diff options
Diffstat (limited to 'lib/Transforms/Scalar/InstructionCombining.cpp')
-rw-r--r-- | lib/Transforms/Scalar/InstructionCombining.cpp | 53 |
1 files changed, 9 insertions, 44 deletions
diff --git a/lib/Transforms/Scalar/InstructionCombining.cpp b/lib/Transforms/Scalar/InstructionCombining.cpp index 084f874f92..13dbc11526 100644 --- a/lib/Transforms/Scalar/InstructionCombining.cpp +++ b/lib/Transforms/Scalar/InstructionCombining.cpp @@ -2072,6 +2072,7 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{ const IntegerType *Ty = cast<IntegerType>(V->getType()); unsigned TyBits = Ty->getBitWidth(); unsigned Tmp, Tmp2; + unsigned FirstAnswer = 1; if (Depth == 6) return 1; // Limit search depth. @@ -2101,54 +2102,18 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{ } break; case Instruction::And: - // Logical binary ops preserve the number of sign bits at the worst. - Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1); - if (Tmp != 1) { - Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1); - Tmp = std::min(Tmp, Tmp2); - } - - // X & C has sign bits equal to C if C's top bits are zeros. - if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { - // See what bits are known to be zero on the output. - APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); - APInt Mask = APInt::getAllOnesValue(TyBits); - ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - - KnownZero |= ~C->getValue(); - // If we know that we have leading zeros, we know we have at least that - // many sign bits. - Tmp = std::max(Tmp, KnownZero.countLeadingOnes()); - } - return Tmp; - case Instruction::Or: + case Instruction::Xor: // NOT is handled here. // Logical binary ops preserve the number of sign bits at the worst. Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1); if (Tmp != 1) { Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1); - Tmp = std::min(Tmp, Tmp2); + FirstAnswer = std::min(Tmp, Tmp2); + // We computed what we know about the sign bits as our first + // answer. Now proceed to the generic code that uses + // ComputeMaskedBits, and pick whichever answer is better. } - // X & C has sign bits equal to C if C's top bits are zeros. - if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { - // See what bits are known to be one on the output. - APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); - APInt Mask = APInt::getAllOnesValue(TyBits); - ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); - - KnownOne |= C->getValue(); - // If we know that we have leading ones, we know we have at least that - // many sign bits. - Tmp = std::max(Tmp, KnownOne.countLeadingOnes()); - } - return Tmp; - - case Instruction::Xor: // NOT is handled here. - // Logical binary ops preserve the number of sign bits. - Tmp = ComputeNumSignBits(U->getOperand(0), Depth+1); - if (Tmp == 1) return 1; // Early out. - Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth+1); - return std::min(Tmp, Tmp2); + break; case Instruction::Select: Tmp = ComputeNumSignBits(U->getOperand(1), Depth+1); @@ -2232,7 +2197,7 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{ Mask = KnownOne; } else { // Nothing known. - return 1; + return FirstAnswer; } // Okay, we know that the sign bit in Mask is set. Use CLZ to determine @@ -2241,7 +2206,7 @@ unsigned InstCombiner::ComputeNumSignBits(Value *V, unsigned Depth) const{ Mask <<= Mask.getBitWidth()-TyBits; // Return # leading zeros. We use 'min' here in case Val was zero before // shifting. We don't want to return '64' as for an i32 "0". - return std::min(TyBits, Mask.countLeadingZeros()); + return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); } |