//====- X86Instr64bit.td - Describe X86-64 Instructions ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86-64 instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64>;
// 64-bits but only 8 bits are significant.
def i64i8imm : Operand<i64>;
def lea64mem : Operand<i64> {
let PrintMethod = "printi64mem";
let MIOperandInfo = (ops GR64, i8imm, GR64, i32imm);
}
def lea64_32mem : Operand<i32> {
let PrintMethod = "printlea64_32mem";
let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm);
}
//===----------------------------------------------------------------------===//
// Complex Pattern Definitions.
//
def lea64addr : ComplexPattern<i64, 4, "SelectLEAAddr",
[add, mul, shl, or, frameindex, X86Wrapper],
[]>;
//===----------------------------------------------------------------------===//
// Pattern fragments.
//
def i64immSExt32 : PatLeaf<(i64 imm), [{
// i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// sign extended field.
return (int64_t)N->getValue() == (int32_t)N->getValue();
}]>;
def i64immZExt32 : PatLeaf<(i64 imm), [{
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// unsignedsign extended field.
return (uint64_t)N->getValue() == (uint32_t)N->getValue();
}]>;
def i64immSExt8 : PatLeaf<(i64 imm), [{
// i64immSExt8 predicate - True if the 64-bit immediate fits in a 8-bit
// sign extended field.
return (int64_t)N->getValue() == (int8_t)N->getValue();
}]>;
def i64immFFFFFFFF : PatLeaf<(i64 imm), [{
// i64immFFFFFFFF - True if this is a specific constant we can't write in
// tblgen files.
return N->getValue() == 0x00000000FFFFFFFFULL;
}]>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
//===----------------------------------------------------------------------===//
// Instruction list...
//
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers...
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS] in {
def CALL64pcrel32 : I<0xE8, RawFrm, (outs), (ins i64imm:$dst, variable_ops),
"call\t${dst:call}", []>;
def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
"call\t{*}$dst", [(X86call GR64:$dst)]>;
def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops),
"call\t{*}$dst", []>;
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNdi64 : I<0, Pseudo, (outs), (ins i64imm:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset",
[]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNri64 : I<0, Pseudo, (outs), (ins GR64:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset",
[]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst # TAILCALL",
[]>;
// Branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
[(brind GR64:$dst)]>;
def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
[(brind (loadi64 addr:$dst))]>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
def LEAVE64 : I<0xC9, RawFrm,
(outs), (ins), "leave", []>;
let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
let mayLoad = 1 in
def POP64r : I<0x58, AddRegFrm,
(outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
let mayStore = 1 in
def PUSH64r : I<0x50, AddRegFrm,
(outs), (ins GR64:$reg), "push{q}\t$reg", []>;
}
let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1 in
def POPFQ : I<0x9D, RawFrm, (outs), (ins), "popf", []>, REX_W;
let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1 in
def PUSHFQ : I<0x9C, RawFrm, (outs), (ins), "pushf", []>;
def LEA64_32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins lea64_32mem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
let isReMaterializable = 1 in
def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
"lea{q}\t{$src|$dst}, {$dst|$src}",
[(set GR64:$dst, lea64addr:$src)]>;
let isTwoAddress = 1 in
def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
"bswap{q}\t$dst",
[(set GR64:$dst, (bswap GR64:$src))]>, TB;
// Bit scan instructions.
let Defs = [EFLAGS] in {
def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsf GR64:$src)), (implicit EFLAGS)]>, TB;
def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsf (loadi64 addr:$src))),
(implicit EFLAGS)]>, TB;
def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsr GR64:$src)), (implicit EFLAGS)]>, TB;
def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsr (loadi64 addr:$src))),
(implicit EFLAGS)]>, TB;
} // Defs = [EFLAGS]
// Repeat string ops
let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI] in
def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
[(X86rep_movs i64)]>, REP;
let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI] in
def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
[(X86rep_stos i64)]>, REP;
//===-------------------------------