aboutsummaryrefslogtreecommitdiff
path: root/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
blob: af55ed34a94008e2fa3f6ca666c2a1ac6b08dc12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dyld"
#include "RuntimeDyldMachO.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
using namespace llvm;
using namespace llvm::object;

namespace llvm {

void RuntimeDyldMachO::resolveRelocation(const SectionEntry &Section,
                                         uint64_t Offset,
                                         uint64_t Value,
                                         uint32_t Type,
                                         int64_t Addend) {
  uint8_t *LocalAddress = Section.Address + Offset;
  uint64_t FinalAddress = Section.LoadAddress + Offset;
  bool isPCRel = (Type >> 24) & 1;
  unsigned MachoType = (Type >> 28) & 0xf;
  unsigned Size = 1 << ((Type >> 25) & 3);

  DEBUG(dbgs() << "resolveRelocation LocalAddress: " 
        << format("%p", LocalAddress)
        << " FinalAddress: " << format("%p", FinalAddress)
        << " Value: " << format("%p", Value)
        << " Addend: " << Addend
        << " isPCRel: " << isPCRel
        << " MachoType: " << MachoType
        << " Size: " << Size
        << "\n");

  // This just dispatches to the proper target specific routine.
  switch (Arch) {
  default: llvm_unreachable("Unsupported CPU type!");
  case Triple::x86_64:
    resolveX86_64Relocation(LocalAddress,
                            FinalAddress,
                            (uintptr_t)Value,
                            isPCRel,
                            MachoType,
                            Size,
                            Addend);
    break;
  case Triple::x86:
    resolveI386Relocation(LocalAddress,
                          FinalAddress,
                          (uintptr_t)Value,
                          isPCRel,
                          MachoType,
                          Size,
                          Addend);
    break;
  case Triple::arm:    // Fall through.
  case Triple::thumb:
    resolveARMRelocation(LocalAddress,
                         FinalAddress,
                         (uintptr_t)Value,
                         isPCRel,
                         MachoType,
                         Size,
                         Addend);
    break;
  }
}

bool RuntimeDyldMachO::resolveI386Relocation(uint8_t *LocalAddress,
                                             uint64_t FinalAddress,
                                             uint64_t Value,
                                             bool isPCRel,
                                             unsigned Type,
                                             unsigned Size,
                                             int64_t Addend) {
  if (isPCRel)
    Value -= FinalAddress + 4; // see resolveX86_64Relocation

  switch (Type) {
  default:
    llvm_unreachable("Invalid relocation type!");
  case macho::RIT_Vanilla: {
    uint8_t *p = LocalAddress;
    uint64_t ValueToWrite = Value + Addend;
    for (unsigned i = 0; i < Size; ++i) {
      *p++ = (uint8_t)(ValueToWrite & 0xff);
      ValueToWrite >>= 8;
    }
    return false;
  }
  case macho::RIT_Difference:
  case macho::RIT_Generic_LocalDifference:
  case macho::RIT_Generic_PreboundLazyPointer:
    return Error("Relocation type not implemented yet!");
  }
}

bool RuntimeDyldMachO::resolveX86_64Relocation(uint8_t *LocalAddress,
                                               uint64_t FinalAddress,
                                               uint64_t Value,
                                               bool isPCRel,
                                               unsigned Type,
                                               unsigned Size,
                                               int64_t Addend) {
  // If the relocation is PC-relative, the value to be encoded is the
  // pointer difference.
  if (isPCRel)
    // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
    // address. Is that expected? Only for branches, perhaps?
    Value -= FinalAddress + 4;

  switch(Type) {
  default:
    llvm_unreachable("Invalid relocation type!");
  case macho::RIT_X86_64_Signed1:
  case macho::RIT_X86_64_Signed2:
  case macho::RIT_X86_64_Signed4:
  case macho::RIT_X86_64_Signed:
  case macho::RIT_X86_64_Unsigned:
  case macho::RIT_X86_64_Branch: {
    Value += Addend;
    // Mask in the target value a byte at a time (we don't have an alignment
    // guarantee for the target address, so this is safest).
    uint8_t *p = (uint8_t*)LocalAddress;
    for (unsigned i = 0; i < Size; ++i) {
      *p++ = (uint8_t)Value;
      Value >>= 8;
    }
    return false;
  }
  case macho::RIT_X86_64_GOTLoad:
  case macho::RIT_X86_64_GOT:
  case macho::RIT_X86_64_Subtractor:
  case macho::RIT_X86_64_TLV:
    return Error("Relocation type not implemented yet!");
  }
}

bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress,
                                            uint64_t FinalAddress,
                                            uint64_t Value,
                                            bool isPCRel,
                                            unsigned Type,
                                            unsigned Size,
                                            int64_t Addend) {
  // If the relocation is PC-relative, the value to be encoded is the
  // pointer difference.
  if (isPCRel) {
    Value -= FinalAddress;
    // ARM PCRel relocations have an effective-PC offset of two instructions
    // (four bytes in Thumb mode, 8 bytes in ARM mode).
    // FIXME: For now, assume ARM mode.
    Value -= 8;
  }

  switch(Type) {
  default:
    llvm_unreachable("Invalid relocation type!");
  case macho::RIT_Vanilla: {
    // Mask in the target value a byte at a time (we don't have an alignment
    // guarantee for the target address, so this is safest).
    uint8_t *p = (uint8_t*)LocalAddress;
    for (unsigned i = 0; i < Size; ++i) {
      *p++ = (uint8_t)Value;
      Value >>= 8;
    }
    break;
  }
  case macho::RIT_ARM_Branch24Bit: {
    // Mask the value into the target address. We know instructions are
    // 32-bit aligned, so we can do it all at once.
    uint32_t *p = (uint32_t*)LocalAddress;
    // The low two bits of the value are not encoded.
    Value >>= 2;
    // Mask the value to 24 bits.
    Value &= 0xffffff;
    // FIXME: If the destination is a Thumb function (and the instruction
    // is a non-predicated BL instruction), we need to change it to a BLX
    // instruction instead.

    // Insert the value into the instruction.
    *p = (*p & ~0xffffff) | Value;
    break;
  }
  case macho::RIT_ARM_ThumbBranch22Bit:
  case macho::RIT_ARM_ThumbBranch32Bit:
  case macho::RIT_ARM_Half:
  case macho::RIT_ARM_HalfDifference:
  case macho::RIT_Pair:
  case macho::RIT_Difference:
  case macho::RIT_ARM_LocalDifference:
  case macho::RIT_ARM_PreboundLazyPointer:
    return Error("Relocation type not implemented yet!");
  }
  return false;
}

void RuntimeDyldMachO::processRelocationRef(unsigned SectionID,
                                            relocation_iterator RelI,
                                            ObjectImage &Obj,
                                            ObjSectionToIDMap &ObjSectionToID,
                                            const SymbolTableMap &Symbols,
                                            StubMap &Stubs) {
  const ObjectFile *OF = Obj.getObjectFile();
  const MachOObjectFile *MachO = static_cast<const MachOObjectFile*>(OF);
  macho::RelocationEntry RE = MachO->getRelocation(RelI->getRawDataRefImpl());

  uint32_t RelType = MachO->getAnyRelocationType(RE);
  RelocationValueRef Value;
  SectionEntry &Section = Sections[SectionID];

  bool isExtern = MachO->getPlainRelocationExternal(RE);
  if (isExtern) {
    // Obtain the symbol name which is referenced in the relocation
    SymbolRef Symbol;
    RelI->getSymbol(Symbol);
    StringRef TargetName;
    Symbol.getName(TargetName);
    // First search for the symbol in the local symbol table
    SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
    if (lsi != Symbols.end()) {
      Value.SectionID = lsi->second.first;
      Value.Addend = lsi->second.second;
    } else {
      // Search for the symbol in the global symbol table
      SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data());
      if (gsi != GlobalSymbolTable.end()) {
        Value.SectionID = gsi->second.first;
        Value.Addend = gsi->second.second;
      } else
        Value.SymbolName = TargetName.data();
    }
  } else {
    error_code err;
    uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
    section_iterator si = Obj.begin_sections(),
                     se = Obj.end_sections();
    for (uint8_t i = 1; i < sectionIndex; i++) {
      error_code err;
      si.increment(err);
      if (si == se)
        break;
    }
    assert(si != se && "No section containing relocation!");
    Value.SectionID = findOrEmitSection(Obj, *si, true, ObjSectionToID);
    Value.Addend = 0;
    // FIXME: The size and type of the relocation determines if we can
    // encode an Addend in the target location itself, and if so, how many
    // bytes we should read in order to get it. We don't yet support doing
    // that, and just assuming it's sizeof(intptr_t) is blatantly wrong.
    //Value.Addend = *(const intptr_t *)Target;
    if (Value.Addend) {
      // The MachO addend is an offset from the current section.  We need it
      // to be an offset from the destination section
      Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
    }
  }

  uint64_t Offset;
  RelI->getOffset(Offset);
  if (Arch == Triple::arm && (RelType & 0xf) == macho::RIT_ARM_Branch24Bit) {
    // This is an ARM branch relocation, need to use a stub function.

    //  Look up for existing stub.
    StubMap::const_iterator i = Stubs.find(Value);
    if (i != Stubs.end())
      resolveRelocation(Section, Offset,
                        (uint64_t)Section.Address + i->second,
                        RelType, 0);
    else {
      // Create a new stub function.
      Stubs[Value] = Section.StubOffset;
      uint8_t *StubTargetAddr = createStubFunction(Section.Address +
                                                   Section.StubOffset);
      RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
                         macho::RIT_Vanilla, Value.Addend);
      if (Value.SymbolName)
        addRelocationForSymbol(RE, Value.SymbolName);
      else
        addRelocationForSection(RE, Value.SectionID);
      resolveRelocation(Section, Offset,
                        (uint64_t)Section.Address + Section.StubOffset,
                        RelType, 0);
      Section.StubOffset += getMaxStubSize();
    }
  } else {
    RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
    if (Value.SymbolName)
      addRelocationForSymbol(RE, Value.SymbolName);
    else
      addRelocationForSection(RE, Value.SectionID);
  }
}


bool RuntimeDyldMachO::isCompatibleFormat(
        const ObjectBuffer *InputBuffer) const {
  if (InputBuffer->getBufferSize() < 4)
    return false;
  StringRef Magic(InputBuffer->getBufferStart(), 4);
  if (Magic == "\xFE\xED\xFA\xCE") return true;
  if (Magic == "\xCE\xFA\xED\xFE") return true;
  if (Magic == "\xFE\xED\xFA\xCF") return true;
  if (Magic == "\xCF\xFA\xED\xFE") return true;
  return false;
}

} // end namespace llvm