aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoopVectorize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp87
1 files changed, 65 insertions, 22 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index fec15737dc..bb8b428c3c 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -106,9 +106,6 @@ static const unsigned TinyTripCountVectorThreshold = 16;
/// We don't unroll loops with a known constant trip count below this number.
static const unsigned TinyTripCountUnrollThreshold = 128;
-/// We don't unroll loops that are larget than this threshold.
-static const unsigned MaxLoopSizeThreshold = 32;
-
/// When performing a runtime memory check, do not check more than this
/// number of pointers. Notice that the check is quadratic!
static const unsigned RuntimeMemoryCheckThreshold = 4;
@@ -514,11 +511,12 @@ public:
const TargetTransformInfo &TTI)
: TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI) {}
- /// \return The most profitable vectorization factor.
+ /// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every power of two up to VF. If UserVF is not ZERO
/// then this vectorization factor will be selected if vectorization is
/// possible.
- unsigned selectVectorizationFactor(bool OptForSize, unsigned UserVF);
+ std::pair<unsigned, unsigned>
+ selectVectorizationFactor(bool OptForSize, unsigned UserVF);
/// \returns The size (in bits) of the widest type in the code that
/// needs to be vectorized. We ignore values that remain scalar such as
@@ -528,7 +526,10 @@ public:
/// \return The most profitable unroll factor.
/// If UserUF is non-zero then this method finds the best unroll-factor
/// based on register pressure and other parameters.
- unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF);
+ /// VF and LoopCost are the selected vectorization factor and the cost of the
+ /// selected VF.
+ unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
+ unsigned LoopCost);
/// \brief A struct that represents some properties of the register usage
/// of a loop.
@@ -626,8 +627,13 @@ struct LoopVectorize : public LoopPass {
return false;
}
- unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
- unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll);
+ // Select the optimal vectorization factor.
+ std::pair<unsigned, unsigned> VFPair;
+ VFPair = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
+ // Select the unroll factor.
+ unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
+ VFPair.first, VFPair.second);
+ unsigned VF = VFPair.first;
if (VF == 1) {
DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
@@ -2633,12 +2639,12 @@ bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
return AR->isAffine();
}
-unsigned
+std::pair<unsigned, unsigned>
LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
unsigned UserVF) {
if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
- return 1;
+ return std::make_pair(1U, 0U);
}
// Find the trip count.
@@ -2657,7 +2663,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
}
assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
- " into one vector.");
+ " into one vector!");
unsigned VF = MaxVectorSize;
@@ -2666,7 +2672,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
// If we are unable to calculate the trip count then don't try to vectorize.
if (TC < 2) {
DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
- return 1;
+ return std::make_pair(1U, 0U);
}
// Find the maximum SIMD width that can fit within the trip count.
@@ -2679,7 +2685,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
// zero then we require a tail.
if (VF < 2) {
DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
- return 1;
+ return std::make_pair(1U, 0U);
}
}
@@ -2687,7 +2693,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
- return UserVF;
+ return std::make_pair(UserVF, 0U);
}
float Cost = expectedCost(1);
@@ -2707,7 +2713,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
}
DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
- return Width;
+ return std::make_pair<unsigned, unsigned>(Width, VF * Cost);
}
unsigned LoopVectorizationCostModel::getWidestType() {
@@ -2748,7 +2754,24 @@ unsigned LoopVectorizationCostModel::getWidestType() {
unsigned
LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
- unsigned UserUF) {
+ unsigned UserUF,
+ unsigned VF,
+ unsigned LoopCost) {
+
+ // -- The unroll heuristics --
+ // We unroll the loop in order to expose ILP and reduce the loop overhead.
+ // There are many micro-architectural considerations that we can't predict
+ // at this level. For example frontend pressure (on decode or fetch) due to
+ // code size, or the number and capabilities of the execution ports.
+ //
+ // We use the following heuristics to select the unroll factor:
+ // 1. If the code has reductions the we unroll in order to break the cross
+ // iteration dependency.
+ // 2. If the loop is really small then we unroll in order to reduce the loop
+ // overhead.
+ // 3. We don't unroll if we think that we will spill registers to memory due
+ // to the increased register pressure.
+
// Use the user preference, unless 'auto' is selected.
if (UserUF != 0)
return UserUF;
@@ -2781,19 +2804,39 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
// fit without causing spills.
unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
- // We don't want to unroll the loops to the point where they do not fit into
- // the decoded cache. Assume that we only allow 32 IR instructions.
- UF = std::min(UF, (MaxLoopSizeThreshold / R.NumInstructions));
-
// Clamp the unroll factor ranges to reasonable factors.
unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
-
+
+ // If we did not calculate the cost for VF (because the user selected the VF)
+ // then we calculate the cost of VF here.
+ if (LoopCost == 0)
+ LoopCost = expectedCost(VF);
+
+ // Clamp the calculated UF to be between the 1 and the max unroll factor
+ // that the target allows.
if (UF > MaxUnrollSize)
UF = MaxUnrollSize;
else if (UF < 1)
UF = 1;
- return UF;
+ if (Legal->getReductionVars()->size()) {
+ DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
+ return UF;
+ }
+
+ // We want to unroll tiny loops in order to reduce the loop overhead.
+ // We assume that the cost overhead is 1 and we use the cost model
+ // to estimate the cost of the loop and unroll until the cost of the
+ // loop overhead is about 5% of the cost of the loop.
+ DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
+ if (LoopCost < 20) {
+ DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
+ unsigned NewUF = 20/LoopCost + 1;
+ return std::min(NewUF, UF);
+ }
+
+ DEBUG(dbgs() << "LV: Not Unrolling. \n");
+ return 1;
}
LoopVectorizationCostModel::RegisterUsage