aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore/AsmWriter.cpp
blob: d732176841bbbb79cdb07fa8c0151ab353d8de15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//

#include "llvm/Assembly/Writer.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/AsmAnnotationWriter.h"
#include "llvm/LLVMContext.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/Module.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/FormattedStream.h"
#include <algorithm>
#include <cctype>
#include <map>
using namespace llvm;

// Make virtual table appear in this compilation unit.
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}

//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

static const Module *getModuleFromVal(const Value *V) {
  if (const Argument *MA = dyn_cast<Argument>(V))
    return MA->getParent() ? MA->getParent()->getParent() : 0;

  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    return BB->getParent() ? BB->getParent()->getParent() : 0;

  if (const Instruction *I = dyn_cast<Instruction>(V)) {
    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
    return M ? M->getParent() : 0;
  }
  
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
    return GV->getParent();
  if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
    return NMD->getParent();
  return 0;
}

// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const StringRef &Name,
                               raw_ostream &Out) {
  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
    unsigned char C = Name[i];
    if (isprint(C) && C != '\\' && C != '"')
      Out << C;
    else
      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
  }
}

enum PrefixType {
  GlobalPrefix,
  LabelPrefix,
  LocalPrefix,
  NoPrefix
};

/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it).  Print it out.
static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
                          PrefixType Prefix) {
  assert(Name.data() && "Cannot get empty name!");
  switch (Prefix) {
  default: llvm_unreachable("Bad prefix!");
  case NoPrefix: break;
  case GlobalPrefix: OS << '@'; break;
  case LabelPrefix:  break;
  case LocalPrefix:  OS << '%'; break;
  }

  // Scan the name to see if it needs quotes first.
  bool NeedsQuotes = isdigit(Name[0]);
  if (!NeedsQuotes) {
    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
      char C = Name[i];
      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
        NeedsQuotes = true;
        break;
      }
    }
  }

  // If we didn't need any quotes, just write out the name in one blast.
  if (!NeedsQuotes) {
    OS << Name;
    return;
  }

  // Okay, we need quotes.  Output the quotes and escape any scary characters as
  // needed.
  OS << '"';
  PrintEscapedString(Name, OS);
  OS << '"';
}

/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it).  Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
  PrintLLVMName(OS, V->getName(),
                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}

//===----------------------------------------------------------------------===//
// TypePrinting Class: Type printing machinery
//===----------------------------------------------------------------------===//

static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
  return *static_cast<DenseMap<const Type *, std::string>*>(M);
}

void TypePrinting::clear() {
  getTypeNamesMap(TypeNames).clear();
}

bool TypePrinting::hasTypeName(const Type *Ty) const {
  return getTypeNamesMap(TypeNames).count(Ty);
}

void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
}


TypePrinting::TypePrinting() {
  TypeNames = new DenseMap<const Type *, std::string>();
}

TypePrinting::~TypePrinting() {
  delete &getTypeNamesMap(TypeNames);
}

/// CalcTypeName - Write the specified type to the specified raw_ostream, making
/// use of type names or up references to shorten the type name where possible.
void TypePrinting::CalcTypeName(const Type *Ty,
                                SmallVectorImpl<const Type *> &TypeStack,
                                raw_ostream &OS, bool IgnoreTopLevelName) {
  // Check to see if the type is named.
  if (!IgnoreTopLevelName) {
    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
    if (I != TM.end()) {
      OS << I->second;
      return;
    }
  }

  // Check to see if the Type is already on the stack...
  unsigned Slot = 0, CurSize = TypeStack.size();
  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type

  // This is another base case for the recursion.  In this case, we know
  // that we have looped back to a type that we have previously visited.
  // Generate the appropriate upreference to handle this.
  if (Slot < CurSize) {
    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
    return;
  }

  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..

  switch (Ty->getTypeID()) {
  case Type::VoidTyID:      OS << "void"; break;
  case Type::FloatTyID:     OS << "float"; break;
  case Type::DoubleTyID:    OS << "double"; break;
  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
  case Type::FP128TyID:     OS << "fp128"; break;
  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
  case Type::LabelTyID:     OS << "label"; break;
  case Type::MetadataTyID:  OS << "metadata"; break;
  case Type::IntegerTyID:
    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
    break;

  case Type::FunctionTyID: {
    const FunctionType *FTy = cast<FunctionType>(Ty);
    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
    OS << " (";
    for (FunctionType::param_iterator I = FTy->param_begin(),
         E = FTy->param_end(); I != E; ++I) {
      if (I != FTy->param_begin())
        OS << ", ";
      CalcTypeName(*I, TypeStack, OS);
    }
    if (FTy->isVarArg()) {
      if (FTy->getNumParams()) OS << ", ";
      OS << "...";
    }
    OS << ')';
    break;
  }
  case Type::StructTyID: {
    const StructType *STy = cast<StructType>(Ty);
    if (STy->isPacked())
      OS << '<';
    OS << '{';
    for (StructType::element_iterator I = STy->element_begin(),
         E = STy->element_end(); I != E; ++I) {
      OS << ' ';
      CalcTypeName(*I, TypeStack, OS);
      if (next(I) == STy->element_end())
        OS << ' ';
      else
        OS << ',';
    }
    OS << '}';
    if (STy->isPacked())
      OS << '>';
    break;
  }
  case Type::UnionTyID: {
    const UnionType *UTy = cast<UnionType>(Ty);
    OS << "union {";
    for (StructType::element_iterator I = UTy->element_begin(),
         E = UTy->element_end(); I != E; ++I) {
      OS << ' ';
      CalcTypeName(*I, TypeStack, OS);
      if (next(I) == UTy->element_end())
        OS << ' ';
      else
        OS << ',';
    }
    OS << '}';
    break;
  }
  case Type::PointerTyID: {
    const PointerType *PTy = cast<PointerType>(Ty);
    CalcTypeName(PTy->getElementType(), TypeStack, OS);
    if (unsigned AddressSpace = PTy->getAddressSpace())
      OS << " addrspace(" << AddressSpace << ')';
    OS << '*';
    break;
  }
  case Type::ArrayTyID: {
    const ArrayType *ATy = cast<ArrayType>(Ty);
    OS << '[' << ATy->getNumElements() << " x ";
    CalcTypeName(ATy->getElementType(), TypeStack, OS);
    OS << ']';
    break;
  }
  case Type::VectorTyID: {
    const VectorType *PTy = cast<VectorType>(Ty);
    OS << "<" << PTy->getNumElements() << " x ";
    CalcTypeName(PTy->getElementType(), TypeStack, OS);
    OS << '>';
    break;
  }
  case Type::OpaqueTyID:
    OS << "opaque";
    break;
  default:
    OS << "<unrecognized-type>";
    break;
  }

  TypeStack.pop_back();       // Remove self from stack.
}

/// printTypeInt - The internal guts of printing out a type that has a
/// potentially named portion.
///
void TypePrinting::print(const Type *Ty, raw_ostream &OS,
                         bool IgnoreTopLevelName) {
  // Check to see if the type is named.
  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
  if (!IgnoreTopLevelName) {
    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
    if (I != TM.end()) {
      OS << I->second;
      return;
    }
  }

  // Otherwise we have a type that has not been named but is a derived type.
  // Carefully recurse the type hierarchy to print out any contained symbolic
  // names.
  SmallVector<const Type *, 16> TypeStack;
  std::string TypeName;

  raw_string_ostream TypeOS(TypeName);
  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
  OS << TypeOS.str();

  // Cache type name for later use.
  if (!IgnoreTopLevelName)
    TM.insert(std::make_pair(Ty, TypeOS.str()));
}

namespace {
  class TypeFinder {
    // To avoid walking constant expressions multiple times and other IR
    // objects, we keep several helper maps.
    DenseSet<const Value*> VisitedConstants;
    DenseSet<const Type*> VisitedTypes;

    TypePrinting &TP;
    std::vector<const Type*> &NumberedTypes;
  public:
    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
      : TP(tp), NumberedTypes(numberedTypes) {}

    void Run(const Module &M) {
      // Get types from the type symbol table.  This gets opaque types referened
      // only through derived named types.
      const TypeSymbolTable &ST = M.getTypeSymbolTable();
      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
           TI != E; ++TI)
        IncorporateType(TI->second);

      // Get types from global variables.
      for (Module::const_global_iterator I = M.global_begin(),
           E = M.global_end(); I != E; ++I) {
        IncorporateType(I->getType());
        if (I->hasInitializer())
          IncorporateValue(I->getInitializer());
      }

      // Get types from aliases.
      for (Module::const_alias_iterator I = M.alias_begin(),
           E = M.alias_end(); I != E; ++I) {
        IncorporateType(I->getType());
        IncorporateValue(I->getAliasee());
      }

      // Get types from functions.
      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
        IncorporateType(FI->getType());

        for (Function::const_iterator BB = FI->begin(), E = FI->end();
             BB != E;++BB)
          for (BasicBlock::const_iterator II = BB->begin(),
               E = BB->end(); II != E; ++II) {
            const Instruction &I = *II;
            // Incorporate the type of the instruction and all its operands.
            IncorporateType(I.getType());
            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
                 OI != OE; ++OI)
              IncorporateValue(*OI);
          }
      }
    }

  private:
    void IncorporateType(const Type *Ty) {
      // Check to see if we're already visited this type.
      if (!VisitedTypes.insert(Ty).second)
        return;

      // If this is a structure or opaque type, add a name for the type.
      if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements())
            || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) {
        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
        NumberedTypes.push_back(Ty);
      }

      // Recursively walk all contained types.
      for (Type::subtype_iterator I = Ty->subtype_begin(),
           E = Ty->subtype_end(); I != E; ++I)
        IncorporateType(*I);
    }

    /// IncorporateValue - This method is used to walk operand lists finding
    /// types hiding in constant expressions and other operands that won't be
    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
    /// inst operands are all explicitly enumerated.
    void IncorporateValue(const Value *V) {
      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;

      // Already visited?
      if (!VisitedConstants.insert(V).second)
        return;

      // Check this type.
      IncorporateType(V->getType());

      // Look in operands for types.
      const Constant *C = cast<Constant>(V);
      for (Constant::const_op_iterator I = C->op_begin(),
           E = C->op_end(); I != E;++I)
        IncorporateValue(*I);
    }
  };
} // end anonymous namespace


/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
/// the specified module to the TypePrinter and all numbered types to it and the
/// NumberedTypes table.
static void AddModuleTypesToPrinter(TypePrinting &TP,
                                    std::vector<const Type*> &NumberedTypes,
                                    const Module *M) {
  if (M == 0) return;

  // If the module has a symbol table, take all global types and stuff their
  // names into the TypeNames map.
  const TypeSymbolTable &ST = M->getTypeSymbolTable();
  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
       TI != E; ++TI) {
    const Type *Ty = cast<Type>(TI->second);

    // As a heuristic, don't insert pointer to primitive types, because
    // they are used too often to have a single useful name.
    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
      const Type *PETy = PTy->getElementType();
      if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) &&
          !PETy->isOpaqueTy())
        continue;
    }

    // Likewise don't insert primitives either.
    if (Ty->isIntegerTy() || Ty->isPrimitiveType())
      continue;

    // Get the name as a string and insert it into TypeNames.
    std::string NameStr;
    raw_string_ostream NameROS(NameStr);
    formatted_raw_ostream NameOS(NameROS);
    PrintLLVMName(NameOS, TI->first, LocalPrefix);
    NameOS.flush();
    TP.addTypeName(Ty, NameStr);
  }

  // Walk the entire module to find references to unnamed structure and opaque
  // types.  This is required for correctness by opaque types (because multiple
  // uses of an unnamed opaque type needs to be referred to by the same ID) and
  // it shrinks complex recursive structure types substantially in some cases.
  TypeFinder(TP, NumberedTypes).Run(*M);
}


/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
/// type, iff there is an entry in the modules symbol table for the specified
/// type or one of it's component types.
///
void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
  TypePrinting Printer;
  std::vector<const Type*> NumberedTypes;
  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
  Printer.print(Ty, OS);
}

//===----------------------------------------------------------------------===//
// SlotTracker Class: Enumerate slot numbers for unnamed values
//===----------------------------------------------------------------------===//

namespace {

/// This class provides computation of slot numbers for LLVM Assembly writing.
///
class SlotTracker {
public:
  /// ValueMap - A mapping of Values to slot numbers.
  typedef DenseMap<const Value*, unsigned> ValueMap;

private:
  /// TheModule - The module for which we are holding slot numbers.
  const Module* TheModule;

  /// TheFunction - The function for which we are holding slot numbers.
  const Function* TheFunction;
  bool FunctionProcessed;

  /// mMap - The TypePlanes map for the module level data.
  ValueMap mMap;
  unsigned mNext;

  /// fMap - The TypePlanes map for the function level data.
  ValueMap fMap;
  unsigned fNext;

  /// mdnMap - Map for MDNodes.
  DenseMap<const MDNode*, unsigned> mdnMap;
  unsigned mdnNext;
public:
  /// Construct from a module
  explicit SlotTracker(const Module *M);
  /// Construct from a function, starting out in incorp state.
  explicit SlotTracker(const Function *F);

  /// Return the slot number of the specified value in it's type
  /// plane.  If something is not in the SlotTracker, return -1.
  int getLocalSlot(const Value *V);
  int getGlobalSlot(const GlobalValue *V);
  int getMetadataSlot(const MDNode *N);

  /// If you'd like to deal with a function instead of just a module, use
  /// this method to get its data into the SlotTracker.
  void incorporateFunction(const Function *F) {
    TheFunction = F;
    FunctionProcessed = false;
  }

  /// After calling incorporateFunction, use this method to remove the
  /// most recently incorporated function from the SlotTracker. This
  /// will reset the state of the machine back to just the module contents.
  void purgeFunction();

  /// MDNode map iterators.
  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
  mdn_iterator mdn_begin() { return mdnMap.begin(); }
  mdn_iterator mdn_end() { return mdnMap.end(); }
  unsigned mdn_size() const { return mdnMap.size(); }
  bool mdn_empty() const { return mdnMap.empty(); }

  /// This function does the actual initialization.
  inline void initialize();

  // Implementation Details
private:
  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
  void CreateModuleSlot(const GlobalValue *V);

  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
  void CreateMetadataSlot(const MDNode *N);

  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
  void CreateFunctionSlot(const Value *V);

  /// Add all of the module level global variables (and their initializers)
  /// and function declarations, but not the contents of those functions.
  void processModule();

  /// Add all of the functions arguments, basic blocks, and instructions.
  void processFunction();

  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
};

}  // end anonymous namespace


static SlotTracker *createSlotTracker(const Value *V) {
  if (const Argument *FA = dyn_cast<Argument>(V))
    return new SlotTracker(FA->getParent());

  if (const Instruction *I = dyn_cast<Instruction>(V))
    return new SlotTracker(I->getParent()->getParent());

  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
    return new SlotTracker(BB->getParent());

  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    return new SlotTracker(GV->getParent());

  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    return new SlotTracker(GA->getParent());

  if (const Function *Func = dyn_cast<Function>(V))
    return new SlotTracker(Func);

  if (isa<MDNode>(V))
    return new SlotTracker((Function *)0);

  return 0;
}

#if 0
#define ST_DEBUG(X) dbgs() << X
#else
#define ST_DEBUG(X)
#endif

// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M)
  : TheModule(M), TheFunction(0), FunctionProcessed(false), 
    mNext(0), fNext(0),  mdnNext(0) {
}

// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F)
  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
    mNext(0), fNext(0), mdnNext(0) {
}

inline void SlotTracker::initialize() {
  if (TheModule) {
    processModule();
    TheModule = 0; ///< Prevent re-processing next time we're called.
  }

  if (TheFunction && !FunctionProcessed)
    processFunction();
}

// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
  ST_DEBUG("begin processModule!\n");

  // Add all of the unnamed global variables to the value table.
  for (Module::const_global_iterator I = TheModule->global_begin(),
         E = TheModule->global_end(); I != E; ++I) {
    if (!I->hasName())
      CreateModuleSlot(I);
  }

  // Add metadata used by named metadata.
  for (Module::const_named_metadata_iterator
         I = TheModule->named_metadata_begin(),
         E = TheModule->named_metadata_end(); I != E; ++I) {
    const NamedMDNode *NMD = I;
    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
      if (MDNode *MD = NMD->getOperand(i))
        CreateMetadataSlot(MD);
    }
  }

  // Add all the unnamed functions to the table.
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
       I != E; ++I)
    if (!I->hasName())
      CreateModuleSlot(I);

  ST_DEBUG("end processModule!\n");
}

// Process the arguments, basic blocks, and instructions  of a function.
void SlotTracker::processFunction() {
  ST_DEBUG("begin processFunction!\n");
  fNext = 0;

  // Add all the function arguments with no names.
  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
      AE = TheFunction->arg_end(); AI != AE; ++AI)
    if (!AI->hasName())
      CreateFunctionSlot(AI);

  ST_DEBUG("Inserting Instructions:\n");

  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;

  // Add all of the basic blocks and instructions with no names.
  for (Function::const_iterator BB = TheFunction->begin(),
       E = TheFunction->end(); BB != E; ++BB) {
    if (!BB->hasName())
      CreateFunctionSlot(BB);
    
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
         ++I) {
      if (!I->getType()->isVoidTy() && !I->hasName())
        CreateFunctionSlot(I);
      
      // Intrinsics can directly use metadata.
      if (isa<IntrinsicInst>(I))
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
          if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
            CreateMetadataSlot(N);

      // Process metadata attached with this instruction.
      I->getAllMetadata(MDForInst);
      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
        CreateMetadataSlot(MDForInst[i].second);
      MDForInst.clear();
    }
  }

  FunctionProcessed = true;

  ST_DEBUG("end processFunction!\n");
}

/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
void SlotTracker::purgeFunction() {
  ST_DEBUG("begin purgeFunction!\n");
  fMap.clear(); // Simply discard the function level map
  TheFunction = 0;
  FunctionProcessed = false;
  ST_DEBUG("end purgeFunction!\n");
}

/// getGlobalSlot - Get the slot number of a global value.
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
  // Check for uninitialized state and do lazy initialization.
  initialize();

  // Find the type plane in the module map
  ValueMap::iterator MI = mMap.find(V);
  return MI == mMap.end() ? -1 : (int)MI->second;
}

/// getMetadataSlot - Get the slot number of a MDNode.
int SlotTracker::getMetadataSlot(const MDNode *N) {
  // Check for uninitialized state and do lazy initialization.
  initialize();

  // Find the type plane in the module map
  mdn_iterator MI = mdnMap.find(N);
  return MI == mdnMap.end() ? -1 : (int)MI->second;
}


/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");

  // Check for uninitialized state and do lazy initialization.
  initialize();

  ValueMap::iterator FI = fMap.find(V);
  return FI == fMap.end() ? -1 : (int)FI->second;
}


/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
  assert(V && "Can't insert a null Value into SlotTracker!");
  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
  assert(!V->hasName() && "Doesn't need a slot!");

  unsigned DestSlot = mNext++;
  mMap[V] = DestSlot;

  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
           DestSlot << " [");
  // G = Global, F = Function, A = Alias, o = other
  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
            (isa<Function>(V) ? 'F' :
             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
}

/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");

  unsigned DestSlot = fNext++;
  fMap[V] = DestSlot;

  // G = Global, F = Function, o = other
  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
           DestSlot << " [o]\n");
}

/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
  assert(N && "Can't insert a null Value into SlotTracker!");

  // Don't insert if N is a function-local metadata, these are always printed
  // inline.
  if (N->isFunctionLocal())
    return;

  mdn_iterator I = mdnMap.find(N);
  if (I != mdnMap.end())
    return;

  unsigned DestSlot = mdnNext++;
  mdnMap[N] = DestSlot;

  // Recursively add any MDNodes referenced by operands.
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
      CreateMetadataSlot(Op);
}

//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//

static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
                                   TypePrinting *TypePrinter,
                                   SlotTracker *Machine);



static const char *getPredicateText(unsigned predicate) {
  const char * pred = "unknown";
  switch (predicate) {
  case FCmpInst::FCMP_FALSE: pred = "false"; break;
  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
  case FCmpInst::FCMP_ONE:   pred = "one"; break;
  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
  case FCmpInst::FCMP_UNE:   pred = "une"; break;
  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
  case ICmpInst::ICMP_NE:    pred = "ne"; break;
  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
  }
  return pred;
}


static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
  if (const OverflowingBinaryOperator *OBO =
        dyn_cast<OverflowingBinaryOperator>(U)) {
    if (OBO->hasNoUnsignedWrap())
      Out << " nuw";
    if (OBO->hasNoSignedWrap())
      Out << " nsw";
  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
    if (Div->isExact())
      Out << " exact";
  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
    if (GEP->isInBounds())
      Out << " inbounds";
  }
}

static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
                             TypePrinting &TypePrinter, SlotTracker *Machine) {
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    if (CI->getType()->isIntegerTy(1)) {
      Out << (CI->getZExtValue() ? "true" : "false");
      return;
    }
    Out << CI->getValue();
    return;
  }

  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
      // We would like to output the FP constant value in exponential notation,
      // but we cannot do this if doing so will lose precision.  Check here to
      // make sure that we only output it in exponential format if we can parse
      // the value back and get the same value.
      //
      bool ignored;
      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
                              CFP->getValueAPF().convertToFloat();
      SmallString<128> StrVal;
      raw_svector_ostream(StrVal) << Val;

      // Check to make sure that the stringized number is not some string like
      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
      // that the string matches the "[-+]?[0-9]" regex.
      //
      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
          ((StrVal[0] == '-' || StrVal[0] == '+') &&
           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
        // Reparse stringized version!
        if (atof(StrVal.c_str()) == Val) {
          Out << StrVal.str();
          return;
        }
      }
      // Otherwise we could not reparse it to exactly the same value, so we must
      // output the string in hexadecimal format!  Note that loading and storing
      // floating point types changes the bits of NaNs on some hosts, notably
      // x86, so we must not use these types.
      assert(sizeof(double) == sizeof(uint64_t) &&
             "assuming that double is 64 bits!");
      char Buffer[40];
      APFloat apf = CFP->getValueAPF();
      // Floats are represented in ASCII IR as double, convert.
      if (!isDouble)
        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
                          &ignored);
      Out << "0x" <<
              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
                            Buffer+40);
      return;
    }

    // Some form of long double.  These appear as a magic letter identifying
    // the type, then a fixed number of hex digits.
    Out << "0x";
    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
      Out << 'K';
      // api needed to prevent premature destruction
      APInt api = CFP->getValueAPF().bitcastToAPInt();
      const uint64_t* p = api.getRawData();
      uint64_t word = p[1];
      int shiftcount=12;
      int width = api.getBitWidth();
      for (int j=0; j<width; j+=4, shiftcount-=4) {
        unsigned int nibble = (word>>shiftcount) & 15;
        if (nibble < 10)
          Out << (unsigned char)(nibble + '0');
        else
          Out << (unsigned char)(nibble - 10 + 'A');
        if (shiftcount == 0 && j+4 < width) {
          word = *p;
          shiftcount = 64;
          if (width-j-4 < 64)
            shiftcount = width-j-4;
        }
      }
      return;
    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
      Out << 'L';
    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
      Out << 'M';
    else
      llvm_unreachable("Unsupported floating point type");
    // api needed to prevent premature destruction
    APInt api = CFP->getValueAPF().bitcastToAPInt();
    const uint64_t* p = api.getRawData();
    uint64_t word = *p;
    int shiftcount=60;
    int width = api.getBitWidth();
    for (int j=0; j<width; j+=4, shiftcount-=4) {
      unsigned int nibble = (word>>shiftcount) & 15;
      if (nibble < 10)
        Out << (unsigned char)(nibble + '0');
      else
        Out << (unsigned char)(nibble - 10 + 'A');
      if (shiftcount == 0 && j+4 < width) {
        word = *(++p);
        shiftcount = 64;
        if (width-j-4 < 64)
          shiftcount = width-j-4;
      }
    }
    return;
  }

  if (isa<ConstantAggregateZero>(CV)) {
    Out << "zeroinitializer";
    return;
  }
  
  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    Out << "blockaddress(";
    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine);
    Out << ", ";
    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine);
    Out << ")";
    return;
  }

  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    // As a special case, print the array as a string if it is an array of
    // i8 with ConstantInt values.
    //
    const Type *ETy = CA->getType()->getElementType();
    if (CA->isString()) {
      Out << "c\"";
      PrintEscapedString(CA->getAsString(), Out);
      Out << '"';
    } else {                // Cannot output in string format...
      Out << '[';
      if (CA->getNumOperands()) {
        TypePrinter.print(ETy, Out);
        Out << ' ';
        WriteAsOperandInternal(Out, CA->getOperand(0),
                               &TypePrinter, Machine);
        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
          Out << ", ";
          TypePrinter.print(ETy, Out);
          Out << ' ';
          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
        }
      }
      Out << ']';
    }
    return;
  }

  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    if (CS->getType()->isPacked())
      Out << '<';
    Out << '{';
    unsigned N = CS->getNumOperands();
    if (N) {
      Out << ' ';
      TypePrinter.print(CS->getOperand(0)->getType(), Out);
      Out << ' ';

      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);

      for (unsigned i = 1; i < N; i++) {
        Out << ", ";
        TypePrinter.print(CS->getOperand(i)->getType(), Out);
        Out << ' ';

        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
      }
      Out << ' ';
    }

    Out << '}';
    if (CS->getType()->isPacked())
      Out << '>';
    return;
  }

  if (const ConstantUnion *CU = dyn_cast<ConstantUnion>(CV)) {
    Out << "{ ";
    TypePrinter.print(CU->getOperand(0)->getType(), Out);
    Out << ' ';
    WriteAsOperandInternal(Out, CU->getOperand(0), &TypePrinter, Machine);
    Out << " }";
    return;
  }
  
  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
    const Type *ETy = CP->getType()->getElementType();
    assert(CP->getNumOperands() > 0 &&
           "Number of operands for a PackedConst must be > 0");
    Out << '<';
    TypePrinter.print(ETy, Out);
    Out << ' ';
    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
      Out << ", ";
      TypePrinter.print(ETy, Out);
      Out << ' ';
      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
    }
    Out << '>';
    return;
  }

  if (isa<ConstantPointerNull>(CV)) {
    Out << "null";
    return;
  }

  if (isa<UndefValue>(CV)) {
    Out << "undef";
    return;
  }

  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
    Out << "!" << Machine->getMetadataSlot(Node);
    return;
  }

  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    Out << CE->getOpcodeName();
    WriteOptimizationInfo(Out, CE);
    if (CE->isCompare())
      Out << ' ' << getPredicateText(CE->getPredicate());
    Out << " (";

    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
      TypePrinter.print((*OI)->getType(), Out);
      Out << ' ';
      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
      if (OI+1 != CE->op_end())
        Out << ", ";
    }

    if (CE->hasIndices()) {
      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
        Out << ", " << Indices[i];
    }

    if (CE->isCast()) {
      Out << " to ";
      TypePrinter.print(CE->getType(), Out);
    }

    Out << ')';
    return;
  }

  Out << "<placeholder or erroneous Constant>";
}

static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
                                    TypePrinting *TypePrinter,
                                    SlotTracker *Machine) {
  Out << "!{";
  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
    const Value *V = Node->getOperand(mi);
    if (V == 0)
      Out << "null";
    else {
      TypePrinter->print(V->getType(), Out);
      Out << ' ';
      WriteAsOperandInternal(Out, Node->getOperand(mi), 
                             TypePrinter, Machine);
    }
    if (mi + 1 != me)
      Out << ", ";
  }
  
  Out << "}";
}


/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream.  This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
                                   TypePrinting *TypePrinter,
                                   SlotTracker *Machine) {
  if (V->hasName()) {
    PrintLLVMName(Out, V);
    return;
  }

  const Constant *CV = dyn_cast<Constant>(V);
  if (CV && !isa<GlobalValue>(CV)) {
    assert(TypePrinter && "Constants require TypePrinting!");
    WriteConstantInt(Out, CV, *TypePrinter, Machine);
    return;
  }

  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    Out << "asm ";
    if (IA->hasSideEffects())
      Out << "sideeffect ";
    if (IA->isAlignStack())
      Out << "alignstack ";
    Out << '"';
    PrintEscapedString(IA->getAsmString(), Out);
    Out << "\", \"";
    PrintEscapedString(IA->getConstraintString(), Out);
    Out << '"';
    return;
  }

  if (const MDNode *N = dyn_cast<MDNode>(V)) {
    if (N->isFunctionLocal()) {
      // Print metadata inline, not via slot reference number.
      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine);
      return;
    }
  
    if (!Machine)
      Machine = createSlotTracker(V);
    Out << '!' << Machine->getMetadataSlot(N);
    return;
  }

  if (const MDString *MDS = dyn_cast<MDString>(V)) {
    Out << "!\"";
    PrintEscapedString(MDS->getString(), Out);
    Out << '"';
    return;
  }

  if (V->getValueID() == Value::PseudoSourceValueVal ||
      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
    V->print(Out);
    return;
  }

  char Prefix = '%';
  int Slot;
  if (Machine) {
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
      Slot = Machine->getGlobalSlot(GV);
      Prefix = '@';
    } else {
      Slot = Machine->getLocalSlot(V);
    }
  } else {
    Machine = createSlotTracker(V);
    if (Machine) {
      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
        Slot = Machine->getGlobalSlot(GV);
        Prefix = '@';
      } else {
        Slot = Machine->getLocalSlot(V);
      }
      delete Machine;
    } else {
      Slot = -1;
    }
  }

  if (Slot != -1)
    Out << Prefix << Slot;
  else
    Out << "<badref>";
}

void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
                          bool PrintType, const Module *Context) {

  // Fast path: Don't construct and populate a TypePrinting object if we
  // won't be needing any types printed.
  if (!PrintType &&
      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
    WriteAsOperandInternal(Out, V, 0, 0);
    return;
  }

  if (Context == 0) Context = getModuleFromVal(V);

  TypePrinting TypePrinter;
  std::vector<const Type*> NumberedTypes;
  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
  if (PrintType) {
    TypePrinter.print(V->getType(), Out);
    Out << ' ';
  }

  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
}

namespace {

class AssemblyWriter {
  formatted_raw_ostream &Out;
  SlotTracker &Machine;
  const Module *TheModule;
  TypePrinting TypePrinter;
  AssemblyAnnotationWriter *AnnotationWriter;
  std::vector<const Type*> NumberedTypes;
  
public:
  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
                        const Module *M,
                        AssemblyAnnotationWriter *AAW)
    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
  }

  void printMDNodeBody(const MDNode *MD);
  void printNamedMDNode(const NamedMDNode *NMD);
  
  void printModule(const Module *M);

  void writeOperand(const Value *Op, bool PrintType);
  void writeParamOperand(const Value *Operand, Attributes Attrs);

  void writeAllMDNodes();

  void printTypeSymbolTable(const TypeSymbolTable &ST);
  void printGlobal(const GlobalVariable *GV);
  void printAlias(const GlobalAlias *GV);
  void printFunction(const Function *F);
  void printArgument(const Argument *FA, Attributes Attrs);
  void printBasicBlock(const BasicBlock *BB);
  void printInstruction(const Instruction &I);

private:
  // printInfoComment - Print a little comment after the instruction indicating
  // which slot it occupies.
  void printInfoComment(const Value &V);
};
}  // end of anonymous namespace

void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
  if (Operand == 0) {
    Out << "<null operand!>";
    return;
  }
  if (PrintType) {
    TypePrinter.print(Operand->getType(), Out);
    Out << ' ';
  }
  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
}

void AssemblyWriter::writeParamOperand(const Value *Operand,
                                       Attributes Attrs) {
  if (Operand == 0) {
    Out << "<null operand!>";
    return;
  }

  // Print the type
  TypePrinter.print(Operand->getType(), Out);
  // Print parameter attributes list
  if (Attrs != Attribute::None)
    Out << ' ' << Attribute::getAsString(Attrs);
  Out << ' ';
  // Print the operand
  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
}

void AssemblyWriter::printModule(const Module *M) {
  if (!M->getModuleIdentifier().empty() &&
      // Don't print the ID if it will start a new line (which would
      // require a comment char before it).
      M->getModuleIdentifier().find('\n') == std::string::npos)
    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";

  if (!M->getDataLayout().empty())
    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
  if (!M->getTargetTriple().empty())
    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";

  if (!M->getModuleInlineAsm().empty()) {
    // Split the string into lines, to make it easier to read the .ll file.
    std::string Asm = M->getModuleInlineAsm();
    size_t CurPos = 0;
    size_t NewLine = Asm.find_first_of('\n', CurPos);
    Out << '\n';
    while (NewLine != std::string::npos) {
      // We found a newline, print the portion of the asm string from the
      // last newline up to this newline.
      Out << "module asm \"";
      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
                         Out);
      Out << "\"\n";
      CurPos = NewLine+1;
      NewLine = Asm.find_first_of('\n', CurPos);
    }
    Out << "module asm \"";
    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
    Out << "\"\n";
  }

  // Loop over the dependent libraries and emit them.
  Module::lib_iterator LI = M->lib_begin();
  Module::lib_iterator LE = M->lib_end();
  if (LI != LE) {
    Out << '\n';
    Out << "deplibs = [ ";
    while (LI != LE) {
      Out << '"' << *LI << '"';
      ++LI;
      if (LI != LE)
        Out << ", ";
    }
    Out << " ]";
  }

  // Loop over the symbol table, emitting all id'd types.
  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
  printTypeSymbolTable(M->getTypeSymbolTable());

  // Output all globals.
  if (!M->global_empty()) Out << '\n';
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I)
    printGlobal(I);

  // Output all aliases.
  if (!M->alias_empty()) Out << "\n";
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    printAlias(I);

  // Output all of the functions.
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
    printFunction(I);

  // Output named metadata.
  if (!M->named_metadata_empty()) Out << '\n';
  
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
       E = M->named_metadata_end(); I != E; ++I)
    printNamedMDNode(I);

  // Output metadata.
  if (!Machine.mdn_empty()) {
    Out << '\n';
    writeAllMDNodes();
  }
}

void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
  Out << "!" << NMD->getName() << " = !{";
  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
    if (i) Out << ", ";
    if (MDNode *MD = NMD->getOperand(i))
      Out << '!' << Machine.getMetadataSlot(MD);
    else
      Out << "null";
  }
  Out << "}\n";
}


static void PrintLinkage(GlobalValue::LinkageTypes LT,
                         formatted_raw_ostream &Out) {
  switch (LT) {
  case GlobalValue::ExternalLinkage: break;
  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
  case GlobalValue::CommonLinkage:        Out << "common ";         break;
  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
  case GlobalValue::AvailableExternallyLinkage:
    Out << "available_externally ";
    break;
  }
}


static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
                            formatted_raw_ostream &Out) {
  switch (Vis) {
  case GlobalValue::DefaultVisibility: break;
  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
  }
}

void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
  if (GV->isMaterializable())
    Out << "; Materializable\n";

  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
  Out << " = ";

  if (!GV->hasInitializer() && GV->hasExternalLinkage())
    Out << "external ";

  PrintLinkage(GV->getLinkage(), Out);
  PrintVisibility(GV->getVisibility(), Out);

  if (GV->isThreadLocal()) Out << "thread_local ";
  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
    Out << "addrspace(" << AddressSpace << ") ";
  Out << (GV->isConstant() ? "constant " : "global ");
  TypePrinter.print(GV->getType()->getElementType(), Out);

  if (GV->hasInitializer()) {
    Out << ' ';
    writeOperand(GV->getInitializer(), false);
  }

  if (GV->hasSection())
    Out << ", section \"" << GV->getSection() << '"';
  if (GV->getAlignment())
    Out << ", align " << GV->getAlignment();

  printInfoComment(*GV);
  Out << '\n';
}

void AssemblyWriter::printAlias(const GlobalAlias *GA) {
  if (GA->isMaterializable())
    Out << "; Materializable\n";

  // Don't crash when dumping partially built GA
  if (!GA->hasName())
    Out << "<<nameless>> = ";
  else {
    PrintLLVMName(Out, GA);
    Out << " = ";
  }
  PrintVisibility(GA->getVisibility(), Out);

  Out << "alias ";

  PrintLinkage(GA->getLinkage(), Out);

  const Constant *Aliasee = GA->getAliasee();

  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
    TypePrinter.print(GV->getType(), Out);
    Out << ' ';
    PrintLLVMName(Out, GV);
  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
    TypePrinter.print(F->getFunctionType(), Out);
    Out << "* ";

    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
    TypePrinter.print(GA->getType(), Out);
    Out << ' ';
    PrintLLVMName(Out, GA);
  } else {
    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
    // The only valid GEP is an all zero GEP.
    assert((CE->getOpcode() == Instruction::BitCast ||
            CE->getOpcode() == Instruction::GetElementPtr) &&
           "Unsupported aliasee");
    writeOperand(CE, false);
  }

  printInfoComment(*GA);
  Out << '\n';
}

void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
  // Emit all numbered types.
  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
    Out << '%' << i << " = type ";

    // Make sure we print out at least one level of the type structure, so
    // that we do not get %2 = type %2
    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
    Out << '\n';
  }

  // Print the named types.
  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
       TI != TE; ++TI) {
    PrintLLVMName(Out, TI->first, LocalPrefix);
    Out << " = type ";

    // Make sure we print out at least one level of the type structure, so
    // that we do not get %FILE = type %FILE
    TypePrinter.printAtLeastOneLevel(TI->second, Out);
    Out << '\n';
  }
}

/// printFunction - Print all aspects of a function.
///
void AssemblyWriter::printFunction(const Function *F) {
  // Print out the return type and name.
  Out << '\n';

  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);

  if (F->isMaterializable())
    Out << "; Materializable\n";

  if (F->isDeclaration())
    Out << "declare ";
  else
    Out << "define ";

  PrintLinkage(F->getLinkage(), Out);
  PrintVisibility(F->getVisibility(), Out);

  // Print the calling convention.
  switch (F->getCallingConv()) {
  case CallingConv::C: break;   // default
  case CallingConv::Fast:         Out << "fastcc "; break;
  case CallingConv::Cold:         Out << "coldcc "; break;
  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
  default: Out << "cc" << F->getCallingConv() << " "; break;
  }

  const FunctionType *FT = F->getFunctionType();
  const AttrListPtr &Attrs = F->getAttributes();
  Attributes RetAttrs = Attrs.getRetAttributes();
  if (RetAttrs != Attribute::None)
    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
  TypePrinter.print(F->getReturnType(), Out);
  Out << ' ';
  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
  Out << '(';
  Machine.incorporateFunction(F);

  // Loop over the arguments, printing them...

  unsigned Idx = 1;
  if (!F->isDeclaration()) {
    // If this isn't a declaration, print the argument names as well.
    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I) {
      // Insert commas as we go... the first arg doesn't get a comma
      if (I != F->arg_begin()) Out << ", ";
      printArgument(I, Attrs.getParamAttributes(Idx));
      Idx++;
    }
  } else {
    // Otherwise, print the types from the function type.
    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
      // Insert commas as we go... the first arg doesn't get a comma
      if (i) Out << ", ";

      // Output type...
      TypePrinter.print(FT->getParamType(i), Out);

      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
      if (ArgAttrs != Attribute::None)
        Out << ' ' << Attribute::getAsString(ArgAttrs);
    }
  }

  // Finish printing arguments...
  if (FT->isVarArg()) {
    if (FT->getNumParams()) Out << ", ";
    Out << "...";  // Output varargs portion of signature!
  }
  Out << ')';
  Attributes FnAttrs = Attrs.getFnAttributes();
  if (FnAttrs != Attribute::None)
    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
  if (F->hasSection())
    Out << " section \"" << F->getSection() << '"';
  if (F->getAlignment())
    Out << " align " << F->getAlignment();
  if (F->hasGC())
    Out << " gc \"" << F->getGC() << '"';
  if (F->isDeclaration()) {
    Out << "\n";
  } else {
    Out << " {";

    // Output all of its basic blocks... for the function
    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
      printBasicBlock(I);

    Out << "}\n";
  }

  Machine.purgeFunction();
}

/// printArgument - This member is called for every argument that is passed into
/// the function.  Simply print it out
///
void AssemblyWriter::printArgument(const Argument *Arg,
                                   Attributes Attrs) {
  // Output type...
  TypePrinter.print(Arg->getType(), Out);

  // Output parameter attributes list
  if (Attrs != Attribute::None)
    Out << ' ' << Attribute::getAsString(Attrs);

  // Output name, if available...
  if (Arg->hasName()) {
    Out << ' ';
    PrintLLVMName(Out, Arg);
  }
}

/// printBasicBlock - This member is called for each basic block in a method.
///
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
  if (BB->hasName()) {              // Print out the label if it exists...
    Out << "\n";
    PrintLLVMName(Out, BB->getName(), LabelPrefix);
    Out << ':';
  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
    Out << "\n; <label>:";
    int Slot = Machine.getLocalSlot(BB);
    if (Slot != -1)
      Out << Slot;
    else
      Out << "<badref>";
  }

  if (BB->getParent() == 0) {
    Out.PadToColumn(50);
    Out << "; Error: Block without parent!";
  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
    // Output predecessors for the block...
    Out.PadToColumn(50);
    Out << ";";
    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);

    if (PI == PE) {
      Out << " No predecessors!";
    } else {
      Out << " preds = ";
      writeOperand(*PI, false);
      for (++PI; PI != PE; ++PI) {
        Out << ", ";
        writeOperand(*PI, false);
      }
    }
  }

  Out << "\n";

  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);

  // Output all of the instructions in the basic block...
  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    printInstruction(*I);
    Out << '\n';
  }

  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}

/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
  if (AnnotationWriter) {
    AnnotationWriter->printInfoComment(V, Out);
    return;
  }

  if (V.getType()->isVoidTy()) return;
  
  Out.PadToColumn(50);
  Out << "; <";
  TypePrinter.print(V.getType(), Out);
  Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
}

// This member is called for each Instruction in a function..
void AssemblyWriter::printInstruction(const Instruction &I) {
  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);

  // Print out indentation for an instruction.
  Out << "  ";

  // Print out name if it exists...
  if (I.hasName()) {
    PrintLLVMName(Out, &I);
    Out << " = ";
  } else if (!I.getType()->isVoidTy()) {
    // Print out the def slot taken.
    int SlotNum = Machine.getLocalSlot(&I);
    if (SlotNum == -1)
      Out << "<badref> = ";
    else
      Out << '%' << SlotNum << " = ";
  }

  // If this is a volatile load or store, print out the volatile marker.
  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
      Out << "volatile ";
  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
    // If this is a call, check if it's a tail call.
    Out << "tail ";
  }

  // Print out the opcode...
  Out << I.getOpcodeName();

  // Print out optimization information.
  WriteOptimizationInfo(Out, &I);

  // Print out the compare instruction predicates
  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
    Out << ' ' << getPredicateText(CI->getPredicate());

  // Print out the type of the operands...
  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;

  // Special case conditional branches to swizzle the condition out to the front
  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
    BranchInst &BI(cast<BranchInst>(I));
    Out << ' ';
    writeOperand(BI.getCondition(), true);
    Out << ", ";
    writeOperand(BI.getSuccessor(0), true);
    Out << ", ";
    writeOperand(BI.getSuccessor(1), true);

  } else if (isa<SwitchInst>(I)) {
    // Special case switch instruction to get formatting nice and correct.
    Out << ' ';
    writeOperand(Operand        , true);
    Out << ", ";
    writeOperand(I.getOperand(1), true);
    Out << " [";

    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
      Out << "\n    ";
      writeOperand(I.getOperand(op  ), true);
      Out << ", ";
      writeOperand(I.getOperand(op+1), true);
    }
    Out << "\n  ]";
  } else if (isa<IndirectBrInst>(I)) {
    // Special case indirectbr instruction to get formatting nice and correct.
    Out << ' ';
    writeOperand(Operand, true);
    Out << ", [";
    
    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
      if (i != 1)
        Out << ", ";
      writeOperand(I.getOperand(i), true);
    }
    Out << ']';
  } else if (isa<PHINode>(I)) {
    Out << ' ';
    TypePrinter.print(I.getType(), Out);
    Out << ' ';

    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
      if (op) Out << ", ";
      Out << "[ ";
      writeOperand(I.getOperand(op  ), false); Out << ", ";
      writeOperand(I.getOperand(op+1), false); Out << " ]";
    }
  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
    Out << ' ';
    writeOperand(I.getOperand(0), true);
    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
      Out << ", " << *i;
  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
    Out << ' ';
    writeOperand(I.getOperand(0), true); Out << ", ";
    writeOperand(I.getOperand(1), true);
    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
      Out << ", " << *i;
  } else if (isa<ReturnInst>(I) && !Operand) {
    Out << " void";
  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
    // Print the calling convention being used.
    switch (CI->getCallingConv()) {
    case CallingConv::C: break;   // default
    case CallingConv::Fast:  Out << " fastcc"; break;
    case CallingConv::Cold:  Out << " coldcc"; break;
    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
    default: Out << " cc" << CI->getCallingConv(); break;
    }

    Operand = CI->getCalledValue();
    const PointerType    *PTy = cast<PointerType>(Operand->getType());
    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
    const Type         *RetTy = FTy->getReturnType();
    const AttrListPtr &PAL = CI->getAttributes();

    if (PAL.getRetAttributes() != Attribute::None)
      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());

    // If possible, print out the short form of the call instruction.  We can
    // only do this if the first argument is a pointer to a nonvararg function,
    // and if the return type is not a pointer to a function.
    //
    Out << ' ';
    if (!FTy->isVarArg() &&
        (!RetTy->isPointerTy() ||
         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
      TypePrinter.print(RetTy, Out);
      Out << ' ';
      writeOperand(Operand, false);
    } else {
      writeOperand(Operand, true);
    }
    Out << '(';
    for (unsigned op = 0, Eop = CI->getNumOperands() - 1; op < Eop; ++op) {
      if (op > 0)
        Out << ", ";
      writeParamOperand(CI->getOperand(op), PAL.getParamAttributes(op + 1));
    }
    Out << ')';
    if (PAL.getFnAttributes() != Attribute::None)
      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
    Operand = II->getCalledValue();
    const PointerType    *PTy = cast<PointerType>(Operand->getType());
    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
    const Type         *RetTy = FTy->getReturnType();
    const AttrListPtr &PAL = II->getAttributes();

    // Print the calling convention being used.
    switch (II->getCallingConv()) {
    case CallingConv::C: break;   // default
    case CallingConv::Fast:  Out << " fastcc"; break;
    case CallingConv::Cold:  Out << " coldcc"; break;
    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
    default: Out << " cc" << II->getCallingConv(); break;
    }

    if (PAL.getRetAttributes() != Attribute::None)
      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());

    // If possible, print out the short form of the invoke instruction. We can
    // only do this if the first argument is a pointer to a nonvararg function,
    // and if the return type is not a pointer to a function.
    //
    Out << ' ';
    if (!FTy->isVarArg() &&
        (!RetTy->isPointerTy() ||
         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
      TypePrinter.print(RetTy, Out);
      Out << ' ';
      writeOperand(Operand, false);
    } else {
      writeOperand(Operand, true);
    }
    Out << '(';
    for (unsigned op = 0, Eop = II->getNumOperands() - 3; op < Eop; ++op) {
      if (op)
        Out << ", ";
      writeParamOperand(II->getOperand(op), PAL.getParamAttributes(op + 1));
    }

    Out << ')';
    if (PAL.getFnAttributes() != Attribute::None)
      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());

    Out << "\n          to ";
    writeOperand(II->getNormalDest(), true);
    Out << " unwind ";
    writeOperand(II->getUnwindDest(), true);

  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
    Out << ' ';
    TypePrinter.print(AI->getType()->getElementType(), Out);
    if (!AI->getArraySize() || AI->isArrayAllocation()) {
      Out << ", ";
      writeOperand(AI->getArraySize(), true);
    }
    if (AI->getAlignment()) {
      Out << ", align " << AI->getAlignment();
    }
  } else if (isa<CastInst>(I)) {
    if (Operand) {
      Out << ' ';
      writeOperand(Operand, true);   // Work with broken code
    }
    Out << " to ";
    TypePrinter.print(I.getType(), Out);
  } else if (isa<VAArgInst>(I)) {
    if (Operand) {
      Out << ' ';
      writeOperand(Operand, true);   // Work with broken code
    }
    Out << ", ";
    TypePrinter.print(I.getType(), Out);
  } else if (Operand) {   // Print the normal way.

    // PrintAllTypes - Instructions who have operands of all the same type
    // omit the type from all but the first operand.  If the instruction has
    // different type operands (for example br), then they are all printed.
    bool PrintAllTypes = false;
    const Type *TheType = Operand->getType();

    // Select, Store and ShuffleVector always print all types.
    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
        || isa<ReturnInst>(I)) {
      PrintAllTypes = true;
    } else {
      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
        Operand = I.getOperand(i);
        // note that Operand shouldn't be null, but the test helps make dump()
        // more tolerant of malformed IR
        if (Operand && Operand->getType() != TheType) {
          PrintAllTypes = true;    // We have differing types!  Print them all!
          break;
        }
      }
    }

    if (!PrintAllTypes) {
      Out << ' ';
      TypePrinter.print(TheType, Out);
    }

    Out << ' ';
    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
      if (i) Out << ", ";
      writeOperand(I.getOperand(i), PrintAllTypes);
    }
  }

  // Print post operand alignment for load/store.
  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
    Out << ", align " << cast<LoadInst>(I).getAlignment();
  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
    Out << ", align " << cast<StoreInst>(I).getAlignment();
  }

  // Print Metadata info.
  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
  I.getAllMetadata(InstMD);
  if (!InstMD.empty()) {
    SmallVector<StringRef, 8> MDNames;
    I.getType()->getContext().getMDKindNames(MDNames);
    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
      unsigned Kind = InstMD[i].first;
       if (Kind < MDNames.size()) {
         Out << ", !" << MDNames[Kind];
      } else {
        Out << ", !<unknown kind #" << Kind << ">";
      }
      Out << " !" << Machine.getMetadataSlot(InstMD[i].second);
    }
  }
  printInfoComment(I);
}

static void WriteMDNodeComment(const MDNode *Node,
			       formatted_raw_ostream &Out) {
  if (Node->getNumOperands() < 1)
    return;
  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
  if (!CI) return;
  unsigned Val = CI->getZExtValue();
  unsigned Tag = Val & ~LLVMDebugVersionMask;
  if (Val < LLVMDebugVersion)
    return;
  
  Out.PadToColumn(50);
  if (Tag == dwarf::DW_TAG_auto_variable)
    Out << "; [ DW_TAG_auto_variable ]";
  else if (Tag == dwarf::DW_TAG_arg_variable)
    Out << "; [ DW_TAG_arg_variable ]";
  else if (Tag == dwarf::DW_TAG_return_variable)
    Out << "; [ DW_TAG_return_variable ]";
  else if (Tag == dwarf::DW_TAG_vector_type)
    Out << "; [ DW_TAG_vector_type ]";
  else if (Tag == dwarf::DW_TAG_user_base)
    Out << "; [ DW_TAG_user_base ]";
  else if (const char *TagName = dwarf::TagString(Tag))
    Out << "; [ " << TagName << " ]";
}

void AssemblyWriter::writeAllMDNodes() {
  SmallVector<const MDNode *, 16> Nodes;
  Nodes.resize(Machine.mdn_size());
  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
       I != E; ++I)
    Nodes[I->second] = cast<MDNode>(I->first);
  
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
    Out << '!' << i << " = metadata ";
    printMDNodeBody(Nodes[i]);
  }
}

void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine);
  WriteMDNodeComment(Node, Out);
  Out << "\n";
}

//===----------------------------------------------------------------------===//
//                       External Interface declarations
//===----------------------------------------------------------------------===//

void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
  SlotTracker SlotTable(this);
  formatted_raw_ostream OS(ROS);
  AssemblyWriter W(OS, SlotTable, this, AAW);
  W.printModule(this);
}

void Type::print(raw_ostream &OS) const {
  if (this == 0) {
    OS << "<null Type>";
    return;
  }
  TypePrinting().print(this, OS);
}

void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
  if (this == 0) {
    ROS << "printing a <null> value\n";
    return;
  }
  formatted_raw_ostream OS(ROS);
  if (const Instruction *I = dyn_cast<Instruction>(this)) {
    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
    SlotTracker SlotTable(F);
    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
    W.printInstruction(*I);
  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
    SlotTracker SlotTable(BB->getParent());
    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
    W.printBasicBlock(BB);
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
    SlotTracker SlotTable(GV->getParent());
    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
      W.printGlobal(V);
    else if (const Function *F = dyn_cast<Function>(GV))
      W.printFunction(F);
    else
      W.printAlias(cast<GlobalAlias>(GV));
  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
    const Function *F = N->getFunction();
    SlotTracker SlotTable(F);
    AssemblyWriter W(OS, SlotTable, F ? getModuleFromVal(F) : 0, AAW);
    W.printMDNodeBody(N);
  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
    SlotTracker SlotTable(N->getParent());
    AssemblyWriter W(OS, SlotTable, N->getParent(), AAW);
    W.printNamedMDNode(N);
  } else if (const Constant *C = dyn_cast<Constant>(this)) {
    TypePrinting TypePrinter;
    TypePrinter.print(C->getType(), OS);
    OS << ' ';
    WriteConstantInt(OS, C, TypePrinter, 0);
  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
             isa<Argument>(this)) {
    WriteAsOperand(OS, this, true, 0);
  } else {
    // Otherwise we don't know what it is. Call the virtual function to
    // allow a subclass to print itself.
    printCustom(OS);
  }
}

// Value::printCustom - subclasses should override this to implement printing.
void Value::printCustom(raw_ostream &OS) const {
  llvm_unreachable("Unknown value to print out!");
}

// Value::dump - allow easy printing of Values from the debugger.
void Value::dump() const { print(dbgs()); dbgs() << '\n'; }

// Type::dump - allow easy printing of Types from the debugger.
// This one uses type names from the given context module
void Type::dump(const Module *Context) const {
  WriteTypeSymbolic(dbgs(), this, Context);
  dbgs() << '\n';
}

// Type::dump - allow easy printing of Types from the debugger.
void Type::dump() const { dump(0); }

// Module::dump() - Allow printing of Modules from the debugger.
void Module::dump() const { print(dbgs(), 0); }