELAY, &sh->state); - list_add_tail(&sh->lru, &conf->handle_list); + if (conf->worker_cnt_per_group == 0) { + list_add_tail(&sh->lru, &conf->handle_list); + } else { + raid5_wakeup_stripe_thread(sh); + return; + } } md_wakeup_thread(conf->mddev->thread); } else { @@ -224,30 +318,125 @@ static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh) < IO_THRESHOLD) md_wakeup_thread(conf->mddev->thread); atomic_dec(&conf->active_stripes); - if (!test_bit(STRIPE_EXPANDING, &sh->state)) { - list_add_tail(&sh->lru, &conf->inactive_list); - wake_up(&conf->wait_for_stripe); - if (conf->retry_read_aligned) - md_wakeup_thread(conf->mddev->thread); - } + if (!test_bit(STRIPE_EXPANDING, &sh->state)) + list_add_tail(&sh->lru, temp_inactive_list); } } -static void __release_stripe(struct r5conf *conf, struct stripe_head *sh) +static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, + struct list_head *temp_inactive_list) { if (atomic_dec_and_test(&sh->count)) - do_release_stripe(conf, sh); + do_release_stripe(conf, sh, temp_inactive_list); +} + +/* + * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list + * + * Be careful: Only one task can add/delete stripes from temp_inactive_list at + * given time. Adding stripes only takes device lock, while deleting stripes + * only takes hash lock. + */ +static void release_inactive_stripe_list(struct r5conf *conf, + struct list_head *temp_inactive_list, + int hash) +{ + int size; + bool do_wakeup = false; + unsigned long flags; + + if (hash == NR_STRIPE_HASH_LOCKS) { + size = NR_STRIPE_HASH_LOCKS; + hash = NR_STRIPE_HASH_LOCKS - 1; + } else + size = 1; + while (size) { + struct list_head *list = &temp_inactive_list[size - 1]; + + /* + * We don't hold any lock here yet, get_active_stripe() might + * remove stripes from the list + */ + if (!list_empty_careful(list)) { + spin_lock_irqsave(conf->hash_locks + hash, flags); + if (list_empty(conf->inactive_list + hash) && + !list_empty(list)) + atomic_dec(&conf->empty_inactive_list_nr); + list_splice_tail_init(list, conf->inactive_list + hash); + do_wakeup = true; + spin_unlock_irqrestore(conf->hash_locks + hash, flags); + } + size--; + hash--; + } + + if (do_wakeup) { + wake_up(&conf->wait_for_stripe); + if (conf->retry_read_aligned) + md_wakeup_thread(conf->mddev->thread); + } +} + +/* should hold conf->device_lock already */ +static int release_stripe_list(struct r5conf *conf, + struct list_head *temp_inactive_list) +{ + struct stripe_head *sh; + int count = 0; + struct llist_node *head; + + head = llist_del_all(&conf->released_stripes); + head = llist_reverse_order(head); + while (head) { + int hash; + + sh = llist_entry(head, struct stripe_head, release_list); + head = llist_next(head); + /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ + smp_mb(); + clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); + /* + * Don't worry the bit is set here, because if the bit is set + * again, the count is always > 1. This is true for + * STRIPE_ON_UNPLUG_LIST bit too. + */ + hash = sh->hash_lock_index; + __release_stripe(conf, sh, &temp_inactive_list[hash]); + count++; + } + + return count; } static void release_stripe(struct stripe_head *sh) { struct r5conf *conf = sh->raid_conf; unsigned long flags; + struct list_head list; + int hash; + bool wakeup; + + /* Avoid release_list until the last reference. + */ + if (atomic_add_unless(&sh->count, -1, 1)) + return; + if (unlikely(!conf->mddev->thread) || + test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) + goto slow_path; + wakeup = llist_add(&sh->release_list, &conf->released_stripes); + if (wakeup) + md_wakeup_thread(conf->mddev->thread); + return; +slow_path: local_irq_save(flags); + /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { - do_release_stripe(conf, sh); + INIT_LIST_HEAD(&list); + hash = sh->hash_lock_index; + do_release_stripe(conf, sh, &list); spin_unlock(&conf->device_lock); + release_inactive_stripe_list(conf, &list, hash); } local_irq_restore(flags); } @@ -272,18 +461,21 @@ static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) /* find an idle stripe, make sure it is unhashed, and return it. */ -static struct stripe_head *get_free_stripe(struct r5conf *conf) +static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) { struct stripe_head *sh = NULL; struct list_head *first; - if (list_empty(&conf->inactive_list)) + if (list_empty(conf->inactive_list + hash)) goto out; - first = conf->inactive_list.next; + first = (conf->inactive_list + hash)->next; sh = list_entry(first, struct stripe_head, lru); list_del_init(first); remove_hash(sh); atomic_inc(&conf->active_stripes); + BUG_ON(hash != sh->hash_lock_index); + if (list_empty(conf->inactive_list + hash)) + atomic_inc(&conf->empty_inactive_list_nr); out: return sh; } @@ -295,6 +487,7 @@ static void shrink_buffers(struct stripe_head *sh) int num = sh->raid_conf->pool_size; for (i = 0; i < num ; i++) { + WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); p = sh->dev[i].page; if (!p) continue; @@ -315,6 +508,7 @@ static int grow_buffers(struct stripe_head *sh) return 1; } sh->dev[i].page = page; + sh->dev[i].orig_page = page; } return 0; } @@ -326,7 +520,7 @@ static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) { struct r5conf *conf = sh->raid_conf; - int i; + int i, seq; BUG_ON(atomic_read(&sh->count) != 0); BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); @@ -336,7 +530,8 @@ static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) (unsigned long long)sh->sector); remove_hash(sh); - +retry: + seq = read_seqcount_begin(&conf->gen_lock); sh->generation = conf->generation - previous; sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; sh->sector = sector; @@ -358,17 +553,19 @@ static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) dev->flags = 0; raid5_build_block(sh, i, previous); } + if (read_seqcount_retry(&conf->gen_lock, seq)) + goto retry; insert_hash(conf, sh); + sh->cpu = smp_processor_id(); } static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, short generation) { struct stripe_head *sh; - struct hlist_node *hn; pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); - hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) + hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) if (sh->sector == sector && sh->generation == generation) return sh; pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); @@ -462,52 +659,55 @@ get_active_stripe(struct r5conf *conf, sector_t sector, int previous, int noblock, int noquiesce) { struct stripe_head *sh; + int hash = stripe_hash_locks_hash(sector); pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); - spin_lock_irq(&conf->device_lock); + spin_lock_irq(conf->hash_locks + hash); do { wait_event_lock_irq(conf->wait_for_stripe, conf->quiesce == 0 || noquiesce, - conf->device_lock); + *(conf->hash_locks + hash)); sh = __find_stripe(conf, sector, conf->generation - previous); if (!sh) { if (!conf->inactive_blocked) - sh = get_free_stripe(conf); + sh = get_free_stripe(conf, hash); if (noblock && sh == NULL) break; if (!sh) { conf->inactive_blocked = 1; - wait_event_lock_irq(conf->wait_for_stripe, - !list_empty(&conf->inactive_list) && - (atomic_read(&conf->active_stripes) - < (conf->max_nr_stripes *3/4) - || !conf->inactive_blocked), - conf->device_lock); + wait_event_lock_irq( + conf->wait_for_stripe, + !list_empty(conf->inactive_list + hash) && + (atomic_read(&conf->active_stripes) + < (conf->max_nr_stripes * 3 / 4) + || !conf->inactive_blocked), + *(conf->hash_locks + hash)); conf->inactive_blocked = 0; - } else - init_stripe(sh, sector, previous); - } else { - if (atomic_read(&sh->count)) { - BUG_ON(!list_empty(&sh->lru) - && !test_bit(STRIPE_EXPANDING, &sh->state) - && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)); } else { + init_stripe(sh, sector, previous); + atomic_inc(&sh->count); + } + } else if (!atomic_inc_not_zero(&sh->count)) { + spin_lock(&conf->device_lock); + if (!atomic_read(&sh->count)) { if (!test_bit(STRIPE_HANDLE, &sh->state)) atomic_inc(&conf->active_stripes); - if (list_empty(&sh->lru) && - !test_bit(STRIPE_EXPANDING, &sh->state)) - BUG(); + BUG_ON(list_empty(&sh->lru) && + !test_bit(STRIPE_EXPANDING, &sh->state)); list_del_init(&sh->lru); + if (sh->group) { + sh->group->stripes_cnt--; + sh->group = NULL; + } } + atomic_inc(&sh->count); + spin_unlock(&conf->device_lock); } } while (sh == NULL); - if (sh) - atomic_inc(&sh->count); - - spin_unlock_irq(&conf->device_lock); + spin_unlock_irq(conf->hash_locks + hash); return sh; } @@ -570,14 +770,6 @@ static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) bi = &sh->dev[i].req; rbi = &sh->dev[i].rreq; /* For writing to replacement */ - bi->bi_rw = rw; - rbi->bi_rw = rw; - if (rw & WRITE) { - bi->bi_end_io = raid5_end_write_request; - rbi->bi_end_io = raid5_end_write_request; - } else - bi->bi_end_io = raid5_end_read_request; - rcu_read_lock(); rrdev = rcu_dereference(conf->disks[i].replacement); smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ @@ -652,31 +844,47 @@ static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) set_bit(STRIPE_IO_STARTED, &sh->state); + bio_reset(bi); bi->bi_bdev = rdev->bdev; + bi->bi_rw = rw; + bi->bi_end_io = (rw & WRITE) + ? raid5_end_write_request + : raid5_end_read_request; + bi->bi_private = sh; + pr_debug("%s: for %llu schedule op %ld on disc %d\n", __func__, (unsigned long long)sh->sector, bi->bi_rw, i); atomic_inc(&sh->count); if (use_new_offset(conf, sh)) - bi->bi_sector = (sh->sector + bi->bi_iter.bi_sector = (sh->sector + rdev->new_data_offset); else - bi->bi_sector = (sh->sector + bi->bi_iter.bi_sector = (sh->sector + rdev->data_offset); if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) - bi->bi_rw |= REQ_FLUSH; + bi->bi_rw |= REQ_NOMERGE; - bi->bi_flags = 1 << BIO_UPTODATE; - bi->bi_idx = 0; + if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) + WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); + sh->dev[i].vec.bv_page = sh->dev[i].page; + bi->bi_vcnt = 1; bi->bi_io_vec[0].bv_len = STRIPE_SIZE; bi->bi_io_vec[0].bv_offset = 0; - bi->bi_size = STRIPE_SIZE; - bi->bi_next = NULL; + bi->bi_iter.bi_size = STRIPE_SIZE; + /* + * If this is discard request, set bi_vcnt 0. We don't + * want to confuse SCSI because SCSI will replace payload + */ + if (rw & REQ_DISCARD) + bi->bi_vcnt = 0; if (rrdev) set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); - trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), - bi, disk_devt(conf->mddev->gendisk), - sh->dev[i].sector); + + if (conf->mddev->gendisk) + trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), + bi, disk_devt(conf->mddev->gendisk), + sh->dev[i].sector); generic_make_request(bi); } if (rrdev) { @@ -686,27 +894,41 @@ static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) set_bit(STRIPE_IO_STARTED, &sh->state); + bio_reset(rbi); rbi->bi_bdev = rrdev->bdev; + rbi->bi_rw = rw; + BUG_ON(!(rw & WRITE)); + rbi->bi_end_io = raid5_end_write_request; + rbi->bi_private = sh; + pr_debug("%s: for %llu schedule op %ld on " "replacement disc %d\n", __func__, (unsigned long long)sh->sector, rbi->bi_rw, i); atomic_inc(&sh->count); if (use_new_offset(conf, sh)) - rbi->bi_sector = (sh->sector + rbi->bi_iter.bi_sector = (sh->sector + rrdev->new_data_offset); else - rbi->bi_sector = (sh->sector + rbi->bi_iter.bi_sector = (sh->sector + rrdev->data_offset); - rbi->bi_flags = 1 << BIO_UPTODATE; - rbi->bi_idx = 0; + if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) + WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); + sh->dev[i].rvec.bv_page = sh->dev[i].page; + rbi->bi_vcnt = 1; rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; rbi->bi_io_vec[0].bv_offset = 0; - rbi->bi_size = STRIPE_SIZE; - rbi->bi_next = NULL; - trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), - rbi, disk_devt(conf->mddev->gendisk), - sh->dev[i].sector); + rbi->bi_iter.bi_size = STRIPE_SIZE; + /* + * If this is discard request, set bi_vcnt 0. We don't + * want to confuse SCSI because SCSI will replace payload + */ + if (rw & REQ_DISCARD) + rbi->bi_vcnt = 0; + if (conf->mddev->gendisk) + trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), + rbi, disk_devt(conf->mddev->gendisk), + sh->dev[i].sector); generic_make_request(rbi); } if (!rdev && !rrdev) { @@ -721,27 +943,28 @@ static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) } static struct dma_async_tx_descriptor * -async_copy_data(int frombio, struct bio *bio, struct page *page, - sector_t sector, struct dma_async_tx_descriptor *tx) +async_copy_data(int frombio, struct bio *bio, struct page **page, + sector_t sector, struct dma_async_tx_descriptor *tx, + struct stripe_head *sh) { - struct bio_vec *bvl; + struct bio_vec bvl; + struct bvec_iter iter; struct page *bio_page; - int i; int page_offset; struct async_submit_ctl submit; enum async_tx_flags flags = 0; - if (bio->bi_sector >= sector) - page_offset = (signed)(bio->bi_sector - sector) * 512; + if (bio->bi_iter.bi_sector >= sector) + page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; else - page_offset = (signed)(sector - bio->bi_sector) * -512; + page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; if (frombio) flags |= ASYNC_TX_FENCE; init_async_submit(&submit, flags, tx, NULL, NULL, NULL); - bio_for_each_segment(bvl, bio, i) { - int len = bvl->bv_len; + bio_for_each_segment(bvl, bio, iter) { + int len = bvl.bv_len; int clen; int b_offset = 0; @@ -757,13 +980,18 @@ async_copy_data(int frombio, struct bio *bio, struct page *page, clen = len; if (clen > 0) { - b_offset += bvl->bv_offset; - bio_page = bvl->bv_page; - if (frombio) - tx = async_memcpy(page, bio_page, page_offset, + b_offset += bvl.bv_offset; + bio_page = bvl.bv_page; + if (frombio) { + if (sh->raid_conf->skip_copy && + b_offset == 0 && page_offset == 0 && + clen == STRIPE_SIZE) + *page = bio_page; + else + tx = async_memcpy(*page, bio_page, page_offset, b_offset, clen, &submit); - else - tx = async_memcpy(bio_page, page, b_offset, + } else + tx = async_memcpy(bio_page, *page, b_offset, page_offset, clen, &submit); } /* chain the operations */ @@ -801,7 +1029,7 @@ static void ops_complete_biofill(void *stripe_head_ref) BUG_ON(!dev->read); rbi = dev->read; dev->read = NULL; - while (rbi && rbi->bi_sector < + while (rbi && rbi->bi_iter.bi_sector < dev->sector + STRIPE_SECTORS) { rbi2 = r5_next_bio(rbi, dev->sector); if (!raid5_dec_bi_active_stripes(rbi)) { @@ -837,10 +1065,10 @@ static void ops_run_biofill(struct stripe_head *sh) dev->read = rbi = dev->toread; dev->toread = NULL; spin_unlock_irq(&sh->stripe_lock); - while (rbi && rbi->bi_sector < + while (rbi && rbi->bi_iter.bi_sector < dev->sector + STRIPE_SECTORS) { - tx = async_copy_data(0, rbi, dev->page, - dev->sector, tx); + tx = async_copy_data(0, rbi, &dev->page, + dev->sector, tx, sh); rbi = r5_next_bio(rbi, dev->sector); } } @@ -1178,8 +1406,9 @@ ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) BUG_ON(dev->written); wbi = dev->written = chosen; spin_unlock_irq(&sh->stripe_lock); + WARN_ON(dev->page != dev->orig_page); - while (wbi && wbi->bi_sector < + while (wbi && wbi->bi_iter.bi_sector < dev->sector + STRIPE_SECTORS) { if (wbi->bi_rw & REQ_FUA) set_bit(R5_WantFUA, &dev->flags); @@ -1187,9 +1416,15 @@ ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) set_bit(R5_SyncIO, &dev->flags); if (wbi->bi_rw & REQ_DISCARD) set_bit(R5_Discard, &dev->flags); - else - tx = async_copy_data(1, wbi, dev->page, - dev->sector, tx); + else { + tx = async_copy_data(1, wbi, &dev->page, + dev->sector, tx, sh); + if (dev->page != dev->orig_page) { + set_bit(R5_SkipCopy, &dev->flags); + clear_bit(R5_UPTODATE, &dev->flags); + clear_bit(R5_OVERWRITE, &dev->flags); + } + } wbi = r5_next_bio(wbi, dev->sector); } } @@ -1220,7 +1455,7 @@ static void ops_complete_reconstruct(void *stripe_head_ref) struct r5dev *dev = &sh->dev[i]; if (dev->written || i == pd_idx || i == qd_idx) { - if (!discard) + if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) set_bit(R5_UPTODATE, &dev->flags); if (fua) set_bit(R5_WantFUA, &dev->flags); @@ -1406,7 +1641,7 @@ static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu &sh->ops.zero_sum_result, percpu->spare_page, &submit); } -static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request) +static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) { int overlap_clear = 0, i, disks = sh->disks; struct dma_async_tx_descriptor *tx = NULL; @@ -1471,37 +1706,7 @@ static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request) put_cpu(); } -#ifdef CONFIG_MULTICORE_RAID456 -static void async_run_ops(void *param, async_cookie_t cookie) -{ - struct stripe_head *sh = param; - unsigned long ops_request = sh->ops.request; - - clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state); - wake_up(&sh->ops.wait_for_ops); - - __raid_run_ops(sh, ops_request); - release_stripe(sh); -} - -static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) -{ - /* since handle_stripe can be called outside of raid5d context - * we need to ensure sh->ops.request is de-staged before another - * request arrives - */ - wait_event(sh->ops.wait_for_ops, - !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state)); - sh->ops.request = ops_request; - - atomic_inc(&sh->count); - async_schedule(async_run_ops, sh); -} -#else -#define raid_run_ops __raid_run_ops -#endif - -static int grow_one_stripe(struct r5conf *conf) +static int grow_one_stripe(struct r5conf *conf, int hash) { struct stripe_head *sh; sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); @@ -1509,9 +1714,6 @@ static int grow_one_stripe(struct r5conf *conf) return 0; sh->raid_conf = conf; - #ifdef CONFIG_MULTICORE_RAID456 - init_waitqueue_head(&sh->ops.wait_for_ops); - #endif spin_lock_init(&sh->stripe_lock); @@ -1520,6 +1722,7 @@ static int grow_one_stripe(struct r5conf *conf) kmem_cache_free(conf->slab_cache, sh); return 0; } + sh->hash_lock_index = hash; /* we just created an active stripe so... */ atomic_set(&sh->count, 1); atomic_inc(&conf->active_stripes); @@ -1532,6 +1735,7 @@ static int grow_stripes(struct r5conf *conf, int num) { struct kmem_cache *sc; int devs = max(conf->raid_disks, conf->previous_raid_disks); + int hash; if (conf->mddev->gendisk) sprintf(conf->cache_name[0], @@ -1549,9 +1753,13 @@ static int grow_stripes(struct r5conf *conf, int num) return 1; conf->slab_cache = sc; conf->pool_size = devs; - while (num--) - if (!grow_one_stripe(conf)) + hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; + while (num--) { + if (!grow_one_stripe(conf, hash)) return 1; + conf->max_nr_stripes++; + hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; + } return 0; } @@ -1609,6 +1817,7 @@ static int resize_stripes(struct r5conf *conf, int newsize) int err; struct kmem_cache *sc; int i; + int hash, cnt; if (newsize <= conf->pool_size) return 0; /* never bother to shrink */ @@ -1630,9 +1839,6 @@ static int resize_stripes(struct r5conf *conf, int newsize) break; nsh->raid_conf = conf; - #ifdef CONFIG_MULTICORE_RAID456 - init_waitqueue_head(&nsh->ops.wait_for_ops); - #endif spin_lock_init(&nsh->stripe_lock); list_add(&nsh->lru, &newstripes); @@ -1651,19 +1857,31 @@ static int resize_stripes(struct r5conf *conf, int newsize) * OK, we have enough stripes, start collecting inactive * stripes and copying them over */ + hash = 0; + cnt = 0; list_for_each_entry(nsh, &newstripes, lru) { - spin_lock_irq(&conf->device_lock); - wait_event_lock_irq(conf->wait_for_stripe, - !list_empty(&conf->inactive_list), - conf->device_lock); - osh = get_free_stripe(conf); - spin_unlock_irq(&conf->device_lock); + lock_device_hash_lock(conf, hash); + wait_event_cmd(conf->wait_for_stripe, + !list_empty(conf->inactive_list + hash), + unlock_device_hash_lock(conf, hash), + lock_device_hash_lock(conf, hash)); + osh = get_free_stripe(conf, hash); + unlock_device_hash_lock(conf, hash); atomic_set(&nsh->count, 1); - for(i=0; i<conf->pool_size; i++) + for(i=0; i<conf->pool_size; i++) { nsh->dev[i].page = osh->dev[i].page; + nsh->dev[i].orig_page = osh->dev[i].page; + } for( ; i<newsize; i++) nsh->dev[i].page = NULL; + nsh->hash_lock_index = hash; kmem_cache_free(conf->slab_cache, osh); + cnt++; + if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + + !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { + hash++; + cnt = 0; + } } kmem_cache_destroy(conf->slab_cache); @@ -1709,6 +1927,7 @@ static int resize_stripes(struct r5conf *conf, int newsize) if (nsh->dev[i].page == NULL) { struct page *p = alloc_page(GFP_NOIO); nsh->dev[i].page = p; + nsh->dev[i].orig_page = p; if (!p) err = -ENOMEM; } @@ -1722,13 +1941,13 @@ static int resize_stripes(struct r5conf *conf, int newsize) return err; } -static int drop_one_stripe(struct r5conf *conf) +static int drop_one_stripe(struct r5conf *conf, int hash) { struct stripe_head *sh; - spin_lock_irq(&conf->device_lock); - sh = get_free_stripe(conf); - spin_unlock_irq(&conf->device_lock); + spin_lock_irq(conf->hash_locks + hash); + sh = get_free_stripe(conf, hash); + spin_unlock_irq(conf->hash_locks + hash); if (!sh) return 0; BUG_ON(atomic_read(&sh->count)); @@ -1740,8 +1959,10 @@ static int drop_one_stripe(struct r5conf *conf) static void shrink_stripes(struct r5conf *conf) { - while (drop_one_stripe(conf)) - ; + int hash; + for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++) + while (drop_one_stripe(conf, hash)) + ; if (conf->slab_cache) kmem_cache_destroy(conf->slab_cache); @@ -1846,6 +2067,9 @@ static void raid5_end_read_request(struct bio * bi, int error) mdname(conf->mddev), bdn); else retry = 1; + if (set_bad && test_bit(In_sync, &rdev->flags) + && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) + retry = 1; if (retry) if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { set_bit(R5_ReadError, &sh->dev[i].flags); @@ -1914,6 +2138,7 @@ static void raid5_end_write_request(struct bio *bi, int error) set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); } else { if (!uptodate) { + set_bit(STRIPE_DEGRADED, &sh->state); set_bit(WriteErrorSeen, &rdev->flags); set_bit(R5_WriteError, &sh->dev[i].flags); if (!test_and_set_bit(WantReplacement, &rdev->flags)) @@ -1921,8 +2146,15 @@ static void raid5_end_write_request(struct bio *bi, int error) &rdev->mddev->recovery); } else if (is_badblock(rdev, sh->sector, STRIPE_SECTORS, - &first_bad, &bad_sectors)) + &first_bad, &bad_sectors)) { set_bit(R5_MadeGood, &sh->dev[i].flags); + if (test_bit(R5_ReadError, &sh->dev[i].flags)) + /* That was a successful write so make + * sure it looks like we already did + * a re-write. + */ + set_bit(R5_ReWrite, &sh->dev[i].flags); + } } rdev_dec_pending(rdev, conf->mddev); @@ -1933,24 +2165,20 @@ static void raid5_end_write_request(struct bio *bi, int error) } static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); - + static void raid5_build_block(struct stripe_head *sh, int i, int previous) { struct r5dev *dev = &sh->dev[i]; bio_init(&dev->req); dev->req.bi_io_vec = &dev->vec; - dev->req.bi_vcnt++; - dev->req.bi_max_vecs++; + dev->req.bi_max_vecs = 1; dev->req.bi_private = sh; - dev->vec.bv_page = dev->page; bio_init(&dev->rreq); dev->rreq.bi_io_vec = &dev->rvec; - dev->rreq.bi_vcnt++; - dev->rreq.bi_max_vecs++; + dev->rreq.bi_max_vecs = 1; dev->rreq.bi_private = sh; - dev->rvec.bv_page = dev->page; dev->flags = 0; dev->sector = compute_blocknr(sh, i, previous); @@ -2319,17 +2547,6 @@ schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, int level = conf->level; if (rcw) { - /* if we are not expanding this is a proper write request, and - * there will be bios with new data to be drained into the - * stripe cache - */ - if (!expand) { - sh->reconstruct_state = reconstruct_state_drain_run; - set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); - } else - sh->reconstruct_state = reconstruct_state_run; - - set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; @@ -2342,6 +2559,21 @@ schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, s->locked++; } } + /* if we are not expanding this is a proper write request, and + * there will be bios with new data to be drained into the + * stripe cache + */ + if (!expand) { + if (!s->locked) + /* False alarm, nothing to do */ + return; + sh->reconstruct_state = reconstruct_state_drain_run; + set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); + } else + sh->reconstruct_state = reconstruct_state_run; + + set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); + if (s->locked + conf->max_degraded == disks) if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) atomic_inc(&conf->pending_full_writes); @@ -2350,11 +2582,6 @@ schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); - sh->reconstruct_state = reconstruct_state_prexor_drain_run; - set_bit(STRIPE_OP_PREXOR, &s->ops_request); - set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); - set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); - for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if (i == pd_idx) @@ -2369,6 +2596,13 @@ schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, s->locked++; } } + if (!s->locked) + /* False alarm - nothing to do */ + return; + sh->reconstruct_state = reconstruct_state_prexor_drain_run; + set_bit(STRIPE_OP_PREXOR, &s->ops_request); + set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); + set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); } /* keep the parity disk(s) locked while asynchronous operations @@ -2404,7 +2638,7 @@ static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, in int firstwrite=0; pr_debug("adding bi b#%llu to stripe s#%llu\n", - (unsigned long long)bi->bi_sector, + (unsigned long long)bi->bi_iter.bi_sector, (unsigned long long)sh->sector); /* @@ -2422,12 +2656,12 @@ static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, in firstwrite = 1; } else bip = &sh->dev[dd_idx].toread; - while (*bip && (*bip)->bi_sector < bi->bi_sector) { - if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) + while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { + if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) goto overlap; bip = & (*bip)->bi_next; } - if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) + if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) goto overlap; BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); @@ -2441,17 +2675,17 @@ static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, in sector_t sector = sh->dev[dd_idx].sector; for (bi=sh->dev[dd_idx].towrite; sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && - bi && bi->bi_sector <= sector; + bi && bi->bi_iter.bi_sector <= sector; bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { - if (bi->bi_sector + (bi->bi_size>>9) >= sector) - sector = bi->bi_sector + (bi->bi_size>>9); + if (bio_end_sector(bi) >= sector) + sector = bio_end_sector(bi); } if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); } pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", - (unsigned long long)(*bip)->bi_sector, + (unsigned long long)(*bip)->bi_iter.bi_sector, (unsigned long long)sh->sector, dd_idx); spin_unlock_irq(&sh->stripe_lock); @@ -2526,7 +2760,7 @@ handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) wake_up(&conf->wait_for_overlap); - while (bi && bi->bi_sector < + while (bi && bi->bi_iter.bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); @@ -2544,8 +2778,13 @@ handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, /* and fail all 'written' */ bi = sh->dev[i].written; sh->dev[i].written = NULL; + if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { + WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); + sh->dev[i].page = sh->dev[i].orig_page; + } + if (bi) bitmap_end = 1; - while (bi && bi->bi_sector < + while (bi && bi->bi_iter.bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); clear_bit(BIO_UPTODATE, &bi->bi_flags); @@ -2569,7 +2808,7 @@ handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, spin_unlock_irq(&sh->stripe_lock); if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) wake_up(&conf->wait_for_overlap); - while (bi && bi->bi_sector < + while (bi && bi->bi_iter.bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); @@ -2603,6 +2842,8 @@ handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, int i; clear_bit(STRIPE_SYNCING, &sh->state); + if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) + wake_up(&conf->wait_for_overlap); s->syncing = 0; s->replacing = 0; /* There is nothing more to do for sync/check/repair. @@ -2678,8 +2919,11 @@ static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, (s->failed >= 1 && fdev[0]->toread) || (s->failed >= 2 && fdev[1]->toread) || (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && + (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) && !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || - (sh->raid_conf->level == 6 && s->failed && s->to_write))) { + (sh->raid_conf->level == 6 && s->failed && s->to_write && + s->to_write < sh->raid_conf->raid_disks - 2 && + (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) { /* we would like to get this block, possibly by computing it, * otherwise read it if the backing disk is insync */ @@ -2776,21 +3020,27 @@ static void handle_stripe_clean_event(struct r5conf *conf, { int i; struct r5dev *dev; + int discard_pending = 0; for (i = disks; i--; ) if (sh->dev[i].written) { dev = &sh->dev[i]; if (!test_bit(R5_LOCKED, &dev->flags) && (test_bit(R5_UPTODATE, &dev->flags) || - test_bit(R5_Discard, &dev->flags))) { + test_bit(R5_Discard, &dev->flags) || + test_bit(R5_SkipCopy, &dev->flags))) { /* We can return any write requests */ struct bio *wbi, *wbi2; pr_debug("Return write for disc %d\n", i); if (test_and_clear_bit(R5_Discard, &dev->flags)) clear_bit(R5_UPTODATE, &dev->flags); + if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { + WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); + dev->page = dev->orig_page; + } wbi = dev->written; dev->written = NULL; - while (wbi && wbi->bi_sector < + while (wbi && wbi->bi_iter.bi_sector < dev->sector + STRIPE_SECTORS) { wbi2 = r5_next_bio(wbi, dev->sector); if (!raid5_dec_bi_active_stripes(wbi)) { @@ -2804,9 +3054,33 @@ static void handle_stripe_clean_event(struct r5conf *conf, STRIPE_SECTORS, !test_bit(STRIPE_DEGRADED, &sh->state), 0); - } - } else if (test_bit(R5_Discard, &sh->dev[i].flags)) - clear_bit(R5_Discard, &sh->dev[i].flags); + } else if (test_bit(R5_Discard, &dev->flags)) + discard_pending = 1; + WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); + WARN_ON(dev->page != dev->orig_page); + } + if (!discard_pending && + test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { + clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); + clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); + if (sh->qd_idx >= 0) { + clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); + clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); + } + /* now that discard is done we can proceed with any sync */ + clear_bit(STRIPE_DISCARD, &sh->state); + /* + * SCSI discard will change some bio fields and the stripe has + * no updated data, so remove it from hash list and the stripe + * will be reinitialized + */ + spin_lock_irq(&conf->device_lock); + remove_hash(sh); + spin_unlock_irq(&conf->device_lock); + if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) + set_bit(STRIPE_HANDLE, &sh->state); + + } if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) if (atomic_dec_and_test(&conf->pending_full_writes)) @@ -2855,7 +3129,8 @@ static void handle_stripe_dirtying(struct r5conf *conf, !test_bit(R5_LOCKED, &dev->flags) && !(test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags))) { - if (test_bit(R5_Insync, &dev->flags)) rcw++; + if (test_bit(R5_Insync, &dev->flags)) + rcw++; else rcw += 2*disks; } @@ -2865,8 +3140,10 @@ static void handle_stripe_dirtying(struct r5conf *conf, set_bit(STRIPE_HANDLE, &sh->state); if (rmw < rcw && rmw > 0) { /* prefer read-modify-write, but need to get some data */ - blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d", - (unsigned long long)sh->sector, rmw); + if (conf->mddev->queue) + blk_add_trace_msg(conf->mddev->queue, + "raid5 rmw %llu %d", + (unsigned long long)sh->sector, rmw); for (i = disks; i--; ) { struct r5dev *dev = &sh->dev[i]; if ((dev->towrite || i == sh->pd_idx) && @@ -2874,10 +3151,10 @@ static void handle_stripe_dirtying(struct r5conf *conf, !(test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags)) && test_bit(R5_Insync, &dev->flags)) { - if ( - test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { - pr_debug("Read_old block " - "%d for r-m-w\n", i); + if (test_bit(STRIPE_PREREAD_ACTIVE, + &sh->state)) { + pr_debug("Read_old block %d for r-m-w\n", + i); set_bit(R5_LOCKED, &dev->flags); set_bit(R5_Wantread, &dev->flags); s->locked++; @@ -2900,10 +3177,9 @@ static void handle_stripe_dirtying(struct r5conf *conf, !(test_bit(R5_UPTODATE, &dev->flags) || test_bit(R5_Wantcompute, &dev->flags))) { rcw++; - if (!test_bit(R5_Insync, &dev->flags)) - continue; /* it's a failed drive */ - if ( - test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { + if (test_bit(R5_Insync, &dev->flags) && + test_bit(STRIPE_PREREAD_ACTIVE, + &sh->state)) { pr_debug("Read_old block " "%d for Reconstruct\n", i); set_bit(R5_LOCKED, &dev->flags); @@ -2916,7 +3192,7 @@ static void handle_stripe_dirtying(struct r5conf *conf, } } } - if (rcw) + if (rcw && conf->mddev->queue) blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", (unsigned long long)sh->sector, rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); @@ -3372,7 +3648,7 @@ static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) */ set_bit(R5_Insync, &dev->flags); - if (rdev && test_bit(R5_WriteError, &dev->flags)) { + if (test_bit(R5_WriteError, &dev->flags)) { /* This flag does not apply to '.replacement' * only to .rdev, so make sure to check that*/ struct md_rdev *rdev2 = rcu_dereference( @@ -3385,7 +3661,7 @@ static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) } else clear_bit(R5_WriteError, &dev->flags); } - if (rdev && test_bit(R5_MadeGood, &dev->flags)) { + if (test_bit(R5_MadeGood, &dev->flags)) { /* This flag does not apply to '.replacement' * only to .rdev, so make sure to check that*/ struct md_rdev *rdev2 = rcu_dereference( @@ -3456,9 +3732,16 @@ static void handle_stripe(struct stripe_head *sh) return; } - if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { - set_bit(STRIPE_SYNCING, &sh->state); - clear_bit(STRIPE_INSYNC, &sh->state); + if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { + spin_lock(&sh->stripe_lock); + /* Cannot process 'sync' concurrently with 'discard' */ + if (!test_bit(STRIPE_DISCARD, &sh->state) && + test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { + set_bit(STRIPE_SYNCING, &sh->state); + clear_bit(STRIPE_INSYNC, &sh->state); + clear_bit(STRIPE_REPLACED, &sh->state); + } + spin_unlock(&sh->stripe_lock); } clear_bit(STRIPE_DELAYED, &sh->state); @@ -3602,22 +3885,28 @@ static void handle_stripe(struct stripe_head *sh) handle_parity_checks5(conf, sh, &s, disks); } - if (s.replacing && s.locked == 0 - && !test_bit(STRIPE_INSYNC, &sh->state)) { + if ((s.replacing || s.syncing) && s.locked == 0 + && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) + && !test_bit(STRIPE_REPLACED, &sh->state)) { /* Write out to replacement devices where possible */ for (i = 0; i < conf->raid_disks; i++) - if (test_bit(R5_UPTODATE, &sh->dev[i].flags) && - test_bit(R5_NeedReplace, &sh->dev[i].flags)) { + if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { + WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); set_bit(R5_WantReplace, &sh->dev[i].flags); set_bit(R5_LOCKED, &sh->dev[i].flags); s.locked++; } - set_bit(STRIPE_INSYNC, &sh->state); + if (s.replacing) + set_bit(STRIPE_INSYNC, &sh->state); + set_bit(STRIPE_REPLACED, &sh->state); } if ((s.syncing || s.replacing) && s.locked == 0 && + !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && test_bit(STRIPE_INSYNC, &sh->state)) { md_done_sync(conf->mddev, STRIPE_SECTORS, 1); clear_bit(STRIPE_SYNCING, &sh->state); + if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) + wake_up(&conf->wait_for_overlap); } /* If the failed drives are just a ReadError, then we might need @@ -3767,11 +4056,13 @@ static void raid5_activate_delayed(struct r5conf *conf) if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) atomic_inc(&conf->preread_active_stripes); list_add_tail(&sh->lru, &conf->hold_list); + raid5_wakeup_stripe_thread(sh); } } } -static void activate_bit_delay(struct r5conf *conf) +static void activate_bit_delay(struct r5conf *conf, + struct list_head *temp_inactive_list) { /* device_lock is held */ struct list_head head; @@ -3779,9 +4070,11 @@ static void activate_bit_delay(struct r5conf *conf) list_del_init(&conf->bitmap_list); while (!list_empty(&head)) { struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); + int hash; list_del_init(&sh->lru); atomic_inc(&sh->count); - __release_stripe(conf, sh); + hash = sh->hash_lock_index; + __release_stripe(conf, sh, &temp_inactive_list[hash]); } } @@ -3797,7 +4090,7 @@ int md_raid5_congested(struct mddev *mddev, int bits) return 1; if (conf->quiesce) return 1; - if (list_empty_careful(&conf->inactive_list)) + if (atomic_read(&conf->empty_inactive_list_nr)) return 1; return 0; @@ -3841,9 +4134,9 @@ static int raid5_mergeable_bvec(struct request_queue *q, static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) { - sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); + sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); unsigned int chunk_sectors = mddev->chunk_sectors; - unsigned int bio_sectors = bio->bi_size >> 9; + unsigned int bio_sectors = bio_sectors(bio); if (mddev->new_chunk_sectors < mddev->chunk_sectors) chunk_sectors = mddev->new_chunk_sectors; @@ -3935,7 +4228,7 @@ static int bio_fits_rdev(struct bio *bi) { struct request_queue *q = bdev_get_queue(bi->bi_bdev); - if ((bi->bi_size>>9) > queue_max_sectors(q)) + if (bio_sectors(bi) > queue_max_sectors(q)) return 0; blk_recount_segments(q, bi); if (bi->bi_phys_segments > queue_max_segments(q)) @@ -3978,11 +4271,11 @@ static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) /* * compute position */ - align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, - 0, - &dd_idx, NULL); + align_bi->bi_iter.bi_sector = + raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, + 0, &dd_idx, NULL); - end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9); + end_sector = bio_end_sector(align_bi); rcu_read_lock(); rdev = rcu_dereference(conf->disks[dd_idx].replacement); if (!rdev || test_bit(Faulty, &rdev->flags) || @@ -4005,7 +4298,8 @@ static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); if (!bio_fits_rdev(align_bi) || - is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9, + is_badblock(rdev, align_bi->bi_iter.bi_sector, + bio_sectors(align_bi), &first_bad, &bad_sectors)) { /* too big in some way, or has a known bad block */ bio_put(align_bi); @@ -4014,7 +4308,7 @@ static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) } /* No reshape active, so we can trust rdev->data_offset */ - align_bi->bi_sector += rdev->data_offset; + align_bi->bi_iter.bi_sector += rdev->data_offset; spin_lock_irq(&conf->device_lock); wait_event_lock_irq(conf->wait_for_stripe, @@ -4023,9 +4317,10 @@ static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) atomic_inc(&conf->active_aligned_reads); spin_unlock_irq(&conf->device_lock); - trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), - align_bi, disk_devt(mddev->gendisk), - raid_bio->bi_sector); + if (mddev->gendisk) + trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), + align_bi, disk_devt(mddev->gendisk), + raid_bio->bi_iter.bi_sector); generic_make_request(align_bi); return 1; } else { @@ -4045,18 +4340,35 @@ static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) * head of the hold_list has changed, i.e. the head was promoted to the * handle_list. */ -static struct stripe_head *__get_priority_stripe(struct r5conf *conf) +static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) { - struct stripe_head *sh; + struct stripe_head *sh = NULL, *tmp; + struct list_head *handle_list = NULL; + struct r5worker_group *wg = NULL; + + if (conf->worker_cnt_per_group == 0) { + handle_list = &conf->handle_list; + } else if (group != ANY_GROUP) { + handle_list = &conf->worker_groups[group].handle_list; + wg = &conf->worker_groups[group]; + } else { + int i; + for (i = 0; i < conf->group_cnt; i++) { + handle_list = &conf->worker_groups[i].handle_list; + wg = &conf->worker_groups[i]; + if (!list_empty(handle_list)) + break; + } + } pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", __func__, - list_empty(&conf->handle_list) ? "empty" : "busy", + list_empty(handle_list) ? "empty" : "busy", list_empty(&conf->hold_list) ? "empty" : "busy", atomic_read(&conf->pending_full_writes), conf->bypass_count); - if (!list_empty(&conf->handle_list)) { - sh = list_entry(conf->handle_list.next, typeof(*sh), lru); + if (!list_empty(handle_list)) { + sh = list_entry(handle_list->next, typeof(*sh), lru); if (list_empty(&conf->hold_list)) conf->bypass_count = 0; @@ -4074,23 +4386,41 @@ static struct stripe_head *__get_priority_stripe(struct r5conf *conf) ((conf->bypass_threshold && conf->bypass_count > conf->bypass_threshold) || atomic_read(&conf->pending_full_writes) == 0)) { - sh = list_entry(conf->hold_list.next, - typeof(*sh), lru); - conf->bypass_count -= conf->bypass_threshold; - if (conf->bypass_count < 0) - conf->bypass_count = 0; - } else + + list_for_each_entry(tmp, &conf->hold_list, lru) { + if (conf->worker_cnt_per_group == 0 || + group == ANY_GROUP || + !cpu_online(tmp->cpu) || + cpu_to_group(tmp->cpu) == group) { + sh = tmp; + break; + } + } + + if (sh) { + conf->bypass_count -= conf->bypass_threshold; + if (conf->bypass_count < 0) + conf->bypass_count = 0; + } + wg = NULL; + } + + if (!sh) return NULL; + if (wg) { + wg->stripes_cnt--; + sh->group = NULL; + } list_del_init(&sh->lru); - atomic_inc(&sh->count); - BUG_ON(atomic_read(&sh->count) != 1); + BUG_ON(atomic_inc_return(&sh->count) != 1); return sh; } struct raid5_plug_cb { struct blk_plug_cb cb; struct list_head list; + struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; }; static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) @@ -4101,6 +4431,7 @@ static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) struct mddev *mddev = cb->cb.data; struct r5conf *conf = mddev->private; int cnt = 0; + int hash; if (cb->list.next && !list_empty(&cb->list)) { spin_lock_irq(&conf->device_lock); @@ -4112,14 +4443,22 @@ static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) * STRIPE_ON_UNPLUG_LIST clear but the stripe * is still in our list */ - smp_mb__before_clear_bit(); + smp_mb__before_atomic(); clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); - __release_stripe(conf, sh); + /* + * STRIPE_ON_RELEASE_LIST could be set here. In that + * case, the count is always > 1 here + */ + hash = sh->hash_lock_index; + __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); cnt++; } spin_unlock_irq(&conf->device_lock); } - trace_block_unplug(mddev->queue, cnt, !from_schedule); + release_inactive_stripe_list(conf, cb->temp_inactive_list, + NR_STRIPE_HASH_LOCKS); + if (mddev->queue) + trace_block_unplug(mddev->queue, cnt, !from_schedule); kfree(cb); } @@ -4138,8 +4477,12 @@ static void release_stripe_plug(struct mddev *mddev, cb = container_of(blk_cb, struct raid5_plug_cb, cb); - if (cb->list.next == NULL) + if (cb->list.next == NULL) { + int i; INIT_LIST_HEAD(&cb->list); + for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) + INIT_LIST_HEAD(cb->temp_inactive_list + i); + } if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) list_add_tail(&sh->lru, &cb->list); @@ -4159,8 +4502,8 @@ static void make_discard_request(struct mddev *mddev, struct bio *bi) /* Skip discard while reshape is happening */ return; - logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); - last_sector = bi->bi_sector + (bi->bi_size>>9); + logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); + last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); bi->bi_next = NULL; bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ @@ -4182,6 +4525,13 @@ static void make_discard_request(struct mddev *mddev, struct bio *bi) sh = get_active_stripe(conf, logical_sector, 0, 0, 0); prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); + set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); + if (test_bit(STRIPE_SYNCING, &sh->state)) { + release_stripe(sh); + schedule(); + goto again; + } + clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); spin_lock_irq(&sh->stripe_lock); for (d = 0; d < conf->raid_disks; d++) { if (d == sh->pd_idx || d == sh->qd_idx) @@ -4194,6 +4544,7 @@ static void make_discard_request(struct mddev *mddev, struct bio *bi) goto again; } } + set_bit(STRIPE_DISCARD, &sh->state); finish_wait(&conf->wait_for_overlap, &w); for (d = 0; d < conf->raid_disks; d++) { if (d == sh->pd_idx || d == sh->qd_idx) @@ -4238,6 +4589,8 @@ static void make_request(struct mddev *mddev, struct bio * bi) struct stripe_head *sh; const int rw = bio_data_dir(bi); int remaining; + DEFINE_WAIT(w); + bool do_prepare; if (unlikely(bi->bi_rw & REQ_FLUSH)) { md_flush_request(mddev, bi); @@ -4256,18 +4609,23 @@ static void make_request(struct mddev *mddev, struct bio * bi) return; } - logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); - last_sector = bi->bi_sector + (bi->bi_size>>9); + logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); + last_sector = bio_end_sector(bi); bi->bi_next = NULL; bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ + prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { - DEFINE_WAIT(w); int previous; + int seq; + do_prepare = false; retry: + seq = read_seqcount_begin(&conf->gen_lock); previous = 0; - prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); + if (do_prepare) + prepare_to_wait(&conf->wait_for_overlap, &w, + TASK_UNINTERRUPTIBLE); if (unlikely(conf->reshape_progress != MaxSector)) { /* spinlock is needed as reshape_progress may be * 64bit on a 32bit platform, and so it might be @@ -4288,6 +4646,7 @@ static void make_request(struct mddev *mddev, struct bio * bi) : logical_sector >= conf->reshape_safe) { spin_unlock_irq(&conf->device_lock); schedule(); + do_prepare = true; goto retry; } } @@ -4298,7 +4657,7 @@ static void make_request(struct mddev *mddev, struct bio * bi) previous, &dd_idx, NULL); pr_debug("raid456: make_request, sector %llu logical %llu\n", - (unsigned long long)new_sector, + (unsigned long long)new_sector, (unsigned long long)logical_sector); sh = get_active_stripe(conf, new_sector, previous, @@ -4324,9 +4683,17 @@ static void make_request(struct mddev *mddev, struct bio * bi) if (must_retry) { release_stripe(sh); schedule(); + do_prepare = true; goto retry; } } + if (read_seqcount_retry(&conf->gen_lock, seq)) { + /* Might have got the wrong stripe_head + * by accident + */ + release_stripe(sh); + goto retry; + } if (rw == WRITE && logical_sector >= mddev->suspend_lo && @@ -4340,8 +4707,10 @@ static void make_request(struct mddev *mddev, struct bio * bi) prepare_to_wait(&conf->wait_for_overlap, &w, TASK_INTERRUPTIBLE); if (logical_sector >= mddev->suspend_lo && - logical_sector < mddev->suspend_hi) + logical_sector < mddev->suspend_hi) { schedule(); + do_prepare = true; + } goto retry; } @@ -4354,9 +4723,9 @@ static void make_request(struct mddev *mddev, struct bio * bi) md_wakeup_thread(mddev->thread); release_stripe(sh); schedule(); + do_prepare = true; goto retry; } - finish_wait(&conf->wait_for_overlap, &w); set_bit(STRIPE_HANDLE, &sh->state); clear_bit(STRIPE_DELAYED, &sh->state); if ((bi->bi_rw & REQ_SYNC) && @@ -4366,10 +4735,10 @@ static void make_request(struct mddev *mddev, struct bio * bi) } else { /* cannot get stripe for read-ahead, just give-up */ clear_bit(BIO_UPTODATE, &bi->bi_flags); - finish_wait(&conf->wait_for_overlap, &w); break; } } + finish_wait(&conf->wait_for_overlap, &w); remaining = raid5_dec_bi_active_stripes(bi); if (remaining == 0) { @@ -4505,14 +4874,19 @@ static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *sk time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { /* Cannot proceed until we've updated the superblock... */ wait_event(conf->wait_for_overlap, - atomic_read(&conf->reshape_stripes)==0); + atomic_read(&conf->reshape_stripes)==0 + || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); + if (atomic_read(&conf->reshape_stripes) != 0) + return 0; mddev->reshape_position = conf->reshape_progress; mddev->curr_resync_completed = sector_nr; conf->reshape_checkpoint = jiffies; set_bit(MD_CHANGE_DEVS, &mddev->flags); md_wakeup_thread(mddev->thread); wait_event(mddev->sb_wait, mddev->flags == 0 || - kthread_should_stop()); + test_bit(MD_RECOVERY_INTR, &mddev->recovery)); + if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) + return 0; spin_lock_irq(&conf->device_lock); conf->reshape_safe = mddev->reshape_position; spin_unlock_irq(&conf->device_lock); @@ -4595,7 +4969,10 @@ static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *sk >= mddev->resync_max - mddev->curr_resync_completed) { /* Cannot proceed until we've updated the superblock... */ wait_event(conf->wait_for_overlap, - atomic_read(&conf->reshape_stripes) == 0); + atomic_read(&conf->reshape_stripes) == 0 + || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); + if (atomic_read(&conf->reshape_stripes) != 0) + goto ret; mddev->reshape_position = conf->reshape_progress; mddev->curr_resync_completed = sector_nr; conf->reshape_checkpoint = jiffies; @@ -4603,13 +4980,16 @@ static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *sk md_wakeup_thread(mddev->thread); wait_event(mddev->sb_wait, !test_bit(MD_CHANGE_DEVS, &mddev->flags) - || kthread_should_stop()); + || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); + if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) + goto ret; spin_lock_irq(&conf->device_lock); conf->reshape_safe = mddev->reshape_position; spin_unlock_irq(&conf->device_lock); wake_up(&conf->wait_for_overlap); sysfs_notify(&mddev->kobj, NULL, "sync_completed"); } +ret: return reshape_sectors; } @@ -4663,9 +5043,10 @@ static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped = 1; return rv; } - if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && - !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && - !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { + if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && + !conf->fullsync && + !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && + sync_blocks >= STRIPE_SECTORS) { /* we can skip this block, and probably more */ sync_blocks /= STRIPE_SECTORS; *skipped = 1; @@ -4693,8 +5074,8 @@ static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); set_bit(STRIPE_SYNC_REQUESTED, &sh->state); + set_bit(STRIPE_HANDLE, &sh->state); - handle_stripe(sh); release_stripe(sh); return STRIPE_SECTORS; @@ -4719,10 +5100,11 @@ static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) int remaining; int handled = 0; - logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); + logical_sector = raid_bio->bi_iter.bi_sector & + ~((sector_t)STRIPE_SECTORS-1); sector = raid5_compute_sector(conf, logical_sector, 0, &dd_idx, NULL); - last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); + last_sector = bio_end_sector(raid_bio); for (; logical_sector < last_sector; logical_sector += STRIPE_SECTORS, @@ -4733,7 +5115,7 @@ static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) /* already done this stripe */ continue; - sh = get_active_stripe(conf, sector, 0, 1, 0); + sh = get_active_stripe(conf, sector, 0, 1, 1); if (!sh) { /* failed to get a stripe - must wait */ @@ -4765,31 +5147,83 @@ static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) return handled; } -#define MAX_STRIPE_BATCH 8 -static int handle_active_stripes(struct r5conf *conf) +static int handle_active_stripes(struct r5conf *conf, int group, + struct r5worker *worker, + struct list_head *temp_inactive_list) { struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; - int i, batch_size = 0; + int i, batch_size = 0, hash; + bool release_inactive = false; while (batch_size < MAX_STRIPE_BATCH && - (sh = __get_priority_stripe(conf)) != NULL) + (sh = __get_priority_stripe(conf, group)) != NULL) batch[batch_size++] = sh; - if (batch_size == 0) - return batch_size; + if (batch_size == 0) { + for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) + if (!list_empty(temp_inactive_list + i)) + break; + if (i == NR_STRIPE_HASH_LOCKS) + return batch_size; + release_inactive = true; + } spin_unlock_irq(&conf->device_lock); + release_inactive_stripe_list(conf, temp_inactive_list, + NR_STRIPE_HASH_LOCKS); + + if (release_inactive) { + spin_lock_irq(&conf->device_lock); + return 0; + } + for (i = 0; i < batch_size; i++) handle_stripe(batch[i]); cond_resched(); spin_lock_irq(&conf->device_lock); - for (i = 0; i < batch_size; i++) - __release_stripe(conf, batch[i]); + for (i = 0; i < batch_size; i++) { + hash = batch[i]->hash_lock_index; + __release_stripe(conf, batch[i], &temp_inactive_list[hash]); + } return batch_size; } +static void raid5_do_work(struct work_struct *work) +{ + struct r5worker *worker = container_of(work, struct r5worker, work); + struct r5worker_group *group = worker->group; + struct r5conf *conf = group->conf; + int group_id = group - conf->worker_groups; + int handled; + struct blk_plug plug; + + pr_debug("+++ raid5worker active\n"); + + blk_start_plug(&plug); + handled = 0; + spin_lock_irq(&conf->device_lock); + while (1) { + int batch_size, released; + + released = release_stripe_list(conf, worker->temp_inactive_list); + + batch_size = handle_active_stripes(conf, group_id, worker, + worker->temp_inactive_list); + worker->working = false; + if (!batch_size && !released) + break; + handled += batch_size; + } + pr_debug("%d stripes handled\n", handled); + + spin_unlock_irq(&conf->device_lock); + blk_finish_plug(&plug); + + pr_debug("--- raid5worker inactive\n"); +} + /* * This is our raid5 kernel thread. * @@ -4813,7 +5247,9 @@ static void raid5d(struct md_thread *thread) spin_lock_irq(&conf->device_lock); while (1) { struct bio *bio; - int batch_size; + int batch_size, released; + + released = release_stripe_list(conf, conf->temp_inactive_list); if ( !list_empty(&conf->bitmap_list)) { @@ -4823,7 +5259,7 @@ static void raid5d(struct md_thread *thread) bitmap_unplug(mddev->bitmap); spin_lock_irq(&conf->device_lock); conf->seq_write = conf->seq_flush; - activate_bit_delay(conf); + activate_bit_delay(conf, conf->temp_inactive_list); } raid5_activate_delayed(conf); @@ -4837,8 +5273,9 @@ static void raid5d(struct md_thread *thread) handled++; } - batch_size = handle_active_stripes(conf); - if (!batch_size) + batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, + conf->temp_inactive_list); + if (!batch_size && !released) break; handled += batch_size; @@ -4873,22 +5310,29 @@ raid5_set_cache_size(struct mddev *mddev, int size) { struct r5conf *conf = mddev->private; int err; + int hash; if (size <= 16 || size > 32768) return -EINVAL; + hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS; while (size < conf->max_nr_stripes) { - if (drop_one_stripe(conf)) + if (drop_one_stripe(conf, hash)) conf->max_nr_stripes--; else break; + hash--; + if (hash < 0) + hash = NR_STRIPE_HASH_LOCKS - 1; } err = md_allow_write(mddev); if (err) return err; + hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; while (size > conf->max_nr_stripes) { - if (grow_one_stripe(conf)) + if (grow_one_stripe(conf, hash)) conf->max_nr_stripes++; else break; + hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; } return 0; } @@ -4906,7 +5350,7 @@ raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) if (!conf) return -ENODEV; - if (strict_strtoul(page, 10, &new)) + if (kstrtoul(page, 10, &new)) return -EINVAL; err = raid5_set_cache_size(mddev, new); if (err) @@ -4939,7 +5383,7 @@ raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) if (!conf) return -ENODEV; - if (strict_strtoul(page, 10, &new)) + if (kstrtoul(page, 10, &new)) return -EINVAL; if (new > conf->max_nr_stripes) return -EINVAL; @@ -4954,6 +5398,50 @@ raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, raid5_store_preread_threshold); static ssize_t +raid5_show_skip_copy(struct mddev *mddev, char *page) +{ + struct r5conf *conf = mddev->private; + if (conf) + return sprintf(page, "%d\n", conf->skip_copy); + else + return 0; +} + +static ssize_t +raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) +{ + struct r5conf *conf = mddev->private; + unsigned long new; + if (len >= PAGE_SIZE) + return -EINVAL; + if (!conf) + return -ENODEV; + + if (kstrtoul(page, 10, &new)) + return -EINVAL; + new = !!new; + if (new == conf->skip_copy) + return len; + + mddev_suspend(mddev); + conf->skip_copy = new; + if (new) + mddev->queue->backing_dev_info.capabilities |= + BDI_CAP_STABLE_WRITES; + else + mddev->queue->backing_dev_info.capabilities &= + ~BDI_CAP_STABLE_WRITES; + mddev_resume(mddev); + return len; +} + +static struct md_sysfs_entry +raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, + raid5_show_skip_copy, + raid5_store_skip_copy); + + +static ssize_t stripe_cache_active_show(struct mddev *mddev, char *page) { struct r5conf *conf = mddev->private; @@ -4966,10 +5454,79 @@ stripe_cache_active_show(struct mddev *mddev, char *page) static struct md_sysfs_entry raid5_stripecache_active = __ATTR_RO(stripe_cache_active); +static ssize_t +raid5_show_group_thread_cnt(struct mddev *mddev, char *page) +{ + struct r5conf *conf = mddev->private; + if (conf) + return sprintf(page, "%d\n", conf->worker_cnt_per_group); + else + return 0; +} + +static int alloc_thread_groups(struct r5conf *conf, int cnt, + int *group_cnt, + int *worker_cnt_per_group, + struct r5worker_group **worker_groups); +static ssize_t +raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) +{ + struct r5conf *conf = mddev->private; + unsigned long new; + int err; + struct r5worker_group *new_groups, *old_groups; + int group_cnt, worker_cnt_per_group; + + if (len >= PAGE_SIZE) + return -EINVAL; + if (!conf) + return -ENODEV; + + if (kstrtoul(page, 10, &new)) + return -EINVAL; + + if (new == conf->worker_cnt_per_group) + return len; + + mddev_suspend(mddev); + + old_groups = conf->worker_groups; + if (old_groups) + flush_workqueue(raid5_wq); + + err = alloc_thread_groups(conf, new, + &group_cnt, &worker_cnt_per_group, + &new_groups); + if (!err) { + spin_lock_irq(&conf->device_lock); + conf->group_cnt = group_cnt; + conf->worker_cnt_per_group = worker_cnt_per_group; + conf->worker_groups = new_groups; + spin_unlock_irq(&conf->device_lock); + + if (old_groups) + kfree(old_groups[0].workers); + kfree(old_groups); + } + + mddev_resume(mddev); + + if (err) + return err; + return len; +} + +static struct md_sysfs_entry +raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, + raid5_show_group_thread_cnt, + raid5_store_group_thread_cnt); + static struct attribute *raid5_attrs[] = { &raid5_stripecache_size.attr, &raid5_stripecache_active.attr, &raid5_preread_bypass_threshold.attr, + &raid5_group_thread_cnt.attr, + &raid5_skip_copy.attr, NULL, }; static struct attribute_group raid5_attrs_group = { @@ -4977,6 +5534,61 @@ static struct attribute_group raid5_attrs_group = { .attrs = raid5_attrs, }; +static int alloc_thread_groups(struct r5conf *conf, int cnt, + int *group_cnt, + int *worker_cnt_per_group, + struct r5worker_group **worker_groups) +{ + int i, j, k; + ssize_t size; + struct r5worker *workers; + + *worker_cnt_per_group = cnt; + if (cnt == 0) { + *group_cnt = 0; + *worker_groups = NULL; + return 0; + } + *group_cnt = num_possible_nodes(); + size = sizeof(struct r5worker) * cnt; + workers = kzalloc(size * *group_cnt, GFP_NOIO); + *worker_groups = kzalloc(sizeof(struct r5worker_group) * + *group_cnt, GFP_NOIO); + if (!*worker_groups || !workers) { + kfree(workers); + kfree(*worker_groups); + return -ENOMEM; + } + + for (i = 0; i < *group_cnt; i++) { + struct r5worker_group *group; + + group = &(*worker_groups)[i]; + INIT_LIST_HEAD(&group->handle_list); + group->conf = conf; + group->workers = workers + i * cnt; + + for (j = 0; j < cnt; j++) { + struct r5worker *worker = group->workers + j; + worker->group = group; + INIT_WORK(&worker->work, raid5_do_work); + + for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) + INIT_LIST_HEAD(worker->temp_inactive_list + k); + } + } + + return 0; +} + +static void free_thread_groups(struct r5conf *conf) +{ + if (conf->worker_groups) + kfree(conf->worker_groups[0].workers); + kfree(conf->worker_groups); + conf->worker_groups = NULL; +} + static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) { @@ -4993,23 +5605,43 @@ raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) return sectors * (raid_disks - conf->max_degraded); } +static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) +{ + safe_put_page(percpu->spare_page); + kfree(percpu->scribble); + percpu->spare_page = NULL; + percpu->scribble = NULL; +} + +static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) +{ + if (conf->level == 6 && !percpu->spare_page) + percpu->spare_page = alloc_page(GFP_KERNEL); + if (!percpu->scribble) + percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); + + if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { + free_scratch_buffer(conf, percpu); + return -ENOMEM; + } + + return 0; +} + static void raid5_free_percpu(struct r5conf *conf) { - struct raid5_percpu *percpu; unsigned long cpu; if (!conf->percpu) return; - get_online_cpus(); - for_each_possible_cpu(cpu) { - percpu = per_cpu_ptr(conf->percpu, cpu); - safe_put_page(percpu->spare_page); - kfree(percpu->scribble); - } #ifdef CONFIG_HOTPLUG_CPU unregister_cpu_notifier(&conf->cpu_notify); #endif + + get_online_cpus(); + for_each_possible_cpu(cpu) + free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); put_online_cpus(); free_percpu(conf->percpu); @@ -5017,6 +5649,7 @@ static void raid5_free_percpu(struct r5conf *conf) static void free_conf(struct r5conf *conf) { + free_thread_groups(conf); shrink_stripes(conf); raid5_free_percpu(conf); kfree(conf->disks); @@ -5035,15 +5668,7 @@ static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: - if (conf->level == 6 && !percpu->spare_page) - percpu->spare_page = alloc_page(GFP_KERNEL); - if (!percpu->scribble) - percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); - - if (!percpu->scribble || - (conf->level == 6 && !percpu->spare_page)) { - safe_put_page(percpu->spare_page); - kfree(percpu->scribble); + if (alloc_scratch_buffer(conf, percpu)) { pr_err("%s: failed memory allocation for cpu%ld\n", __func__, cpu); return notifier_from_errno(-ENOMEM); @@ -5051,10 +5676,7 @@ static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, break; case CPU_DEAD: case CPU_DEAD_FROZEN: - safe_put_page(percpu->spare_page); - kfree(percpu->scribble); - percpu->spare_page = NULL; - percpu->scribble = NULL; + free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); break; default: break; @@ -5066,40 +5688,29 @@ static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, static int raid5_alloc_percpu(struct r5conf *conf) { unsigned long cpu; - struct page *spare_page; - struct raid5_percpu __percpu *allcpus; - void *scribble; - int err; + int err = 0; - allcpus = alloc_percpu(struct raid5_percpu); - if (!allcpus) + conf->percpu = alloc_percpu(struct raid5_percpu); + if (!conf->percpu) return -ENOMEM; - conf->percpu = allcpus; + +#ifdef CONFIG_HOTPLUG_CPU + conf->cpu_notify.notifier_call = raid456_cpu_notify; + conf->cpu_notify.priority = 0; + err = register_cpu_notifier(&conf->cpu_notify); + if (err) + return err; +#endif get_online_cpus(); - err = 0; for_each_present_cpu(cpu) { - if (conf->level == 6) { - spare_page = alloc_page(GFP_KERNEL); - if (!spare_page) { - err = -ENOMEM; - break; - } - per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; - } - scribble = kmalloc(conf->scribble_len, GFP_KERNEL); - if (!scribble) { - err = -ENOMEM; + err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); + if (err) { + pr_err("%s: failed memory allocation for cpu%ld\n", + __func__, cpu); break; } - per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; } -#ifdef CONFIG_HOTPLUG_CPU - conf->cpu_notify.notifier_call = raid456_cpu_notify; - conf->cpu_notify.priority = 0; - if (err == 0) - err = register_cpu_notifier(&conf->cpu_notify); -#endif put_online_cpus(); return err; @@ -5112,6 +5723,9 @@ static struct r5conf *setup_conf(struct mddev *mddev) struct md_rdev *rdev; struct disk_info *disk; char pers_name[6]; + int i; + int group_cnt, worker_cnt_per_group; + struct r5worker_group *new_group; if (mddev->new_level != 5 && mddev->new_level != 4 @@ -5145,14 +5759,23 @@ static struct r5conf *setup_conf(struct mddev *mddev) conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); if (conf == NULL) goto abort; + /* Don't enable multi-threading by default*/ + if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, + &new_group)) { + conf->group_cnt = group_cnt; + conf->worker_cnt_per_group = worker_cnt_per_group; + conf->worker_groups = new_group; + } else + goto abort; spin_lock_init(&conf->device_lock); + seqcount_init(&conf->gen_lock); init_waitqueue_head(&conf->wait_for_stripe); init_waitqueue_head(&conf->wait_for_overlap); INIT_LIST_HEAD(&conf->handle_list); INIT_LIST_HEAD(&conf->hold_list); INIT_LIST_HEAD(&conf->delayed_list); INIT_LIST_HEAD(&conf->bitmap_list); - INIT_LIST_HEAD(&conf->inactive_list); + init_llist_head(&conf->released_stripes); atomic_set(&conf->active_stripes, 0); atomic_set(&conf->preread_active_stripes, 0); atomic_set(&conf->active_aligned_reads, 0); @@ -5177,6 +5800,21 @@ static struct r5conf *setup_conf(struct mddev *mddev) if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) goto abort; + /* We init hash_locks[0] separately to that it can be used + * as the reference lock in the spin_lock_nest_lock() call + * in lock_all_device_hash_locks_irq in order to convince + * lockdep that we know what we are doing. + */ + spin_lock_init(conf->hash_locks); + for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) + spin_lock_init(conf->hash_locks + i); + + for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) + INIT_LIST_HEAD(conf->inactive_list + i); + + for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) + INIT_LIST_HEAD(conf->temp_inactive_list + i); + conf->level = mddev->new_level; if (raid5_alloc_percpu(conf) != 0) goto abort; @@ -5217,7 +5855,6 @@ static struct r5conf *setup_conf(struct mddev *mddev) else conf->max_degraded = 1; conf->algorithm = mddev->new_layout; - conf->max_nr_stripes = NR_STRIPES; conf->reshape_progress = mddev->reshape_position; if (conf->reshape_progress != MaxSector) { conf->prev_chunk_sectors = mddev->chunk_sectors; @@ -5226,7 +5863,8 @@ static struct r5conf *setup_conf(struct mddev *mddev) memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; - if (grow_stripes(conf, conf->max_nr_stripes)) { + atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); + if (grow_stripes(conf, NR_STRIPES)) { printk(KERN_ERR "md/raid:%s: couldn't allocate %dkB for buffers\n", mdname(mddev), memory); @@ -5448,7 +6086,7 @@ static int run(struct mddev *mddev) if (mddev->major_version == 0 && mddev->minor_version > 90) rdev->recovery_offset = reshape_offset; - + if (rdev->recovery_offset < reshape_offset) { /* We need to check old and new layout */ if (!only_parity(rdev->raid_disk, @@ -5554,6 +6192,7 @@ static int run(struct mddev *mddev) blk_queue_io_min(mddev->queue, chunk_size); blk_queue_io_opt(mddev->queue, chunk_size * (conf->raid_disks - conf->max_degraded)); + mddev->queue->limits.raid_partial_stripes_expensive = 1; /* * We can only discard a whole stripe. It doesn't make sense to * discard data disk but write parity disk @@ -5571,6 +6210,8 @@ static int run(struct mddev *mddev) */ mddev->queue->limits.discard_zeroes_data = 0; + blk_queue_max_write_same_sectors(mddev->queue, 0); + rdev_for_each(rdev, mddev) { disk_stack_limits(mddev->gendisk, rdev->bdev, rdev->data_offset << 9); @@ -5894,7 +6535,7 @@ static int check_reshape(struct mddev *mddev) return 0; /* nothing to do */ if (has_failed(conf)) return -EINVAL; - if (mddev->delta_disks < 0) { + if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { /* We might be able to shrink, but the devices must * be made bigger first. * For raid6, 4 is the minimum size. @@ -5955,6 +6596,7 @@ static int raid5_start_reshape(struct mddev *mddev) atomic_set(&conf->reshape_stripes, 0); spin_lock_irq(&conf->device_lock); + write_seqcount_begin(&conf->gen_lock); conf->previous_raid_disks = conf->raid_disks; conf->raid_disks += mddev->delta_disks; conf->prev_chunk_sectors = conf->chunk_sectors; @@ -5971,8 +6613,16 @@ static int raid5_start_reshape(struct mddev *mddev) else conf->reshape_progress = 0; conf->reshape_safe = conf->reshape_progress; + write_seqcount_end(&conf->gen_lock); spin_unlock_irq(&conf->device_lock); + /* Now make sure any requests that proceeded on the assumption + * the reshape wasn't running - like Discard or Read - have + * completed. + */ + mddev_suspend(mddev); + mddev_resume(mddev); + /* Add some new drives, as many as will fit. * We know there are enough to make the newly sized array work. * Don't add devices if we are reducing the number of @@ -6021,12 +6671,18 @@ static int raid5_start_reshape(struct mddev *mddev) if (!mddev->sync_thread) { mddev->recovery = 0; spin_lock_irq(&conf->device_lock); + write_seqcount_begin(&conf->gen_lock); mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; + mddev->new_chunk_sectors = + conf->chunk_sectors = conf->prev_chunk_sectors; + mddev->new_layout = conf->algorithm = conf->prev_algo; rdev_for_each(rdev, mddev) rdev->new_data_offset = rdev->data_offset; smp_wmb(); + conf->generation --; conf->reshape_progress = MaxSector; mddev->reshape_position = MaxSector; + write_seqcount_end(&conf->gen_lock); spin_unlock_irq(&conf->device_lock); return -EAGAIN; } @@ -6114,27 +6770,28 @@ static void raid5_quiesce(struct mddev *mddev, int state) break; case 1: /* stop all writes */ - spin_lock_irq(&conf->device_lock); + lock_all_device_hash_locks_irq(conf); /* '2' tells resync/reshape to pause so that all * active stripes can drain */ conf->quiesce = 2; - wait_event_lock_irq(conf->wait_for_stripe, + wait_event_cmd(conf->wait_for_stripe, atomic_read(&conf->active_stripes) == 0 && atomic_read(&conf->active_aligned_reads) == 0, - conf->device_lock); + unlock_all_device_hash_locks_irq(conf), + lock_all_device_hash_locks_irq(conf)); conf->quiesce = 1; - spin_unlock_irq(&conf->device_lock); + unlock_all_device_hash_locks_irq(conf); /* allow reshape to continue */ wake_up(&conf->wait_for_overlap); break; case 0: /* re-enable writes */ - spin_lock_irq(&conf->device_lock); + lock_all_device_hash_locks_irq(conf); conf->quiesce = 0; wake_up(&conf->wait_for_stripe); wake_up(&conf->wait_for_overlap); - spin_unlock_irq(&conf->device_lock); + unlock_all_device_hash_locks_irq(conf); break; } } @@ -6447,6 +7104,10 @@ static struct md_personality raid4_personality = static int __init raid5_init(void) { + raid5_wq = alloc_workqueue("raid5wq", + WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); + if (!raid5_wq) + return -ENOMEM; register_md_personality(&raid6_personality); register_md_personality(&raid5_personality); register_md_personality(&raid4_personality); @@ -6458,6 +7119,7 @@ static void raid5_exit(void) unregister_md_personality(&raid6_personality); unregister_md_personality(&raid5_personality); unregister_md_personality(&raid4_personality); + destroy_workqueue(raid5_wq); } module_init(raid5_init); diff --git a/drivers/md/raid5.h b/drivers/md/raid5.h index 18b2c4a8a1f..bc72cd4be5f 100644 --- a/drivers/md/raid5.h +++ b/drivers/md/raid5.h @@ -49,7 +49,7 @@ * can't distinguish between a clean block that has been generated * from parity calculations, and a clean block that has been * successfully written to the spare ( or to parity when resyncing). - * To distingush these states we have a stripe bit STRIPE_INSYNC that + * To distinguish these states we have a stripe bit STRIPE_INSYNC that * is set whenever a write is scheduled to the spare, or to the parity * disc if there is no spare. A sync request clears this bit, and * when we find it set with no buffers locked, we know the sync is @@ -197,6 +197,7 @@ enum reconstruct_states { struct stripe_head { struct hlist_node hash; struct list_head lru; /* inactive_list or handle_list */ + struct llist_node release_list; struct r5conf *raid_conf; short generation; /* increments with every * reshape */ @@ -204,6 +205,7 @@ struct stripe_head { short pd_idx; /* parity disk index */ short qd_idx; /* 'Q' disk index for raid6 */ short ddf_layout;/* use DDF ordering to calculate Q */ + short hash_lock_index; unsigned long state; /* state flags */ atomic_t count; /* nr of active thread/requests */ int bm_seq; /* sequence number for bitmap flushes */ @@ -211,6 +213,8 @@ struct stripe_head { enum check_states check_state; enum reconstruct_states reconstruct_state; spinlock_t stripe_lock; + int cpu; + struct r5worker_group *group; /** * struct stripe_operations * @target - STRIPE_OP_COMPUTE_BLK target @@ -221,10 +225,6 @@ struct stripe_head { struct stripe_operations { int target, target2; enum sum_check_flags zero_sum_result; - #ifdef CONFIG_MULTICORE_RAID456 - unsigned long request; - wait_queue_head_t wait_for_ops; - #endif } ops; struct r5dev { /* rreq and rvec are used for the replacement device when @@ -232,7 +232,7 @@ struct stripe_head { */ struct bio req, rreq; struct bio_vec vec, rvec; - struct page *page; + struct page *page, *orig_page; struct bio *toread, *read, *towrite, *written; sector_t sector; /* sector of this page */ unsigned long flags; @@ -299,6 +299,7 @@ enum r5dev_flags { * data in, and now is a good time to write it out. */ R5_Discard, /* Discard the stripe */ + R5_SkipCopy, /* Don't copy data from bio to stripe cache */ }; /* @@ -310,6 +311,7 @@ enum { STRIPE_SYNC_REQUESTED, STRIPE_SYNCING, STRIPE_INSYNC, + STRIPE_REPLACED, STRIPE_PREREAD_ACTIVE, STRIPE_DELAYED, STRIPE_DEGRADED, @@ -323,6 +325,8 @@ enum { STRIPE_COMPUTE_RUN, STRIPE_OPS_REQ_PENDING, STRIPE_ON_UNPLUG_LIST, + STRIPE_DISCARD, + STRIPE_ON_RELEASE_LIST, }; /* @@ -365,8 +369,32 @@ struct disk_info { struct md_rdev *rdev, *replacement; }; +/* NOTE NR_STRIPE_HASH_LOCKS must remain below 64. + * This is because we sometimes take all the spinlocks + * and creating that much locking depth can cause + * problems. + */ +#define NR_STRIPE_HASH_LOCKS 8 +#define STRIPE_HASH_LOCKS_MASK (NR_STRIPE_HASH_LOCKS - 1) + +struct r5worker { + struct work_struct work; + struct r5worker_group *group; + struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; + bool working; +}; + +struct r5worker_group { + struct list_head handle_list; + struct r5conf *conf; + struct r5worker *workers; + int stripes_cnt; +}; + struct r5conf { struct hlist_head *stripe_hashtbl; + /* only protect corresponding hash list and inactive_list */ + spinlock_t hash_locks[NR_STRIPE_HASH_LOCKS]; struct mddev *mddev; int chunk_sectors; int level, algorithm; @@ -388,6 +416,7 @@ struct r5conf { int prev_chunk_sectors; int prev_algo; short generation; /* increments with every reshape */ + seqcount_t gen_lock; /* lock against generation changes */ unsigned long reshape_checkpoint; /* Time we last updated * metadata */ long long min_offset_diff; /* minimum difference between @@ -408,6 +437,7 @@ struct r5conf { atomic_t pending_full_writes; /* full write backlog */ int bypass_count; /* bypassed prereads */ int bypass_threshold; /* preread nice */ + int skip_copy; /* Don't copy data from bio to stripe cache */ struct list_head *last_hold; /* detect hold_list promotions */ atomic_t reshape_stripes; /* stripes with pending writes for reshape */ @@ -446,7 +476,9 @@ struct r5conf { * Free stripes pool */ atomic_t active_stripes; - struct list_head inactive_list; + struct list_head inactive_list[NR_STRIPE_HASH_LOCKS]; + atomic_t empty_inactive_list_nr; + struct llist_head released_stripes; wait_queue_head_t wait_for_stripe; wait_queue_head_t wait_for_overlap; int inactive_blocked; /* release of inactive stripes blocked, @@ -460,6 +492,10 @@ struct r5conf { * the new thread here until we fully activate the array. */ struct md_thread *thread; + struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; + struct r5worker_group *worker_groups; + int group_cnt; + int worker_cnt_per_group; }; /* |
