aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen')
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAG.cpp1151
-rw-r--r--lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp891
-rw-r--r--lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp22
3 files changed, 933 insertions, 1131 deletions
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
index 3ad59d77ee..9c1f1a8d63 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
@@ -1,4 +1,4 @@
-//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
+//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
//
// The LLVM Compiler Infrastructure
//
@@ -16,1002 +16,21 @@
#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetInstrItineraries.h"
#include "llvm/Target/TargetLowering.h"
-#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <iostream>
-#include <ios>
-#include <algorithm>
using namespace llvm;
-namespace {
- // Style of scheduling to use.
- enum ScheduleChoices {
- noScheduling,
- simpleScheduling,
- simpleNoItinScheduling
- };
-} // namespace
-
-cl::opt<ScheduleChoices> ScheduleStyle("sched",
- cl::desc("Choose scheduling style"),
- cl::init(noScheduling),
- cl::values(
- clEnumValN(noScheduling, "none",
- "Trivial emission with no analysis"),
- clEnumValN(simpleScheduling, "simple",
- "Minimize critical path and maximize processor utilization"),
- clEnumValN(simpleNoItinScheduling, "simple-noitin",
- "Same as simple except using generic latency"),
- clEnumValEnd));
-
-
-#ifndef NDEBUG
-static cl::opt<bool>
-ViewDAGs("view-sched-dags", cl::Hidden,
- cl::desc("Pop up a window to show sched dags as they are processed"));
-#else
-static const bool ViewDAGs = 0;
-#endif
-
-namespace {
-//===----------------------------------------------------------------------===//
-///
-/// BitsIterator - Provides iteration through individual bits in a bit vector.
-///
-template<class T>
-class BitsIterator {
-private:
- T Bits; // Bits left to iterate through
-
-public:
- /// Ctor.
- BitsIterator(T Initial) : Bits(Initial) {}
-
- /// Next - Returns the next bit set or zero if exhausted.
- inline T Next() {
- // Get the rightmost bit set
- T Result = Bits & -Bits;
- // Remove from rest
- Bits &= ~Result;
- // Return single bit or zero
- return Result;
- }
-};
-
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// ResourceTally - Manages the use of resources over time intervals. Each
-/// item (slot) in the tally vector represents the resources used at a given
-/// moment. A bit set to 1 indicates that a resource is in use, otherwise
-/// available. An assumption is made that the tally is large enough to schedule
-/// all current instructions (asserts otherwise.)
-///
-template<class T>
-class ResourceTally {
-private:
- std::vector<T> Tally; // Resources used per slot
- typedef typename std::vector<T>::iterator Iter;
- // Tally iterator
-
- /// SlotsAvailable - Returns true if all units are available.
- ///
- bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
- unsigned &Resource) {
- assert(N && "Must check availability with N != 0");
- // Determine end of interval
- Iter End = Begin + N;
- assert(End <= Tally.end() && "Tally is not large enough for schedule");
-
- // Iterate thru each resource
- BitsIterator<T> Resources(ResourceSet & ~*Begin);
- while (unsigned Res = Resources.Next()) {
- // Check if resource is available for next N slots
- Iter Interval = End;
- do {
- Interval--;
- if (*Interval & Res) break;
- } while (Interval != Begin);
-
- // If available for N
- if (Interval == Begin) {
- // Success
- Resource = Res;
- return true;
- }
- }
-
- // No luck
- Resource = 0;
- return false;
- }
-
- /// RetrySlot - Finds a good candidate slot to retry search.
- Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
- assert(N && "Must check availability with N != 0");
- // Determine end of interval
- Iter End = Begin + N;
- assert(End <= Tally.end() && "Tally is not large enough for schedule");
-
- while (Begin != End--) {
- // Clear units in use
- ResourceSet &= ~*End;
- // If no units left then we should go no further
- if (!ResourceSet) return End + 1;
- }
- // Made it all the way through
- return Begin;
- }
-
- /// FindAndReserveStages - Return true if the stages can be completed. If
- /// so mark as busy.
- bool FindAndReserveStages(Iter Begin,
- InstrStage *Stage, InstrStage *StageEnd) {
- // If at last stage then we're done
- if (Stage == StageEnd) return true;
- // Get number of cycles for current stage
- unsigned N = Stage->Cycles;
- // Check to see if N slots are available, if not fail
- unsigned Resource;
- if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
- // Check to see if remaining stages are available, if not fail
- if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
- // Reserve resource
- Reserve(Begin, N, Resource);
- // Success
- return true;
- }
-
- /// Reserve - Mark busy (set) the specified N slots.
- void Reserve(Iter Begin, unsigned N, unsigned Resource) {
- // Determine end of interval
- Iter End = Begin + N;
- assert(End <= Tally.end() && "Tally is not large enough for schedule");
-
- // Set resource bit in each slot
- for (; Begin < End; Begin++)
- *Begin |= Resource;
- }
-
- /// FindSlots - Starting from Begin, locate consecutive slots where all stages
- /// can be completed. Returns the address of first slot.
- Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
- // Track position
- Iter Cursor = Begin;
-
- // Try all possible slots forward
- while (true) {
- // Try at cursor, if successful return position.
- if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
- // Locate a better position
- Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
- }
- }
-
-public:
- /// Initialize - Resize and zero the tally to the specified number of time
- /// slots.
- inline void Initialize(unsigned N) {
- Tally.assign(N, 0); // Initialize tally to all zeros.
- }
-
- // FindAndReserve - Locate an ideal slot for the specified stages and mark
- // as busy.
- unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
- InstrStage *StageEnd) {
- // Where to begin
- Iter Begin = Tally.begin() + Slot;
- // Find a free slot
- Iter Where = FindSlots(Begin, StageBegin, StageEnd);
- // Distance is slot number
- unsigned Final = Where - Tally.begin();
- return Final;
- }
-
-};
-//===----------------------------------------------------------------------===//
-
-// Forward
-class NodeInfo;
-typedef NodeInfo *NodeInfoPtr;
-typedef std::vector<NodeInfoPtr> NIVector;
-typedef std::vector<NodeInfoPtr>::iterator NIIterator;
-
-//===----------------------------------------------------------------------===//
-///
-/// Node group - This struct is used to manage flagged node groups.
-///
-class NodeGroup {
-private:
- NIVector Members; // Group member nodes
- NodeInfo *Dominator; // Node with highest latency
- unsigned Latency; // Total latency of the group
- int Pending; // Number of visits pending before
- // adding to order
-
-public:
- // Ctor.
- NodeGroup() : Dominator(NULL), Pending(0) {}
-
- // Accessors
- inline void setDominator(NodeInfo *D) { Dominator = D; }
- inline NodeInfo *getDominator() { return Dominator; }
- inline void setLatency(unsigned L) { Latency = L; }
- inline unsigned getLatency() { return Latency; }
- inline int getPending() const { return Pending; }
- inline void setPending(int P) { Pending = P; }
- inline int addPending(int I) { return Pending += I; }
-
- // Pass thru
- inline bool group_empty() { return Members.empty(); }
- inline NIIterator group_begin() { return Members.begin(); }
- inline NIIterator group_end() { return Members.end(); }
- inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); }
- inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
- return Members.insert(Pos, NI);
- }
- inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) {
- Members.insert(Pos, First, Last);
- }
-
- static void Add(NodeInfo *D, NodeInfo *U);
- static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeInfo - This struct tracks information used to schedule the a node.
-///
-class NodeInfo {
-private:
- int Pending; // Number of visits pending before
- // adding to order
-public:
- SDNode *Node; // DAG node
- InstrStage *StageBegin; // First stage in itinerary
- InstrStage *StageEnd; // Last+1 stage in itinerary
- unsigned Latency; // Total cycles to complete instruction
- bool IsCall : 1; // Is function call
- bool IsLoad : 1; // Is memory load
- bool IsStore : 1; // Is memory store
- unsigned Slot; // Node's time slot
- NodeGroup *Group; // Grouping information
- unsigned VRBase; // Virtual register base
-#ifndef NDEBUG
- unsigned Preorder; // Index before scheduling
-#endif
-
- // Ctor.
- NodeInfo(SDNode *N = NULL)
- : Pending(0)
- , Node(N)
- , StageBegin(NULL)
- , StageEnd(NULL)
- , Latency(0)
- , IsCall(false)
- , Slot(0)
- , Group(NULL)
- , VRBase(0)
-#ifndef NDEBUG
- , Preorder(0)
-#endif
- {}
-
- // Accessors
- inline bool isInGroup() const {
- assert(!Group || !Group->group_empty() && "Group with no members");
- return Group != NULL;
- }
- inline bool isGroupDominator() const {
- return isInGroup() && Group->getDominator() == this;
- }
- inline int getPending() const {
- return Group ? Group->getPending() : Pending;
- }
- inline void setPending(int P) {
- if (Group) Group->setPending(P);
- else Pending = P;
- }
- inline int addPending(int I) {
- if (Group) return Group->addPending(I);
- else return Pending += I;
- }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeGroupIterator - Iterates over all the nodes indicated by the node info.
-/// If the node is in a group then iterate over the members of the group,
-/// otherwise just the node info.
-///
-class NodeGroupIterator {
-private:
- NodeInfo *NI; // Node info
- NIIterator NGI; // Node group iterator
- NIIterator NGE; // Node group iterator end
-
-public:
- // Ctor.
- NodeGroupIterator(NodeInfo *N) : NI(N) {
- // If the node is in a group then set up the group iterator. Otherwise
- // the group iterators will trip first time out.
- if (N->isInGroup()) {
- // get Group
- NodeGroup *Group = NI->Group;
- NGI = Group->group_begin();
- NGE = Group->group_end();
- // Prevent this node from being used (will be in members list
- NI = NULL;
- }
- }
-
- /// next - Return the next node info, otherwise NULL.
- ///
- NodeInfo *next() {
- // If members list
- if (NGI != NGE) return *NGI++;
- // Use node as the result (may be NULL)
- NodeInfo *Result = NI;
- // Only use once
- NI = NULL;
- // Return node or NULL
- return Result;
- }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeGroupOpIterator - Iterates over all the operands of a node. If the node
-/// is a member of a group, this iterates over all the operands of all the
-/// members of the group.
-///
-class NodeGroupOpIterator {
-private:
- NodeInfo *NI; // Node containing operands
- NodeGroupIterator GI; // Node group iterator
- SDNode::op_iterator OI; // Operand iterator
- SDNode::op_iterator OE; // Operand iterator end
-
- /// CheckNode - Test if node has more operands. If not get the next node
- /// skipping over nodes that have no operands.
- void CheckNode() {
- // Only if operands are exhausted first
- while (OI == OE) {
- // Get next node info
- NodeInfo *NI = GI.next();
- // Exit if nodes are exhausted
- if (!NI) return;
- // Get node itself
- SDNode *Node = NI->Node;
- // Set up the operand iterators
- OI = Node->op_begin();
- OE = Node->op_end();
- }
- }
-
-public:
- // Ctor.
- NodeGroupOpIterator(NodeInfo *N)
- : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
-
- /// isEnd - Returns true when not more operands are available.
- ///
- inline bool isEnd() { CheckNode(); return OI == OE; }
-
- /// next - Returns the next available operand.
- ///
- inline SDOperand next() {
- assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly");
- return *OI++;
- }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// SimpleSched - Simple two pass scheduler.
-///
-class SimpleSched {
-private:
- MachineBasicBlock *BB; // Current basic block
- SelectionDAG &DAG; // DAG of the current basic block
- const TargetMachine &TM; // Target processor
- const TargetInstrInfo &TII; // Target instruction information
- const MRegisterInfo &MRI; // Target processor register information
- SSARegMap *RegMap; // Virtual/real register map
- MachineConstantPool *ConstPool; // Target constant pool
- unsigned NodeCount; // Number of nodes in DAG
- bool HasGroups; // True if there are any groups
- NodeInfo *Info; // Info for nodes being scheduled
- std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
- NIVector Ordering; // Emit ordering of nodes
- ResourceTally<unsigned> Tally; // Resource usage tally
- unsigned NSlots; // Total latency
- static const unsigned NotFound = ~0U; // Search marker
-
-public:
-
- // Ctor.
- SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
- : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
- MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
- ConstPool(BB->getParent()->getConstantPool()),
- NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) {
- assert(&TII && "Target doesn't provide instr info?");
- assert(&MRI && "Target doesn't provide register info?");
- }
-
- // Run - perform scheduling.
- MachineBasicBlock *Run() {
- Schedule();
- return BB;
- }
-
-private:
- /// getNI - Returns the node info for the specified node.
- ///
- inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
-
- /// getVR - Returns the virtual register number of the node.
- ///
- inline unsigned getVR(SDOperand Op) {
- NodeInfo *NI = getNI(Op.Val);
- assert(NI->VRBase != 0 && "Node emitted out of order - late");
- return NI->VRBase + Op.ResNo;
- }
-
- static bool isFlagDefiner(SDNode *A);
- static bool isFlagUser(SDNode *A);
- static bool isDefiner(NodeInfo *A, NodeInfo *B);
- static bool isPassiveNode(SDNode *Node);
- void IncludeNode(NodeInfo *NI);
- void VisitAll();
- void Schedule();
- void IdentifyGroups();
- void GatherSchedulingInfo();
- void FakeGroupDominators();
- void PrepareNodeInfo();
- bool isStrongDependency(NodeInfo *A, NodeInfo *B);
- bool isWeakDependency(NodeInfo *A, NodeInfo *B);
- void ScheduleBackward();
- void ScheduleForward();
- void EmitAll();
- void EmitNode(NodeInfo *NI);
- static unsigned CountResults(SDNode *Node);
- static unsigned CountOperands(SDNode *Node);
- unsigned CreateVirtualRegisters(MachineInstr *MI,
- unsigned NumResults,
- const TargetInstrDescriptor &II);
-
- void printChanges(unsigned Index);
- void printSI(std::ostream &O, NodeInfo *NI) const;
- void print(std::ostream &O) const;
- inline void dump(const char *tag) const { std::cerr << tag; dump(); }
- void dump() const;
-};
-
-
-//===----------------------------------------------------------------------===//
-/// Special case itineraries.
-///
-enum {
- CallLatency = 40, // To push calls back in time
-
- RSInteger = 0xC0000000, // Two integer units
- RSFloat = 0x30000000, // Two float units
- RSLoadStore = 0x0C000000, // Two load store units
- RSBranch = 0x02000000 // One branch unit
-};
-static InstrStage CallStage = { CallLatency, RSBranch };
-static InstrStage LoadStage = { 5, RSLoadStore };
-static InstrStage StoreStage = { 2, RSLoadStore };
-static InstrStage IntStage = { 2, RSInteger };
-static InstrStage FloatStage = { 3, RSFloat };
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-
-} // namespace
-
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-/// Add - Adds a definer and user pair to a node group.
-///
-void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
- // Get current groups
- NodeGroup *DGroup = D->Group;
- NodeGroup *UGroup = U->Group;
- // If both are members of groups
- if (DGroup && UGroup) {
- // There may have been another edge connecting
- if (DGroup == UGroup) return;
- // Add the pending users count
- DGroup->addPending(UGroup->getPending());
- // For each member of the users group
- NodeGroupIterator UNGI(U);
- while (NodeInfo *UNI = UNGI.next() ) {
- // Change the group
- UNI->Group = DGroup;
- // For each member of the definers group
- NodeGroupIterator DNGI(D);
- while (NodeInfo *DNI = DNGI.next() ) {
- // Remove internal edges
- DGroup->addPending(-CountInternalUses(DNI, UNI));
- }
- }
- // Merge the two lists
- DGroup->group_insert(DGroup->group_end(),
- UGroup->group_begin(), UGroup->group_end());
- } else if (DGroup) {
- // Make user member of definers group
- U->Group = DGroup;
- // Add users uses to definers group pending
- DGroup->addPending(U->Node->use_size());
- // For each member of the definers group
- NodeGroupIterator DNGI(D);
- while (NodeInfo *DNI = DNGI.next() ) {
- // Remove internal edges
- DGroup->addPending(-CountInternalUses(DNI, U));
- }
- DGroup->group_push_back(U);
- } else if (UGroup) {
- // Make definer member of users group
- D->Group = UGroup;
- // Add definers uses to users group pending
- UGroup->addPending(D->Node->use_size());
- // For each member of the users group
- NodeGroupIterator UNGI(U);
- while (NodeInfo *UNI = UNGI.next() ) {
- // Remove internal edges
- UGroup->addPending(-CountInternalUses(D, UNI));
- }
- UGroup->group_insert(UGroup->group_begin(), D);
- } else {
- D->Group = U->Group = DGroup = new NodeGroup();
- DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
- CountInternalUses(D, U));
- DGroup->group_push_back(D);
- DGroup->group_push_back(U);
- }
-}
-
-/// CountInternalUses - Returns the number of edges between the two nodes.
-///
-unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
- unsigned N = 0;
- for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
- SDOperand Op = U->Node->getOperand(M);
- if (Op.Val == D->Node) N++;
- }
-
- return N;
-}
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-/// isFlagDefiner - Returns true if the node defines a flag result.
-bool SimpleSched::isFlagDefiner(SDNode *A) {
- unsigned N = A->getNumValues();
- return N && A->getValueType(N - 1) == MVT::Flag;
-}
-
-/// isFlagUser - Returns true if the node uses a flag result.
-///
-bool SimpleSched::isFlagUser(SDNode *A) {
- unsigned N = A->getNumOperands();
- return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
-}
-
-/// isDefiner - Return true if node A is a definer for B.
-///
-bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) {
- // While there are A nodes
- NodeGroupIterator NII(A);
- while (NodeInfo *NI = NII.next()) {
- // Extract node
- SDNode *Node = NI->Node;
- // While there operands in nodes of B
- NodeGroupOpIterator NGOI(B);
- while (!NGOI.isEnd()) {
- SDOperand Op = NGOI.next();
- // If node from A defines a node in B
- if (Node == Op.Val) return true;
- }
- }
- return false;
-}
-
-/// isPassiveNode - Return true if the node is a non-scheduled leaf.
-///
-bool SimpleSched::isPassiveNode(SDNode *Node) {
- if (isa<ConstantSDNode>(Node)) return true;
- if (isa<RegisterSDNode>(Node)) return true;
- if (isa<GlobalAddressSDNode>(Node)) return true;
- if (isa<BasicBlockSDNode>(Node)) return true;
- if (isa<FrameIndexSDNode>(Node)) return true;
- if (isa<ConstantPoolSDNode>(Node)) return true;
- if (isa<ExternalSymbolSDNode>(Node)) return true;
- return false;
-}
-
-/// IncludeNode - Add node to NodeInfo vector.
-///
-void SimpleSched::IncludeNode(NodeInfo *NI) {
- // Get node
- SDNode *Node = NI->Node;
- // Ignore entry node
- if (Node->getOpcode() == ISD::EntryToken) return;
- // Check current count for node
- int Count = NI->getPending();
- // If the node is already in list
- if (Count < 0) return;
- // Decrement count to indicate a visit
- Count--;
- // If count has gone to zero then add node to list
- if (!Count) {
- // Add node
- if (NI->isInGroup()) {
- Ordering.push_back(NI->Group->getDominator());
- } else {
- Ordering.push_back(NI);
- }
- // indicate node has been added
- Count--;
- }
- // Mark as visited with new count
- NI->setPending(Count);
-}
-
-/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
-/// Note that the ordering in the Nodes vector is reversed.
-void SimpleSched::VisitAll() {
- // Add first element to list
- NodeInfo *NI = getNI(DAG.getRoot().Val);
- if (NI->isInGroup()) {
- Ordering.push_back(NI->Group->getDominator());
- } else {
- Ordering.push_back(NI);
- }
-
- // Iterate through all nodes that have been added
- for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
- // Visit all operands
- NodeGroupOpIterator NGI(Ordering[i]);
- while (!NGI.isEnd()) {
- // Get next operand
- SDOperand Op = NGI.next();
- // Get node
- SDNode *Node = Op.Val;
- // Ignore passive nodes
- if (isPassiveNode(Node)) continue;
- // Check out node
- IncludeNode(getNI(Node));
- }
- }
-
- // Add entry node last (IncludeNode filters entry nodes)
- if (DAG.getEntryNode().Val != DAG.getRoot().Val)
- Ordering.push_back(getNI(DAG.getEntryNode().Val));
-
- // Reverse the order
- std::reverse(Ordering.begin(), Ordering.end());
-}
-
-/// IdentifyGroups - Put flagged nodes into groups.
-///
-void SimpleSched::IdentifyGroups() {
- for (unsigned i = 0, N = NodeCount; i < N; i++) {
- NodeInfo* NI = &Info[i];
- SDNode *Node = NI->Node;
-
- // For each operand (in reverse to only look at flags)
- for (unsigned N = Node->getNumOperands(); 0 < N--;) {
- // Get operand
- SDOperand Op = Node->getOperand(N);
- // No more flags to walk
- if (Op.getValueType() != MVT::Flag) break;
- // Add to node group
- NodeGroup::Add(getNI(Op.Val), NI);
- // Let evryone else know
- HasGroups = true;
- }
- }
-}
-
-/// GatherSchedulingInfo - Get latency and resource information about each node.
-///
-void SimpleSched::GatherSchedulingInfo() {
- // Get instruction itineraries for the target
- const InstrItineraryData InstrItins = TM.getInstrItineraryData();
-
- // For each node
- for (unsigned i = 0, N = NodeCount; i < N; i++) {
- // Get node info
- NodeInfo* NI = &Info[i];
- SDNode *Node = NI->Node;
-
- // If there are itineraries and it is a machine instruction
- if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
- // If machine opcode
- if (Node->isTargetOpcode()) {
- // Get return type to guess which processing unit
- MVT::ValueType VT = Node->getValueType(0);
- // Get machine opcode
- MachineOpCode TOpc = Node->getTargetOpcode();
- NI->IsCall = TII.isCall(TOpc);
- NI->IsLoad = TII.isLoad(TOpc);
- NI->IsStore = TII.isStore(TOpc);
-
- if (TII.isLoad(TOpc)) NI->StageBegin = &LoadStage;
- else if (TII.isStore(TOpc)) NI->StageBegin = &StoreStage;
- else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
- else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
- if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
- }
- } else if (Node->isTargetOpcode()) {
- // get machine opcode
- MachineOpCode TOpc = Node->getTargetOpcode();
- // Check to see if it is a call
- NI->IsCall = TII.isCall(TOpc);
- // Get itinerary stages for instruction
- unsigned II = TII.getSchedClass(TOpc);
- NI->StageBegin = InstrItins.begin(II);
- NI->StageEnd = InstrItins.end(II);
- }
-
- // One slot for the instruction itself
- NI->Latency = 1;
-
- // Add long latency for a call to push it back in time
- if (NI->IsCall) NI->Latency += CallLatency;
-
- // Sum up all the latencies
- for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
- Stage != E; Stage++) {
- NI->Latency += Stage->Cycles;
- }
-
- // Sum up all the latencies for max tally size
- NSlots += NI->Latency;
- }
-
- // Unify metrics if in a group
- if (HasGroups) {
- for (unsigned i = 0, N = NodeCount; i < N; i++) {
- NodeInfo* NI = &Info[i];
-
- if (NI->isInGroup()) {
- NodeGroup *Group = NI->Group;
-
- if (!Group->getDominator()) {
- NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
- NodeInfo *Dominator = *NGI;
- unsigned Latency = 0;
-
- for (NGI++; NGI != NGE; NGI++) {
- NodeInfo* NGNI = *NGI;
- Latency += NGNI->Latency;
- if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
- }
-
- Dominator->Latency = Latency;
- Group->setDominator(Dominator);
- }
- }
- }
- }
-}
-
-/// FakeGroupDominators - Set dominators for non-scheduling.
-///
-void SimpleSched::FakeGroupDominators() {
- for (unsigned i = 0, N = NodeCount; i < N; i++) {
- NodeInfo* NI = &Info[i];
-
- if (NI->isInGroup()) {
- NodeGroup *Group = NI->Group;
-
- if (!Group->getDominator()) {
- Group->setDominator(NI);
- }
- }
- }
-}
-
-/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
-///
-void SimpleSched::PrepareNodeInfo() {
- // Allocate node information
- Info = new NodeInfo[NodeCount];
-
- unsigned i = 0;
- for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
- E = DAG.allnodes_end(); I != E; ++I, ++i) {
- // Fast reference to node schedule info
- NodeInfo* NI = &Info[i];
- // Set up map
- Map[I] = NI;
- // Set node
- NI->Node = I;
- // Set pending visit count
- NI->setPending(I->use_size());
- }
-}
-
-/// isStrongDependency - Return true if node A has results used by node B.
-/// I.E., B must wait for latency of A.
-bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) {
- // If A defines for B then it's a strong dependency or
- // if a load follows a store (may be dependent but why take a chance.)
- return isDefiner(A, B) || (A->IsStore && B->IsLoad);
-}
-
-/// isWeakDependency Return true if node A produces a result that will
-/// conflict with operands of B. It is assumed that we have called
-/// isStrongDependency prior.
-bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) {
- // TODO check for conflicting real registers and aliases
-#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
- return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
-#else
- return A->Node->getOpcode() == ISD::EntryToken;
-#endif
-}
-
-/// ScheduleBackward - Schedule instructions so that any long latency
-/// instructions and the critical path get pushed back in time. Time is run in
-/// reverse to allow code reuse of the Tally and eliminate the overhead of
-/// biasing every slot indices against NSlots.
-void SimpleSched::ScheduleBackward() {
- // Size and clear the resource tally
- Tally.Initialize(NSlots);
- // Get number of nodes to schedule
- unsigned N = Ordering.size();
-
- // For each node being scheduled
- for (unsigned i = N; 0 < i--;) {
- NodeInfo *NI = Ordering[i];
- // Track insertion
- unsigned Slot = NotFound;
-
- // Compare against those previously scheduled nodes
- unsigned j = i + 1;
- for (; j < N; j++) {
- // Get following instruction
- NodeInfo *Other = Ordering[j];
-
- // Check dependency against previously inserted nodes
- if (isStrongDependency(NI, Other)) {
- Slot = Other->Slot + Other->Latency;
- break;
- } else if (isWeakDependency(NI, Other)) {
- Slot = Other->Slot;
- break;
- }
- }
-
- // If independent of others (or first entry)
- if (Slot == NotFound) Slot = 0;
-
-#if 0 // FIXME - measure later
- // Find a slot where the needed resources are available
- if (NI->StageBegin != NI->StageEnd)
- Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
-#endif
-
- // Set node slot
- NI->Slot = Slot;
-
- // Insert sort based on slot
- j = i + 1;
- for (; j < N; j++) {
- // Get following instruction
- NodeInfo *Other = Ordering[j];
- // Should we look further (remember slots are in reverse time)
- if (Slot >= Other->Slot) break;
- // Shuffle other into ordering
- Ordering[j - 1] = Other;
- }
- // Insert node in proper slot
- if (j != i + 1) Ordering[j - 1] = NI;
- }
-}
-
-/// ScheduleForward - Schedule instructions to maximize packing.
-///
-void SimpleSched::ScheduleForward() {
- // Size and clear the resource tally
- Tally.Initialize(NSlots);
- // Get number of nodes to schedule
- unsigned N = Ordering.size();
-
- // For each node being scheduled
- for (unsigned i = 0; i < N; i++) {
- NodeInfo *NI = Ordering[i];
- // Track insertion
- unsigned Slot = NotFound;
-
- // Compare against those previously scheduled nodes
- unsigned j = i;
- for (; 0 < j--;) {
- // Get following instruction
- NodeInfo *Other = Ordering[j];
-
- // Check dependency against previously inserted nodes
- if (isStrongDependency(Other, NI)) {
- Slot = Other->Slot + Other->Latency;
- break;
- } else if (Other->IsCall || isWeakDependency(Other, NI)) {
- Slot = Other->Slot;
- break;
- }
- }
-
- // If independent of others (or first entry)
- if (Slot == NotFound) Slot = 0;
-
- // Find a slot where the needed resources are available
- if (NI->StageBegin != NI->StageEnd)
- Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
-
- // Set node slot
- NI->Slot = Slot;
-
- // Insert sort based on slot
- j = i;
- for (; 0 < j--;) {
- // Get prior instruction
- NodeInfo *Other = Ordering[j];
- // Should we look further
- if (Slot >= Other->Slot) break;
- // Shuffle other into ordering
- Ordering[j + 1] = Other;
- }
- // Insert node in proper slot
- if (j != i) Ordering[j + 1] = NI;
- }
-}
-
-/// EmitAll - Emit all nodes in schedule sorted order.
-///
-void SimpleSched::EmitAll() {
- // For each node in the ordering
- for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
- // Get the scheduling info
- NodeInfo *NI = Ordering[i];
- if (NI->isInGroup()) {
- NodeGroupIterator NGI(Ordering[i]);
- while (NodeInfo *NI = NGI.next()) EmitNode(NI);
- } else {
- EmitNode(NI);
- }
- }
-}
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the machine instrs.)
-unsigned SimpleSched::CountResults(SDNode *Node) {
+static unsigned CountResults(SDNode *Node) {
unsigned N = Node->getNumValues();
while (N && Node->getValueType(N - 1) == MVT::Flag)
--N;
@@ -1023,7 +42,7 @@ unsigned SimpleSched::CountResults(SDNode *Node) {
/// CountOperands The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then flag operands. Compute the
/// number of actual operands that will go into the machine instr.
-unsigned SimpleSched::CountOperands(SDNode *Node) {
+static unsigned CountOperands(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() ==