1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
|
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
*
* Copyright (C) 2008 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <target/arm966e.h>
#include <target/algorithm.h>
/* Flash registers */
#define FLASH_BBSR 0x54000000 /* Boot Bank Size Register */
#define FLASH_NBBSR 0x54000004 /* Non-Boot Bank Size Register */
#define FLASH_BBADR 0x5400000C /* Boot Bank Base Address Register */
#define FLASH_NBBADR 0x54000010 /* Non-Boot Bank Base Address Register */
#define FLASH_CR 0x54000018 /* Control Register */
#define FLASH_SR 0x5400001C /* Status Register */
#define FLASH_BCE5ADDR 0x54000020 /* BC Fifth Entry Target Address Register */
struct str9x_flash_bank {
uint32_t *sector_bits;
int variant;
int bank1;
};
enum str9x_status_codes {
STR9X_CMD_SUCCESS = 0,
STR9X_INVALID_COMMAND = 1,
STR9X_SRC_ADDR_ERROR = 2,
STR9X_DST_ADDR_ERROR = 3,
STR9X_SRC_ADDR_NOT_MAPPED = 4,
STR9X_DST_ADDR_NOT_MAPPED = 5,
STR9X_COUNT_ERROR = 6,
STR9X_INVALID_SECTOR = 7,
STR9X_SECTOR_NOT_BLANK = 8,
STR9X_SECTOR_NOT_PREPARED = 9,
STR9X_COMPARE_ERROR = 10,
STR9X_BUSY = 11
};
static uint32_t bank1start = 0x00080000;
static int str9x_build_block_list(struct flash_bank *bank)
{
struct str9x_flash_bank *str9x_info = bank->driver_priv;
int i;
int num_sectors;
int b0_sectors = 0, b1_sectors = 0;
uint32_t offset = 0;
/* set if we have large flash str9 */
str9x_info->variant = 0;
str9x_info->bank1 = 0;
switch (bank->size) {
case (256 * 1024):
b0_sectors = 4;
break;
case (512 * 1024):
b0_sectors = 8;
break;
case (1024 * 1024):
bank1start = 0x00100000;
str9x_info->variant = 1;
b0_sectors = 16;
break;
case (2048 * 1024):
bank1start = 0x00200000;
str9x_info->variant = 1;
b0_sectors = 32;
break;
case (128 * 1024):
str9x_info->variant = 1;
str9x_info->bank1 = 1;
b1_sectors = 8;
bank1start = bank->base;
break;
case (32 * 1024):
str9x_info->bank1 = 1;
b1_sectors = 4;
bank1start = bank->base;
break;
default:
LOG_ERROR("BUG: unknown bank->size encountered");
exit(-1);
}
num_sectors = b0_sectors + b1_sectors;
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
str9x_info->sector_bits = malloc(sizeof(uint32_t) * num_sectors);
num_sectors = 0;
for (i = 0; i < b0_sectors; i++) {
bank->sectors[num_sectors].offset = offset;
bank->sectors[num_sectors].size = 0x10000;
offset += bank->sectors[i].size;
bank->sectors[num_sectors].is_erased = -1;
bank->sectors[num_sectors].is_protected = 1;
str9x_info->sector_bits[num_sectors++] = (1 << i);
}
for (i = 0; i < b1_sectors; i++) {
bank->sectors[num_sectors].offset = offset;
bank->sectors[num_sectors].size = str9x_info->variant == 0 ? 0x2000 : 0x4000;
offset += bank->sectors[i].size;
bank->sectors[num_sectors].is_erased = -1;
bank->sectors[num_sectors].is_protected = 1;
if (str9x_info->variant)
str9x_info->sector_bits[num_sectors++] = (1 << i);
else
str9x_info->sector_bits[num_sectors++] = (1 << (i + 8));
}
return ERROR_OK;
}
/* flash bank str9x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(str9x_flash_bank_command)
{
struct str9x_flash_bank *str9x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
str9x_info = malloc(sizeof(struct str9x_flash_bank));
bank->driver_priv = str9x_info;
str9x_build_block_list(bank);
return ERROR_OK;
}
static int str9x_protect_check(struct flash_bank *bank)
{
int retval;
struct str9x_flash_bank *str9x_info = bank->driver_priv;
struct target *target = bank->target;
int i;
uint32_t adr;
uint32_t status = 0;
uint16_t hstatus = 0;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* read level one protection */
if (str9x_info->variant) {
if (str9x_info->bank1) {
adr = bank1start + 0x18;
retval = target_write_u16(target, adr, 0x90);
if (retval != ERROR_OK)
return retval;
retval = target_read_u16(target, adr, &hstatus);
if (retval != ERROR_OK)
return retval;
status = hstatus;
} else {
adr = bank1start + 0x14;
retval = target_write_u16(target, adr, 0x90);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, adr, &status);
if (retval != ERROR_OK)
return retval;
}
} else {
adr = bank1start + 0x10;
retval = target_write_u16(target, adr, 0x90);
if (retval != ERROR_OK)
return retval;
retval = target_read_u16(target, adr, &hstatus);
if (retval != ERROR_OK)
return retval;
status = hstatus;
}
/* read array command */
retval = target_write_u16(target, adr, 0xFF);
if (retval != ERROR_OK)
return retval;
for (i = 0; i < bank->num_sectors; i++) {
if (status & str9x_info->sector_bits[i])
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return ERROR_OK;
}
static int str9x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i;
uint32_t adr;
uint8_t status;
uint8_t erase_cmd;
int total_timeout;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Check if we can erase whole bank */
if ((first == 0) && (last == (bank->num_sectors - 1))) {
/* Optimize to run erase bank command instead of sector */
erase_cmd = 0x80;
/* Add timeout duration since erase bank takes more time */
total_timeout = 1000 * bank->num_sectors;
} else {
/* Erase sector command */
erase_cmd = 0x20;
total_timeout = 1000;
}
/* this is so the compiler can *know* */
assert(total_timeout > 0);
for (i = first; i <= last; i++) {
int retval;
adr = bank->base + bank->sectors[i].offset;
/* erase sectors or block */
retval = target_write_u16(target, adr, erase_cmd);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, adr, 0xD0);
if (retval != ERROR_OK)
return retval;
/* get status */
retval = target_write_u16(target, adr, 0x70);
if (retval != ERROR_OK)
return retval;
int timeout;
for (timeout = 0; timeout < total_timeout; timeout++) {
retval = target_read_u8(target, adr, &status);
if (retval != ERROR_OK)
return retval;
if (status & 0x80)
break;
alive_sleep(1);
}
if (timeout == total_timeout) {
LOG_ERROR("erase timed out");
return ERROR_FAIL;
}
/* clear status, also clear read array */
retval = target_write_u16(target, adr, 0x50);
if (retval != ERROR_OK)
return retval;
/* read array command */
retval = target_write_u16(target, adr, 0xFF);
if (retval != ERROR_OK)
return retval;
if (status & 0x22) {
LOG_ERROR("error erasing flash bank, status: 0x%x", status);
return ERROR_FLASH_OPERATION_FAILED;
}
/* If we ran erase bank command, we are finished */
if (erase_cmd == 0x80)
break;
}
for (i = first; i <= last; i++)
bank->sectors[i].is_erased = 1;
return ERROR_OK;
}
static int str9x_protect(struct flash_bank *bank,
int set, int first, int last)
{
struct target *target = bank->target;
int i;
uint32_t adr;
uint8_t status;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (i = first; i <= last; i++) {
/* Level One Protection */
adr = bank->base + bank->sectors[i].offset;
target_write_u16(target, adr, 0x60);
if (set)
target_write_u16(target, adr, 0x01);
else
target_write_u16(target, adr, 0xD0);
/* query status */
target_read_u8(target, adr, &status);
/* clear status, also clear read array */
target_write_u16(target, adr, 0x50);
/* read array command */
target_write_u16(target, adr, 0xFF);
}
return ERROR_OK;
}
static int str9x_write_block(struct flash_bank *bank,
const uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 32768;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[4];
struct arm_algorithm arm_algo;
int retval = ERROR_OK;
/* see contib/loaders/flash/str9x.s for src */
static const uint32_t str9x_flash_write_code[] = {
/* write: */
0xe3c14003, /* bic r4, r1, #3 */
0xe3a03040, /* mov r3, #0x40 */
0xe1c430b0, /* strh r3, [r4, #0] */
0xe0d030b2, /* ldrh r3, [r0], #2 */
0xe0c130b2, /* strh r3, [r1], #2 */
0xe3a03070, /* mov r3, #0x70 */
0xe1c430b0, /* strh r3, [r4, #0] */
/* busy: */
0xe5d43000, /* ldrb r3, [r4, #0] */
0xe3130080, /* tst r3, #0x80 */
0x0afffffc, /* beq busy */
0xe3a05050, /* mov r5, #0x50 */
0xe1c450b0, /* strh r5, [r4, #0] */
0xe3a050ff, /* mov r5, #0xFF */
0xe1c450b0, /* strh r5, [r4, #0] */
0xe3130012, /* tst r3, #0x12 */
0x1a000001, /* bne exit */
0xe2522001, /* subs r2, r2, #1 */
0x1affffed, /* bne write */
/* exit: */
0xe1200070, /* bkpt #0 */
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(str9x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
uint8_t code[sizeof(str9x_flash_write_code)];
target_buffer_set_u32_array(target, code, ARRAY_SIZE(str9x_flash_write_code),
str9x_flash_write_code);
target_write_buffer(target, write_algorithm->address, sizeof(code), code);
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
arm_algo.common_magic = ARM_COMMON_MAGIC;
arm_algo.core_mode = ARM_MODE_SVC;
arm_algo.core_state = ARM_STATE_ARM;
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
init_reg_param(®_params[3], "r3", 32, PARAM_IN);
while (count > 0) {
uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
target_write_buffer(target, source->address, thisrun_count * 2, buffer);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
retval = target_run_algorithm(target, 0, NULL, 4, reg_params,
write_algorithm->address,
0, 10000, &arm_algo);
if (retval != ERROR_OK) {
LOG_ERROR("error executing str9x flash write algorithm");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) != 0x80) {
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
return retval;
}
static int str9x_write(struct flash_bank *bank,
const uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
uint8_t status;
int retval;
uint32_t check_address = offset;
uint32_t bank_adr;
int i;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
for (i = 0; i < bank->num_sectors; i++) {
uint32_t sec_start = bank->sectors[i].offset;
uint32_t sec_end = sec_start + bank->sectors[i].size;
/* check if destination falls within the current sector */
if ((check_address >= sec_start) && (check_address < sec_end)) {
/* check if destination ends in the current sector */
if (offset + count < sec_end)
check_address = offset + count;
else
check_address = sec_end;
}
}
if (check_address != offset + count)
return ERROR_FLASH_DST_OUT_OF_BANK;
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0) {
/* try using a block write */
retval = str9x_write_block(bank, buffer, offset, words_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
} else if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("flash writing failed");
return ERROR_FLASH_OPERATION_FAILED;
}
} else {
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
while (words_remaining > 0) {
bank_adr = address & ~0x03;
/* write data command */
target_write_u16(target, bank_adr, 0x40);
target_write_memory(target, address, 2, 1, buffer + bytes_written);
/* get status command */
target_write_u16(target, bank_adr, 0x70);
int timeout;
for (timeout = 0; timeout < 1000; timeout++) {
target_read_u8(target, bank_adr, &status);
if (status & 0x80)
break;
alive_sleep(1);
}
if (timeout == 1000) {
LOG_ERROR("write timed out");
return ERROR_FAIL;
}
/* clear status reg and read array */
target_write_u16(target, bank_adr, 0x50);
target_write_u16(target, bank_adr, 0xFF);
if (status & 0x10)
return ERROR_FLASH_OPERATION_FAILED;
else if (status & 0x02)
return ERROR_FLASH_OPERATION_FAILED;
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining) {
uint8_t last_halfword[2] = {0xff, 0xff};
/* copy the last remaining bytes into the write buffer */
memcpy(last_halfword, buffer+bytes_written, bytes_remaining);
bank_adr = address & ~0x03;
/* write data command */
target_write_u16(target, bank_adr, 0x40);
target_write_memory(target, address, 2, 1, last_halfword);
/* query status command */
target_write_u16(target, bank_adr, 0x70);
int timeout;
for (timeout = 0; timeout < 1000; timeout++) {
target_read_u8(target, bank_adr, &status);
if (status & 0x80)
break;
alive_sleep(1);
}
if (timeout == 1000) {
LOG_ERROR("write timed out");
return ERROR_FAIL;
}
/* clear status reg and read array */
target_write_u16(target, bank_adr, 0x50);
target_write_u16(target, bank_adr, 0xFF);
if (status & 0x10)
return ERROR_FLASH_OPERATION_FAILED;
else if (status & 0x02)
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int str9x_probe(struct flash_bank *bank)
{
return ERROR_OK;
}
#if 0
COMMAND_HANDLER(str9x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
COMMAND_HANDLER(str9x_handle_flash_config_command)
{
struct target *target = NULL;
if (CMD_ARGC < 5)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t bbsr, nbbsr, bbadr, nbbadr;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], bbsr);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], nbbsr);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], bbadr);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], nbbadr);
target = bank->target;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* config flash controller */
target_write_u32(target, FLASH_BBSR, bbsr);
target_write_u32(target, FLASH_NBBSR, nbbsr);
target_write_u32(target, FLASH_BBADR, bbadr >> 2);
target_write_u32(target, FLASH_NBBADR, nbbadr >> 2);
/* set bit 18 instruction TCM order as per flash programming manual */
arm966e_write_cp15(target, 62, 0x40000);
/* enable flash bank 1 */
target_write_u32(target, FLASH_CR, 0x18);
return ERROR_OK;
}
static const struct command_registration str9x_config_command_handlers[] = {
{
.name = "flash_config",
.handler = str9x_handle_flash_config_command,
.mode = COMMAND_EXEC,
.help = "Configure str9x flash controller, prior to "
"programming the flash.",
.usage = "bank_id BBSR NBBSR BBADR NBBADR",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration str9x_command_handlers[] = {
{
.name = "str9x",
.mode = COMMAND_ANY,
.help = "str9x flash command group",
.usage = "",
.chain = str9x_config_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver str9x_flash = {
.name = "str9x",
.commands = str9x_command_handlers,
.flash_bank_command = str9x_flash_bank_command,
.erase = str9x_erase,
.protect = str9x_protect,
.write = str9x_write,
.read = default_flash_read,
.probe = str9x_probe,
.auto_probe = str9x_probe,
.erase_check = default_flash_blank_check,
.protect_check = str9x_protect_check,
};
|