aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/TransformInternals.cpp
blob: ac8181b72241cee3cc4e1890749ace0e3dbb2a5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
//===-- TransformInternals.cpp - Implement shared functions for transforms --=//
//
//  This file defines shared functions used by the different components of the
//  Transforms library.
//
//===----------------------------------------------------------------------===//

#include "TransformInternals.h"
#include "llvm/Method.h"
#include "llvm/Type.h"
#include "llvm/ConstPoolVals.h"

// TargetData Hack: Eventually we will have annotations given to us by the
// backend so that we know stuff about type size and alignments.  For now
// though, just use this, because it happens to match the model that GCC uses.
//
const TargetData TD("LevelRaise: Should be GCC though!");

// losslessCastableTypes - Return true if the types are bitwise equivalent.
// This predicate returns true if it is possible to cast from one type to
// another without gaining or losing precision, or altering the bits in any way.
//
bool losslessCastableTypes(const Type *T1, const Type *T2) {
  if (!T1->isPrimitiveType() && !T1->isPointerType()) return false;
  if (!T2->isPrimitiveType() && !T2->isPointerType()) return false;

  if (T1->getPrimitiveID() == T2->getPrimitiveID())
    return true;  // Handles identity cast, and cast of differing pointer types

  // Now we know that they are two differing primitive or pointer types
  switch (T1->getPrimitiveID()) {
  case Type::UByteTyID:   return T2 == Type::SByteTy;
  case Type::SByteTyID:   return T2 == Type::UByteTy;
  case Type::UShortTyID:  return T2 == Type::ShortTy;
  case Type::ShortTyID:   return T2 == Type::UShortTy;
  case Type::UIntTyID:    return T2 == Type::IntTy;
  case Type::IntTyID:     return T2 == Type::UIntTy;
  case Type::ULongTyID:
  case Type::LongTyID:
  case Type::PointerTyID:
    return T2 == Type::ULongTy || T2 == Type::LongTy ||
           T2->getPrimitiveID() == Type::PointerTyID;
  default:
    return false;  // Other types have no identity values
  }
}


// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
// with a value, then remove and delete the original instruction.
//
void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
                          BasicBlock::iterator &BI, Value *V) {
  Instruction *I = *BI;
  // Replaces all of the uses of the instruction with uses of the value
  I->replaceAllUsesWith(V);

  // Remove the unneccesary instruction now...
  BIL.remove(BI);

  // Make sure to propogate a name if there is one already...
  if (I->hasName() && !V->hasName())
    V->setName(I->getName(), BIL.getParent()->getSymbolTable());

  // Remove the dead instruction now...
  delete I;
}


// ReplaceInstWithInst - Replace the instruction specified by BI with the
// instruction specified by I.  The original instruction is deleted and BI is
// updated to point to the new instruction.
//
void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
                         BasicBlock::iterator &BI, Instruction *I) {
  assert(I->getParent() == 0 &&
         "ReplaceInstWithInst: Instruction already inserted into basic block!");

  // Insert the new instruction into the basic block...
  BI = BIL.insert(BI, I)+1;

  // Replace all uses of the old instruction, and delete it.
  ReplaceInstWithValue(BIL, BI, I);

  // Reexamine the instruction just inserted next time around the cleanup pass
  // loop.
  --BI;
}


// getStructOffsetType - Return a vector of offsets that are to be used to index
// into the specified struct type to get as close as possible to index as we
// can.  Note that it is possible that we cannot get exactly to Offset, in which
// case we update offset to be the offset we actually obtained.  The resultant
// leaf type is returned.
//
// If StopEarly is set to true (the default), the first object with the
// specified type is returned, even if it is a struct type itself.  In this
// case, this routine will not drill down to the leaf type.  Set StopEarly to
// false if you want a leaf
//
const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
                                vector<ConstPoolVal*> &Offsets,
                                bool StopEarly = true) {
  if (!isa<StructType>(Ty) || (Offset == 0 && StopEarly)) {
    Offset = 0;   // Return the offset that we were able to acheive
    return Ty;    // Return the leaf type
  }

  assert(Offset < TD.getTypeSize(Ty) && "Offset not in struct!");
  const StructType *STy = cast<StructType>(Ty);
  const StructLayout *SL = TD.getStructLayout(STy);

  // This loop terminates always on a 0 <= i < MemberOffsets.size()
  unsigned i;
  for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
    if (Offset >= SL->MemberOffsets[i] && Offset <  SL->MemberOffsets[i+1])
      break;
  
  assert(Offset >= SL->MemberOffsets[i] &&
         (i == SL->MemberOffsets.size()-1 || Offset <  SL->MemberOffsets[i+1]));

  // Make sure to save the current index...
  Offsets.push_back(ConstPoolUInt::get(Type::UByteTy, i));

  unsigned SubOffs = Offset - SL->MemberOffsets[i];
  const Type *LeafTy = getStructOffsetType(STy->getElementTypes()[i], SubOffs,
                                           Offsets);
  Offset = SL->MemberOffsets[i] + SubOffs;
  return LeafTy;
}