aboutsummaryrefslogtreecommitdiff
path: root/lib/MC/MCExpr.cpp
blob: de2f375aab913a00eb1b08665df1a8e6f6646181 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "mcexpr"
#include "llvm/MC/MCExpr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
namespace stats {
STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
}
}

void MCExpr::print(raw_ostream &OS) const {
  switch (getKind()) {
  case MCExpr::Target:
    return cast<MCTargetExpr>(this)->PrintImpl(OS);
  case MCExpr::Constant:
    OS << cast<MCConstantExpr>(*this).getValue();
    return;

  case MCExpr::SymbolRef: {
    const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
    const MCSymbol &Sym = SRE.getSymbol();
    // Parenthesize names that start with $ so that they don't look like
    // absolute names.
    bool UseParens = Sym.getName()[0] == '$';

    if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_HA16 ||
        SRE.getKind() == MCSymbolRefExpr::VK_PPC_DARWIN_LO16) {
      OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
      UseParens = true;
    }

    if (UseParens)
      OS << '(' << Sym << ')';
    else
      OS << Sym;

    if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT ||
        SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD ||
        SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT ||
        SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF ||
        SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF ||
        SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF ||
        SRE.getKind() == MCSymbolRefExpr::VK_ARM_TARGET1 ||
        SRE.getKind() == MCSymbolRefExpr::VK_ARM_TARGET2)
      OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind());
    else if (SRE.getKind() != MCSymbolRefExpr::VK_None &&
             SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_HA16 &&
             SRE.getKind() != MCSymbolRefExpr::VK_PPC_DARWIN_LO16)
      OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind());

    return;
  }

  case MCExpr::Unary: {
    const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
    switch (UE.getOpcode()) {
    case MCUnaryExpr::LNot:  OS << '!'; break;
    case MCUnaryExpr::Minus: OS << '-'; break;
    case MCUnaryExpr::Not:   OS << '~'; break;
    case MCUnaryExpr::Plus:  OS << '+'; break;
    }
    OS << *UE.getSubExpr();
    return;
  }

  case MCExpr::Binary: {
    const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);

    // Only print parens around the LHS if it is non-trivial.
    if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
      OS << *BE.getLHS();
    } else {
      OS << '(' << *BE.getLHS() << ')';
    }

    switch (BE.getOpcode()) {
    case MCBinaryExpr::Add:
      // Print "X-42" instead of "X+-42".
      if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
        if (RHSC->getValue() < 0) {
          OS << RHSC->getValue();
          return;
        }
      }

      OS <<  '+';
      break;
    case MCBinaryExpr::And:  OS <<  '&'; break;
    case MCBinaryExpr::Div:  OS <<  '/'; break;
    case MCBinaryExpr::EQ:   OS << "=="; break;
    case MCBinaryExpr::GT:   OS <<  '>'; break;
    case MCBinaryExpr::GTE:  OS << ">="; break;
    case MCBinaryExpr::LAnd: OS << "&&"; break;
    case MCBinaryExpr::LOr:  OS << "||"; break;
    case MCBinaryExpr::LT:   OS <<  '<'; break;
    case MCBinaryExpr::LTE:  OS << "<="; break;
    case MCBinaryExpr::Mod:  OS <<  '%'; break;
    case MCBinaryExpr::Mul:  OS <<  '*'; break;
    case MCBinaryExpr::NE:   OS << "!="; break;
    case MCBinaryExpr::Or:   OS <<  '|'; break;
    case MCBinaryExpr::Shl:  OS << "<<"; break;
    case MCBinaryExpr::Shr:  OS << ">>"; break;
    case MCBinaryExpr::Sub:  OS <<  '-'; break;
    case MCBinaryExpr::Xor:  OS <<  '^'; break;
    }

    // Only print parens around the LHS if it is non-trivial.
    if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
      OS << *BE.getRHS();
    } else {
      OS << '(' << *BE.getRHS() << ')';
    }
    return;
  }
  }

  llvm_unreachable("Invalid expression kind!");
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MCExpr::dump() const {
  print(dbgs());
  dbgs() << '\n';
}
#endif

/* *** */

const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS,
                                         const MCExpr *RHS, MCContext &Ctx) {
  return new (Ctx) MCBinaryExpr(Opc, LHS, RHS);
}

const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr,
                                       MCContext &Ctx) {
  return new (Ctx) MCUnaryExpr(Opc, Expr);
}

const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) {
  return new (Ctx) MCConstantExpr(Value);
}

/* *** */

const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym,
                                               VariantKind Kind,
                                               MCContext &Ctx) {
  return new (Ctx) MCSymbolRefExpr(Sym, Kind);
}

const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind,
                                               MCContext &Ctx) {
  return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx);
}

StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
  switch (Kind) {
  case VK_Invalid: return "<<invalid>>";
  case VK_None: return "<<none>>";

  case VK_GOT: return "GOT";
  case VK_GOTOFF: return "GOTOFF";
  case VK_GOTPCREL: return "GOTPCREL";
  case VK_GOTTPOFF: return "GOTTPOFF";
  case VK_INDNTPOFF: return "INDNTPOFF";
  case VK_NTPOFF: return "NTPOFF";
  case VK_GOTNTPOFF: return "GOTNTPOFF";
  case VK_PLT: return "PLT";
  case VK_TLSGD: return "TLSGD";
  case VK_TLSLD: return "TLSLD";
  case VK_TLSLDM: return "TLSLDM";
  case VK_TPOFF: return "TPOFF";
  case VK_DTPOFF: return "DTPOFF";
  case VK_TLVP: return "TLVP";
  case VK_SECREL: return "SECREL";
  case VK_ARM_PLT: return "(PLT)";
  case VK_ARM_GOT: return "(GOT)";
  case VK_ARM_GOTOFF: return "(GOTOFF)";
  case VK_ARM_TPOFF: return "(tpoff)";
  case VK_ARM_GOTTPOFF: return "(gottpoff)";
  case VK_ARM_TLSGD: return "(tlsgd)";
  case VK_ARM_TARGET1: return "(target1)";
  case VK_ARM_TARGET2: return "(target2)";
  case VK_PPC_TOC: return "tocbase";
  case VK_PPC_TOC_ENTRY: return "toc";
  case VK_PPC_DARWIN_HA16: return "ha16";
  case VK_PPC_DARWIN_LO16: return "lo16";
  case VK_PPC_GAS_HA16: return "ha";
  case VK_PPC_GAS_LO16: return "l";
  case VK_PPC_TPREL16_HA: return "tprel@ha";
  case VK_PPC_TPREL16_LO: return "tprel@l";
  case VK_Mips_GPREL: return "GPREL";
  case VK_Mips_GOT_CALL: return "GOT_CALL";
  case VK_Mips_GOT16: return "GOT16";
  case VK_Mips_GOT: return "GOT";
  case VK_Mips_ABS_HI: return "ABS_HI";
  case VK_Mips_ABS_LO: return "ABS_LO";
  case VK_Mips_TLSGD: return "TLSGD";
  case VK_Mips_TLSLDM: return "TLSLDM";
  case VK_Mips_DTPREL_HI: return "DTPREL_HI";
  case VK_Mips_DTPREL_LO: return "DTPREL_LO";
  case VK_Mips_GOTTPREL: return "GOTTPREL";
  case VK_Mips_TPREL_HI: return "TPREL_HI";
  case VK_Mips_TPREL_LO: return "TPREL_LO";
  case VK_Mips_GPOFF_HI: return "GPOFF_HI";
  case VK_Mips_GPOFF_LO: return "GPOFF_LO";
  case VK_Mips_GOT_DISP: return "GOT_DISP";
  case VK_Mips_GOT_PAGE: return "GOT_PAGE";
  case VK_Mips_GOT_OFST: return "GOT_OFST";
  case VK_Mips_HIGHER:   return "HIGHER";
  case VK_Mips_HIGHEST:  return "HIGHEST";
  case VK_Mips_GOT_HI16: return "GOT_HI16";
  case VK_Mips_GOT_LO16: return "GOT_LO16";
  case VK_Mips_CALL_HI16: return "CALL_HI16";
  case VK_Mips_CALL_LO16: return "CALL_LO16";
  }
  llvm_unreachable("Invalid variant kind");
}

MCSymbolRefExpr::VariantKind
MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
  return StringSwitch<VariantKind>(Name)
    .Case("GOT", VK_GOT)
    .Case("got", VK_GOT)
    .Case("GOTOFF", VK_GOTOFF)
    .Case("gotoff", VK_GOTOFF)
    .Case("GOTPCREL", VK_GOTPCREL)
    .Case("gotpcrel", VK_GOTPCREL)
    .Case("GOTTPOFF", VK_GOTTPOFF)
    .Case("gottpoff", VK_GOTTPOFF)
    .Case("INDNTPOFF", VK_INDNTPOFF)
    .Case("indntpoff", VK_INDNTPOFF)
    .Case("NTPOFF", VK_NTPOFF)
    .Case("ntpoff", VK_NTPOFF)
    .Case("GOTNTPOFF", VK_GOTNTPOFF)
    .Case("gotntpoff", VK_GOTNTPOFF)
    .Case("PLT", VK_PLT)
    .Case("plt", VK_PLT)
    .Case("TLSGD", VK_TLSGD)
    .Case("tlsgd", VK_TLSGD)
    .Case("TLSLD", VK_TLSLD)
    .Case("tlsld", VK_TLSLD)
    .Case("TLSLDM", VK_TLSLDM)
    .Case("tlsldm", VK_TLSLDM)
    .Case("TPOFF", VK_TPOFF)
    .Case("tpoff", VK_TPOFF)
    .Case("DTPOFF", VK_DTPOFF)
    .Case("dtpoff", VK_DTPOFF)
    .Case("TLVP", VK_TLVP)
    .Case("tlvp", VK_TLVP)
    .Default(VK_Invalid);
}

/* *** */

void MCTargetExpr::anchor() {}

/* *** */

bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const {
  return EvaluateAsAbsolute(Res, 0, 0, 0);
}

bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
                                const MCAsmLayout &Layout) const {
  return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, 0);
}

bool MCExpr::EvaluateAsAbsolute(int64_t &Res,
                                const MCAsmLayout &Layout,
                                const SectionAddrMap &Addrs) const {
  return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs);
}

bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
  return EvaluateAsAbsolute(Res, &Asm, 0, 0);
}

bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
                                const MCAsmLayout *Layout,
                                const SectionAddrMap *Addrs) const {
  MCValue Value;

  // Fast path constants.
  if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
    Res = CE->getValue();
    return true;
  }

  // FIXME: The use if InSet = Addrs is a hack. Setting InSet causes us
  // absolutize differences across sections and that is what the MachO writer
  // uses Addrs for.
  bool IsRelocatable =
    EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, /*InSet*/ Addrs);

  // Record the current value.
  Res = Value.getConstant();

  return IsRelocatable && Value.isAbsolute();
}

/// \brief Helper method for \see EvaluateSymbolAdd().
static void AttemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
                                                const MCAsmLayout *Layout,
                                                const SectionAddrMap *Addrs,
                                                bool InSet,
                                                const MCSymbolRefExpr *&A,
                                                const MCSymbolRefExpr *&B,
                                                int64_t &Addend) {
  if (!A || !B)
    return;

  const MCSymbol &SA = A->getSymbol();
  const MCSymbol &SB = B->getSymbol();

  if (SA.isUndefined() || SB.isUndefined())
    return;

  if (!Asm->getWriter().IsSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
    return;

  MCSymbolData &AD = Asm->getSymbolData(SA);
  MCSymbolData &BD = Asm->getSymbolData(SB);

  if (AD.getFragment() == BD.getFragment()) {
    Addend += (AD.getOffset() - BD.getOffset());

    // Pointers to Thumb symbols need to have their low-bit set to allow
    // for interworking.
    if (Asm->isThumbFunc(&SA))
      Addend |= 1;

    // Clear the symbol expr pointers to indicate we have folded these
    // operands.
    A = B = 0;
    return;
  }

  if (!Layout)
    return;

  const MCSectionData &SecA = *AD.getFragment()->getParent();
  const MCSectionData &SecB = *BD.getFragment()->getParent();

  if ((&SecA != &SecB) && !Addrs)
    return;

  // Eagerly evaluate.
  Addend += (Layout->getSymbolOffset(&Asm->getSymbolData(A->getSymbol())) -
             Layout->getSymbolOffset(&Asm->getSymbolData(B->getSymbol())));
  if (Addrs && (&SecA != &SecB))
    Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));

  // Pointers to Thumb symbols need to have their low-bit set to allow
  // for interworking.
  if (Asm->isThumbFunc(&SA))
    Addend |= 1;

  // Clear the symbol expr pointers to indicate we have folded these
  // operands.
  A = B = 0;
}

/// \brief Evaluate the result of an add between (conceptually) two MCValues.
///
/// This routine conceptually attempts to construct an MCValue:
///   Result = (Result_A - Result_B + Result_Cst)
/// from two MCValue's LHS and RHS where
///   Result = LHS + RHS
/// and
///   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
///
/// This routine attempts to aggresively fold the operands such that the result
/// is representable in an MCValue, but may not always succeed.
///
/// \returns True on success, false if the result is not representable in an
/// MCValue.

/// NOTE: It is really important to have both the Asm and Layout arguments.
/// They might look redundant, but this function can be used before layout
/// is done (see the object streamer for example) and having the Asm argument
/// lets us avoid relaxations early.
static bool EvaluateSymbolicAdd(const MCAssembler *Asm,
                                const MCAsmLayout *Layout,
                                const SectionAddrMap *Addrs,
                                bool InSet,
                                const MCValue &LHS,const MCSymbolRefExpr *RHS_A,
                                const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst,
                                MCValue &Res) {
  // FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
  // about dealing with modifiers. This will ultimately bite us, one day.
  const MCSymbolRefExpr *LHS_A = LHS.getSymA();
  const MCSymbolRefExpr *LHS_B = LHS.getSymB();
  int64_t LHS_Cst = LHS.getConstant();

  // Fold the result constant immediately.
  int64_t Result_Cst = LHS_Cst + RHS_Cst;

  assert((!Layout || Asm) &&
         "Must have an assembler object if layout is given!");

  // If we have a layout, we can fold resolved differences.
  if (Asm) {
    // First, fold out any differences which are fully resolved. By
    // reassociating terms in
    //   Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
    // we have the four possible differences:
    //   (LHS_A - LHS_B),
    //   (LHS_A - RHS_B),
    //   (RHS_A - LHS_B),
    //   (RHS_A - RHS_B).
    // Since we are attempting to be as aggressive as possible about folding, we
    // attempt to evaluate each possible alternative.
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
                                        Result_Cst);
    AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
                                        Result_Cst);
  }

  // We can't represent the addition or subtraction of two symbols.
  if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
    return false;

  // At this point, we have at most one additive symbol and one subtractive
  // symbol -- find them.
  const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
  const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;

  // If we have a negated symbol, then we must have also have a non-negated
  // symbol in order to encode the expression.
  if (B && !A)
    return false;

  Res = MCValue::get(A, B, Result_Cst);
  return true;
}

bool MCExpr::EvaluateAsRelocatable(MCValue &Res,
                                   const MCAsmLayout &Layout) const {
  return EvaluateAsRelocatableImpl(Res, &Layout.getAssembler(), &Layout,
                                   0, false);
}

bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res,
                                       const MCAssembler *Asm,
                                       const MCAsmLayout *Layout,
                                       const SectionAddrMap *Addrs,
                                       bool InSet) const {
  ++stats::MCExprEvaluate;

  switch (getKind()) {
  case Target:
    return cast<MCTargetExpr>(this)->EvaluateAsRelocatableImpl(Res, Layout);

  case Constant:
    Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
    return true;

  case SymbolRef: {
    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
    const MCSymbol &Sym = SRE->getSymbol();

    // Evaluate recursively if this is a variable.
    if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) {
      bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Asm,
                                                                   Layout,
                                                                   Addrs,
                                                                   true);
      // If we failed to simplify this to a constant, let the target
      // handle it.
      if (Ret && !Res.getSymA() && !Res.getSymB())
        return true;
    }

    Res = MCValue::get(SRE, 0, 0);
    return true;
  }

  case Unary: {
    const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
    MCValue Value;

    if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout,
                                                      Addrs, InSet))
      return false;

    switch (AUE->getOpcode()) {
    case MCUnaryExpr::LNot:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(!Value.getConstant());
      break;
    case MCUnaryExpr::Minus:
      /// -(a - b + const) ==> (b - a - const)
      if (Value.getSymA() && !Value.getSymB())
        return false;
      Res = MCValue::get(Value.getSymB(), Value.getSymA(),
                         -Value.getConstant());
      break;
    case MCUnaryExpr::Not:
      if (!Value.isAbsolute())
        return false;
      Res = MCValue::get(~Value.getConstant());
      break;
    case MCUnaryExpr::Plus:
      Res = Value;
      break;
    }

    return true;
  }

  case Binary: {
    const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
    MCValue LHSValue, RHSValue;

    if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout,
                                                  Addrs, InSet) ||
        !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout,
                                                  Addrs, InSet))
      return false;

    // We only support a few operations on non-constant expressions, handle
    // those first.
    if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
      switch (ABE->getOpcode()) {
      default:
        return false;
      case MCBinaryExpr::Sub:
        // Negate RHS and add.
        return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
                                   RHSValue.getSymB(), RHSValue.getSymA(),
                                   -RHSValue.getConstant(),
                                   Res);

      case MCBinaryExpr::Add:
        return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
                                   RHSValue.getSymA(), RHSValue.getSymB(),
                                   RHSValue.getConstant(),
                                   Res);
      }
    }

    // FIXME: We need target hooks for the evaluation. It may be limited in
    // width, and gas defines the result of comparisons and right shifts
    // differently from Apple as.
    int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
    int64_t Result = 0;
    switch (ABE->getOpcode()) {
    case MCBinaryExpr::Add:  Result = LHS + RHS; break;
    case MCBinaryExpr::And:  Result = LHS & RHS; break;
    case MCBinaryExpr::Div:  Result = LHS / RHS; break;
    case MCBinaryExpr::EQ:   Result = LHS == RHS; break;
    case MCBinaryExpr::GT:   Result = LHS > RHS; break;
    case MCBinaryExpr::GTE:  Result = LHS >= RHS; break;
    case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
    case MCBinaryExpr::LOr:  Result = LHS || RHS; break;
    case MCBinaryExpr::LT:   Result = LHS < RHS; break;
    case MCBinaryExpr::LTE:  Result = LHS <= RHS; break;
    case MCBinaryExpr::Mod:  Result = LHS % RHS; break;
    case MCBinaryExpr::Mul:  Result = LHS * RHS; break;
    case MCBinaryExpr::NE:   Result = LHS != RHS; break;
    case MCBinaryExpr::Or:   Result = LHS | RHS; break;
    case MCBinaryExpr::Shl:  Result = LHS << RHS; break;
    case MCBinaryExpr::Shr:  Result = LHS >> RHS; break;
    case MCBinaryExpr::Sub:  Result = LHS - RHS; break;
    case MCBinaryExpr::Xor:  Result = LHS ^ RHS; break;
    }

    Res = MCValue::get(Result);
    return true;
  }
  }

  llvm_unreachable("Invalid assembly expression kind!");
}

const MCSection *MCExpr::FindAssociatedSection() const {
  switch (getKind()) {
  case Target:
    // We never look through target specific expressions.
    return cast<MCTargetExpr>(this)->FindAssociatedSection();

  case Constant:
    return MCSymbol::AbsolutePseudoSection;

  case SymbolRef: {
    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
    const MCSymbol &Sym = SRE->getSymbol();

    if (Sym.isDefined())
      return &Sym.getSection();

    return 0;
  }

  case Unary:
    return cast<MCUnaryExpr>(this)->getSubExpr()->FindAssociatedSection();

  case Binary: {
    const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
    const MCSection *LHS_S = BE->getLHS()->FindAssociatedSection();
    const MCSection *RHS_S = BE->getRHS()->FindAssociatedSection();

    // If either section is absolute, return the other.
    if (LHS_S == MCSymbol::AbsolutePseudoSection)
      return RHS_S;
    if (RHS_S == MCSymbol::AbsolutePseudoSection)
      return LHS_S;

    // Otherwise, return the first non-null section.
    return LHS_S ? LHS_S : RHS_S;
  }
  }

  llvm_unreachable("Invalid assembly expression kind!");
}