aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/SparcV9PreSelection.cpp
blob: fd1fdc329e1436e05a34c6b1353baaca1003ce8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//===- SparcV9PreSelection.cpp - Specialize LLVM code for SparcV9 ---------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file defines the PreSelection pass which specializes LLVM code for
// the SparcV9 instruction selector, while remaining in legal portable LLVM
// form and preserving type information and type safety. This is meant to enable
// dataflow optimizations on SparcV9-specific operations such as accesses to
// constants, globals, and array indexing.
//
//===----------------------------------------------------------------------===//

#include "SparcV9Internals.h"
#include "SparcV9BurgISel.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include <algorithm>
using namespace llvm;

namespace {

  //===--------------------------------------------------------------------===//
  // PreSelection Pass - Specialize LLVM code for the SparcV9 instr. selector.
  // 
  class PreSelection : public FunctionPass, public InstVisitor<PreSelection> {
    const TargetInstrInfo &instrInfo;

  public:
    PreSelection(const TargetMachine &T)
      : instrInfo(*T.getInstrInfo()) {}

    // runOnFunction - apply this pass to each Function
    bool runOnFunction(Function &F) {
      visit(F);
      return true;
    }
    const char *getPassName() const { return "SparcV9 Instr. Pre-selection"; }

    // These methods do the actual work of specializing code
    void visitInstruction(Instruction &I);   // common work for every instr. 
    void visitGetElementPtrInst(GetElementPtrInst &I);
    void visitCallInst(CallInst &I);
    void visitPHINode(PHINode &PN);

    void visitBasicBlock(BasicBlock &BB) {
      if (isa<UnreachableInst>(BB.getTerminator())) {
        BB.getInstList().pop_back();
        const Type *RetTy = BB.getParent()->getReturnType();
        Value *RetVal = RetTy == Type::VoidTy ? 0 : UndefValue::get(RetTy);
        new ReturnInst(RetVal, &BB);
      }
    }

    // Helper functions for visiting operands of every instruction
    // 
    // visitOperands() works on every operand in [firstOp, lastOp-1].
    // If lastOp==0, lastOp defaults to #operands or #incoming Phi values.
    // 
    // visitOneOperand() does all the work for one operand.
    // 
    void visitOperands(Instruction &I, int firstOp=0);
    void visitOneOperand(Instruction &I, Value* Op, unsigned opNum,
                         Instruction& insertBefore);
  };

#if 0
  // Register the pass...
  RegisterPass<PreSelection> X("preselect",
                               "Specialize LLVM code for a target machine"
                               createPreselectionPass);
#endif

}  // end anonymous namespace


//------------------------------------------------------------------------------
// Helper functions used by methods of class PreSelection
//------------------------------------------------------------------------------


// getGlobalAddr(): Put address of a global into a v. register.
static GetElementPtrInst* getGlobalAddr(Value* ptr, Instruction& insertBefore) {

  return (isa<GlobalVariable>(ptr))
    ? new GetElementPtrInst(ptr,
                    std::vector<Value*>(1, ConstantSInt::get(Type::LongTy, 0U)),
                    "addrOfGlobal:" + ptr->getName(), &insertBefore)
    : NULL;
}

// Wrapper on Constant::classof to use in find_if
inline static bool nonConstant(const Use& U) {
  return ! isa<Constant>(U);
}

static Instruction* DecomposeConstantExpr(ConstantExpr* CE,
                                          Instruction& insertBefore)
{
  Value *getArg1, *getArg2;
  
  switch(CE->getOpcode())
    {
    case Instruction::Cast:
      getArg1 = CE->getOperand(0);
      if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
        getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
      return new CastInst(getArg1, CE->getType(), "constantCast",&insertBefore);

    case Instruction::GetElementPtr:
      assert(find_if(CE->op_begin()+1, CE->op_end(),nonConstant) == CE->op_end()
             && "All indices in ConstantExpr getelementptr must be constant!");
      getArg1 = CE->getOperand(0);
      if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
        getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
      else if (GetElementPtrInst* gep = getGlobalAddr(getArg1, insertBefore))
        getArg1 = gep;
      return new GetElementPtrInst(getArg1,
                          std::vector<Value*>(CE->op_begin()+1, CE->op_end()),
                          "constantGEP:" + getArg1->getName(), &insertBefore);
                          
    case Instruction::Select: {
      Value *C, *S1, *S2;
      C = CE->getOperand (0);
      if (ConstantExpr* CEarg = dyn_cast<ConstantExpr> (C))
        C = DecomposeConstantExpr (CEarg, insertBefore);
      S1 = CE->getOperand (1);
      if (ConstantExpr* CEarg = dyn_cast<ConstantExpr> (S1))
        S1 = DecomposeConstantExpr (CEarg, insertBefore);
      S2 = CE->getOperand (2);
      if (ConstantExpr* CEarg = dyn_cast<ConstantExpr> (S2))
        S2 = DecomposeConstantExpr (CEarg, insertBefore);
      return new SelectInst (C, S1, S2, "constantSelect", &insertBefore);
    }
    
    default:                            // must be a binary operator
      assert(CE->getOpcode() >= Instruction::BinaryOpsBegin &&
             CE->getOpcode() <  Instruction::BinaryOpsEnd &&
             "Unhandled opcode in ConstantExpr");
      getArg1 = CE->getOperand(0);
      if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
        getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
      getArg2 = CE->getOperand(1);
      if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg2))
        getArg2 = DecomposeConstantExpr(CEarg, insertBefore);
      return BinaryOperator::create((Instruction::BinaryOps) CE->getOpcode(),
                                    getArg1, getArg2,
                                    "constantBinaryOp", &insertBefore);
    }
}

static inline bool ConstantTypeMustBeLoaded(const Type* CVT) {
  assert(CVT->isPrimitiveType() || isa<PointerType>(CVT));
  return !(CVT->isIntegral() || isa<PointerType>(CVT));
}

//------------------------------------------------------------------------------
// Instruction visitor methods to perform instruction-specific operations
//------------------------------------------------------------------------------
inline void
PreSelection::visitOneOperand(Instruction &I, Value* Op, unsigned opNum,
                              Instruction& insertBefore)
{
  assert(&insertBefore != NULL && "Must have instruction to insert before.");

  if (GetElementPtrInst* gep = getGlobalAddr(Op, insertBefore)) {
    I.setOperand(opNum, gep);           // replace global operand
    return;                             // nothing more to do for this op.
  }

  Constant* CV  = dyn_cast<Constant>(Op);
  if (CV == NULL)
    return;

  if (ConstantExpr* CE = dyn_cast<ConstantExpr>(CV)) {
    // load-time constant: factor it out so we optimize as best we can
    Instruction* computeConst = DecomposeConstantExpr(CE, insertBefore);
    I.setOperand(opNum, computeConst); // replace expr operand with result
  } else if (ConstantTypeMustBeLoaded(CV->getType())) {
    // load address of constant into a register, then load the constant
    // this is now done during instruction selection
    // the constant will live in the MachineConstantPool later on
  } else if (ConstantMayNotFitInImmedField(CV, &I)) {
    // put the constant into a virtual register using a cast
    CastInst* castI = new CastInst(CV, CV->getType(), "copyConst",
                                   &insertBefore);
    I.setOperand(opNum, castI);      // replace operand with copy in v.reg.
  }
}

/// visitOperands - transform individual operands of all instructions:
/// -- Load "large" int constants into a virtual register.  What is large
///    depends on the type of instruction and on the target architecture.
/// -- For any constants that cannot be put in an immediate field,
///    load address into virtual register first, and then load the constant.
/// 
/// firstOp and lastOp can be used to skip leading and trailing operands.
/// If lastOp is 0, it defaults to #operands or #incoming Phi values.
///  
inline void PreSelection::visitOperands(Instruction &I, int firstOp) {
  // For any instruction other than PHI, copies go just before the instr.
  for (unsigned i = firstOp, e = I.getNumOperands(); i != e; ++i)
    visitOneOperand(I, I.getOperand(i), i, I);
}


void PreSelection::visitPHINode(PHINode &PN) {
  // For a PHI, operand copies must be before the terminator of the
  // appropriate predecessor basic block.  Remaining logic is simple
  // so just handle PHIs and other instructions separately.
  // 
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
    visitOneOperand(PN, PN.getIncomingValue(i),
                    PN.getOperandNumForIncomingValue(i),
                    *PN.getIncomingBlock(i)->getTerminator());
  // do not call visitOperands!
}

// Common work for *all* instructions.  This needs to be called explicitly
// by other visi