aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/StrongPHIElimination.cpp
blob: 3d5ee9fb3ceb60a8c74895206f0016c86886b78d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions, using an intelligent copy-folding technique based on
// dominator information.  This is technique is derived from:
// 
//    Budimlic, et al. Fast copy coalescing and live-range identification.
//    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
//    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
//    PLDI '02. ACM, New York, NY, 25-32.
//    DOI= http://doi.acm.org/10.1145/512529.512534
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "strongphielim"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/BreakCriticalMachineEdge.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;


namespace {
  struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
    static char ID; // Pass identification, replacement for typeid
    StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {}

    bool runOnMachineFunction(MachineFunction &Fn);
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addPreserved<LiveVariables>();
      AU.addPreservedID(PHIEliminationID);
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<LiveVariables>();
      AU.setPreservesAll();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    
    virtual void releaseMemory() {
      preorder.clear();
      maxpreorder.clear();
      
      waiting.clear();
    }

  private:
    struct DomForestNode {
    private:
      std::vector<DomForestNode*> children;
      unsigned reg;
      
      void addChild(DomForestNode* DFN) { children.push_back(DFN); }
      
    public:
      typedef std::vector<DomForestNode*>::iterator iterator;
      
      DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
        if (parent)
          parent->addChild(this);
      }
      
      ~DomForestNode() {
        for (iterator I = begin(), E = end(); I != E; ++I)
          delete *I;
      }
      
      inline unsigned getReg() { return reg; }
      
      inline DomForestNode::iterator begin() { return children.begin(); }
      inline DomForestNode::iterator end() { return children.end(); }
    };
    
    DenseMap<MachineBasicBlock*, unsigned> preorder;
    DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
    
    DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > waiting;
    
    
    void computeDFS(MachineFunction& MF);
    void processBlock(MachineBasicBlock* MBB);
    
    std::vector<DomForestNode*> computeDomForest(std::set<unsigned>& instrs);
    void breakCriticalEdges(MachineFunction &Fn);
    
  };

  char StrongPHIElimination::ID = 0;
  RegisterPass<StrongPHIElimination> X("strong-phi-node-elimination",
                  "Eliminate PHI nodes for register allocation, intelligently");
}

const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo();

/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
/// of the given MachineFunction.  These numbers are then used in other parts
/// of the PHI elimination process.
void StrongPHIElimination::computeDFS(MachineFunction& MF) {
  SmallPtrSet<MachineDomTreeNode*, 8> frontier;
  SmallPtrSet<MachineDomTreeNode*, 8> visited;
  
  unsigned time = 0;
  
  MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
  
  MachineDomTreeNode* node = DT.getRootNode();
  
  std::vector<MachineDomTreeNode*> worklist;
  worklist.push_back(node);
  
  while (!worklist.empty()) {
    MachineDomTreeNode* currNode = worklist.back();
    
    if (!frontier.count(currNode)) {
      frontier.insert(currNode);
      ++time;
      preorder.insert(std::make_pair(currNode->getBlock(), time));
    }
    
    bool inserted = false;
    for (MachineDomTreeNode::iterator I = node->begin(), E = node->end();
         I != E; ++I)
      if (!frontier.count(*I) && !visited.count(*I)) {
        worklist.push_back(*I);
        inserted = true;
        break;
      }
    
    if (!inserted) {
      frontier.erase(currNode);
      visited.insert(currNode);
      maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
      
      worklist.pop_back();
    }
  }
}

/// PreorderSorter - a helper class that is used to sort registers
/// according to the preorder number of their defining blocks
class PreorderSorter {
private:
  DenseMap<MachineBasicBlock*, unsigned>& preorder;
  LiveVariables& LV;
  
public:
  PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
                LiveVariables& L) : preorder(p), LV(L) { }
  
  bool operator()(unsigned A, unsigned B) {
    if (A == B)
      return false;
    
    MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent();
    MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent();
    
    if (preorder[ABlock] < preorder[BBlock])
      return true;
    else if (preorder[ABlock] > preorder[BBlock])
      return false;
    
    assert(0 && "Error sorting by dominance!");
    return false;
  }
};

/// computeDomForest - compute the subforest of the DomTree corresponding
/// to the defining blocks of the registers in question
std::vector<StrongPHIElimination::DomForestNode*>
StrongPHIElimination::computeDomForest(std::set<unsigned>& regs) {
  LiveVariables& LV = getAnalysis<LiveVariables>();
  
  DomForestNode* VirtualRoot = new DomForestNode(0, 0);
  maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
  
  std::vector<unsigned> worklist;
  worklist.reserve(regs.size());
  for (std::set<unsigned>::iterator I = regs.begin(), E = regs.end();
       I != E; ++I)
    worklist.push_back(*I);
  
  PreorderSorter PS(preorder, LV);
  std::sort(worklist.begin(), worklist.end(), PS);
  
  DomForestNode* CurrentParent = VirtualRoot;
  std::vector<DomForestNode*> stack;
  stack.push_back(VirtualRoot);
  
  for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
       I != E; ++I) {
    unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()];
    MachineBasicBlock* parentBlock =
      LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
    
    while (pre > maxpreorder[parentBlock]) {
      stack.pop_back();
      CurrentParent = stack.back();
      
      parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
    }
    
    DomForestNode* child = new DomForestNode(*I, CurrentParent);
    stack.push_back(child);
    CurrentParent = child;
  }
  
  std::vector<DomForestNode*> ret;
  ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
  return ret;
}

/// isLiveIn - helper method that determines, from a VarInfo, if a register
/// is live into a block
bool isLiveIn(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) {
  if (V.AliveBlocks.test(MBB->getNumber()))
    return true;
  
  if (V.DefInst->getParent() != MBB &&
      V.UsedBlocks.test(MBB->getNumber()))
    return true;
  
  return false;
}

/// isLiveOut - help method that determines, from a VarInfo, if a register is
/// live out of a block.
bool isLiveOut(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) {
  if (MBB == V.DefInst->getParent() ||
      V.