aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore/PassManager.cpp
blob: 31849a0ac0b751e37894182ee4161e82f3b5f60e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM Pass Manager infrastructure. 
//
//===----------------------------------------------------------------------===//


#include "llvm/PassManager.h"
#include "llvm/Function.h"
#include "llvm/Module.h"

using namespace llvm;

/// BasicBlockPassManager implementation

/// Add pass P into PassVector and return TRUE. If this pass is not
/// manageable by this manager then return FALSE.
bool
BasicBlockPassManager_New::addPass (Pass *P) {

  BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
  if (!BP)
    return false;

  // TODO: Check if it suitable to manage P using this BasicBlockPassManager
  // or we need another instance of BasicBlockPassManager

  // Add pass
  PassVector.push_back(BP);
  return true;
}

/// Execute all of the passes scheduled for execution by invoking 
/// runOnBasicBlock method.  Keep track of whether any of the passes modifies 
/// the function, and if so, return true.
bool
BasicBlockPassManager_New::runOnFunction(Function &F) {

  bool Changed = false;
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    for (std::vector<Pass *>::iterator itr = PassVector.begin(),
           e = PassVector.end(); itr != e; ++itr) {
      Pass *P = *itr;
      BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P);
      Changed |= BP->runOnBasicBlock(*I);
    }
  return Changed;
}

// FunctionPassManager_New implementation

///////////////////////////////////////////////////////////////////////////////
// FunctionPassManager

/// Add pass P into the pass manager queue. If P is a BasicBlockPass then
/// either use it into active basic block pass manager or create new basic
/// block pass manager to handle pass P.
bool
FunctionPassManager_New::addPass (Pass *P) {

  // If P is a BasicBlockPass then use BasicBlockPassManager_New.
  if (BasicBlockPass *BP = dynamic_cast<BasicBlockPass*>(P)) {

    if (!activeBBPassManager
        || !activeBBPassManager->addPass(BP)) {

      activeBBPassManager = new BasicBlockPassManager_New();

      PassVector.push_back(activeBBPassManager);
      assert (!activeBBPassManager->addPass(BP) &&
              "Unable to add Pass");
    }
    return true;
  }

  FunctionPass *FP = dynamic_cast<FunctionPass *>(P);
  if (!FP)
    return false;

  // TODO: Check if it suitable to manage P using this FunctionPassManager
  // or we need another instance of FunctionPassManager

  PassVector.push_back(FP);
  activeBBPassManager = NULL;
  return true;
}

/// Execute all of the passes scheduled for execution by invoking 
/// runOnFunction method.  Keep track of whether any of the passes modifies 
/// the function, and if so, return true.
bool
FunctionPassManager_New::runOnModule(Module &M) {

  bool Changed = false;
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    for (std::vector<Pass *>::iterator itr = PassVector.begin(),
           e = PassVector.end(); itr != e; ++itr) {
      Pass *P = *itr;
      FunctionPass *FP = dynamic_cast<FunctionPass*>(P);
      Changed |= FP->runOnFunction(*I);
    }
  return Changed;
}


// ModulePassManager implementation

/// Add P into pass vector if it is manageble. If P is a FunctionPass
/// then use FunctionPassManager_New to manage it. Return FALSE if P
/// is not manageable by this manager.
bool
ModulePassManager_New::addPass (Pass *P) {

  // If P is FunctionPass then use function pass maanager.
  if (FunctionPass *FP = dynamic_cast<FunctionPass*>(P)) {

    activeFunctionPassManager = NULL;

    if (!activeFunctionPassManager
        || !activeFunctionPassManager->addPass(P)) {

      activeFunctionPassManager = new FunctionPassManager_New();

      PassVector.push_back(activeFunctionPassManager);
      assert (!activeFunctionPassManager->addPass(FP) &&
              "Unable to add Pass");
    }
    return true;
  }

  ModulePass *MP = dynamic_cast<ModulePass *>(P);
  if (!MP)
    return false;

  // TODO: Check if it suitable to manage P using this ModulePassManager
  // or we need another instance of ModulePassManager

  PassVector.push_back(MP);
  activeFunctionPassManager = NULL;
  return true;
}


/// Execute all of the passes scheduled for execution by invoking 
/// runOnModule method.  Keep track of whether any of the passes modifies 
/// the module, and if so, return true.
bool
ModulePassManager_New::runOnModule(Module &M) {
  bool Changed = false;
  for (std::vector<Pass *>::iterator itr = PassVector.begin(),
         e = PassVector.end(); itr != e; ++itr) {
    Pass *P = *itr;
    ModulePass *MP = dynamic_cast<ModulePass*>(P);
    Changed |= MP->runOnModule(M);
  }
  return Changed;
}