aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nor
diff options
context:
space:
mode:
authorTarek BOCHKATI <tarek.bouchkati@gmail.com>2020-01-05 23:19:41 +0100
committerTomas Vanek <vanekt@fbl.cz>2020-01-16 09:34:42 +0000
commitcc85ebc5acb03a51aafad2e3d913a3c894d93407 (patch)
tree3bba86cc29ae53b148979df900016807d9b51aad /src/flash/nor
parented8fa09cfff93dc29903e33e92d36988a30a9529 (diff)
flash/nor/stm32l4x : add structure containers to hold devices' information
This rework is inspired from the 'flash/nor/stm32h7x.c' This rework will ease the support of new devices on top of this driver: for example: STM32WB have different flash base and size addresses Notes: - stm32l4_probe modified in order to charge the correct part_info from the defined stm32l4_parts according to the device id - stm32l4_flash_bank.bank2_start is replaced by .part_info->bank1_sectors - STM32_FLASH_BASE is removed , part_info->flash_regs_base will be used instead based on that flash register addresses are changed to offsets, >> stm32l4_get_flash_reg was modified accordingly - stm32l4_read_option and stm32l4_write_option was modified to accept an offset instead of an absolute address, luckily this is the commands' argument by default - stm32l4_mass_erase modifications : - use MER2 only on top of dual bank devices - wait for BUSY bit before starting the mass erase Change-Id: Ib35bfc3cbadc76bbeaaaba9005b82077b9e1e744 Signed-off-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com> Reviewed-on: http://openocd.zylin.com/4932 Tested-by: jenkins Reviewed-by: Tomas Vanek <vanekt@fbl.cz> Reviewed-by: Andreas Bolsch <hyphen0break@gmail.com>
Diffstat (limited to 'src/flash/nor')
-rw-r--r--src/flash/nor/stm32l4x.c590
1 files changed, 337 insertions, 253 deletions
diff --git a/src/flash/nor/stm32l4x.c b/src/flash/nor/stm32l4x.c
index f680542c..6aed7731 100644
--- a/src/flash/nor/stm32l4x.c
+++ b/src/flash/nor/stm32l4x.c
@@ -1,7 +1,10 @@
/***************************************************************************
* Copyright (C) 2015 by Uwe Bonnes *
* bon@elektron.ikp.physik.tu-darmstadt.de *
- *
+ * *
+ * Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics *
+ * tarek.bouchkati@gmail.com *
+ * *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
@@ -24,6 +27,7 @@
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
+#include "bits.h"
/* STM32L4xxx series for reference.
*
@@ -60,36 +64,34 @@
#define FLASH_ERASE_TIMEOUT 250
-#define STM32_FLASH_BASE 0x40022000
-#define STM32_FLASH_ACR 0x40022000
-#define STM32_FLASH_KEYR 0x40022008
-#define STM32_FLASH_OPTKEYR 0x4002200c
-#define STM32_FLASH_SR 0x40022010
-#define STM32_FLASH_CR 0x40022014
-#define STM32_FLASH_OPTR 0x40022020
-#define STM32_FLASH_WRP1AR 0x4002202c
-#define STM32_FLASH_WRP1BR 0x40022030
-#define STM32_FLASH_WRP2AR 0x4002204c
-#define STM32_FLASH_WRP2BR 0x40022050
+/* Flash registers offsets */
+#define STM32_FLASH_ACR 0x00
+#define STM32_FLASH_KEYR 0x08
+#define STM32_FLASH_OPTKEYR 0x0c
+#define STM32_FLASH_SR 0x10
+#define STM32_FLASH_CR 0x14
+#define STM32_FLASH_OPTR 0x20
+#define STM32_FLASH_WRP1AR 0x2c
+#define STM32_FLASH_WRP1BR 0x30
+#define STM32_FLASH_WRP2AR 0x4c
+#define STM32_FLASH_WRP2BR 0x50
/* FLASH_CR register bits */
-
-#define FLASH_PG (1 << 0)
-#define FLASH_PER (1 << 1)
-#define FLASH_MER1 (1 << 2)
-#define FLASH_PAGE_SHIFT 3
-#define FLASH_CR_BKER (1 << 11)
-#define FLASH_MER2 (1 << 15)
-#define FLASH_STRT (1 << 16)
-#define FLASH_OPTSTRT (1 << 17)
-#define FLASH_EOPIE (1 << 24)
-#define FLASH_ERRIE (1 << 25)
+#define FLASH_PG (1 << 0)
+#define FLASH_PER (1 << 1)
+#define FLASH_MER1 (1 << 2)
+#define FLASH_PAGE_SHIFT 3
+#define FLASH_CR_BKER (1 << 11)
+#define FLASH_MER2 (1 << 15)
+#define FLASH_STRT (1 << 16)
+#define FLASH_OPTSTRT (1 << 17)
+#define FLASH_EOPIE (1 << 24)
+#define FLASH_ERRIE (1 << 25)
#define FLASH_OBLLAUNCH (1 << 27)
-#define FLASH_OPTLOCK (1 << 30)
-#define FLASH_LOCK (1 << 31)
+#define FLASH_OPTLOCK (1 << 30)
+#define FLASH_LOCK (1 << 31)
/* FLASH_SR register bits */
-
#define FLASH_BSY (1 << 16)
/* Fast programming not used => related errors not used*/
#define FLASH_PGSERR (1 << 7) /* Programming sequence error */
@@ -99,16 +101,9 @@
#define FLASH_PROGERR (1 << 3) /* Programming error */
#define FLASH_OPERR (1 << 1) /* Operation error */
#define FLASH_EOP (1 << 0) /* End of operation */
-
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
-/* STM32_FLASH_OBR bit definitions (reading) */
-
-#define OPT_DBANK_LE_1M (1 << 21) /* dual bank for devices up to 1M flash */
-#define OPT_DBANK_GE_2M (1 << 22) /* dual bank for devices with 2M flash */
-
/* register unlock keys */
-
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
@@ -123,15 +118,107 @@
/* other registers */
#define DBGMCU_IDCODE 0xE0042000
-#define FLASH_SIZE_REG 0x1FFF75E0
+
+
+struct stm32l4_rev {
+ const uint16_t rev;
+ const char *str;
+};
+
+struct stm32l4_part_info {
+ uint16_t id;
+ const char *device_str;
+ const struct stm32l4_rev *revs;
+ const size_t num_revs;
+ const uint16_t max_flash_size_kb;
+ const bool has_dual_bank;
+ const uint32_t flash_regs_base;
+ const uint32_t fsize_addr;
+};
struct stm32l4_flash_bank {
- uint16_t bank2_start;
int probed;
+ uint32_t idcode;
+ int bank1_sectors;
+ bool dual_bank_mode;
+ int hole_sectors;
+ const struct stm32l4_part_info *part_info;
};
-/* flash bank stm32l4x <base> <size> 0 0 <target#>
- */
+static const struct stm32l4_rev stm32_415_revs[] = {
+ { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
+};
+
+static const struct stm32l4_rev stm32_435_revs[] = {
+ { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
+};
+
+static const struct stm32l4_rev stm32_461_revs[] = {
+ { 0x1000, "A" }, { 0x2000, "B" },
+};
+
+static const struct stm32l4_rev stm32_462_revs[] = {
+ { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
+};
+
+static const struct stm32l4_rev stm32_470_revs[] = {
+ { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
+};
+
+static const struct stm32l4_part_info stm32l4_parts[] = {
+ {
+ .id = 0x415,
+ .revs = stm32_415_revs,
+ .num_revs = ARRAY_SIZE(stm32_415_revs),
+ .device_str = "STM32L47/L48xx",
+ .max_flash_size_kb = 1024,
+ .has_dual_bank = true,
+ .flash_regs_base = 0x40022000,
+ .fsize_addr = 0x1FFF75E0,
+ },
+ {
+ .id = 0x435,
+ .revs = stm32_435_revs,
+ .num_revs = ARRAY_SIZE(stm32_435_revs),
+ .device_str = "STM32L43/L44xx",
+ .max_flash_size_kb = 256,
+ .has_dual_bank = false,
+ .flash_regs_base = 0x40022000,
+ .fsize_addr = 0x1FFF75E0,
+ },
+ {
+ .id = 0x461,
+ .revs = stm32_461_revs,
+ .num_revs = ARRAY_SIZE(stm32_461_revs),
+ .device_str = "STM32L49/L4Axx",
+ .max_flash_size_kb = 1024,
+ .has_dual_bank = true,
+ .flash_regs_base = 0x40022000,
+ .fsize_addr = 0x1FFF75E0,
+ },
+ {
+ .id = 0x462,
+ .revs = stm32_462_revs,
+ .num_revs = ARRAY_SIZE(stm32_462_revs),
+ .device_str = "STM32L45/L46xx",
+ .max_flash_size_kb = 512,
+ .has_dual_bank = false,
+ .flash_regs_base = 0x40022000,
+ .fsize_addr = 0x1FFF75E0,
+ },
+ {
+ .id = 0x470,
+ .revs = stm32_470_revs,
+ .num_revs = ARRAY_SIZE(stm32_470_revs),
+ .device_str = "STM32L4R/L4Sxx",
+ .max_flash_size_kb = 2048,
+ .has_dual_bank = true,
+ .flash_regs_base = 0x40022000,
+ .fsize_addr = 0x1FFF75E0,
+ },
+};
+
+/* flash bank stm32l4x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
@@ -149,27 +236,30 @@ FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
return ERROR_OK;
}
-static inline int stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg)
+static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
- return reg;
+ struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
+ return stm32l4_info->part_info->flash_regs_base + reg_offset;
}
-static inline int stm32l4_get_flash_status(struct flash_bank *bank, uint32_t *status)
+static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
- struct target *target = bank->target;
- return target_read_u32(
- target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status);
+ return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
+}
+
+static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
+{
+ return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
- struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
- retval = stm32l4_get_flash_status(bank, &status);
+ retval = stm32l4_read_flash_reg(bank, STM32_FLASH_SR, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
@@ -195,20 +285,20 @@ static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
/* If this operation fails, we ignore it and report the original
* retval
*/
- target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR),
- status & FLASH_ERROR);
+ stm32l4_write_flash_reg(bank, STM32_FLASH_SR, status & FLASH_ERROR);
}
+
return retval;
}
-static int stm32l4_unlock_reg(struct target *target)
+static int stm32l4_unlock_reg(struct flash_bank *bank)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
- int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
+ int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@@ -216,15 +306,15 @@ static int stm32l4_unlock_reg(struct target *target)
return ERROR_OK;
/* unlock flash registers */
- retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
- retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
- retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
+ retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@@ -236,11 +326,11 @@ static int stm32l4_unlock_reg(struct target *target)
return ERROR_OK;
}
-static int stm32l4_unlock_option_reg(struct target *target)
+static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
uint32_t ctrl;
- int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
+ int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@@ -248,15 +338,15 @@ static int stm32l4_unlock_option_reg(struct target *target)
return ERROR_OK;
/* unlock option registers */
- retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
- retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
- retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
+ retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
@@ -268,36 +358,29 @@ static int stm32l4_unlock_option_reg(struct target *target)
return ERROR_OK;
}
-static int stm32l4_read_option(struct flash_bank *bank, uint32_t address, uint32_t* value)
+static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
{
- struct target *target = bank->target;
- return target_read_u32(target, address, value);
-}
-
-static int stm32l4_write_option(struct flash_bank *bank, uint32_t address, uint32_t value, uint32_t mask)
-{
- struct target *target = bank->target;
uint32_t optiondata;
- int retval = target_read_u32(target, address, &optiondata);
+ int retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
if (retval != ERROR_OK)
return retval;
- retval = stm32l4_unlock_reg(target);
+ retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
- retval = stm32l4_unlock_option_reg(target);
+ retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
return retval;
optiondata = (optiondata & ~mask) | (value & mask);
- retval = target_write_u32(target, address, optiondata);
+ retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
if (retval != ERROR_OK)
return retval;
- retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OPTSTRT);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT);
if (retval != ERROR_OK)
return retval;
@@ -311,11 +394,12 @@ static int stm32l4_write_option(struct flash_bank *bank, uint32_t address, uint3
static int stm32l4_protect_check(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
+
uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
- stm32l4_read_option(bank, STM32_FLASH_WRP1AR, &wrp1ar);
- stm32l4_read_option(bank, STM32_FLASH_WRP1BR, &wrp1br);
- stm32l4_read_option(bank, STM32_FLASH_WRP2AR, &wrp2ar);
- stm32l4_read_option(bank, STM32_FLASH_WRP2BR, &wrp2br);
+ stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar);
+ stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br);
+ stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
+ stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);
const uint8_t wrp1a_start = wrp1ar & 0xFF;
const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
@@ -327,7 +411,7 @@ static int stm32l4_protect_check(struct flash_bank *bank)
const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;
for (int i = 0; i < bank->num_sectors; i++) {
- if (i < stm32l4_info->bank2_start) {
+ if (i < stm32l4_info->bank1_sectors) {
if (((i >= wrp1a_start) &&
(i <= wrp1a_end)) ||
((i >= wrp1b_start) &&
@@ -337,7 +421,7 @@ static int stm32l4_protect_check(struct flash_bank *bank)
bank->sectors[i].is_protected = 0;
} else {
uint8_t snb;
- snb = i - stm32l4_info->bank2_start;
+ snb = i - stm32l4_info->bank1_sectors;
if (((snb >= wrp2a_start) &&
(snb <= wrp2a_end)) ||
((snb >= wrp2b_start) &&
@@ -352,8 +436,9 @@ static int stm32l4_protect_check(struct flash_bank *bank)
static int stm32l4_erase(struct flash_bank *bank, int first, int last)
{
- struct target *target = bank->target;
+ struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int i;
+ int retval;
assert(first < bank->num_sectors);
assert(last < bank->num_sectors);
@@ -363,8 +448,7 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
return ERROR_TARGET_NOT_HALTED;
}
- int retval;
- retval = stm32l4_unlock_reg(target);
+ retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
@@ -378,20 +462,18 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
3. Set the STRT bit in the FLASH_CR register
4. Wait for the BSY bit to be cleared
*/
- struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
for (i = first; i <= last; i++) {
uint32_t erase_flags;
erase_flags = FLASH_PER | FLASH_STRT;
- if (i >= stm32l4_info->bank2_start) {
+ if (i >= stm32l4_info->bank1_sectors) {
uint8_t snb;
- snb = i - stm32l4_info->bank2_start;
+ snb = i - stm32l4_info->bank1_sectors;
erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
} else
erase_flags |= i << FLASH_PAGE_SHIFT;
- retval = target_write_u32(target,
- stm32l4_get_flash_reg(bank, STM32_FLASH_CR), erase_flags);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags);
if (retval != ERROR_OK)
return retval;
@@ -402,8 +484,7 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
bank->sectors[i].is_erased = 1;
}
- retval = target_write_u32(
- target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
@@ -423,9 +504,9 @@ static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last
int ret = ERROR_OK;
/* Bank 2 */
uint32_t reg_value = 0xFF; /* Default to bank un-protected */
- if (last >= stm32l4_info->bank2_start) {
+ if (last >= stm32l4_info->bank1_sectors) {
if (set == 1) {
- uint8_t begin = first > stm32l4_info->bank2_start ? first : 0x00;
+ uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
reg_value = ((last & 0xFF) << 16) | begin;
}
@@ -433,9 +514,9 @@ static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last
}
/* Bank 1 */
reg_value = 0xFF; /* Default to bank un-protected */
- if (first < stm32l4_info->bank2_start) {
+ if (first < stm32l4_info->bank1_sectors) {
if (set == 1) {
- uint8_t end = last >= stm32l4_info->bank2_start ? 0xFF : last;
+ uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
reg_value = (end << 16) | (first & 0xFF);
}
@@ -450,6 +531,7 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
+ struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
@@ -503,7 +585,7 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count / 4);
- buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
+ buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base);
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
@@ -523,7 +605,7 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
if (error != 0) {
LOG_ERROR("flash write failed = %08" PRIx32, error);
/* Clear but report errors */
- target_write_u32(target, STM32_FLASH_SR, error);
+ stm32l4_write_flash_reg(bank, STM32_FLASH_SR, error);
retval = ERROR_FAIL;
}
}
@@ -543,7 +625,6 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
- struct target *target = bank->target;
int retval;
if (bank->target->state != TARGET_HALTED) {
@@ -570,7 +651,7 @@ static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
*/
}
- retval = stm32l4_unlock_reg(target);
+ retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
@@ -579,60 +660,69 @@ static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
if (retval != ERROR_OK) {
LOG_WARNING("block write failed");
return retval;
- }
+ }
LOG_WARNING("block write succeeded");
- return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
+ return stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
+}
+
+static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
+{
+ int retval = target_read_u32(bank->target, DBGMCU_IDCODE, id);
+ if (retval != ERROR_OK)
+ return retval;
+
+ return retval;
}
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
+ const struct stm32l4_part_info *part_info;
int i;
uint16_t flash_size_in_kb = 0xffff;
- uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t options;
- uint32_t base_address = 0x08000000;
stm32l4_info->probed = 0;
/* read stm32 device id register */
- int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
+ int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
if (retval != ERROR_OK)
return retval;
- LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
- /* set max flash size depending on family */
- switch (device_id & 0xfff) {
- case 0x470:
- max_flash_size_in_kb = 2048;
- break;
- case 0x461:
- case 0x415:
- max_flash_size_in_kb = 1024;
- break;
- case 0x462:
- max_flash_size_in_kb = 512;
- break;
- case 0x435:
- max_flash_size_in_kb = 256;
- break;
- default:
+ device_id = stm32l4_info->idcode & 0xFFF;
+
+ for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
+ if (device_id == stm32l4_parts[n].id)
+ stm32l4_info->part_info = &stm32l4_parts[n];
+ }
+
+ if (!stm32l4_info->part_info) {
LOG_WARNING("Cannot identify target as an STM32L4 family device.");
return ERROR_FAIL;
}
+ part_info = stm32l4_info->part_info;
+
+ char device_info[1024];
+ retval = bank->driver->info(bank, device_info, sizeof(device_info));
+ if (retval != ERROR_OK)
+ return retval;
+
+ LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);
+
/* get flash size from target. */
- retval = target_read_u16(target, FLASH_SIZE_REG, &flash_size_in_kb);
+ retval = target_read_u16(target, part_info->fsize_addr, &flash_size_in_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
- if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
+ if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0
+ || flash_size_in_kb > part_info->max_flash_size_kb) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
- max_flash_size_in_kb);
- flash_size_in_kb = max_flash_size_in_kb;
+ part_info->max_flash_size_kb);
+ flash_size_in_kb = part_info->max_flash_size_kb;
}
LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
@@ -640,91 +730,106 @@ static int stm32l4_probe(struct flash_bank *bank)
/* did we assign a flash size? */
assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
- /* get options for DUAL BANK. */
- retval = target_read_u32(target, STM32_FLASH_OPTR, &options);
-
+ /* read flash option register */
+ retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options);
if (retval != ERROR_OK)
return retval;
+ stm32l4_info->bank1_sectors = 0;
+ stm32l4_info->hole_sectors = 0;
+
int num_pages = 0;
int page_size = 0;
- switch (device_id & 0xfff) {
- case 0x470:
- /* L4R/S have 1M or 2M FLASH and dual/single bank mode.
- * Page size is 4K or 8K.*/
- if (flash_size_in_kb == 2048) {
- stm32l4_info->bank2_start = 256;
- if (options & OPT_DBANK_GE_2M) {
- page_size = 4096;
- num_pages = 512;
- } else {
- page_size = 8192;
- num_pages = 256;
- }
- break;
- }
- if (flash_size_in_kb == 1024) {
- stm32l4_info->bank2_start = 128;
- if (options & OPT_DBANK_LE_1M) {
- page_size = 4096;
- num_pages = 256;
- } else {
- page_size = 8192;
- num_pages = 128;
- }
- break;
- }
- /* Invalid FLASH size for this device. */
- LOG_WARNING("Invalid flash size for STM32L4+ family device.");
- return ERROR_FAIL;
- case 0x461:
- case 0x415:
- /* These are dual-bank devices, we need to check the OPT_DBANK_LE_1M bit here */
- page_size = 2048;
- num_pages = flash_size_in_kb / 2;
- /* check that calculation result makes sense */
- assert(num_pages > 0);
- if ((flash_size_in_kb == 1024) || !(options & OPT_DBANK_LE_1M))
- stm32l4_info->bank2_start = 256;
- else
- stm32l4_info->bank2_start = num_pages / 2;
- break;
- case 0x462:
- case 0x435:
- default:
- /* These are single-bank devices */
- page_size = 2048;
- num_pages = flash_size_in_kb / 2;
- /* check that calculation result makes sense */
- assert(num_pages > 0);
- stm32l4_info->bank2_start = UINT16_MAX;
- break;
+ stm32l4_info->dual_bank_mode = false;
+
+ switch (device_id) {
+ case 0x415:
+ case 0x461:
+ /* if flash size is max (1M) the device is always dual bank
+ * 0x415: has variants with 512K
+ * 0x461: has variants with 512 and 256
+ * for these variants:
+ * if DUAL_BANK = 0 -> single bank
+ * else -> dual bank without gap
+ * note: the page size is invariant
+ */
+ page_size = 2048;
+ num_pages = flash_size_in_kb / 2;
+ stm32l4_info->bank1_sectors = num_pages;
+
+ /* check DUAL_BANK bit[21] if the flash is less than 1M */
+ if (flash_size_in_kb == 1024 || (options & BIT(21))) {
+ stm32l4_info->dual_bank_mode = true;
+ stm32l4_info->bank1_sectors = num_pages / 2;
+ }
+ break;
+ case 0x435:
+ case 0x462:
+ /* single bank flash */
+ page_size = 2048;
+ num_pages = flash_size_in_kb / 2;
+ stm32l4_info->bank1_sectors = num_pages;
+ break;
+ case 0x470:
+ /* STM32L4R/S can be single/dual bank:
+ * if size = 2M check DBANK bit(22)
+ * if size = 1M check DB1M bit(21)
+ * in single bank configuration the page size is 8K
+ * else (dual bank) the page size is 4K without gap between banks
+ */
+ page_size = 8192;
+ num_pages = flash_size_in_kb / 8;
+ stm32l4_info->bank1_sectors = num_pages;
+ if ((flash_size_in_kb == 2048 && (options & BIT(22))) ||
+ (flash_size_in_kb == 1024 && (options & BIT(21)))) {
+ stm32l4_info->dual_bank_mode = true;
+ page_size = 4096;
+ num_pages = flash_size_in_kb / 4;
+ stm32l4_info->bank1_sectors = num_pages / 2;
+ }
+ break;
+ default:
+ LOG_ERROR("unsupported device");
+ return ERROR_FAIL;
+ }
+
+ LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
+
+ const int gap_size = stm32l4_info->hole_sectors * page_size;
+
+ if (stm32l4_info->dual_bank_mode & gap_size) {
+ LOG_INFO("gap detected starting from %0x08" PRIx32 " to %0x08" PRIx32,
+ 0x8000000 + stm32l4_info->bank1_sectors * page_size,
+ 0x8000000 + stm32l4_info->bank1_sectors * page_size + gap_size);
}
- /* Release sector table if allocated. */
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
- /* Set bank configuration and construct sector table. */
- bank->base = base_address;
- bank->size = num_pages * page_size;
+ bank->size = flash_size_in_kb * 1024 + gap_size;
+ bank->base = 0x08000000;
bank->num_sectors = num_pages;
- bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
- if (!bank->sectors)
- return ERROR_FAIL; /* Checkme: What better error to use?*/
+ bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
+ if (bank->sectors == NULL) {
+ LOG_ERROR("failed to allocate bank sectors");
+ return ERROR_FAIL;
+ }
- for (i = 0; i < num_pages; i++) {
+ for (i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = i * page_size;
+ /* in dual bank configuration, if there is a gap between banks
+ * we fix up the sector offset to consider this gap */
+ if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
+ bank->sectors[i].offset += gap_size;
bank->sectors[i].size = page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32l4_info->probed = 1;
-
return ERROR_OK;
}
@@ -733,87 +838,70 @@ static int stm32l4_auto_probe(struct flash_bank *bank)
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_info->probed)
return ERROR_OK;
+
return stm32l4_probe(bank);
}
static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
{
- struct target *target = bank->target;
- uint32_t dbgmcu_idcode;
-
- /* read stm32 device id register */
- int retval = target_read_u32(target, DBGMCU_IDCODE, &dbgmcu_idcode);
- if (retval != ERROR_OK)
- return retval;
-
- uint16_t device_id = dbgmcu_idcode & 0xfff;
- uint8_t rev_id = dbgmcu_idcode >> 28;
- uint8_t rev_minor = 0;
- int i;
-
- for (i = 16; i < 28; i++) {
- if (dbgmcu_idcode & (1 << i))
- rev_minor++;
- else
- break;
- }
-
- const char *device_str;
-
- switch (device_id) {
- case 0x470:
- device_str = "STM32L4R/4Sxx";
- break;
-
- case 0x461:
- device_str = "STM32L496/4A6";
- break;
-
- case 0x415:
- device_str = "STM32L475/476/486";
- break;
-
- case 0x462:
- device_str = "STM32L45x/46x";
- break;
-
- case 0x435:
- device_str = "STM32L43x/44x";
- break;
+ struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
+ const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
+
+ if (part_info) {
+ const char *rev_str = NULL;
+ uint16_t rev_id = stm32l4_info->idcode >> 16;
+ for (unsigned int i = 0; i < part_info->num_revs; i++) {
+ if (rev_id == part_info->revs[i].rev) {
+ rev_str = part_info->revs[i].str;
+
+ if (rev_str != NULL) {
+ snprintf(buf, buf_size, "%s - Rev: %s",
+ part_info->device_str, rev_str);
+ return ERROR_OK;
+ }
+ }
+ }
- default:
- snprintf(buf, buf_size, "Cannot identify target as a STM32L4\n");
+ snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)",
+ part_info->device_str, rev_id);
+ return ERROR_OK;
+ } else {
+ snprintf(buf, buf_size, "Cannot identify target as a STM32L4x device");
return ERROR_FAIL;
}
- snprintf(buf, buf_size, "%s - Rev: %1d.%02d",
- device_str, rev_id, rev_minor);
-
return ERROR_OK;
}
-static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
+static int stm32l4_mass_erase(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
+ struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
+
+ uint32_t action = FLASH_MER1;
+
+ if (stm32l4_info->part_info->has_dual_bank)
+ action |= FLASH_MER2;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
- retval = stm32l4_unlock_reg(target);
+ retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
- retval = target_write_u32(
- target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action);
+ retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
if (retval != ERROR_OK)
return retval;
- retval = target_write_u32(
- target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR),
- action | FLASH_STRT);
+
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action);
+ if (retval != ERROR_OK)
+ return retval;
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
@@ -821,8 +909,7 @@ static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
if (retval != ERROR_OK)
return retval;
- retval = target_write_u32(
- target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
@@ -832,7 +919,6 @@ static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
int i;
- uint32_t action;
if (CMD_ARGC < 1) {
command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
@@ -844,8 +930,7 @@ COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
if (ERROR_OK != retval)
return retval;
- action = FLASH_MER1 | FLASH_MER2;
- retval = stm32l4_mass_erase(bank, action);
+ retval = stm32l4_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
@@ -871,12 +956,13 @@ COMMAND_HANDLER(stm32l4_handle_option_read_command)
if (ERROR_OK != retval)
return retval;
- uint32_t reg_addr = STM32_FLASH_BASE;
+ uint32_t reg_offset, reg_addr;
uint32_t value = 0;
- reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
+ reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
+ reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
- retval = stm32l4_read_option(bank, reg_addr, &value);
+ retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
if (ERROR_OK != retval)
return retval;
@@ -897,11 +983,11 @@ COMMAND_HANDLER(stm32l4_handle_option_write_command)
if (ERROR_OK != retval)
return retval;
- uint32_t reg_addr = STM32_FLASH_BASE;
+ uint32_t reg_offset;
uint32_t value = 0;
uint32_t mask = 0xFFFFFFFF;
- reg_addr += strtoul(CMD_ARGV[1], NULL, 16);
+ reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
value = strtoul(CMD_ARGV[2], NULL, 16);
if (CMD_ARGC > 3)
mask = strtoul(CMD_ARGV[3], NULL, 16);
@@ -910,7 +996,7 @@ COMMAND_HANDLER(stm32l4_handle_option_write_command)
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
- retval = stm32l4_write_option(bank, reg_addr, value, mask);
+ retval = stm32l4_write_option(bank, reg_offset, value, mask);
return retval;
}
@@ -924,18 +1010,16 @@ COMMAND_HANDLER(stm32l4_handle_option_load_command)
if (ERROR_OK != retval)
return retval;
- struct target *target = bank->target;
-
- retval = stm32l4_unlock_reg(target);
+ retval = stm32l4_unlock_reg(bank);
if (ERROR_OK != retval)
return retval;
- retval = stm32l4_unlock_option_reg(target);
+ retval = stm32l4_unlock_option_reg(bank);
if (ERROR_OK != retval)
return retval;
/* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */
- retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBLLAUNCH);
+ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBLLAUNCH);
command_print(CMD, "stm32l4x option load (POR) completed.");
return retval;