aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86Subtarget.cpp
blob: 481e821030b3bfb26bebac044de27fd13449918c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "subtarget"
#include "X86Subtarget.h"
#include "X86InstrInfo.h"
#include "X86GenSubtarget.inc"
#include "llvm/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Host.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;

#if defined(_MSC_VER)
#include <intrin.h>
#endif

/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyBlockAddressReference() const {
  if (isPICStyleGOT())    // 32-bit ELF targets.
    return X86II::MO_GOTOFF;
  
  if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
    return X86II::MO_PIC_BASE_OFFSET;
  
  // Direct static reference to label.
  return X86II::MO_NO_FLAG;
}

/// ClassifyGlobalReference - Classify a global variable reference for the
/// current subtarget according to how we should reference it in a non-pcrel
/// context.
unsigned char X86Subtarget::
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
  // DLLImport only exists on windows, it is implemented as a load from a
  // DLLIMPORT stub.
  if (GV->hasDLLImportLinkage())
    return X86II::MO_DLLIMPORT;

  // Determine whether this is a reference to a definition or a declaration.
  // Materializable GVs (in JIT lazy compilation mode) do not require an extra
  // load from stub.
  bool isDecl = GV->hasAvailableExternallyLinkage();
  if (GV->isDeclaration() && !GV->isMaterializable())
    isDecl = true;

  // X86-64 in PIC mode.
  if (isPICStyleRIPRel()) {
    // Large model never uses stubs.
    if (TM.getCodeModel() == CodeModel::Large)
      return X86II::MO_NO_FLAG;
      
    if (isTargetDarwin()) {
      // If symbol visibility is hidden, the extra load is not needed if
      // target is x86-64 or the symbol is definitely defined in the current
      // translation unit.
      if (GV->hasDefaultVisibility() &&
          (isDecl || GV->isWeakForLinker()))
        return X86II::MO_GOTPCREL;
    } else if (!isTargetWin64()) {
      assert(isTargetELF() && "Unknown rip-relative target");

      // Extra load is needed for all externally visible.
      if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
        return X86II::MO_GOTPCREL;
    }

    return X86II::MO_NO_FLAG;
  }
  
  if (isPICStyleGOT()) {   // 32-bit ELF targets.
    // Extra load is needed for all externally visible.
    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
      return X86II::MO_GOTOFF;
    return X86II::MO_GOT;
  }
  
  if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
    // Determine whether we have a stub reference and/or whether the reference
    // is relative to the PIC base or not.
    
    // If this is a strong reference to a definition, it is definitely not
    // through a stub.
    if (!isDecl && !GV->isWeakForLinker())
      return X86II::MO_PIC_BASE_OFFSET;

    // Unless we have a symbol with hidden visibility, we have to go through a
    // normal $non_lazy_ptr stub because this symbol might be resolved late.
    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
    
    // If symbol visibility is hidden, we have a stub for common symbol
    // references and external declarations.
    if (isDecl || GV->hasCommonLinkage()) {
      // Hidden $non_lazy_ptr reference.
      return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
    }
    
    // Otherwise, no stub.
    return X86II::MO_PIC_BASE_OFFSET;
  }
  
  if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
    // Determine whether we have a stub reference.
    
    // If this is a strong reference to a definition, it is definitely not
    // through a stub.
    if (!isDecl && !GV->isWeakForLinker())
      return X86II::MO_NO_FLAG;
    
    // Unless we have a symbol with hidden visibility, we have to go through a
    // normal $non_lazy_ptr stub because this symbol might be resolved late.
    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
      return X86II::MO_DARWIN_NONLAZY;

    // Otherwise, no stub.
    return X86II::MO_NO_FLAG;
  }
  
  // Direct static reference to global.
  return X86II::MO_NO_FLAG;
}


/// getBZeroEntry - This function returns the name of a function which has an
/// interface like the non-standard bzero function, if such a function exists on
/// the current subtarget and it is considered prefereable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
  // Darwin 10 has a __bzero entry point for this purpose.
  if (getTargetTriple().isMacOSX() &&
      !getTargetTriple().isMacOSXVersionLT(10, 6))
    return "__bzero";

  return 0;
}

/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
/// to immediate address.
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
  if (Is64Bit)
    return false;
  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}

/// getSpecialAddressLatency - For targets where it is beneficial to
/// backschedule instructions that compute addresses, return a value
/// indicating the number of scheduling cycles of backscheduling that
/// should be attempted.
unsigned X86Subtarget::getSpecialAddressLatency() const {
  // For x86 out-of-order targets, back-schedule address computations so
  // that loads and stores aren't blocked.
  // This value was chosen arbitrarily.
  return 200;
}

/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments.  If we can't run cpuid on the host, return true.
static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
                            unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
  #if defined(__GNUC__)
    // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
    asm ("movq\t%%rbx, %%rsi\n\t"
         "cpuid\n\t"
         "xchgq\t%%rbx, %%rsi\n\t"
         : "=a" (*rEAX),
           "=S" (*rEBX),
           "=c" (*rECX),
           "=d" (*rEDX)
         :  "a" (value));
    return false;
  #elif defined(_MSC_VER)
    int registers[4];
    __cpuid(registers, value);
    *rEAX = registers[0];
    *rEBX = registers[1];
    *rECX = registers[2];
    *rEDX = registers[3];
    return false;
  #endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
  #if defined(__GNUC__)
    asm ("movl\t%%ebx, %%esi\n\t"
         "cpuid\n\t"
         "xchgl\t%%ebx, %%esi\n\t"
         : "=a" (*rEAX),
           "=S" (*rEBX),
           "=c" (*rECX),
           "=d" (*rEDX)
         :  "a" (value));
    return false;
  #elif defined(_MSC_VER)
    __asm {
      mov   eax,value
      cpuid
      mov   esi,rEAX
      mov   dword ptr [esi],eax
      mov   esi,rEBX
      mov   dword ptr [esi],ebx
      mov   esi,rECX
      mov   dword ptr [esi],ecx
      mov   esi,rEDX
      mov   dword ptr [esi],edx
    }
    return false;
  #endif
#endif
  return true;
}

static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
  if (Family == 6 || Family == 0xf) {
    if (Family == 0xf)
      // Examine extended family ID if family ID is F.
      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
    // Examine extended model ID if family ID is 6 or F.
    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
  }
}

void X86Subtarget::AutoDetectSubtargetFeatures() {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  union {
    unsigned u[3];
    char     c[12];
  } text;
  
  if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
    return;

  GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
  
  if ((EDX >> 15) & 1) HasCMov = true;
  if ((EDX >> 23) & 1) X86SSELevel = MMX;
  if ((EDX >> 25) & 1) X86SSELevel = SSE1;
  if ((EDX >> 26) & 1) X86SSELevel = SSE2;
  if (ECX & 0x1)       X86SSELevel = SSE3;
  if ((ECX >> 9)  & 1) X86SSELevel = SSSE3;
  if ((ECX >> 19) & 1) X86SSELevel = SSE41;
  if ((ECX >> 20) & 1) X86SSELevel = SSE42;
  // FIXME: AVX codegen support is not ready.
  //if ((ECX >> 28) & 1) { HasAVX = true; X86SSELevel = NoMMXSSE; }

  bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
  bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;

  HasCLMUL = IsIntel && ((ECX >> 1) & 0x1);
  HasFMA3  = IsIntel && ((ECX >> 12) & 0x1);
  HasPOPCNT = IsIntel && ((ECX >> 23) & 0x1);
  HasAES   = IsIntel && ((ECX >> 25) & 0x1);

  if (IsIntel || IsAMD) {
    // Determine if bit test memory instructions are slow.
    unsigned Family = 0;
    unsigned Model  = 0;
    DetectFamilyModel(EAX, Family, Model);
    IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
    // If it's Nehalem, unaligned memory access is fast.
    if (Family == 15 && Model == 26)
      IsUAMemFast = true;

    GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
    HasX86_64 = (EDX >> 29) & 0x1;
    HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
    HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
  }
}

X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS, 
                           bool is64Bit)
  : PICStyle(PICStyles::None)
  , X86SSELevel(NoMMXSSE)
  , X863DNowLevel(NoThreeDNow)
  , HasCMov(false)
  , HasX86_64(false)
  , HasPOPCNT(false)
  , HasSSE4A(false)
  , HasAVX(false)
  , HasAES(false)
  , HasCLMUL(false)
  , HasFMA3(false)
  , HasFMA4(false)
  , IsBTMemSlow(false)
  , IsUAMemFast(false)
  , HasVectorUAMem(false)
  , stackAlignment(8)
  // FIXME: this is a known good value for Yonah. How about others?
  , MaxInlineSizeThreshold(128)
  , TargetTriple(TT)
  , Is64Bit(is64Bit) {

  // default to hard float ABI
  if (FloatABIType == FloatABI::Default)
    FloatABIType = FloatABI::Hard;
    
  // Determine default and user specified characteristics
  if (!FS.empty()) {
    // If feature string is not empty, parse features string.
    std::string CPU = sys::getHostCPUName();
    ParseSubtargetFeatures(FS, CPU);
    // All X86-64 CPUs also have SSE2, however user might request no SSE via 
    // -mattr, so don't force SSELevel here.
    if (HasAVX)
      X86SSELevel = NoMMXSSE;
  } else {
    // Otherwise, use CPUID to auto-detect feature set.
    AutoDetectSubtargetFeatures();
    // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
    if (Is64Bit && !HasAVX && X86SSELevel < SSE2)
      X86SSELevel = SSE2;
  }

  // If requesting codegen for X86-64, make sure that 64-bit features
  // are enabled.
  if (Is64Bit) {
    HasX86_64 = true;

    // All 64-bit cpus have cmov support.
    HasCMov = true;
  }
    
  DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
               << ", 3DNowLevel " << X863DNowLevel
               << ", 64bit " << HasX86_64 << "\n");
  assert((!Is64Bit || HasX86_64) &&
         "64-bit code requested on a subtarget that doesn't support it!");

  // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
  // 32 and 64 bit) and for all 64-bit targets.
  if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
      isTargetSolaris() || Is64Bit)
    stackAlignment = 16;

  if (StackAlignment)
    stackAlignment = StackAlignment;
}

/// IsCalleePop - Determines whether the callee is required to pop its
/// own arguments. Callee pop is necessary to support tail calls.
bool X86Subtarget::IsCalleePop(bool IsVarArg,
                               CallingConv::ID CallingConv) const {
  if (IsVarArg)
    return false;

  switch (CallingConv) {
  default:
    return false;
  case CallingConv::X86_StdCall:
    return !is64Bit();
  case CallingConv::X86_FastCall:
    return !is64Bit();
  case CallingConv::X86_ThisCall:
    return !is64Bit();
  case CallingConv::Fast:
    return GuaranteedTailCallOpt;
  case CallingConv::GHC:
    return GuaranteedTailCallOpt;
  }
}