aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
blob: aced3f9dd4ac430399fb7faad1a337f1529a6563 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
//
// This pass is used to promote memory references to be register references.  A
// simple example of the transformation performed by this pass is:
//
//        FROM CODE                           TO CODE
//   %X = alloca int, uint 1                 ret int 42
//   store int 42, int *%X
//   %Y = load int* %X
//   ret int %Y
//
// To do this transformation, a simple analysis is done to ensure it is safe.
// Currently this just loops over all alloca instructions, looking for
// instructions that are only used in simple load and stores.
//
// After this, the code is transformed by...something magical :)
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/PromoteMemoryToRegister.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/iMemory.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"

using namespace std;


using cfg::DominanceFrontier;

namespace {

//instance of the promoter -- to keep all the local function data.
// gets re-created for each function processed
class PromoteInstance
{
	protected:
	vector<AllocaInst*>            		Allocas;   // the alloca instruction..
	map<Instruction *, int>	   		AllocaLookup; //reverse mapping of above

	vector<vector<BasicBlock *> >  		WriteSets; // index corresponds to Allocas
	vector<vector<BasicBlock *> > 	 	PhiNodes;  // index corresponds to Allocas
	vector<vector<Value *> > 		CurrentValue; //the current value stack

	//list of instructions to remove at end of pass :)
	vector<Instruction *> killlist;

	set<BasicBlock *> 			visited;	//the basic blocks we've already visited
	map<BasicBlock *, vector<PHINode *> > 	new_phinodes;	//the phinodes we're adding


	void traverse(BasicBlock *f, BasicBlock * predecessor);
	bool PromoteFunction(Function *F, DominanceFrontier &DF);
	bool queuePhiNode(BasicBlock *bb, int alloca_index);
	void findSafeAllocas(Function *M);
	bool didchange;
	public:
	// I do this so that I can force the deconstruction of the local variables
	PromoteInstance(Function *F, DominanceFrontier &DF)
	{
		didchange=PromoteFunction(F, DF);
	}
	//This returns whether the pass changes anything
	operator bool () { return didchange; }
};

}  // end of anonymous namespace

// findSafeAllocas - Find allocas that are safe to promote
//
void PromoteInstance::findSafeAllocas(Function *F)  
{
  BasicBlock *BB = F->getEntryNode();  // Get the entry node for the function

  // Look at all instructions in the entry node
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    if (AllocaInst *AI = dyn_cast<AllocaInst>(*I))       // Is it an alloca?
      if (!AI->isArrayAllocation()) {
	bool isSafe = true;
	for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
	     UI != UE; ++UI) {   // Loop over all of the uses of the alloca

	  // Only allow nonindexed memory access instructions...
	  if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*UI)) {
	    if (MAI->hasIndices()) {  // indexed?
	      // Allow the access if there is only one index and the index is zero.
	      if (*MAI->idx_begin() != ConstantUInt::get(Type::UIntTy, 0) ||
		  MAI->idx_begin()+1 != MAI->idx_end()) {
		isSafe = false; break;
	      }
	    }
	  } else {
	    isSafe = false; break;   // Not a load or store?
	  }
	}
	if (isSafe)              // If all checks pass, add alloca to safe list
	  {
	    AllocaLookup[AI]=Allocas.size();
	    Allocas.push_back(AI);
	  }
      }
}



bool PromoteInstance::PromoteFunction(Function *F, DominanceFrontier & DF) {
	// Calculate the set of safe allocas
	findSafeAllocas(F);

	// Add each alloca to the killlist
	// note: killlist is destroyed MOST recently added to least recently.
	killlist.assign(Allocas.begin(), Allocas.end());

	// Calculate the set of write-locations for each alloca.
	// this is analogous to counting the number of 'redefinitions' of each variable.
	for (unsigned i = 0; i<Allocas.size(); ++i)
	{
		AllocaInst * AI = Allocas[i];
		WriteSets.push_back(std::vector<BasicBlock *>()); //add a new set
		for (Value::use_iterator U = AI->use_begin();U!=AI->use_end();++U)
		{
			if (MemAccessInst *MAI = dyn_cast<StoreInst>(*U)) {
				WriteSets[i].push_back(MAI->getParent()); // jot down the basic-block it came from
			}
		}
	}

	// Compute the locations where PhiNodes need to be inserted
	// look at the dominance frontier of EACH basic-block we have a write in
	PhiNodes.resize(Allocas.size());
	for (unsigned i = 0; i<Allocas.size(); ++i)
	{
		for (unsigned j = 0; j<WriteSets[i].size(); j++)
		{
			//look up the DF for this write, add it to PhiNodes
			DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
			DominanceFrontier::DomSetType     s = (*it).second;
			for (DominanceFrontier::DomSetType::iterator p = s.begin();p!=s.end(); ++p)
			{
				if (queuePhiNode((BasicBlock *)*p, i))
				PhiNodes[i].push_back((BasicBlock *)*p);
			}
		}
		// perform iterative step
		for (unsigned k = 0; k<PhiNodes[i].size(); k++)
		{
			DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
			DominanceFrontier::DomSetType     s = it->second;
			for (DominanceFrontier::DomSetType::iterator p = s.begin(); p!=s.end(); ++p)
			{
				if (queuePhiNode((BasicBlock *)*p,i))
				PhiNodes[i].push_back((BasicBlock*)*p);
			}
		}
	}

	// Walks all basic blocks in the function
	// performing the SSA rename algorithm
	// and inserting the phi nodes we marked as necessary
	BasicBlock * f = F->front(); //get root basic-block

	CurrentValue.push_back(vector<Value *>(Allocas.size()));

	traverse(f, NULL);  // there is no predecessor of the root node


	// ** REMOVE EVERYTHING IN THE KILL-LIST **
	// we need to kill 'uses' before root values
	// so we should probably run through in reverse
	for (vector<Instruction *>::reverse_iterator i = killlist.rbegin(); i!=killlist.rend(); ++i)
	{
		Instruction * r = *i;
		BasicBlock * o = r->getParent();
		//now go find..

		BasicBlock::InstListType & l = o->getInstList();
		o->getInstList().remove(r);
		delete r;
	}

	return !Allocas.empty();
}



void PromoteInstance::traverse(BasicBlock *f, BasicBlock * predecessor)
{
	vector<Value *> * tos = &CurrentValue.back(); //look at top-

	//if this is a BB needing a phi node, lookup/create the phinode for
	// each variable we need phinodes for.
	map<BasicBlock *, vector<PHINode *> >::iterator nd = new_phinodes.find(f);
	if (nd!=new_phinodes.end())
	{
		for (unsigned k = 0; k!=nd->second.size(); ++k)
		if (nd->second[k])
		{
			//at this point we can assume that the array has phi nodes.. let's
			// add the incoming data
			if ((*tos)[k])
			nd->second[k]->addIncoming((*tos)[k],predecessor);
			//also note that the active variable IS designated by the phi node
			(*tos)[k] = nd->second[k];
		}
	}

	//don't revisit nodes
	if (visited.find(f)!=visited.end())
	return;
	//mark as visited
	visited.insert(f);

	BasicBlock::iterator i = f->begin();
	//keep track of the value of each variable we're watching.. how?
	while(i!=f->end())
	{
		Instruction * inst = *i; //get the instruction
		//is this a write/read?
		if (LoadInst * LI = dyn_cast<LoadInst>(inst))
		{
			// This is a bit weird...
			Value * ptr = LI->getPointerOperand(); //of type value
			if (AllocaInst * srcinstr = dyn_cast<AllocaInst>(ptr))
			{
				map<Instruction *, int>::iterator ai = AllocaLookup.find(srcinstr);
				if (ai!=AllocaLookup.end())
				{
					if (Value *r = (*tos)[ai->second])
					{
						//walk the use list of this load and replace