Age | Commit message (Collapse) | Author |
|
Aside from moving the actual files, this patch only updates the build
system and the source file comments under lib/... that are relevant.
I'll be updating other docs and other files in smaller subsequnet
commits.
While I've tried to test this, but it is entirely possible that there
will still be some build system fallout.
Also, note that I've not changed the library name itself: libLLVMCore.a
is still the library name. I'd be interested in others' opinions about
whether we should rename this as well (I think we should, just not sure
what it might break)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171359 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Convert the internal representation of the Attributes class into a pointer to an
opaque object that's uniqued by and stored in the LLVMContext object. The
Attributes class then becomes a thin wrapper around this opaque
object. Eventually, the internal representation will be expanded to include
attributes that represent code generation options, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165917 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
CI's name, and then used the StringRef pointing at its old name. I'm
fixing it by storing the name in a std::string, and hoisting the
renaming logic to happen always. This is nicer anyways as it will allow
the upgraded IR to have the same names as the input IR in more cases.
Another bug found by AddressSanitizer. Woot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160572 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
intrinsics. The second instruction(s) to be handled are the vector versions
of count set bits (ctpop).
The changes here are to clang so that it generates a target independent
vector ctpop when it sees an ARM dependent vector bits set count. The changes
in llvm are to match the target independent vector ctpop and in
VMCore/AutoUpgrade.cpp to update any existing bc files containing ARM
dependent vector pop counts with target-independent ctpops. There are also
changes to an existing test case in llvm for ARM vector count instructions and
to a test for the bitcode upgrade.
<rdar://problem/11892519>
There is deliberately no test for the change to clang, as so far as I know, no
consensus has been reached regarding how to test neon instructions in clang;
q.v. <rdar://problem/8762292>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160410 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
intrinsics with target-indepdent intrinsics. The first instruction(s) to be
handled are the vector versions of count leading zeros (ctlz).
The changes here are to clang so that it generates a target independent
vector ctlz when it sees an ARM dependent vector ctlz. The changes in llvm
are to match the target independent vector ctlz and in VMCore/AutoUpgrade.cpp
to update any existing bc files containing ARM dependent vector ctlzs with
target-independent ctlzs. There are also changes to an existing test case in
llvm for ARM vector count instructions and a new test for the bitcode upgrade.
<rdar://problem/11831778>
There is deliberately no test for the change to clang, as so far as I know, no
consensus has been reached regarding how to test neon instructions in clang;
q.v. <rdar://problem/8762292>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160200 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This was always part of the VMCore library out of necessity -- it deals
entirely in the IR. The .cpp file in fact was already part of the VMCore
library. This is just a mechanical move.
I've tried to go through and re-apply the coding standard's preferred
header sort, but at 40-ish files, I may have gotten some wrong. Please
let me know if so.
I'll be committing the corresponding updates to Clang and Polly, and
Duncan has DragonEgg.
Thanks to Bill and Eric for giving the green light for this bit of cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159421 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
one source register and zero the upper bits of the destination rather than preserving them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158396 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Patch by Michael Kuperstein.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158295 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
as an argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158278 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157902 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157899 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
objectsize intrinsic.
After a lot of discussion, we realized it's not the best option for run-time bounds checking
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157255 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
maximum runtime performance penalty that the user is willing to accept.
This commit only adds the parameter. Code taking advantage of it will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156473 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
done for 128-bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156375 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
builtins a while back.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154985 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149678 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146440 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
a function to upgrade. Also, simplify the code a bit at the expense of
one line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146368 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
indicates whether the intrinsic has a defined result for a first
argument equal to zero. This will eventually allow these intrinsics to
accurately model the semantics of GCC's __builtin_ctz and __builtin_clz
and the X86 instructions (prior to AVX) which implement them.
This patch merely sets the stage by extending the signature of these
intrinsics and establishing auto-upgrade logic so that the old spelling
still works both in IR and in bitcode. The upgrade logic preserves the
existing (inefficient) semantics. This patch should not change any
behavior. CodeGen isn't updated because it can use the existing
semantics regardless of the flag's value.
Note that this will be followed by API updates to Clang and DragonEgg.
Reviewed by Nick Lewycky!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146357 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
that mainline needs no autoupgrade logic for intrinsics yet, woohoo!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145178 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
autoupgrade logic for 2.9 and before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145176 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
trampoline forms. Both of these were correct in LLVM 3.0, and we don't
need to support LLVM 2.9 and earlier in mainline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145174 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
I think this is the last of autoupgrade that can be removed in 3.1.
Can the atomic upgrade stuff also go?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145169 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145167 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
LLVM 3.0 and later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145165 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
with this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141333 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139140 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
call. The call may be in the same BB as the landingpad instruction. If that's
the case, then inserting the loads after the landingpad inst, but before the
extractvalues, causes undefined behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139088 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
values that the resume instruction uses.
PR10850
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139076 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
slots. This fixes a bug where the number of nodes coming into the PHI node may
not equal the number of predecessors. E.g., two or more landingpad instructions
may require a PHI before reaching the eh.exception and eh.selector instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139035 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Perform the upgrading in steps.
* First, create a map of the invokes to the EH intrinsics.
* Next, take that mapping and determine if the invoke's unwind destination has a
single predecessor. If not, then create a new empty block to hold the new
landingpad instruction.
* Create a landingpad instruction into the uwnind destination. Fill it with the
values from the old selector. Map the old intrinsic calls to the new
landingpad values (there may be multiple landingpad instructions per instrinic
call pairs).
* Go through the old intrinsic calls, create a PHI node when necessary, and then
replace their values with the new values from the landingpad instructions.
* Delete all dead instructions.
* ???
* Profit!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138990 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138700 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
This upgrade suffers from the problems of the old EH scheme - i.e., that the
calls to llvm.eh.exception() and llvm.eh.selector() can wander off and get
lost. It makes a valiant effort to reclaim these little lost lambs.
This is a first draft, so it hasn't yet been hooked up to the parser.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138602 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135375 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135265 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
temporary std::string for every function being checked.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133355 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133337 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
or instruction cache access. Update the targets to match it and also teach
autoupgrade.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132976 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
fixes aliasing issues with the old and new names as well as adds test
cases for the auto-upgrader.
Fixes rdar 9472944.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132207 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
crc32.[8|16|32] have been renamed to .crc32.32.[8|16|32] and
crc64.[8|16|32] have been renamed to .crc32.64.[8|64].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132163 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
<rdar://problem/8460511>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130791 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129419 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129403 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
Now that we have a first-class way to represent unaligned loads, the unaligned
load intrinsics are superfluous.
First part of <rdar://problem/8460511>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129401 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128519 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
was lowering them to sext / uxt + mul instructions. Unfortunately the
optimization passes may hoist the extensions out of the loop and separate them.
When that happens, the long multiplication instructions can be broken into
several scalar instructions, causing significant performance issue.
Note the vmla and vmls intrinsics are not added back. Frontend will codegen them
as intrinsics vmull* + add / sub. Also note the isel optimizations for catching
mul + sext / zext are not changed either.
First part of rdar://8832507, rdar://9203134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128502 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125537 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
builders unhappy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125504 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
idiom. Change various clients to simplify their code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125487 91177308-0d34-0410-b5e6-96231b3b80d8
|
|
it in with the SSSE3 instructions.
Steward! Could you place this chair by the aft sun deck? I'm trying to get away
from the Astors. They are such boors!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115552 91177308-0d34-0410-b5e6-96231b3b80d8
|