diff options
-rw-r--r-- | scrypt-cell-spu.c | 269 | ||||
-rw-r--r-- | scrypt-simd-helpers.h | 33 | ||||
-rw-r--r-- | scrypt.c | 339 | ||||
-rw-r--r-- | sha256-helpers.h | 369 |
4 files changed, 373 insertions, 637 deletions
diff --git a/scrypt-cell-spu.c b/scrypt-cell-spu.c index a5a741f..50002f5 100644 --- a/scrypt-cell-spu.c +++ b/scrypt-cell-spu.c @@ -157,7 +157,7 @@ salsa20_8_xor4(uint32x4 * __restrict B, const uint32x4 * __restrict Bx, } static void -scrypt_spu_core8(uint8_t *databuf, uint64_t scratch) +scrypt_spu_core8(uint32_t *databuf32, uint64_t scratch) { static mfc_list_element_t dma_list[8] __attribute__((aligned(128))); static XY X[8] __attribute__((aligned(128))); @@ -186,22 +186,22 @@ scrypt_spu_core8(uint8_t *databuf, uint64_t scratch) /* 1: X <-- B */ for (i = 0; i < 16; i++) { - XA->w[i] = le32dec(&databuf[0 * 128 + (i * 5 % 16) * 4]); - XA->w[16 + i] = le32dec(&databuf[0 * 128 + (16 + (i * 5 % 16)) * 4]); - XB->w[i] = le32dec(&databuf[1 * 128 + (i * 5 % 16) * 4]); - XB->w[16 + i] = le32dec(&databuf[1 * 128 + (16 + (i * 5 % 16)) * 4]); - XC->w[i] = le32dec(&databuf[2 * 128 + (i * 5 % 16) * 4]); - XC->w[16 + i] = le32dec(&databuf[2 * 128 + (16 + (i * 5 % 16)) * 4]); - XD->w[i] = le32dec(&databuf[3 * 128 + (i * 5 % 16) * 4]); - XD->w[16 + i] = le32dec(&databuf[3 * 128 + (16 + (i * 5 % 16)) * 4]); - XE->w[i] = le32dec(&databuf[4 * 128 + (i * 5 % 16) * 4]); - XE->w[16 + i] = le32dec(&databuf[4 * 128 + (16 + (i * 5 % 16)) * 4]); - XF->w[i] = le32dec(&databuf[5 * 128 + (i * 5 % 16) * 4]); - XF->w[16 + i] = le32dec(&databuf[5 * 128 + (16 + (i * 5 % 16)) * 4]); - XG->w[i] = le32dec(&databuf[6 * 128 + (i * 5 % 16) * 4]); - XG->w[16 + i] = le32dec(&databuf[6 * 128 + (16 + (i * 5 % 16)) * 4]); - XH->w[i] = le32dec(&databuf[7 * 128 + (i * 5 % 16) * 4]); - XH->w[16 + i] = le32dec(&databuf[7 * 128 + (16 + (i * 5 % 16)) * 4]); + XA->w[i] = databuf32[0 * 32 + (i * 5 % 16)]; + XA->w[16 + i] = databuf32[0 * 32 + (16 + (i * 5 % 16))]; + XB->w[i] = databuf32[1 * 32 + (i * 5 % 16)]; + XB->w[16 + i] = databuf32[1 * 32 + (16 + (i * 5 % 16))]; + XC->w[i] = databuf32[2 * 32 + (i * 5 % 16)]; + XC->w[16 + i] = databuf32[2 * 32 + (16 + (i * 5 % 16))]; + XD->w[i] = databuf32[3 * 32 + (i * 5 % 16)]; + XD->w[16 + i] = databuf32[3 * 32 + (16 + (i * 5 % 16))]; + XE->w[i] = databuf32[4 * 32 + (i * 5 % 16)]; + XE->w[16 + i] = databuf32[4 * 32 + (16 + (i * 5 % 16))]; + XF->w[i] = databuf32[5 * 32 + (i * 5 % 16)]; + XF->w[16 + i] = databuf32[5 * 32 + (16 + (i * 5 % 16))]; + XG->w[i] = databuf32[6 * 32 + (i * 5 % 16)]; + XG->w[16 + i] = databuf32[6 * 32 + (16 + (i * 5 % 16))]; + XH->w[i] = databuf32[7 * 32 + (i * 5 % 16)]; + XH->w[16 + i] = databuf32[7 * 32 + (16 + (i * 5 % 16))]; } for (i = 0; i < 8; i++) dma_list[i].size = 128; @@ -280,94 +280,89 @@ scrypt_spu_core8(uint8_t *databuf, uint64_t scratch) /* 10: B' <-- X */ for (i = 0; i < 16; i++) { - le32enc(&databuf[0 * 128 + (i * 5 % 16) * 4], XA->w[i]); - le32enc(&databuf[0 * 128 + (16 + (i * 5 % 16)) * 4], XA->w[16 + i]); - le32enc(&databuf[1 * 128 + (i * 5 % 16) * 4], XB->w[i]); - le32enc(&databuf[1 * 128 + (16 + (i * 5 % 16)) * 4], XB->w[16 + i]); - le32enc(&databuf[2 * 128 + (i * 5 % 16) * 4], XC->w[i]); - le32enc(&databuf[2 * 128 + (16 + (i * 5 % 16)) * 4], XC->w[16 + i]); - le32enc(&databuf[3 * 128 + (i * 5 % 16) * 4], XD->w[i]); - le32enc(&databuf[3 * 128 + (16 + (i * 5 % 16)) * 4], XD->w[16 + i]); - le32enc(&databuf[4 * 128 + (i * 5 % 16) * 4], XE->w[i]); - le32enc(&databuf[4 * 128 + (16 + (i * 5 % 16)) * 4], XE->w[16 + i]); - le32enc(&databuf[5 * 128 + (i * 5 % 16) * 4], XF->w[i]); - le32enc(&databuf[5 * 128 + (16 + (i * 5 % 16)) * 4], XF->w[16 + i]); - le32enc(&databuf[6 * 128 + (i * 5 % 16) * 4], XG->w[i]); - le32enc(&databuf[6 * 128 + (16 + (i * 5 % 16)) * 4], XG->w[16 + i]); - le32enc(&databuf[7 * 128 + (i * 5 % 16) * 4], XH->w[i]); - le32enc(&databuf[7 * 128 + (16 + (i * 5 % 16)) * 4], XH->w[16 + i]); + databuf32[0 * 32 + (i * 5 % 16)] = XA->w[i]; + databuf32[0 * 32 + (16 + (i * 5 % 16))] = XA->w[16 + i]; + databuf32[1 * 32 + (i * 5 % 16)] = XB->w[i]; + databuf32[1 * 32 + (16 + (i * 5 % 16))] = XB->w[16 + i]; + databuf32[2 * 32 + (i * 5 % 16)] = XC->w[i]; + databuf32[2 * 32 + (16 + (i * 5 % 16))] = XC->w[16 + i]; + databuf32[3 * 32 + (i * 5 % 16)] = XD->w[i]; + databuf32[3 * 32 + (16 + (i * 5 % 16))] = XD->w[16 + i]; + databuf32[4 * 32 + (i * 5 % 16)] = XE->w[i]; + databuf32[4 * 32 + (16 + (i * 5 % 16))] = XE->w[16 + i]; + databuf32[5 * 32 + (i * 5 % 16)] = XF->w[i]; + databuf32[5 * 32 + (16 + (i * 5 % 16))] = XF->w[16 + i]; + databuf32[6 * 32 + (i * 5 % 16)] = XG->w[i]; + databuf32[6 * 32 + (16 + (i * 5 % 16))] = XG->w[16 + i]; + databuf32[7 * 32 + (i * 5 % 16)] = XH->w[i]; + databuf32[7 * 32 + (16 + (i * 5 % 16))] = XH->w[16 + i]; } } static void -scrypt_1024_1_1_256_sp8(const unsigned char * input1, - unsigned char * output1, - const unsigned char * input2, - unsigned char * output2, - const unsigned char * input3, - unsigned char * output3, - const unsigned char * input4, - unsigned char * output4, - const unsigned char * input5, - unsigned char * output5, - const unsigned char * input6, - unsigned char * output6, - const unsigned char * input7, - unsigned char * output7, - const unsigned char * input8, - unsigned char * output8, +scrypt_1024_1_1_256_sp8(const uint32_t * input1, + uint32_t * output1, + const uint32_t * input2, + uint32_t * output2, + const uint32_t * input3, + uint32_t * output3, + const uint32_t * input4, + uint32_t * output4, + const uint32_t * input5, + uint32_t * output5, + const uint32_t * input6, + uint32_t * output6, + const uint32_t * input7, + uint32_t * output7, + const uint32_t * input8, + uint32_t * output8, uint64_t scratchpad) { - static uint8_t databuf[128 * 8] __attribute__((aligned(128))); - uint8_t * B1, * B2, * B3, * B4, * B5, * B6, * B7, * B8; + uint32_t tstate1[8], tstate2[8], tstate3[8], tstate4[8]; + uint32_t tstate5[8], tstate6[8], tstate7[8], tstate8[8]; - const uint32_t r = 1; - const uint32_t p = 1; + uint32_t ostate1[8], ostate2[8], ostate3[8], ostate4[8]; + uint32_t ostate5[8], ostate6[8], ostate7[8], ostate8[8]; + + static uint32_t databuf[32 * 8] __attribute__((aligned(128))); + uint32_t * B1, * B2, * B3, * B4, * B5, * B6, * B7, * B8; B1 = databuf; - B2 = databuf + 128 * 1; - B3 = databuf + 128 * 2; - B4 = databuf + 128 * 3; - B5 = databuf + 128 * 4; - B6 = databuf + 128 * 5; - B7 = databuf + 128 * 6; - B8 = databuf + 128 * 7; - - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input1, 80, (const uint8_t*)input1, 80, 1, B1, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input2, 80, (const uint8_t*)input2, 80, 1, B2, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input3, 80, (const uint8_t*)input3, 80, 1, B3, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input4, 80, (const uint8_t*)input4, 80, 1, B4, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input5, 80, (const uint8_t*)input5, 80, 1, B5, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input6, 80, (const uint8_t*)input6, 80, 1, B6, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input7, 80, (const uint8_t*)input7, 80, 1, B7, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input8, 80, (const uint8_t*)input8, 80, 1, B8, p * 128 * r); + B2 = databuf + 32 * 1; + B3 = databuf + 32 * 2; + B4 = databuf + 32 * 3; + B5 = databuf + 32 * 4; + B6 = databuf + 32 * 5; + B7 = databuf + 32 * 6; + B8 = databuf + 32 * 7; + + PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1); + PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2); + PBKDF2_SHA256_80_128_init(input3, tstate3, ostate3); + PBKDF2_SHA256_80_128_init(input4, tstate4, ostate4); + PBKDF2_SHA256_80_128_init(input5, tstate5, ostate5); + PBKDF2_SHA256_80_128_init(input6, tstate6, ostate6); + PBKDF2_SHA256_80_128_init(input7, tstate7, ostate7); + PBKDF2_SHA256_80_128_init(input8, tstate8, ostate8); + PBKDF2_SHA256_80_128(tstate1, ostate1, input1, B1); + PBKDF2_SHA256_80_128(tstate2, ostate2, input2, B2); + PBKDF2_SHA256_80_128(tstate3, ostate3, input3, B3); + PBKDF2_SHA256_80_128(tstate4, ostate4, input4, B4); + PBKDF2_SHA256_80_128(tstate5, ostate5, input5, B5); + PBKDF2_SHA256_80_128(tstate6, ostate6, input6, B6); + PBKDF2_SHA256_80_128(tstate7, ostate7, input7, B7); + PBKDF2_SHA256_80_128(tstate8, ostate8, input8, B8); scrypt_spu_core8(databuf, scratchpad); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input1, 80, B1, p * 128 * r, 1, (uint8_t*)output1, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input2, 80, B2, p * 128 * r, 1, (uint8_t*)output2, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input3, 80, B3, p * 128 * r, 1, (uint8_t*)output3, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input4, 80, B4, p * 128 * r, 1, (uint8_t*)output4, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input5, 80, B5, p * 128 * r, 1, (uint8_t*)output5, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input6, 80, B6, p * 128 * r, 1, (uint8_t*)output6, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input7, 80, B7, p * 128 * r, 1, (uint8_t*)output7, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input8, 80, B8, p * 128 * r, 1, (uint8_t*)output8, 32); + PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, B1, output1); + PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, B2, output2); + PBKDF2_SHA256_80_128_32(tstate3, ostate3, input3, B3, output3); + PBKDF2_SHA256_80_128_32(tstate4, ostate4, input4, B4, output4); + PBKDF2_SHA256_80_128_32(tstate5, ostate5, input5, B5, output5); + PBKDF2_SHA256_80_128_32(tstate6, ostate6, input6, B6, output6); + PBKDF2_SHA256_80_128_32(tstate7, ostate7, input7, B7, output7); + PBKDF2_SHA256_80_128_32(tstate8, ostate8, input8, B8, output8); } static int @@ -375,30 +370,22 @@ scanhash_scrypt(uint64_t work_restart_ptr, unsigned char *pdata, uint64_t scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, uint32_t *hashes_done) { - unsigned char data1[80]; - unsigned char tmp_hash1[32]; - unsigned char data2[80]; - unsigned char tmp_hash2[32]; - unsigned char data3[80]; - unsigned char tmp_hash3[32]; - unsigned char data4[80]; - unsigned char tmp_hash4[32]; - unsigned char data5[80]; - unsigned char tmp_hash5[32]; - unsigned char data6[80]; - unsigned char tmp_hash6[32]; - unsigned char data7[80]; - unsigned char tmp_hash7[32]; - unsigned char data8[80]; - unsigned char tmp_hash8[32]; - uint32_t *nonce1 = (uint32_t *)(data1 + 64 + 12); - uint32_t *nonce2 = (uint32_t *)(data2 + 64 + 12); - uint32_t *nonce3 = (uint32_t *)(data3 + 64 + 12); - uint32_t *nonce4 = (uint32_t *)(data4 + 64 + 12); - uint32_t *nonce5 = (uint32_t *)(data5 + 64 + 12); - uint32_t *nonce6 = (uint32_t *)(data6 + 64 + 12); - uint32_t *nonce7 = (uint32_t *)(data7 + 64 + 12); - uint32_t *nonce8 = (uint32_t *)(data8 + 64 + 12); + uint32_t data1[20], tmp_hash1[8]; + uint32_t data2[20], tmp_hash2[8]; + uint32_t data3[20], tmp_hash3[8]; + uint32_t data4[20], tmp_hash4[8]; + uint32_t data5[20], tmp_hash5[8]; + uint32_t data6[20], tmp_hash6[8]; + uint32_t data7[20], tmp_hash7[8]; + uint32_t data8[20], tmp_hash8[8]; + uint32_t *nonce1 = &data1[19]; + uint32_t *nonce2 = &data2[19]; + uint32_t *nonce3 = &data3[19]; + uint32_t *nonce4 = &data4[19]; + uint32_t *nonce5 = &data5[19]; + uint32_t *nonce6 = &data6[19]; + uint32_t *nonce7 = &data7[19]; + uint32_t *nonce8 = &data8[19]; uint32_t n = 0; uint32_t Htarg = le32dec(ptarget + 28); int i; @@ -406,77 +393,77 @@ scanhash_scrypt(uint64_t work_restart_ptr, unsigned char *pdata, int work_restart = 0; for (i = 0; i < 80/4; i++) { - ((uint32_t *)data1)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); - ((uint32_t *)data2)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); - ((uint32_t *)data3)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); - ((uint32_t *)data4)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); - ((uint32_t *)data5)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); - ((uint32_t *)data6)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); - ((uint32_t *)data7)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); - ((uint32_t *)data8)[i] = __builtin_bswap32(((uint32_t *)pdata)[i]); + data1[i] = be32dec(&((uint32_t *)pdata)[i]); + data2[i] = be32dec(&((uint32_t *)pdata)[i]); + data3[i] = be32dec(&((uint32_t *)pdata)[i]); + data4[i] = be32dec(&((uint32_t *)pdata)[i]); + data5[i] = be32dec(&((uint32_t *)pdata)[i]); + data6[i] = be32dec(&((uint32_t *)pdata)[i]); + data7[i] = be32dec(&((uint32_t *)pdata)[i]); + data8[i] = be32dec(&((uint32_t *)pdata)[i]); } while(1) { /* request 'work_restart[thr_id].restart' from external memory */ mfc_get(&work_restart, work_restart_ptr, 4, tag3, 0, 0); - le32enc(nonce1, n + 1); - le32enc(nonce2, n + 2); - le32enc(nonce3, n + 3); - le32enc(nonce4, n + 4); - le32enc(nonce5, n + 5); - le32enc(nonce6, n + 6); - le32enc(nonce7, n + 7); - le32enc(nonce8, n + 8); + *nonce1 = n + 1; + *nonce2 = n + 2; + *nonce3 = n + 3; + *nonce4 = n + 4; + *nonce5 = n + 5; + *nonce6 = n + 6; + *nonce7 = n + 7; + *nonce8 = n + 8; scrypt_1024_1_1_256_sp8(data1, tmp_hash1, data2, tmp_hash2, data3, tmp_hash3, data4, tmp_hash4, data5, tmp_hash5, data6, tmp_hash6, data7, tmp_hash7, data8, tmp_hash8, scratchbuf); - if (le32dec(tmp_hash1+28) <= Htarg) { + if (tmp_hash1[7] <= Htarg) { be32enc(pdata + 64 + 12, n + 1); *hashes_done = n; return true; } - if (le32dec(tmp_hash2+28) <= Htarg && n + 2 <= max_nonce) { + if (tmp_hash2[7] <= Htarg && n + 2 <= max_nonce) { be32enc(pdata + 64 + 12, n + 2); *hashes_done = n + 2; return true; } - if (le32dec(tmp_hash3+28) <= Htarg && n + 3 <= max_nonce) { + if (tmp_hash3[7] <= Htarg && n + 3 <= max_nonce) { be32enc(pdata + 64 + 12, n + 3); *hashes_done = n + 3; return true; } - if (le32dec(tmp_hash4+28) <= Htarg && n + 4 <= max_nonce) { + if (tmp_hash4[7] <= Htarg && n + 4 <= max_nonce) { be32enc(pdata + 64 + 12, n + 4); *hashes_done = n + 4; return true; } - if (le32dec(tmp_hash5+28) <= Htarg && n + 5 <= max_nonce) { + if (tmp_hash5[7] <= Htarg && n + 5 <= max_nonce) { be32enc(pdata + 64 + 12, n + 5); *hashes_done = n + 5; return true; } - if (le32dec(tmp_hash6+28) <= Htarg && n + 6 <= max_nonce) { + if (tmp_hash6[7] <= Htarg && n + 6 <= max_nonce) { be32enc(pdata + 64 + 12, n + 6); *hashes_done = n + 6; return true; } - if (le32dec(tmp_hash7+28) <= Htarg && n + 7 <= max_nonce) { + if (tmp_hash7[7] <= Htarg && n + 7 <= max_nonce) { be32enc(pdata + 64 + 12, n + 7); *hashes_done = n + 7; return true; } - if (le32dec(tmp_hash8+28) <= Htarg && n + 8 <= max_nonce) { + if (tmp_hash8[7] <= Htarg && n + 8 <= max_nonce) { be32enc(pdata + 64 + 12, n + 8); *hashes_done = n + 8; return true; diff --git a/scrypt-simd-helpers.h b/scrypt-simd-helpers.h index 322d718..8dd5681 100644 --- a/scrypt-simd-helpers.h +++ b/scrypt-simd-helpers.h @@ -270,16 +270,17 @@ typedef union { uint32x4 q[8]; uint32_t w[32]; } XY; * All buffers must be aligned at 64 byte boundary. */ static inline -void scrypt_simd_core1(uint8_t databuf[128], void * scratch) +void scrypt_simd_core1(uint32_t databuf[32], void * scratch) { + uint32_t * databufA = (uint32_t *)&databuf[0]; XY * X = (XY *)((uintptr_t)scratch + 0); uint32x4 * V = (uint32x4 *)((uintptr_t)scratch + 128); int i, j; /* 1: X <-- B */ for (i = 0; i < 16; i++) { - X->w[i] = le32dec(&databuf[(i * 5 % 16) * 4]); - X->w[16 + i] = le32dec(&databuf[(16 + (i * 5 % 16)) * 4]); + X->w[i] = databufA[i * 5 % 16]; + X->w[16 + i] = databufA[16 + (i * 5 % 16)]; } /* 2: for i = 0 to N - 1 do */ @@ -299,8 +300,8 @@ void scrypt_simd_core1(uint8_t databuf[128], void * scratch) /* 10: B' <-- X */ for (i = 0; i < 16; i++) { - le32enc(&databuf[(i * 5 % 16) * 4], X->w[i]); - le32enc(&databuf[(16 + (i * 5 % 16)) * 4], X->w[16 + i]); + databufA[i * 5 % 16] = X->w[i]; + databufA[16 + (i * 5 % 16)] = X->w[16 + i]; } } @@ -317,10 +318,10 @@ void scrypt_simd_core1(uint8_t databuf[128], void * scratch) * All buffers must be aligned at 64 byte boundary. */ static inline -void scrypt_simd_core2(uint8_t databuf[2 * 128], void * scratch) +void scrypt_simd_core2(uint32_t databuf[2 * 32], void * scratch) { - uint8_t * databufA = &databuf[0]; - uint8_t * databufB = &databuf[128]; + uint32_t * databufA = (uint32_t *)&databuf[0]; + uint32_t * databufB = (uint32_t *)&databuf[32]; XY * XA = (XY *)((uintptr_t)scratch); XY * XB = (XY *)((uintptr_t)scratch + 128 + 128 * 1024); uint32x4 * VA = (uint32x4 *)((uintptr_t)XA + 128); @@ -329,10 +330,10 @@ void scrypt_simd_core2(uint8_t databuf[2 * 128], void * scratch) /* 1: X <-- B */ for (i = 0; i < 16; i++) { - XA->w[i] = le32dec(&databufA[(i * 5 % 16) * 4]); - XA->w[16 + i] = le32dec(&databufA[(16 + (i * 5 % 16)) * 4]); - XB->w[i] = le32dec(&databufB[(i * 5 % 16) * 4]); - XB->w[16 + i] = le32dec(&databufB[(16 + (i * 5 % 16)) * 4]); + XA->w[i] = databufA[i * 5 % 16]; + XA->w[16 + i] = databufA[16 + (i * 5 % 16)]; + XB->w[i] = databufB[i * 5 % 16]; + XB->w[16 + i] = databufB[16 + (i * 5 % 16)]; } /* 2: for i = 0 to N - 1 do */ @@ -355,10 +356,10 @@ void scrypt_simd_core2(uint8_t databuf[2 * 128], void * scratch) /* 10: B' <-- X */ for (i = 0; i < 16; i++) { - le32enc(&databufA[(i * 5 % 16) * 4], XA->w[i]); - le32enc(&databufA[(16 + (i * 5 % 16)) * 4], XA->w[16 + i]); - le32enc(&databufB[(i * 5 % 16) * 4], XB->w[i]); - le32enc(&databufB[(16 + (i * 5 % 16)) * 4], XB->w[16 + i]); + databufA[i * 5 % 16] = XA->w[i]; + databufA[16 + (i * 5 % 16)] = XA->w[16 + i]; + databufB[i * 5 % 16] = XB->w[i]; + databufB[16 + (i * 5 % 16)] = XB->w[16 + i]; } } @@ -1,5 +1,5 @@ /*- - * Copyright 2009 Colin Percival, 2011 ArtForz + * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler * All rights reserved. * * Redistribution and use in source and binary forms, with or without @@ -37,228 +37,134 @@ #include "sha256-helpers.h" #include "scrypt-simd-helpers.h" -static void blkcpy(void *, void *, size_t); -static void blkxor(void *, void *, size_t); -static void salsa20_8(uint32_t[16]); -static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t); -static uint64_t integerify(void *, size_t); -static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *); - -static void -blkcpy(void * dest, void * src, size_t len) -{ - size_t * D = dest; - size_t * S = src; - size_t L = len / sizeof(size_t); - size_t i; - - for (i = 0; i < L; i++) - D[i] = S[i]; -} - -static void -blkxor(void * dest, void * src, size_t len) -{ - size_t * D = dest; - size_t * S = src; - size_t L = len / sizeof(size_t); - size_t i; - - for (i = 0; i < L; i++) - D[i] ^= S[i]; -} - /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ -static void -salsa20_8(uint32_t B[16]) +static inline void +salsa20_8(uint32_t B[16], const uint32_t Bx[16]) { - uint32_t x[16]; + uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; size_t i; - blkcpy(x, B, 64); + x00 = (B[ 0] ^= Bx[ 0]); + x01 = (B[ 1] ^= Bx[ 1]); + x02 = (B[ 2] ^= Bx[ 2]); + x03 = (B[ 3] ^= Bx[ 3]); + x04 = (B[ 4] ^= Bx[ 4]); + x05 = (B[ 5] ^= Bx[ 5]); + x06 = (B[ 6] ^= Bx[ 6]); + x07 = (B[ 7] ^= Bx[ 7]); + x08 = (B[ 8] ^= Bx[ 8]); + x09 = (B[ 9] ^= Bx[ 9]); + x10 = (B[10] ^= Bx[10]); + x11 = (B[11] ^= Bx[11]); + x12 = (B[12] ^= Bx[12]); + x13 = (B[13] ^= Bx[13]); + x14 = (B[14] ^= Bx[14]); + x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ - x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); - x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); - - x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); - x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); - - x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); - x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); - - x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); - x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); + x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); + x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); + x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); + x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); /* Operate on rows. */ - x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); - x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); - - x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); - x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); - - x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); - x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); - - x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); - x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); + x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); + x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); + x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); + x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); #undef R } - for (i = 0; i < 16; i++) - B[i] += x[i]; + B[ 0] += x00; + B[ 1] += x01; + B[ 2] += x02; + B[ 3] += x03; + B[ 4] += x04; + B[ 5] += x05; + B[ 6] += x06; + B[ 7] += x07; + B[ 8] += x08; + B[ 9] += x09; + B[10] += x10; + B[11] += x11; + B[12] += x12; + B[13] += x13; + B[14] += x14; + B[15] += x15; } -/** - * blockmix_salsa8(Bin, Bout, X, r): - * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r - * bytes in length; the output Bout must also be the same size. The - * temporary space X must be 64 bytes. - */ -static void -blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r) +static inline void scrypt_core1(uint32_t *X, uint32_t *V) { - size_t i; - - /* 1: X <-- B_{2r - 1} */ - blkcpy(X, &Bin[(2 * r - 1) * 16], 64); - - /* 2: for i = 0 to 2r - 1 do */ - for (i = 0; i < 2 * r; i += 2) { - /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 16], 64); - salsa20_8(X); + uint32_t i; + uint32_t j; + uint32_t k; + uint64_t *p1, *p2; + p1 = (uint64_t *)X; + for (i = 0; i < 1024; i += 2) { + memcpy(&V[i * 32], X, 128); - /* 4: Y_i <-- X */ - /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[i * 8], X, 64); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); - /* 3: X <-- H(X \xor B_i) */ - blkxor(X, &Bin[i * 16 + 16], 64); - salsa20_8(X); + memcpy(&V[(i + 1) * 32], X, 128); - /* 4: Y_i <-- X */ - /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ - blkcpy(&Bout[i * 8 + r * 16], X, 64); + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); } -} - -/** - * integerify(B, r): - * Return the result of parsing B_{2r-1} as a little-endian integer. - */ -static uint64_t -integerify(void * B, size_t r) -{ - uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); - - return (((uint64_t)(X[1]) << 32) + X[0]); -} - -/** - * smix(B, r, N, V, XY): - * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; - * the temporary storage V must be 128rN bytes in length; the temporary - * storage XY must be 256r + 64 bytes in length. The value N must be a - * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a - * multiple of 64 bytes. - */ -static void -smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) -{ - uint32_t * X = XY; - uint32_t * Y = &XY[32 * r]; - uint32_t * Z = &XY[64 * r]; - uint64_t i; - uint64_t j; - size_t k; - - /* 1: X <-- B */ - for (k = 0; k < 32 * r; k++) - X[k] = le32dec(&B[4 * k]); - - /* 2: for i = 0 to N - 1 do */ - for (i = 0; i < N; i += 2) { - /* 3: V_i <-- X */ - blkcpy(&V[i * (32 * r)], X, 128 * r); - - /* 4: X <-- H(X) */ - blockmix_salsa8(X, Y, Z, r); - - /* 3: V_i <-- X */ - blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r); - - /* 4: X <-- H(X) */ - blockmix_salsa8(Y, X, Z, r); + for (i = 0; i < 1024; i += 2) { + j = X[16] & 1023; + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); + + j = X[16] & 1023; + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); } - - /* 6: for i = 0 to N - 1 do */ - for (i = 0; i < N; i += 2) { - /* 7: j <-- Integerify(X) mod N */ - j = integerify(X, r) & (N - 1); - - /* 8: X <-- H(X \xor V_j) */ - blkxor(X, &V[j * (32 * r)], 128 * r); - blockmix_salsa8(X, Y, Z, r); - - /* 7: j <-- Integerify(X) mod N */ - j = integerify(Y, r) & (N - 1); - - /* 8: X <-- H(X \xor V_j) */ - blkxor(Y, &V[j * (32 * r)], 128 * r); - blockmix_salsa8(Y, X, Z, r); - } - - /* 10: B' <-- X */ - for (k = 0; k < 32 * r; k++) - le32enc(&B[4 * k], X[k]); } + /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes */ -static void scrypt_1024_1_1_256_sp1(const char* input, char* output, char* scratchpad) +static void scrypt_1024_1_1_256_sp1(const uint32_t* input, uint32_t* output, uint8_t* scratchpad) { - uint8_t * B; + uint32_t tstate[8], ostate[8]; + uint32_t * B; uint32_t * V; - uint32_t * XY; - uint32_t i; - - const uint32_t N = 1024; - const uint32_t r = 1; - const uint32_t p = 1; - B = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - XY = (uint32_t *)(B + (128 * r * p)); - V = (uint32_t *)(B + (128 * r * p) + (256 * r + 64)); + B = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); + V = (uint32_t *)(B + 32); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input, 80, (const uint8_t*)input, 80, 1, B, p * 128 * r); + PBKDF2_SHA256_80_128_init(input, tstate, ostate); + PBKDF2_SHA256_80_128(tstate, ostate, input, B); #ifdef HAVE_SCRYPT_SIMD_HELPERS - scrypt_simd_core1(B, XY); + scrypt_simd_core1(B, V); #else - /* 2: for i = 0 to p - 1 do */ - for (i = 0; i < p; i++) { - /* 3: B_i <-- MF(B_i, N) */ - smix(&B[i * 128 * r], r, N, V, XY); - } + scrypt_core1(B, V); #endif - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input, 80, B, p * 128 * r, 1, (uint8_t*)output, 32); + PBKDF2_SHA256_80_128_32(tstate, ostate, input, B, output); } -int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, +int scanhash_scrypt1(int thr_id, unsigned char *pdata, uint8_t *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { - unsigned char data[80]; - unsigned char tmp_hash[32]; - uint32_t *nonce = (uint32_t *)(data + 64 + 12); + uint32_t data[20]; + uint32_t tmp_hash[32]; + uint32_t *nonce = (uint32_t *)(data + 19); uint32_t n = 0; uint32_t Htarg = le32dec(ptarget + 28); int i; @@ -266,14 +172,14 @@ int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf work_restart[thr_id].restart = 0; for (i = 0; i < 80/4; i++) - ((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]); + data[i] = be32dec(pdata + i * 4); while(1) { n++; - le32enc(nonce, n); + *nonce = n; scrypt_1024_1_1_256_sp1(data, tmp_hash, scratchbuf); - if (le32dec(tmp_hash+28) <= Htarg) { + if (tmp_hash[7] <= Htarg) { be32enc(pdata + 64 + 12, n); *hashes_done = n; return true; @@ -290,46 +196,41 @@ int scanhash_scrypt1(int thr_id, unsigned char *pdata, unsigned char *scratchbuf #ifdef HAVE_SCRYPT_SIMD_HELPERS static void -scrypt_1024_1_1_256_sp2(const unsigned char * input1, - unsigned char * output1, - const unsigned char * input2, - unsigned char * output2, - unsigned char * scratchpad) +scrypt_1024_1_1_256_sp2(const uint32_t * input1, + uint32_t * output1, + const uint32_t * input2, + uint32_t * output2, + uint8_t * scratchpad) { - uint8_t * B1, * B2; - uint8_t * V; - - const uint32_t N = 1024; - const uint32_t r = 1; - const uint32_t p = 1; + uint32_t tstate1[8], tstate2[8], ostate1[8], ostate2[8]; + uint32_t * B1, * B2; + uint32_t * V; - B1 = (uint8_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); - B2 = B1 + 128; - V = B2 + 128; + B1 = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); + B2 = B1 + 32; + V = B2 + 32; - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input1, 80, (const uint8_t*)input1, 80, 1, B1, p * 128 * r); - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ - PBKDF2_SHA256((const uint8_t*)input2, 80, (const uint8_t*)input2, 80, 1, B2, p * 128 * r); + PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1); + PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2); + PBKDF2_SHA256_80_128(tstate1, ostate1, input1, B1); + PBKDF2_SHA256_80_128(tstate2, ostate2, input2, B2); scrypt_simd_core2(B1, V); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input1, 80, B1, p * 128 * r, 1, (uint8_t*)output1, 32); - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ - PBKDF2_SHA256((const uint8_t*)input2, 80, B2, p * 128 * r, 1, (uint8_t*)output2, 32); + PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, B1, output1); + PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, B2, output2); } int scanhash_scrypt2(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { - unsigned char data1[80]; - unsigned char tmp_hash1[32]; - unsigned char data2[80]; - unsigned char tmp_hash2[32]; - uint32_t *nonce1 = (uint32_t *)(data1 + 64 + 12); - uint32_t *nonce2 = (uint32_t *)(data2 + 64 + 12); + uint32_t data1[20]; + uint32_t tmp_hash1[8]; + uint32_t data2[20]; + uint32_t tmp_hash2[8]; + uint32_t *nonce1 = (uint32_t *)(data1 + 19); + uint32_t *nonce2 = (uint32_t *)(data2 + 19); uint32_t n = 0; uint32_t Htarg = le32dec(ptarget + 28); int i; @@ -337,22 +238,22 @@ int scanhash_scrypt2(int thr_id, unsigned char *pdata, unsigned char *scratchbuf work_restart[thr_id].restart = 0; for (i = 0; i < 80/4; i++) { - ((uint32_t *)data1)[i] = swab32(((uint32_t *)pdata)[i]); - ((uint32_t *)data2)[i] = swab32(((uint32_t *)pdata)[i]); + ((uint32_t *)data1)[i] = be32dec(pdata + i * 4); + ((uint32_t *)data2)[i] = be32dec(pdata + i * 4); } while(1) { - le32enc(nonce1, n + 1); - le32enc(nonce2, n + 2); + *nonce1 = n + 1; + *nonce2 = n + 2; scrypt_1024_1_1_256_sp2(data1, tmp_hash1, data2, tmp_hash2, scratchbuf); - if (le32dec(tmp_hash1+28) <= Htarg) { + if (tmp_hash1[7] <= Htarg) { be32enc(pdata + 64 + 12, n + 1); *hashes_done = n + 1; return true; } - if (le32dec(tmp_hash2+28) <= Htarg && n + 2 <= max_nonce) { + if (tmp_hash2[7] <= Htarg && n + 2 <= max_nonce) { be32enc(pdata + 64 + 12, n + 2); *hashes_done = n + 2; return true; diff --git a/sha256-helpers.h b/sha256-helpers.h index 9d17729..c54fd01 100644 --- a/sha256-helpers.h +++ b/sha256-helpers.h @@ -1,5 +1,5 @@ /*- - * Copyright 2009 Colin Percival, 2011 ArtForz + * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler * All rights reserved. * * Redistribution and use in source and binary forms, with or without @@ -34,8 +34,18 @@ #include <stdint.h> #include <string.h> -static inline uint32_t -be32dec(const void *pp) +#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) + +static inline void +byteswap_vec(uint32_t *dest, const uint32_t *src, uint32_t len) +{ + uint32_t i; + + for (i = 0; i < len; i++) + dest[i] = byteswap(src[i]); +} + +static inline uint32_t be32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; @@ -43,8 +53,7 @@ be32dec(const void *pp) ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); } -static inline void -be32enc(void *pp, uint32_t x) +static inline void be32enc(void *pp, uint32_t x) { uint8_t * p = (uint8_t *)pp; @@ -54,8 +63,7 @@ be32enc(void *pp, uint32_t x) p[0] = (x >> 24) & 0xff; } -static inline uint32_t -le32dec(const void *pp) +static inline uint32_t le32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; @@ -63,8 +71,7 @@ le32dec(const void *pp) ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); } -static inline void -le32enc(void *pp, uint32_t x) +static inline void le32enc(void *pp, uint32_t x) { uint8_t * p = (uint8_t *)pp; @@ -74,44 +81,11 @@ le32enc(void *pp, uint32_t x) p[3] = (x >> 24) & 0xff; } - typedef struct SHA256Context { uint32_t state[8]; - uint32_t count[2]; - unsigned char buf[64]; + uint32_t buf[16]; } SHA256_CTX; -typedef struct HMAC_SHA256Context { - SHA256_CTX ictx; - SHA256_CTX octx; -} HMAC_SHA256_CTX; - -/* - * Encode a length len/4 vector of (uint32_t) into a length len vector of - * (unsigned char) in big-endian form. Assumes len is a multiple of 4. - */ -static void -be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) -{ - size_t i; - - for (i = 0; i < len / 4; i++) - be32enc(dst + i * 4, src[i]); -} - -/* - * Decode a big-endian length len vector of (unsigned char) into a length - * len/4 vector of (uint32_t). Assumes len is a multiple of 4. - */ -static void -be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) -{ - size_t i; - - for (i = 0; i < len / 4; i++) - dst[i] = be32dec(src + i * 4); -} - /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) @@ -142,7 +116,7 @@ be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) * the 512-bit input block to produce a new state. */ static void -SHA256_Transform(uint32_t * state, const unsigned char block[64]) +SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) { uint32_t W[64]; uint32_t S[8]; @@ -150,9 +124,14 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64]) int i; /* 1. Prepare message schedule W. */ - be32dec_vect(W, block, 64); - for (i = 16; i < 64; i++) + if(swap) + byteswap_vec(W, block, 16); + else + memcpy(W, block, 64); + for (i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; + W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; + } /* 2. Initialize working variables. */ memcpy(S, state, 32); @@ -226,241 +205,109 @@ SHA256_Transform(uint32_t * state, const unsigned char block[64]) /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; - - /* Clean the stack. */ - memset(W, 0, 256); - memset(S, 0, 32); - t0 = t1 = 0; } -static unsigned char PAD[64] = { - 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -}; - -/* SHA-256 initialization. Begins a SHA-256 operation. */ -static void -SHA256_Init(SHA256_CTX * ctx) +static inline void +SHA256_InitState(uint32_t * state) { - - /* Zero bits processed so far */ - ctx->count[0] = ctx->count[1] = 0; - /* Magic initialization constants */ - ctx->state[0] = 0x6A09E667; - ctx->state[1] = 0xBB67AE85; - ctx->state[2] = 0x3C6EF372; - ctx->state[3] = 0xA54FF53A; - ctx->state[4] = 0x510E527F; - ctx->state[5] = 0x9B05688C; - ctx->state[6] = 0x1F83D9AB; - ctx->state[7] = 0x5BE0CD19; + state[0] = 0x6A09E667; + state[1] = 0xBB67AE85; + state[2] = 0x3C6EF372; + state[3] = 0xA54FF53A; + state[4] = 0x510E527F; + state[5] = 0x9B05688C; + state[6] = 0x1F83D9AB; + state[7] = 0x5BE0CD19; } -/* Add bytes into the hash */ -static void -SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) -{ - uint32_t bitlen[2]; - uint32_t r; - const unsigned char *src = in; - - /* Number of bytes left in the buffer from previous updates */ - r = (ctx->count[1] >> 3) & 0x3f; - - /* Convert the length into a number of bits */ - bitlen[1] = ((uint32_t)len) << 3; - bitlen[0] = (uint32_t)(len >> 29); - - /* Update number of bits */ - if ((ctx->count[1] += bitlen[1]) < bitlen[1]) - ctx->count[0]++; - ctx->count[0] += bitlen[0]; - - /* Handle the case where we don't need to perform any transforms */ - if (len < 64 - r) { - memcpy(&ctx->buf[r], src, len); - return; - } - - /* Finish the current block */ - memcpy(&ctx->buf[r], src, 64 - r); - SHA256_Transform(ctx->state, ctx->buf); - src += 64 - r; - len -= 64 - r; - - /* Perform complete blocks */ - while (len >= 64) { - SHA256_Transform(ctx->state, src); - src += 64; - len -= 64; - } - - /* Copy left over data into buffer */ - memcpy(ctx->buf, src, len); -} +static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000}; +static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300}; -/* Add padding and terminating bit-count. */ -static void -SHA256_Pad(SHA256_CTX * ctx) -{ - unsigned char len[8]; - uint32_t r, plen; - - /* - * Convert length to a vector of bytes -- we do this now rather - * than later because the length will change after we pad. - */ - be32enc_vect(len, ctx->count, 8); - - /* Add 1--64 bytes so that the resulting length is 56 mod 64 */ - r = (ctx->count[1] >> 3) & 0x3f; - plen = (r < 56) ? (56 - r) : (120 - r); - SHA256_Update(ctx, PAD, (size_t)plen); - - /* Add the terminating bit-count */ - SHA256_Update(ctx, len, 8); -} - -/* - * SHA-256 finalization. Pads the input data, exports the hash value, - * and clears the context state. - */ -static void -SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) -{ - - /* Add padding */ - SHA256_Pad(ctx); - - /* Write the hash */ - be32enc_vect(digest, ctx->state, 32); - - /* Clear the context state */ - memset((void *)ctx, 0, sizeof(*ctx)); -} - -/* Initialize an HMAC-SHA256 operation with the given key. */ -static void -HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) -{ - unsigned char pad[64]; - unsigned char khash[32]; - const unsigned char * K = _K; - size_t i; - - /* If Klen > 64, the key is really SHA256(K). */ - if (Klen > 64) { - SHA256_Init(&ctx->ictx); - SHA256_Update(&ctx->ictx, K, Klen); - SHA256_Final(khash, &ctx->ictx); - K = khash; - Klen = 32; - } - - /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ - SHA256_Init(&ctx->ictx); - memset(pad, 0x36, 64); - for (i = 0; i < Klen; i++) - pad[i] ^= K[i]; - SHA256_Update(&ctx->ictx, pad, 64); - - /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ - SHA256_Init(&ctx->octx); - memset(pad, 0x5c, 64); - for (i = 0; i < Klen; i++) - pad[i] ^= K[i]; - SHA256_Update(&ctx->octx, pad, 64); - - /* Clean the stack. */ - memset(khash, 0, 32); -} - -/* Add bytes to the HMAC-SHA256 operation. */ -static void -HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) -{ - - /* Feed data to the inner SHA256 operation. */ - SHA256_Update(&ctx->ictx, in, len); -} - -/* Finish an HMAC-SHA256 operation. */ -static void -HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx) +static inline void +PBKDF2_SHA256_80_128_init(const uint32_t *passwd, uint32_t tstate[8], uint32_t ostate[8]) { - unsigned char ihash[32]; - - /* Finish the inner SHA256 operation. */ - SHA256_Final(ihash, &ctx->ictx); - - /* Feed the inner hash to the outer SHA256 operation. */ - SHA256_Update(&ctx->octx, ihash, 32); - - /* Finish the outer SHA256 operation. */ - SHA256_Final(digest, &ctx->octx); + uint32_t ihash[8]; + uint32_t pad[16]; + uint32_t i; + + SHA256_InitState(tstate); + SHA256_Transform(tstate, passwd, 1); + memcpy(pad, passwd+16, 16); + memcpy(pad+4, passwdpad, 48); + SHA256_Transform(tstate, pad, 1); + memcpy(ihash, tstate, 32); + + SHA256_InitState(ostate); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x5c5c5c5c; + for (; i < 16; i++) + pad[i] = 0x5c5c5c5c; + SHA256_Transform(ostate, pad, 0); - /* Clean the stack. */ - memset(ihash, 0, 32); + SHA256_InitState(tstate); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x36363636; + for (; i < 16; i++) + pad[i] = 0x36363636; + SHA256_Transform(tstate, pad, 0); } /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and - * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). + * write the output to buf. */ -static void -PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, - size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) +static inline void +PBKDF2_SHA256_80_128(const uint32_t *tstate, const uint32_t *ostate, const uint32_t *passwd, uint32_t *buf) { - HMAC_SHA256_CTX PShctx, hctx; - size_t i; - uint8_t ivec[4]; - uint8_t U[32]; - uint8_t T[32]; - uint64_t j; - int k; - size_t clen; - - /* Compute HMAC state after processing P and S. */ - HMAC_SHA256_Init(&PShctx, passwd, passwdlen); - HMAC_SHA256_Update(&PShctx, salt, saltlen); + static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000}; + SHA256_CTX PShictx, PShoctx; + uint32_t i; + + /* If Klen > 64, the key is really SHA256(K). */ + memcpy(PShictx.state, tstate, 32); + memcpy(PShoctx.state, ostate, 32); + + memcpy(PShoctx.buf+8, outerpad, 32); + + SHA256_Transform(PShictx.state, passwd, 1); + byteswap_vec(PShictx.buf, passwd+16, 4); + byteswap_vec(PShictx.buf+5, innerpad, 11); /* Iterate through the blocks. */ - for (i = 0; i * 32 < dkLen; i++) { - /* Generate INT(i + 1). */ - be32enc(ivec, (uint32_t)(i + 1)); - - /* Compute U_1 = PRF(P, S || INT(i)). */ - memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); - HMAC_SHA256_Update(&hctx, ivec, 4); - HMAC_SHA256_Final(U, &hctx); - - /* T_i = U_1 ... */ - memcpy(T, U, 32); - - for (j = 2; j <= c; j++) { - /* Compute U_j. */ - HMAC_SHA256_Init(&hctx, passwd, passwdlen); - HMAC_SHA256_Update(&hctx, U, 32); - HMAC_SHA256_Final(U, &hctx); - - /* ... xor U_j ... */ - for (k = 0; k < 32; k++) - T[k] ^= U[k]; - } - - /* Copy as many bytes as necessary into buf. */ - clen = dkLen - i * 32; - if (clen > 32) - clen = 32; - memcpy(&buf[i * 32], T, clen); + for (i = 0; i < 4; i++) { + uint32_t ist[8]; + uint32_t ost[8]; + + memcpy(ist, PShictx.state, 32); + PShictx.buf[4] = i + 1; + SHA256_Transform(ist, PShictx.buf, 0); + memcpy(PShoctx.buf, ist, 32); + + memcpy(ost, PShoctx.state, 32); + SHA256_Transform(ost, PShoctx.buf, 0); + byteswap_vec(buf+i*8, ost, 8); } +} - /* Clean PShctx, since we never called _Final on it. */ - memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); +static inline void +PBKDF2_SHA256_80_128_32(uint32_t *tstate, uint32_t *ostate, const uint32_t *passwd, const uint32_t *salt, uint32_t *output) +{ + static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620}; + uint32_t pad[16]; + uint32_t i; + + SHA256_Transform(tstate, salt, 1); + SHA256_Transform(tstate, salt+16, 1); + SHA256_Transform(tstate, ihash_finalblk, 0); + memcpy(pad, tstate, 32); + memcpy(pad+8, outerpad, 32); + + SHA256_Transform(ostate, pad, 0); + + for (i = 0; i < 8; i++) + output[i] = byteswap(ostate[i]); } #endif |