aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms')
-rw-r--r--lib/Transforms/InstCombine/CMakeLists.txt1
-rw-r--r--lib/Transforms/InstCombine/InstCombine.h18
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp2443
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp2450
4 files changed, 2477 insertions, 2435 deletions
diff --git a/lib/Transforms/InstCombine/CMakeLists.txt b/lib/Transforms/InstCombine/CMakeLists.txt
index 665903064a..96b016650e 100644
--- a/lib/Transforms/InstCombine/CMakeLists.txt
+++ b/lib/Transforms/InstCombine/CMakeLists.txt
@@ -1,5 +1,6 @@
add_llvm_library(LLVMInstCombine
InstructionCombining.cpp
+ InstCombineCompares.cpp
InstCombineSimplifyDemanded.cpp
)
diff --git a/lib/Transforms/InstCombine/InstCombine.h b/lib/Transforms/InstCombine/InstCombine.h
index d4d26f8e34..a1e9f2ffe3 100644
--- a/lib/Transforms/InstCombine/InstCombine.h
+++ b/lib/Transforms/InstCombine/InstCombine.h
@@ -32,6 +32,20 @@ enum SelectPatternFlavor {
SPF_SMAX, SPF_UMAX
//SPF_ABS - TODO.
};
+
+/// getComplexity: Assign a complexity or rank value to LLVM Values...
+/// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
+static inline unsigned getComplexity(Value *V) {
+ if (isa<Instruction>(V)) {
+ if (BinaryOperator::isNeg(V) ||
+ BinaryOperator::isFNeg(V) ||
+ BinaryOperator::isNot(V))
+ return 3;
+ return 4;
+ }
+ if (isa<Argument>(V)) return 3;
+ return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
+}
/// InstCombineIRInserter - This is an IRBuilder insertion helper that works
@@ -179,6 +193,8 @@ public:
Instruction *visitInstruction(Instruction &I) { return 0; }
private:
+ Value *dyn_castNegVal(Value *V) const;
+
Instruction *visitCallSite(CallSite CS);
bool transformConstExprCastCall(CallSite CS);
Instruction *transformCallThroughTrampoline(CallSite CS);
@@ -186,7 +202,7 @@ private:
bool DoXform = true);
bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
-
+ Value *EmitGEPOffset(User *GEP);
public:
// InsertNewInstBefore - insert an instruction New before instruction Old
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
new file mode 100644
index 0000000000..005f1a0bc4
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -0,0 +1,2443 @@
+//===- InstCombineCompares.cpp --------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitICmp and visitFCmp functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/ConstantRange.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// AddOne - Add one to a ConstantInt
+static Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
+}
+
+static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
+ return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
+}
+
+static bool HasAddOverflow(ConstantInt *Result,
+ ConstantInt *In1, ConstantInt *In2,
+ bool IsSigned) {
+ if (IsSigned)
+ if (In2->getValue().isNegative())
+ return Result->getValue().sgt(In1->getValue());
+ else
+ return Result->getValue().slt(In1->getValue());
+ else
+ return Result->getValue().ult(In1->getValue());
+}
+
+/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
+/// overflowed for this type.
+static bool AddWithOverflow(Constant *&Result, Constant *In1,
+ Constant *In2, bool IsSigned = false) {
+ Result = ConstantExpr::getAdd(In1, In2);
+
+ if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+ if (HasAddOverflow(ExtractElement(Result, Idx),
+ ExtractElement(In1, Idx),
+ ExtractElement(In2, Idx),
+ IsSigned))
+ return true;
+ }
+ return false;
+ }
+
+ return HasAddOverflow(cast<ConstantInt>(Result),
+ cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+ IsSigned);
+}
+
+static bool HasSubOverflow(ConstantInt *Result,
+ ConstantInt *In1, ConstantInt *In2,
+ bool IsSigned) {
+ if (IsSigned)
+ if (In2->getValue().isNegative())
+ return Result->getValue().slt(In1->getValue());
+ else
+ return Result->getValue().sgt(In1->getValue());
+ else
+ return Result->getValue().ugt(In1->getValue());
+}
+
+/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
+/// overflowed for this type.
+static bool SubWithOverflow(Constant *&Result, Constant *In1,
+ Constant *In2, bool IsSigned = false) {
+ Result = ConstantExpr::getSub(In1, In2);
+
+ if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+ if (HasSubOverflow(ExtractElement(Result, Idx),
+ ExtractElement(In1, Idx),
+ ExtractElement(In2, Idx),
+ IsSigned))
+ return true;
+ }
+ return false;
+ }
+
+ return HasSubOverflow(cast<ConstantInt>(Result),
+ cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+ IsSigned);
+}
+
+/// isSignBitCheck - Given an exploded icmp instruction, return true if the
+/// comparison only checks the sign bit. If it only checks the sign bit, set
+/// TrueIfSigned if the result of the comparison is true when the input value is
+/// signed.
+static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
+ bool &TrueIfSigned) {
+ switch (pred) {
+ case ICmpInst::ICMP_SLT: // True if LHS s< 0
+ TrueIfSigned = true;
+ return RHS->isZero();
+ case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
+ TrueIfSigned = true;
+ return RHS->isAllOnesValue();
+ case ICmpInst::ICMP_SGT: // True if LHS s> -1
+ TrueIfSigned = false;
+ return RHS->isAllOnesValue();
+ case ICmpInst::ICMP_UGT:
+ // True if LHS u> RHS and RHS == high-bit-mask - 1
+ TrueIfSigned = true;
+ return RHS->getValue() ==
+ APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
+ case ICmpInst::ICMP_UGE:
+ // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
+ TrueIfSigned = true;
+ return RHS->getValue().isSignBit();
+ default:
+ return false;
+ }
+}
+
+// isHighOnes - Return true if the constant is of the form 1+0+.
+// This is the same as lowones(~X).
+static bool isHighOnes(const ConstantInt *CI) {
+ return (~CI->getValue() + 1).isPowerOf2();
+}
+
+/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
+/// set of known zero and one bits, compute the maximum and minimum values that
+/// could have the specified known zero and known one bits, returning them in
+/// min/max.
+static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
+ const APInt& KnownOne,
+ APInt& Min, APInt& Max) {
+ assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+ KnownZero.getBitWidth() == Min.getBitWidth() &&
+ KnownZero.getBitWidth() == Max.getBitWidth() &&
+ "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+ APInt UnknownBits = ~(KnownZero|KnownOne);
+
+ // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
+ // bit if it is unknown.
+ Min = KnownOne;
+ Max = KnownOne|UnknownBits;
+
+ if (UnknownBits.isNegative()) { // Sign bit is unknown
+ Min.set(Min.getBitWidth()-1);
+ Max.clear(Max.getBitWidth()-1);
+ }
+}
+
+// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
+// a set of known zero and one bits, compute the maximum and minimum values that
+// could have the specified known zero and known one bits, returning them in
+// min/max.
+static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
+ const APInt &KnownOne,
+ APInt &Min, APInt &Max) {
+ assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+ KnownZero.getBitWidth() == Min.getBitWidth() &&
+ KnownZero.getBitWidth() == Max.getBitWidth() &&
+ "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+ APInt UnknownBits = ~(KnownZero|KnownOne);
+
+ // The minimum value is when the unknown bits are all zeros.
+ Min = KnownOne;
+ // The maximum value is when the unknown bits are all ones.
+ Max = KnownOne|UnknownBits;
+}
+
+
+
+/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
+/// cmp pred (load (gep GV, ...)), cmpcst
+/// where GV is a global variable with a constant initializer. Try to simplify
+/// this into some simple computation that does not need the load. For example
+/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
+///
+/// If AndCst is non-null, then the loaded value is masked with that constant
+/// before doing the comparison. This handles cases like "A[i]&4 == 0".
+Instruction *InstCombiner::
+FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
+ CmpInst &ICI, ConstantInt *AndCst) {
+ ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (Init == 0 || Init->getNumOperands() > 1024) return 0;
+
+ // There are many forms of this optimization we can handle, for now, just do
+ // the simple index into a single-dimensional array.
+ //
+ // Require: GEP GV, 0, i {{, constant indices}}
+ if (GEP->getNumOperands() < 3 ||
+ !isa<ConstantInt>(GEP->getOperand(1)) ||
+ !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
+ isa<Constant>(GEP->getOperand(2)))
+ return 0;
+
+ // Check that indices after the variable are constants and in-range for the
+ // type they index. Collect the indices. This is typically for arrays of
+ // structs.
+ SmallVector<unsigned, 4> LaterIndices;
+
+ const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
+ for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
+ ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (Idx == 0) return 0; // Variable index.
+
+ uint64_t IdxVal = Idx->getZExtValue();
+ if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
+
+ if (const StructType *STy = dyn_cast<StructType>(EltTy))
+ EltTy = STy->getElementType(IdxVal);
+ else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
+ if (IdxVal >= ATy->getNumElements()) return 0;
+ EltTy = ATy->getElementType();
+ } else {
+ return 0; // Unknown type.
+ }
+
+ LaterIndices.push_back(IdxVal);
+ }
+
+ enum { Overdefined = -3, Undefined = -2 };
+
+ // Variables for our state machines.
+
+ // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
+ // "i == 47 | i == 87", where 47 is the first index the condition is true for,
+ // and 87 is the second (and last) index. FirstTrueElement is -2 when
+ // undefined, otherwise set to the first true element. SecondTrueElement is
+ // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
+ int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
+
+ // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
+ // form "i != 47 & i != 87". Same state transitions as for true elements.
+ int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
+
+ /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
+ /// define a state machine that triggers for ranges of values that the index
+ /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
+ /// This is -2 when undefined, -3 when overdefined, and otherwise the last
+ /// index in the range (inclusive). We use -2 for undefined here because we
+ /// use relative comparisons and don't want 0-1 to match -1.
+ int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
+
+ // MagicBitvector - This is a magic bitvector where we set a bit if the
+ // comparison is true for element 'i'. If there are 64 elements or less in
+ // the array, this will fully represent all the comparison results.
+ uint64_t MagicBitvector = 0;
+
+
+ // Scan the array and see if one of our patterns matches.
+ Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
+ for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
+ Constant *Elt = Init->getOperand(i);
+
+ // If this is indexing an array of structures, get the structure element.
+ if (!LaterIndices.empty())
+ Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
+ LaterIndices.size());
+
+ // If the element is masked, handle it.
+ if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
+
+ // Find out if the comparison would be true or false for the i'th element.
+ Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
+ CompareRHS, TD);
+ // If the result is undef for this element, ignore it.
+ if (isa<UndefValue>(C)) {
+ // Extend range state machines to cover this element in case there is an
+ // undef in the middle of the range.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ continue;
+ }
+
+ // If we can't compute the result for any of the elements, we have to give
+ // up evaluating the entire conditional.
+ if (!isa<ConstantInt>(C)) return 0;
+
+ // Otherwise, we know if the comparison is true or false for this element,
+ // update our state machines.
+ bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
+
+ // State machine for single/double/range index comparison.
+ if (IsTrueForElt) {
+ // Update the TrueElement state machine.
+ if (FirstTrueElement == Undefined)
+ FirstTrueElement = TrueRangeEnd = i; // First true element.
+ else {
+ // Update double-compare state machine.
+ if (SecondTrueElement == Undefined)
+ SecondTrueElement = i;
+ else
+ SecondTrueElement = Overdefined;
+
+ // Update range state machine.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ else
+ TrueRangeEnd = Overdefined;
+ }
+ } else {
+ // Update the FalseElement state machine.
+ if (FirstFalseElement == Undefined)
+ FirstFalseElement = FalseRangeEnd = i; // First false element.
+ else {
+ // Update double-compare state machine.
+ if (SecondFalseElement == Undefined)
+ SecondFalseElement = i;
+ else
+ SecondFalseElement = Overdefined;
+
+ // Update range state machine.
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ else
+ FalseRangeEnd = Overdefined;
+ }
+ }
+
+
+ // If this element is in range, update our magic bitvector.
+ if (i < 64 && IsTrueForElt)
+ MagicBitvector |= 1ULL << i;
+
+ // If all of our states become overdefined, bail out early. Since the
+ // predicate is expensive, only check it every 8 elements. This is only
+ // really useful for really huge arrays.
+ if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
+ SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
+ FalseRangeEnd == Overdefined)
+ return 0;
+ }
+
+ // Now that we've scanned the entire array, emit our new comparison(s). We
+ // order the state machines in complexity of the generated code.
+ Value *Idx = GEP->getOperand(2);
+
+
+ // If the comparison is only true for one or two elements, emit direct
+ // comparisons.
+ if (SecondTrueElement != Overdefined) {
+ // None true -> false.
+ if (FirstTrueElement == Undefined)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
+
+ Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
+
+ // True for one element -> 'i == 47'.
+ if (SecondTrueElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
+
+ // True for two elements -> 'i == 47 | i == 72'.
+ Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
+ Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
+ Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
+ return BinaryOperator::CreateOr(C1, C2);
+ }
+
+ // If the comparison is only false for one or two elements, emit direct
+ // comparisons.
+ if (SecondFalseElement != Overdefined) {
+ // None false -> true.
+ if (FirstFalseElement == Undefined)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
+
+ Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
+
+ // False for one element -> 'i != 47'.
+ if (SecondFalseElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
+
+ // False for two elements -> 'i != 47 & i != 72'.
+ Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
+ Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
+ Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
+ return BinaryOperator::CreateAnd(C1, C2);
+ }
+
+ // If the comparison can be replaced with a range comparison for the elements
+ // where it is true, emit the range check.
+ if (TrueRangeEnd != Overdefined) {
+ assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
+
+ // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
+ if (FirstTrueElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
+ Idx = Builder->CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ TrueRangeEnd-FirstTrueElement+1);
+ return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
+ }
+
+ // False range check.
+ if (FalseRangeEnd != Overdefined) {
+ assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
+ // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
+ if (FirstFalseElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
+ Idx = Builder->CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ FalseRangeEnd-FirstFalseElement);
+ return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
+ }
+
+
+ // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
+ // of this load, replace it with computation that does:
+ // ((magic_cst >> i) & 1) != 0
+ if (Init->getNumOperands() <= 32 ||
+ (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
+ const Type *Ty;
+ if (Init->getNumOperands() <= 32)
+ Ty = Type::getInt32Ty(Init->getContext());
+ else
+ Ty = Type::getInt64Ty(Init->getContext());
+ Value *V = Builder->CreateIntCast(Idx, Ty, false);
+ V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
+ V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
+ return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
+ }
+
+ return 0;
+}
+
+
+/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
+/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
+/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
+/// be complex, and scales are involved. The above expression would also be
+/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This later form is less amenable to optimization though, and we are allowed
+/// to generate the first by knowing that pointer arithmetic doesn't overflow.
+///
+/// If we can't emit an optimized form for this expression, this returns null.
+///
+static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
+ InstCombiner &IC) {
+ TargetData &TD = *IC.getTargetData();
+ gep_type_iterator GTI = gep_type_begin(GEP);
+
+ // Check to see if this gep only has a single variable index. If so, and if
+ // any constant indices are a multiple of its scale, then we can compute this
+ // in terms of the scale of the variable index. For example, if the GEP
+ // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
+ // because the expression will cross zero at the same point.
+ unsigned i, e = GEP->getNumOperands();
+ int64_t Offset = 0;
+ for (i = 1; i != e; ++i, ++GTI) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ } else {
+ // Found our variable index.
+ break;
+ }
+ }
+
+ // If there are no variable indices, we must have a constant offset, just
+ // evaluate it the general way.
+ if (i == e) return 0;
+
+ Value *VariableIdx = GEP->getOperand(i);
+ // Determine the scale factor of the variable element. For example, this is
+ // 4 if the variable index is into an array of i32.
+ uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
+
+ // Verify that there are no other variable indices. If so, emit the hard way.
+ for (++i, ++GTI; i != e; ++i, ++GTI) {
+ ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (!CI) return 0;
+
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ }
+
+ // Okay, we know we have a single variable index, which must be a
+ // pointer/array/vector index. If there is no offset, life is simple, return
+ // the index.
+ unsigned IntPtrWidth = TD.getPointerSizeInBits();
+ if (Offset == 0) {
+ // Cast to intptrty in case a truncation occurs. If an extension is needed,
+ // we don't need to bother extending: the extension won't affect where the
+ // computation crosses zero.
+ if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
+ VariableIdx = new TruncInst(VariableIdx,
+ TD.getIntPtrType(VariableIdx->getContext()),
+ VariableIdx->getName(), &I);
+ return VariableIdx;
+ }
+
+ // Otherwise, there is an index. The computation we will do will be modulo
+ // the pointer size, so get it.
+ uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
+
+ Offset &= PtrSizeMask;
+ VariableScale &= PtrSizeMask;
+
+ // To do this transformation, any constant index must be a multiple of the
+ // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
+ // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
+ // multiple of the variable scale.
+ int64_t NewOffs = Offset / (int64_t)VariableScale;
+ if (Offset != NewOffs*(int64_t)VariableScale)
+ return 0;
+
+ // Okay, we can do this evaluation. Start by converting the index to intptr.
+ const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
+ if (VariableIdx->getType() != IntPtrTy)
+ VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
+ true /*SExt*/,
+ VariableIdx->getName(), &I);
+ Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
+ return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
+}
+
+/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
+/// else. At this point we know that the GEP is on the LHS of the comparison.
+Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond,
+ Instruction &I) {
+ // Look through bitcasts.
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
+ RHS = BCI->getOperand(0);
+
+ Value *PtrBase = GEPLHS->getOperand(0);
+ if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
+ // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
+ // This transformation (ignoring the base and scales) is valid because we
+ // know pointers can't overflow since the gep is inbounds. See if we can
+ // output an optimized form.
+ Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
+
+ // If not, synthesize the offset the hard way.
+ if (Offset == 0)
+ Offset = EmitGEPOffset(GEPLHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
+ Constant::getNullValue(Offset->getType()));
+ } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
+ // If the base pointers are different, but the indices are the same, just
+ // compare the base pointer.
+ if (PtrBase != GEPRHS->getOperand(0)) {
+ bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
+ IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
+ GEPRHS->getOperand(0)->getType();
+ if (IndicesTheSame)
+ for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ IndicesTheSame = false;
+ break;
+ }
+
+ // If all indices are the same, just compare the base pointers.
+ if (IndicesTheSame)
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
+ GEPLHS->getOperand(0), GEPRHS->getOperand(0));
+
+ // Otherwise, the base pointers are different and the indices are
+ // different, bail out.
+ return 0;
+ }
+
+ // If one of the GEPs has all zero indices, recurse.
+ bool AllZeros = true;
+ for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+ if (!isa<Constant>(GEPLHS->getOperand(i)) ||
+ !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
+ AllZeros = false;
+ break;
+ }
+ if (AllZeros)
+ return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
+ ICmpInst::getSwappedPredicate(Cond), I);
+
+ // If the other GEP has all zero indices, recurse.
+ AllZeros = true;
+ for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+ if (!isa<Constant>(GEPRHS->getOperand(i)) ||
+ !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
+ AllZeros = false;
+ break;
+ }
+ if (AllZeros)
+ return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
+
+ if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
+ // If the GEPs only differ by one index, compare it.
+ unsigned NumDifferences = 0; // Keep track of # differences.
+ unsigned DiffOperand = 0; // The operand that differs.
+ for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
+ GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
+ // Irreconcilable differences.
+ NumDifferences = 2;
+ break;
+ } else {
+ if (NumDifferences++) break;
+ DiffOperand = i;
+ }
+ }
+
+ if (NumDifferences == 0) // SAME GEP?
+ return ReplaceInstUsesWith(I, // No comparison is needed here.
+ ConstantInt::get(Type::getInt1Ty(I.getContext()),
+ ICmpInst::isTrueWhenEqual(Cond)));
+
+ else if (NumDifferences == 1) {
+ Value *LHSV = GEPLHS->getOperand(DiffOperand);
+ Value *RHSV = GEPRHS->getOperand(DiffOperand);
+ // Make sure we do a signed comparison here.
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
+ }
+ }
+
+ // Only lower this if the icmp is the only user of the GEP or if we expect
+ // the result to fold to a constant!
+ if (TD &&
+ (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+ (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
+ // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
+ Value *L = EmitGEPOffset(GEPLHS);
+ Value *R = EmitGEPOffset(GEPRHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
+ }
+ }
+ return 0;
+}
+
+/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
+Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
+ Value *X, ConstantInt *CI,
+ ICmpInst::Predicate Pred,
+ Value *TheAdd) {
+ // If we have X+0, exit early (simplifying logic below) and let it get folded
+ // elsewhere. icmp X+0, X -> icmp X, X
+ if (CI->isZero()) {
+ bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
+ return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+ }
+
+ // (X+4) == X -> false.
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
+
+ // (X+4) != X -> true.
+ if (Pred == ICmpInst::ICMP_NE)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
+
+ // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
+ bool isNUW = false, isNSW = false;
+ if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
+ isNUW = Add->hasNoUnsignedWrap();
+ isNSW = Add->hasNoSignedWrap();
+ }
+
+ // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
+ // so the values can never be equal. Similiarly for all other "or equals"
+ // operators.
+
+ // (X+1) <u X --> X >u (MAXUINT-1) --> X != 255
+ // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
+ // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
+ // If this is an NUW add, then this is always false.
+ if (isNUW)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
+
+ Value *R = ConstantExpr::getSub(ConstantInt::get(CI->getType(), -1ULL), CI);
+ return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
+ }
+
+ // (X+1) >u X --> X <u (0-1) --> X != 255
+ // (X+2) >u X --> X <u (0-2) --> X <u 254
+ // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
+ // If this is an NUW add, then this is always true.
+ if (isNUW)
+ return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
+ }
+
+ unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
+ ConstantInt *SMax = ConstantInt::get(X->getContext(),
+ APInt::getSignedMaxValue(BitWidth));
+
+ // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
+ // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
+ // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
+ // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
+ // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
+ // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
+ // If this is an NSW add, then we have two cases: if the constant is
+ // positive, then this is always false, if negative, this is always true.
+ if (isNSW) {
+ bool isTrue = CI->getValue().isNegative();
+ return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+ }
+
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
+ }
+
+ // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
+ // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
+ // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
+ // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
+ // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
+ // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
+
+ // If this is an NSW add, then we have two cases: if the constant is
+ // positive, then this is always true, if negative, this is always false.
+ if (isNSW) {
+ bool isTrue = !CI->getValue().isNegative();
+ return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
+ }
+
+ assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
+ Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
+}
+
+/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
+/// and CmpRHS are both known to be integer constants.
+Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
+ ConstantInt *DivRHS) {
+ ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
+ const APInt &CmpRHSV = CmpRHS->getValue();
+
+ // FIXME: If the operand types don't match the type of the divide
+ // then don't attempt this transform. The code below doesn't have the
+ // logic to deal with a signed divide and an unsigned compare (and
+ // vice versa). This is because (x /s C1) <s C2 produces different
+ // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
+ // (x /u C1) <u C2. Simply casting the operands and result won't
+ // work. :( The if statement below tests that condition and bails
+ // if it finds it.
+ bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
+ if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
+ return 0;
+ if (DivRHS->isZero())
+ return 0; // The ProdOV computation fails on divide by zero.
+ if (DivIsSigned && DivRHS->isAllOnesValue())
+ return 0; // The overflow computation also screws up here
+ if (DivRHS->isOne())
+ return 0; // Not worth bothering, and eliminates some funny cases
+ // with INT_MIN.
+
+ // Compute Prod = CI * DivRHS. We are essentially solving an equation
+ // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
+ // C2 (CI). By solving for X we can turn this into a range check
+ // instead of computing a divide.
+ Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
+
+ // Determine if the product overflows by seeing if the product is
+ // not equal to the divide. Make sure we do the same kind of divide
+ // as in the LHS instruction that we're folding.
+ bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
+ ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
+
+ // Get the ICmp opcode
+ ICmpInst::Predicate Pred = ICI.getPredicate();
+
+ // Figure out the interval that is being checked. For example, a comparison
+ // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
+ /