aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/SSAUpdater.cpp
blob: 0baa5a8ca62559cc3e7cd714941b387983c597b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdater class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

typedef DenseMap<BasicBlock*, TrackingVH<Value> > AvailableValsTy;
typedef std::vector<std::pair<BasicBlock*, TrackingVH<Value> > >
                IncomingPredInfoTy;

static AvailableValsTy &getAvailableVals(void *AV) {
  return *static_cast<AvailableValsTy*>(AV);
}

static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) {
  return *static_cast<IncomingPredInfoTy*>(IPI);
}


SSAUpdater::SSAUpdater() : AV(0), PrototypeValue(0), IPI(0) {}

SSAUpdater::~SSAUpdater() {
  delete &getAvailableVals(AV);
  delete &getIncomingPredInfo(IPI);
}

/// Initialize - Reset this object to get ready for a new set of SSA
/// updates.  ProtoValue is the value used to name PHI nodes.
void SSAUpdater::Initialize(Value *ProtoValue) {
  if (AV == 0)
    AV = new AvailableValsTy();
  else
    getAvailableVals(AV).clear();
  
  if (IPI == 0)
    IPI = new IncomingPredInfoTy();
  else
    getIncomingPredInfo(IPI).clear();
  PrototypeValue = ProtoValue;
}

/// AddAvailableValue - Indicate that a rewritten value is available in the
/// specified block with the specified value.
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
  assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
  assert(PrototypeValue->getType() == V->getType() &&
         "All rewritten values must have the same type");
  getAvailableVals(AV)[BB] = V;
}

/// GetValueInBlock - Construct SSA form, materializing a value in the
/// specified block.
Value *SSAUpdater::GetValueInBlock(BasicBlock *BB) {
  assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
  Value *Res = GetValueInBlockInternal(BB);
  assert(getIncomingPredInfo(IPI).empty() && "Unexpected Internal State");
  return Res;
}

/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
/// which use their value in the corresponding predecessor.
void SSAUpdater::RewriteUse(Use &U) {
  Instruction *User = cast<Instruction>(U.getUser());
  BasicBlock *UseBB = User->getParent();
  if (PHINode *UserPN = dyn_cast<PHINode>(User))
    UseBB = UserPN->getIncomingBlock(U);
  
  U.set(GetValueInBlock(UseBB));
}


/// GetValueInBlock - Check to see if AvailableVals has an entry for the
/// specified BB and if so, return it.  If not, construct SSA form by walking
/// predecessors inserting PHI nodes as needed until we get to a block where the
/// value is available.
///
Value *SSAUpdater::GetValueInBlockInternal(BasicBlock *BB) {
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
  
  // Query AvailableVals by doing an insertion of null.
  std::pair<AvailableValsTy::iterator, bool> InsertRes =
  AvailableVals.insert(std::make_pair(BB, WeakVH()));
  
  // Handle the case when the insertion fails because we have already seen BB.
  if (!InsertRes.second) {
    // If the insertion failed, there are two cases.  The first case is that the
    // value is already available for the specified block.  If we get this, just
    // return the value.
    if (InsertRes.first->second != 0)
      return InsertRes.first->second;
    
    // Otherwise, if the value we find is null, then this is the value is not
    // known but it is being computed elsewhere in our recursion.  This means
    // that we have a cycle.  Handle this by inserting a PHI node and returning
    // it.  When we get back to the first instance of the recursion we will fill
    // in the PHI node.
    return InsertRes.first->second =
    PHINode::Create(PrototypeValue->getType(), PrototypeValue->getName(),
                    &BB->front());
  }
  
  // Okay, the value isn't in the map and we just inserted a null in the entry
  // to indicate that we're processing the block.  Since we have no idea what
  // value is in this block, we have to recurse through our predecessors.
  //
  // While we're walking our predecessors, we keep track of them in a vector,
  // then insert a PHI node in the end if we actually need one.  We could use a
  // smallvector here, but that would take a lot of stack space for every level
  // of the recursion, just use IncomingPredInfo as an explicit stack.
  IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI);
  unsigned FirstPredInfoEntry = IncomingPredInfo.size();
  
  // As we're walking the predecessors, keep track of whether they are all
  // producing the same value.  If so, this value will capture it, if not, it
  // will get reset to null.  We distinguish the no-predecessor case explicitly
  // below.
  TrackingVH<Value> SingularValue;
  
  // We can get our predecessor info by walking the pred_iterator list, but it
  // is relatively slow.  If we already have PHI nodes in this block, walk one
  // of them to get the predecessor list instead.
  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
      Value *PredVal = GetValueInBlockInternal(PredBB);
      IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
      
      // Compute SingularValue.
      if (i == 0)
        SingularValue = PredVal;
      else if (PredVal != SingularValue)
        SingularValue = 0;
    }
  } else {
    bool isFirstPred = true;
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
      BasicBlock *PredBB = *PI;
      Value *PredVal = GetValueInBlockInternal(PredBB);
      IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal));
      
      // Compute SingularValue.
      if (isFirstPred) {
        SingularValue = PredVal;
        isFirstPred = false;
      } else if (PredVal != SingularValue)
        SingularValue = 0;
    }
  }
  
  // If there are no predecessors, then we must have found an unreachable block
  // just return 'undef'.  Since there are no predecessors, InsertRes must not
  // be invalidated.
  if (IncomingPredInfo.size() == FirstPredInfoEntry)
    return InsertRes.first->second = UndefValue::get(PrototypeValue->getType());
  
  /// Look up BB's entry in AvailableVals.  'InsertRes' may be invalidated.  If
  /// this block is involved in a loop, a no-entry PHI node will have been
  /// inserted as InsertedVal.  Otherwise, we'll still have the null we inserted
  /// above.
  TrackingVH<Value> &InsertedVal = AvailableVals[BB];
  
  // If all the predecessor values are the same then we don't need to insert a
  // PHI.  This is the simple and common case.
  if (SingularValue) {
    // If a PHI node got inserted, replace it with the singlar value and delete
    // it.
    if (InsertedVal) {
      PHINode *OldVal = cast<PHINode>(InsertedVal);
      // Be careful about dead loops.  These RAUW's also update InsertedVal.
      if (InsertedVal != SingularValue)
        OldVal->replaceAllUsesWith(SingularValue);
      else
        OldVal->replaceAllUsesWith(UndefValue::get(InsertedVal->getType()));
      OldVal->eraseFromParent();
    } else {
      InsertedVal = SingularValue;
    }
    
    // Drop the entries we added in IncomingPredInfo to restore the stack.
    IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
                           IncomingPredInfo.end());
    return InsertedVal;
  }
  
  // Otherwise, we do need a PHI: insert one now if we don't already have one.
  if (InsertedVal == 0)
    InsertedVal = PHINode::Create(PrototypeValue->getType(),
                                  PrototypeValue->getName(), &BB->front());
  
  PHINode *InsertedPHI = cast<PHINode>(InsertedVal);
  InsertedPHI->reserveOperandSpace(IncomingPredInfo.size()-FirstPredInfoEntry);
  
  // Fill in all the predecessors of the PHI.
  for (IncomingPredInfoTy::iterator I =
         IncomingPredInfo.begin()+FirstPredInfoEntry,
       E = IncomingPredInfo.end(); I != E; ++I)
    InsertedPHI->addIncoming(I->second, I->first);
  
  // Drop the entries we added in IncomingPredInfo to restore the stack.
  IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry,
                         IncomingPredInfo.end());
  
  // See if the PHI node can be merged to a single value.  This can happen in
  // loop cases when we get a PHI of itself and one other value.
  if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
    InsertedPHI->replaceAllUsesWith(ConstVal);
    InsertedPHI->eraseFromParent();
    InsertedVal = ConstVal;
  } else {
    DEBUG(errs() << "  Inserted PHI: " << *InsertedPHI << "\n");
  }
  
  return InsertedVal;
}