aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore/DataLayout.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/VMCore/DataLayout.cpp')
-rw-r--r--lib/VMCore/DataLayout.cpp725
1 files changed, 0 insertions, 725 deletions
diff --git a/lib/VMCore/DataLayout.cpp b/lib/VMCore/DataLayout.cpp
deleted file mode 100644
index 6cf51f5a4d..0000000000
--- a/lib/VMCore/DataLayout.cpp
+++ /dev/null
@@ -1,725 +0,0 @@
-//===-- DataLayout.cpp - Data size & alignment routines --------------------==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines layout properties related to datatype size/offset/alignment
-// information.
-//
-// This structure should be created once, filled in if the defaults are not
-// correct and then passed around by const&. None of the members functions
-// require modification to the object.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/DataLayout.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Mutex.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cstdlib>
-using namespace llvm;
-
-// Handle the Pass registration stuff necessary to use DataLayout's.
-
-// Register the default SparcV9 implementation...
-INITIALIZE_PASS(DataLayout, "datalayout", "Data Layout", false, true)
-char DataLayout::ID = 0;
-
-//===----------------------------------------------------------------------===//
-// Support for StructLayout
-//===----------------------------------------------------------------------===//
-
-StructLayout::StructLayout(StructType *ST, const DataLayout &TD) {
- assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
- StructAlignment = 0;
- StructSize = 0;
- NumElements = ST->getNumElements();
-
- // Loop over each of the elements, placing them in memory.
- for (unsigned i = 0, e = NumElements; i != e; ++i) {
- Type *Ty = ST->getElementType(i);
- unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
-
- // Add padding if necessary to align the data element properly.
- if ((StructSize & (TyAlign-1)) != 0)
- StructSize = DataLayout::RoundUpAlignment(StructSize, TyAlign);
-
- // Keep track of maximum alignment constraint.
- StructAlignment = std::max(TyAlign, StructAlignment);
-
- MemberOffsets[i] = StructSize;
- StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
- }
-
- // Empty structures have alignment of 1 byte.
- if (StructAlignment == 0) StructAlignment = 1;
-
- // Add padding to the end of the struct so that it could be put in an array
- // and all array elements would be aligned correctly.
- if ((StructSize & (StructAlignment-1)) != 0)
- StructSize = DataLayout::RoundUpAlignment(StructSize, StructAlignment);
-}
-
-
-/// getElementContainingOffset - Given a valid offset into the structure,
-/// return the structure index that contains it.
-unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
- const uint64_t *SI =
- std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
- assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
- --SI;
- assert(*SI <= Offset && "upper_bound didn't work");
- assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
- (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
- "Upper bound didn't work!");
-
- // Multiple fields can have the same offset if any of them are zero sized.
- // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
- // at the i32 element, because it is the last element at that offset. This is
- // the right one to return, because anything after it will have a higher
- // offset, implying that this element is non-empty.
- return SI-&MemberOffsets[0];
-}
-
-//===----------------------------------------------------------------------===//
-// LayoutAlignElem, LayoutAlign support
-//===----------------------------------------------------------------------===//
-
-LayoutAlignElem
-LayoutAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width) {
- assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
- LayoutAlignElem retval;
- retval.AlignType = align_type;
- retval.ABIAlign = abi_align;
- retval.PrefAlign = pref_align;
- retval.TypeBitWidth = bit_width;
- return retval;
-}
-
-bool
-LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
- return (AlignType == rhs.AlignType
- && ABIAlign == rhs.ABIAlign
- && PrefAlign == rhs.PrefAlign
- && TypeBitWidth == rhs.TypeBitWidth);
-}
-
-const LayoutAlignElem
-DataLayout::InvalidAlignmentElem = LayoutAlignElem::get(INVALID_ALIGN, 0, 0, 0);
-
-//===----------------------------------------------------------------------===//
-// PointerAlignElem, PointerAlign support
-//===----------------------------------------------------------------------===//
-
-PointerAlignElem
-PointerAlignElem::get(uint32_t addr_space, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width) {
- assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
- PointerAlignElem retval;
- retval.AddressSpace = addr_space;
- retval.ABIAlign = abi_align;
- retval.PrefAlign = pref_align;
- retval.TypeBitWidth = bit_width;
- return retval;
-}
-
-bool
-PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
- return (ABIAlign == rhs.ABIAlign
- && AddressSpace == rhs.AddressSpace
- && PrefAlign == rhs.PrefAlign
- && TypeBitWidth == rhs.TypeBitWidth);
-}
-
-const PointerAlignElem
-DataLayout::InvalidPointerElem = PointerAlignElem::get(~0U, 0U, 0U, 0U);
-
-//===----------------------------------------------------------------------===//
-// DataLayout Class Implementation
-//===----------------------------------------------------------------------===//
-
-void DataLayout::init(StringRef Desc) {
- initializeDataLayoutPass(*PassRegistry::getPassRegistry());
-
- LayoutMap = 0;
- LittleEndian = false;
- StackNaturalAlign = 0;
-
- // Default alignments
- setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1
- setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8
- setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16
- setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32
- setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
- setAlignment(FLOAT_ALIGN, 2, 2, 16); // half
- setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
- setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
- setAlignment(FLOAT_ALIGN, 16, 16, 128); // ppcf128, quad, ...
- setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ...
- setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
- setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct
- setPointerAlignment(0, 8, 8, 8);
-
- parseSpecifier(Desc);
-}
-
-/// Checked version of split, to ensure mandatory subparts.
-static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) {
- assert(!Str.empty() && "parse error, string can't be empty here");
- std::pair<StringRef, StringRef> Split = Str.split(Separator);
- assert((!Split.second.empty() || Split.first == Str) &&
- "a trailing separator is not allowed");
- return Split;
-}
-
-/// Get an unsinged integer, including error checks.
-static unsigned getInt(StringRef R) {
- unsigned Result;
- bool error = R.getAsInteger(10, Result); (void)error;
- assert(!error && "not a number, or does not fit in an unsigned int");
- return Result;
-}
-
-/// Convert bits into bytes. Assert if not a byte width multiple.
-static unsigned inBytes(unsigned Bits) {
- assert(Bits % 8 == 0 && "number of bits must be a byte width multiple");
- return Bits / 8;
-}
-
-void DataLayout::parseSpecifier(StringRef Desc) {
-
- while (!Desc.empty()) {
-
- // Split at '-'.
- std::pair<StringRef, StringRef> Split = split(Desc, '-');
- Desc = Split.second;
-
- // Split at ':'.
- Split = split(Split.first, ':');
-
- // Aliases used below.
- StringRef &Tok = Split.first; // Current token.
- StringRef &Rest = Split.second; // The rest of the string.
-
- char Specifier = Tok.front();
- Tok = Tok.substr(1);
-
- switch (Specifier) {
- case 'E':
- LittleEndian = false;
- break;
- case 'e':
- LittleEndian = true;
- break;
- case 'p': {
- // Address space.
- unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok);
- assert(AddrSpace < 1 << 24 &&
- "Invalid address space, must be a 24bit integer");
-
- // Size.
- Split = split(Rest, ':');
- unsigned PointerMemSize = inBytes(getInt(Tok));
-
- // ABI alignment.
- Split = split(Rest, ':');
- unsigned PointerABIAlign = inBytes(getInt(Tok));
-
- // Preferred alignment.
- unsigned PointerPrefAlign = PointerABIAlign;
- if (!Rest.empty()) {
- Split = split(Rest, ':');
- PointerPrefAlign = inBytes(getInt(Tok));
- }
-
- setPointerAlignment(AddrSpace, PointerABIAlign, PointerPrefAlign,
- PointerMemSize);
- break;
- }
- case 'i':
- case 'v':
- case 'f':
- case 'a':
- case 's': {
- AlignTypeEnum AlignType;
- switch (Specifier) {
- default:
- case 'i': AlignType = INTEGER_ALIGN; break;
- case 'v': AlignType = VECTOR_ALIGN; break;
- case 'f': AlignType = FLOAT_ALIGN; break;
- case 'a': AlignType = AGGREGATE_ALIGN; break;
- case 's': AlignType = STACK_ALIGN; break;
- }
-
- // Bit size.
- unsigned Size = Tok.empty() ? 0 : getInt(Tok);
-
- // ABI alignment.
- Split = split(Rest, ':');
- unsigned ABIAlign = inBytes(getInt(Tok));
-
- // Preferred alignment.
- unsigned PrefAlign = ABIAlign;
- if (!Rest.empty()) {
- Split = split(Rest, ':');
- PrefAlign = inBytes(getInt(Tok));
- }
-
- setAlignment(AlignType, ABIAlign, PrefAlign, Size);
-
- break;
- }
- case 'n': // Native integer types.
- for (;;) {
- unsigned Width = getInt(Tok);
- assert(Width != 0 && "width must be non-zero");
- LegalIntWidths.push_back(Width);
- if (Rest.empty())
- break;
- Split = split(Rest, ':');
- }
- break;
- case 'S': { // Stack natural alignment.
- StackNaturalAlign = inBytes(getInt(Tok));
- break;
- }
- default:
- llvm_unreachable("Unknown specifier in datalayout string");
- break;
- }
- }
-}
-
-/// Default ctor.
-///
-/// @note This has to exist, because this is a pass, but it should never be
-/// used.
-DataLayout::DataLayout() : ImmutablePass(ID) {
- report_fatal_error("Bad DataLayout ctor used. "
- "Tool did not specify a DataLayout to use?");
-}
-
-DataLayout::DataLayout(const Module *M)
- : ImmutablePass(ID) {
- init(M->getDataLayout());
-}
-
-void
-DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width) {
- assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
- assert(pref_align < (1 << 16) && "Alignment doesn't fit in bitfield");
- assert(bit_width < (1 << 24) && "Bit width doesn't fit in bitfield");
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
- if (Alignments[i].AlignType == (unsigned)align_type &&
- Alignments[i].TypeBitWidth == bit_width) {
- // Update the abi, preferred alignments.
- Alignments[i].ABIAlign = abi_align;
- Alignments[i].PrefAlign = pref_align;
- return;
- }
- }
-
- Alignments.push_back(LayoutAlignElem::get(align_type, abi_align,
- pref_align, bit_width));
-}
-
-void
-DataLayout::setPointerAlignment(uint32_t addr_space, unsigned abi_align,
- unsigned pref_align, uint32_t bit_width) {
- assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
- DenseMap<unsigned,PointerAlignElem>::iterator val = Pointers.find(addr_space);
- if (val == Pointers.end()) {
- Pointers[addr_space] = PointerAlignElem::get(addr_space,
- abi_align, pref_align, bit_width);
- } else {
- val->second.ABIAlign = abi_align;
- val->second.PrefAlign = pref_align;
- val->second.TypeBitWidth = bit_width;
- }
-}
-
-/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
-/// preferred if ABIInfo = false) the layout wants for the specified datatype.
-unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType,
- uint32_t BitWidth, bool ABIInfo,
- Type *Ty) const {
- // Check to see if we have an exact match and remember the best match we see.
- int BestMatchIdx = -1;
- int LargestInt = -1;
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
- if (Alignments[i].AlignType == (unsigned)AlignType &&
- Alignments[i].TypeBitWidth == BitWidth)
- return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
-
- // The best match so far depends on what we're looking for.
- if (AlignType == INTEGER_ALIGN &&
- Alignments[i].AlignType == INTEGER_ALIGN) {
- // The "best match" for integers is the smallest size that is larger than
- // the BitWidth requested.
- if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
- Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
- BestMatchIdx = i;
- // However, if there isn't one that's larger, then we must use the
- // largest one we have (see below)
- if (LargestInt == -1 ||
- Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
- LargestInt = i;
- }
- }
-
- // Okay, we didn't find an exact solution. Fall back here depending on what
- // is being looked for.
- if (BestMatchIdx == -1) {
- // If we didn't find an integer alignment, fall back on most conservative.
- if (AlignType == INTEGER_ALIGN) {
- BestMatchIdx = LargestInt;
- } else {
- assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
-
- // By default, use natural alignment for vector types. This is consistent
- // with what clang and llvm-gcc do.
- unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
- Align *= cast<VectorType>(Ty)->getNumElements();
- // If the alignment is not a power of 2, round up to the next power of 2.
- // This happens for non-power-of-2 length vectors.
- if (Align & (Align-1))
- Align = NextPowerOf2(Align);
- return Align;
- }
- }
-
- // Since we got a "best match" index, just return it.
- return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
- : Alignments[BestMatchIdx].PrefAlign;
-}
-
-namespace {
-
-class StructLayoutMap {
- typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy;
- LayoutInfoTy LayoutInfo;
-
-public:
- virtual ~StructLayoutMap() {
- // Remove any layouts.
- for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end();
- I != E; ++I) {
- StructLayout *Value = I->second;
- Value->~StructLayout();
- free(Value);
- }
- }
-
- StructLayout *&operator[](StructType *STy) {
- return LayoutInfo[STy];
- }
-
- // for debugging...
- virtual void dump() const {}
-};
-
-} // end anonymous namespace
-
-DataLayout::~DataLayout() {
- delete static_cast<StructLayoutMap*>(LayoutMap);
-}
-
-const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
- if (!LayoutMap)
- LayoutMap = new StructLayoutMap();
-
- StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
- StructLayout *&SL = (*STM)[Ty];
- if (SL) return SL;
-
- // Otherwise, create the struct layout. Because it is variable length, we
- // malloc it, then use placement new.
- int NumElts = Ty->getNumElements();
- StructLayout *L =
- (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
-
- // Set SL before calling StructLayout's ctor. The ctor could cause other
- // entries to be added to TheMap, invalidating our reference.
- SL = L;
-
- new (L) StructLayout(Ty, *this);
-
- return L;
-}
-
-std::string DataLayout::getStringRepresentation() const {
- std::string Result;
- raw_string_ostream OS(Result);
-
- OS << (LittleEndian ? "e" : "E");
- SmallVector<unsigned, 8> addrSpaces;
- // Lets get all of the known address spaces and sort them
- // into increasing order so that we can emit the string
- // in a cleaner format.
- for (DenseMap<unsigned, PointerAlignElem>::const_iterator
- pib = Pointers.begin(), pie = Pointers.end();
- pib != pie; ++pib) {
- addrSpaces.push_back(pib->first);
- }
- std::sort(addrSpaces.begin(), addrSpaces.end());
- for (SmallVector<unsigned, 8>::iterator asb = addrSpaces.begin(),
- ase = addrSpaces.end(); asb != ase; ++asb) {
- const PointerAlignElem &PI = Pointers.find(*asb)->second;
- OS << "-p";
- if (PI.AddressSpace) {
- OS << PI.AddressSpace;
- }
- OS << ":" << PI.TypeBitWidth*8 << ':' << PI.ABIAlign*8
- << ':' << PI.PrefAlign*8;
- }
- OS << "-S" << StackNaturalAlign*8;
-
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
- const LayoutAlignElem &AI = Alignments[i];
- OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':'
- << AI.ABIAlign*8 << ':' << AI.PrefAlign*8;
- }
-
- if (!LegalIntWidths.empty()) {
- OS << "-n" << (unsigned)LegalIntWidths[0];
-
- for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i)
- OS << ':' << (unsigned)LegalIntWidths[i];
- }
- return OS.str();
-}
-
-
-uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
- assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
- switch (Ty->getTypeID()) {
- case Type::LabelTyID:
- return getPointerSizeInBits(0);
- case Type::PointerTyID: {
- unsigned AS = dyn_cast<PointerType>(Ty)->getAddressSpace();
- return getPointerSizeInBits(AS);
- }
- case Type::ArrayTyID: {
- ArrayType *ATy = cast<ArrayType>(Ty);
- return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
- }
- case Type::StructTyID:
- // Get the layout annotation... which is lazily created on demand.
- return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
- case Type::IntegerTyID:
- return cast<IntegerType>(Ty)->getBitWidth();
- case Type::HalfTyID:
- return 16;
- case Type::FloatTyID:
- return 32;
- case Type::DoubleTyID:
- case Type::X86_MMXTyID:
- return 64;
- case Type::PPC_FP128TyID:
- case Type::FP128TyID:
- return 128;
- // In memory objects this is always aligned to a higher boundary, but
- // only 80 bits contain information.
- case Type::X86_FP80TyID:
- return 80;
- case Type::VectorTyID: {
- VectorType *VTy = cast<VectorType>(Ty);
- return VTy->getNumElements()*getTypeSizeInBits(VTy->getElementType());
- }
- default:
- llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
- }
-}
-
-/*!
- \param abi_or_pref Flag that determines which alignment is returned. true
- returns the ABI alignment, false returns the preferred alignment.
- \param Ty The underlying type for which alignment is determined.
-
- Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
- == false) for the requested type \a Ty.
- */
-unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
- int AlignType = -1;
-
- assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
- switch (Ty->getTypeID()) {
- // Early escape for the non-numeric types.
- case Type::LabelTyID:
- return (abi_or_pref
- ? getPointerABIAlignment(0)
- : getPointerPrefAlignment(0));
- case Type::PointerTyID: {
- unsigned AS = dyn_cast<PointerType>(Ty)->getAddressSpace();
- return (abi_or_pref
- ? getPointerABIAlignment(AS)
- : getPointerPrefAlignment(AS));
- }
- case Type::ArrayTyID:
- return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
-
- case Type::StructTyID: {
- // Packed structure types always have an ABI alignment of one.
- if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
- return 1;
-
- // Get the layout annotation... which is lazily created on demand.
- const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
- unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
- return std::max(Align, Layout->getAlignment());
- }
- case Type::IntegerTyID:
- AlignType = INTEGER_ALIGN;
- break;
- case Type::HalfTyID:
- case Type::FloatTyID:
- case Type::DoubleTyID:
- // PPC_FP128TyID and FP128TyID have different data contents, but the
- // same size and alignment, so they look the same here.
- case Type::PPC_FP128TyID:
- case Type::FP128TyID:
- case Type::X86_FP80TyID:
- AlignType = FLOAT_ALIGN;
- break;
- case Type::X86_MMXTyID:
- case Type::VectorTyID:
- AlignType = VECTOR_ALIGN;
- break;
- default:
- llvm_unreachable("Bad type for getAlignment!!!");
- }
-
- return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
- abi_or_pref, Ty);
-}
-
-unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
- return getAlignment(Ty, true);
-}
-
-/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
-/// an integer type of the specified bitwidth.
-unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
- return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0);
-}
-
-
-unsigned DataLayout::getCallFrameTypeAlignment(Type *Ty) const {
- for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
- if (Alignments[i].AlignType == STACK_ALIGN)
- return Alignments[i].ABIAlign;
-
- return getABITypeAlignment(Ty);
-}
-
-unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
- return getAlignment(Ty, false);
-}
-
-unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const {
- unsigned Align = getPrefTypeAlignment(Ty);
- assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
- return Log2_32(Align);
-}
-
-/// getIntPtrType - Return an integer type with size at least as big as that
-/// of a pointer in the given address space.
-IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
- unsigned AddressSpace) const {
- return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
-}
-
-/// getIntPtrType - Return an integer (vector of integer) type with size at
-/// least as big as that of a pointer of the given pointer (vector of pointer)
-/// type.
-Type *DataLayout::getIntPtrType(Type *Ty) const {
- assert(Ty->isPtrOrPtrVectorTy() &&
- "Expected a pointer or pointer vector type.");
- unsigned NumBits = getTypeSizeInBits(Ty->getScalarType());
- IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
- if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
- return VectorType::get(IntTy, VecTy->getNumElements());
- return IntTy;
-}
-
-uint64_t DataLayout::getIndexedOffset(Type *ptrTy,
- ArrayRef<Value *> Indices) const {
- Type *Ty = ptrTy;
- assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
- uint64_t Result = 0;
-
- generic_gep_type_iterator<Value* const*>
- TI = gep_type_begin(ptrTy, Indices);
- for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX;
- ++CurIDX, ++TI) {
- if (StructType *STy = dyn_cast<StructType>(*TI)) {
- assert(Indices[CurIDX]->getType() ==
- Type::getInt32Ty(ptrTy->getContext()) &&
- "Illegal struct idx");
- unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
-
- // Get structure layout information...
- const StructLayout *Layout = getStructLayout(STy);
-
- // Add in the offset, as calculated by the structure layout info...
- Result += Layout->getElementOffset(FieldNo);
-
- // Update Ty to refer to current element
- Ty = STy->getElementType(FieldNo);
- } else {
- // Update Ty to refer to current element
- Ty = cast<SequentialType>(Ty)->getElementType();
-
- // Get the array index and the size of each array element.
- if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue())
- Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty);
- }
- }
-
- return Result;
-}
-
-/// getPreferredAlignment - Return the preferred alignment of the specified
-/// global. This includes an explicitly requested alignment (if the global
-/// has one).
-unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const {
- Type *ElemType = GV->getType()->getElementType();
- unsigned Alignment = getPrefTypeAlignment(ElemType);
- unsigned GVAlignment = GV->getAlignment();
- if (GVAlignment >= Alignment) {
- Alignment = GVAlignment;
- } else if (GVAlignment != 0) {
- Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
- }
-
- if (GV->hasInitializer() && GVAlignment == 0) {
- if (Alignment < 16) {
- // If the global is not external, see if it is large. If so, give it a
- // larger alignment.
- if (getTypeSizeInBits(ElemType) > 128)
- Alignment = 16; // 16-byte alignment.
- }
- }
- return Alignment;
-}
-
-/// getPreferredAlignmentLog - Return the preferred alignment of the
-/// specified global, returned in log form. This includes an explicitly
-/// requested alignment (if the global has one).
-unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
- return Log2_32(getPreferredAlignment(GV));
-}