aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86PeepholeOpt.cpp
blob: cb31ec335d1620a8d5cbc5ca218399cab4ac91ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//===-- X86PeepholeOpt.cpp - X86 Peephole Optimizer -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a peephole optimizer for the X86.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

namespace {
  Statistic<> NumPHOpts("x86-peephole",
                        "Number of peephole optimization performed");
  Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded");
  struct PH : public MachineFunctionPass {
    virtual bool runOnMachineFunction(MachineFunction &MF);

    bool PeepholeOptimize(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &I);

    virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
  };
}

FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }

bool PH::runOnMachineFunction(MachineFunction &MF) {
  bool Changed = false;

  for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
    for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
      if (PeepholeOptimize(*BI, I)) {
        Changed = true;
        ++NumPHOpts;
      } else
        ++I;

  return Changed;
}


bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &I) {
  assert(I != MBB.end());
  MachineBasicBlock::iterator NextI = next(I);

  MachineInstr *MI = I;
  MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
  unsigned Size = 0;
  switch (MI->getOpcode()) {
  case X86::MOV8rr:
  case X86::MOV16rr:
  case X86::MOV32rr:   // Destroy X = X copies...
    if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
      I = MBB.erase(I);
      return true;
    }
    return false;

    // A large number of X86 instructions have forms which take an 8-bit
    // immediate despite the fact that the operands are 16 or 32 bits.  Because
    // this can save three bytes of code size (and icache space), we want to
    // shrink them if possible.
  case X86::IMUL16rri: case X86::IMUL32rri:
    assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
    if (MI->getOperand(2).isImmediate()) {
      int Val = MI->getOperand(2).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break;
        case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        unsigned R1 = MI->getOperand(1).getReg();
        I = MBB.insert(MBB.erase(I),
                       BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
        return true;
      }
    }
    return false;

  case X86::ADD16ri:  case X86::ADD32ri:  case X86::ADC32ri:
  case X86::SUB16ri:  case X86::SUB32ri:
  case X86::SBB16ri:  case X86::SBB32ri:
  case X86::AND16ri:  case X86::AND32ri:
  case X86::OR16ri:   case X86::OR32ri:
  case X86::XOR16ri:  case X86::XOR32ri:
    assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
    if (MI->getOperand(1).isImmediate()) {
      int Val = MI->getOperand(1).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::ADD16ri:  Opcode = X86::ADD16ri8; break;
        case X86::ADD32ri:  Opcode = X86::ADD32ri8; break;
        case X86::ADC32ri:  Opcode = X86::ADC32ri8; break;
        case X86::SUB16ri:  Opcode = X86::SUB16ri8; break;
        case X86::SUB32ri:  Opcode = X86::SUB32ri8; break;
        case X86::SBB16ri:  Opcode = X86::SBB16ri8; break;
        case X86::SBB32ri:  Opcode = X86::SBB32ri8; break;
        case X86::AND16ri:  Opcode = X86::AND16ri8; break;
        case X86::AND32ri:  Opcode = X86::AND32ri8; break;
        case X86::OR16ri:   Opcode = X86::OR16ri8; break;
        case X86::OR32ri:   Opcode = X86::OR32ri8; break;
        case X86::XOR16ri:  Opcode = X86::XOR16ri8; break;
        case X86::XOR32ri:  Opcode = X86::XOR32ri8; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        I = MBB.insert(MBB.erase(I),
                    BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef)
                      .addZImm((char)Val));
        return true;
      }
    }
    return false;

  case X86::ADD16mi:  case X86::ADD32mi:  case X86::ADC32mi:
  case X86::SUB16mi:  case X86::SUB32mi:
  case X86::SBB16mi:  case X86::SBB32mi:
  case X86::AND16mi:  case X86::AND32mi:
  case X86::OR16mi:  case X86::OR32mi:
  case X86::XOR16mi:  case X86::XOR32mi:
    assert(MI->getNumOperands() == 5 && "These should all have 5 operands!");
    if (MI->getOperand(4).isImmediate()) {
      int Val = MI->getOperand(4).getImmedValue();
      // If the value is the same when signed extended from 8 bits...
      if (Val == (signed int)(signed char)Val) {
        unsigned Opcode;
        switch (MI->getOpcode()) {
        default: assert(0 && "Unknown opcode value!");
        case X86::ADD16mi:  Opcode = X86::ADD16mi8; break;
        case X86::ADD32mi:  Opcode = X86::ADD32mi8; break;
        case X86::ADC32mi:  Opcode = X86::ADC32mi8; break;
        case X86::SUB16mi:  Opcode = X86::SUB16mi8; break;
        case X86::SUB32mi:  Opcode = X86::SUB32mi8; break;
        case X86::SBB16mi:  Opcode = X86::SBB16mi8; break;
        case X86::SBB32mi:  Opcode = X86::SBB32mi8; break;
        case X86::AND16mi:  Opcode = X86::AND16mi8; break;
        case X86::AND32mi:  Opcode = X86::AND32mi8; break;
        case X86::OR16mi:   Opcode = X86::OR16mi8; break;
        case X86::OR32mi:   Opcode = X86::OR32mi8; break;
        case X86::XOR16mi:  Opcode = X86::XOR16mi8; break;
        case X86::XOR32mi:  Opcode = X86::XOR32mi8; break;
        }
        unsigned R0 = MI->getOperand(0).getReg();
        unsigned Scale = MI->getOperand(1).getImmedValue();
        unsigned R1 = MI->getOperand(2).getReg();
        if (MI->getOperand(3).isImmediate()) {
          unsigned Offset = MI->getOperand(3).getImmedValue();
          I = MBB.insert(MBB.erase(I),
                         BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
                         addReg(R1).addSImm(Offset).addZImm((char)Val));
        } else if (MI->getOperand(3).isGlobalAddress()) {
          GlobalValue *GA = MI->getOperand(3).getGlobal();
          int Offset = MI->getOperand(3).getOffset();
          I = MBB.insert(