aboutsummaryrefslogtreecommitdiff
path: root/scrypt.c
blob: 3288f60c24d4b96c78621409155bf3deb0ce1f27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*-
 * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * This file was originally written by Colin Percival as part of the Tarsnap
 * online backup system.
 */

#include "cpuminer-config.h"
#include "miner.h"

#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include "sha256-helpers.h"
#include "scrypt-simd-helpers.h"

/**
 * salsa20_8(B):
 * Apply the salsa20/8 core to the provided block.
 */
static inline void
salsa20_8(uint32_t B[16], const uint32_t Bx[16])
{
	uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
	size_t i;

	x00 = (B[ 0] ^= Bx[ 0]);
	x01 = (B[ 1] ^= Bx[ 1]);
	x02 = (B[ 2] ^= Bx[ 2]);
	x03 = (B[ 3] ^= Bx[ 3]);
	x04 = (B[ 4] ^= Bx[ 4]);
	x05 = (B[ 5] ^= Bx[ 5]);
	x06 = (B[ 6] ^= Bx[ 6]);
	x07 = (B[ 7] ^= Bx[ 7]);
	x08 = (B[ 8] ^= Bx[ 8]);
	x09 = (B[ 9] ^= Bx[ 9]);
	x10 = (B[10] ^= Bx[10]);
	x11 = (B[11] ^= Bx[11]);
	x12 = (B[12] ^= Bx[12]);
	x13 = (B[13] ^= Bx[13]);
	x14 = (B[14] ^= Bx[14]);
	x15 = (B[15] ^= Bx[15]);
	for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
		/* Operate on columns. */
		x04 ^= R(x00+x12, 7);	x09 ^= R(x05+x01, 7);	x14 ^= R(x10+x06, 7);	x03 ^= R(x15+x11, 7);
		x08 ^= R(x04+x00, 9);	x13 ^= R(x09+x05, 9);	x02 ^= R(x14+x10, 9);	x07 ^= R(x03+x15, 9);
		x12 ^= R(x08+x04,13);	x01 ^= R(x13+x09,13);	x06 ^= R(x02+x14,13);	x11 ^= R(x07+x03,13);
		x00 ^= R(x12+x08,18);	x05 ^= R(x01+x13,18);	x10 ^= R(x06+x02,18);	x15 ^= R(x11+x07,18);

		/* Operate on rows. */
		x01 ^= R(x00+x03, 7);	x06 ^= R(x05+x04, 7);	x11 ^= R(x10+x09, 7);	x12 ^= R(x15+x14, 7);
		x02 ^= R(x01+x00, 9);	x07 ^= R(x06+x05, 9);	x08 ^= R(x11+x10, 9);	x13 ^= R(x12+x15, 9);
		x03 ^= R(x02+x01,13);	x04 ^= R(x07+x06,13);	x09 ^= R(x08+x11,13);	x14 ^= R(x13+x12,13);
		x00 ^= R(x03+x02,18);	x05 ^= R(x04+x07,18);	x10 ^= R(x09+x08,18);	x15 ^= R(x14+x13,18);
#undef R
	}
	B[ 0] += x00;
	B[ 1] += x01;
	B[ 2] += x02;
	B[ 3] += x03;
	B[ 4] += x04;
	B[ 5] += x05;
	B[ 6] += x06;
	B[ 7] += x07;
	B[ 8] += x08;
	B[ 9] += x09;
	B[10] += x10;
	B[11] += x11;
	B[12] += x12;
	B[13] += x13;
	B[14] += x14;
	B[15] += x15;
}

static inline void scrypt_core1(uint32_t *X, uint32_t *V)
{
	uint32_t i;
	uint32_t j;
	uint32_t k;
	uint64_t *p1, *p2;
	p1 = (uint64_t *)X;
	for (i = 0; i < 1024; i += 2) {
		memcpy(&V[i * 32], X, 128);

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);

		memcpy(&V[(i + 1) * 32], X, 128);

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);
	}
	for (i = 0; i < 1024; i += 2) {
		j = X[16] & 1023;
		p2 = (uint64_t *)(&V[j * 32]);
		for(k = 0; k < 16; k++)
			p1[k] ^= p2[k];

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);

		j = X[16] & 1023;
		p2 = (uint64_t *)(&V[j * 32]);
		for(k = 0; k < 16; k++)
			p1[k] ^= p2[k];

		salsa20_8(&X[0], &X[16]);
		salsa20_8(&X[16], &X[0]);
	}
}


/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
   scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
 */
static void scrypt_1024_1_1_256_sp1(const uint32_t* input, uint32_t* output, uint8_t* scratchpad)
{
	uint32_t tstate[8], ostate[8];
	uint32_t * B;
	uint32_t * V;

	B = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
	V = (uint32_t *)(B + 32);

	PBKDF2_SHA256_80_128_init(input, tstate, ostate);
	PBKDF2_SHA256_80_128(tstate, ostate, input, B);

#ifdef HAVE_SCRYPT_SIMD_HELPERS
	scrypt_simd_core1(B, V);
#else
	scrypt_core1(B, V);
#endif

	PBKDF2_SHA256_80_128_32(tstate, ostate, input, B, output);
}

int scanhash_scrypt1(int thr_id, unsigned char *pdata, uint8_t *scratchbuf,
	const unsigned char *ptarget,
	uint32_t max_nonce, unsigned long *hashes_done)
{
	uint32_t data[20];
	uint32_t tmp_hash[32];
	uint32_t *nonce = (uint32_t *)(data + 19);
	uint32_t n = 0;
	uint32_t Htarg = le32dec(ptarget + 28);
	int i;

	work_restart[thr_id].restart = 0;
	
	for (i = 0; i < 80/4; i++)
		data[i] = be32dec(pdata + i * 4);
	
	while(1) {
		n++;
		*nonce = n;
		scrypt_1024_1_1_256_sp1(data, tmp_hash, scratchbuf);

		if (tmp_hash[7] <= Htarg) {
			be32enc(pdata + 64 + 12, n);
			*hashes_done = n;
			return true;
		}

		if ((n >= max_nonce) || work_restart[thr_id].restart) {
			*hashes_done = n;
			break;
		}
	}
	return false;
}

#ifdef HAVE_SCRYPT_SIMD_HELPERS

static void
scrypt_1024_1_1_256_sp2(const uint32_t * input1,
                        uint32_t       * output1,
                        const uint32_t * input2,
                        uint32_t       * output2,
                        uint8_t        * scratchpad)
{
	uint32_t tstate1[8], tstate2[8], ostate1[8], ostate2[8];
	uint32_t * B1, * B2;
	uint32_t * V;

	B1 = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
	B2 = B1 + 32;
	V  = B2 + 32;

	PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1);
	PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2);
	PBKDF2_SHA256_80_128(tstate1, ostate1, input1, B1);
	PBKDF2_SHA256_80_128(tstate2, ostate2, input2, B2);

	scrypt_simd_core2(B1, V);

	PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, B1, output1);
	PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, B2, output2);
}

int scanhash_scrypt2(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
	const unsigned char *ptarget,
	uint32_t max_nonce, unsigned long *hashes_done)
{
	uint32_t data1[20];
	uint32_t tmp_hash1[8];
	uint32_t data2[20];
	uint32_t tmp_hash2[8];
	uint32_t *nonce1 = (uint32_t *)(data1 + 19);
	uint32_t *nonce2 = (uint32_t *)(data2 + 19);
	uint32_t n = 0;
	uint32_t Htarg = le32dec(ptarget + 28);
	int i;

	work_restart[thr_id].restart = 0;
	
	for (i = 0; i < 80/4; i++) {
		((uint32_t *)data1)[i] = be32dec(pdata + i * 4);
		((uint32_t *)data2)[i] = be32dec(pdata + i * 4);
	}
	
	while(1) {
		*nonce1 = n + 1;
		*nonce2 = n + 2;
		scrypt_1024_1_1_256_sp2(data1, tmp_hash1, data2, tmp_hash2, scratchbuf);

		if (tmp_hash1[7] <= Htarg) {
			be32enc(pdata + 64 + 12, n + 1);
			*hashes_done = n + 1;
			return true;
		}

		if (tmp_hash2[7] <= Htarg && n + 2 <= max_nonce) {
			be32enc(pdata + 64 + 12, n + 2);
			*hashes_done = n + 2;
			return true;
		}

		n += 2;

		if (n >= max_nonce) {
			*hashes_done = max_nonce;
			break;
		}

		if (work_restart[thr_id].restart) {
			*hashes_done = n;
			break;
		}
	}
	return false;
}

#endif

int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
	const unsigned char *ptarget,
	uint32_t max_nonce, unsigned long *hashes_done)
{
	/*
	 * TODO: maybe add a command line option or run benchmarks at start
	 * to select the fastest implementation?
	 */
#ifdef HAVE_SCRYPT_SIMD_HELPERS
	return scanhash_scrypt2(thr_id, pdata, scratchbuf, ptarget, max_nonce, hashes_done);
#else
	return scanhash_scrypt1(thr_id, pdata, scratchbuf, ptarget, max_nonce, hashes_done);
#endif
}