aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/PostDominators.cpp
blob: d6483423eb63f00a724d316876735ccddd70e351 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
//
// This file provides a simple class to calculate the dominator set of a method.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/Dominators.h"
#include "llvm/CFG.h"
#include "llvm/Tools/STLExtras.h"
#include <algorithm>

//===----------------------------------------------------------------------===//
//  Helper Template
//===----------------------------------------------------------------------===//

// set_intersect - Identical to set_intersection, except that it works on 
// set<>'s and is nicer to use.  Functionally, this iterates through S1, 
// removing elements that are not contained in S2.
//
template <class Ty, class Ty2>
void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
  for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
    const Ty &E = *I;
    ++I;
    if (!S2.count(E)) S1.erase(E);   // Erase element if not in S2
  }
}


//===----------------------------------------------------------------------===//
//  DominatorSet Implementation
//===----------------------------------------------------------------------===//

// DominatorSet ctor - Build either the dominator set or the post-dominator
// set for a method...
//
cfg::DominatorSet::DominatorSet(const Method *M, bool PostDomSet)
  : Root(M->front()) {
  assert(Root && M && "Can't build dominator set of null method!");
  bool Changed;
  do {
    Changed = false;

    DomSetType WorkingSet;
    df_const_iterator It = df_begin(M), End = df_end(M);
    for ( ; It != End; ++It) {
      const BasicBlock *BB = *It;
      pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
      if (PI != PEnd) {                // Is there SOME predecessor?
	// Loop until we get to a predecessor that has had it's dom set filled
	// in at least once.  We are guaranteed to have this because we are
	// traversing the graph in DFO and have handled start nodes specially.
	//
	while (Doms[*PI].size() == 0) ++PI;
	WorkingSet = Doms[*PI];

	for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
	  DomSetType &PredSet = Doms[*PI];
	  if (PredSet.size())
	    set_intersect(WorkingSet, PredSet);
	}
      }
	
      WorkingSet.insert(BB);           // A block always dominates itself
      DomSetType &BBSet = Doms[BB];
      if (BBSet != WorkingSet) {
	BBSet.swap(WorkingSet);        // Constant time operation!
	Changed = true;                // The sets changed.
      }
      WorkingSet.clear();              // Clear out the set for next iteration
    }
  } while (Changed);

}


//===----------------------------------------------------------------------===//
//  ImmediateDominators Implementation
//===----------------------------------------------------------------------===//

// calcIDoms - Calculate the immediate dominator mapping, given a set of
// dominators for every basic block.
void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
  // Loop over all of the nodes that have dominators... figuring out the IDOM
  // for each node...
  //
  for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); 
       DI != DEnd; ++DI) {
    const BasicBlock *BB = DI->first;
    const DominatorSet::DomSetType &Dominators = DI->second;
    unsigned DomSetSize = Dominators.size();
    if (DomSetSize == 1) continue;  // Root node... IDom = null

    // Loop over all dominators of this node.  This corresponds to looping over
    // nodes in the dominator chain, looking for a node whose dominator set is
    // equal to the current nodes, except that the current node does not exist
    // in it.  This means that it is one level higher in the dom chain than the
    // current node, and it is our idom!
    //
    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
    DominatorSet::DomSetType::const_iterator End = Dominators.end();
    for (; I != End; ++I) {   // Iterate over dominators...
      // All of our dominators should form a chain, where the number of elements
      // in the dominator set indicates what level the node is at in the chain.
      // We want the node immediately above us, so it will have an identical 
      // dominator set, except that BB will not dominate it... therefore it's
      // dominator set size will be one less than BB's...
      //
      if (DS.getDominators(*I).size() == DomSetSize - 1) {
	IDoms[BB] = *I;
	break;
      }
    }
  }
}


//===----------------------------------------------------------------------===//
//  DominatorTree Implementation
//===----------------------------------------------------------------------===//

// DominatorTree dtor - Free all of the tree node memory.
//
cfg::DominatorTree::~DominatorTree() { 
  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
    delete I->second;
}


cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) 
  : Root(IDoms.getRoot()) {
  assert(Root && Root->getParent() && "No method for IDoms?");
  const Method *M = Root->getParent();

  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...

  // Iterate over all nodes in depth first order...
  for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
    const BasicBlock *BB = *I, *IDom = IDoms[*I];

    if (IDom != 0) {   // Ignore the root node and other nasty nodes
      // We know that the immediate dominator should already have a node, 
      // because we are traversing the CFG in depth first order!
      //
      assert(Nodes[IDom] && "No node for IDOM?");
      Node *IDomNode = Nodes[IDom];

      // Add a new tree node for this BasicBlock, and link it as a child of
      // IDomNode
      Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
    }
  }
}

void cfg::DominatorTree::calculate(const DominatorSet &DS) {
  Root = DS.getRoot();
  assert(Root && Root->getParent() && "No method for IDoms?");
  const Method *M = Root->getParent();
  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...

  // Iterate over all nodes in depth first order...
  for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
    const BasicBlock *BB = *I;
    const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
    unsigned DomSetSize = Dominators.size();
    if (DomSetSize == 1) continue;  // Root node... IDom = null

    // Loop over all dominators of this node.  This corresponds to looping over
    // nodes in the dominator chain, looking for a node whose dominator set is
    // equal to the current nodes, except that the current node does not exist
    // in it.  This means that it is one level higher in the dom chain than the
    // current node, and it is our idom!  We know that we have already added
    // a DominatorTree node for our idom, because the idom must be a
    // predecessor in the depth first order that we are iterating through the
    // method.
    //
    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
    DominatorSet::DomSetType::const_iterator End = Dominators.end();
    for (; I != End; ++I) {   // Iterate over dominators...
      // All of our dominators should form a chain, where the number of elements
      // in the dominator set indicates what level the node is at in the chain.
      // We want the node immediately above us, so it will have an identical 
      // dominator set, except that BB will not dominate it... therefore it's
      // dominator set size will be one less than BB's...
      //
      if (DS.getDominators(*I).size() == DomSetSize - 1) {
	// We know that the immediate dominator should already have a node, 
	// because we are traversing the CFG in depth first order!
	//
	Node *IDomNode = Nodes[*I];
	assert(Nodes[*I] && "No node for IDOM?");
	
	// Add a new tree node for this BasicBlock, and link it as a child of
	// IDomNode
	Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
	break;
      }
    }
  }
}



//===----------------------------------------------------------------------===//
//  DominanceFrontier Implementation
//===----------------------------------------------------------------------===//

const cfg::DominanceFrontier::DomSetType &
cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, 
					const DominatorTree::Node *Node) {
  // Loop over CFG successors to calculate DFlocal[Node]
  const BasicBlock *BB = Node->getNode();
  DomSetType &S = Frontiers[BB];       // The new set to fill in...

  for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); 
       SI != SE; ++SI) {
    // Does Node immediately dominate this successor?
    if (DT[*SI]->getIDom() != Node)
      S.insert(*SI);
  }

  // At this point, S is DFlocal.  Now we union in DFup's of our children...
  // Loop through and visit the nodes that Node immediately dominates (Node's
  // children in the IDomTree)
  //
  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
       NI != NE; ++NI) {
    DominatorTree::Node *IDominee = *NI;
    const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);

    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
    for (; CDFI != CDFE; ++CDFI) {
      if (!Node->dominates(DT[*CDFI]))
	S.insert(*CDFI);
    }
  }

  return S;
}