diff options
author | Derek Schuff <dschuff@chromium.org> | 2012-10-25 11:26:14 -0700 |
---|---|---|
committer | Derek Schuff <dschuff@chromium.org> | 2012-10-25 11:26:14 -0700 |
commit | 5c897cf45a7b9df227e0c562c27454f56ba86c20 (patch) | |
tree | ae3a9ea4d11bfb20379639dd9ca0951ce411e73a /lib/Transforms | |
parent | 89758b0545198f9a3876f0deb747146cbd84ce61 (diff) | |
parent | a8a0a155de16830b8fcab539ba2ec21de3145532 (diff) |
Merge commit 'a8a0a155de16830b8fcab539ba2ec21de3145532'
Conflicts:
lib/Target/X86/X86FrameLowering.cpp
lib/Target/X86/X86ISelLowering.cpp
The Intel folks switched some of the FrameLowering code to use
X86RegisterInfo::getSlotSize isntead of pointer size, thus reducing
our localmods in that file.
Diffstat (limited to 'lib/Transforms')
21 files changed, 781 insertions, 363 deletions
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp index 678189b3d6..3d5657fe6a 100644 --- a/lib/Transforms/IPO/GlobalOpt.cpp +++ b/lib/Transforms/IPO/GlobalOpt.cpp @@ -1500,7 +1500,7 @@ static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, unsigned TypeSize = TD->getTypeAllocSize(FieldTy); if (StructType *ST = dyn_cast<StructType>(FieldTy)) TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); - Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); + Type *IntPtrTy = TD->getIntPtrType(GV->getType()); Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, ConstantInt::get(IntPtrTy, TypeSize), NElems, 0, @@ -1730,7 +1730,7 @@ static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, // If this is a fixed size array, transform the Malloc to be an alloc of // structs. malloc [100 x struct],1 -> malloc struct, 100 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { - Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); + Type *IntPtrTy = TD->getIntPtrType(GV->getType()); unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); diff --git a/lib/Transforms/IPO/MergeFunctions.cpp b/lib/Transforms/IPO/MergeFunctions.cpp index 44283ddce7..1c6477c022 100644 --- a/lib/Transforms/IPO/MergeFunctions.cpp +++ b/lib/Transforms/IPO/MergeFunctions.cpp @@ -206,9 +206,8 @@ bool FunctionComparator::isEquivalentType(Type *Ty1, return true; if (Ty1->getTypeID() != Ty2->getTypeID()) { if (TD) { - LLVMContext &Ctx = Ty1->getContext(); - if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true; - if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true; + if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ty1)) return true; + if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ty2)) return true; } return false; } diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h index 7467eca7ab..0e765f7aaa 100644 --- a/lib/Transforms/InstCombine/InstCombine.h +++ b/lib/Transforms/InstCombine/InstCombine.h @@ -208,7 +208,7 @@ private: bool ShouldChangeType(Type *From, Type *To) const; Value *dyn_castNegVal(Value *V) const; Value *dyn_castFNegVal(Value *V) const; - Type *FindElementAtOffset(Type *Ty, int64_t Offset, + Type *FindElementAtOffset(Type *Ty, int64_t Offset, Type *IntPtrTy, SmallVectorImpl<Value*> &NewIndices); Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); diff --git a/lib/Transforms/InstCombine/InstCombineCalls.cpp b/lib/Transforms/InstCombine/InstCombineCalls.cpp index 4f4c388a92..0958842d08 100644 --- a/lib/Transforms/InstCombine/InstCombineCalls.cpp +++ b/lib/Transforms/InstCombine/InstCombineCalls.cpp @@ -996,9 +996,9 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) { // Conversion is ok if changing from one pointer type to another or from // a pointer to an integer of the same size. !((OldRetTy->isPointerTy() || !TD || - OldRetTy == TD->getIntPtrType(Caller->getContext())) && + OldRetTy == TD->getIntPtrType(NewRetTy)) && (NewRetTy->isPointerTy() || !TD || - NewRetTy == TD->getIntPtrType(Caller->getContext())))) + NewRetTy == TD->getIntPtrType(OldRetTy)))) return false; // Cannot transform this return value. if (!Caller->use_empty() && @@ -1057,11 +1057,13 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) { // Converting from one pointer type to another or between a pointer and an // integer of the same size is safe even if we do not have a body. + // FIXME: Not sure what to do here, so setting AS to 0. + // How can the AS for a function call be outside the default? bool isConvertible = ActTy == ParamTy || (TD && ((ParamTy->isPointerTy() || - ParamTy == TD->getIntPtrType(Caller->getContext())) && + ParamTy == TD->getIntPtrType(ActTy)) && (ActTy->isPointerTy() || - ActTy == TD->getIntPtrType(Caller->getContext())))); + ActTy == TD->getIntPtrType(ParamTy)))); if (Callee->isDeclaration() && !isConvertible) return false; } diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp index f3f3f8f585..119d2f5c99 100644 --- a/lib/Transforms/InstCombine/InstCombineCasts.cpp +++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp @@ -30,7 +30,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, Scale = 0; return ConstantInt::get(Val->getType(), 0); } - + if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { // Cannot look past anything that might overflow. OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); @@ -47,19 +47,19 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, Offset = 0; return I->getOperand(0); } - + if (I->getOpcode() == Instruction::Mul) { // This value is scaled by 'RHS'. Scale = RHS->getZExtValue(); Offset = 0; return I->getOperand(0); } - + if (I->getOpcode() == Instruction::Add) { - // We have X+C. Check to see if we really have (X*C2)+C1, + // We have X+C. Check to see if we really have (X*C2)+C1, // where C1 is divisible by C2. unsigned SubScale; - Value *SubVal = + Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); Offset += RHS->getZExtValue(); Scale = SubScale; @@ -82,7 +82,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, if (!TD) return 0; PointerType *PTy = cast<PointerType>(CI.getType()); - + BuilderTy AllocaBuilder(*Builder); AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); @@ -110,7 +110,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, uint64_t ArrayOffset; Value *NumElements = // See if the array size is a decomposable linear expr. DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); - + // If we can now satisfy the modulus, by using a non-1 scale, we really can // do the xform. if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || @@ -125,17 +125,17 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, // Insert before the alloca, not before the cast. Amt = AllocaBuilder.CreateMul(Amt, NumElements); } - + if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { Value *Off = ConstantInt::get(AI.getArraySize()->getType(), Offset, true); Amt = AllocaBuilder.CreateAdd(Amt, Off); } - + AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); New->setAlignment(AI.getAlignment()); New->takeName(&AI); - + // If the allocation has multiple real uses, insert a cast and change all // things that used it to use the new cast. This will also hack on CI, but it // will die soon. @@ -148,10 +148,10 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, return ReplaceInstUsesWith(CI, New); } -/// EvaluateInDifferentType - Given an expression that +/// EvaluateInDifferentType - Given an expression that /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually /// insert the code to evaluate the expression. -Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, +Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned) { if (Constant *C = dyn_cast<Constant>(V)) { C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); @@ -181,7 +181,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); break; - } + } case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: @@ -190,7 +190,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, // new. if (I->getOperand(0)->getType() == Ty) return I->getOperand(0); - + // Otherwise, must be the same type of cast, so just reinsert a new one. // This also handles the case of zext(trunc(x)) -> zext(x). Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, @@ -212,11 +212,11 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, Res = NPN; break; } - default: + default: // TODO: Can handle more cases here. llvm_unreachable("Unreachable!"); } - + Res->takeName(I); return InsertNewInstWith(Res, *I); } @@ -224,7 +224,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, /// This function is a wrapper around CastInst::isEliminableCastPair. It /// simply extracts arguments and returns what that function returns. -static Instruction::CastOps +static Instruction::CastOps isEliminableCastPair( const CastInst *CI, ///< The first cast instruction unsigned opcode, ///< The opcode of the second cast instruction @@ -238,19 +238,18 @@ isEliminableCastPair( // Get the opcodes of the two Cast instructions Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); Instruction::CastOps secondOp = Instruction::CastOps(opcode); - unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, - TD ? TD->getIntPtrType(CI->getContext()) : 0); - + TD ? TD->getIntPtrType(DstTy) : 0); + // We don't want to form an inttoptr or ptrtoint that converts to an integer // type that differs from the pointer size. if ((Res == Instruction::IntToPtr && - (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || + (!TD || SrcTy != TD->getIntPtrType(DstTy))) || (Res == Instruction::PtrToInt && - (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) + (!TD || DstTy != TD->getIntPtrType(SrcTy)))) Res = 0; - + return Instruction::CastOps(Res); } @@ -262,18 +261,18 @@ bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, Type *Ty) { // Noop casts and casts of constants should be eliminated trivially. if (V->getType() == Ty || isa<Constant>(V)) return false; - + // If this is another cast that can be eliminated, we prefer to have it // eliminated. if (const CastInst *CI = dyn_cast<CastInst>(V)) if (isEliminableCastPair(CI, opc, Ty, TD)) return false; - + // If this is a vector sext from a compare, then we don't want to break the // idiom where each element of the extended vector is either zero or all ones. if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) return false; - + return true; } @@ -285,7 +284,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { // Many cases of "cast of a cast" are eliminable. If it's eliminable we just // eliminate it now. if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast - if (Instruction::CastOps opc = + if (Instruction::CastOps opc = isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { // The first cast (CSrc) is eliminable so we need to fix up or replace // the second cast (CI). CSrc will then have a good chance of being dead. @@ -308,7 +307,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { if (Instruction *NV = FoldOpIntoPhi(CI)) return NV; } - + return 0; } @@ -327,15 +326,15 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { // We can always evaluate constants in another type. if (isa<Constant>(V)) return true; - + Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - + Type *OrigTy = V->getType(); - + // If this is an extension from the dest type, we can eliminate it, even if it // has multiple uses. - if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && + if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && I->getOperand(0)->getType() == Ty) return true; @@ -420,29 +419,29 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { // TODO: Can handle more cases here. break; } - + return false; } Instruction *InstCombiner::visitTrunc(TruncInst &CI) { if (Instruction *Result = commonCastTransforms(CI)) return Result; - - // See if we can simplify any instructions used by the input whose sole + + // See if we can simplify any instructions used by the input whose sole // purpose is to compute bits we don't care about. if (SimplifyDemandedInstructionBits(CI)) return &CI; - + Value *Src = CI.getOperand(0); Type *DestTy = CI.getType(), *SrcTy = Src->getType(); - + // Attempt to truncate the entire input expression tree to the destination // type. Only do this if the dest type is a simple type, don't convert the // expression tree to something weird like i93 unless the source is also // strange. if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && CanEvaluateTruncated(Src, DestTy)) { - + // If this cast is a truncate, evaluting in a different type always // eliminates the cast, so it is always a win. DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" @@ -459,7 +458,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { Value *Zero = Constant::getNullValue(Src->getType()); return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); } - + // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. Value *A = 0; ConstantInt *Cst = 0; if (Src->hasOneUse() && @@ -469,7 +468,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { // ASize < MidSize and MidSize > ResultSize, but don't know the relation // between ASize and ResultSize. unsigned ASize = A->getType()->getPrimitiveSizeInBits(); - + // If the shift amount is larger than the size of A, then the result is // known to be zero because all the input bits got shifted out. if (Cst->getZExtValue() >= ASize) @@ -482,7 +481,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { Shift->takeName(Src); return CastInst::CreateIntegerCast(Shift, CI.getType(), false); } - + // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest // type isn't non-native. if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && @@ -505,7 +504,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, // cast to integer to avoid the comparison. if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { const APInt &Op1CV = Op1C->getValue(); - + // zext (x <s 0) to i32 --> x>>u31 true if signbit set. // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || @@ -535,14 +534,14 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. - if ((Op1CV == 0 || Op1CV.isPowerOf2()) && + if ((Op1CV == 0 || Op1CV.isPowerOf2()) && // This only works for EQ and NE ICI->isEquality()) { // If Op1C some other power of two, convert: uint32_t BitWidth = Op1C->getType()->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne); - + APInt KnownZeroMask(~KnownZero); if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? if (!DoXform) return ICI; @@ -556,7 +555,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, Res = ConstantExpr::getZExt(Res, CI.getType()); return ReplaceInstUsesWith(CI, Res); } - + uint32_t ShiftAmt = KnownZeroMask.logBase2(); Value *In = ICI->getOperand(0); if (ShiftAmt) { @@ -565,12 +564,12 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), In->getName()+".lobit"); } - + if ((Op1CV != 0) == isNE) { // Toggle the low bit. Constant *One = ConstantInt::get(In->getType(), 1); In = Builder->CreateXor(In, One); } - + if (CI.getType() == In->getType()) return ReplaceInstUsesWith(CI, In); return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); @@ -643,19 +642,19 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { BitsToClear = 0; if (isa<Constant>(V)) return true; - + Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - + // If the input is a truncate from the destination type, we can trivially // eliminate it. if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) return true; - + // We can't extend or shrink something that has multiple uses: doing so would // require duplicating the instruction in general, which isn't profitable. if (!I->hasOneUse()) return false; - + unsigned Opc = I->getOpcode(), Tmp; switch (Opc) { case Instruction::ZExt: // zext(zext(x)) -> zext(x). @@ -675,7 +674,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { // These can all be promoted if neither operand has 'bits to clear'. if (BitsToClear == 0 && Tmp == 0) return true; - + // If the operation is an AND/OR/XOR and the bits to clear are zero in the // other side, BitsToClear is ok. if (Tmp == 0 && @@ -688,10 +687,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { APInt::getHighBitsSet(VSize, BitsToClear))) return true; } - + // Otherwise, we don't know how to analyze this BitsToClear case yet. return false; - + case Instruction::LShr: // We can promote lshr(x, cst) if we can promote x. This requires the // ultimate 'and' to clear out the high zero bits we're clearing out though. @@ -713,7 +712,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { Tmp != BitsToClear) return false; return true; - + case Instruction::PHI: { // We can change a phi if we can change all operands. Note that we never // get into trouble with cyclic PHIs here because we only consider @@ -740,44 +739,44 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // eliminated before we try to optimize this zext. if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) return 0; - + // If one of the common conversion will work, do it. if (Instruction *Result = commonCastTransforms(CI)) return Result; - // See if we can simplify any instructions used by the input whose sole + // See if we can simplify any instructions used by the input whose sole // purpose is to compute bits we don't care about. if (SimplifyDemandedInstructionBits(CI)) return &CI; - + Value *Src = CI.getOperand(0); Type *SrcTy = Src->getType(), *DestTy = CI.getType(); - + // Attempt to extend the entire input expression tree to the destination // type. Only do this if the dest type is a simple type, don't convert the // expression tree to something weird like i93 unless the source is also // strange. unsigned BitsToClear; if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && - CanEvaluateZExtd(Src, DestTy, BitsToClear)) { + CanEvaluateZExtd(Src, DestTy, BitsToClear)) { assert(BitsToClear < SrcTy->getScalarSizeInBits() && "Unreasonable BitsToClear"); - + // Okay, we can transform this! Insert the new expression now. DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" " to avoid zero extend: " << CI); Value *Res = EvaluateInDifferentType(Src, DestTy, false); assert(Res->getType() == DestTy); - + uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; uint32_t DestBitSize = DestTy->getScalarSizeInBits(); - + // If the high bits are already filled with zeros, just replace this // cast with the result. if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, DestBitSize-SrcBitsKept))) return ReplaceInstUsesWith(CI, Res); - + // We need to emit an AND to clear the high bits. Constant *C = ConstantInt::get(Res->getType(), APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); @@ -789,7 +788,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // 'and' which will be much cheaper than the pair of casts. if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast // TODO: Subsume this into EvaluateInDifferentType. - + // Get the sizes of the types involved. We know that the intermediate type // will be smaller than A or C, but don't know the relation between A and C. Value *A = CSrc->getOperand(0); @@ -806,7 +805,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); return new ZExtInst(And, CI.getType()); } - + if (SrcSize == DstSize) { APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), @@ -815,7 +814,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { if (SrcSize > DstSize) { Value *Trunc = Builder->CreateTrunc(A, CI.getType()); APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); - return BinaryOperator::CreateAnd(Trunc, + return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Trunc->getType(), AndValue)); } @@ -873,7 +872,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { Value *New = Builder->CreateZExt(X, CI.getType()); return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); } - + return 0; } @@ -986,14 +985,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) { // If this is a constant, it can be trivially promoted. if (isa<Constant>(V)) return true; - + Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - + // If this is a truncate from the dest type, we can trivially eliminate it. if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) return true; - + // We can't extend or shrink something that has multiple uses: doing so would // require duplicating the instruction in general, which isn't profitable. if (!I->hasOneUse()) return false; @@ -1012,14 +1011,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) { // These operators can all arbitrarily be extended if their inputs can. return CanEvaluateSExtd(I->getOperand(0), Ty) && CanEvaluateSExtd(I->getOperand(1), Ty); - + //case Instruction::Shl: TODO //case Instruction::LShr: TODO - + case Instruction::Select: return CanEvaluateSExtd(I->getOperand(1), Ty) && CanEvaluateSExtd(I->getOperand(2), Ty); - + case Instruction::PHI: { // We can change a phi if we can change all operands. Note that we never // get into trouble with cyclic PHIs here because we only consider @@ -1033,7 +1032,7 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) { // TODO: Can handle more cases here. break; } - + return false; } @@ -1042,15 +1041,15 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { // eliminated before we try to optimize this zext. if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) return 0; - + if (Instruction *I = commonCastTransforms(CI)) return I; - - // See if we can simplify any instructions used by the input whose sole + + // See if we can simplify any instructions used by the input whose sole // purpose is to compute bits we don't care about. if (SimplifyDemandedInstructionBits(CI)) return &CI; - + Value *Src = CI.getOperand(0); Type *SrcTy = Src->getType(), *DestTy = CI.getType(); @@ -1073,7 +1072,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { // cast with the result. if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) return ReplaceInstUsesWith(CI, Res); - + // We need to emit a shl + ashr to do the sign extend. Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), @@ -1086,7 +1085,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); uint32_t DestBitSize = DestTy->getScalarSizeInBits(); - + // We need to emit a shl + ashr to do the sign extend. Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); @@ -1122,7 +1121,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { A = Builder->CreateShl(A, ShAmtV, CI.getName()); return BinaryOperator::CreateAShr(A, ShAmtV); } - + return 0; } @@ -1144,7 +1143,7 @@ static Value *LookThroughFPExtensions(Value *V) { if (Instruction *I = dyn_cast<Instruction>(V)) if (I->getOpcode() == Instruction::FPExt) return LookThroughFPExtensions(I->getOperand(0)); - + // If this value is a constant, return the constant in the smallest FP type // that can accurately represent it. This allows us to turn // (float)((double)X+2.0) into x+2.0f. @@ -1163,14 +1162,14 @@ static Value *LookThroughFPExtensions(Value *V) { return V; // Don't try to shrink to various long double types. } - + return V; } Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { if (Instruction *I = commonCastTransforms(CI)) return I; - + // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are // smaller than the destination type, we can eliminate the truncate by doing // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well @@ -1187,7 +1186,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { Type *SrcTy = OpI->getType(); Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); - if (LHSTrunc->getType() != SrcTy && + if (LHSTrunc->getType() != SrcTy && RHSTrunc->getType() != SrcTy) { unsigned DstSize = CI.getType()->getScalarSizeInBits(); // If the source types were both smaller than the destination type of @@ -1199,10 +1198,10 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); } } - break; + break; } } - + // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && @@ -1217,7 +1216,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { Arg->getOperand(0)->getType()->isFloatTy()) { Function *Callee = Call->getCalledFunction(); Module *M = CI.getParent()->getParent()->getParent(); - Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", + Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", Callee->getAttributes(), Builder->getFloatTy(), Builder->getFloatTy(), @@ -1225,15 +1224,15 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), "sqrtfcall"); ret->setAttributes(Callee->getAttributes()); - - + + // Remove the old Call. With -fmath-errno, it won't get marked readnone. ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); EraseInstFromFunction(*Call); return ret; } } - + return 0; } @@ -1251,7 +1250,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { // This is safe if the intermediate type has enough bits in its mantissa to // accurately represent all values of X. For example, do not do this with // i64->float->i64. This is also safe for sitofp case, because any negative - // 'X' value would cause an undefined result for the fptoui. + // 'X' value would cause an undefined result for the fptoui. if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ @@ -1265,19 +1264,19 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); if (OpI == 0) return commonCastTransforms(FI); - + // fptosi(sitofp(X)) --> X // fptosi(uitofp(X)) --> X // This is safe if the intermediate type has enough bits in its mantissa to // accurately represent all values of X. For example, do not do this with // i64->float->i64. This is also safe for sitofp case, because any negative - // 'X' value would cause an undefined result for the fptoui. + // 'X' value would cause an undefined result for the fptoui. if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && (int)FI.getType()->getScalarSizeInBits() <= OpI->getType()->getFPMantissaWidth()) return ReplaceInstUsesWith(FI, OpI->getOperand(0)); - + return commonCastTransforms(FI); } @@ -1298,17 +1297,17 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { if (CI.getOperand(0)->getType()->getScalarSizeInBits() > TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreateTrunc(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getType())); return new IntToPtrInst(P, CI.getType()); } if (CI.getOperand(0)->getType()->getScalarSizeInBits() < TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreateZExt(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getType())); return new IntToPtrInst(P, CI.getType()); } } - + if (Instruction *I = commonCastTransforms(CI)) return I; @@ -1318,19 +1317,19 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Value *Src = CI.getOperand(0); - + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { // If casting the result of a getelementptr instruction with no offset, turn // this into a cast of the original pointer! if (GEP->hasAllZeroIndices()) { // Changing the cast operand is usually not a good idea but it is safe - // here because the pointer operand is being replaced with another + // here because the pointer operand is being replaced with another // pointer operand so the opcode doesn't need to change. Worklist.Add(GEP); CI.setOperand(0, GEP->getOperand(0)); return &CI; } - + // If the GEP has a single use, and the base pointer is a bitcast, and the // GEP computes a constant offset, see if we can convert these three // instructions into fewer. This typically happens with unions and other @@ -1345,7 +1344,8 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Type *GEPIdxTy = cast<PointerType>(OrigBase->getType())->getElementType(); SmallVector<Value*, 8> NewIndices; - if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { + Type *IntPtrTy = TD->getIntPtrType(OrigBase->getType()); + if (FindElementAtOffset(GEPIdxTy, Offset, IntPtrTy, NewIndices)) { // If we were able to index down into an element, create the GEP // and bitcast the result. This eliminates one bitcast, potentially // two. @@ -1353,15 +1353,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Builder->CreateInBoundsGEP(OrigBase, NewIndices) : Builder->CreateGEP(OrigBase, NewIndices); NGEP->takeName(GEP); - + if (isa<BitCastInst>(CI)) return new BitCastInst(NGEP, CI.getType()); assert(isa<PtrToIntInst>(CI)); return new PtrToIntInst(NGEP, CI.getType()); - } + } } } - + return commonCastTransforms(CI); } @@ -1373,16 +1373,16 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { if (TD) { if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreatePtrToInt(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getContext(), AS)); return new TruncInst(P, CI.getType()); } if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreatePtrToInt(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getContext(), AS)); return new ZExtInst(P, CI.getType()); } } - + return commonPointerCastTransforms(CI); } @@ -1397,33 +1397,33 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, // element size, or the input is a multiple of the output element size. // Convert the input type to have the same element type as the output. VectorType *SrcTy = cast<VectorType>(InVal->getType()); - + if (SrcTy->getElementType() != DestTy->getElementType()) { // The input types don't need to be identical, but for now they must be the // same size. There is no specific reason we couldn't handle things like // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten - // there yet. + // there yet. if (SrcTy->getElementType()->getPrimitiveSizeInBits() != DestTy->getElementType()->getPrimitiveSizeInBits()) return 0; - + SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); InVal = IC.Builder->CreateBitCast(InVal, SrcTy); } - + // Now that the element types match, get the shuffle mask and RHS of the // shuffle to use, which depends on whether we're increasing or decreasing the // size of the input. SmallVector<uint32_t, 16> ShuffleMask; Value *V2; - + if (SrcTy->getNumElements() > DestTy->getNumElements()) { // If we're shrinking the number of elements, just shuffle in the low // elements from the input and use undef as the second shuffle input. V2 = UndefValue::get(SrcTy); for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) ShuffleMask.push_back(i); - + } else { // If we're increasing the number of elements, shuffle in all of the // elements from InVal and fill the rest of the result elements with zeros @@ -1437,7 +1437,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) ShuffleMask.push_back(SrcElts); } - + return new ShuffleVectorInst(InVal, V2, ConstantDataVector::get(V2->getContext(), ShuffleMask)); @@ -1464,7 +1464,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, Type *VecEltTy) { // Undef values never contribute useful bits to the result. if (isa<UndefValue>(V)) return true; - + // If we got down to a value of the right type, we win, try inserting into the // right element. if (V->getType() == VecEltTy) { @@ -1472,15 +1472,15 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, if (Constant *C = dyn_cast<Constant>(V)) if (C->isNullValue()) return true; - + // Fail if multiple elements are inserted into this slot. if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0) return false; - + Elements[ElementIndex] = V; return true; } - + if (Constant *C = dyn_cast<Constant>(V)) { // Figure out the # elements this provides, and bitcast it or slice it up // as required. @@ -1491,7 +1491,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, if (NumElts == 1) return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), ElementIndex, Elements, VecEltTy); - + // Okay, this is a constant that covers multiple elements. Slice it up into // pieces and insert each element-sized piece into the vector. if (!isa<IntegerType>(C->getType())) @@ -1499,7 +1499,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, C->getType()->getPrimitiveSizeInBits())); unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); - + for (unsigned i = 0; i != NumElts; ++i) { Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), i*ElementSize)); @@ -1509,23 +1509,23 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, } return true; } - + if (!V->hasOneUse()) return false; - + Instruction *I = dyn_cast<Instruction>(V); if (I == 0) return false; switch (I->getOpcode()) { default: return false; // Unhandled case. case Instruction::BitCast: return CollectInsertionElements(I->getOperand(0), ElementIndex, - Elements, VecEltTy); + Elements, VecEltTy); case Instruction::ZExt: if (!isMultipleOfTypeSize( I->getOperand(0)->getType()->getPrimitiveSizeInBits(), VecEltTy)) return false; return CollectInsertionElements(I->getOperand(0), ElementIndex, - Elements, VecEltTy); + Elements, VecEltTy); case Instruction::Or: return CollectInsertionElements(I->getOperand(0), ElementIndex, Elements, VecEltTy) && @@ -1537,11 +1537,11 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, if (CI == 0) return false; if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false; unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy); - + return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift, Elements, VecEltTy); } - + } } @@ -1576,11 +1576,11 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, Value *Result = Constant::getNullValue(CI.getType()); for (unsigned i = 0, e = Elements.size(); i != e; ++i) { if (Elements[i] == 0) continue; // Unset element. - + Result = IC.Builder->CreateInsertElement(Result, Elements[i], IC.Builder->getInt32(i)); } - + return Result; } @@ -1608,11 +1608,11 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ VecTy->getPrimitiveSizeInBits() / DestWidth); VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); } - + return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0)); } } - + // bitcast(trunc(lshr(bitcast(somevector), cst)) ConstantInt *ShAmt = 0; if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), @@ -1629,7 +1629,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ VecTy->getPrimitiveSizeInBits() / DestWidth); VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); } - + unsigned Elt = ShAmt->getZExtValue() / DestWidth; return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); } @@ -1653,12 +1653,12 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { PointerType *SrcPTy = cast<PointerType>(SrcTy); Type *DstElTy = DstPTy->getElementType(); Type *SrcElTy = SrcPTy->getElementType(); - + // If the address spaces don't match, don't eliminate the bitcast, which is // required for changing types. if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) return 0; - + // If we are casting a alloca to a pointer to a type of the same // size, rewrite the allocation instruction to allocate the "right" type. // There is no need to modify malloc calls because it is their bitcast that @@ -1666,14 +1666,14 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) return V; - + // If the source and destination are pointers, and this cast is equivalent // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. // This can enhance SROA and other transforms that want type-safe pointers. Constant *ZeroUInt = Constant::getNullValue(Type::getInt32Ty(CI.getContext())); unsigned NumZeros = 0; - while (SrcElTy != DstElTy && + while (SrcElTy != DstElTy && isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && SrcElTy->getNumContainedTypes() /* not "{}" */) { SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); @@ -1686,7 +1686,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { return GetElementPtrInst::CreateInBounds(Src, Idxs); } } - + // Try to optimize int -> float bitcasts. if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) @@ -1699,7 +1699,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) } - + if (isa<IntegerType>(SrcTy)) { // If this is a cast from an integer to vector, check to see if the input // is a trunc or zext of a bitcast from vector. If so, we can replace all @@ -1712,7 +1712,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { cast<VectorType>(DestTy), *this)) return I; } - + // If the input is an 'or' instruction, we may be doing shifts and ors to // assemble the elements of the vector manually. Try to rip the code out // and replace it with insertelements. @@ -1723,7 +1723,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) { - Value *Elem = + Value *Elem = Builder->CreateExtractElement(Src, Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); return CastInst::Create(Instruction::BitCast, Elem, DestTy); @@ -1733,7 +1733,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { // Okay, we have (bitcast (shuffle ..)). Check to see if this is // a bitcast to a vector with the same # elts. - if (SVI->hasOneUse() && DestTy->isVectorTy() && + if (SVI->hasOneUse() && DestTy->isVectorTy() && cast<VectorType>(DestTy)->getNumElements() == SVI->getType()->getNumElements() && SVI->getType()->getNumElements() == @@ -1742,9 +1742,9 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { // If either of the operands is a cast from CI.getType(), then // evaluating the shuffle in the casted destination's type will allow // us to eliminate at least one cast. - if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && + if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && Tmp->getOperand(0)->getType() == DestTy) || - ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && + ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && Tmp->getOperand(0)->getType() == DestTy)) { Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); @@ -1754,7 +1754,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { } } } - + if (SrcTy->isPointerTy()) return commonPointerCastTransforms(CI); return commonCastTransforms(CI); diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp index e3e5ddae80..055c3b1514 100644 --- a/lib/Transforms/InstCombine/InstCombineCompares.cpp +++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp @@ -371,7 +371,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, // an inbounds GEP because the index can't be out of range. if (!GEP->isInBounds() && Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits(AS)) - Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext())); + Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext(), AS)); // If the comparison is only true for one or two elements, emit direct // comparisons. @@ -539,7 +539,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { // we don't need to bother extending: the extension won't affect where the // computation crosses zero. if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { - Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); + Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext(), AS); VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); } return VariableIdx; @@ -561,7 +561,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { return 0; // Okay, we can do this evaluation. Start by converting the index to intptr. - Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); + Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext(), AS); if (VariableIdx->getType() != IntPtrTy) VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, true /*Signed*/); @@ -1554,8 +1554,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the // integer type is the same size as the pointer type. if (TD && LHSCI->getOpcode() == Instruction::PtrToInt && - TD->getPointerSizeInBits( - cast<PtrToIntInst>(LHSCI)->getPointerAddressSpace()) == + TD->getTypeSizeInBits(DestTy) == cast<IntegerType>(DestTy)->getBitWidth()) { Value *RHSOp = 0; if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) { @@ -2251,7 +2250,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { case Instruction::IntToPtr: // icmp pred inttoptr(X), null -> icmp pred X, 0 if (RHSC->isNullValue() && TD && - TD->getIntPtrType(RHSC->getContext()) == + TD->getIntPtrType(LHSI->getType()) == LHSI->getOperand(0)->getType()) return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); diff --git a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp index 4ab5b6e4a0..633ad93ad9 100644 --- a/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp +++ b/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp @@ -173,7 +173,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { // Ensure that the alloca array size argument has type intptr_t, so that // any casting is exposed early. if (TD) { - Type *IntPtrTy = TD->getIntPtrType(AI.getContext()); + Type *IntPtrTy = TD->getIntPtrType(AI.getType()); if (AI.getArraySize()->getType() != IntPtrTy) { Value *V = Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); @@ -185,7 +185,7 @@ Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 if (AI.isArrayAllocation()) { // Check C != 1 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { - Type *NewTy = + Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName()); New->setAlignment(AI.getAlignment()); @@ -311,7 +311,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, Type *SrcPTy = SrcTy->getElementType(); - if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() || + if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() || DestPTy->isVectorTy()) { // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for @@ -328,7 +328,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, } if (IC.getDataLayout() && - (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() || + (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() || SrcPTy->isVectorTy()) && // Do not allow turning this into a load of an integer, which is then // casted to a pointer, this pessimizes pointer analysis a lot. @@ -339,7 +339,7 @@ static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before the load, cast // the result of the loaded value. - LoadInst *NewLoad = + LoadInst *NewLoad = IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName()); NewLoad->setAlignment(LI.getAlignment()); NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); @@ -376,7 +376,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { // None of the following transforms are legal for volatile/atomic loads. // FIXME: Some of it is okay for atomic loads; needs refactoring. if (!LI.isSimple()) return 0; - + // Do really simple store-to-load forwarding and load CSE, to catch cases // where there are several consecutive memory accesses to the same location, // separated by a few arithmetic operations. @@ -397,7 +397,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } - } + } // load null/undef -> unreachable // TODO: Consider a target hook for valid address spaces for this xform. @@ -416,7 +416,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { if (CE->isCast()) if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) return Res; - + if (Op->hasOneUse()) { // Change select and PHI nodes to select values instead of addresses: this // helps alias analysis out a lot, allows many others simplifications, and @@ -470,18 +470,18 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType()); if (SrcTy == 0) return 0; - + Type *SrcPTy = SrcTy->getElementType(); if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy()) return 0; - + /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" /// to its first element. This allows us to handle things like: /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) /// on 32-bit hosts. SmallVector<Value*, 4> NewGEPIndices; - + // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. @@ -489,7 +489,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { // Index through pointer. Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext())); NewGEPIndices.push_back(Zero); - + while (1) { if (StructType *STy = dyn_cast<StructType>(SrcPTy)) { if (!STy->getNumElements()) /* Struct can be empty {} */ @@ -503,24 +503,23 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { break; } } - + SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); } if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy()) return 0; - + // If the pointers point into different address spaces or if they point to // values with different sizes, we can't do the transformation. if (!IC.getDataLayout() || - SrcTy->getAddressSpace() != - cast<PointerType>(CI->getType())->getAddressSpace() || + SrcTy->getAddressSpace() != CI->getType()->getPointerAddressSpace() || IC.getDataLayout()->getTypeSizeInBits(SrcPTy) != IC.getDataLayout()->getTypeSizeInBits(DestPTy)) return 0; // Okay, we are casting from one integer or pointer type to another of - // the same size. Instead of casting the pointer before + // the same size. Instead of casting the pointer before // the store, cast the value to be stored. Value *NewCast; Value *SIOp0 = SI.getOperand(0); @@ -534,12 +533,12 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { if (SIOp0->getType()->isPointerTy()) opcode = Instruction::PtrToInt; } - + // SIOp0 is a pointer to aggregate and this is a store to the first field, // emit a GEP to index into its first field. if (!NewGEPIndices.empty()) CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices); - + NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"); SI.setOperand(0, NewCast); @@ -558,7 +557,7 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { static bool equivalentAddressValues(Value *A, Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; - + // Test if the values come form identical arithmetic instructions. // This uses isIdenticalToWhenDefined instead of isIdenticalTo because // its only used to compare two uses within the same basic block, which @@ -571,7 +570,7 @@ static bool equivalentAddressValues(Value *A, Value *B) { if (Instruction *BI = dyn_cast<Instruction>(B)) if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) return true; - + // Otherwise they may not be equivalent. return false; } @@ -602,7 +601,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { // If the RHS is an alloca with a single use, zapify the store, making the // alloca dead. if (Ptr->hasOneUse()) { - if (isa<AllocaInst>(Ptr)) + if (isa<AllocaInst>(Ptr)) return EraseInstFromFunction(SI); if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { if (isa<AllocaInst>(GEP->getOperand(0))) { @@ -625,8 +624,8 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { ScanInsts++; continue; - } - + } + if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { // Prev store isn't volatile, and stores to the same location? if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1), @@ -638,7 +637,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { } break; } - + // If this is a load, we have to stop. However, if the loaded value is from // the pointer we're loading and is producing the pointer we're storing, // then *this* store is dead (X = load P; store X -> P). @@ -646,12 +645,12 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && LI->isSimple()) return EraseInstFromFunction(SI); - + // Otherwise, this is a load from some other location. Stores before it // may not be dead. break; } - + // Don't skip over loads or things that can modify memory. if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) break; @@ -681,11 +680,11 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; - + // If this store is the last instruction in the basic block (possibly // excepting debug info instructions), and if the block ends with an // unconditional branch, try to move it to the successor block. - BBI = &SI; + BBI = &SI; do { ++BBI; } while (isa<DbgInfoIntrinsic>(BBI) || @@ -694,7 +693,7 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { if (BI->isUnconditional()) if (SimplifyStoreAtEndOfBlock(SI)) return 0; // xform done! - + return 0; } @@ -708,12 +707,12 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { /// bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { BasicBlock *StoreBB = SI.getParent(); - + // Check to see if the successor block has exactly two incoming edges. If // so, see if the other predecessor contains a store to the same location. // if so, insert a PHI node (if needed) and move the stores down. BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); - + // Determine whether Dest has exactly two predecessors and, if so, compute // the other predecessor. pred_iterator PI = pred_begin(DestBB); @@ -725,7 +724,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { if (++PI == pred_end(DestBB)) return false; - + P = *PI; if (P != StoreBB) { if (OtherBB) @@ -745,7 +744,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); if (!OtherBr || BBI == OtherBB->begin()) return false; - + // If the other block ends in an unconditional branch, check for the 'if then // else' case. there is an instruction before the branch. StoreInst *OtherStore = 0; @@ -767,10 +766,10 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { } else { // Otherwise, the other block ended with a conditional branch. If one of the // destinations is StoreBB, then we have the if/then case. - if (OtherBr->getSuccessor(0) != StoreBB && + if (OtherBr->getSuccessor(0) != StoreBB && OtherBr->getSuccessor(1) != StoreBB) return false; - + // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an // if/then triangle. See if there is a store to the same ptr as SI that // lives in OtherBB. @@ -788,7 +787,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { BBI == OtherBB->begin()) return false; } - + // In order to eliminate the store in OtherBr, we have to // make sure nothing reads or overwrites the stored value in // StoreBB. @@ -798,7 +797,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { return false; } } - + // Insert a PHI node now if we need it. Value *MergedVal = OtherStore->getOperand(0); if (MergedVal != SI.getOperand(0)) { @@ -807,7 +806,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { PN->addIncoming(OtherStore->getOperand(0), OtherBB); MergedVal = InsertNewInstBefore(PN, DestBB->front()); } - + // Advance to a place where it is safe to insert the new store and // insert it. BBI = DestBB->getFirstInsertionPt(); @@ -817,7 +816,7 @@ bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { SI.getOrdering(), SI.getSynchScope()); InsertNewInstBefore(NewSI, *BBI); - NewSI->setDebugLoc(OtherStore->getDebugLoc()); + NewSI->setDebugLoc(OtherStore->getDebugLoc()); // Nuke the old stores. EraseInstFromFunction(SI); diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp index 7f8c3ae558..00b7fca681 100644 --- a/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -738,7 +738,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { /// or not there is a sequence of GEP indices into the type that will land us at /// the specified offset. If so, fill them into NewIndices and return the /// resultant element type, otherwise return null. -Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, +Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, Type *IntPtrTy, SmallVectorImpl<Value*> &NewIndices) { if (!TD) return 0; if (!Ty->isSized()) return 0; @@ -746,7 +746,6 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset, // Start with the index over the outer type. Note that the type size // might be zero (even if the offset isn't zero) if the indexed type // is something like [0 x {int, int}] - Type *IntPtrTy = TD->getIntPtrType(Ty->getContext()); int64_t FirstIdx = 0; if (int64_t TySize = TD->getTypeAllocSize(Ty)) { FirstIdx = Offset/TySize; @@ -1055,7 +1054,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // by multiples of a zero size type with zero. if (TD) { bool MadeChange = false; - Type *IntPtrTy = TD->getIntPtrType(GEP.getContext()); + Type *IntPtrTy = TD->getIntPtrType(PtrOp->getType()); gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); @@ -1240,7 +1239,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Earlier transforms ensure that the index has type IntPtrType, which // considerably simplifies the logic by eliminating implicit casts. - assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) && + assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) && "Index not cast to pointer width?"); bool NSW; @@ -1275,7 +1274,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Earlier transforms ensure that the index has type IntPtrType, which // considerably simplifies the logic by eliminating implicit casts. - assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) && + assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) && "Index not cast to pointer width?"); bool NSW; @@ -1337,7 +1336,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { SmallVector<Value*, 8> NewIndices; Type *InTy = cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); - if (FindElementAtOffset(InTy, Offset, NewIndices)) { + Type *IntPtrTy = TD->getIntPtrType(BCI->getOperand(0)->getType()); + if (FindElementAtOffset(InTy, Offset, IntPtrTy, NewIndices)) { Value *NGEP = GEP.isInBounds() ? Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) : Builder->CreateGEP(BCI->getOperand(0), NewIndices); diff --git a/lib/Transforms/Instrumentation/BoundsChecking.cpp b/lib/Transforms/Instrumentation/BoundsChecking.cpp index 976b963046..dd36a00070 100644 --- a/lib/Transforms/Instrumentation/BoundsChecking.cpp +++ b/lib/Transforms/Instrumentation/BoundsChecking.cpp @@ -143,7 +143,7 @@ bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) { Value *Offset = SizeOffset.second; ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size); - IntegerType *IntTy = TD->getIntPtrType(Inst->getContext()); + IntegerType *IntTy = TD->getIntPtrType(Ptr->getType()); Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize); // three checks are required to ensure safety: diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp index 2b42c75d14..74e310f7e7 100644 --- a/lib/Transforms/Scalar/CodeGenPrepare.cpp +++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp @@ -935,7 +935,7 @@ bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); Type *IntPtrTy = - TLI->getDataLayout()->getIntPtrType(AccessTy->getContext()); + TLI->getDataLayout()->getIntPtrType(Addr->getType()); Value *Result = 0; diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp index eb0da20abb..b6e15540e7 100644 --- a/lib/Transforms/Scalar/GVN.cpp +++ b/lib/Transforms/Scalar/GVN.cpp @@ -746,6 +746,15 @@ static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, return true; } +/// Wrap TD.getIntPtrType, but return a vector type for vector inputs. +static Type *getIntPtrType(Type *Ty, const DataLayout &TD) { + Type *ITy = TD.getIntPtrType(Ty); + if (Ty->isVectorTy()) { + ITy = VectorType::get(ITy, Ty->getVectorNumElements()); + } + + return ITy; +} /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and /// then a load from a must-aliased pointer of a different type, try to coerce @@ -769,24 +778,25 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal, // If the store and reload are the same size, we can always reuse it. if (StoreSize == LoadSize) { // Pointer to Pointer -> use bitcast. - if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) + if (StoredValTy->getScalarType()->isPointerTy() && + LoadedTy->getScalarType()->isPointerTy()) return new BitCastInst(StoredVal, LoadedTy, "", InsertPt); // Convert source pointers to integers, which can be bitcast. - if (StoredValTy->isPointerTy()) { - StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); + if (StoredValTy->getScalarType()->isPointerTy()) { + StoredValTy = getIntPtrType(StoredValTy, TD); StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); } Type *TypeToCastTo = LoadedTy; - if (TypeToCastTo->isPointerTy()) - TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext()); + if (TypeToCastTo->getScalarType()->isPointerTy()) + TypeToCastTo = getIntPtrType(StoredValTy, TD); if (StoredValTy != TypeToCastTo) StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt); // Cast to pointer if the load needs a pointer type. - if (LoadedTy->isPointerTy()) + if (LoadedTy->getScalarType()->isPointerTy()) StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt); return StoredVal; @@ -798,8 +808,8 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal, assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail"); // Convert source pointers to integers, which can be manipulated. - if (StoredValTy->isPointerTy()) { - StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); + if (StoredValTy->getScalarType()->isPointerTy()) { + StoredValTy = getIntPtrType(StoredValTy, TD); StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); } @@ -824,7 +834,7 @@ static Value *CoerceAvailableValueToLoadType(Value *StoredVal, return StoredVal; // If the result is a pointer, inttoptr. - if (LoadedTy->isPointerTy()) + if (LoadedTy->getScalarType()->isPointerTy()) return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt); // Otherwise, bitcast. @@ -1019,8 +1029,9 @@ static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, // Compute which bits of the stored value are being used by the load. Convert // to an integer type to start with. - if (SrcVal->getType()->isPointerTy()) - SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx)); + if (SrcVal->getType()->getScalarType()->isPointerTy()) + SrcVal = Builder.CreatePtrToInt(SrcVal, + getIntPtrType(SrcVal->getType(), TD)); if (!SrcVal->getType()->isIntegerTy()) SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8)); @@ -1301,7 +1312,7 @@ static Value *ConstructSSAForLoadSet(LoadInst *LI, Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); // If new PHI nodes were created, notify alias analysis. - if (V->getType()->isPointerTy()) { + if (V->getType()->getScalarType()->isPointerTy()) { AliasAnalysis *AA = gvn.getAliasAnalysis(); for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) @@ -1498,7 +1509,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI) { if (isa<PHINode>(V)) V->takeName(LI); - if (V->getType()->isPointerTy()) + if (V->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(V); markInstructionForDeletion(LI); ++NumGVNLoad; @@ -1730,7 +1741,7 @@ bool GVN::processNonLocalLoad(LoadInst *LI) { LI->replaceAllUsesWith(V); if (isa<PHINode>(V)) V->takeName(LI); - if (V->getType()->isPointerTy()) + if (V->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(V); markInstructionForDeletion(LI); ++NumPRELoad; @@ -1857,7 +1868,7 @@ bool GVN::processLoad(LoadInst *L) { // Replace the load! L->replaceAllUsesWith(AvailVal); - if (AvailVal->getType()->isPointerTy()) + if (AvailVal->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(AvailVal); markInstructionForDeletion(L); ++NumGVNLoad; @@ -1914,7 +1925,7 @@ bool GVN::processLoad(LoadInst *L) { // Remove it! L->replaceAllUsesWith(StoredVal); - if (StoredVal->getType()->isPointerTy()) + if (StoredVal->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(StoredVal); markInstructionForDeletion(L); ++NumGVNLoad; @@ -1943,7 +1954,7 @@ bool GVN::processLoad(LoadInst *L) { // Remove it! patchAndReplaceAllUsesWith(AvailableVal, L); - if (DepLI->getType()->isPointerTy()) + if (DepLI->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(DepLI); markInstructionForDeletion(L); ++NumGVNLoad; @@ -2184,7 +2195,7 @@ bool GVN::processInstruction(Instruction *I) { // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) { I->replaceAllUsesWith(V); - if (MD && V->getType()->isPointerTy()) + if (MD && V->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(V); markInstructionForDeletion(I); ++NumGVNSimpl; @@ -2284,7 +2295,7 @@ bool GVN::processInstruction(Instruction *I) { // Remove it! patchAndReplaceAllUsesWith(repl, I); - if (MD && repl->getType()->isPointerTy()) + if (MD && repl->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(repl); markInstructionForDeletion(I); return true; @@ -2532,7 +2543,7 @@ bool GVN::performPRE(Function &F) { addToLeaderTable(ValNo, Phi, CurrentBlock); Phi->setDebugLoc(CurInst->getDebugLoc()); CurInst->replaceAllUsesWith(Phi); - if (Phi->getType()->isPointerTy()) { + if (Phi->getType()->getScalarType()->isPointerTy()) { // Because we have added a PHI-use of the pointer value, it has now // "escaped" from alias analysis' perspective. We need to inform // AA of this. diff --git a/lib/Transforms/Scalar/IndVarSimplify.cpp b/lib/Transforms/Scalar/IndVarSimplify.cpp index 82eb746467..8a2f093629 100644 --- a/lib/Transforms/Scalar/IndVarSimplify.cpp +++ b/lib/Transforms/Scalar/IndVarSimplify.cpp @@ -1430,7 +1430,8 @@ FindLoopCounter(Loop *L, const SCEV *BECount, /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that /// holds the RHS of the new loop test. static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, - SCEVExpander &Rewriter, ScalarEvolution *SE) { + SCEVExpander &Rewriter, ScalarEvolution *SE, + Type *IntPtrTy) { const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); const SCEV *IVInit = AR->getStart(); @@ -1456,7 +1457,8 @@ static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, // We could handle pointer IVs other than i8*, but we need to compensate for // gep index scaling. See canExpandBackedgeTakenCount comments. assert(SE->getSizeOfExpr( - cast<PointerType>(GEPBase->getType())->getElementType())->isOne() + cast<PointerType>(GEPBase->getType())->getElementType(), + IntPtrTy)->isOne() && "unit stride pointer IV must be i8*"); IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); @@ -1555,7 +1557,9 @@ LinearFunctionTestReplace(Loop *L, CmpIndVar = IndVar; } - Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); + Type *IntPtrTy = TD ? TD->getIntPtrType(IndVar->getType()) : + IntegerType::getInt64Ty(IndVar->getContext()); + Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE, IntPtrTy); assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() && "genLoopLimit missed a cast"); diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp index a44e798f12..e4b40f3d3a 100644 --- a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp +++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp @@ -486,7 +486,9 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize, // would be unsafe to do if there is anything else in the loop that may read // or write to the aliased location. Check for any overlap by generating the // base pointer and checking the region. - unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace(); + assert(DestPtr->getType()->isPointerTy() + && "Must be a pointer type."); + unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); Value *BasePtr = Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace), Preheader->getTerminator()); @@ -505,7 +507,7 @@ processLoopStridedStore(Value *DestPtr, unsigned StoreSize, // The # stored bytes is (BECount+1)*Size. Expand the trip count out to // pointer size if it isn't already. - Type *IntPtr = TD->getIntPtrType(DestPtr->getContext()); + Type *IntPtr = TD->getIntPtrType(DestPtr->getType()); BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), @@ -611,7 +613,7 @@ processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, // The # stored bytes is (BECount+1)*Size. Expand the trip count out to // pointer size if it isn't already. - Type *IntPtr = TD->getIntPtrType(SI->getContext()); + Type *IntPtr = TD->getIntPtrType(SI->getType()); BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), diff --git a/lib/Transforms/Scalar/SROA.cpp b/lib/Transforms/Scalar/SROA.cpp index 71c62257e7..af3a880cb9 100644 --- a/lib/Transforms/Scalar/SROA.cpp +++ b/lib/Transforms/Scalar/SROA.cpp @@ -582,7 +582,8 @@ private: P.Partitions.push_back(New); } - bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) { + bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset, + bool IsVolatile) { uint64_t Size = TD.getTypeStoreSize(Ty); // If this memory access can be shown to *statically* extend outside the @@ -603,7 +604,14 @@ private: return true; } - insertUse(I, Offset, Size); + // We allow splitting of loads and stores where the type is an integer type + // and which cover the entire alloca. Such integer loads and stores + // often require decomposition into fine grained loads and stores. + bool IsSplittable = false; + if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) + IsSplittable = !IsVolatile && ITy->getBitWidth() == AllocSize*8; + + insertUse(I, Offset, Size, IsSplittable); return true; } @@ -624,7 +632,7 @@ private: bool visitLoadInst(LoadInst &LI) { assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && "All simple FCA loads should have been pre-split"); - return handleLoadOrStore(LI.getType(), LI, Offset); + return handleLoadOrStore(LI.getType(), LI, Offset, LI.isVolatile()); } bool visitStoreInst(StoreInst &SI) { @@ -634,7 +642,7 @@ private: assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && "All simple FCA stores should have been pre-split"); - return handleLoadOrStore(ValOp->getType(), SI, Offset); + return handleLoadOrStore(ValOp->getType(), SI, Offset, SI.isVolatile()); } @@ -1173,6 +1181,21 @@ Type *AllocaPartitioning::getCommonType(iterator I) const { UserTy = LI->getType(); } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) { UserTy = SI->getValueOperand()->getType(); + } else { + return 0; // Bail if we have weird uses. + } + + if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) { + // If the type is larger than the partition, skip it. We only encounter + // this for split integer operations where we want to use the type of the + // entity causing the split. + if (ITy->getBitWidth() > (I->EndOffset - I->BeginOffset)*8) + continue; + + // If we have found an integer type use covering the alloca, use that + // regardless of the other types, as integers are often used for a "bucket + // of bits" type. + return ITy; } if (Ty && Ty != UserTy) @@ -2138,6 +2161,14 @@ static bool isIntegerWideningViable(const DataLayout &TD, if (SizeInBits != TD.getTypeStoreSizeInBits(AllocaTy)) return false; + // We need to ensure that an integer type with the appropriate bitwidth can + // be converted to the alloca type, whatever that is. We don't want to force + // the alloca itself to have an integer type if there is a more suitable one. + Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); + if (!canConvertValue(TD, AllocaTy, IntTy) || + !canConvertValue(TD, IntTy, AllocaTy)) + return false; + uint64_t Size = TD.getTypeStoreSize(AllocaTy); // Check the uses to ensure the uses are (likely) promoteable integer uses. @@ -2364,8 +2395,9 @@ private: Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) { assert(BeginOffset >= NewAllocaBeginOffset); - unsigned AS = cast<PointerType>(PointerTy)->getAddressSpace(); - APInt Offset(TD.getPointerSizeInBits(AS), BeginOffset - NewAllocaBeginOffset); + assert(PointerTy->isPointerTy() && + "Type must be pointer type!"); + APInt Offset(TD.getTypeSizeInBits(PointerTy), BeginOffset - NewAllocaBeginOffset); return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName("")); } @@ -2460,6 +2492,50 @@ private: if (VecTy) return rewriteVectorizedLoadInst(IRB, LI, OldOp); + + uint64_t Size = EndOffset - BeginOffset; + if (Size < TD.getTypeStoreSize(LI.getType())) { + assert(!LI.isVolatile()); + assert(LI.getType()->isIntegerTy() && + "Only integer type loads and stores are split"); + assert(LI.getType()->getIntegerBitWidth() == + TD.getTypeStoreSizeInBits(LI.getType()) && + "Non-byte-multiple bit width"); + assert(LI.getType()->getIntegerBitWidth() == + TD.getTypeSizeInBits(OldAI.getAllocatedType()) && + "Only alloca-wide loads can be split and recomposed"); + IntegerType *NarrowTy = Type::getIntNTy(LI.getContext(), Size * 8); + bool IsConvertable = (BeginOffset - NewAllocaBeginOffset == 0) && + canConvertValue(TD, NewAllocaTy, NarrowTy); + Value *V; + // Move the insertion point just past the load so that we can refer to it. + IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI))); + if (IsConvertable) + V = convertValue(TD, IRB, + IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), + getName(".load")), + NarrowTy); + else + V = IRB.CreateAlignedLoad( + getAdjustedAllocaPtr(IRB, NarrowTy->getPointerTo()), + getPartitionTypeAlign(NarrowTy), getName(".load")); + // Create a placeholder value with the same type as LI to use as the + // basis for the new value. This allows us to replace the uses of LI with + // the computed value, and then replace the placeholder with LI, leaving + // LI only used for this computation. + Value *Placeholder + = IRB.CreateLoad(UndefValue::get(LI.getType()->getPointerTo())); + V = insertInteger(TD, IRB, Placeholder, V, BeginOffset, + getName(".insert")); + LI.replaceAllUsesWith(V); + Placeholder->replaceAllUsesWith(&LI); + cast<Instruction>(Placeholder)->eraseFromParent(); + if (Pass.DeadSplitInsts.insert(&LI)) + Pass.DeadInsts.push_back(&LI); + DEBUG(dbgs() << " to: " << *V << "\n"); + return IsConvertable; + } + if (IntTy && LI.getType()->isIntegerTy()) return rewriteIntegerLoad(IRB, LI); @@ -2539,6 +2615,39 @@ private: if (VecTy) return rewriteVectorizedStoreInst(IRB, SI, OldOp); Type *ValueTy = SI.getValueOperand()->getType(); + + uint64_t Size = EndOffset - BeginOffset; + if (Size < TD.getTypeStoreSize(ValueTy)) { + assert(!SI.isVolatile()); + assert(ValueTy->isIntegerTy() && + "Only integer type loads and stores are split"); + assert(ValueTy->getIntegerBitWidth() == + TD.getTypeStoreSizeInBits(ValueTy) && + "Non-byte-multiple bit width"); + assert(ValueTy->getIntegerBitWidth() == + TD.getTypeSizeInBits(OldAI.getAllocatedType()) && + "Only alloca-wide stores can be split and recomposed"); + IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8); + Value *V = extractInteger(TD, IRB, SI.getValueOperand(), NarrowTy, + BeginOffset, getName(".extract")); + StoreInst *NewSI; + bool IsConvertable = (BeginOffset - NewAllocaBeginOffset == 0) && + canConvertValue(TD, NarrowTy, NewAllocaTy); + if (IsConvertable) + NewSI = IRB.CreateAlignedStore(convertValue(TD, IRB, V, NewAllocaTy), + &NewAI, NewAI.getAlignment()); + else + NewSI = IRB.CreateAlignedStore( + V, getAdjustedAllocaPtr(IRB, NarrowTy->getPointerTo()), + getPartitionTypeAlign(NarrowTy)); + (void)NewSI; + if (Pass.DeadSplitInsts.insert(&SI)) + Pass.DeadInsts.push_back(&SI); + + DEBUG(dbgs() << " to: " << *NewSI << "\n"); + return IsConvertable; + } + if (IntTy && ValueTy->isIntegerTy()) return rewriteIntegerStore(IRB, SI); @@ -2687,9 +2796,8 @@ private: = P.getMemTransferOffsets(II); assert(OldPtr->getType()->isPointerTy() && "Must be a pointer type!"); - unsigned AS = cast<PointerType>(OldPtr->getType())->getAddressSpace(); // Compute the relative offset within the transfer. - unsigned IntPtrWidth = TD.getPointerSizeInBits(AS); + unsigned IntPtrWidth = TD.getTypeSizeInBits(OldPtr->getType()); APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin : MTO.SourceBegin)); @@ -3173,6 +3281,9 @@ static Type *getTypePartition(const DataLayout &TD, Type *Ty, uint64_t Offset, uint64_t Size) { if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size) return stripAggregateTypeWrapping(TD, Ty); + if (Offset > TD.getTypeAllocSize(Ty) || + (TD.getTypeAllocSize(Ty) - Offset) < Size) + return 0; if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { // We can't partition pointers... @@ -3464,6 +3575,8 @@ void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) { Instruction *I = DeadInsts.pop_back_val(); DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); + I->replaceAllUsesWith(UndefValue::get(I->getType())); + for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) if (Instruction *U = dyn_cast<Instruction>(*OI)) { // Zero out the operand and see if it becomes trivially dead. diff --git a/lib/Transforms/Scalar/ScalarReplAggregates.cpp b/lib/Transforms/Scalar/ScalarReplAggregates.cpp index a46d09c320..a5446294e3 100644 --- a/lib/Transforms/Scalar/ScalarReplAggregates.cpp +++ b/lib/Transforms/Scalar/ScalarReplAggregates.cpp @@ -963,7 +963,7 @@ ConvertScalar_InsertValue(Value *SV, Value *Old, if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy()) SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth)); else if (SV->getType()->isPointerTy()) - SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext())); + SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getType())); // Zero extend or truncate the value if needed. if (SV->getType() != AllocaType) { diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp index c82a00fc2c..f3448bcd87 100644 --- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp +++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp @@ -165,9 +165,10 @@ struct StpCpyOpt: public LibCallOptimization { uint64_t Len = GetStringLength(Src); if (Len == 0) return 0; - Value *LenV = ConstantInt::get(TD->getIntPtrType(*Context), Len); + Type *PT = FT->getParamType(0); + Value *LenV = ConstantInt::get(TD->getIntPtrType(PT), Len); Value *DstEnd = B.CreateGEP(Dst, - ConstantInt::get(TD->getIntPtrType(*Context), + ConstantInt::get(TD->getIntPtrType(PT), Len - 1)); // We have enough information to now generate the memcpy call to do the @@ -220,9 +221,10 @@ struct StrNCpyOpt : public LibCallOptimization { // Let strncpy handle the zero padding if (Len > SrcLen+1) return 0; + Type *PT = FT->getParamType(0); // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] B.CreateMemCpy(Dst, Src, - ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); + ConstantInt::get(TD->getIntPtrType(PT), Len), 1); return Dst; } @@ -508,10 +510,11 @@ struct MemCpyOpt : public LibCallOptimization { if (!TD) return 0; FunctionType *FT = Callee->getFunctionType(); + Type *PT = FT->getParamType(0); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != TD->getIntPtrType(*Context)) + FT->getParamType(2) != TD->getIntPtrType(PT)) return 0; // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) @@ -530,10 +533,11 @@ struct MemMoveOpt : public LibCallOptimization { if (!TD) return 0; FunctionType *FT = Callee->getFunctionType(); + Type *PT = FT->getParamType(0); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != TD->getIntPtrType(*Context)) + FT->getParamType(2) != TD->getIntPtrType(PT)) return 0; // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) @@ -552,10 +556,11 @@ struct MemSetOpt : public LibCallOptimization { if (!TD) return 0; FunctionType *FT = Callee->getFunctionType(); + Type *PT = FT->getParamType(0); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || - FT->getParamType(2) != TD->getIntPtrType(*Context)) + FT->getParamType(2) != TD->getIntPtrType(PT)) return 0; // memset(p, v, n) -> llvm.memset(p, v, n, 1) @@ -980,8 +985,9 @@ struct SPrintFOpt : public LibCallOptimization { if (!TD) return 0; // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) + Type *AT = CI->getArgOperand(0)->getType(); B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), - ConstantInt::get(TD->getIntPtrType(*Context), // Copy the + ConstantInt::get(TD->getIntPtrType(AT), // Copy the FormatStr.size() + 1), 1); // nul byte. return ConstantInt::get(CI->getType(), FormatStr.size()); } @@ -1108,8 +1114,9 @@ struct FPutsOpt : public LibCallOptimization { uint64_t Len = GetStringLength(CI->getArgOperand(0)); if (!Len) return 0; // Known to have no uses (see above). + Type *PT = FT->getParamType(0); return EmitFWrite(CI->getArgOperand(0), - ConstantInt::get(TD->getIntPtrType(*Context), Len-1), + ConstantInt::get(TD->getIntPtrType(PT), Len-1), CI->getArgOperand(1), B, TD, TLI); } }; @@ -1134,8 +1141,9 @@ struct FPrintFOpt : public LibCallOptimization { // These optimizations require DataLayout. if (!TD) return 0; + Type *AT = CI->getArgOperand(1)->getType(); Value *NewCI = EmitFWrite(CI->getArgOperand(1), - ConstantInt::get(TD->getIntPtrType(*Context), + ConstantInt::get(TD->getIntPtrType(AT), FormatStr.size()), CI->getArgOperand(0), B, TD, TLI); return NewCI ? ConstantInt::get(CI->getType(), FormatStr.size()) : 0; diff --git a/lib/Transforms/Utils/BuildLibCalls.cpp b/lib/Transforms/Utils/BuildLibCalls.cpp index fa2faa2dad..bd28f10654 100644 --- a/lib/Transforms/Utils/BuildLibCalls.cpp +++ b/lib/Transforms/Utils/BuildLibCalls.cpp @@ -46,9 +46,8 @@ Value *llvm::EmitStrLen(Value *Ptr, IRBuilder<> &B, const DataLayout *TD, AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex, ArrayRef<Attributes::AttrVal>(AVs, 2)); - LLVMContext &Context = B.GetInsertBlock()->getContext(); Constant *StrLen = M->getOrInsertFunction("strlen", AttrListPtr::get(AWI), - TD->getIntPtrType(Context), + TD->getIntPtrType(Ptr->getType()), B.getInt8PtrTy(), NULL); CallInst *CI = B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen"); @@ -73,11 +72,10 @@ Value *llvm::EmitStrNLen(Value *Ptr, Value *MaxLen, IRBuilder<> &B, AWI[1] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex, ArrayRef<Attributes::AttrVal>(AVs, 2)); - LLVMContext &Context = B.GetInsertBlock()->getContext(); Constant *StrNLen = M->getOrInsertFunction("strnlen", AttrListPtr::get(AWI), - TD->getIntPtrType(Context), + TD->getIntPtrType(Ptr->getType()), B.getInt8PtrTy(), - TD->getIntPtrType(Context), + TD->getIntPtrType(Ptr->getType()), NULL); CallInst *CI = B.CreateCall2(StrNLen, CastToCStr(Ptr, B), MaxLen, "strnlen"); if (const Function *F = dyn_cast<Function>(StrNLen->stripPointerCasts())) @@ -126,12 +124,12 @@ Value *llvm::EmitStrNCmp(Value *Ptr1, Value *Ptr2, Value *Len, AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex, ArrayRef<Attributes::AttrVal>(AVs, 2)); - LLVMContext &Context = B.GetInsertBlock()->getContext(); Value *StrNCmp = M->getOrInsertFunction("strncmp", AttrListPtr::get(AWI), B.getInt32Ty(), B.getInt8PtrTy(), B.getInt8PtrTy(), - TD->getIntPtrType(Context), NULL); + TD->getIntPtrType(Ptr1->getType()), + NULL); CallInst *CI = B.CreateCall3(StrNCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B), Len, "strncmp"); @@ -201,14 +199,14 @@ Value *llvm::EmitMemCpyChk(Value *Dst, Value *Src, Value *Len, Value *ObjSize, AttributeWithIndex AWI; AWI = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex, Attributes::NoUnwind); - LLVMContext &Context = B.GetInsertBlock()->getContext(); Value *MemCpy = M->getOrInsertFunction("__memcpy_chk", AttrListPtr::get(AWI), B.getInt8PtrTy(), B.getInt8PtrTy(), B.getInt8PtrTy(), - TD->getIntPtrType(Context), - TD->getIntPtrType(Context), NULL); + TD->getIntPtrType(Dst->getType()), + TD->getIntPtrType(Src->getType()), + NULL); Dst = CastToCStr(Dst, B); Src = CastToCStr(Src, B); CallInst *CI = B.CreateCall4(MemCpy, Dst, Src, Len, ObjSize); @@ -230,12 +228,11 @@ Value *llvm::EmitMemChr(Value *Ptr, Value *Val, Attributes::AttrVal AVs[2] = { Attributes::ReadOnly, Attributes::NoUnwind }; AWI = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex, ArrayRef<Attributes::AttrVal>(AVs, 2)); - LLVMContext &Context = B.GetInsertBlock()->getContext(); Value *MemChr = M->getOrInsertFunction("memchr", AttrListPtr::get(AWI), B.getInt8PtrTy(), B.getInt8PtrTy(), B.getInt32Ty(), - TD->getIntPtrType(Context), + TD->getIntPtrType(Ptr->getType()), NULL); CallInst *CI = B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr"); @@ -260,12 +257,12 @@ Value *llvm::EmitMemCmp(Value *Ptr1, Value *Ptr2, AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex, ArrayRef<Attributes::AttrVal>(AVs, 2)); - LLVMContext &Context = B.GetInsertBlock()->getContext(); Value *MemCmp = M->getOrInsertFunction("memcmp", AttrListPtr::get(AWI), B.getInt32Ty(), B.getInt8PtrTy(), B.getInt8PtrTy(), - TD->getIntPtrType(Context), NULL); + TD->getIntPtrType(Ptr1->getType()), + NULL); CallInst *CI = B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B), Len, "memcmp"); @@ -425,24 +422,24 @@ Value *llvm::EmitFWrite(Value *Ptr, Value *Size, Value *File, AWI[1] = AttributeWithIndex::get(M->getContext(), 4, Attributes::NoCapture); AWI[2] = AttributeWithIndex::get(M->getContext(), AttrListPtr::FunctionIndex, Attributes::NoUnwind); - LLVMContext &Context = B.GetInsertBlock()->getContext(); StringRef FWriteName = TLI->getName(LibFunc::fwrite); Constant *F; + Type *PtrTy = Ptr->getType(); if (File->getType()->isPointerTy()) F = M->getOrInsertFunction(FWriteName, AttrListPtr::get(AWI), - TD->getIntPtrType(Context), + TD->getIntPtrType(PtrTy), B.getInt8PtrTy(), - TD->getIntPtrType(Context), - TD->getIntPtrType(Context), + TD->getIntPtrType(PtrTy), + TD->getIntPtrType(PtrTy), File->getType(), NULL); else - F = M->getOrInsertFunction(FWriteName, TD->getIntPtrType(Context), + F = M->getOrInsertFunction(FWriteName, TD->getIntPtrType(PtrTy), B.getInt8PtrTy(), - TD->getIntPtrType(Context), - TD->getIntPtrType(Context), + TD->getIntPtrType(PtrTy), + TD->getIntPtrType(PtrTy), File->getType(), NULL); CallInst *CI = B.CreateCall4(F, CastToCStr(Ptr, B), Size, - ConstantInt::get(TD->getIntPtrType(Context), 1), File); + ConstantInt::get(TD->getIntPtrType(PtrTy), 1), File); if (const Function *Fn = dyn_cast<Function>(F->stripPointerCasts())) CI->setCallingConv(Fn->getCallingConv()); @@ -464,12 +461,13 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD, IRBuilder<> B(CI); if (Name == "__memcpy_chk") { + Type *PT = FT->getParamType(0); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != TD->getIntPtrType(Context) || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(PT) || + FT->getParamType(3) != TD->getIntPtrType(PT)) return false; if (isFoldable(3, 2, false)) { @@ -488,11 +486,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD, if (Name == "__memmove_chk") { // Check if this has the right signature. + Type *PT = FT->getParamType(0); if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != TD->getIntPtrType(Context) || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(PT) || + FT->getParamType(3) != TD->getIntPtrType(PT)) return false; if (isFoldable(3, 2, false)) { @@ -506,11 +505,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD, if (Name == "__memset_chk") { // Check if this has the right signature. + Type *PT = FT->getParamType(0); if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || - FT->getParamType(2) != TD->getIntPtrType(Context) || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(PT) || + FT->getParamType(3) != TD->getIntPtrType(PT)) return false; if (isFoldable(3, 2, false)) { @@ -525,11 +525,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD, if (Name == "__strcpy_chk" || Name == "__stpcpy_chk") { // Check if this has the right signature. + Type *PT = FT->getParamType(0); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(Context) || - FT->getParamType(2) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(PT)) return 0; @@ -551,11 +552,12 @@ bool SimplifyFortifiedLibCalls::fold(CallInst *CI, const DataLayout *TD, if (Name == "__strncpy_chk" || Name == "__stpncpy_chk") { // Check if this has the right signature. + Type *PT = FT->getParamType(0); if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(Context) || !FT->getParamType(2)->isIntegerTy() || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(3) != TD->getIntPtrType(PT)) return false; if (isFoldable(3, 2, false)) { diff --git a/lib/Transforms/Utils/Local.cpp b/lib/Transforms/Utils/Local.cpp index 9729687a83..c09d982d65 100644 --- a/lib/Transforms/Utils/Local.cpp +++ b/lib/Transforms/Utils/Local.cpp @@ -806,8 +806,7 @@ unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, const DataLayout *TD) { assert(V->getType()->isPointerTy() && "getOrEnforceKnownAlignment expects a pointer!"); - unsigned AS = cast<PointerType>(V->getType())->getAddressSpace(); - unsigned BitWidth = TD ? TD->getPointerSizeInBits(AS) : 64; + unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : 64; APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(V, KnownZero, KnownOne, TD); unsigned TrailZ = KnownZero.countTrailingOnes(); diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp index a008da67e9..870e2b2ade 100644 --- a/lib/Transforms/Utils/SimplifyCFG.cpp +++ b/lib/Transforms/Utils/SimplifyCFG.cpp @@ -392,7 +392,7 @@ static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) { // This is some kind of pointer constant. Turn it into a pointer-sized // ConstantInt if possible. - IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); + IntegerType *PtrTy = TD->getIntPtrType(V->getType()); // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). if (isa<ConstantPointerNull>(V)) @@ -532,9 +532,13 @@ Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { CV = ICI->getOperand(0); // Unwrap any lossless ptrtoint cast. - if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) - if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) + if (TD && CV) { + PtrToIntInst *PTII = NULL; + if ((PTII = dyn_cast<PtrToIntInst>(CV)) && + CV->getType() == TD->getIntPtrType(CV->getContext(), + PTII->getPointerAddressSpace())) CV = PTII->getOperand(0); + } return CV; } @@ -981,7 +985,7 @@ bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, // Convert pointer to int before we switch. if (CV->getType()->isPointerTy()) { assert(TD && "Cannot switch on pointer without DataLayout"); - CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), + CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getType()), "magicptr"); } @@ -2709,7 +2713,7 @@ static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, if (CompVal->getType()->isPointerTy()) { assert(TD && "Cannot switch on pointer without DataLayout"); CompVal = Builder.CreatePtrToInt(CompVal, - TD->getIntPtrType(CompVal->getContext()), + TD->getIntPtrType(CompVal->getType()), "magicptr"); } diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp index b15acdff63..162b29e829 100644 --- a/lib/Transforms/Utils/SimplifyLibCalls.cpp +++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -102,14 +102,13 @@ struct MemCpyChkOpt : public InstFortifiedLibCallOptimization { virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { this->CI = CI; FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != TD->getIntPtrType(Context) || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) || + FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(1))) return 0; if (isFoldable(3, 2, false)) { @@ -125,14 +124,13 @@ struct MemMoveChkOpt : public InstFortifiedLibCallOptimization { virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { this->CI = CI; FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || - FT->getParamType(2) != TD->getIntPtrType(Context) || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) || + FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(1))) return 0; if (isFoldable(3, 2, false)) { @@ -148,14 +146,13 @@ struct MemSetChkOpt : public InstFortifiedLibCallOptimization { virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { this->CI = CI; FunctionType *FT = Callee->getFunctionType(); - LLVMContext &Context = CI->getParent()->getContext(); // Check if this has the right signature. if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || - FT->getParamType(2) != TD->getIntPtrType(Context) || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0)) || + FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(0))) return 0; if (isFoldable(3, 2, false)) { @@ -180,7 +177,7 @@ struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(Context) || - FT->getParamType(2) != TD->getIntPtrType(Context)) + FT->getParamType(2) != TD->getIntPtrType(FT->getParamType(0))) return 0; Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); @@ -205,8 +202,8 @@ struct StrCpyChkOpt : public InstFortifiedLibCallOptimization { Value *Ret = EmitMemCpyChk(Dst, Src, - ConstantInt::get(TD->getIntPtrType(Context), Len), - CI->getArgOperand(2), B, TD, TLI); + ConstantInt::get(TD->getIntPtrType(Dst->getType()), + Len), CI->getArgOperand(2), B, TD, TLI); return Ret; } return 0; @@ -225,7 +222,7 @@ struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization { FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != Type::getInt8PtrTy(Context) || !FT->getParamType(2)->isIntegerTy() || - FT->getParamType(3) != TD->getIntPtrType(Context)) + FT->getParamType(3) != TD->getIntPtrType(FT->getParamType(0))) return 0; if (isFoldable(3, 2, false)) { @@ -287,7 +284,8 @@ struct StrCatOpt : public LibCallOptimization { // We have enough information to now generate the memcpy call to do the // concatenation for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(CpyDst, Src, - ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1); + ConstantInt::get(TD->getIntPtrType(Src->getType()), + Len + 1), 1); return Dst; } }; @@ -359,8 +357,9 @@ struct StrChrOpt : public LibCallOptimization { if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. return 0; + Type *PT = FT->getParamType(0); return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. - ConstantInt::get(TD->getIntPtrType(*Context), Len), + ConstantInt::get(TD->getIntPtrType(PT), Len), B, TD, TLI); } @@ -454,8 +453,9 @@ struct StrCmpOpt : public LibCallOptimization { // These optimizations require DataLayout. if (!TD) return 0; + Type *PT = FT->getParamType(0); return EmitMemCmp(Str1P, Str2P, - ConstantInt::get(TD->getIntPtrType(*Context), + ConstantInt::get(TD->getIntPtrType(PT), std::min(Len1, Len2)), B, TD, TLI); } @@ -537,7 +537,7 @@ struct StrCpyOpt : public LibCallOptimization { // We have enough information to now generate the memcpy call to do the // copy for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(Dst, Src, - ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); + ConstantInt::get(TD->getIntPtrType(Dst->getType()), Len), 1); return Dst; } }; diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp index f944d9b4fc..423c7a4911 100644 --- a/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -18,10 +18,13 @@ // // This pass has three parts: // 1. The main loop pass that drives the different parts. -// 2. LoopVectorizationLegality - A helper class that checks for the legality +// 2. LoopVectorizationLegality - A unit that checks for the legality // of the vectorization. -// 3. SingleBlockLoopVectorizer - A helper class that performs the actual +// 3. SingleBlockLoopVectorizer - A unit that performs the actual // widening of instructions. +// 4. LoopVectorizationCostModel - A unit that checks for the profitability +// of vectorization. It decides on the optimal vector width, which +// can be one, if vectorization is not profitable. //===----------------------------------------------------------------------===// // // The reduction-variable vectorization is based on the paper: @@ -51,13 +54,14 @@ #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" -#include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/TargetTransformInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" @@ -67,13 +71,14 @@ using namespace llvm; static cl::opt<unsigned> -DefaultVectorizationFactor("default-loop-vectorize-width", - cl::init(4), cl::Hidden, - cl::desc("Set the default loop vectorization width")); +VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, + cl::desc("Set the default vectorization width. Zero is autoselect.")); + namespace { -// Forward declaration. +// Forward declarations. class LoopVectorizationLegality; +class LoopVectorizationCostModel; /// SingleBlockLoopVectorizer vectorizes loops which contain only one basic /// block to a specified vectorization factor (VF). @@ -203,7 +208,10 @@ public: enum ReductionKind { NoReduction = -1, /// Not a reduction. IntegerAdd = 0, /// Sum of numbers. - IntegerMult = 1 /// Product of numbers. + IntegerMult = 1, /// Product of numbers. + IntegerOr = 2, /// Bitwise or logical OR of numbers. + IntegerAnd = 3, /// Bitwise or logical AND of numbers. + IntegerXor = 4 /// Bitwise or logical XOR of numbers. }; /// This POD struct holds information about reduction variables. @@ -229,11 +237,10 @@ public: /// of the reductions that were found in the loop. typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; - /// Returns the maximum vectorization factor that we *can* use to vectorize - /// this loop. This does not mean that it is profitable to vectorize this - /// loop, only that it is legal to do so. This may be a large number. We - /// can vectorize to any SIMD width below this number. - unsigned getLoopMaxVF(); + /// Returns true if it is legal to vectorize this loop. + /// This does not mean that it is profitable to vectorize this + /// loop, only that it is legal to do so. + bool canVectorize(); /// Returns the Induction variable. PHINode *getInduction() {return Induction;} @@ -259,10 +266,6 @@ private: /// Returns true if BB is vectorizable bool canVectorizeMemory(BasicBlock &BB); - // Check if a pointer value is known to be disjoint. - // Example: Alloca, Global, NoAlias. - bool isIdentifiedSafeObject(Value* Val); - /// Returns True, if 'Phi' is the kind of reduction variable for type /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. bool AddReductionVar(PHINode *Phi, ReductionKind Kind); @@ -290,6 +293,48 @@ private: SmallPtrSet<Value*, 4> AllowedExit; }; +/// LoopVectorizationCostModel - estimates the expected speedups due to +/// vectorization. +/// In many cases vectorization is not profitable. This can happen because +/// of a number of reasons. In this class we mainly attempt to predict +/// the expected speedup/slowdowns due to the supported instruction set. +/// We use the VectorTargetTransformInfo to query the different backends +/// for the cost of different operations. +class LoopVectorizationCostModel { +public: + /// C'tor. + LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se, + LoopVectorizationLegality *Leg, + const VectorTargetTransformInfo *Vtti): + TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { } + + /// Returns the most profitable vectorization factor for the loop that is + /// smaller or equal to the VF argument. This method checks every power + /// of two up to VF. + unsigned findBestVectorizationFactor(unsigned VF = 4); + +private: + /// Returns the expected execution cost. The unit of the cost does + /// not matter because we use the 'cost' units to compare different + /// vector widths. The cost that is returned is *not* normalized by + /// the factor width. + unsigned expectedCost(unsigned VF); + + /// Returns the execution time cost of an instruction for a given vector + /// width. Vector width of one means scalar. + unsigned getInstructionCost(Instruction *I, unsigned VF); + + /// The loop that we evaluate. + Loop *TheLoop; + /// Scev analysis. + ScalarEvolution *SE; + + /// Vectorization legality. + LoopVectorizationLegality *Legal; + /// Vector target information. + const VectorTargetTransformInfo *VTTI; +}; + struct LoopVectorize : public LoopPass { static char ID; // Pass identification, replacement for typeid @@ -300,6 +345,7 @@ struct LoopVectorize : public LoopPass { ScalarEvolution *SE; DataLayout *DL; LoopInfo *LI; + TargetTransformInfo *TTI; virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { // We only vectorize innermost loops. @@ -309,25 +355,42 @@ struct LoopVectorize : public LoopPass { SE = &getAnalysis<ScalarEvolution>(); DL = getAnalysisIfAvailable<DataLayout>(); LI = &getAnalysis<LoopInfo>(); + TTI = getAnalysisIfAvailable<TargetTransformInfo>(); DEBUG(dbgs() << "LV: Checking a loop in \"" << L->getHeader()->getParent()->getName() << "\"\n"); // Check if it is legal to vectorize the loop. LoopVectorizationLegality LVL(L, SE, DL); - unsigned MaxVF = LVL.getLoopMaxVF(); - - // Check that we can vectorize this loop using the chosen vectorization - // width. - if (MaxVF < DefaultVectorizationFactor) { - DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n"); + if (!LVL.canVectorize()) { + DEBUG(dbgs() << "LV: Not vectorizing.\n"); return false; } - DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n"); + // Select the preffered vectorization factor. + unsigned VF = 1; + if (VectorizationFactor == 0) { + const VectorTargetTransformInfo *VTTI = 0; + if (TTI) + VTTI = TTI->getVectorTargetTransformInfo(); + // Use the cost model. + LoopVectorizationCostModel CM(L, SE, &LVL, VTTI); + VF = CM.findBestVectorizationFactor(); + + if (VF == 1) { + DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); + return false; + } + + } else { + // Use the user command flag. + VF = VectorizationFactor; + } + + DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ").\n"); // If we decided that it is *legal* to vectorizer the loop then do it. - SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, DefaultVectorizationFactor); + SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, VF); LB.vectorize(&LVL); DEBUG(verifyFunction(*L->getHeader()->getParent())); @@ -660,6 +723,13 @@ void SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal void SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { + //===------------------------------------------------===// + // + // Notice: any optimization or new instruction that go + // into the code below should be also be implemented in + // the cost-model. + // + //===------------------------------------------------===// typedef SmallVector<PHINode*, 4> PhiVector; BasicBlock &BB = *OrigLoop->getHeader(); Constant *Zero = ConstantInt::get( @@ -914,14 +984,28 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { // Extract the first scalar. Value *Scalar0 = Builder.CreateExtractElement(NewPhi, Builder.getInt32(0)); - // Extract and sum the remaining vector elements. + // Extract and reduce the remaining vector elements. for (unsigned i=1; i < VF; ++i) { Value *Scalar1 = Builder.CreateExtractElement(NewPhi, Builder.getInt32(i)); - if (RdxDesc.Kind == LoopVectorizationLegality::IntegerAdd) { - Scalar0 = Builder.CreateAdd(Scalar0, Scalar1); - } else { - Scalar0 = Builder.CreateMul(Scalar0, Scalar1); + switch (RdxDesc.Kind) { + case LoopVectorizationLegality::IntegerAdd: + Scalar0 = Builder.CreateAdd(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerMult: + Scalar0 = Builder.CreateMul(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerOr: + Scalar0 = Builder.CreateOr(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerAnd: + Scalar0 = Builder.CreateAnd(Scalar0, Scalar1); + break; + case LoopVectorizationLegality::IntegerXor: + Scalar0 = Builder.CreateXor(Scalar0, Scalar1); + break; + default: + llvm_unreachable("Unknown reduction operation"); } } @@ -961,18 +1045,18 @@ void SingleBlockLoopVectorizer::cleanup() { SE->forgetLoop(OrigLoop); } -unsigned LoopVectorizationLegality::getLoopMaxVF() { +bool LoopVectorizationLegality::canVectorize() { if (!TheLoop->getLoopPreheader()) { assert(false && "No preheader!!"); DEBUG(dbgs() << "LV: Loop not normalized." << "\n"); - return 1; + return false; } // We can only vectorize single basic block loops. unsigned NumBlocks = TheLoop->getNumBlocks(); if (NumBlocks != 1) { DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n"); - return 1; + return false; } // We need to have a loop header. @@ -982,22 +1066,22 @@ unsigned LoopVectorizationLegality::getLoopMaxVF() { // Go over each instruction and look at memory deps. if (!canVectorizeBlock(*BB)) { DEBUG(dbgs() << "LV: Can't vectorize this loop header\n"); - return 1; + return false; } // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = SE->getExitCount(TheLoop, BB); if (ExitCount == SE->getCouldNotCompute()) { DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); - return 1; + return false; } DEBUG(dbgs() << "LV: We can vectorize this loop!\n"); // Okay! We can vectorize. At this point we don't have any other mem analysis - // which may limit our maximum vectorization factor, so just return the - // maximum SIMD size. - return DefaultVectorizationFactor; + // which may limit our maximum vectorization factor, so just return true with + // no restrictions. + return true; } bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) { @@ -1032,7 +1116,19 @@ bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) { continue; } if (AddReductionVar(Phi, IntegerMult)) { - DEBUG(dbgs() << "LV: Found an Mult reduction PHI."<< *Phi <<"\n"); + DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); + continue; + } + if (AddReductionVar(Phi, IntegerOr)) { + DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); + continue; + } + if (AddReductionVar(Phi, IntegerAnd)) { + DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); + continue; + } + if (AddReductionVar(Phi, IntegerXor)) { + DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); continue; } @@ -1178,7 +1274,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) { GetUnderlyingObjects(*I, TempObjects, DL); for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); it != e; ++it) { - if (!isIdentifiedSafeObject(*it)) { + if (!isIdentifiedObject(*it)) { DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n"); return false; } @@ -1196,7 +1292,7 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) { GetUnderlyingObjects(*I, TempObjects, DL); for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); it != e; ++it) { - if (!isIdentifiedSafeObject(*it)) { + if (!isIdentifiedObject(*it)) { DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n"); return false; } @@ -1213,19 +1309,6 @@ bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) { return true; } -/// Checks if the value is a Global variable or if it is an Arguments -/// marked with the NoAlias attribute. -bool LoopVectorizationLegality::isIdentifiedSafeObject(Value* Val) { - assert(Val && "Invalid value"); - if (isa<GlobalValue>(Val)) - return true; - if (isa<AllocaInst>(Val)) - return true; - if (Argument *A = dyn_cast<Argument>(Val)) - return A->hasNoAliasAttr(); - return false; -} - bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, ReductionKind Kind) { if (Phi->getNumIncomingValues() != 2) @@ -1319,6 +1402,12 @@ LoopVectorizationLegality::isReductionInstr(Instruction *I, case Instruction::UDiv: case Instruction::SDiv: return Kind == IntegerMult; + case Instruction::And: + return Kind == IntegerAnd; + case Instruction::Or: + return Kind == IntegerOr; + case Instruction::Xor: + return Kind == IntegerXor; } } @@ -1340,6 +1429,193 @@ bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { return true; } +unsigned +LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) { + if (!VTTI) { + DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n"); + return 1; + } + + float Cost = expectedCost(1); + unsigned Width = 1; + DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n"); + for (unsigned i=2; i <= VF; i*=2) { + // Notice that the vector loop needs to be executed less times, so + // we need to divide the cost of the vector loops by the width of + // the vector elements. + float VectorCost = expectedCost(i) / (float)i; + DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " << + (int)VectorCost << ".\n"); + if (VectorCost < Cost) { + Cost = VectorCost; + Width = i; + } + } + + DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); + return Width; +} + +unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { + // We can only estimate the cost of single basic block loops. + assert(1 == TheLoop->getNumBlocks() && "Too many blocks in loop"); + + BasicBlock *BB = TheLoop->getHeader(); + unsigned Cost = 0; + + // For each instruction in the old loop. + for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { + Instruction *Inst = it; + unsigned C = getInstructionCost(Inst, VF); + Cost += C; + DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF "<< VF << + " For instruction: "<< *Inst << "\n"); + } + + return Cost; +} + +unsigned +LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { + assert(VTTI && "Invalid vector target transformation info"); + switch (I->getOpcode()) { + case Instruction::GetElementPtr: + return 0; + case Instruction::Br: { + return VTTI->getInstrCost(I->getOpcode()); + } + case Instruction::PHI: + return 0; + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + Type *VTy = VectorType::get(I->getType(), VF); + return VTTI->getInstrCost(I->getOpcode(), VTy); + } + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + Type *VTy = VectorType::get(I->getType(), VF); + const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); + bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); + Type *CondTy = SI->getCondition()->getType(); + if (ScalarCond) + CondTy = VectorType::get(CondTy, VF); + + return VTTI->getInstrCost(I->getOpcode(), VTy, CondTy); + } + case Instruction::ICmp: + case Instruction::FCmp: { + Type *VTy = VectorType::get(I->getOperand(0)->getType(), VF); + return VTTI->getInstrCost(I->getOpcode(), VTy); + } + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(I); + Type *VTy = VectorType::get(SI->getValueOperand()->getType(), VF); + + // Scalarized stores. + if (!Legal->isConsecutiveGep(SI->getPointerOperand())) { + unsigned Cost = 0; + if (VF != 1) { + unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement, + VTy); + // The cost of extracting from the value vector and pointer vector. + Cost += VF * (ExtCost * 2); + } + // The cost of the scalar stores. + Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), + VTy->getScalarType(), + SI->getAlignment(), + SI->getPointerAddressSpace()); + return Cost; + } + + // Wide stores. + return VTTI->getMemoryOpCost(I->getOpcode(), VTy, SI->getAlignment(), + SI->getPointerAddressSpace()); + } + case Instruction::Load: { + LoadInst *LI = cast<LoadInst>(I); + Type *VTy = VectorType::get(I->getType(), VF); + + // Scalarized loads. + if (!Legal->isConsecutiveGep(LI->getPointerOperand())) { + unsigned Cost = 0; + if (VF != 1) { + unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, VTy); + unsigned ExCost = VTTI->getInstrCost(Instruction::ExtractValue, VTy); + + // The cost of inserting the loaded value into the result vector, and + // extracting from a vector of pointers. + Cost += VF * (InCost + ExCost); + } + // The cost of the scalar stores. + Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), VTy->getScalarType(), + LI->getAlignment(), + LI->getPointerAddressSpace()); + return Cost; + } + + // Wide loads. + return VTTI->getMemoryOpCost(I->getOpcode(), VTy, LI->getAlignment(), + LI->getPointerAddressSpace()); + } + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::FPExt: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::Trunc: + case Instruction::FPTrunc: + case Instruction::BitCast: { + Type *SrcTy = VectorType::get(I->getOperand(0)->getType(), VF); + Type *DstTy = VectorType::get(I->getType(), VF); + return VTTI->getInstrCost(I->getOpcode(), DstTy, SrcTy); + } + default: { + // We are scalarizing the instruction. Return the cost of the scalar + // instruction, plus the cost of insert and extract into vector + // elements, times the vector width. + unsigned Cost = 0; + Type *Ty = I->getType(); + + if (!Ty->isVoidTy()) { + Type *VTy = VectorType::get(Ty, VF); + unsigned InsCost = VTTI->getInstrCost(Instruction::InsertElement, VTy); + unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement, VTy); + Cost += VF * (InsCost + ExtCost); + } + + /// We don't have any information on the scalar instruction, but maybe + /// the target has. + /// TODO: This may be a target-specific intrinsic. + /// Need to add API for that. + Cost += VF * VTTI->getInstrCost(I->getOpcode(), Ty); + + return Cost; + } + }// end of switch. +} + + } // namespace char LoopVectorize::ID = 0; |