Age | Commit message (Collapse) | Author |
|
See:
http://llvm.org/viewvc/llvm-project?view=revision&revision=187787
The newer version of newlib tickles this x86-32 bug
when building the exception handling tests, which don't
strip the "tail" attribute.
BUG=https://code.google.com/p/nativeclient/issues/detail?id=3702
Waiting on trybots, but it seems to have fixed the minimal
reproducer I have:
http://chromegw.corp.google.com/i/tryserver.nacl/builders/nacl-toolchain-linux-pnacl-x86_64/builds/922
http://chromegw.corp.google.com/i/tryserver.nacl/builders/nacl-toolchain-linux-pnacl-x86_32/builds/870
http://chromegw.corp.google.com/i/tryserver.nacl/builders/nacl-toolchain-mac-pnacl-x86_32/builds/875
R=jfb@chromium.org
Review URL: https://codereview.chromium.org/26538008
|
|
LowerNaClTargetArch has to return const PnaclTargetArchitectureMips_32 for
MIPS. The constant is later used in ResolvePNaClIntrinsics pass.
BUG= https://code.google.com/p/nativeclient/issues/detail?id=3602
R=jfb@chromium.org
Review URL: https://codereview.chromium.org/25887007
|
|
Conflicts:
docs/LangRef.rst
include/llvm/CodeGen/CallingConvLower.h
include/llvm/IRReader/IRReader.h
include/llvm/Target/TargetMachine.h
lib/CodeGen/CallingConvLower.cpp
lib/IRReader/IRReader.cpp
lib/IRReader/LLVMBuild.txt
lib/IRReader/Makefile
lib/LLVMBuild.txt
lib/Makefile
lib/Support/MemoryBuffer.cpp
lib/Support/Unix/PathV2.inc
lib/Target/ARM/ARMBaseInstrInfo.cpp
lib/Target/ARM/ARMISelLowering.cpp
lib/Target/ARM/ARMInstrInfo.td
lib/Target/ARM/ARMSubtarget.cpp
lib/Target/ARM/ARMTargetMachine.cpp
lib/Target/Mips/CMakeLists.txt
lib/Target/Mips/MipsDelaySlotFiller.cpp
lib/Target/Mips/MipsISelLowering.cpp
lib/Target/Mips/MipsInstrInfo.td
lib/Target/Mips/MipsSubtarget.cpp
lib/Target/Mips/MipsSubtarget.h
lib/Target/X86/X86FastISel.cpp
lib/Target/X86/X86ISelDAGToDAG.cpp
lib/Target/X86/X86ISelLowering.cpp
lib/Target/X86/X86InstrControl.td
lib/Target/X86/X86InstrFormats.td
lib/Transforms/IPO/ExtractGV.cpp
lib/Transforms/InstCombine/InstCombineCompares.cpp
lib/Transforms/Utils/SimplifyLibCalls.cpp
test/CodeGen/X86/fast-isel-divrem.ll
test/MC/ARM/data-in-code.ll
tools/Makefile
tools/llvm-extract/llvm-extract.cpp
tools/llvm-link/CMakeLists.txt
tools/opt/CMakeLists.txt
tools/opt/LLVMBuild.txt
tools/opt/Makefile
tools/opt/opt.cpp
|
|
This also pulls in a TargetMachine.h change from r176986 and changes
NaCl's intrinsics-bitmanip.ll test to account for register spills at O0.
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of test-suite on A15 hardware with --optimize-option=-O0 and
all the tests pass.
R=dschuff@chromium.org, jvoung@chromium.org
BUG= https://code.google.com/p/nativeclient/issues/detail?id=3120
Review URL: https://codereview.chromium.org/15671004
|
|
or the C++ files themselves. This enables people to use
just a C compiler to interoperate with LLVM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180063 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
'returned'
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179983 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
I think it's almost impossible to fold atomic fences profitably under
LLVM/C++11 semantics. As a result, this is now unused and just
cluttering up the target interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179940 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179939 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
parameter attribute 'returned', which is taken advantage of in target-independent tail call opportunity detection and in ARM call lowering (when placed on an integral first parameter).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179925 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
variant/dialect. Addresses a FIXME in the emitMnemonicAliases function.
Use and test case to come shortly.
rdar://13688439 and part of PR13340.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179804 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179761 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
The code in getTypeConversion attempts to promote the element vector type
before it trys to split or widen the vector.
After it failed finding a legal vector type by promoting it would continue using
the promoted vector element type. Thereby missing legal splitted vector types.
For example the type v32i32 that has a legal split of 4 x v3i32 on x86/sse2
would be transformed to: v32i256 and from there on successively split to:
v16i256, v8i256, v1i256 and then finally ends up as an i64 type.
By resetting the vector element type to the original vector element type that
existed before the promotion the code will attempt to split the vector type to
smaller vector widths of the same type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178999 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This comment documents the current behavior of the ARM implementation of this
callback, and also the soon-to-be-committed PPC version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178959 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
During LTO, the target options on functions within the same Module may
change. This would necessitate resetting some of the back-end. Do this for X86,
because it's a Friday afternoon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178917 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178828 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
It was superseded by MachineBlockPlacement and disabled by default since LLVM 3.1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178349 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Don't require instructions to inherit Sched<...>. Sometimes it is more
convenient to say:
let SchedRW = ... in {
...
}
Which is now possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177199 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
See the Mips16ISetLowering.cpp patch to see a use of this.
For now now the extra code in Mips16ISetLowering.cpp is a nop but is
used for test purposes. Mips32 registers are setup and then removed and
then the Mips16 registers are setup.
Normally you need to add register classes and then call
computeRegisterProperties.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177120 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This allows abitrary groups of processor resources. Using something in
a subset automatically counts againts the superset. Currently, this
only works if the superset is also a ProcResGroup as opposed to a
SuperUnit.
This allows SandyBridge to be expressed naturally, which will be
checked in shortly.
def SBPort01 : ProcResGroup<[SBPort0, SBPort1]>;
def SBPort15 : ProcResGroup<[SBPort1, SBPort5]>;
def SBPort23 : ProcResGroup<[SBPort2, SBPort3]>;
def SBPort015 : ProcResGroup<[SBPort0, SBPort1, SBPort5]>;
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177112 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Add the current PEI register scavenger as a parameter to the
processFunctionBeforeFrameFinalized callback.
This change is necessary in order to allow the PowerPC target code to
set the register scavenger frame index after the save-area offset
adjustments performed by processFunctionBeforeFrameFinalized. Only
after these adjustments have been made is it possible to estimate
the size of the stack frame.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177108 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This doesn't reset all of the target options within the TargetOptions
object. This is because some of those are ABI-specific and must be determined if
it's okay to change those on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176986 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Conflicts:
include/llvm/CodeGen/LexicalScopes.h
include/llvm/MC/MCAsmInfo.h
lib/Linker/LinkArchives.cpp
lib/Linker/LinkItems.cpp
lib/MC/MCAsmInfo.cpp
lib/MC/MCDwarf.cpp
lib/Target/ARM/ARMInstrInfo.td
lib/Target/ARM/ARMSubtarget.cpp
lib/Target/ARM/MCTargetDesc/ARMMCTargetDesc.cpp
lib/Target/Mips/MCTargetDesc/MipsELFObjectWriter.cpp
lib/Target/Mips/MCTargetDesc/MipsMCTargetDesc.cpp
lib/Target/Mips/MipsAsmPrinter.cpp
lib/Target/Mips/MipsDelaySlotFiller.cpp
lib/Target/Mips/MipsISelDAGToDAG.cpp
lib/Target/Mips/MipsSubtarget.cpp
lib/Target/Mips/MipsSubtarget.h
lib/Target/Mips/MipsTargetObjectFile.cpp
lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp
lib/Target/X86/X86FastISel.cpp
lib/Target/X86/X86ISelLowering.cpp
lib/Target/X86/X86TargetMachine.cpp
lib/Transforms/CMakeLists.txt
lib/Transforms/LLVMBuild.txt
lib/Transforms/Makefile
test/MC/ARM/arm_instructions.s
test/MC/X86/AlignedBundling/pad-align-to-bundle-end.s
|
|
This patch adds many more functions to the target library information.
All of the functions being added were discovered while doing the migration
of the simplify-libcalls attribute annotation functionality to the
functionattrs pass. As a part of that work the attribute annotation logic
will query TLI to determine if a function should be annotated or not.
Signed-off-by: Meador Inge <meadori@codesourcery.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176514 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
- ISD::SHL/SRL/SRA must have either both scalar or both vector operands
but TLI.getShiftAmountTy() so far only return scalar type. As a
result, backend logic assuming that breaks.
- Rename the original TLI.getShiftAmountTy() to
TLI.getScalarShiftAmountTy() and re-define TLI.getShiftAmountTy() to
return target-specificed scalar type or the same vector type as the
1st operand.
- Fix most TICG logic assuming TLI.getShiftAmountTy() a simple scalar
type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176364 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175788 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
http://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
ivars should be camel-case and start with an upper-case letter. A few in
TargetLowering were starting with a lower-case letter.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175667 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175457 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
features.
If two functions require different features (e.g., `-mno-sse' vs. `-msse') then
we want to honor that, especially during LTO. We can do that by resetting the
subtarget's features depending upon the 'target-feature' attribute.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175314 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175175 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Ran all sandboxed translator tests for x86 and x64 locally.
BUG=https://code.google.com/p/nativeclient/issues/detail?id=3183
Review URL: https://codereview.chromium.org/12224110
|
|
Each target implementation was needlessly recomputing the index.
Part of rdar://13076458
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174083 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Conflicts:
include/llvm/CodeGen/IntrinsicLowering.h
include/llvm/MC/MCAssembler.h
include/llvm/MC/MCObjectStreamer.h
lib/LLVMBuild.txt
lib/Linker/LinkArchives.cpp
lib/MC/MCAssembler.cpp
lib/MC/MCELFStreamer.cpp
lib/MC/MCParser/AsmParser.cpp
lib/MC/MCPureStreamer.cpp
lib/MC/WinCOFFStreamer.cpp
lib/Makefile
lib/Support/Unix/Memory.inc
lib/Support/Unix/Process.inc
lib/Support/Unix/Program.inc
lib/Target/ARM/ARM.h
lib/Target/ARM/ARMFastISel.cpp
lib/Target/ARM/ARMISelLowering.cpp
lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp
lib/Target/Mips/MipsInstrFPU.td
lib/Target/X86/CMakeLists.txt
lib/Target/X86/X86ISelLowering.cpp
lib/Target/X86/X86TargetMachine.cpp
lib/Target/X86/X86TargetObjectFile.cpp
lib/Transforms/InstCombine/InstCombineCalls.cpp
test/CodeGen/X86/fast-isel-x86-64.ll
tools/llc/llc.cpp
tools/lto/LTOModule.cpp
utils/TableGen/EDEmitter.cpp
|
|
BUG=3178
Review URL: https://codereview.chromium.org/12088028
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173382 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173285 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
deplib features commented out due to removal upstream;
will add back as a localmod
Conflicts:
include/llvm/ADT/Triple.h
include/llvm/MC/MCAssembler.h
include/llvm/Target/TargetFrameLowering.h
lib/CodeGen/AsmPrinter/DwarfDebug.cpp
lib/CodeGen/AsmPrinter/DwarfDebug.h
lib/CodeGen/BranchFolding.cpp
lib/LLVMBuild.txt
lib/Linker/LinkArchives.cpp
lib/MC/MCAssembler.cpp
lib/MC/MCELFStreamer.cpp
lib/Makefile
lib/Target/ARM/ARMExpandPseudoInsts.cpp
lib/Target/ARM/ARMFrameLowering.cpp
lib/Target/ARM/ARMISelLowering.cpp
lib/Target/ARM/ARMSubtarget.h
lib/Target/ARM/ARMTargetObjectFile.cpp
lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp
lib/Target/Mips/MipsInstrFPU.td
lib/Target/Mips/MipsInstrInfo.td
lib/Target/X86/X86CodeEmitter.cpp
lib/Target/X86/X86Subtarget.h
lib/VMCore/Module.cpp
test/MC/MachO/ARM/nop-armv4-padding.s
tools/Makefile
tools/llc/llc.cpp
tools/lto/LTOModule.cpp
tools/lto/lto.cpp
|
|
This fixes some of the cycles between libCodeGen and libSelectionDAG. It's still
a complete mess but as long as the edges consist of virtual call it doesn't
cause breakage. BasicTTI did static calls and thus broke some build
configurations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172246 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172025 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
subclass of TargetMachine which "forwards" all operations to an
existing internal TargetMachine member variable. In the usage context the
specific-machine class derived from TargetMachine is not visible,
only a reference to the generic base class TargetMachine. Although
getSubtargetImpl() is public in specific-machine classes derived from
TargetMachine, the TargetMachine class unfortunately has
getSubtargetImpl() protected (and accessing non-const members makes
abusing getSubtarget() unsuitable). Making it public in the base class
allows this forwarding pattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171976 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
fp128 is almost but not quite completely illegal as a type on AArch64. As a
result it needs to have a register class (for argument passing mainly), but all
operations need to be lowered to runtime calls. Currently there's no way for
targets to do this (without duplicating code), as the relevant functions are
hidden in SelectionDAG. This patch changes that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171971 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This was an experimental option, but needs to be defined
per-target. e.g. PPC A2 needs to aggressively hide latency.
I converted some in-order scheduling tests to A2. Hal is working on
more test cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171946 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
peculiar headers under include/llvm.
This struct still doesn't make a lot of sense, but it makes more sense
down in TargetLowering than it did before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171739 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
legality of an address mode to not use a struct of four values and
instead to accept them as parameters. I'd love to have named parameters
here as most callers only care about one or two of these, but the
defaults aren't terribly scary to write out.
That said, there is no real impact of this as the passes aren't yet
using STTI for this and are still relying upon TargetLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171595 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
1. Add code to estimate register pressure.
2. Add code to select the unroll factor based on register pressure.
3. Add bits to TargetTransformInfo to provide the number of registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171469 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
In order to cost subvector insertion and extraction, we need to know
the type of the subvector being extracted.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171453 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
AttributeSet accessor method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171256 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171152 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
are before or after different runs of DAGCo, with the CombineLevel enum.
Also, added a new API for checking if we are running before or after the LegalizeVectorOps phase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171142 91177308-0d34-0410-b5e6-96231b3b80d8
|