aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineSelect.cpp
blob: 121aa1f8d73fa0b70c3d2f1f1543810fbb673a4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
//===- InstCombineSelect.cpp ----------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitSelect function.
//
//===----------------------------------------------------------------------===//

#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;

/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
/// returning the kind and providing the out parameter results if we
/// successfully match.
static SelectPatternFlavor
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
  SelectInst *SI = dyn_cast<SelectInst>(V);
  if (SI == 0) return SPF_UNKNOWN;

  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
  if (ICI == 0) return SPF_UNKNOWN;

  LHS = ICI->getOperand(0);
  RHS = ICI->getOperand(1);

  // (icmp X, Y) ? X : Y
  if (SI->getTrueValue() == ICI->getOperand(0) &&
      SI->getFalseValue() == ICI->getOperand(1)) {
    switch (ICI->getPredicate()) {
    default: return SPF_UNKNOWN; // Equality.
    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_UGE: return SPF_UMAX;
    case ICmpInst::ICMP_SGT:
    case ICmpInst::ICMP_SGE: return SPF_SMAX;
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_ULE: return SPF_UMIN;
    case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE: return SPF_SMIN;
    }
  }

  // (icmp X, Y) ? Y : X
  if (SI->getTrueValue() == ICI->getOperand(1) &&
      SI->getFalseValue() == ICI->getOperand(0)) {
    switch (ICI->getPredicate()) {
      default: return SPF_UNKNOWN; // Equality.
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_UGE: return SPF_UMIN;
      case ICmpInst::ICMP_SGT:
      case ICmpInst::ICMP_SGE: return SPF_SMIN;
      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_ULE: return SPF_UMAX;
      case ICmpInst::ICMP_SLT:
      case ICmpInst::ICMP_SLE: return SPF_SMAX;
    }
  }

  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)

  return SPF_UNKNOWN;
}


/// GetSelectFoldableOperands - We want to turn code that looks like this:
///   %C = or %A, %B
///   %D = select %cond, %C, %A
/// into:
///   %C = select %cond, %B, 0
///   %D = or %A, %C
///
/// Assuming that the specified instruction is an operand to the select, return
/// a bitmask indicating which operands of this instruction are foldable if they
/// equal the other incoming value of the select.
///
static unsigned GetSelectFoldableOperands(Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    return 3;              // Can fold through either operand.
  case Instruction::Sub:   // Can only fold on the amount subtracted.
  case Instruction::Shl:   // Can only fold on the shift amount.
  case Instruction::LShr:
  case Instruction::AShr:
    return 1;
  default:
    return 0;              // Cannot fold
  }
}

/// GetSelectFoldableConstant - For the same transformation as the previous
/// function, return the identity constant that goes into the select.
static Constant *GetSelectFoldableConstant(Instruction *I) {
  switch (I->getOpcode()) {
  default: llvm_unreachable("This cannot happen!");
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    return Constant::getNullValue(I->getType());
  case Instruction::And:
    return Constant::getAllOnesValue(I->getType());
  case Instruction::Mul:
    return ConstantInt::get(I->getType(), 1);
  }
}

/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
/// have the same opcode and only one use each.  Try to simplify this.
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
                                          Instruction *FI) {
  if (TI->getNumOperands() == 1) {
    // If this is a non-volatile load or a cast from the same type,
    // merge.
    if (TI->isCast()) {
      Type *FIOpndTy = FI->getOperand(0)->getType();
      if (TI->getOperand(0)->getType() != FIOpndTy)
        return 0;
      // The select condition may be a vector. We may only change the operand
      // type if the vector width remains the same (and matches the condition).
      Type *CondTy = SI.getCondition()->getType();
      if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
          CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
        return 0;
    } else {
      return 0;  // unknown unary op.
    }

    // Fold this by inserting a select from the input values.
    Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
                                         FI->getOperand(0), SI.getName()+".v");
    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
                            TI->getType());
  }

  // Only handle binary operators here.
  if (!isa<BinaryOperator>(TI))
    return 0;

  // Figure out if the operations have any operands in common.
  Value *MatchOp, *OtherOpT, *OtherOpF;
  bool MatchIsOpZero;
  if (TI->getOperand(0) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = false;
  } else if (!TI->isCommutative()) {
    return 0;
  } else if (TI->getOperand(0) == FI->getOperand(1)) {
    MatchOp  = TI->getOperand(0);
    OtherOpT = TI->getOperand(1);
    OtherOpF = FI->getOperand(0);
    MatchIsOpZero = true;
  } else if (TI->getOperand(1) == FI->getOperand(0)) {
    MatchOp  = TI->getOperand(1);
    OtherOpT = TI->getOperand(0);
    OtherOpF = FI->getOperand(1);
    MatchIsOpZero = true;
  } else {
    return 0;
  }

  // If we reach here, they do have operations in common.
  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
                                       OtherOpF, SI.getName()+".v");

  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    if (MatchIsOpZero)
      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    else
      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
  }
  llvm_unreachable("Shouldn't get here");
}

static bool isSelect01(Constant *C1, Constant *C2) {
  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
  if (!C1I)
    return false;
  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
  if (!C2I)
    return false;
  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    return false;
  return C1I->isOne() || C1I->isAllOnesValue() ||
         C2I->isOne() || C2I->isAllOnesValue();
}

/// FoldSelectIntoOp - Try fold the select into one of the operands to
/// facilitate further optimization.
Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
                                            Value *FalseVal) {
  // See the comment above GetSelectFoldableOperands for a description of the
  // transformation we are doing here.
  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
        !isa<Constant>(FalseVal)) {
      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
        unsigned OpToFold = 0;
        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
          OpToFold = 1;
        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
          OpToFold = 2;
        }

        if (OpToFold) {
          Constant *C = GetSelectFoldableConstant(TVI);
          Value *OOp = TVI->getOperand(2-OpToFold);
          // Avoid creating select between 2 constants unless it's selecting
          // between 0, 1 and -1.
          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
            Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
            NewSel->takeName(TVI);
            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
                                                        FalseVal, NewSel);
            if (isa<PossiblyExactOperator>(BO))
              BO->setIsExact(TVI_BO->isExact());
            if (isa<OverflowingBinaryOperator>(BO)) {
              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
            }
            return BO;
          }
        }
      }
    }
  }

  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
        !isa<Constant>(TrueVal)) {
      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
        unsigned OpToFold = 0;
        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
          OpToFold = 1;
        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
          OpToFold = 2;
        }

        if (OpToFold) {
          Constant *C = GetSelectFoldableConstant(FVI);
          Value *OOp = FVI->getOperand(2-OpToFold);
          // Avoid creating select between 2 constants unless it's selecting
          // between 0, 1 and -1.
          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
            Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
            NewSel->takeName(FVI);
            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
                                                        TrueVal, NewSel);
            if (isa<PossiblyExactOperator>(BO))
              BO->setIsExact(FVI_BO->isExact());
            if (isa<OverflowingBinaryOperator>(BO)) {
              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
            }
            return BO;
          }
        }
      }
    }
  }

  return 0;
}

/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
/// replaced with RepOp.
static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
                                     const DataLayout *TD,
                                     const TargetLibraryInfo *TLI) {
  // Trivial replacement.
  if (V == Op)
    return RepOp;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    return 0;

  // If this is a binary operator, try to simplify it with the replaced op.
  if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
    if (B->getOperand(0) == Op)
      return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
    if (B->getOperand(1) == Op)
      return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
  }

  // Same for CmpInsts.
  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    if (C->getOperand(0) == Op)
      return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
                             TLI);
    if (C->getOperand(1) == Op)
      return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
                             TLI);
  }

  // TODO: We could hand off more cases to instsimplify here.

  // If all operands are constant after substituting Op for RepOp then we can
  // constant fold the instruction.
  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    // Build a list of all constant operands.
    SmallVector<Constant*, 8> ConstOps;
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      if (I->getOperand(i) == Op)
        ConstOps.push_back(CRepOp);
      else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
        ConstOps.push_back(COp);
      else
        break;
    }

    // All operands were constants, fold it.
    if (ConstOps.size() == I->getNumOperands()) {
      if (CmpInst *C = dyn_cast<CmpInst>(I))
        return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
                                               ConstOps[1], TD, TLI);

      if (LoadInst *LI = dyn_cast<LoadInst>(I))
        if (!LI->isVolatile())
          return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);

      return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
                                      ConstOps, TD, TLI);
    }
  }

  return 0;
}

/// visitSelectInstWithICmp - Visit a SelectInst that has an
/// ICmpInst as its first operand.
///
Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
                                                   ICmpInst *ICI) {
  bool Changed = false;
  ICmpInst::Predicate Pred = ICI->getPredicate();
  Value *CmpLHS = ICI->getOperand(0);
  Value *CmpRHS = ICI->getOperand(1);
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();

  // Check cases where the comparison is with a constant that
  // can be adjusted to fit the min/max idiom. We may move or edit ICI
  // here, so make sure the select is the only user.
  if (ICI->hasOneUse())
    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
      // X < MIN ? T : F  -->  F
      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
        return ReplaceInstUsesWith(SI, FalseVal);
      // X > MAX ? T : F  -->  F
      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
        return ReplaceInstUsesWith(SI, FalseVal);
      switch (Pred) {
      default: break;
      case ICmpInst::ICMP_ULT:
      case ICmpInst::ICMP_SLT:
      case ICmpInst::ICMP_UGT:
      case ICmpInst::ICMP_SGT: {
        // These transformations only work for selects over integers.
        IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
        if (!SelectTy)
          break;

        Constant *AdjustedRHS;
        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);

        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
          ; // Nothing to do here. Values match without any sign/zero extension.

        // Types do not match. Instead of calculating this with mixed types
        // promote all to the larger type. This enables scalar evolution to
        // analyze this expression.
        else if (CmpRHS->getType()->getScalarSizeInBits()
                 < SelectTy->getBitWidth()) {
          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);

          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
                sextRHS == FalseVal) {
            CmpLHS = TrueVal;
            AdjustedRHS = sextRHS;
          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
                     sextRHS == TrueVal) {
            CmpLHS = FalseVal;
            AdjustedRHS = sextRHS;
          } else if (ICI->isUnsigned()) {
            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
            // zext + signed compare cannot be changed:
            //    0xff <s 0x00, but 0x00ff >s 0x0000
            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
                zextRHS == FalseVal) {
              CmpLHS = TrueVal;
              AdjustedRHS = zextRHS;
            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
                       zextRHS == TrueVal) {
              CmpLHS = FalseVal;
              AdjustedRHS = zextRHS;
            } else
              break;
          } else
            break;
        } else
          break;

        Pred = ICmpInst::getSwappedPredicate(Pred);
        CmpRHS = AdjustedRHS;
        std::swap(FalseVal, TrueVal);
        ICI->setPredicate(Pred);
        ICI->setOperand(0, CmpLHS);
        ICI->setOperand(1, CmpRHS);
        SI.setOperand(1, TrueVal);
        SI.setOperand(2, FalseVal);

        // Move ICI instruction right before the select instruction. Otherwise
        // the sext/zext value may be defined after the ICI instruction uses it.
        ICI->moveBefore(&SI);

        Changed = true;
        break;
      }
      }
    }

  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
  // FIXME: Type and constness constraints could be lifted, but we have to
  //        watch code size carefully. We should consider xor instead of
  //        sub/add when we decide to do that.
  if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    if (TrueVal->getType() == Ty) {
      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
        ConstantInt *C1 = NULL, *C2 = NULL;
        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
          C1 = dyn_cast<ConstantInt>(TrueVal);
          C2 = dyn_cast<ConstantInt>(FalseVal);
        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
          C1 = dyn_cast<ConstantInt>(FalseVal);
          C2 = dyn_cast<ConstantInt>(TrueVal);
        }
        if (C1 && C2) {
          // This shift results in either -1 or 0.
          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);

          // Check if we can express the operation with a single or.
          if (C2->isAllOnesValue())
            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));

          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
        }
      }
    }
  }

  // If we have an equality comparison then we know the value in one of the
  // arms of the select. See if substituting this value into the arm and
  // simplifying the result yields the same value as the other arm.
  if (Pred == ICmpInst::ICMP_EQ) {
    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
      return ReplaceInstUsesWith(SI, FalseVal);
    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
      return ReplaceInstUsesWith(SI, FalseVal);
  } else if (Pred == ICmpInst::ICMP_NE) {
    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
      return ReplaceInstUsesWith(SI, TrueVal);
    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
      return ReplaceInstUsesWith(SI, TrueVal);
  }

  // NOTE: if we wanted to, this is where to detect integer MIN/MAX

  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
      SI.setOperand(1, CmpRHS);
      Changed = true;
    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
      SI.setOperand(2, CmpRHS);
      Changed = true;
    }
  }

  return Changed ? &SI : 0;
}


/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
/// PHI node (but the two may be in different blocks).  See if the true/false
/// values (V) are live in all of the predecessor blocks of the PHI.  For
/// example, cases like this cannot be mapped:
///
///   X = phi [ C1, BB1], [C2, BB2]
///   Y = add
///   Z = select X, Y, 0
///
/// because Y is not live in BB1/BB2.
///
static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
                                                   const SelectInst &SI) {
  // If the value is a non-instruction value like a constant or argument, it
  // can always be mapped.
  const Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) return true;

  // If V is a PHI node defined in the same block as the condition PHI, we can
  // map the arguments.
  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());

  if (const PHINode *VP = dyn_cast<PHINode>(I))
    if (VP->getParent() == CondPHI->getParent())
      return true;

  // Otherwise, if the PHI and select are defined in the same block and if V is
  // defined in a different block, then we can transform it.
  if (SI.getParent() == CondPHI->getParent() &&
      I->getParent() != CondPHI->getParent())
    return true;

  // Otherwise we have a 'hard' case and we can't tell without doing more
  // detailed dominator based analysis, punt.
  return false;
}

/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
///   SPF2(SPF1(A, B), C)
Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
                                        SelectPatternFlavor SPF1,
                                        Value *A, Value *B,
                                        Instruction &Outer,
                                        SelectPatternFlavor SPF2, Value *C) {
  if (C == A || C == B) {
    // MAX(MAX(A, B), B) -> MAX(A, B)
    // MIN(MIN(a, b), a) -> MIN(a, b)
    if (SPF1 == SPF2)
      return ReplaceInstUsesWith(Outer, Inner);

    // MAX(MIN(a, b), a) -> a
    // MIN(MAX(a, b), a) -> a
    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
      return ReplaceInstUsesWith(Outer, C);
  }

  // TODO: MIN(MIN(A, 23), 97)
  return 0;
}


/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
/// both be) and we have an icmp instruction with zero, and we have an 'and'
/// with the non-constant value and a power of two we can turn the select
/// into a shift on the result of the 'and'.
static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
                                ConstantInt *FalseVal,
                                InstCombiner::BuilderTy *Builder) {
  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
  if (!IC || !IC->isEquality())
    return 0;

  if (!match(IC->getOperand(1), m_Zero()))
    return 0;

  ConstantInt *AndRHS;
  Value *LHS = IC->getOperand(0);
  if (LHS->getType() != SI.getType() ||
      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    return 0;

  // If both select arms are non-zero see if we have a select of the form
  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
  // for 'x ? 2^n : 0' and fix the thing up at the end.
  ConstantInt *Offset = 0;
  if (!TrueVal->isZero() && !FalseVal->isZero()) {
    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
      Offset = FalseVal;
    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
      Offset = TrueVal;
    else
      return 0;

    // Adjust TrueVal and FalseVal to the offset.
    TrueVal = ConstantInt::get(Builder->getContext(),
                               TrueVal->getValue() - Offset->getValue());
    FalseVal = ConstantInt::get(Builder->getContext(),
                                FalseVal->getValue() - Offset->getValue());
  }

  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
  if (!AndRHS->getValue().isPowerOf2() ||
      (!TrueVal->getValue().isPowerOf2() &&
       !FalseVal->getValue().isPowerOf2()))
    return 0;

  // Determine which shift is needed to transform result of the 'and' into the
  // desired result.
  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
  unsigned ValZeros = ValC->getValue().logBase2();
  unsigned AndZeros = AndRHS->getValue().logBase2();

  Value *V = LHS;
  if (ValZeros > AndZeros)
    V = Builder->CreateShl(V, ValZeros - AndZeros);
  else if (ValZeros < AndZeros)
    V = Builder->CreateLShr(V, AndZeros - ValZeros);

  // Okay, now we know that everything is set up, we just don't know whether we
  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
  bool ShouldNotVal = !TrueVal->isZero();
  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
  if (ShouldNotVal)
    V = Builder->CreateXor(V, ValC);

  // Apply an offset if needed.
  if (Offset)
    V = Builder->CreateAdd(V, Offset);
  return V;
}

Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
  Value *CondVal = SI.getCondition();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();

  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
    return ReplaceInstUsesWith(SI, V);

  if (SI.getType()->isIntegerTy(1)) {
    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
      if (C->getZExtValue()) {
        // Change: A = select B, true, C --> A = or B, C
        return BinaryOperator::CreateOr(CondVal, FalseVal);
      }
      // Change: A = select B, false, C --> A = and !B, C
      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
      return BinaryOperator::CreateAnd(NotCond, FalseVal);
    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
      if (C->getZExtValue() == false) {
        // Change: A = select B, C, false --> A = and B, C
        return BinaryOperator::CreateAnd(CondVal, TrueVal);
      }
      // Change: A = select B, C, true --> A = or !B, C
      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
      return BinaryOperator::CreateOr(NotCond, TrueVal);
    }

    // select a, b, a  -> a&b
    // select a, a, b  -> a|b
    if (CondVal == TrueVal)
      return BinaryOperator::CreateOr(CondVal, FalseVal);
    else if (CondVal == FalseVal)
      return BinaryOperator::CreateAnd(CondVal, TrueVal);

    // select a, ~a, b -> (~a)&b
    // select a, b, ~a -> (~a)|b
    if (match(TrueVal, m_Not(m_Specific(CondVal))))
      return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    else if (match(FalseVal, m_Not(m_Specific(CondVal))))
      return BinaryOperator::CreateOr(TrueVal, FalseVal);
  }

  // Selecting between two integer constants?
  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
      // select C, 1, 0 -> zext C to int
      if (FalseValC->isZero() && TrueValC->getValue() == 1)
        return new ZExtInst(CondVal, SI.getType());

      // select C, -1, 0 -> sext C to int
      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
        return new SExtInst(CondVal, SI.getType());

      // select C, 0, 1 -> zext !C to int
      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
        return new ZExtInst(NotCond, SI.getType());
      }

      // select C, 0, -1 -> sext !C to int
      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
        return new SExtInst(NotCond, SI.getType());
      }

      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
        return ReplaceInstUsesWith(SI, V);
    }

  // See if we are selecting two values based on a comparison of the two values.
  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
      // Transform (X == Y) ? X : Y  -> Y
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
        return ReplaceInstUsesWith(SI, FalseVal);
      }
      // Transform (X une Y) ? X : Y  -> X
      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
        return ReplaceInstUsesWith(SI, TrueVal);
      }
      // NOTE: if we wanted to, this is where to detect MIN/MAX

    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
      // Transform (X == Y) ? Y : X  -> X
      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
          return ReplaceInstUsesWith(SI, FalseVal);
      }
      // Transform (X une Y) ? Y : X  -> Y
      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
        // This is not safe in general for floating point:
        // consider X== -0, Y== +0.
        // It becomes safe if either operand is a nonzero constant.
        ConstantFP *CFPt, *CFPf;
        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
              !CFPt->getValueAPF().isZero()) ||
            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
             !CFPf->getValueAPF().isZero()))
          return ReplaceInstUsesWith(SI, TrueVal);
      }
      // NOTE: if we wanted to, this is where to detect MIN/MAX
    }
    // NOTE: if we wanted to, this is where to detect ABS
  }

  // See if we are selecting two values based on a comparison of the two values.
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
      return Result;

  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
      if (TI->hasOneUse() && FI->hasOneUse()) {
        Instruction *AddOp = 0, *SubOp = 0;

        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
        if (TI->getOpcode() == FI->getOpcode())
          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
            return IV;

        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
        // even legal for FP.
        if ((TI->getOpcode() == Instruction::Sub &&
             FI->getOpcode() == Instruction::Add) ||
            (TI->getOpcode() == Instruction::FSub &&
             FI->getOpcode() == Instruction::FAdd)) {
          AddOp = FI; SubOp = TI;
        } else if ((FI->getOpcode() == Instruction::Sub &&
                    TI->getOpcode() == Instruction::Add) ||
                   (FI->getOpcode() == Instruction::FSub &&
                    TI->getOpcode() == Instruction::FAdd)) {
          AddOp = TI; SubOp = FI;
        }

        if (AddOp) {
          Value *OtherAddOp = 0;
          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
            OtherAddOp = AddOp->getOperand(1);
          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
            OtherAddOp = AddOp->getOperand(0);
          }

          if (OtherAddOp) {
            // So at this point we know we have (Y -> OtherAddOp):
            //        select C, (add X, Y), (sub X, Z)
            Value *NegVal;  // Compute -Z
            if (SI.getType()->isFPOrFPVectorTy()) {
              NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
            } else {
              NegVal = Builder->CreateNeg(SubOp->getOperand(1));
            }

            Value *NewTrueOp = OtherAddOp;
            Value *NewFalseOp = NegVal;
            if (AddOp != TI)
              std::swap(NewTrueOp, NewFalseOp);
            Value *NewSel = 
              Builder->CreateSelect(CondVal, NewTrueOp,
                                    NewFalseOp, SI.getName() + ".p");

            if (SI.getType()->isFPOrFPVectorTy())
              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
            else
              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
          }
        }
      }

  // See if we can fold the select into one of our operands.
  if (SI.getType()->isIntegerTy()) {
    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
      return FoldI;

    // MAX(MAX(a, b), a) -> MAX(a, b)
    // MIN(MIN(a, b), a) -> MIN(a, b)
    // MAX(MIN(a, b), a) -> a
    // MIN(MAX(a, b), a) -> a
    Value *LHS, *RHS, *LHS2, *RHS2;
    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 
                                          SI, SPF, RHS))
          return R;
      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
                                          SI, SPF, LHS))
          return R;
    }

    // TODO.
    // ABS(-X) -> ABS(X)
    // ABS(ABS(X)) -> ABS(X)
  }

  // See if we can fold the select into a phi node if the condition is a select.
  if (isa<PHINode>(SI.getCondition()))
    // The true/false values have to be live in the PHI predecessor's blocks.
    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
      if (Instruction *NV = FoldOpIntoPhi(SI))
        return NV;

  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    if (TrueSI->getCondition() == CondVal) {
      if (SI.getTrueValue() == TrueSI->getTrueValue())
        return 0;
      SI.setOperand(1, TrueSI->getTrueValue());
      return &SI;
    }
  }
  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    if (FalseSI->getCondition() == CondVal) {
      if (SI.getFalseValue() == FalseSI->getFalseValue())
        return 0;
      SI.setOperand(2, FalseSI->getFalseValue());
      return &SI;
    }
  }

  if (BinaryOperator::isNot(CondVal)) {
    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    SI.setOperand(1, FalseVal);
    SI.setOperand(2, TrueVal);
    return &SI;
  }

  if (VectorType *VecTy = dyn_cast<VectorType>(SI.getType())) {
    unsigned VWidth = VecTy->getNumElements();
    APInt UndefElts(VWidth, 0);
    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
      if (V != &SI)
        return ReplaceInstUsesWith(SI, V);
      return &SI;
    }

    if (ConstantVector *CV = dyn_cast<ConstantVector>(CondVal)) {
      // Form a shufflevector instruction.
      SmallVector<Constant *, 8> Mask(VWidth);
      Type *Int32Ty = Type::getInt32Ty(CV->getContext());
      for (unsigned i = 0; i != VWidth; ++i) {
        Constant *Elem = cast<Constant>(CV->getOperand(i));
        if (ConstantInt *E = dyn_cast<ConstantInt>(Elem))
          Mask[i] = ConstantInt::get(Int32Ty, i + (E->isZero() ? VWidth : 0));
        else if (isa<UndefValue>(Elem))
          Mask[i] = UndefValue::get(Int32Ty);
        else
          return 0;
      }
      Constant *MaskVal = ConstantVector::get(Mask);
      Value *V = Builder->CreateShuffleVector(TrueVal, FalseVal, MaskVal);
      return ReplaceInstUsesWith(SI, V);
    }

    if (isa<ConstantAggregateZero>(CondVal)) {
      return ReplaceInstUsesWith(SI, FalseVal);
    }
  }

  return 0;
}