aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/MemoryDependenceAnalysis.cpp
blob: 01af42c86363c79a8e1983709e9f0522153e1b8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on.  It builds on 
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;

STATISTIC(NumCacheNonLocal, "Number of cached non-local responses");
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");

char MemoryDependenceAnalysis::ID = 0;
  
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
                                     "Memory Dependence Analysis", false, true);

/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AliasAnalysis>();
  AU.addRequiredTransitive<TargetData>();
}

/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
                      BasicBlock *BB) {
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
  TargetData &TD = getAnalysis<TargetData>();
  
  // Walk backwards through the block, looking for dependencies
  while (ScanIt != BB->begin()) {
    Instruction *Inst = --ScanIt;
    
    // If this inst is a memory op, get the pointer it accessed
    Value *Pointer = 0;
    uint64_t PointerSize = 0;
    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
      Pointer = S->getPointerOperand();
      PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
      Pointer = V->getOperand(0);
      PointerSize = TD.getTypeStoreSize(V->getType());
    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
      Pointer = F->getPointerOperand();
      
      // FreeInsts erase the entire structure
      PointerSize = ~0UL;
    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
      if (AA.getModRefBehavior(CallSite::get(Inst)) ==
            AliasAnalysis::DoesNotAccessMemory)
        continue;
      return DepResultTy(Inst, Normal);
    } else {
      // Non-memory instruction.
      continue;
    }
    
    if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
      return DepResultTy(Inst, Normal);
  }
  
  // No dependence found.
  return DepResultTy(0, NonLocal);
}

/// getDependency - Return the instruction on which a memory operation
/// depends.  The local parameter indicates if the query should only
/// evaluate dependencies within the same basic block.
MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt, 
                          BasicBlock *BB) {
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
  TargetData &TD = getAnalysis<TargetData>();
  
  // Get the pointer value for which dependence will be determined
  Value *MemPtr = 0;
  uint64_t MemSize = 0;
  bool MemVolatile = false;
  
  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
    MemPtr = S->getPointerOperand();
    MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
    MemVolatile = S->isVolatile();
  } else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
    MemPtr = L->getPointerOperand();
    MemSize = TD.getTypeStoreSize(L->getType());
    MemVolatile = L->isVolatile();
  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
    MemPtr = V->getOperand(0);
    MemSize = TD.getTypeStoreSize(V->getType());
  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
    MemPtr = F->getPointerOperand();
    // FreeInsts erase the entire structure, not just a field.
    MemSize = ~0UL;
  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
  else  // Non-memory instructions depend on nothing.
    return DepResultTy(0, None);
  
  // Walk backwards through the basic block, looking for dependencies
  while (ScanIt != BB->begin()) {
    Instruction *Inst = --ScanIt;

    // If the access is volatile and this is a volatile load/store, return a
    // dependence.
    if (MemVolatile &&
        ((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
         (isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
      return DepResultTy(Inst, Normal);

    // Values depend on loads if the pointers are must aliased.  This means that
    // a load depends on another must aliased load from the same value.
    if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
      Value *Pointer = L->getPointerOperand();
      uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
      
      // If we found a pointer, check if it could be the same as our pointer
      AliasAnalysis::AliasResult R =
        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
      
      if (R == AliasAnalysis::NoAlias)
        continue;
      
      // May-alias loads don't depend on each other without a dependence.
      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
        continue;
      return DepResultTy(Inst, Normal);
    }

    // If this is an allocation, and if we know that the accessed pointer is to
    // the allocation, return None.  This means that there is no dependence and
    // the access can be optimized based on that.  For example, a load could
    // turn into undef.
    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
      Value *AccessPtr = MemPtr->getUnderlyingObject();
      
      if (AccessPtr == AI ||
          AA.alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
        return DepResultTy(0, None);
      continue;
    }
    
    // See if this instruction mod/ref's the pointer.
    AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);

    if (MRR == AliasAnalysis::NoModRef)
      continue;
    
    // Loads don't depend on read-only instructions.
    if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
      continue;
    
    // Otherwise, there is a dependence.
    return DepResultTy(Inst, Normal);
  }
  
  // If we found nothing, return the non-local flag.
  return DepResultTy(0, NonLocal);
}

/// getDependency - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
  Instruction *ScanPos = QueryInst;
  
  // Check for a cached result
  DepResultTy &LocalCache = LocalDeps[QueryInst];
  
  // If the cached entry is non-dirty, just return it.  Note that this depends
  // on DepResultTy's default constructing to 'dirty'.
  if (LocalCache.getInt() != Dirty)
    return ConvToResult(LocalCache);
    
  // Otherwise, if we have a dirty entry, we know we can start the scan at that
  // instruction, which may save us some work.
  if (Instruction *Inst = LocalCache.getPointer())
    ScanPos = Inst;
  
  // Do the scan.
  LocalCache = get