1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
// FIXME: This pass should transform alloca instructions in the called function
// into malloc/free pairs! Or perhaps it should refuse to inline them!
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/Transforms/Utils/Local.h"
// InlineFunction - This function inlines the called function into the basic
// block of the caller. This returns false if it is not possible to inline this
// call. The program is still in a well defined state if this occurs though.
//
// Note that this only does one level of inlining. For example, if the
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
// exists in the instruction stream. Similiarly this will inline a recursive
// function by one level.
//
bool InlineFunction(CallInst *CI) {
assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
assert(CI->getParent() && "Instruction not embedded in basic block!");
assert(CI->getParent()->getParent() && "Instruction not in function!");
const Function *CalledFunc = CI->getCalledFunction();
if (CalledFunc == 0 || // Can't inline external function or indirect
CalledFunc->isExternal() || // call, or call to a vararg function!
CalledFunc->getFunctionType()->isVarArg()) return false;
BasicBlock *OrigBB = CI->getParent();
Function *Caller = OrigBB->getParent();
// Call splitBasicBlock - The original basic block now ends at the instruction
// immediately before the call. The original basic block now ends with an
// unconditional branch to NewBB, and NewBB starts with the call instruction.
//
BasicBlock *NewBB = OrigBB->splitBasicBlock(CI,
CalledFunc->getName()+".entry");
NewBB->setName(OrigBB->getName()+".split");
// Remove (unlink) the CallInst from the start of the new basic block.
NewBB->getInstList().remove(CI);
// If we have a return value generated by this call, convert it into a PHI
// node that gets values from each of the old RET instructions in the original
// function.
//
PHINode *PHI = 0;
if (!CI->use_empty()) {
// The PHI node should go at the front of the new basic block to merge all
// possible incoming values.
//
PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
NewBB->begin());
// Anything that used the result of the function call should now use the PHI
// node as their operand.
//
CI->replaceAllUsesWith(PHI);
}
// Get an iterator to the last basic block in the function, which will have
// the new function inlined after it.
//
Function::iterator LastBlock = &Caller->back();
// Calculate the vector of arguments to pass into the function cloner...
std::map<const Value*, Value*> ValueMap;
assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
CI->getNumOperands()-1 && "No varargs calls can be inlined yet!");
unsigned i = 1;
for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
I != E; ++I, ++i)
ValueMap[I] = CI->getOperand(i);
// Since we are now done with the CallInst, we can delete it.
delete CI;
// Make a vector to capture the return instructions in the cloned function...
std::vector<ReturnInst*> Returns;
// Populate the value map with all of the globals in the program.
Module &M = *Caller->getParent();
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
ValueMap[I] = I;
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
ValueMap[I] = I;
// Do all of the hard part of cloning the callee into the caller...
CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
// Loop over all of the return instructions, turning them into unconditional
// branches to the merge point now...
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
BasicBlock *BB = RI->getParent();
// Add a branch to the merge point where the PHI node would live...
new BranchInst(NewBB, RI);
if (PHI) { // The PHI node should include this value!
assert(RI->getReturnValue() && "Ret should have value!");
assert(RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!");
PHI->addIncoming(RI->getReturnValue(), BB);
}
// Delete the return instruction now
BB->getInstList().erase(RI);
}
// Check to see if the PHI node only has one argument. This is a common
// case resulting from there only being a single return instruction in the
// function call. Because this is so common, eliminate the PHI node.
//
if (PHI && PHI->getNumIncomingValues() == 1) {
PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
PHI->getParent()->getInstList().erase(PHI);
}
// Change the branch that used to go to NewBB to branch to the first basic
// block of the inlined function.
//
TerminatorInst *Br = OrigBB->getTerminator();
assert(Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!");
Br->setOperand(0, ++LastBlock);
// If there are any alloca instructions in the block that used to be the entry
// block for the callee, move them to the entry block of the caller. First
// calculate which instruction they should be inserted before. We insert the
// instructions at the end of the current alloca list.
//
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
I != E; )
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
++I; // Move to the next instruction
LastBlock->getInstList().remove(AI);
Caller->front().getInstList().insert(InsertPoint, AI);
} else {
++I;
}
// Now that the function is correct, make it a little bit nicer. In
// particular, move the basic blocks inserted from the end of the function
// into the space made by splitting the source basic block.
//
Caller->getBasicBlockList().splice(NewBB, Caller->getBasicBlockList(),
LastBlock, Caller->end());
// We should always be able to fold the entry block of the function into the
// single predecessor of the block...
assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
SimplifyCFG(CalleeEntry);
// Okay, continue the CFG cleanup. It's often the case that there is only a
// single return instruction in the callee function. If this is the case,
// then we have an unconditional branch from the return block to the 'NewBB'.
// Check for this case, and eliminate the branch is possible.
SimplifyCFG(NewBB);
return true;
}
|