1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
|
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
// Control the calculation of non-local dependencies by only examining the
// predecessors if the basic block has less than X amount (50 by default).
static cl::opt<int>
PredLimit("nonlocaldep-threshold", cl::Hidden, cl::init(50),
cl::desc("Control the calculation of non-local"
"dependencies (default = 50)"));
STATISTIC(NumCacheNonlocal, "Number of cached non-local responses");
STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");
char MemoryDependenceAnalysis::ID = 0;
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
"Memory Dependence Analysis", false, true);
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
E = LocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
assert(I->second.getPointer() != D &&
"Inst occurs in data structures");
}
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
E = NonLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(II->second.getPointer() != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
E = ReverseLocalDeps.end(); I != E; ++I)
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
E = ReverseNonLocalDeps.end();
I != E; ++I)
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<TargetData>();
}
/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
MemDepResult MemoryDependenceAnalysis::
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
TargetData &TD = getAnalysis<TargetData>();
// Walk backwards through the block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If this inst is a memory op, get the pointer it accessed
Value *Pointer = 0;
uint64_t PointerSize = 0;
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
Pointer = S->getPointerOperand();
PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
} else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
Pointer = AI;
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
PointerSize = C->getZExtValue() *
TD.getTypeStoreSize(AI->getAllocatedType());
else
PointerSize = ~0UL;
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Pointer = V->getOperand(0);
PointerSize = TD.getTypeStoreSize(V->getType());
} else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
Pointer = F->getPointerOperand();
// FreeInsts erase the entire structure
PointerSize = ~0UL;
} else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
if (AA.getModRefBehavior(CallSite::get(Inst)) ==
AliasAnalysis::DoesNotAccessMemory)
continue;
return MemDepResult::get(Inst);
} else
continue;
if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
return MemDepResult::get(Inst);
}
// No dependence found.
return MemDepResult::getNonLocal();
}
/// nonLocalHelper - Private helper used to calculate non-local dependencies
/// by doing DFS on the predecessors of a block to find its dependencies.
void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query,
BasicBlock* block,
DenseMap<BasicBlock*, DepResultTy> &resp) {
// Set of blocks that we've already visited in our DFS
SmallPtrSet<BasicBlock*, 4> visited;
// If we're updating a dirtied cache entry, we don't need to reprocess
// already computed entries.
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = resp.begin(),
E = resp.end(); I != E; ++I)
if (I->second.getInt() != Dirty)
visited.insert(I->first);
// Current stack of the DFS
SmallVector<BasicBlock*, 4> stack;
for (pred_iterator PI = pred_begin(block), PE = pred_end(block);
PI != PE; ++PI)
stack.push_back(*PI);
// Do a basic DFS
while (!stack.empty()) {
BasicBlock* BB = stack.back();
// If we've already visited this block, no need to revist
if (visited.count(BB)) {
stack.pop_back();
continue;
}
// If we find a new block with a local dependency for query,
// then we insert the new dependency and backtrack.
if (BB != block) {
visited.insert(BB);
MemDepResult localDep = getDependencyFrom(query, BB->end(), BB);
if (!localDep.isNonLocal()) {
resp.insert(std::make_pair(BB, ConvFromResult(localDep)));
stack.pop_back();
continue;
}
// If we re-encounter the starting block, we still need to search it
// because there might be a dependency in the starting block AFTER
// the position of the query. This is necessary to get loops right.
} else if (BB == block) {
visited.insert(BB);
MemDepResult localDep = getDependencyFrom(query, BB->end(), BB);
if (localDep.getInst() != query)
resp.insert(std::make_pair(BB, ConvFromResult(localDep)));
stack.pop_back();
continue;
}
// If we didn't find anything, recurse on the precessors of this block
// Only do this for blocks with a small number of predecessors.
bool predOnStack = false;
bool inserted = false;
if (std::distance(pred_begin(BB), pred_end(BB)) <= PredLimit) {
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
PI != PE; ++PI)
if (!visited.count(*PI)) {
stack.push_back(*PI);
inserted = true;
} else
predOnStack = true;
}
// If we inserted a new predecessor, then we'll come back to this block
if (inserted)
continue;
// If we didn't insert because we have no predecessors, then this
// query has no dependency at all.
else if (!inserted && !predOnStack) {
resp.insert(std::make_pair(BB, DepResultTy(0, None)));
// If we didn't insert because our predecessors are already on the stack,
// then we might still have a dependency, but it will be discovered during
// backtracking.
} else if (!inserted && predOnStack){
resp.insert(std::make_pair(BB, DepResultTy(0, NonLocal)));
}
stack.pop_back();
}
}
/// getNonLocalDependency - Fills the passed-in map with the non-local
/// dependencies of the queries. The map will contain NonLocal for
/// blocks between the query and its dependencies.
void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query,
DenseMap<BasicBlock*, MemDepResult> &resp) {
if (NonLocalDeps.count(query)) {
DenseMap<BasicBlock*, DepResultTy> &cached = NonLocalDeps[query];
NumCacheNonlocal++;
SmallVector<BasicBlock*, 4> dirtied;
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
E = cached.end(); I != E; ++I)
if (I->second.getInt() == Dirty)
dirtied.push_back(I->first);
for (SmallVector<BasicBlock*, 4>::iterator I = dirtied.begin(),
E = dirtied.end(); I != E; ++I) {
MemDepResult localDep = getDependencyFrom(query, (*I)->end(), *I);
if (!localDep.isNonLocal())
cached[*I] = ConvFromResult(localDep);
else {
cached.erase(*I);
nonLocalHelper(query, *I, cached);
}
}
// Update the reverse non-local dependency cache.
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
E = cached.end(); I != E; ++I) {
if (Instruction *Inst = I->second.getPointer())
ReverseNonLocalDeps[Inst].insert(query);
resp[I->first] = ConvToResult(I->second);
}
return;
}
NumUncacheNonlocal++;
// If not, go ahead and search for non-local deps.
DenseMap<BasicBlock*, DepResultTy> &cached = NonLocalDeps[query];
nonLocalHelper(query, query->getParent(), cached);
// Update the non-local dependency cache
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
E = cached.end(); I != E; ++I) {
// FIXME: Merge with the code above!
if (Instruction *Inst = I->second.getPointer())
ReverseNonLocalDeps[Inst].insert(query);
resp[I->first] = ConvToResult(I->second);
}
}
/// getDependency - Return the instruction on which a memory operation
/// depends. The local parameter indicates if the query should only
/// evaluate dependencies within the same basic block.
MemDepResult MemoryDependenceAnalysis::
getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
TargetData &TD = getAnalysis<TargetData>();
// Get the pointer value for which dependence will be determined
Value *MemPtr = 0;
uint64_t MemSize = 0;
bool MemVolatile = false;
if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
MemPtr = S->getPointerOperand();
MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
MemVolatile = S->isVolatile();
} else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
MemPtr = L->getPointerOperand();
MemSize = TD.getTypeStoreSize(L->getType());
MemVolatile = L->isVolatile();
} else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
MemPtr = V->getOperand(0);
MemSize = TD.getTypeStoreSize(V->getType());
} else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
MemPtr = F->getPointerOperand();
// FreeInsts erase the entire structure, not just a field.
MemSize = ~0UL;
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
else // Non-memory instructions depend on nothing.
return MemDepResult::getNone();
// Walk backwards through the basic block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If the access is volatile and this is a volatile load/store, return a
// dependence.
if (MemVolatile &&
((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
(isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
return MemDepResult::get(Inst);
// MemDep is broken w.r.t. loads: it says that two loads of the same pointer
// depend on each other. :(
// FIXME: ELIMINATE THIS!
if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
Value *Pointer = L->getPointerOperand();
uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
// If we found a pointer, check if it could be the same as our pointer
AliasAnalysis::AliasResult R =
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
// May-alias loads don't depend on each other without a dependence.
if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
continue;
return MemDepResult::get(Inst);
}
// FIXME: This claims that an access depends on the allocation. This may
// make sense, but is dubious at best. It would be better to fix GVN to
// handle a 'None' Query.
if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
Value *Pointer = AI;
uint64_t PointerSize;
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
PointerSize = C->getZExtValue() *
TD.getTypeStoreSize(AI->getAllocatedType());
else
PointerSize = ~0UL;
AliasAnalysis::AliasResult R =
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
return MemDepResult::get(Inst);
}
// See if this instruction mod/ref's the pointer.
AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
if (MRR == AliasAnalysis::NoModRef)
continue;
// Loads don't depend on read-only instructions.
if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
continue;
// Otherwise, there is a dependence.
return MemDepResult::get(Inst);
}
// If we found nothing, return the non-local flag.
return MemDepResult::getNonLocal();
}
/// getDependency - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
Instruction *ScanPos = QueryInst;
// Check for a cached result
DepResultTy &LocalCache = LocalDeps[QueryInst];
// If the cached entry is non-dirty, just return it.
if (LocalCache.getInt() != Dirty)
return ConvToResult(LocalCache);
// Otherwise, if we have a dirty entry, we know we can start the scan at that
// instruction, which may save us some work.
if (Instruction *Inst = LocalCache.getPointer())
ScanPos = Inst;
// Do the scan.
MemDepResult Res =
getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
// Remember the result!
// FIXME: Don't convert back and forth! Make a shared helper function.
LocalCache = ConvFromResult(Res);
if (Instruction *I = Res.getInst())
ReverseLocalDeps[I].insert(QueryInst);
return Res;
}
/// dropInstruction - Remove an instruction from the analysis, making
/// absolutely conservative assumptions when updating the cache. This is
/// useful, for example when an instruction is changed rather than removed.
void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) {
LocalDepMapType::iterator depGraphEntry = LocalDeps.find(drop);
if (depGraphEntry != LocalDeps.end())
if (Instruction *Inst = depGraphEntry->second.getPointer())
ReverseLocalDeps[Inst].erase(drop);
// Drop dependency information for things that depended on this instr
SmallPtrSet<Instruction*, 4>& set = ReverseLocalDeps[drop];
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
I != E; ++I)
LocalDeps.erase(*I);
LocalDeps.erase(drop);
ReverseLocalDeps.erase(drop);
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
NonLocalDeps[drop].begin(), DE = NonLocalDeps[drop].end();
DI != DE; ++DI)
if (Instruction *Inst = DI->second.getPointer())
ReverseNonLocalDeps[Inst].erase(drop);
if (ReverseNonLocalDeps.count(drop)) {
SmallPtrSet<Instruction*, 4>& set =
ReverseNonLocalDeps[drop];
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
I != E; ++I)
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
DI != DE; ++DI)
if (DI->second == DepResultTy(drop, Normal))
// FIXME: Why not remember the old insertion point??
DI->second = DepResultTy(0, Dirty);
}
ReverseNonLocalDeps.erase(drop);
NonLocalDeps.erase(drop);
}
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
// Walk through the Non-local dependencies, removing this one as the value
// for any cached queries.
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
DI != DE; ++DI)
if (Instruction *Inst = DI->second.getPointer())
ReverseNonLocalDeps[Inst].erase(RemInst);
// Shortly after this, we will look for things that depend on RemInst. In
// order to update these, we'll need a new dependency to base them on. We
// could completely delete any entries that depend on this, but it is better
// to make a more accurate approximation where possible. Compute that better
// approximation if we can.
DepResultTy NewDependency;
// If we have a cached local dependence query for this instruction, remove it.
//
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
if (LocalDepEntry != LocalDeps.end()) {
DepResultTy LocalDep = LocalDepEntry->second;
// Remove this local dependency info.
LocalDeps.erase(LocalDepEntry);
// Remove us from DepInst's reverse set now that the local dep info is gone.
if (Instruction *Inst = LocalDep.getPointer())
ReverseLocalDeps[Inst].erase(RemInst);
// If we have unconfirmed info, don't trust it.
if (LocalDep.getInt() != Dirty) {
// If we have a confirmed non-local flag, use it.
if (LocalDep.getInt() == NonLocal || LocalDep.getInt() == None) {
// The only time this dependency is confirmed is if it is non-local.
NewDependency = LocalDep;
} else {
// If we have dep info for RemInst, set them to it.
Instruction *NDI = next(BasicBlock::iterator(LocalDep.getPointer()));
if (NDI != RemInst) // Don't use RemInst for the new dependency!
NewDependency = DepResultTy(NDI, Dirty);
}
}
}
// If we don't already have a local dependency answer for this instruction,
// use the immediate successor of RemInst. We use the successor because
// getDependence starts by checking the immediate predecessor of what is in
// the cache.
if (NewDependency == DepResultTy(0, Dirty))
NewDependency = DepResultTy(next(BasicBlock::iterator(RemInst)), Dirty);
// Loop over all of the things that depend on the instruction we're removing.
//
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseLocalDeps.end()) {
SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
E = ReverseDeps.end(); I != E; ++I) {
Instruction *InstDependingOnRemInst = *I;
// If we thought the instruction depended on itself (possible for
// unconfirmed dependencies) ignore the update.
if (InstDependingOnRemInst == RemInst) continue;
// Insert the new dependencies.
LocalDeps[InstDependingOnRemInst] = NewDependency;
// If our NewDependency is an instruction, make sure to remember that new
// things depend on it.
if (Instruction *Inst = NewDependency.getPointer())
ReverseLocalDeps[Inst].insert(InstDependingOnRemInst);
}
ReverseLocalDeps.erase(RemInst);
}
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
I != E; ++I)
for (DenseMap<BasicBlock*, DepResultTy>::iterator
DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
DI != DE; ++DI)
if (DI->second == DepResultTy(RemInst, Normal))
// FIXME: Why not remember the old insertion point??
DI->second = DepResultTy(0, Dirty);
ReverseNonLocalDeps.erase(ReverseDepIt);
}
NonLocalDeps.erase(RemInst);
getAnalysis<AliasAnalysis>().deleteValue(RemInst);
DEBUG(verifyRemoved(RemInst));
}
|