1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
|
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Clement Burin des Roziers *
* clement.burin-des-roziers@hikob.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
/* stm32lx flash register locations */
#define FLASH_ACR 0x00
#define FLASH_PECR 0x04
#define FLASH_PDKEYR 0x08
#define FLASH_PEKEYR 0x0C
#define FLASH_PRGKEYR 0x10
#define FLASH_OPTKEYR 0x14
#define FLASH_SR 0x18
#define FLASH_OBR 0x1C
#define FLASH_WRPR 0x20
/* FLASH_ACR bites */
#define FLASH_ACR__LATENCY (1<<0)
#define FLASH_ACR__PRFTEN (1<<1)
#define FLASH_ACR__ACC64 (1<<2)
#define FLASH_ACR__SLEEP_PD (1<<3)
#define FLASH_ACR__RUN_PD (1<<4)
/* FLASH_PECR bits */
#define FLASH_PECR__PELOCK (1<<0)
#define FLASH_PECR__PRGLOCK (1<<1)
#define FLASH_PECR__OPTLOCK (1<<2)
#define FLASH_PECR__PROG (1<<3)
#define FLASH_PECR__DATA (1<<4)
#define FLASH_PECR__FTDW (1<<8)
#define FLASH_PECR__ERASE (1<<9)
#define FLASH_PECR__FPRG (1<<10)
#define FLASH_PECR__EOPIE (1<<16)
#define FLASH_PECR__ERRIE (1<<17)
#define FLASH_PECR__OBL_LAUNCH (1<<18)
/* FLASH_SR bits */
#define FLASH_SR__BSY (1<<0)
#define FLASH_SR__EOP (1<<1)
#define FLASH_SR__ENDHV (1<<2)
#define FLASH_SR__READY (1<<3)
#define FLASH_SR__WRPERR (1<<8)
#define FLASH_SR__PGAERR (1<<9)
#define FLASH_SR__SIZERR (1<<10)
#define FLASH_SR__OPTVERR (1<<11)
/* Unlock keys */
#define PEKEY1 0x89ABCDEF
#define PEKEY2 0x02030405
#define PRGKEY1 0x8C9DAEBF
#define PRGKEY2 0x13141516
#define OPTKEY1 0xFBEAD9C8
#define OPTKEY2 0x24252627
/* other registers */
#define DBGMCU_IDCODE 0xE0042000
#define DBGMCU_IDCODE_L0 0x40015800
/* Constants */
#define FLASH_SECTOR_SIZE 4096
#define FLASH_BANK0_ADDRESS 0x08000000
/* option bytes */
#define OPTION_BYTES_ADDRESS 0x1FF80000
#define OPTION_BYTE_0_PR1 0xFFFF0000
#define OPTION_BYTE_0_PR0 0xFF5500AA
static int stm32lx_unlock_program_memory(struct flash_bank *bank);
static int stm32lx_lock_program_memory(struct flash_bank *bank);
static int stm32lx_enable_write_half_page(struct flash_bank *bank);
static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
static int stm32lx_lock(struct flash_bank *bank);
static int stm32lx_unlock(struct flash_bank *bank);
static int stm32lx_mass_erase(struct flash_bank *bank);
static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout);
struct stm32lx_rev {
uint16_t rev;
const char *str;
};
struct stm32lx_part_info {
uint16_t id;
const char *device_str;
const struct stm32lx_rev *revs;
size_t num_revs;
unsigned int page_size;
unsigned int pages_per_sector;
uint16_t max_flash_size_kb;
uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
bool has_dual_banks;
uint32_t flash_base; /* Flash controller registers location */
uint32_t fsize_base; /* Location of FSIZE register */
};
struct stm32lx_flash_bank {
int probed;
uint32_t idcode;
uint32_t user_bank_size;
uint32_t flash_base;
const struct stm32lx_part_info *part_info;
};
static const struct stm32lx_rev stm32_416_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" },
};
static const struct stm32lx_rev stm32_417_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
};
static const struct stm32lx_rev stm32_425_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
};
static const struct stm32lx_rev stm32_427_revs[] = {
{ 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" },
};
static const struct stm32lx_rev stm32_429_revs[] = {
{ 0x1000, "A" }, { 0x1018, "Z" },
};
static const struct stm32lx_rev stm32_436_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
};
static const struct stm32lx_rev stm32_437_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32lx_rev stm32_447_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" },
};
static const struct stm32lx_rev stm32_457_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Z" },
};
static const struct stm32lx_part_info stm32lx_parts[] = {
{
.id = 0x416,
.revs = stm32_416_revs,
.num_revs = ARRAY_SIZE(stm32_416_revs),
.device_str = "STM32L1xx (Cat.1 - Low/Medium Density)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 128,
.has_dual_banks = false,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF8004C,
},
{
.id = 0x417,
.revs = stm32_417_revs,
.num_revs = ARRAY_SIZE(stm32_417_revs),
.device_str = "STM32L0xx (Cat. 3)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 64,
.has_dual_banks = false,
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
{
.id = 0x425,
.revs = stm32_425_revs,
.num_revs = ARRAY_SIZE(stm32_425_revs),
.device_str = "STM32L0xx (Cat. 2)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 32,
.has_dual_banks = false,
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
{
.id = 0x427,
.revs = stm32_427_revs,
.num_revs = ARRAY_SIZE(stm32_427_revs),
.device_str = "STM32L1xx (Cat.3 - Medium+ Density)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 256,
.has_dual_banks = false,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF800CC,
},
{
.id = 0x429,
.revs = stm32_429_revs,
.num_revs = ARRAY_SIZE(stm32_429_revs),
.device_str = "STM32L1xx (Cat.2)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 128,
.has_dual_banks = false,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF8004C,
},
{
.id = 0x436,
.revs = stm32_436_revs,
.num_revs = ARRAY_SIZE(stm32_436_revs),
.device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 384,
.first_bank_size_kb = 192,
.has_dual_banks = true,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF800CC,
},
{
.id = 0x437,
.revs = stm32_437_revs,
.num_revs = ARRAY_SIZE(stm32_437_revs),
.device_str = "STM32L1xx (Cat.5/Cat.6)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 512,
.first_bank_size_kb = 256,
.has_dual_banks = true,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF800CC,
},
{
.id = 0x447,
.revs = stm32_447_revs,
.num_revs = ARRAY_SIZE(stm32_447_revs),
.device_str = "STM32L0xx (Cat.5)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 192,
.first_bank_size_kb = 128,
.has_dual_banks = true,
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
{
.id = 0x457,
.revs = stm32_457_revs,
.num_revs = ARRAY_SIZE(stm32_457_revs),
.device_str = "STM32L0xx (Cat.1)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 16,
.has_dual_banks = false,
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
};
/* flash bank stm32lx <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
{
struct stm32lx_flash_bank *stm32lx_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
/* Create the bank structure */
stm32lx_info = calloc(1, sizeof(*stm32lx_info));
/* Check allocation */
if (stm32lx_info == NULL) {
LOG_ERROR("failed to allocate bank structure");
return ERROR_FAIL;
}
bank->driver_priv = stm32lx_info;
stm32lx_info->probed = 0;
stm32lx_info->user_bank_size = bank->size;
/* the stm32l erased value is 0x00 */
bank->default_padded_value = 0x00;
return ERROR_OK;
}
COMMAND_HANDLER(stm32lx_handle_mass_erase_command)
{
int i;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32lx_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "stm32lx mass erase complete");
} else {
command_print(CMD_CTX, "stm32lx mass erase failed");
}
return retval;
}
COMMAND_HANDLER(stm32lx_handle_lock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32lx_lock(bank);
if (retval == ERROR_OK)
command_print(CMD_CTX, "STM32Lx locked, takes effect after power cycle.");
else
command_print(CMD_CTX, "STM32Lx lock failed");
return retval;
}
COMMAND_HANDLER(stm32lx_handle_unlock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32lx_unlock(bank);
if (retval == ERROR_OK)
command_print(CMD_CTX, "STM32Lx unlocked, takes effect after power cycle.");
else
command_print(CMD_CTX, "STM32Lx unlock failed");
return retval;
}
static int stm32lx_protect_check(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t wrpr;
/*
* Read the WRPR word, and check each bit (corresponding to each
* flash sector
*/
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
&wrpr);
if (retval != ERROR_OK)
return retval;
for (int i = 0; i < bank->num_sectors; i++) {
if (wrpr & (1 << i))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return ERROR_OK;
}
static int stm32lx_erase(struct flash_bank *bank, int first, int last)
{
int retval;
/*
* It could be possible to do a mass erase if all sectors must be
* erased, but it is not implemented yet.
*/
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/*
* Loop over the selected sectors and erase them
*/
for (int i = first; i <= last; i++) {
retval = stm32lx_erase_sector(bank, i);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
return ERROR_OK;
}
static int stm32lx_protect(struct flash_bank *bank, int set, int first,
int last)
{
LOG_WARNING("protection of the STM32L flash is not implemented");
return ERROR_OK;
}
static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t hp_nb = stm32lx_info->part_info->page_size / 2;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[3];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* see contib/loaders/flash/stm32lx.S for src */
static const uint8_t stm32lx_flash_write_code[] = {
/* write_word: */
0x00, 0x23, /* movs r3, #0 */
0x04, 0xe0, /* b test_done */
/* write_word: */
0x51, 0xf8, 0x04, 0xcb, /* ldr ip, [r1], #4 */
0x40, 0xf8, 0x04, 0xcb, /* str ip, [r0], #4 */
0x01, 0x33, /* adds r3, #1 */
/* test_done: */
0x93, 0x42, /* cmp r3, r2 */
0xf8, 0xd3, /* bcc write_word */
0x00, 0xbe, /* bkpt 0 */
};
/* Make sure we're performing a half-page aligned write. */
if (count % hp_nb) {
LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
return ERROR_FAIL;
}
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_DEBUG("no working area for block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Write the flashing code */
retval = target_write_buffer(target,
write_algorithm->address,
sizeof(stm32lx_flash_write_code),
stm32lx_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* Allocate half pages memory */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
if (buffer_size > 1024)
buffer_size -= 1024;
else
buffer_size /= 2;
if (buffer_size <= stm32lx_info->part_info->page_size) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
/* Enable half-page write */
retval = stm32lx_enable_write_half_page(bank);
if (retval != ERROR_OK) {
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
return retval;
}
struct armv7m_common *armv7m = target_to_armv7m(target);
if (armv7m == NULL) {
/* something is very wrong if armv7m is NULL */
LOG_ERROR("unable to get armv7m target");
return retval;
}
/* save any DEMCR flags and configure target to catch any Hard Faults */
uint32_t demcr_save = armv7m->demcr;
armv7m->demcr = VC_HARDERR;
/* Loop while there are bytes to write */
while (count > 0) {
uint32_t this_count;
this_count = (count > buffer_size) ? buffer_size : count;
/* Write the next half pages */
retval = target_write_buffer(target, source->address, this_count, buffer);
if (retval != ERROR_OK)
break;
/* 4: Store useful information in the registers */
/* the destination address of the copy (R0) */
buf_set_u32(reg_params[0].value, 0, 32, address);
/* The source address of the copy (R1) */
buf_set_u32(reg_params[1].value, 0, 32, source->address);
/* The length of the copy (R2) */
buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
/* 5: Execute the bunch of code */
retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
/ sizeof(*reg_params), reg_params,
write_algorithm->address, 0, 10000, &armv7m_info);
if (retval != ERROR_OK)
break;
/* check for Hard Fault */
if (armv7m->exception_number == 3)
break;
/* 6: Wait while busy */
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
break;
buffer += this_count;
address += this_count;
count -= this_count;
}
/* restore previous flags */
armv7m->demcr = demcr_save;
if (armv7m->exception_number == 3) {
/* the stm32l15x devices seem to have an issue when blank.
* if a ram loader is executed on a blank device it will
* Hard Fault, this issue does not happen for a already programmed device.
* A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
* The workaround of handling the Hard Fault exception does work, but makes the
* loader more complicated, as a compromise we manually write the pages, programming time
* is reduced by 50% using this slower method.
*/
LOG_WARNING("couldn't use loader, falling back to page memory writes");
while (count > 0) {
uint32_t this_count;
this_count = (count > hp_nb) ? hp_nb : count;
/* Write the next half pages */
retval = target_write_buffer(target, address, this_count, buffer);
if (retval != ERROR_OK)
break;
/* Wait while busy */
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
break;
buffer += this_count;
address += this_count;
count -= this_count;
}
}
if (retval == ERROR_OK)
retval = stm32lx_lock_program_memory(bank);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
return retval;
}
static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t hp_nb = stm32lx_info->part_info->page_size / 2;
uint32_t halfpages_number;
uint32_t bytes_remaining = 0;
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval, retval2;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
/* first we need to write any unaligned head bytes upto
* the next 128 byte page */
if (offset % hp_nb)
bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
while (bytes_remaining > 0) {
uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
/* copy remaining bytes into the write buffer */
uint32_t bytes_to_write = MIN(4, bytes_remaining);
memcpy(value, buffer + bytes_written, bytes_to_write);
retval = target_write_buffer(target, address, 4, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
bytes_written += bytes_to_write;
bytes_remaining -= bytes_to_write;
address += 4;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
}
offset += bytes_written;
count -= bytes_written;
/* this should always pass this check here */
assert((offset % hp_nb) == 0);
/* calculate half pages */
halfpages_number = count / hp_nb;
if (halfpages_number) {
retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* attempt slow memory writes */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
halfpages_number = 0;
} else {
if (retval != ERROR_OK)
return ERROR_FAIL;
}
}
/* write any remaining bytes */
uint32_t page_bytes_written = hp_nb * halfpages_number;
bytes_written += page_bytes_written;
address += page_bytes_written;
bytes_remaining = count - page_bytes_written;
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
while (bytes_remaining > 0) {
uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
/* copy remaining bytes into the write buffer */
uint32_t bytes_to_write = MIN(4, bytes_remaining);
memcpy(value, buffer + bytes_written, bytes_to_write);
retval = target_write_buffer(target, address, 4, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
bytes_written += bytes_to_write;
bytes_remaining -= bytes_to_write;
address += 4;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
}
reset_pg_and_lock:
retval2 = stm32lx_lock_program_memory(bank);
if (retval == ERROR_OK)
retval = retval2;
return retval;
}
static int stm32lx_read_id_code(struct target *target, uint32_t *id)
{
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, id);
if (retval != ERROR_OK)
return retval;
/* STM32L0 parts will have 0 there, try reading the L0's location for
* DBG_IDCODE in case this is an L0 part. */
if (*id == 0)
retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
return retval;
}
static int stm32lx_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = FLASH_BANK0_ADDRESS;
uint32_t second_bank_base;
stm32lx_info->probed = 0;
stm32lx_info->part_info = NULL;
int retval = stm32lx_read_id_code(bank->target, &device_id);
if (retval != ERROR_OK)
return retval;
stm32lx_info->idcode = device_id;
LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
for (unsigned int n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
if ((device_id & 0xfff) == stm32lx_parts[n].id)
stm32lx_info->part_info = &stm32lx_parts[n];
}
if (!stm32lx_info->part_info) {
LOG_WARNING("Cannot identify target as a STM32L family.");
return ERROR_FAIL;
} else {
LOG_INFO("Device: %s", stm32lx_info->part_info->device_str);
}
stm32lx_info->flash_base = stm32lx_info->part_info->flash_base;
/* Get the flash size from target. */
retval = target_read_u16(target, stm32lx_info->part_info->fsize_base,
&flash_size_in_kb);
/* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
* or 256K, respectively. Please see RM0038 r8 or newer and refer to
* section 30.1.1. */
if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) {
if (flash_size_in_kb == 0)
flash_size_in_kb = 384;
else if (flash_size_in_kb == 1)
flash_size_in_kb = 256;
}
/* Failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
stm32lx_info->part_info->max_flash_size_kb);
flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb;
} else if (flash_size_in_kb > stm32lx_info->part_info->max_flash_size_kb) {
LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
flash_size_in_kb, stm32lx_info->part_info->max_flash_size_kb,
stm32lx_info->part_info->max_flash_size_kb);
flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb;
}
if (stm32lx_info->part_info->has_dual_banks) {
/* Use the configured base address to determine if this is the first or second flash bank.
* Verify that the base address is reasonably correct and determine the flash bank size
*/
second_bank_base = base_address +
stm32lx_info->part_info->first_bank_size_kb * 1024;
if (bank->base == second_bank_base || !bank->base) {
/* This is the second bank */
base_address = second_bank_base;
flash_size_in_kb = flash_size_in_kb -
stm32lx_info->part_info->first_bank_size_kb;
} else if (bank->base == base_address) {
/* This is the first bank */
flash_size_in_kb = stm32lx_info->part_info->first_bank_size_kb;
} else {
LOG_WARNING("STM32L flash bank base address config is incorrect."
" 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
bank->base, base_address, second_bank_base);
return ERROR_FAIL;
}
LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
bank->bank_number, flash_size_in_kb, base_address);
} else {
LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32lx_info->user_bank_size) {
flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
}
/* calculate numbers of sectors (4kB per sector) */
int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->size = flash_size_in_kb * 1024;
bank->base = base_address;
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
for (i = 0; i < num_sectors; i++) {
bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
bank->sectors[i].size = FLASH_SECTOR_SIZE;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32lx_info->probed = 1;
return ERROR_OK;
}
static int stm32lx_auto_probe(struct flash_bank *bank)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
if (stm32lx_info->probed)
return ERROR_OK;
return stm32lx_probe(bank);
}
static int stm32lx_erase_check(struct flash_bank *bank)
{
struct target *target = bank->target;
const int buffer_size = 4096;
int i;
uint32_t nBytes;
int retval = ERROR_OK;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL) {
LOG_ERROR("failed to allocate read buffer");
return ERROR_FAIL;
}
for (i = 0; i < bank->num_sectors; i++) {
uint32_t j;
bank->sectors[i].is_erased = 1;
/* Loop chunk by chunk over the sector */
for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
uint32_t chunk;
chunk = buffer_size;
if (chunk > (j - bank->sectors[i].size))
chunk = (j - bank->sectors[i].size);
retval = target_read_memory(target, bank->base
+ bank->sectors[i].offset + j, 4, chunk / 4, buffer);
if (retval != ERROR_OK)
break;
for (nBytes = 0; nBytes < chunk; nBytes++) {
if (buffer[nBytes] != 0x00) {
bank->sectors[i].is_erased = 0;
break;
}
}
}
if (retval != ERROR_OK)
break;
}
free(buffer);
return retval;
}
/* This method must return a string displaying information about the bank */
static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
if (!stm32lx_info->probed) {
int retval = stm32lx_probe(bank);
if (retval != ERROR_OK) {
snprintf(buf, buf_size,
"Unable to find bank information.");
return retval;
}
}
const struct stm32lx_part_info *info = stm32lx_info->part_info;
if (info) {
const char *rev_str = NULL;
uint16_t rev_id = stm32lx_info->idcode >> 16;
for (unsigned int i = 0; i < info->num_revs; i++)
if (rev_id == info->revs[i].rev)
rev_str = info->revs[i].str;
if (rev_str != NULL) {
snprintf(buf, buf_size,
"%s - Rev: %s",
stm32lx_info->part_info->device_str, rev_str);
} else {
snprintf(buf, buf_size,
"%s - Rev: unknown (0x%04x)",
stm32lx_info->part_info->device_str, rev_id);
}
return ERROR_OK;
} else {
snprintf(buf, buf_size, "Cannot identify target as a STM32Lx");
return ERROR_FAIL;
}
}
static const struct command_registration stm32lx_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = stm32lx_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device. including available EEPROM",
},
{
.name = "lock",
.handler = stm32lx_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Increase the readout protection to Level 1.",
},
{
.name = "unlock",
.handler = stm32lx_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lower the readout protection from Level 1 to 0.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32lx_command_handlers[] = {
{
.name = "stm32lx",
.mode = COMMAND_ANY,
.help = "stm32lx flash command group",
.usage = "",
.chain = stm32lx_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32lx_flash = {
.name = "stm32lx",
.commands = stm32lx_command_handlers,
.flash_bank_command = stm32lx_flash_bank_command,
.erase = stm32lx_erase,
.protect = stm32lx_protect,
.write = stm32lx_write,
.read = default_flash_read,
.probe = stm32lx_probe,
.auto_probe = stm32lx_auto_probe,
.erase_check = stm32lx_erase_check,
.protect_check = stm32lx_protect_check,
.info = stm32lx_get_info,
};
/* Static methods implementation */
static int stm32lx_unlock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/*
* Unlocking the program memory is done by unlocking the PECR,
* then by writing the 2 PRGKEY to the PRGKEYR register
*/
/* check flash is not already unlocked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
return ERROR_OK;
/* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
PEKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
PEKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PELOCK) {
LOG_ERROR("PELOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
PRGKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
PRGKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PRGLOCK) {
LOG_ERROR("PRGLOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32lx_enable_write_half_page(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/**
* Unlock the program memory, then set the FPRG bit in the PECR register.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__FPRG;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PROG;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
return retval;
}
static int stm32lx_lock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/* To lock the program memory, simply set the lock bit and lock PECR */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PRGLOCK;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PELOCK;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/*
* To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
* first unlock the memory, loop over the pages of this sector
* and write 0x0 to its first word.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
for (int page = 0; page < (int)stm32lx_info->part_info->pages_per_sector;
page++) {
reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
retval = target_write_u32(target,
stm32lx_info->flash_base + FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
uint32_t addr = bank->base + bank->sectors[sector].offset + (page
* stm32lx_info->part_info->page_size);
retval = target_write_u32(target, addr, 0x0);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
}
retval = stm32lx_lock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status);
}
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
{
return stm32lx_wait_until_bsy_clear_timeout(bank, 100);
}
static int stm32lx_unlock_options_bytes(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/*
* Unlocking the options bytes is done by unlocking the PECR,
* then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register
*/
/* check flash is not already unlocked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32);
if (retval != ERROR_OK)
return retval;
if ((reg32 & FLASH_PECR__OPTLOCK) == 0)
return ERROR_OK;
if ((reg32 & FLASH_PECR__PELOCK) != 0) {
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2);
if (retval != ERROR_OK)
return retval;
}
/* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32lx_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_SR__BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_SR__WRPERR) {
LOG_ERROR("access denied / write protected");
retval = ERROR_FAIL;
}
if (status & FLASH_SR__PGAERR) {
LOG_ERROR("invalid program address");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & FLASH_SR__OPTVERR) {
/* If this operation fails, we ignore it and report the original retval */
target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR);
}
return retval;
}
static int stm32lx_obl_launch(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
/* This will fail as the target gets immediately rebooted */
target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
FLASH_PECR__OBL_LAUNCH);
size_t tries = 10;
do {
target_halt(target);
retval = target_poll(target);
} while (--tries > 0 &&
(retval != ERROR_OK || target->state != TARGET_HALTED));
return tries ? ERROR_OK : ERROR_FAIL;
}
static int stm32lx_lock(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32lx_unlock_options_bytes(bank);
if (retval != ERROR_OK)
return retval;
/* set the RDP protection level to 1 */
retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_unlock(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32lx_unlock_options_bytes(bank);
if (retval != ERROR_OK)
return retval;
/* set the RDP protection level to 0 */
retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_mass_erase(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = NULL;
uint32_t reg32;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
stm32lx_info = bank->driver_priv;
retval = stm32lx_lock(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_obl_launch(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_unlock(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_obl_launch(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
|