| Age | Commit message (Collapse) | Author |
|
To not over constrain the scheduler for ARM in thumb mode, some optimizations for code size reduction, specific to ARM thumb, are blocked when they add a dependency (like write after read dependency).
Disables this check when code size is the priority, i.e., code is compiled with -Oz.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170462 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170454 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
A register can be associated with several distinct register classes.
For example, on PPC, the floating point registers are each associated with
both F4RC (which holds f32) and F8RC (which holds f64). As a result, this code
would fail when provided with a floating point register and an f64 operand
because it would happen to find the register in the F4RC class first and
return that. From the F4RC class, SDAG would extract f32 as the register
type and then assert because of the invalid implied conversion between
the f64 value and the f32 register.
Instead, search all register classes. If a register class containing the
the requested register has the requested type, then return that register
class. Otherwise, as before, return the first register class found that
contains the requested register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170436 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
and lzcnt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170304 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.html
http://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170279 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
psubus if possible.
We match the pattern "x >= y ? x-y : 0" into "subus x, y" and two special cases
if y is a constant. DAGCombiner canonicalizes those so we first have to undo the
canonicalization for those cases. The pattern occurs in gzip when the loop
vectorizer is enabled. Part of PR14613.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170273 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
In this case, essentially it is soft float with different library routines.
The next step will be to make this fully interoperational with mips32 floating
point and that requires creating stubs for functions with signatures that
contain floating point types.
I have a more sophisticated design for mips16 hardfloat which I hope to
implement at a later time that directly does floating point without the need
for function calls.
The mips16 encoding has no floating point instructions so one needs to
switch to mips32 mode to execute floating point instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170259 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Without this, the load would not be RIP relative, and will end up
being relative to 0, which is R15.
BUG= http://code.google.com/p/nativeclient/issues/detail?id=3219
TEST= ./scons bitcode=1 pnacl_generate_pexe=0 \
run_stack_frame_noopt_noframe_test \
run_unwind_trace_noopt_noframe_test \
run_stack_frame_noopt_frame_test \
run_unwind_trace_noopt_frame_test \
platform=x86-64 nacl_pic=1
Review URL: https://codereview.chromium.org/11575042
|
|
because we cant type-legalize them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170245 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
for TLS dynamic models on 64-bit PowerPC ELF. The default sort routine
for relocations only sorts on the r_offset field; but with TLS, there
can be two relocations with the same r_offset. For PowerPC, this patch
sorts secondarily on descending r_type, which matches the behavior
expected by the linker.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170237 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
for a wider range of GOT entries that can hold thread-relative offsets.
This matches the behavior of GCC, which was not documented in the PPC64 TLS
ABI. The ABI will be updated with the new code sequence.
Former sequence:
ld 9,x@got@tprel(2)
add 9,9,x@tls
New sequence:
addis 9,2,x@got@tprel@ha
ld 9,x@got@tprel@l(9)
add 9,9,x@tls
Note that a linker optimization exists to transform the new sequence into
the shorter sequence when appropriate, by replacing the addis with a nop
and modifying the base register and relocation type of the ld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170209 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
internal linkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170092 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
before referencing them. rdar://12868039
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170078 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
load / store pair. It's not legal to use a wider load than the size of
the remaining bytes if it's the first pair of load / store.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170018 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
predictable when compiled on at least one non-PowerPC host. Source of
nondeterminism not apparent. Restrict the test to build on PowerPC hosts
for now while looking into the issue further.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170016 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
PowerPC target. This is the last of the four models, so we now have
full TLS support.
This is mostly a straightforward extension of the general dynamic model.
I had to use an additional Chain operand to tie ADDIS_DTPREL_HA to the
register copy following ADDI_TLSLD_L; otherwise everything above the
ADDIS_DTPREL_HA appeared dead and was removed.
As before, there are new test cases to test the assembly generation, and
the relocations output during integrated assembly. The expected code
gen sequence can be read in test/CodeGen/PowerPC/tls-ld.ll.
There are a couple of things I think can be done more efficiently in the
overall TLS code, so there will likely be a clean-up patch forthcoming;
but for now I want to be sure the functionality is in place.
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170003 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
CHECK-NOT lines.
Found by Alexander Zinenko, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169978 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
s/test_/Test/g, not to mismatch "CHECK(-NOT): test".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169977 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169957 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169956 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
rdar://12838504
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169951 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
f64 load / store on non-SSE2 x86 targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169944 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
A new backend supporting AMD GPUs: Radeon HD2XXX - HD7XXX
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169915 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Given a thread-local symbol x with global-dynamic access, the generated
code to obtain x's address is:
Instruction Relocation Symbol
addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
<use address in r3>
The implementation borrows from the medium code model work for introducing
special forms of ADDIS and ADDI into the DAG representation. This is made
slightly more complicated by having to introduce a call to the external
function __tls_get_addr. Using the full call machinery is overkill and,
more importantly, makes it difficult to add a special relocation. So I've
introduced another opcode GET_TLS_ADDR to represent the function call, and
surrounded it with register copies to set up the parameter and return value.
Most of the code is pretty straightforward. I ran into one peculiarity
when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like
BL8_NOP_ELF except that it takes another parameter to represent the symbol
("x" above) that requires a relocation on the call. Something in the
TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated
identically during the emit phase, so this second operand was never
visited to generate relocations. This is the reason for the slightly
messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding().
Two new tests are included to demonstrate correct external assembly and
correct generation of relocations using the integrated assembler.
Comments welcome!
Thanks,
Bill
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169910 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169803 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
try to reduce the width of this load, and would end up transforming:
(truncate (lshr (sextload i48 <ptr> as i64), 32) to i32)
to
(truncate (zextload i32 <ptr+4> as i64) to i32)
We lost the sext attached to the load while building the narrower i32
load, and replaced it with a zext because lshr always zext's the
results. Instead, bail out of this combine when there is a conflict
between a sextload and a zext narrowing. The rest of the DAG combiner
still optimize the code down to the proper single instruction:
movswl 6(...),%eax
Which is exactly what we wanted. Previously we read past the end *and*
missed the sign extension:
movl 6(...), %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169802 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This test case uses -mcpu=corei7 so it belongs in CodeGen/X86
Reviewed by: Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169801 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This shouldn't affect codegen for -O0 compiles as tail call markers are not
emitted in unoptimized compiles. Testing with the external/internal nightly
test suite reveals no change in compile time performance. Testing with -O1,
-O2 and -O3 with fast-isel enabled did not cause any compile-time or
execution-time failures. All tests were performed on my x86 machine.
I'll monitor our arm testers to ensure no regressions occur there.
In an upcoming clang patch I will be marking the objc_autoreleaseReturnValue
and objc_retainAutoreleaseReturnValue as tail calls unconditionally. While
it's theoretically true that this is just an optimization, it's an
optimization that we very much want to happen even at -O0, or else ARC
applications become substantially harder to debug.
Part of rdar://12553082
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169796 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169791 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
misched used GetUnderlyingObject in order to break false load/store
dependencies, and the -enable-aa-sched-mi feature similarly relied on
GetUnderlyingObject in order to ensure it is safe to use the aliasing analysis.
Unfortunately, GetUnderlyingObject does not recurse through phi nodes, and so
(especially due to LSR) all of these mechanisms failed for
induction-variable-dependent loads and stores inside loops.
This change replaces uses of GetUnderlyingObject with GetUnderlyingObjects
(which will recurse through phi and select instructions) in misched.
Andy reviewed, tested and simplified this patch; Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169744 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169727 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
or all 0s. These cases can show up when vectors are split for legalizing. Fix some tests that were dependent on these cases not being combined.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169684 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
the VSRI instruction before it since it does not affect the MSB.
Thanks Craig Topper for suggesting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169638 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
In particular, check if MachineBasicBlock::iterator is end() before
using it to call getDebugLoc();
See also this thread on llvm-commits:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121112/155914.html
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169634 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169624 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Before this patch, when you objdump an LLVM-compiled file, objdump tried to
decode data-in-code sections as if they were code. This patch adds the missing
Mapping Symbols, as defined by "ELF for the ARM Architecture" (ARM IHI 0044D).
Patch based on work by Greg Fitzgerald.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169609 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Patch by Alexander Zinenko.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169547 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
check if loads that happen in between stores alias with the first store in the
chain, only with the second store onwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169516 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
to the normal instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169482 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169464 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
guess Chad expects fastisel here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169463 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
rdar://12821569
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169460 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
and extload's. If they are implemented as zero-extend, or implicitly
zero-extend, then this can enable more demanded bits optimizations. e.g.
define void @foo(i16* %ptr, i32 %a) nounwind {
entry:
%tmp1 = icmp ult i32 %a, 100
br i1 %tmp1, label %bb1, label %bb2
bb1:
%tmp2 = load i16* %ptr, align 2
br label %bb2
bb2:
%tmp3 = phi i16 [ 0, %entry ], [ %tmp2, %bb1 ]
%cmp = icmp ult i16 %tmp3, 24
br i1 %cmp, label %bb3, label %exit
bb3:
call void @bar() nounwind
br label %exit
exit:
ret void
}
This compiles to the followings before:
push {lr}
mov r2, #0
cmp r1, #99
bhi LBB0_2
@ BB#1: @ %bb1
ldrh r2, [r0]
LBB0_2: @ %bb2
uxth r0, r2
cmp r0, #23
bhi LBB0_4
@ BB#3: @ %bb3
bl _bar
LBB0_4: @ %exit
pop {lr}
bx lr
The uxth is not needed since ldrh implicitly zero-extend the high bits. With
this change it's eliminated.
rdar://12771555
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169459 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169427 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This is much simpler to reason about, more efficient, and
fixes some corner cases involving implicit super-register defs.
Fixed rdar://12797931.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169425 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Patch by Eric Holk
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169418 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
addressing mode and immediate stored value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169408 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Generate VPBLENDD for AVX2 and VPBLENDW for v16i16 type on AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169366 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
x ^ -1.
Patch by David Majnemer.
rdar://12755626
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169339 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169325 91177308-0d34-0410-b5e6-96231b3b80d8
|