aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86TargetTransformInfo.cpp
blob: c98681b62902237e4f4c117c53b611af856ae35b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// X86 target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86tti"
#include "X86.h"
#include "X86TargetMachine.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

// Declare the pass initialization routine locally as target-specific passes
// don't havve a target-wide initialization entry point, and so we rely on the
// pass constructor initialization.
namespace llvm {
void initializeX86TTIPass(PassRegistry &);
}

namespace {

class X86TTI : public ImmutablePass, public TargetTransformInfo {
  const X86TargetMachine *TM;
  const X86Subtarget *ST;
  const X86TargetLowering *TLI;

  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
  /// are set if the result needs to be inserted and/or extracted from vectors.
  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;

public:
  X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
    llvm_unreachable("This pass cannot be directly constructed");
  }

  X86TTI(const X86TargetMachine *TM)
      : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
        TLI(TM->getTargetLowering()) {
    initializeX86TTIPass(*PassRegistry::getPassRegistry());
  }

  virtual void initializePass() {
    pushTTIStack(this);
  }

  virtual void finalizePass() {
    popTTIStack();
  }

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    TargetTransformInfo::getAnalysisUsage(AU);
  }

  /// Pass identification.
  static char ID;

  /// Provide necessary pointer adjustments for the two base classes.
  virtual void *getAdjustedAnalysisPointer(const void *ID) {
    if (ID == &TargetTransformInfo::ID)
      return (TargetTransformInfo*)this;
    return this;
  }

  /// \name Scalar TTI Implementations
  /// @{

  virtual PopcntHwSupport getPopcntHwSupport(unsigned TyWidth) const;

  /// @}

  /// \name Vector TTI Implementations
  /// @{

  virtual unsigned getNumberOfRegisters(bool Vector) const;
  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
                                  int Index, Type *SubTp) const;
  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
                                    Type *Src) const;
  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                      Type *CondTy) const;
  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
                                      unsigned Index) const;
  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
                                   unsigned Alignment,
                                   unsigned AddressSpace) const;

  /// @}
};

} // end anonymous namespace

INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
                   "X86 Target Transform Info", true, true, false)
char X86TTI::ID = 0;

ImmutablePass *
llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
  return new X86TTI(TM);
}


//===----------------------------------------------------------------------===//
//
// X86 cost model.
//
//===----------------------------------------------------------------------===//

namespace {
struct X86CostTblEntry {
  int ISD;
  MVT Type;
  unsigned Cost;
};
}

static int
FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) {
  for (unsigned int i = 0; i < len; ++i)
    if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty)
      return i;

  // Could not find an entry.
  return -1;
}

namespace {
struct X86TypeConversionCostTblEntry {
  int ISD;
  MVT Dst;
  MVT Src;
  unsigned Cost;
};
}

static int
FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
                   int ISD, MVT Dst, MVT Src) {
  for (unsigned int i = 0; i < len; ++i)
    if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst)
      return i;

  // Could not find an entry.
  return -1;
}


X86TTI::PopcntHwSupport X86TTI::getPopcntHwSupport(unsigned TyWidth) const {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  // TODO: Currently the __builtin_popcount() implementation using SSE3
  //   instructions is inefficient. Once the problem is fixed, we should
  //   call ST->hasSSE3() instead of ST->hasSSE4().
  return ST->hasSSE41() ? Fast : None;
}

unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
  if (ST->is64Bit())
    return 16;
  return 8;
}

unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
  // Legalize the type.
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  static const X86CostTblEntry AVX1CostTable[] = {
    // We don't have to scalarize unsupported ops. We can issue two half-sized
    // operations and we only need to extract the upper YMM half.
    // Two ops + 1 extract + 1 insert = 4.
    { ISD::MUL,     MVT::v8i32,    4 },
    { ISD::SUB,     MVT::v8i32,    4 },
    { ISD::ADD,     MVT::v8i32,    4 },
    { ISD::MUL,     MVT::v4i64,    4 },
    { ISD::SUB,     MVT::v4i64,    4 },
    { ISD::ADD,     MVT::v4i64,    4 },
    };

  // Look for AVX1 lowering tricks.
  if (ST->hasAVX()) {
    int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
                          LT.second);
    if (Idx != -1)
      return LT.first * AVX1CostTable[Idx].Cost;
  }
  // Fallback to the default implementation.
  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
}

unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
                                Type *SubTp) const {
  // We only estimate the cost of reverse shuffles.
  if (Kind != Reverse)
    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);

  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
  unsigned Cost = 1;
  if (LT.second.getSizeInBits() > 128)
    Cost = 3; // Extract + insert + copy.

  // Multiple by the number of parts.
  return Cost * LT.first;
}

unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  EVT SrcTy = TLI->getValueType(Src);
  EVT DstTy = TLI->getValueType(Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);

  static const X86TypeConversionCostTblEntry AVXConversionTbl[] = {
    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
  };

  if (ST->hasAVX()) {
    int Idx = FindInConvertTable(AVXConversionTbl,
                                 array_lengthof(AVXConversionTbl),
                                 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
    if (Idx != -1)
      return AVXConversionTbl[Idx].Cost;
  }

  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
}

unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                    Type *CondTy) const {
  // Legalize the type.
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);

  MVT MTy = LT.second;

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  static const X86CostTblEntry SSE42CostTbl[] = {
    { ISD::SETCC,   MVT::v2f64,   1 },
    { ISD::SETCC,   MVT::v4f32,   1 },
    { ISD::SETCC,   MVT::v2i64,   1 },
    { ISD::SETCC,   MVT::v4i32,   1 },
    { ISD::SETCC,   MVT::v8i16,   1 },
    { ISD::SETCC,   MVT::v16i8,   1 },
  };

  static const X86CostTblEntry AVX1CostTbl[] = {
    { ISD::SETCC,   MVT::v4f64,   1 },
    { ISD::SETCC,   MVT::v8f32,   1 },
    // AVX1 does not support 8-wide integer compare.
    { ISD::SETCC,   MVT::v4i64,   4 },
    { ISD::SETCC,   MVT::v8i32,   4 },
    { ISD::SETCC,   MVT::v16i16,  4 },
    { ISD::SETCC,   MVT::v32i8,   4 },
  };

  static const X86CostTblEntry AVX2CostTbl[] = {
    { ISD::SETCC,   MVT::v4i64,   1 },
    { ISD::SETCC,   MVT::v8i32,   1 },
    { ISD::SETCC,   MVT::v16i16,  1 },
    { ISD::SETCC,   MVT::v32i8,   1 },
  };

  if (ST->hasAVX2()) {
    int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
    if (Idx != -1)
      return LT.first * AVX2CostTbl[Idx].Cost;
  }

  if (ST->hasAVX()) {
    int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
    if (Idx != -1)
      return LT.first * AVX1CostTbl[Idx].Cost;
  }

  if (ST->hasSSE42()) {
    int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
    if (Idx != -1)
      return LT.first * SSE42CostTbl[Idx].Cost;
  }

  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}

unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
                                    unsigned Index) const {
  assert(Val->isVectorTy() && "This must be a vector type");

  if (Index != -1U) {
    // Legalize the type.
    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);

    // This type is legalized to a scalar type.
    if (!LT.second.isVector())
      return 0;

    // The type may be split. Normalize the index to the new type.
    unsigned Width = LT.second.getVectorNumElements();
    Index = Index % Width;

    // Floating point scalars are already located in index #0.
    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
      return 0;
  }

  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
}

unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
                                 unsigned AddressSpace) const {
  // Legalize the type.
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
         "Invalid Opcode");

  // Each load/store unit costs 1.
  unsigned Cost = LT.first * 1;

  // On Sandybridge 256bit load/stores are double pumped
  // (but not on Haswell).
  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
    Cost*=2;

  return Cost;
}