aboutsummaryrefslogtreecommitdiff
path: root/lib/Bytecode/Reader/ReaderInternals.h
blob: 36bf2f6f0e25de5df7d5f3688e636e2c059b9ab4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//===-- ReaderInternals.h - Definitions internal to the reader --*- C++ -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
//  This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//

#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H

#include "ReaderPrimitives.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/ModuleProvider.h"
#include <utility>
#include <map>

namespace llvm {

// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
//#define DEBUG_OUTPUT

#if TRACE_LEVEL    // ByteCodeReading_TRACEr
#define BCR_TRACE(n, X) \
    if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif

struct LazyFunctionInfo {
  const unsigned char *Buf, *EndBuf;
  LazyFunctionInfo(const unsigned char *B = 0, const unsigned char *EB = 0)
    : Buf(B), EndBuf(EB) {}
};

class BytecodeParser : public ModuleProvider {
  BytecodeParser(const BytecodeParser &);  // DO NOT IMPLEMENT
  void operator=(const BytecodeParser &);  // DO NOT IMPLEMENT
public:
  BytecodeParser() {}
  
  ~BytecodeParser() {
    freeState();
  }
  void freeState() {
    freeTable(Values);
    freeTable(ModuleValues);
  }

  Module* materializeModule() {
    while (! LazyFunctionLoadMap.empty()) {
      std::map<Function*, LazyFunctionInfo>::iterator i = 
        LazyFunctionLoadMap.begin();
      materializeFunction((*i).first);
    }

    return TheModule;
  }

  Module* releaseModule() {
    // Since we're losing control of this Module, we must hand it back complete
    Module *M = ModuleProvider::releaseModule();
    freeState();
    return M;
  }

  void ParseBytecode(const unsigned char *Buf, unsigned Length,
                     const std::string &ModuleID);

  void dump() const {
    std::cerr << "BytecodeParser instance!\n";
  }

private:
  struct ValueList : public User {
    ValueList() : User(Type::TypeTy, Value::TypeVal) {}

    // vector compatibility methods
    unsigned size() const { return getNumOperands(); }
    void push_back(Value *V) { Operands.push_back(Use(V, this)); }
    Value *back() const { return Operands.back(); }
    void pop_back() { Operands.pop_back(); }
    bool empty() const { return Operands.empty(); }

    virtual void print(std::ostream& OS) const {
      OS << "Bytecode Reader UseHandle!";
    }
  };

  // Information about the module, extracted from the bytecode revision number.
  unsigned char RevisionNum;        // The rev # itself

  // Flags to distinguish LLVM 1.0 & 1.1 bytecode formats (revision #0)

  // Revision #0 had an explicit alignment of data only for the ModuleGlobalInfo
  // block.  This was fixed to be like all other blocks in 1.2
  bool hasInconsistentModuleGlobalInfo;

  // Revision #0 also explicitly encoded zero values for primitive types like
  // int/sbyte/etc.
  bool hasExplicitPrimitiveZeros;

  // Flags to control features specific the LLVM 1.2 and before (revision #1)

  // LLVM 1.2 and earlier required that getelementptr structure indices were
  // ubyte constants and that sequential type indices were longs.
  bool hasRestrictedGEPTypes;


  typedef std::vector<ValueList*> ValueTable;
  ValueTable Values;
  ValueTable ModuleValues;
  std::map<std::pair<unsigned,unsigned>, Value*> ForwardReferences;

  /// CompactionTable - If a compaction table is active in the current function,
  /// this is the mapping that it contains.
  std::vector<std::vector<Value*> > CompactionTable;

  std::vector<BasicBlock*> ParsedBasicBlocks;

  // ConstantFwdRefs - This maintains a mapping between <Type, Slot #>'s and
  // forward references to constants.  Such values may be referenced before they
  // are defined, and if so, the temporary object that they represent is held
  // here.
  //
  typedef std::map<std::pair<const Type*,unsigned>, Constant*> ConstantRefsType;
  ConstantRefsType ConstantFwdRefs;

  // TypesLoaded - This vector mirrors the Values[TypeTyID] plane.  It is used
  // to deal with forward references to types.
  //
  typedef std::vector<PATypeHolder> TypeValuesListTy;
  TypeValuesListTy ModuleTypeValues;
  TypeValuesListTy FunctionTypeValues;

  // When the ModuleGlobalInfo section is read, we create a function object for
  // each function in the module.  When the function is loaded, this function is
  // filled in.
  //
  std::vector<Function*> FunctionSignatureList;

  // Constant values are read in after global variables.  Because of this, we
  // must defer setting the initializers on global variables until after module
  // level constants have been read.  In the mean time, this list keeps track of
  // what we must do.
  //
  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;

  // For lazy reading-in of functions, we need to save away several pieces of
  // information about each function: its begin and end pointer in the buffer
  // and its FunctionSlot.
  // 
  std::map<Function*, LazyFunctionInfo> LazyFunctionLoadMap;
  
private:
  void freeTable(ValueTable &Tab) {
    while (!Tab.empty()) {
      delete Tab.back();
      Tab.pop_back();
    }
  }

  /// getGlobalTableType - This is just like getType, but when a compaction
  /// table is in use, it is ignored.  Also, no forward references or other
  /// fancy features are supported.
  const Type *getGlobalTableType(unsigned Slot) {
    if (Slot < Type::FirstDerivedTyID) {
      const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
      assert(Ty && "Not a primitive type ID?");
      return Ty;
    }
    Slot -= Type::FirstDerivedTyID;
    if (Slot >= ModuleTypeValues.size())
      throw std::string("Illegal compaction table type reference!");
    return ModuleTypeValues[Slot];
  }

  unsigned getGlobalTableTypeSlot(const Type *Ty) {
    if (Ty->isPrimitiveType())
      return Ty->getTypeID();
    TypeValuesListTy::iterator I = find(ModuleTypeValues.begin(),
                                        ModuleTypeValues.end(), Ty);
    if (I == ModuleTypeValues.end())
      throw std::string("Didn't find type in ModuleTypeValues.");
    return Type::FirstDerivedTyID + (&*I - &ModuleTypeValues[0]);
  }

  /// getGlobalTableValue - This is just like getValue, but when a compaction
  /// table is in use, it is ignored.  Also, no forward references or other
  /// fancy features are supported.
  Value *getGlobalTableValue(const Type *Ty, unsigned SlotNo) {
    // FIXME: getTypeSlot is inefficient!
    unsigned TyID = getGlobalTableTypeSlot(Ty);
    
    if (TyID != Type::LabelTyID) {
      if (SlotNo == 0)
        return Constant::getNullValue(Ty);
      --SlotNo;
    }

    if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
        SlotNo >= ModuleValues[TyID]->getNumOperands()) {
      std::cerr << TyID << ", " << SlotNo << ": " << ModuleValues.size() << ", "
                << (void*)ModuleValues[TyID] << ", "
                << ModuleValues[TyID]->getNumOperands() << "\n";
      throw std::string("Corrupt compaction table entry!");
    }
    return ModuleValues[TyID]->getOperand(SlotNo);
  }

public:
  void ParseModule(const unsigned char * Buf, const unsigned char *End);
  void materializeFunction(Function *F);

private:
  void ParseVersionInfo   (const unsigned char *&Buf, const unsigned char *End);
  void ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E);
  void ParseSymbolTable(const unsigned char *&Buf, const unsigned char *End,
                        SymbolTable *, Function *CurrentFunction);
  void ParseFunction(const unsigned char *&Buf, const unsigned char *End);
  void ParseCompactionTable(const unsigned char *&Buf,const unsigned char *End);
  void ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf);

  BasicBlock *ParseBasicBlock(const unsigned char *&Buf,
                              const unsigned char *End,
                              unsigned BlockNo);
  unsigned ParseInstructionList(Function *F, const unsigned char *&Buf,
                                const unsigned char *EndBuf);
  
  void ParseInstruction(const unsigned char *&Buf, const unsigned char *End,
                        std::vector<unsigned> &Args, BasicBlock *BB);

  void ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf,
                         ValueTable &Tab, TypeValuesListTy &TypeTab);
  Constant *parseConstantValue(const unsigned char *&Buf,
                               const unsigned char *End,
                               unsigned TypeID);
  void parseTypeConstants(const unsigned