diff options
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineCasts.cpp | 290 |
1 files changed, 145 insertions, 145 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp index f3f3f8f585..119d2f5c99 100644 --- a/lib/Transforms/InstCombine/InstCombineCasts.cpp +++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp @@ -30,7 +30,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, Scale = 0; return ConstantInt::get(Val->getType(), 0); } - + if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { // Cannot look past anything that might overflow. OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); @@ -47,19 +47,19 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, Offset = 0; return I->getOperand(0); } - + if (I->getOpcode() == Instruction::Mul) { // This value is scaled by 'RHS'. Scale = RHS->getZExtValue(); Offset = 0; return I->getOperand(0); } - + if (I->getOpcode() == Instruction::Add) { - // We have X+C. Check to see if we really have (X*C2)+C1, + // We have X+C. Check to see if we really have (X*C2)+C1, // where C1 is divisible by C2. unsigned SubScale; - Value *SubVal = + Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); Offset += RHS->getZExtValue(); Scale = SubScale; @@ -82,7 +82,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, if (!TD) return 0; PointerType *PTy = cast<PointerType>(CI.getType()); - + BuilderTy AllocaBuilder(*Builder); AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); @@ -110,7 +110,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, uint64_t ArrayOffset; Value *NumElements = // See if the array size is a decomposable linear expr. DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); - + // If we can now satisfy the modulus, by using a non-1 scale, we really can // do the xform. if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || @@ -125,17 +125,17 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, // Insert before the alloca, not before the cast. Amt = AllocaBuilder.CreateMul(Amt, NumElements); } - + if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { Value *Off = ConstantInt::get(AI.getArraySize()->getType(), Offset, true); Amt = AllocaBuilder.CreateAdd(Amt, Off); } - + AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); New->setAlignment(AI.getAlignment()); New->takeName(&AI); - + // If the allocation has multiple real uses, insert a cast and change all // things that used it to use the new cast. This will also hack on CI, but it // will die soon. @@ -148,10 +148,10 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, return ReplaceInstUsesWith(CI, New); } -/// EvaluateInDifferentType - Given an expression that +/// EvaluateInDifferentType - Given an expression that /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually /// insert the code to evaluate the expression. -Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, +Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned) { if (Constant *C = dyn_cast<Constant>(V)) { C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); @@ -181,7 +181,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); break; - } + } case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: @@ -190,7 +190,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, // new. if (I->getOperand(0)->getType() == Ty) return I->getOperand(0); - + // Otherwise, must be the same type of cast, so just reinsert a new one. // This also handles the case of zext(trunc(x)) -> zext(x). Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, @@ -212,11 +212,11 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, Res = NPN; break; } - default: + default: // TODO: Can handle more cases here. llvm_unreachable("Unreachable!"); } - + Res->takeName(I); return InsertNewInstWith(Res, *I); } @@ -224,7 +224,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, /// This function is a wrapper around CastInst::isEliminableCastPair. It /// simply extracts arguments and returns what that function returns. -static Instruction::CastOps +static Instruction::CastOps isEliminableCastPair( const CastInst *CI, ///< The first cast instruction unsigned opcode, ///< The opcode of the second cast instruction @@ -238,19 +238,18 @@ isEliminableCastPair( // Get the opcodes of the two Cast instructions Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); Instruction::CastOps secondOp = Instruction::CastOps(opcode); - unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, - TD ? TD->getIntPtrType(CI->getContext()) : 0); - + TD ? TD->getIntPtrType(DstTy) : 0); + // We don't want to form an inttoptr or ptrtoint that converts to an integer // type that differs from the pointer size. if ((Res == Instruction::IntToPtr && - (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || + (!TD || SrcTy != TD->getIntPtrType(DstTy))) || (Res == Instruction::PtrToInt && - (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) + (!TD || DstTy != TD->getIntPtrType(SrcTy)))) Res = 0; - + return Instruction::CastOps(Res); } @@ -262,18 +261,18 @@ bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, Type *Ty) { // Noop casts and casts of constants should be eliminated trivially. if (V->getType() == Ty || isa<Constant>(V)) return false; - + // If this is another cast that can be eliminated, we prefer to have it // eliminated. if (const CastInst *CI = dyn_cast<CastInst>(V)) if (isEliminableCastPair(CI, opc, Ty, TD)) return false; - + // If this is a vector sext from a compare, then we don't want to break the // idiom where each element of the extended vector is either zero or all ones. if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) return false; - + return true; } @@ -285,7 +284,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { // Many cases of "cast of a cast" are eliminable. If it's eliminable we just // eliminate it now. if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast - if (Instruction::CastOps opc = + if (Instruction::CastOps opc = isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { // The first cast (CSrc) is eliminable so we need to fix up or replace // the second cast (CI). CSrc will then have a good chance of being dead. @@ -308,7 +307,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { if (Instruction *NV = FoldOpIntoPhi(CI)) return NV; } - + return 0; } @@ -327,15 +326,15 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { // We can always evaluate constants in another type. if (isa<Constant>(V)) return true; - + Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - + Type *OrigTy = V->getType(); - + // If this is an extension from the dest type, we can eliminate it, even if it // has multiple uses. - if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && + if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && I->getOperand(0)->getType() == Ty) return true; @@ -420,29 +419,29 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { // TODO: Can handle more cases here. break; } - + return false; } Instruction *InstCombiner::visitTrunc(TruncInst &CI) { if (Instruction *Result = commonCastTransforms(CI)) return Result; - - // See if we can simplify any instructions used by the input whose sole + + // See if we can simplify any instructions used by the input whose sole // purpose is to compute bits we don't care about. if (SimplifyDemandedInstructionBits(CI)) return &CI; - + Value *Src = CI.getOperand(0); Type *DestTy = CI.getType(), *SrcTy = Src->getType(); - + // Attempt to truncate the entire input expression tree to the destination // type. Only do this if the dest type is a simple type, don't convert the // expression tree to something weird like i93 unless the source is also // strange. if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && CanEvaluateTruncated(Src, DestTy)) { - + // If this cast is a truncate, evaluting in a different type always // eliminates the cast, so it is always a win. DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" @@ -459,7 +458,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { Value *Zero = Constant::getNullValue(Src->getType()); return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); } - + // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. Value *A = 0; ConstantInt *Cst = 0; if (Src->hasOneUse() && @@ -469,7 +468,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { // ASize < MidSize and MidSize > ResultSize, but don't know the relation // between ASize and ResultSize. unsigned ASize = A->getType()->getPrimitiveSizeInBits(); - + // If the shift amount is larger than the size of A, then the result is // known to be zero because all the input bits got shifted out. if (Cst->getZExtValue() >= ASize) @@ -482,7 +481,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { Shift->takeName(Src); return CastInst::CreateIntegerCast(Shift, CI.getType(), false); } - + // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest // type isn't non-native. if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && @@ -505,7 +504,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, // cast to integer to avoid the comparison. if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { const APInt &Op1CV = Op1C->getValue(); - + // zext (x <s 0) to i32 --> x>>u31 true if signbit set. // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || @@ -535,14 +534,14 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. - if ((Op1CV == 0 || Op1CV.isPowerOf2()) && + if ((Op1CV == 0 || Op1CV.isPowerOf2()) && // This only works for EQ and NE ICI->isEquality()) { // If Op1C some other power of two, convert: uint32_t BitWidth = Op1C->getType()->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne); - + APInt KnownZeroMask(~KnownZero); if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? if (!DoXform) return ICI; @@ -556,7 +555,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, Res = ConstantExpr::getZExt(Res, CI.getType()); return ReplaceInstUsesWith(CI, Res); } - + uint32_t ShiftAmt = KnownZeroMask.logBase2(); Value *In = ICI->getOperand(0); if (ShiftAmt) { @@ -565,12 +564,12 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), In->getName()+".lobit"); } - + if ((Op1CV != 0) == isNE) { // Toggle the low bit. Constant *One = ConstantInt::get(In->getType(), 1); In = Builder->CreateXor(In, One); } - + if (CI.getType() == In->getType()) return ReplaceInstUsesWith(CI, In); return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); @@ -643,19 +642,19 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { BitsToClear = 0; if (isa<Constant>(V)) return true; - + Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - + // If the input is a truncate from the destination type, we can trivially // eliminate it. if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) return true; - + // We can't extend or shrink something that has multiple uses: doing so would // require duplicating the instruction in general, which isn't profitable. if (!I->hasOneUse()) return false; - + unsigned Opc = I->getOpcode(), Tmp; switch (Opc) { case Instruction::ZExt: // zext(zext(x)) -> zext(x). @@ -675,7 +674,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { // These can all be promoted if neither operand has 'bits to clear'. if (BitsToClear == 0 && Tmp == 0) return true; - + // If the operation is an AND/OR/XOR and the bits to clear are zero in the // other side, BitsToClear is ok. if (Tmp == 0 && @@ -688,10 +687,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { APInt::getHighBitsSet(VSize, BitsToClear))) return true; } - + // Otherwise, we don't know how to analyze this BitsToClear case yet. return false; - + case Instruction::LShr: // We can promote lshr(x, cst) if we can promote x. This requires the // ultimate 'and' to clear out the high zero bits we're clearing out though. @@ -713,7 +712,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { Tmp != BitsToClear) return false; return true; - + case Instruction::PHI: { // We can change a phi if we can change all operands. Note that we never // get into trouble with cyclic PHIs here because we only consider @@ -740,44 +739,44 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // eliminated before we try to optimize this zext. if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) return 0; - + // If one of the common conversion will work, do it. if (Instruction *Result = commonCastTransforms(CI)) return Result; - // See if we can simplify any instructions used by the input whose sole + // See if we can simplify any instructions used by the input whose sole // purpose is to compute bits we don't care about. if (SimplifyDemandedInstructionBits(CI)) return &CI; - + Value *Src = CI.getOperand(0); Type *SrcTy = Src->getType(), *DestTy = CI.getType(); - + // Attempt to extend the entire input expression tree to the destination // type. Only do this if the dest type is a simple type, don't convert the // expression tree to something weird like i93 unless the source is also // strange. unsigned BitsToClear; if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && - CanEvaluateZExtd(Src, DestTy, BitsToClear)) { + CanEvaluateZExtd(Src, DestTy, BitsToClear)) { assert(BitsToClear < SrcTy->getScalarSizeInBits() && "Unreasonable BitsToClear"); - + // Okay, we can transform this! Insert the new expression now. DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" " to avoid zero extend: " << CI); Value *Res = EvaluateInDifferentType(Src, DestTy, false); assert(Res->getType() == DestTy); - + uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; uint32_t DestBitSize = DestTy->getScalarSizeInBits(); - + // If the high bits are already filled with zeros, just replace this // cast with the result. if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, DestBitSize-SrcBitsKept))) return ReplaceInstUsesWith(CI, Res); - + // We need to emit an AND to clear the high bits. Constant *C = ConstantInt::get(Res->getType(), APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); @@ -789,7 +788,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // 'and' which will be much cheaper than the pair of casts. if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast // TODO: Subsume this into EvaluateInDifferentType. - + // Get the sizes of the types involved. We know that the intermediate type // will be smaller than A or C, but don't know the relation between A and C. Value *A = CSrc->getOperand(0); @@ -806,7 +805,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); return new ZExtInst(And, CI.getType()); } - + if (SrcSize == DstSize) { APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), @@ -815,7 +814,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { if (SrcSize > DstSize) { Value *Trunc = Builder->CreateTrunc(A, CI.getType()); APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); - return BinaryOperator::CreateAnd(Trunc, + return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Trunc->getType(), AndValue)); } @@ -873,7 +872,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { Value *New = Builder->CreateZExt(X, CI.getType()); return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); } - + return 0; } @@ -986,14 +985,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) { // If this is a constant, it can be trivially promoted. if (isa<Constant>(V)) return true; - + Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - + // If this is a truncate from the dest type, we can trivially eliminate it. if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) return true; - + // We can't extend or shrink something that has multiple uses: doing so would // require duplicating the instruction in general, which isn't profitable. if (!I->hasOneUse()) return false; @@ -1012,14 +1011,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) { // These operators can all arbitrarily be extended if their inputs can. return CanEvaluateSExtd(I->getOperand(0), Ty) && CanEvaluateSExtd(I->getOperand(1), Ty); - + //case Instruction::Shl: TODO //case Instruction::LShr: TODO - + case Instruction::Select: return CanEvaluateSExtd(I->getOperand(1), Ty) && CanEvaluateSExtd(I->getOperand(2), Ty); - + case Instruction::PHI: { // We can change a phi if we can change all operands. Note that we never // get into trouble with cyclic PHIs here because we only consider @@ -1033,7 +1032,7 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) { // TODO: Can handle more cases here. break; } - + return false; } @@ -1042,15 +1041,15 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { // eliminated before we try to optimize this zext. if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) return 0; - + if (Instruction *I = commonCastTransforms(CI)) return I; - - // See if we can simplify any instructions used by the input whose sole + + // See if we can simplify any instructions used by the input whose sole // purpose is to compute bits we don't care about. if (SimplifyDemandedInstructionBits(CI)) return &CI; - + Value *Src = CI.getOperand(0); Type *SrcTy = Src->getType(), *DestTy = CI.getType(); @@ -1073,7 +1072,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { // cast with the result. if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) return ReplaceInstUsesWith(CI, Res); - + // We need to emit a shl + ashr to do the sign extend. Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), @@ -1086,7 +1085,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); uint32_t DestBitSize = DestTy->getScalarSizeInBits(); - + // We need to emit a shl + ashr to do the sign extend. Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); @@ -1122,7 +1121,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { A = Builder->CreateShl(A, ShAmtV, CI.getName()); return BinaryOperator::CreateAShr(A, ShAmtV); } - + return 0; } @@ -1144,7 +1143,7 @@ static Value *LookThroughFPExtensions(Value *V) { if (Instruction *I = dyn_cast<Instruction>(V)) if (I->getOpcode() == Instruction::FPExt) return LookThroughFPExtensions(I->getOperand(0)); - + // If this value is a constant, return the constant in the smallest FP type // that can accurately represent it. This allows us to turn // (float)((double)X+2.0) into x+2.0f. @@ -1163,14 +1162,14 @@ static Value *LookThroughFPExtensions(Value *V) { return V; // Don't try to shrink to various long double types. } - + return V; } Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { if (Instruction *I = commonCastTransforms(CI)) return I; - + // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are // smaller than the destination type, we can eliminate the truncate by doing // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well @@ -1187,7 +1186,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { Type *SrcTy = OpI->getType(); Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); - if (LHSTrunc->getType() != SrcTy && + if (LHSTrunc->getType() != SrcTy && RHSTrunc->getType() != SrcTy) { unsigned DstSize = CI.getType()->getScalarSizeInBits(); // If the source types were both smaller than the destination type of @@ -1199,10 +1198,10 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); } } - break; + break; } } - + // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && @@ -1217,7 +1216,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { Arg->getOperand(0)->getType()->isFloatTy()) { Function *Callee = Call->getCalledFunction(); Module *M = CI.getParent()->getParent()->getParent(); - Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", + Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", Callee->getAttributes(), Builder->getFloatTy(), Builder->getFloatTy(), @@ -1225,15 +1224,15 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), "sqrtfcall"); ret->setAttributes(Callee->getAttributes()); - - + + // Remove the old Call. With -fmath-errno, it won't get marked readnone. ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); EraseInstFromFunction(*Call); return ret; } } - + return 0; } @@ -1251,7 +1250,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { // This is safe if the intermediate type has enough bits in its mantissa to // accurately represent all values of X. For example, do not do this with // i64->float->i64. This is also safe for sitofp case, because any negative - // 'X' value would cause an undefined result for the fptoui. + // 'X' value would cause an undefined result for the fptoui. if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ @@ -1265,19 +1264,19 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); if (OpI == 0) return commonCastTransforms(FI); - + // fptosi(sitofp(X)) --> X // fptosi(uitofp(X)) --> X // This is safe if the intermediate type has enough bits in its mantissa to // accurately represent all values of X. For example, do not do this with // i64->float->i64. This is also safe for sitofp case, because any negative - // 'X' value would cause an undefined result for the fptoui. + // 'X' value would cause an undefined result for the fptoui. if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && OpI->getOperand(0)->getType() == FI.getType() && (int)FI.getType()->getScalarSizeInBits() <= OpI->getType()->getFPMantissaWidth()) return ReplaceInstUsesWith(FI, OpI->getOperand(0)); - + return commonCastTransforms(FI); } @@ -1298,17 +1297,17 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { if (CI.getOperand(0)->getType()->getScalarSizeInBits() > TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreateTrunc(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getType())); return new IntToPtrInst(P, CI.getType()); } if (CI.getOperand(0)->getType()->getScalarSizeInBits() < TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreateZExt(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getType())); return new IntToPtrInst(P, CI.getType()); } } - + if (Instruction *I = commonCastTransforms(CI)) return I; @@ -1318,19 +1317,19 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Value *Src = CI.getOperand(0); - + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { // If casting the result of a getelementptr instruction with no offset, turn // this into a cast of the original pointer! if (GEP->hasAllZeroIndices()) { // Changing the cast operand is usually not a good idea but it is safe - // here because the pointer operand is being replaced with another + // here because the pointer operand is being replaced with another // pointer operand so the opcode doesn't need to change. Worklist.Add(GEP); CI.setOperand(0, GEP->getOperand(0)); return &CI; } - + // If the GEP has a single use, and the base pointer is a bitcast, and the // GEP computes a constant offset, see if we can convert these three // instructions into fewer. This typically happens with unions and other @@ -1345,7 +1344,8 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Type *GEPIdxTy = cast<PointerType>(OrigBase->getType())->getElementType(); SmallVector<Value*, 8> NewIndices; - if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { + Type *IntPtrTy = TD->getIntPtrType(OrigBase->getType()); + if (FindElementAtOffset(GEPIdxTy, Offset, IntPtrTy, NewIndices)) { // If we were able to index down into an element, create the GEP // and bitcast the result. This eliminates one bitcast, potentially // two. @@ -1353,15 +1353,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Builder->CreateInBoundsGEP(OrigBase, NewIndices) : Builder->CreateGEP(OrigBase, NewIndices); NGEP->takeName(GEP); - + if (isa<BitCastInst>(CI)) return new BitCastInst(NGEP, CI.getType()); assert(isa<PtrToIntInst>(CI)); return new PtrToIntInst(NGEP, CI.getType()); - } + } } } - + return commonCastTransforms(CI); } @@ -1373,16 +1373,16 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { if (TD) { if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreatePtrToInt(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getContext(), AS)); return new TruncInst(P, CI.getType()); } if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits(AS)) { Value *P = Builder->CreatePtrToInt(CI.getOperand(0), - TD->getIntPtrType(CI.getContext())); + TD->getIntPtrType(CI.getContext(), AS)); return new ZExtInst(P, CI.getType()); } } - + return commonPointerCastTransforms(CI); } @@ -1397,33 +1397,33 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, // element size, or the input is a multiple of the output element size. // Convert the input type to have the same element type as the output. VectorType *SrcTy = cast<VectorType>(InVal->getType()); - + if (SrcTy->getElementType() != DestTy->getElementType()) { // The input types don't need to be identical, but for now they must be the // same size. There is no specific reason we couldn't handle things like // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten - // there yet. + // there yet. if (SrcTy->getElementType()->getPrimitiveSizeInBits() != DestTy->getElementType()->getPrimitiveSizeInBits()) return 0; - + SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); InVal = IC.Builder->CreateBitCast(InVal, SrcTy); } - + // Now that the element types match, get the shuffle mask and RHS of the // shuffle to use, which depends on whether we're increasing or decreasing the // size of the input. SmallVector<uint32_t, 16> ShuffleMask; Value *V2; - + if (SrcTy->getNumElements() > DestTy->getNumElements()) { // If we're shrinking the number of elements, just shuffle in the low // elements from the input and use undef as the second shuffle input. V2 = UndefValue::get(SrcTy); for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) ShuffleMask.push_back(i); - + } else { // If we're increasing the number of elements, shuffle in all of the // elements from InVal and fill the rest of the result elements with zeros @@ -1437,7 +1437,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) ShuffleMask.push_back(SrcElts); } - + return new ShuffleVectorInst(InVal, V2, ConstantDataVector::get(V2->getContext(), ShuffleMask)); @@ -1464,7 +1464,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, Type *VecEltTy) { // Undef values never contribute useful bits to the result. if (isa<UndefValue>(V)) return true; - + // If we got down to a value of the right type, we win, try inserting into the // right element. if (V->getType() == VecEltTy) { @@ -1472,15 +1472,15 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, if (Constant *C = dyn_cast<Constant>(V)) if (C->isNullValue()) return true; - + // Fail if multiple elements are inserted into this slot. if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0) return false; - + Elements[ElementIndex] = V; return true; } - + if (Constant *C = dyn_cast<Constant>(V)) { // Figure out the # elements this provides, and bitcast it or slice it up // as required. @@ -1491,7 +1491,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, if (NumElts == 1) return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), ElementIndex, Elements, VecEltTy); - + // Okay, this is a constant that covers multiple elements. Slice it up into // pieces and insert each element-sized piece into the vector. if (!isa<IntegerType>(C->getType())) @@ -1499,7 +1499,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, C->getType()->getPrimitiveSizeInBits())); unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); - + for (unsigned i = 0; i != NumElts; ++i) { Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), i*ElementSize)); @@ -1509,23 +1509,23 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, } return true; } - + if (!V->hasOneUse()) return false; - + Instruction *I = dyn_cast<Instruction>(V); if (I == 0) return false; switch (I->getOpcode()) { default: return false; // Unhandled case. case Instruction::BitCast: return CollectInsertionElements(I->getOperand(0), ElementIndex, - Elements, VecEltTy); + Elements, VecEltTy); case Instruction::ZExt: if (!isMultipleOfTypeSize( I->getOperand(0)->getType()->getPrimitiveSizeInBits(), VecEltTy)) return false; return CollectInsertionElements(I->getOperand(0), ElementIndex, - Elements, VecEltTy); + Elements, VecEltTy); case Instruction::Or: return CollectInsertionElements(I->getOperand(0), ElementIndex, Elements, VecEltTy) && @@ -1537,11 +1537,11 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, if (CI == 0) return false; if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false; unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy); - + return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift, Elements, VecEltTy); } - + } } @@ -1576,11 +1576,11 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, Value *Result = Constant::getNullValue(CI.getType()); for (unsigned i = 0, e = Elements.size(); i != e; ++i) { if (Elements[i] == 0) continue; // Unset element. - + Result = IC.Builder->CreateInsertElement(Result, Elements[i], IC.Builder->getInt32(i)); } - + return Result; } @@ -1608,11 +1608,11 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ VecTy->getPrimitiveSizeInBits() / DestWidth); VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); } - + return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0)); } } - + // bitcast(trunc(lshr(bitcast(somevector), cst)) ConstantInt *ShAmt = 0; if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), @@ -1629,7 +1629,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ VecTy->getPrimitiveSizeInBits() / DestWidth); VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); } - + unsigned Elt = ShAmt->getZExtValue() / DestWidth; return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); } @@ -1653,12 +1653,12 @@ Instruction *InstCombiner: |