1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
//===-- ReaderInternals.h - Definitions internal to the reader ---*- C++ -*--=//
//
// This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//
#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H
#include "llvm/Bytecode/Primitives.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include <utility>
#include <map>
// Enable to trace to figure out what the heck is going on when parsing fails
#define TRACE_LEVEL 0
#if TRACE_LEVEL // ByteCodeReading_TRACEer
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
struct RawInst { // The raw fields out of the bytecode stream...
unsigned NumOperands;
unsigned Opcode;
const Type *Ty;
unsigned Arg1, Arg2;
union {
unsigned Arg3;
std::vector<unsigned> *VarArgs; // Contains arg #3,4,5... if NumOperands > 3
};
};
class BytecodeParser : public AbstractTypeUser {
std::string Error; // Error message string goes here...
BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT
void operator=(const BytecodeParser &); // DO NOT IMPLEMENT
public:
BytecodeParser() {
// Define this in case we don't see a ModuleGlobalInfo block.
FirstDerivedTyID = Type::FirstDerivedTyID;
}
~BytecodeParser() {
freeState();
}
void freeState() {
freeTable(Values);
freeTable(LateResolveValues);
freeTable(ModuleValues);
}
Module *ParseBytecode(const unsigned char *Buf, const unsigned char *EndBuf,
const std::string &ModuleID);
std::string getError() const { return Error; }
void dump() const {
std::cerr << "BytecodeParser instance!\n";
}
private: // All of this data is transient across calls to ParseBytecode
struct ValueList : public User {
ValueList() : User(Type::TypeTy, Value::TypeVal) {
}
~ValueList() {}
// vector compatibility methods
unsigned size() const { return getNumOperands(); }
void push_back(Value *V) { Operands.push_back(Use(V, this)); }
Value *back() const { return Operands.back(); }
void pop_back() { Operands.pop_back(); }
bool empty() const { return Operands.empty(); }
virtual void print(std::ostream& OS) const {
OS << "Bytecode Reader UseHandle!";
}
};
Module *TheModule; // Current Module being read into...
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
unsigned char FirstDerivedTyID; // First variable index to use for type
bool HasImplicitZeroInitializer; // Is entry 0 of every slot implicity zeros?
bool hasInternalMarkerOnly; // Only types of linkage are intern/external
typedef std::vector<ValueList*> ValueTable;
ValueTable Values, LateResolveValues;
ValueTable ModuleValues;
// GlobalRefs - This maintains a mapping between <Type, Slot #>'s and forward
// references to global values or constants. Such values may be referenced
// before they are defined, and if so, the temporary object that they
// represent is held here.
//
typedef std::map<std::pair<const Type *, unsigned>, Value*> GlobalRefsType;
GlobalRefsType GlobalRefs;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
typedef std::vector<PATypeHandle> TypeValuesListTy;
TypeValuesListTy ModuleTypeValues;
TypeValuesListTy FunctionTypeValues;
// When the ModuleGlobalInfo section is read, we create a function object for
// each function in the module. When the function is loaded, this function is
// filled in.
//
std::vector<std::pair<Function*, unsigned> > FunctionSignatureList;
// Constant values are read in after global variables. Because of this, we
// must defer setting the initializers on global variables until after module
// level constants have been read. In the mean time, this list keeps track of
// what we must do.
//
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
private:
void freeTable(ValueTable &Tab) {
while (!Tab.empty()) {
delete Tab.back();
Tab.pop_back();
}
}
bool ParseModule (const unsigned char * Buf, const unsigned char *End);
bool ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End);
bool ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E);
bool ParseSymbolTable (const unsigned char *&Buf, const unsigned char *End,
SymbolTable *);
bool ParseFunction (const unsigned char *&Buf, const unsigned char *End);
bool ParseBasicBlock (const unsigned char *&Buf, const unsigned char *End,
BasicBlock *&);
bool ParseInstruction (const unsigned char *&Buf, const unsigned char *End,
Instruction *&, BasicBlock *BB /*HACK*/);
bool ParseRawInst (const unsigned char *&Buf, const unsigned char *End,
RawInst &);
bool ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf);
bool ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf,
ValueTable &Tab, TypeValuesListTy &TypeTab);
bool parseConstantValue(const unsigned char *&Buf, const unsigned char *End,
const Type *Ty, Constant *&V);
bool parseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeValuesListTy &Tab, unsigned NumEntries);
const Type *parseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf);
Value *getValue(const Type *Ty, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
Constant *getConstantValue(const Type *Ty, unsigned num);
int insertValue(Value *V, ValueTable &Table); // -1 = Failure
void setValueTo(ValueTable &D, unsigned Slot, Value *V);
bool postResolveValues(ValueTable &ValTab);
bool getTypeSlot(const Type *Ty, unsigned &Slot);
// resolve all references to the placeholder (if any) for the given value
void ResolveReferencesToValue(Value *Val, unsigned Slot);
// refineAbstractType - The callback method is invoked when one of the
// elements of TypeValues becomes more concrete...
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
};
template<class SuperType>
class PlaceholderDef : public SuperType {
unsigned ID;
PlaceholderDef(); // DO NOT IMPLEMENT
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
unsigned getID() { return ID; }
};
struct InstPlaceHolderHelper : public Instruction {
InstPlaceHolderHelper(const Type *Ty) : Instruction(Ty, UserOp1, "") {}
virtual const char *getOpcodeName() const { return "placeholder"; }
virtual Instruction *clone() const { abort(); return 0; }
};
struct BBPlaceHolderHelper : public BasicBlock {
BBPlaceHolderHelper(const Type *Ty) : BasicBlock() {
assert(Ty == Type::LabelTy);
}
};
struct ConstantPlaceHolderHelper : public Constant {
ConstantPlaceHolderHelper(const Type *Ty)
: Constant(Ty) {}
virtual bool isNullValue() const { return false; }
};
typedef PlaceholderDef<InstPlaceHolderHelper> ValPHolder;
typedef PlaceholderDef<BBPlaceHolderHelper> BBPHolder;
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
static inline unsigned getValueIDNumberFromPlaceHolder(Value *Val) {
if (isa<Constant>(Val))
return ((ConstPHolder*)Val)->getID();
// else discriminate by type
switch (Val->getType()->getPrimitiveID()) {
case Type::LabelTyID: return ((BBPHolder*)Val)->getID();
default: return ((ValPHolder*)Val)->getID();
}
}
static inline bool readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) {
#if DEBUG_OUTPUT
bool Result = read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size);
std::cerr << "StartLoc = "
|