diff options
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r-- | lib/VMCore/Constants.cpp | 2769 |
1 files changed, 0 insertions, 2769 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp deleted file mode 100644 index 008378a241..0000000000 --- a/lib/VMCore/Constants.cpp +++ /dev/null @@ -1,2769 +0,0 @@ -//===-- Constants.cpp - Implement Constant nodes --------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the Constant* classes. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Constants.h" -#include "ConstantFold.h" -#include "LLVMContextImpl.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/FoldingSet.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringMap.h" -#include "llvm/DerivedTypes.h" -#include "llvm/GlobalValue.h" -#include "llvm/Instructions.h" -#include "llvm/Module.h" -#include "llvm/Operator.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/ManagedStatic.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cstdarg> -using namespace llvm; - -//===----------------------------------------------------------------------===// -// Constant Class -//===----------------------------------------------------------------------===// - -void Constant::anchor() { } - -bool Constant::isNegativeZeroValue() const { - // Floating point values have an explicit -0.0 value. - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) - return CFP->isZero() && CFP->isNegative(); - - // Otherwise, just use +0.0. - return isNullValue(); -} - -bool Constant::isNullValue() const { - // 0 is null. - if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) - return CI->isZero(); - - // +0.0 is null. - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) - return CFP->isZero() && !CFP->isNegative(); - - // constant zero is zero for aggregates and cpnull is null for pointers. - return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); -} - -bool Constant::isAllOnesValue() const { - // Check for -1 integers - if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) - return CI->isMinusOne(); - - // Check for FP which are bitcasted from -1 integers - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) - return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); - - // Check for constant vectors which are splats of -1 values. - if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) - if (Constant *Splat = CV->getSplatValue()) - return Splat->isAllOnesValue(); - - // Check for constant vectors which are splats of -1 values. - if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) - if (Constant *Splat = CV->getSplatValue()) - return Splat->isAllOnesValue(); - - return false; -} - -// Constructor to create a '0' constant of arbitrary type... -Constant *Constant::getNullValue(Type *Ty) { - switch (Ty->getTypeID()) { - case Type::IntegerTyID: - return ConstantInt::get(Ty, 0); - case Type::HalfTyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEhalf)); - case Type::FloatTyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEsingle)); - case Type::DoubleTyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEdouble)); - case Type::X86_FP80TyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::x87DoubleExtended)); - case Type::FP128TyID: - return ConstantFP::get(Ty->getContext(), - APFloat::getZero(APFloat::IEEEquad)); - case Type::PPC_FP128TyID: - return ConstantFP::get(Ty->getContext(), - APFloat(APInt::getNullValue(128))); - case Type::PointerTyID: - return ConstantPointerNull::get(cast<PointerType>(Ty)); - case Type::StructTyID: - case Type::ArrayTyID: - case Type::VectorTyID: - return ConstantAggregateZero::get(Ty); - default: - // Function, Label, or Opaque type? - llvm_unreachable("Cannot create a null constant of that type!"); - } -} - -Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { - Type *ScalarTy = Ty->getScalarType(); - - // Create the base integer constant. - Constant *C = ConstantInt::get(Ty->getContext(), V); - - // Convert an integer to a pointer, if necessary. - if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) - C = ConstantExpr::getIntToPtr(C, PTy); - - // Broadcast a scalar to a vector, if necessary. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - C = ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - -Constant *Constant::getAllOnesValue(Type *Ty) { - if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) - return ConstantInt::get(Ty->getContext(), - APInt::getAllOnesValue(ITy->getBitWidth())); - - if (Ty->isFloatingPointTy()) { - APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), - !Ty->isPPC_FP128Ty()); - return ConstantFP::get(Ty->getContext(), FL); - } - - VectorType *VTy = cast<VectorType>(Ty); - return ConstantVector::getSplat(VTy->getNumElements(), - getAllOnesValue(VTy->getElementType())); -} - -/// getAggregateElement - For aggregates (struct/array/vector) return the -/// constant that corresponds to the specified element if possible, or null if -/// not. This can return null if the element index is a ConstantExpr, or if -/// 'this' is a constant expr. -Constant *Constant::getAggregateElement(unsigned Elt) const { - if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) - return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; - - if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) - return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; - - if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) - return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; - - if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) - return CAZ->getElementValue(Elt); - - if (const UndefValue *UV = dyn_cast<UndefValue>(this)) - return UV->getElementValue(Elt); - - if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) - return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; - return 0; -} - -Constant *Constant::getAggregateElement(Constant *Elt) const { - assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); - if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) - return getAggregateElement(CI->getZExtValue()); - return 0; -} - - -void Constant::destroyConstantImpl() { - // When a Constant is destroyed, there may be lingering - // references to the constant by other constants in the constant pool. These - // constants are implicitly dependent on the module that is being deleted, - // but they don't know that. Because we only find out when the CPV is - // deleted, we must now notify all of our users (that should only be - // Constants) that they are, in fact, invalid now and should be deleted. - // - while (!use_empty()) { - Value *V = use_back(); -#ifndef NDEBUG // Only in -g mode... - if (!isa<Constant>(V)) { - dbgs() << "While deleting: " << *this - << "\n\nUse still stuck around after Def is destroyed: " - << *V << "\n\n"; - } -#endif - assert(isa<Constant>(V) && "References remain to Constant being destroyed"); - cast<Constant>(V)->destroyConstant(); - - // The constant should remove itself from our use list... - assert((use_empty() || use_back() != V) && "Constant not removed!"); - } - - // Value has no outstanding references it is safe to delete it now... - delete this; -} - -/// canTrap - Return true if evaluation of this constant could trap. This is -/// true for things like constant expressions that could divide by zero. -bool Constant::canTrap() const { - assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); - // The only thing that could possibly trap are constant exprs. - const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); - if (!CE) return false; - - // ConstantExpr traps if any operands can trap. - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (CE->getOperand(i)->canTrap()) - return true; - - // Otherwise, only specific operations can trap. - switch (CE->getOpcode()) { - default: - return false; - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - // Div and rem can trap if the RHS is not known to be non-zero. - if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) - return true; - return false; - } -} - -/// isThreadDependent - Return true if the value can vary between threads. -bool Constant::isThreadDependent() const { - SmallPtrSet<const Constant*, 64> Visited; - SmallVector<const Constant*, 64> WorkList; - WorkList.push_back(this); - Visited.insert(this); - - while (!WorkList.empty()) { - const Constant *C = WorkList.pop_back_val(); - - if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { - if (GV->isThreadLocal()) - return true; - } - - for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { - const Constant *D = dyn_cast<Constant>(C->getOperand(I)); - if (!D) - continue; - if (Visited.insert(D)) - WorkList.push_back(D); - } - } - - return false; -} - -/// isConstantUsed - Return true if the constant has users other than constant -/// exprs and other dangling things. -bool Constant::isConstantUsed() const { - for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { - const Constant *UC = dyn_cast<Constant>(*UI); - if (UC == 0 || isa<GlobalValue>(UC)) - return true; - - if (UC->isConstantUsed()) - return true; - } - return false; -} - - - -/// getRelocationInfo - This method classifies the entry according to -/// whether or not it may generate a relocation entry. This must be -/// conservative, so if it might codegen to a relocatable entry, it should say -/// so. The return values are: -/// -/// NoRelocation: This constant pool entry is guaranteed to never have a -/// relocation applied to it (because it holds a simple constant like -/// '4'). -/// LocalRelocation: This entry has relocations, but the entries are -/// guaranteed to be resolvable by the static linker, so the dynamic -/// linker will never see them. -/// GlobalRelocations: This entry may have arbitrary relocations. -/// -/// FIXME: This really should not be in VMCore. -Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { - if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { - if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) - return LocalRelocation; // Local to this file/library. - return GlobalRelocations; // Global reference. - } - - if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) - return BA->getFunction()->getRelocationInfo(); - - // While raw uses of blockaddress need to be relocated, differences between - // two of them don't when they are for labels in the same function. This is a - // common idiom when creating a table for the indirect goto extension, so we - // handle it efficiently here. - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) - if (CE->getOpcode() == Instruction::Sub) { - ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); - ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); - if (LHS && RHS && - LHS->getOpcode() == Instruction::PtrToInt && - RHS->getOpcode() == Instruction::PtrToInt && - isa<BlockAddress>(LHS->getOperand(0)) && - isa<BlockAddress>(RHS->getOperand(0)) && - cast<BlockAddress>(LHS->getOperand(0))->getFunction() == - cast<BlockAddress>(RHS->getOperand(0))->getFunction()) - return NoRelocation; - } - - PossibleRelocationsTy Result = NoRelocation; - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - Result = std::max(Result, - cast<Constant>(getOperand(i))->getRelocationInfo()); - - return Result; -} - -/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove -/// it. This involves recursively eliminating any dead users of the -/// constantexpr. -static bool removeDeadUsersOfConstant(const Constant *C) { - if (isa<GlobalValue>(C)) return false; // Cannot remove this - - while (!C->use_empty()) { - const Constant *User = dyn_cast<Constant>(C->use_back()); - if (!User) return false; // Non-constant usage; - if (!removeDeadUsersOfConstant(User)) - return false; // Constant wasn't dead - } - - const_cast<Constant*>(C)->destroyConstant(); - return true; -} - - -/// removeDeadConstantUsers - If there are any dead constant users dangling -/// off of this constant, remove them. This method is useful for clients -/// that want to check to see if a global is unused, but don't want to deal -/// with potentially dead constants hanging off of the globals. -void Constant::removeDeadConstantUsers() const { - Value::const_use_iterator I = use_begin(), E = use_end(); - Value::const_use_iterator LastNonDeadUser = E; - while (I != E) { - const Constant *User = dyn_cast<Constant>(*I); - if (User == 0) { - LastNonDeadUser = I; - ++I; - continue; - } - - if (!removeDeadUsersOfConstant(User)) { - // If the constant wasn't dead, remember that this was the last live use - // and move on to the next constant. - LastNonDeadUser = I; - ++I; - continue; - } - - // If the constant was dead, then the iterator is invalidated. - if (LastNonDeadUser == E) { - I = use_begin(); - if (I == E) break; - } else { - I = LastNonDeadUser; - ++I; - } - } -} - - - -//===----------------------------------------------------------------------===// -// ConstantInt -//===----------------------------------------------------------------------===// - -void ConstantInt::anchor() { } - -ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) - : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { - assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); -} - -ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { - LLVMContextImpl *pImpl = Context.pImpl; - if (!pImpl->TheTrueVal) - pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); - return pImpl->TheTrueVal; -} - -ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { - LLVMContextImpl *pImpl = Context.pImpl; - if (!pImpl->TheFalseVal) - pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); - return pImpl->TheFalseVal; -} - -Constant *ConstantInt::getTrue(Type *Ty) { - VectorType *VTy = dyn_cast<VectorType>(Ty); - if (!VTy) { - assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); - return ConstantInt::getTrue(Ty->getContext()); - } - assert(VTy->getElementType()->isIntegerTy(1) && - "True must be vector of i1 or i1."); - return ConstantVector::getSplat(VTy->getNumElements(), - ConstantInt::getTrue(Ty->getContext())); -} - -Constant *ConstantInt::getFalse(Type *Ty) { - VectorType *VTy = dyn_cast<VectorType>(Ty); - if (!VTy) { - assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); - return ConstantInt::getFalse(Ty->getContext()); - } - assert(VTy->getElementType()->isIntegerTy(1) && - "False must be vector of i1 or i1."); - return ConstantVector::getSplat(VTy->getNumElements(), - ConstantInt::getFalse(Ty->getContext())); -} - - -// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap -// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the -// operator== and operator!= to ensure that the DenseMap doesn't attempt to -// compare APInt's of different widths, which would violate an APInt class -// invariant which generates an assertion. -ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { - // Get the corresponding integer type for the bit width of the value. - IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); - // get an existing value or the insertion position - DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); - ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; - if (!Slot) Slot = new ConstantInt(ITy, V); - return Slot; -} - -Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { - Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - -ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, - bool isSigned) { - return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); -} - -ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { - return get(Ty, V, true); -} - -Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { - return get(Ty, V, true); -} - -Constant *ConstantInt::get(Type *Ty, const APInt& V) { - ConstantInt *C = get(Ty->getContext(), V); - assert(C->getType() == Ty->getScalarType() && - "ConstantInt type doesn't match the type implied by its value!"); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - -ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, - uint8_t radix) { - return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); -} - -//===----------------------------------------------------------------------===// -// ConstantFP -//===----------------------------------------------------------------------===// - -static const fltSemantics *TypeToFloatSemantics(Type *Ty) { - if (Ty->isHalfTy()) - return &APFloat::IEEEhalf; - if (Ty->isFloatTy()) - return &APFloat::IEEEsingle; - if (Ty->isDoubleTy()) - return &APFloat::IEEEdouble; - if (Ty->isX86_FP80Ty()) - return &APFloat::x87DoubleExtended; - else if (Ty->isFP128Ty()) - return &APFloat::IEEEquad; - - assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); - return &APFloat::PPCDoubleDouble; -} - -void ConstantFP::anchor() { } - -/// get() - This returns a constant fp for the specified value in the -/// specified type. This should only be used for simple constant values like -/// 2.0/1.0 etc, that are known-valid both as double and as the target format. -Constant *ConstantFP::get(Type *Ty, double V) { - LLVMContext &Context = Ty->getContext(); - - APFloat FV(V); - bool ignored; - FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), - APFloat::rmNearestTiesToEven, &ignored); - Constant *C = get(Context, FV); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - - -Constant *ConstantFP::get(Type *Ty, StringRef Str) { - LLVMContext &Context = Ty->getContext(); - - APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); - Constant *C = get(Context, FV); - - // For vectors, broadcast the value. - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - - return C; -} - - -ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { - LLVMContext &Context = Ty->getContext(); - APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); - apf.changeSign(); - return get(Context, apf); -} - - -Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { - Type *ScalarTy = Ty->getScalarType(); - if (ScalarTy->isFloatingPointTy()) { - Constant *C = getNegativeZero(ScalarTy); - if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::getSplat(VTy->getNumElements(), C); - return C; - } - - return Constant::getNullValue(Ty); -} - - -// ConstantFP accessors. -ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { - DenseMapAPFloatKeyInfo::KeyTy Key(V); - - LLVMContextImpl* pImpl = Context.pImpl; - - ConstantFP *&Slot = pImpl->FPConstants[Key]; - - if (!Slot) { - Type *Ty; - if (&V.getSemantics() == &APFloat::IEEEhalf) - Ty = Type::getHalfTy(Context); - else if (&V.getSemantics() == &APFloat::IEEEsingle) - Ty = Type::getFloatTy(Context); - else if (&V.getSemantics() == &APFloat::IEEEdouble) - Ty = Type::getDoubleTy(Context); - else if (&V.getSemantics() == &APFloat::x87DoubleExtended) - Ty = Type::getX86_FP80Ty(Context); - else if (&V.getSemantics() == &APFloat::IEEEquad) - Ty = Type::getFP128Ty(Context); - else { - assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && - "Unknown FP format"); - Ty = Type::getPPC_FP128Ty(Context); - } - Slot = new ConstantFP(Ty, V); - } - - return Slot; -} - -ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { - const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); - return ConstantFP::get(Ty->getContext(), - APFloat::getInf(Semantics, Negative)); -} - -ConstantFP::ConstantFP(Type *Ty, const APFloat& V) - : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { - assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && - "FP type Mismatch"); -} - -bool ConstantFP::isExactlyValue(const APFloat &V) const { - return Val.bitwiseIsEqual(V); -} - -//===----------------------------------------------------------------------===// -// ConstantAggregateZero Implementation -//===----------------------------------------------------------------------===// - -/// getSequentialElement - If this CAZ has array or vector type, return a zero -/// with the right element type. -Constant *ConstantAggregateZero::getSequentialElement() const { - return Constant::getNullValue(getType()->getSequentialElementType()); -} - -/// getStructElement - If this CAZ has struct type, return a zero with the -/// right element type for the specified element. -Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { - return Constant::getNullValue(getType()->getStructElementType(Elt)); -} - -/// getElementValue - Return a zero of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). -Constant *ConstantAggregateZero::getElementValue(Constant *C) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(cast<ConstantInt>(C)->getZExtValue()); -} - -/// getElementValue - Return a zero of the right value for the specified GEP -/// index. -Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(Idx); -} - - -//===----------------------------------------------------------------------===// -// UndefValue Implementation -//===----------------------------------------------------------------------===// - -/// getSequentialElement - If this undef has array or vector type, return an -/// undef with the right element type. -UndefValue *UndefValue::getSequentialElement() const { - return UndefValue::get(getType()->getSequentialElementType()); -} - -/// getStructElement - If this undef has struct type, return a zero with the -/// right element type for the specified element. -UndefValue *UndefValue::getStructElement(unsigned Elt) const { - return UndefValue::get(getType()->getStructElementType(Elt)); -} - -/// getElementValue - Return an undef of the right value for the specified GEP -/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). -UndefValue *UndefValue::getElementValue(Constant *C) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(cast<ConstantInt>(C)->getZExtValue()); -} - -/// getElementValue - Return an undef of the right value for the specified GEP -/// index. -UndefValue *UndefValue::getElementValue(unsigned Idx) const { - if (isa<SequentialType>(getType())) - return getSequentialElement(); - return getStructElement(Idx); -} - - - -//===----------------------------------------------------------------------===// -// ConstantXXX Classes -//===----------------------------------------------------------------------===// - -template <typename ItTy, typename EltTy> -static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { - for (; Start != End; ++Start) - if (*Start != Elt) - return false; - return true; -} - -ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantArrayVal, - OperandTraits<ConstantArray>::op_end(this) - V.size(), - V.size()) { - assert(V.size() == T->getNumElements() && - "Invalid initializer vector for constant array"); - for (unsigned i = 0, e = V.size(); i != e; ++i) - assert(V[i]->getType() == T->getElementType() && - "Initializer for array element doesn't match array element type!"); - std::copy(V.begin(), V.end(), op_begin()); -} - -Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { - // Empty arrays are canonicalized to ConstantAggregateZero. - if (V.empty()) - return ConstantAggregateZero::get(Ty); - - for (unsigned i = 0, e = V.size(); i != e; ++i) { - assert(V[i]->getType() == Ty->getElementType() && - "Wrong type in array element initializer"); - } - LLVMContextImpl *pImpl = Ty->getContext().pImpl; - - // If this is an all-zero array, return a ConstantAggregateZero object. If - // all undef, return an UndefValue, if "all simple", then return a - // ConstantDataArray. - Constant *C = V[0]; - if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) - return UndefValue::get(Ty); - - if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) - return ConstantAggregateZero::get(Ty); - - // Check to see if all of the elements are ConstantFP or ConstantInt and if - // the element type is compatible with ConstantDataVector. If so, use it. - if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { - // We speculatively build the elements here even if it turns out that there - // is a constantexpr or something else weird in the array, since it is so - // uncommon for that to happen. - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { - if (CI->getType()->isIntegerTy(8)) { - SmallVector<uint8_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(16)) { - SmallVector<uint16_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(32)) { - SmallVector<uint32_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(64)) { - SmallVector<uint64_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } - } - - if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->getType()->isFloatTy()) { - SmallVector<float, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) - Elts.push_back(CFP->getValueAPF().convertToFloat()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } else if (CFP->getType()->isDoubleTy()) { - SmallVector<double, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) - Elts.push_back(CFP->getValueAPF().convertToDouble()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataArray::get(C->getContext(), Elts); - } - } - } - - // Otherwise, we really do want to create a ConstantArray. - return pImpl->ArrayConstants.getOrCreate(Ty, V); -} - -/// getTypeForElements - Return an anonymous struct type to use for a constant -/// with the specified set of elements. The list must not be empty. -StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, - ArrayRef<Constant*> V, - bool Packed) { - unsigned VecSize = V.size(); - SmallVector<Type*, 16> EltTypes(VecSize); - for (unsigned i = 0; i != VecSize; ++i) - EltTypes[i] = V[i]->getType(); - - return StructType::get(Context, EltTypes, Packed); -} - - -StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, - bool Packed) { - assert(!V.empty() && - "ConstantStruct::getTypeForElements cannot be called on empty list"); - return getTypeForElements(V[0]->getContext(), V, Packed); -} - - -ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantStructVal, - OperandTraits<ConstantStruct>::op_end(this) - V.size(), - V.size()) { - assert(V.size() == T->getNumElements() && - "Invalid initializer vector for constant structure"); - for (unsigned i = 0, e = V.size(); i != e; ++i) - assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && - "Initializer for struct element doesn't match struct element type!"); - std::copy(V.begin(), V.end(), op_begin()); -} - -// ConstantStruct accessors. -Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { - assert((ST->isOpaque() || ST->getNumElements() == V.size()) && - "Incorrect # elements specified to ConstantStruct::get"); - - // Create a ConstantAggregateZero value if all elements are zeros. - bool isZero = true; - bool isUndef = false; - - if (!V.empty()) { - isUndef = isa<UndefValue>(V[0]); - isZero = V[0]->isNullValue(); - if (isUndef || isZero) { - for (unsigned i = 0, e = V.size(); i != e; ++i) { - if (!V[i]->isNullValue()) - isZero = false; - if (!isa<UndefValue>(V[i])) - isUndef = false; - } - } - } - if (isZero) - return ConstantAggregateZero::get(ST); - if (isUndef) - return UndefValue::get(ST); - - return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); -} - -Constant *ConstantStruct::get(StructType *T, ...) { - va_list ap; - SmallVector<Constant*, 8> Values; - va_start(ap, T); - while (Constant *Val = va_arg(ap, llvm::Constant*)) - Values.push_back(Val); - va_end(ap); - return get(T, Values); -} - -ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) - : Constant(T, ConstantVectorVal, - OperandTraits<ConstantVector>::op_end(this) - V.size(), - V.size()) { - for (size_t i = 0, e = V.size(); i != e; i++) - assert(V[i]->getType() == T->getElementType() && - "Initializer for vector element doesn't match vector element type!"); - std::copy(V.begin(), V.end(), op_begin()); -} - -// ConstantVector accessors. -Constant *ConstantVector::get(ArrayRef<Constant*> V) { - assert(!V.empty() && "Vectors can't be empty"); - VectorType *T = VectorType::get(V.front()->getType(), V.size()); - LLVMContextImpl *pImpl = T->getContext().pImpl; - - // If this is an all-undef or all-zero vector, return a - // ConstantAggregateZero or UndefValue. - Constant *C = V[0]; - bool isZero = C->isNullValue(); - bool isUndef = isa<UndefValue>(C); - - if (isZero || isUndef) { - for (unsigned i = 1, e = V.size(); i != e; ++i) - if (V[i] != C) { - isZero = isUndef = false; - break; - } - } - - if (isZero) - return ConstantAggregateZero::get(T); - if (isUndef) - return UndefValue::get(T); - - // Check to see if all of the elements are ConstantFP or ConstantInt and if - // the element type is compatible with ConstantDataVector. If so, use it. - if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { - // We speculatively build the elements here even if it turns out that there - // is a constantexpr or something else weird in the array, since it is so - // uncommon for that to happen. - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { - if (CI->getType()->isIntegerTy(8)) { - SmallVector<uint8_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(16)) { - SmallVector<uint16_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(32)) { - SmallVector<uint32_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } else if (CI->getType()->isIntegerTy(64)) { - SmallVector<uint64_t, 16> Elts; - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) - Elts.push_back(CI->getZExtValue()); - else - break; - if (Elts.size() == V.size()) - return ConstantDataVector::get(C->getContext(), Elts); - } - } - - if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->getTyp |