1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
//===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "MipsInstrInfo.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "MipsAnalyzeImmediate.h"
#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_INSTRINFO_CTOR
#include "MipsGenInstrInfo.inc"
using namespace llvm;
MipsInstrInfo::MipsInstrInfo(MipsTargetMachine &tm, unsigned UncondBr)
: MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
TM(tm), UncondBrOpc(UncondBr) {}
const MipsInstrInfo *MipsInstrInfo::create(MipsTargetMachine &TM) {
if (TM.getSubtargetImpl()->inMips16Mode())
return llvm::createMips16InstrInfo(TM);
return llvm::createMipsSEInstrInfo(TM);
}
bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
return op.isImm() && op.getImm() == 0;
}
/// insertNoop - If data hazard condition is found insert the target nop
/// instruction.
void MipsInstrInfo::
insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
{
DebugLoc DL;
BuildMI(MBB, MI, DL, get(Mips::NOP));
}
MachineMemOperand *MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
unsigned Flag) const {
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), Flag,
MFI.getObjectSize(FI), Align);
}
MachineInstr*
MipsInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
uint64_t Offset, const MDNode *MDPtr,
DebugLoc DL) const {
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Mips::DBG_VALUE))
.addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
return &*MIB;
}
//===----------------------------------------------------------------------===//
// Branch Analysis
//===----------------------------------------------------------------------===//
void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
MachineBasicBlock *&BB,
SmallVectorImpl<MachineOperand> &Cond) const {
assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
int NumOp = Inst->getNumExplicitOperands();
// for both int and fp branches, the last explicit operand is the
// MBB.
BB = Inst->getOperand(NumOp-1).getMBB();
Cond.push_back(MachineOperand::CreateImm(Opc));
for (int i=0; i<NumOp-1; i++)
Cond.push_back(Inst->getOperand(i));
}
bool MipsInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
SmallVector<MachineInstr*, 2> BranchInstrs;
BranchType BT = AnalyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
return (BT == BT_None) || (BT == BT_Indirect);
}
void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB,
MachineBasicBlock *TBB, DebugLoc DL,
const SmallVectorImpl<MachineOperand>& Cond)
const {
unsigned Opc = Cond[0].getImm();
const MCInstrDesc &MCID = get(Opc);
MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
for (unsigned i = 1; i < Cond.size(); ++i) {
if (Cond[i].isReg())
MIB.addReg(Cond[i].getReg());
else if (Cond[i].isImm())
MIB.addImm(Cond[i].getImm());
else
assert(true && "Cannot copy operand");
}
MIB.addMBB(TBB);
}
unsigned MipsInstrInfo::
InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
// # of condition operands:
// Unconditional branches: 0
// Floating point branches: 1 (opc)
// Int BranchZero: 2 (opc, reg)
// Int Branch: 3 (opc, reg0, reg1)
assert((Cond.size() <= 3) &&
"# of Mips branch conditions must be <= 3!");
// Two-way Conditional branch.
if (FBB) {
BuildCondBr(MBB, TBB, DL, Cond);
BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
return 2;
}
// One way branch.
// Unconditional branch.
if (Cond.empty())
BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
else // Conditional branch.
BuildCondBr(MBB, TBB, DL, Cond);
return 1;
}
unsigned MipsInstrInfo::
RemoveBranch(MachineBasicBlock &MBB) const
{
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
MachineBasicBlock::reverse_iterator FirstBr;
unsigned removed;
// Skip all the debug instructions.
while (I != REnd && I->isDebugValue())
++I;
FirstBr = I;
// Up to 2 branches are removed.
// Note that indirect branches are not removed.
for(removed = 0; I != REnd && removed < 2; ++I, ++removed)
if (!getAnalyzableBrOpc(I->getOpcode()))
break;
MBB.erase(I.base(), FirstBr.base());
return removed;
}
/// ReverseBranchCondition - Return the inverse opcode of the
/// specified Branch instruction.
bool MipsInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const
{
assert( (Cond.size() && Cond.size() <= 3) &&
"Invalid Mips branch condition!");
Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
return false;
}
MipsInstrInfo::BranchType MipsInstrInfo::
AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify,
SmallVectorImpl<MachineInstr*> &BranchInstrs) const {
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
// Skip all the debug instructions.
while (I != REnd && I->isDebugValue())
++I;
if (I == REnd || !isUnpredicatedTerminator(&*I)) {
// This block ends with no branches (it just falls through to its succ).
// Leave TBB/FBB null.
TBB = FBB = NULL;
return BT_NoBranch;
}
MachineInstr *LastInst = &*I;
unsigned LastOpc = LastInst->getOpcode();
BranchInstrs.push_back(LastInst);
// Not an analyzable branch (e.g., indirect jump).
if (!getAnalyzableBrOpc(LastOpc))
return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
// Get the second to last instruction in the block.
unsigned SecondLastOpc = 0;
MachineInstr *SecondLastInst = NULL;
if (++I != REnd) {
SecondLastInst = &*I;
SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());
// Not an analyzable branch (must be an indirect jump).
if (isUnpredicatedTerminator(SecondLastInst) && !SecondLastOpc)
return BT_None;
}
// If there is only one terminator instruction, process it.
if (!SecondLastOpc) {
// Unconditional branch
if (LastOpc == UncondBrOpc) {
TBB = LastInst->getOperand(0).getMBB();
return BT_Uncond;
}
// Conditional branch
AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
return BT_Cond;
}
// If we reached here, there are two branches.
// If there are three terminators, we don't know what sort of block this is.
if (++I != REnd && isUnpredicatedTerminator(&*I))
return BT_None;
BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);
// If second to last instruction is an unconditional branch,
// analyze it and remove the last instruction.
if (SecondLastOpc == UncondBrOpc) {
// Return if the last instruction cannot be removed.
if (!AllowModify)
return BT_None;
TBB = SecondLastInst->getOperand(0).getMBB();
LastInst->eraseFromParent();
BranchInstrs.pop_back();
return BT_Uncond;
}
// Conditional branch followed by an unconditional branch.
// The last one must be unconditional.
if (LastOpc != UncondBrOpc)
return BT_None;
AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
FBB = LastInst->getOperand(0).getMBB();
return BT_CondUncond;
}
/// Return the number of bytes of code the specified instruction may be.
unsigned MipsInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
default:
return MI->getDesc().getSize();
case TargetOpcode::INLINEASM: { // Inline Asm: Variable size.
const MachineFunction *MF = MI->getParent()->getParent();
const char *AsmStr = MI->getOperand(0).getSymbolName();
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
}
}
}
MachineInstrBuilder
MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
MachineBasicBlock::iterator I) const {
MachineInstrBuilder MIB;
MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));
for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J)
MIB.addOperand(I->getOperand(J));
MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end());
return MIB;
}
|