1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
//===- InstCombine.h - Main InstCombine pass definition -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef INSTCOMBINE_INSTCOMBINE_H
#define INSTCOMBINE_INSTCOMBINE_H
#include "InstCombineWorklist.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/TargetFolder.h"
namespace llvm {
class CallSite;
class TargetData;
class TargetLibraryInfo;
class DbgDeclareInst;
class MemIntrinsic;
class MemSetInst;
/// SelectPatternFlavor - We can match a variety of different patterns for
/// select operations.
enum SelectPatternFlavor {
SPF_UNKNOWN = 0,
SPF_SMIN, SPF_UMIN,
SPF_SMAX, SPF_UMAX
//SPF_ABS - TODO.
};
/// getComplexity: Assign a complexity or rank value to LLVM Values...
/// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
static inline unsigned getComplexity(Value *V) {
if (isa<Instruction>(V)) {
if (BinaryOperator::isNeg(V) ||
BinaryOperator::isFNeg(V) ||
BinaryOperator::isNot(V))
return 3;
return 4;
}
if (isa<Argument>(V)) return 3;
return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}
/// InstCombineIRInserter - This is an IRBuilder insertion helper that works
/// just like the normal insertion helper, but also adds any new instructions
/// to the instcombine worklist.
class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
: public IRBuilderDefaultInserter<true> {
InstCombineWorklist &Worklist;
public:
InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
void InsertHelper(Instruction *I, const Twine &Name,
BasicBlock *BB, BasicBlock::iterator InsertPt) const {
IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
Worklist.Add(I);
}
};
/// InstCombiner - The -instcombine pass.
class LLVM_LIBRARY_VISIBILITY InstCombiner
: public FunctionPass,
public InstVisitor<InstCombiner, Instruction*> {
TargetData *TD;
TargetLibraryInfo *TLI;
bool MadeIRChange;
public:
/// Worklist - All of the instructions that need to be simplified.
InstCombineWorklist Worklist;
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
BuilderTy *Builder;
static char ID; // Pass identification, replacement for typeid
InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
initializeInstCombinerPass(*PassRegistry::getPassRegistry());
}
public:
virtual bool runOnFunction(Function &F);
bool DoOneIteration(Function &F, unsigned ItNum);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
TargetData *getTargetData() const { return TD; }
TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid, I may be dead though
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitAdd(BinaryOperator &I);
Instruction *visitFAdd(BinaryOperator &I);
Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
Instruction *visitSub(BinaryOperator &I);
Instruction *visitFSub(BinaryOperator &I);
Instruction *visitMul(BinaryOperator &I);
Instruction *visitFMul(BinaryOperator &I);
Instruction *visitURem(BinaryOperator &I);
Instruction *visitSRem(BinaryOperator &I);
Instruction *visitFRem(BinaryOperator &I);
bool SimplifyDivRemOfSelect(BinaryOperator &I);
Instruction *commonRemTransforms(BinaryOperator &I);
Instruction *commonIRemTransforms(BinaryOperator &I);
Instruction *commonDivTransforms(BinaryOperator &I);
Instruction *commonIDivTransforms(BinaryOperator &I);
Instruction *visitUDiv(BinaryOperator &I);
Instruction *visitSDiv(BinaryOperator &I);
Instruction *visitFDiv(BinaryOperator &I);
Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *visitAnd(BinaryOperator &I);
Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
Value *A, Value *B, Value *C);
Instruction *visitOr (BinaryOperator &I);
Instruction *visitXor(BinaryOperator &I);
Instruction *visitShl(BinaryOperator &I);
Instruction *visitAShr(BinaryOperator &I);
Instruction *visitLShr(BinaryOperator &I);
Instruction *commonShiftTransforms(BinaryOperator &I);
Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
Constant *RHSC);
Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
GlobalVariable *GV, CmpInst &ICI,
ConstantInt *AndCst = 0);
Instruction *visitFCmpInst(FCmpInst &I);
Instruction *visitICmpInst(ICmpInst &I);
Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
Instruction *LHS,
ConstantInt *RHS);
Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred, Value *TheAdd);
Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond, Instruction &I);
Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
BinaryOperator &I);
Instruction *commonCastTransforms(CastInst &CI);
Instruction *commonPointerCastTransforms(CastInst &CI);
Instruction *visitTrunc(TruncInst &CI);
Instruction *visitZExt(ZExtInst &CI);
Instruction *visitSExt(SExtInst &CI);
Instruction *visitFPTrunc(FPTruncInst &CI);
Instruction *visitFPExt(CastInst &CI);
Instruction *visitFPToUI(FPToUIInst &FI);
Instruction *visitFPToSI(FPToSIInst &FI);
Instruction *visitUIToFP(CastInst &CI);
Instruction *visitSIToFP(CastInst &CI);
Instruction *visitPtrToInt(PtrToIntInst &CI);
Instruction *visitIntToPtr(IntToPtrInst &CI);
Instruction *visitBitCast(BitCastInst &CI);
Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
Instruction *FI);
Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
Value *A, Value *B, Instruction &Outer,
SelectPatternFlavor SPF2, Value *C);
Instruction *visitSelectInst(SelectInst &SI);
Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
Instruction *visitCallInst(CallInst &CI);
Instruction *visitInvokeInst(InvokeInst &II);
Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
Instruction *visitPHINode(PHINode &PN);
Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
Instruction *visitAllocaInst(AllocaInst &AI);
Instruction *visitMalloc(Instruction &FI);
Instruction *visitFree(CallInst &FI);
Instruction *visitLoadInst(LoadInst &LI);
Instruction *visitStoreInst(StoreInst &SI);
Instruction *visitBranchInst(BranchInst &BI);
Instruction *visitSwitchInst(SwitchInst &SI);
Instruction *visitInsertElementInst(InsertElementInst &IE);
Instruction *visitExtractElementInst(ExtractElementInst &EI);
Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
Instruction *visitExtractValueInst(ExtractValueInst &EV);
Instruction *visitLandingPadInst(LandingPadInst &LI);
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction &I) { return 0; }
private:
bool ShouldChangeType(Type *From, Type *To) const;
Value *dyn_castNegVal(Value *V) const;
Value *dyn_castFNegVal(Value *V) const;
Type *FindElementAtOffset(Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices);
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
/// results in any code being generated and is interesting to optimize out. If
/// the cast can be eliminated by some other simple transformation, we prefer
/// to do the simplification first.
bool ShouldOptimizeCast(Instruction::CastOps opcode,const Value *V,
Type *Ty);
Instruction *visitCallSite(CallSite CS);
Instruction *tryOptimizeCall(CallInst *CI, const TargetData *TD);
bool transformConstExprCastCall(CallSite CS);
Instruction *transformCallThroughTrampoline(CallSite CS,
IntrinsicInst *Tramp);
Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform = true);
Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
Value *EmitGEPOffset(User *GEP);
public:
// InsertNewInstBefore - insert an instruction New before instruction Old
// in the program. Add the new instruction to the worklist.
//
Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
assert(New && New->getParent() == 0 &&
"New instruction already inserted into a basic block!");
BasicBlock *BB = Old.getParent();
BB->getInstList().insert(&Old, New); // Insert inst
Worklist.Add(New);
return New;
}
// InsertNewInstWith - same as InsertNewInstBefore, but also sets the
// debug loc.
//
Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
New->setDebugLoc(Old.getDebugLoc());
return InsertNewInstBefore(New, Old);
}
// ReplaceInstUsesWith - This method is to be used when an instruction is
// found to be dead, replacable with another preexisting expression. Here
// we add all uses of I to the worklist, replace all uses of I with the new
// value, then return I, so that the inst combiner will know that I was
// modified.
//
Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
// If we are replacing the instruction with itself, this must be in a
// segment of unreachable code, so just clobber the instruction.
if (&I == V)
V = UndefValue::get(I.getType());
DEBUG(errs() << "IC: Replacing " << I << "\n"
" with " << *V << '\n');
I.replaceAllUsesWith(V);
return &I;
}
// EraseInstFromFunction - When dealing with an instruction that has side
// effects or produces a void value, we can't rely on DCE to delete the
// instruction. Instead, visit methods should return the value returned by
// this function.
Instruction *EraseInstFromFunction(Instruction &I) {
DEBUG(errs() << "IC: ERASE " << I << '\n');
assert(I.use_empty() && "Cannot erase instruction that is used!");
// Make sure that we reprocess all operands now that we reduced their
// use counts.
if (I.getNumOperands() < 8) {
for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
if (Instruction *Op = dyn_cast<Instruction>(*i))
Worklist.Add(Op);
}
Worklist.Remove(&I);
I.eraseFromParent();
MadeIRChange = true;
return 0; // Don't do anything with FI
}
void ComputeMaskedBits(Value *V, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0) const {
return llvm::ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
}
bool MaskedValueIsZero(Value *V, const APInt &Mask,
unsigned Depth = 0) const {
return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
}
unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
return llvm::ComputeNumSignBits(Op, TD, Depth);
}
private:
/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
/// operators which are associative or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
/// which some other binary operation distributes over either by factorizing
/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
/// a win). Returns the simplified value, or null if it didn't simplify.
Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
/// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
/// based on the demanded bits.
Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
APInt& KnownZero, APInt& KnownOne,
unsigned Depth);
bool SimplifyDemandedBits(Use &U, APInt DemandedMask,
APInt& KnownZero, APInt& KnownOne,
unsigned Depth=0);
/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
/// SimplifyDemandedBits knows about. See if the instruction has any
/// properties that allow us to simplify its operands.
bool SimplifyDemandedInstructionBits(Instruction &Inst);
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
APInt& UndefElts, unsigned Depth = 0);
// FoldOpIntoPhi - Given a binary operator, cast instruction, or select
// which has a PHI node as operand #0, see if we can fold the instruction
// into the PHI (which is only possible if all operands to the PHI are
// constants).
//
Instruction *FoldOpIntoPhi(Instruction &I);
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
// operator and they all are only used by the PHI, PHI together their
// inputs, and do the operation once, to the result of the PHI.
Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
ConstantInt *AndRHS, BinaryOperator &TheAnd);
Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
bool isSub, Instruction &I);
Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool isSigned, bool Inside);
Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
Instruction *MatchBSwap(BinaryOperator &I);
bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
Instruction *SimplifyMemSet(MemSetInst *MI);
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
};
} // end namespace llvm.
#endif
|