1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
//===- ProfileEstimatorPass.cpp - LLVM Pass to estimate profile info ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a concrete implementation of profiling information that
// estimates the profiling information in a very crude and unimaginative way.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "profile-estimator"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Format.h"
using namespace llvm;
static cl::opt<double>
LoopWeight(
"profile-estimator-loop-weight", cl::init(10),
cl::value_desc("loop-weight"),
cl::desc("Number of loop executions used for profile-estimator")
);
namespace {
class ProfileEstimatorPass : public FunctionPass, public ProfileInfo {
double ExecCount;
LoopInfo *LI;
std::set<BasicBlock*> BBToVisit;
std::map<Loop*,double> LoopExitWeights;
std::map<Edge,double> MinimalWeight;
public:
static char ID; // Class identification, replacement for typeinfo
explicit ProfileEstimatorPass(const double execcount = 0)
: FunctionPass(ID), ExecCount(execcount) {
initializeProfileEstimatorPassPass(*PassRegistry::getPassRegistry());
if (execcount == 0) ExecCount = LoopWeight;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<LoopInfo>();
}
virtual const char *getPassName() const {
return "Profiling information estimator";
}
/// run - Estimate the profile information from the specified file.
virtual bool runOnFunction(Function &F);
/// getAdjustedAnalysisPointer - This method is used when a pass implements
/// an analysis interface through multiple inheritance. If needed, it
/// should override this to adjust the this pointer as needed for the
/// specified pass info.
virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
if (PI == &ProfileInfo::ID)
return (ProfileInfo*)this;
return this;
}
virtual void recurseBasicBlock(BasicBlock *BB);
void inline printEdgeWeight(Edge);
};
} // End of anonymous namespace
char ProfileEstimatorPass::ID = 0;
INITIALIZE_AG_PASS_BEGIN(ProfileEstimatorPass, ProfileInfo, "profile-estimator",
"Estimate profiling information", false, true, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_AG_PASS_END(ProfileEstimatorPass, ProfileInfo, "profile-estimator",
"Estimate profiling information", false, true, false)
namespace llvm {
char &ProfileEstimatorPassID = ProfileEstimatorPass::ID;
FunctionPass *createProfileEstimatorPass() {
return new ProfileEstimatorPass();
}
/// createProfileEstimatorPass - This function returns a Pass that estimates
/// profiling information using the given loop execution count.
Pass *createProfileEstimatorPass(const unsigned execcount) {
return new ProfileEstimatorPass(execcount);
}
}
static double ignoreMissing(double w) {
if (w == ProfileInfo::MissingValue) return 0;
return w;
}
static void inline printEdgeError(ProfileInfo::Edge e, const char *M) {
DEBUG(dbgs() << "-- Edge " << e << " is not calculated, " << M << "\n");
}
void inline ProfileEstimatorPass::printEdgeWeight(Edge E) {
DEBUG(dbgs() << "-- Weight of Edge " << E << ":"
<< format("%20.20g", getEdgeWeight(E)) << "\n");
}
// recurseBasicBlock() - This calculates the ProfileInfo estimation for a
// single block and then recurses into the successors.
// The algorithm preserves the flow condition, meaning that the sum of the
// weight of the incoming edges must be equal the block weight which must in
// turn be equal to the sume of the weights of the outgoing edges.
// Since the flow of an block is deterimined from the current state of the
// flow, once an edge has a flow assigned this flow is never changed again,
// otherwise it would be possible to violate the flow condition in another
// block.
void ProfileEstimatorPass::recurseBasicBlock(BasicBlock *BB) {
// Break the recursion if this BasicBlock was already visited.
if (BBToVisit.find(BB) == BBToVisit.end()) return;
// Read the LoopInfo for this block.
bool BBisHeader = LI->isLoopHeader(BB);
Loop* BBLoop = LI->getLoopFor(BB);
// To get the block weight, read all incoming edges.
double BBWeight = 0;
std::set<BasicBlock*> ProcessedPreds;
for ( pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
bbi != bbe; ++bbi ) {
// If this block was not considered already, add weight.
Edge edge = getEdge(*bbi,BB);
double w = getEdgeWeight(edge);
if (ProcessedPreds.insert(*bbi).second) {
BBWeight += ignoreMissing(w);
}
// If this block is a loop header and the predecessor is contained in this
// loop, thus the edge is a backedge, continue and do not check if the
// value is valid.
if (BBisHeader && BBLoop->contains(*bbi)) {
printEdgeError(edge, "but is backedge, continuing");
continue;
}
// If the edges value is missing (and this is no loop header, and this is
// no backedge) return, this block is currently non estimatable.
if (w == MissingValue) {
printEdgeError(edge, "returning");
return;
}
}
if (getExecutionCount(BB) != MissingValue) {
BBWeight = getExecutionCount(BB);
}
// Fetch all necessary information for current block.
SmallVector<Edge, 8> ExitEdges;
SmallVector<Edge, 8> Edges;
if (BBLoop) {
BBLoop->getExitEdges(ExitEdges);
}
// If this is a loop header, consider the following:
// Exactly the flow that is entering this block, must exit this block too. So
// do the following:
// *) get all the exit edges, read the flow that is already leaving this
// loop, remember the edges that do not have any flow on them right now.
// (The edges that have already flow on them are most likely exiting edges of
// other loops, do not touch those flows because the previously caclulated
// loopheaders would not be exact anymore.)
// *) In case there is not a single exiting edge left, create one at the loop
// latch to prevent the flow from building up in the loop.
// *) Take the flow that is not leaving the loop already and distribute it on
// the remaining exiting edges.
// (This ensures that all flow that enters the loop also leaves it.)
// *) Increase the flow into the loop by increasing the weight of this block.
// There is at least one incoming backedge that will bring us this flow later
// on. (So that the flow condition in this node is valid again.)
if (BBisHeader) {
double incoming = BBWeight;
// Subtract the flow leaving the loop.
std::set<Edge> ProcessedExits;
for (SmallVector<Edge, 8>::iterator ei = ExitEdges.begin(),
ee = ExitEdges.end(); ei != ee; ++ei) {
if (ProcessedExits.insert(*ei).second) {
double w = getEdgeWeight(*ei);
if (w == MissingValue) {
Edges.push_back(*ei);
// Check if there is a necessary minimal weight, if yes, subtract it
// from weight.
if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
incoming -= MinimalWeight[*ei];
DEBUG(dbgs() << "Reserving " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
}
} else {
incoming -= w;
}
}
}
// If no exit edges, create one:
if (Edges.size() == 0) {
BasicBlock *Latch = BBLoop->getLoopLatch();
if (Latch) {
Edge edge = getEdge(Latch,0);
EdgeInformation[BB->getParent()][edge] = BBWeight;
printEdgeWeight(edge);
edge = getEdge(Latch, BB);
EdgeInformation[BB->getParent()][edge] = BBWeight * ExecCount;
printEdgeWeight(edge);
}
}
// Distribute remaining weight to the exting edges. To prevent fractions
// from building up and provoking precision problems the weight which is to
// be distributed is split and the rounded, the last edge gets a somewhat
// bigger value, but we are close enough for an estimation.
double fraction = floor(incoming/Edges.size());
for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
ei != ee; ++ei) {
double w = 0;
if (ei != (ee-1)) {
w = fraction;
incoming -= fraction;
} else {
w = incoming;
}
EdgeInformation[BB->getParent()][*ei] += w;
// Read necessary minimal weight.
if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
EdgeInformation[BB->getParent()][*ei] += MinimalWeight[*ei];
DEBUG(dbgs() << "Additionally " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
}
printEdgeWeight(*ei);
// Add minimal weight to paths to all exit edges, this is used to ensure
// that enough flow is reaching this edges.
Path p;
const BasicBlock *Dest = GetPath(BB, (*ei).first, p, GetPathToDest);
while (Dest != BB) {
const BasicBlock *Parent = p.find(Dest)->second;
Edge e = getEdge(Parent, Dest);
if (MinimalWeight.find(e) == MinimalWeight.end()) {
MinimalWeight[e] = 0;
}
MinimalWeight[e] += w;
DEBUG(dbgs() << "Minimal Weight for " << e << ": " << format("%.20g",MinimalWeight[e]) << "\n");
Dest = Parent;
}
}
// Increase flow into the loop.
BBWeight *= (ExecCount+1);
}
BlockInformation[BB->getParent()][BB] = BBWeight;
// Up until now we considered only the loop exiting edges, now we have a
// definite block weight and must distribute this onto the outgoing edges.
// Since there may be already flow attached to some of the edges, read this
// flow first and remember the edges that have still now flow attached.
Edges.clear();
std::set<BasicBlock*> ProcessedSuccs;
succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
// Also check for (BB,0) edges that may already contain some flow. (But only
// in case there are no successors.)
if (bbi == bbe) {
Edge edge = getEdge(BB,0);
EdgeInformation[BB->getParent()][edge] = BBWeight;
printEdgeWeight(edge);
}
for ( ; bbi != bbe; ++bbi ) {
if (ProcessedSuccs.insert(*bbi).second) {
Edge edge = getEdge(BB,*bbi);
double w = getEdgeWeight(edge);
if (w != MissingValue) {
BBWeight -= getEdgeWeight(edge);
} else {
Edges.push_back(edge);
// If minimal weight is necessary, reserve weight by subtracting weight
// from block weight, this is readded later on.
if (MinimalWeight.find(edge) != MinimalWeight.end()) {
BBWeight -= MinimalWeight[edge];
DEBUG(dbgs() << "Reserving " << format("%.20g",MinimalWeight[edge]) << " at " << edge << "\n");
}
}
}
}
double fraction = floor(BBWeight/Edges.size());
// Finally we know what flow is still not leaving the block, distribute this
// flow onto the empty edges.
for (SmallVector<Edge, 8>::iterator ei = Edges.begin(), ee = Edges.end();
ei != ee; ++ei) {
if (ei != (ee-1)) {
EdgeInformation[BB->getParent()][*ei] += fraction;
BBWeight -= fraction;
} else {
EdgeInformation[BB->getParent()][*ei] += BBWeight;
}
// Readd minial necessary weight.
if (MinimalWeight.find(*ei) != MinimalWeight.end()) {
EdgeInformation[BB->getParent()][*ei] += MinimalWeight[*ei];
DEBUG(dbgs() << "Additionally " << format("%.20g",MinimalWeight[*ei]) << " at " << (*ei) << "\n");
}
printEdgeWeight(*ei);
}
// This block is visited, mark this before the recursion.
BBToVisit.erase(BB);
// Recurse into successors.
for (succ_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
bbi != bbe; ++bbi) {
recurseBasicBlock(*bbi);
}
}
bool ProfileEstimatorPass::runOnFunction(Function &F) {
if (F.isDeclaration()) return false;
// Fetch LoopInfo and clear ProfileInfo for this function.
LI = &getAnalysis<LoopInfo>();
FunctionInformation.erase(&F);
BlockInformation[&F].clear();
EdgeInformation[&F].clear();
BBToVisit.clear();
// Mark all blocks as to visit.
for (Function::iterator bi = F.begin(), be = F.end(); bi != be; ++bi)
BBToVisit.insert(bi);
// Clear Minimal Edges.
MinimalWeight.clear();
DEBUG(dbgs() << "Working on function " << F.getName() << "\n");
// Since the entry block is the first one and has no predecessors, the edge
// (0,entry) is inserted with the starting weight of 1.
BasicBlock *entry = &F.getEntryBlock();
BlockInformation[&F][entry] = pow(2.0, 32.0);
Edge edge = getEdge(0,entry);
EdgeInformation[&F][edge] = BlockInformation[&F][entry];
printEdgeWeight(edge);
// Since recurseBasicBlock() maybe returns with a block which was not fully
// estimated, use recurseBasicBlock() until everything is calculated.
bool cleanup = false;
recurseBasicBlock(entry);
while (BBToVisit.size() > 0 && !cleanup) {
// Remember number of open blocks, this is later used to check if progress
// was made.
unsigned size = BBToVisit.size();
// Try to calculate all blocks in turn.
for (std::set<BasicBlock*>::iterator bi = BBToVisit.begin(),
be = BBToVisit.end(); bi != be; ++bi) {
recurseBasicBlock(*bi);
// If at least one block was finished, break because iterator may be
// invalid.
if (BBToVisit.size() < size) break;
}
// If there was not a single block resolved, make some assumptions.
if (BBToVisit.size() == size) {
bool found = false;
for (std::set<BasicBlock*>::iterator BBI = BBToVisit.begin(), BBE = BBToVisit.end();
(BBI != BBE) && (!found); ++BBI) {
BasicBlock *BB = *BBI;
// Try each predecessor if it can be assumend.
for (pred_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
(bbi != bbe) && (!found); ++bbi) {
Edge e = getEdge(*bbi,BB);
double w = getEdgeWeight(e);
// Check that edge from predecessor is still free.
if (w == MissingValue) {
// Check if there is a circle from this block to predecessor.
Path P;
const BasicBlock *Dest = GetPath(BB, *bbi, P, GetPathToDest);
if (Dest != *bbi) {
// If there is no circle, just set edge weight to 0
EdgeInformation[&F][e] = 0;
DEBUG(dbgs() << "Assuming edge weight: ");
printEdgeWeight(e);
found = true;
}
}
}
}
if (!found) {
cleanup = true;
DEBUG(dbgs() << "No assumption possible in Fuction "<<F.getName()<<", setting all to zero\n");
}
}
}
// In case there was no safe way to assume edges, set as a last measure,
// set _everything_ to zero.
if (cleanup) {
FunctionInformation[&F] = 0;
BlockInformation[&F].clear();
EdgeInformation[&F].clear();
for (Function::const_iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
const BasicBlock *BB = &(*FI);
BlockInformation[&F][BB] = 0;
const_pred_iterator predi = pred_begin(BB), prede = pred_end(BB);
if (predi == prede) {
Edge e = getEdge(0,BB);
setEdgeWeight(e,0);
}
for (;predi != prede; ++predi) {
Edge e = getEdge(*predi,BB);
setEdgeWeight(e,0);
}
succ_const_iterator succi = succ_begin(BB), succe = succ_end(BB);
if (succi == succe) {
Edge e = getEdge(BB,0);
setEdgeWeight(e,0);
}
for (;succi != succe; ++succi) {
Edge e = getEdge(*succi,BB);
setEdgeWeight(e,0);
}
}
}
return false;
}
|