aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPCISelLowering.h
blob: da438a5aa7f2af1945e16f914969f5a4f578f31b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H

#include "PPC.h"
#include "PPCRegisterInfo.h"
#include "PPCSubtarget.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"

namespace llvm {
  namespace PPCISD {
    enum NodeType {
      // Start the numbering where the builtin ops and target ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// FSEL - Traditional three-operand fsel node.
      ///
      FSEL,

      /// FCFID - The FCFID instruction, taking an f64 operand and producing
      /// and f64 value containing the FP representation of the integer that
      /// was temporarily in the f64 operand.
      FCFID,

      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
      /// operand, producing an f64 value containing the integer representation
      /// of that FP value.
      FCTIDZ, FCTIWZ,

      /// STFIWX - The STFIWX instruction.  The first operand is an input token
      /// chain, then an f64 value to store, then an address to store it to.
      STFIWX,

      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
      // three v4f32 operands and producing a v4f32 result.
      VMADDFP, VNMSUBFP,

      /// VPERM - The PPC VPERM Instruction.
      ///
      VPERM,

      /// Hi/Lo - These represent the high and low 16-bit parts of a global
      /// address respectively.  These nodes have two operands, the first of
      /// which must be a TargetGlobalAddress, and the second of which must be a
      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
      /// though these are usually folded into other nodes.
      Hi, Lo,

      TOC_ENTRY,

      /// The following three target-specific nodes are used for calls through
      /// function pointers in the 64-bit SVR4 ABI.

      /// Restore the TOC from the TOC save area of the current stack frame.
      /// This is basically a hard coded load instruction which additionally
      /// takes/produces a flag.
      TOC_RESTORE,

      /// Like a regular LOAD but additionally taking/producing a flag.
      LOAD,

      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
      /// a hard coded load instruction.
      LOAD_TOC,

      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
      /// compute an allocation on the stack.
      DYNALLOC,

      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
      /// shift amounts.  These nodes are generated by the multi-precision shift
      /// code.
      SRL, SRA, SHL,

      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
      /// registers.
      EXTSW_32,

      /// CALL - A direct function call.
      /// CALL_NOP is a call with the special NOP which follows 64-bit
      /// SVR4 calls.
      CALL, CALL_NOP,

      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
      /// MTCTR instruction.
      MTCTR,

      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
      /// BCTRL instruction.
      BCTRL,

      /// Return with a flag operand, matched by 'blr'
      RET_FLAG,

      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
      /// instructions.  This copies the bits corresponding to the specified
      /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
      /// are undefined.
      MFCR,

      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
      EH_SJLJ_SETJMP,

      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
      EH_SJLJ_LONGJMP,

      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
      /// instructions.  For lack of better number, we use the opcode number
      /// encoding for the OPC field to identify the compare.  For example, 838
      /// is VCMPGTSH.
      VCMP,

      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
      /// altivec VCMP*o instructions.  For lack of better number, we use the
      /// opcode number encoding for the OPC field to identify the compare.  For
      /// example, 838 is VCMPGTSH.
      VCMPo,

      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
      /// condition register to branch on, OPC is the branch opcode to use (e.g.
      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
      /// an optional input flag argument.
      COND_BRANCH,

      // The following 5 instructions are used only as part of the
      // long double-to-int conversion sequence.

      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
      /// register.
      MFFS,

      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
      MTFSB0,

      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
      MTFSB1,

      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
      /// rounding towards zero.  It has flags added so it won't move past the
      /// FPSCR-setting instructions.
      FADDRTZ,

      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
      MTFSF,

      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
      /// reserve indexed. This is used to implement atomic operations.
      LARX,

      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
      /// indexed. This is used to implement atomic operations.
      STCX,

      /// TC_RETURN - A tail call return.
      ///   operand #0 chain
      ///   operand #1 callee (register or absolute)
      ///   operand #2 stack adjustment
      ///   operand #3 optional in flag
      TC_RETURN,

      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
      CR6SET,
      CR6UNSET,

      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
      /// TLS model, produces an ADDIS8 instruction that adds the GOT
      /// base to sym@got@tprel@ha.
      ADDIS_GOT_TPREL_HA,

      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
      /// TLS model, produces a LD instruction with base register G8RReg
      /// and offset sym@got@tprel@l.  This completes the addition that
      /// finds the offset of "sym" relative to the thread pointer.
      LD_GOT_TPREL_L,

      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
      /// model, produces an ADD instruction that adds the contents of
      /// G8RReg to the thread pointer.  Symbol contains a relocation
      /// sym@tls which is to be replaced by the thread pointer and
      /// identifies to the linker that the instruction is part of a
      /// TLS sequence.
      ADD_TLS,

      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
      /// model, produces an ADDIS8 instruction that adds the GOT base
      /// register to sym@got@tlsgd@ha.
      ADDIS_TLSGD_HA,

      /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
      /// model, produces an ADDI8 instruction that adds G8RReg to
      /// sym@got@tlsgd@l.
      ADDI_TLSGD_L,

      /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
      /// model, produces a call to __tls_get_addr(sym@tlsgd).
      GET_TLS_ADDR,

      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
      /// model, produces an ADDIS8 instruction that adds the GOT base
      /// register to sym@got@tlsld@ha.
      ADDIS_TLSLD_HA,

      /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
      /// model, produces an ADDI8 instruction that adds G8RReg to
      /// sym@got@tlsld@l.
      ADDI_TLSLD_L,

      /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
      /// model, produces a call to __tls_get_addr(sym@tlsld).
      GET_TLSLD_ADDR,

      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
      /// local-dynamic TLS model, produces an ADDIS8 instruction
      /// that adds X3 to sym@dtprel@ha.  The Chain operand is needed 
      /// to tie this in place following a copy to %X3 from the result
      /// of a GET_TLSLD_ADDR.
      ADDIS_DTPREL_HA,

      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
      /// model, produces an ADDI8 instruction that adds G8RReg to
      /// sym@got@dtprel@l.
      ADDI_DTPREL_L,

      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
      /// during instruction selection to optimize a BUILD_VECTOR into
      /// operations on splats.  This is necessary to avoid losing these
      /// optimizations due to constant folding.
      VADD_SPLAT,

      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
      STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,

      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
      /// i32.
      STBRX,

      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
      /// or i32.
      LBRX,

      /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
      /// produces an ADDIS8 instruction that adds the TOC base register to
      /// sym@toc@ha.
      ADDIS_TOC_HA,

      /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
      /// produces a LD instruction with base register G8RReg and offset
      /// sym@toc@l.  Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
      LD_TOC_L,

      /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
      /// an ADDI8 instruction that adds G8RReg to sym@toc@l.
      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
      ADDI_TOC_L
    };
  }

  /// Define some predicates that are used for node matching.
  namespace PPC {
    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUHUM instruction.
    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);

    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    /// VPKUWUM instruction.
    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);

    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                            bool isUnary);

    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                            bool isUnary);

    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    /// amount, otherwise return -1.
    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);

    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a splat of a single element that is suitable for input to
    /// VSPLTB/VSPLTH/VSPLTW.
    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);

    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    /// are -0.0.
    bool isAllNegativeZeroVector(SDNode *N);

    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);

    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    /// formed by using a vspltis[bhw] instruction of the specified element
    /// size, return the constant being splatted.  The ByteSize field indicates
    /// the number of bytes of each element [124] -> [bhw].
    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
  }

  class PPCTargetLowering : public TargetLowering {
    const PPCSubtarget &PPCSubTarget;
    const PPCRegisterInfo *PPCRegInfo;

  public:
    explicit PPCTargetLowering(PPCTargetMachine &TM);

    /// getTargetNodeName() - This method returns the name of a target specific
    /// DAG node.
    virtual const char *getTargetNodeName(unsigned Opcode) const;

    virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }

    /// getSetCCResultType - Return the ISD::SETCC ValueType
    virtual EVT getSetCCResultType(EVT VT) const;

    /// getPreIndexedAddressParts - returns true by value, base pointer and
    /// offset pointer and addressing mode by reference if the node's address
    /// can be legally represented as pre-indexed load / store address.
    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
                                           SDValue &Offset,
                                           ISD::MemIndexedMode &AM,
                                           SelectionDAG &DAG) const;

    /// SelectAddressRegReg - Given the specified addressed, check to see if it
    /// can be represented as an indexed [r+r] operation.  Returns false if it
    /// can be more efficiently represented with [r+imm].
    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
                             SelectionDAG &DAG) const;

    /// SelectAddressRegImm - Returns true if the address N can be represented
    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    /// is not better represented as reg+reg.
    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
                             SelectionDAG &DAG) const;

    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    /// represented as an indexed [r+r] operation.
    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
                                 SelectionDAG &DAG) const;

    /// SelectAddressRegImmShift - Returns true if the address N can be
    /// represented by a base register plus a signed 14-bit displacement
    /// [r+imm*4].  Suitable for use by STD and friends.
    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
                                  SelectionDAG &DAG) const;

    Sched::Preference getSchedulingPreference(SDNode *N) const;

    /// LowerOperation - Provide custom lowering hooks for some operations.
    ///
    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;

    /// ReplaceNodeResults - Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                                    SelectionDAG &DAG) const;

    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;

    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
                                                APInt &KnownZero,
                                                APInt &KnownOne,
                                                const SelectionDAG &DAG,
                                                unsigned Depth = 0) const;

    virtual MachineBasicBlock *
      EmitInstrWithCustomInserter(MachineInstr *MI,
                                  MachineBasicBlock *MBB) const;
    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
                                        MachineBasicBlock *MBB, bool is64Bit,
                                        unsigned BinOpcode) const;
    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
                                                MachineBasicBlock *MBB,
                                            bool is8bit, unsigned Opcode) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
                                        MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
                                         MachineBasicBlock *MBB) const;

    ConstraintType getConstraintType(const std::string &Constraint) const;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight getSingleConstraintMatchWeight(
      AsmOperandInfo &info, const char *constraint) const;

    std::pair<unsigned, const TargetRegisterClass*>
      getRegForInlineAsmConstraint(const std::string &Constraint,
                                   EVT VT) const;

    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area.  This is the actual
    /// alignment, not its logarithm.
    unsigned getByValTypeAlignment(Type *Ty) const;

    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    /// vector.  If it is invalid, don't add anything to Ops.
    virtual void LowerAsmOperandForConstraint(SDValue Op,
                                              std::string &Constraint,
                                              std::vector<SDValue> &Ops,
                                              SelectionDAG &DAG) const;

    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;

    /// isLegalAddressImmediate - Return true if the integer value can be used
    /// as the offset of the target addressing mode for load / store of the
    /// given type.
    virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;

    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
    /// the offset of the target addressing mode.
    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;

    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;

    /// getOptimalMemOpType - Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. If DstAlign is zero that means it's safe to destination
    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    /// means there isn't a need to check it against alignment requirement,
    /// probably because the source does not need to be loaded. If 'IsMemset' is
    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    /// source is constant so it does not need to be loaded.
    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    virtual EVT
    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, 
                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
                        MachineFunction &MF) const;

    /// Is unaligned memory access allowed for the given type, and is it fast
    /// relative to software emulation.
    virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;

    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
    /// is expanded to mul + add.
    virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;

  private:
    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;

    bool
    IsEligibleForTailCallOptimization(SDValue Callee,
                                      CallingConv::ID CalleeCC,
                                      bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                      SelectionDAG& DAG) const;

    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
                                         int SPDiff,
                                         SDValue Chain,
                                         SDValue &LROpOut,
                                         SDValue &FPOpOut,
                                         bool isDarwinABI,
                                         DebugLoc dl) const;

    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
                         const PPCSubtarget &Subtarget) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
                       const PPCSubtarget &Subtarget) const;
    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
                                const PPCSubtarget &Subtarget) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
                                      const PPCSubtarget &Subtarget) const;
    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            DebugLoc dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals) const;
    SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
                       bool isVarArg,
                       SelectionDAG &DAG,
                       SmallVector<std::pair<unsigned, SDValue>, 8>
                         &RegsToPass,
                       SDValue InFlag, SDValue Chain,
                       SDValue &Callee,
                       int SPDiff, unsigned NumBytes,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       SmallVectorImpl<SDValue> &InVals) const;

    virtual SDValue
      LowerFormalArguments(SDValue Chain,
                           CallingConv::ID CallConv, bool isVarArg,
                           const SmallVectorImpl<ISD::InputArg> &Ins,
                           DebugLoc dl, SelectionDAG &DAG,
                           SmallVectorImpl<SDValue> &InVals) const;

    virtual SDValue
      LowerCall(TargetLowering::CallLoweringInfo &CLI,
                SmallVectorImpl<SDValue> &InVals) const;

    virtual bool
      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                   bool isVarArg,
                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                   LLVMContext &Context) const;

    virtual SDValue
      LowerReturn(SDValue Chain,
                  CallingConv::ID CallConv, bool isVarArg,
                  const SmallVectorImpl<ISD::OutputArg> &Outs,
                  const SmallVectorImpl<SDValue> &OutVals,
                  DebugLoc dl, SelectionDAG &DAG) const;

    SDValue
      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
                        SDValue ArgVal, DebugLoc dl) const;

    void
      setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
                         unsigned nAltivecParamsAtEnd,
                         unsigned MinReservedArea, bool isPPC64) const;

    SDValue
      LowerFormalArguments_Darwin(SDValue Chain,
                                  CallingConv::ID CallConv, bool isVarArg,
                                  const SmallVectorImpl<ISD::InputArg> &Ins,
                                  DebugLoc dl, SelectionDAG &DAG,
                                  SmallVectorImpl<SDValue> &InVals) const;
    SDValue
      LowerFormalArguments_64SVR4(SDValue Chain,
                                  CallingConv::ID CallConv, bool isVarArg,
                                  const SmallVectorImpl<ISD::InputArg> &Ins,
                                  DebugLoc dl, SelectionDAG &DAG,
                                  SmallVectorImpl<SDValue> &InVals) const;
    SDValue
      LowerFormalArguments_32SVR4(SDValue Chain,
                                  CallingConv::ID CallConv, bool isVarArg,
                                  const SmallVectorImpl<ISD::InputArg> &Ins,
                                  DebugLoc dl, SelectionDAG &DAG,
                                  SmallVectorImpl<SDValue> &InVals) const;

    SDValue
      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
                                 SelectionDAG &DAG, DebugLoc dl) const;

    SDValue
      LowerCall_Darwin(SDValue Chain, SDValue Callee,
                       CallingConv::ID CallConv,
                       bool isVarArg, bool isTailCall,
                       const SmallVectorImpl<ISD::OutputArg> &Outs,
                       const SmallVectorImpl<SDValue> &OutVals,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl, SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const;
    SDValue
      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
                       CallingConv::ID CallConv,
                       bool isVarArg, bool isTailCall,
                       const SmallVectorImpl<ISD::OutputArg> &Outs,
                       const SmallVectorImpl<SDValue> &OutVals,
                       const SmallVectorImpl<ISD::InputArg> &Ins,
                       DebugLoc dl, SelectionDAG &DAG,
                       SmallVectorImpl<SDValue> &InVals) const;
    SDValue
    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
                     bool isVarArg, bool isTailCall,
                     const SmallVectorImpl<ISD::OutputArg> &Outs,
                     const SmallVectorImpl<SDValue> &OutVals,
                     const SmallVectorImpl<ISD::InputArg> &Ins,
                     DebugLoc dl, SelectionDAG &DAG,
                     SmallVectorImpl<SDValue> &InVals) const;

    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
  };
}

#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H