aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/VirtRegRewriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/VirtRegRewriter.cpp')
-rw-r--r--lib/CodeGen/VirtRegRewriter.cpp2141
1 files changed, 2141 insertions, 0 deletions
diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp
new file mode 100644
index 0000000000..025ce1bd30
--- /dev/null
+++ b/lib/CodeGen/VirtRegRewriter.cpp
@@ -0,0 +1,2141 @@
+//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "virtregrewriter"
+#include "VirtRegRewriter.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumDSE , "Number of dead stores elided");
+STATISTIC(NumDSS , "Number of dead spill slots removed");
+STATISTIC(NumCommutes, "Number of instructions commuted");
+STATISTIC(NumDRM , "Number of re-materializable defs elided");
+STATISTIC(NumStores , "Number of stores added");
+STATISTIC(NumPSpills , "Number of physical register spills");
+STATISTIC(NumOmitted , "Number of reloads omited");
+STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
+STATISTIC(NumCopified, "Number of available reloads turned into copies");
+STATISTIC(NumReMats , "Number of re-materialization");
+STATISTIC(NumLoads , "Number of loads added");
+STATISTIC(NumReused , "Number of values reused");
+STATISTIC(NumDCE , "Number of copies elided");
+STATISTIC(NumSUnfold , "Number of stores unfolded");
+STATISTIC(NumModRefUnfold, "Number of modref unfolded");
+
+namespace {
+ enum RewriterName { simple, local };
+}
+
+static cl::opt<RewriterName>
+RewriterOpt("rewriter",
+ cl::desc("Rewriter to use: (default: local)"),
+ cl::Prefix,
+ cl::values(clEnumVal(simple, "simple rewriter"),
+ clEnumVal(local, "local rewriter"),
+ clEnumValEnd),
+ cl::init(local));
+
+VirtRegRewriter::~VirtRegRewriter() {}
+
+
+// ****************************** //
+// Simple Spiller Implementation //
+// ****************************** //
+
+struct VISIBILITY_HIDDEN SimpleRewriter : public VirtRegRewriter {
+
+ bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+ LiveIntervals* LIs) {
+ DOUT << "********** REWRITE MACHINE CODE **********\n";
+ DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
+ const TargetMachine &TM = MF.getTarget();
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+
+
+ // LoadedRegs - Keep track of which vregs are loaded, so that we only load
+ // each vreg once (in the case where a spilled vreg is used by multiple
+ // operands). This is always smaller than the number of operands to the
+ // current machine instr, so it should be small.
+ std::vector<unsigned> LoadedRegs;
+
+ for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
+ MBBI != E; ++MBBI) {
+ DOUT << MBBI->getBasicBlock()->getName() << ":\n";
+ MachineBasicBlock &MBB = *MBBI;
+ for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+ MII != E; ++MII) {
+ MachineInstr &MI = *MII;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (MO.isReg() && MO.getReg()) {
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned VirtReg = MO.getReg();
+ unsigned SubIdx = MO.getSubReg();
+ unsigned PhysReg = VRM.getPhys(VirtReg);
+ unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
+ if (!VRM.isAssignedReg(VirtReg)) {
+ int StackSlot = VRM.getStackSlot(VirtReg);
+ const TargetRegisterClass* RC =
+ MF.getRegInfo().getRegClass(VirtReg);
+
+ if (MO.isUse() &&
+ std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
+ == LoadedRegs.end()) {
+ TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
+ MachineInstr *LoadMI = prior(MII);
+ VRM.addSpillSlotUse(StackSlot, LoadMI);
+ LoadedRegs.push_back(VirtReg);
+ ++NumLoads;
+ DOUT << '\t' << *LoadMI;
+ }
+
+ if (MO.isDef()) {
+ TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
+ StackSlot, RC);
+ MachineInstr *StoreMI = next(MII);
+ VRM.addSpillSlotUse(StackSlot, StoreMI);
+ ++NumStores;
+ }
+ }
+ MF.getRegInfo().setPhysRegUsed(RReg);
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ } else {
+ MF.getRegInfo().setPhysRegUsed(MO.getReg());
+ }
+ }
+ }
+
+ DOUT << '\t' << MI;
+ LoadedRegs.clear();
+ }
+ }
+ return true;
+ }
+
+};
+
+// ************************************************************************ //
+
+/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
+/// from top down, keep track of which spill slots or remat are available in
+/// each register.
+///
+/// Note that not all physregs are created equal here. In particular, some
+/// physregs are reloads that we are allowed to clobber or ignore at any time.
+/// Other physregs are values that the register allocated program is using
+/// that we cannot CHANGE, but we can read if we like. We keep track of this
+/// on a per-stack-slot / remat id basis as the low bit in the value of the
+/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
+/// this bit and addAvailable sets it if.
+class VISIBILITY_HIDDEN AvailableSpills {
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+
+ // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
+ // or remat'ed virtual register values that are still available, due to
+ // being loaded or stored to, but not invalidated yet.
+ std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
+
+ // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
+ // indicating which stack slot values are currently held by a physreg. This
+ // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
+ // physreg is modified.
+ std::multimap<unsigned, int> PhysRegsAvailable;
+
+ void disallowClobberPhysRegOnly(unsigned PhysReg);
+
+ void ClobberPhysRegOnly(unsigned PhysReg);
+public:
+ AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
+ : TRI(tri), TII(tii) {
+ }
+
+ /// clear - Reset the state.
+ void clear() {
+ SpillSlotsOrReMatsAvailable.clear();
+ PhysRegsAvailable.clear();
+ }
+
+ const TargetRegisterInfo *getRegInfo() const { return TRI; }
+
+ /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
+ /// available in a physical register, return that PhysReg, otherwise
+ /// return 0.
+ unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
+ std::map<int, unsigned>::const_iterator I =
+ SpillSlotsOrReMatsAvailable.find(Slot);
+ if (I != SpillSlotsOrReMatsAvailable.end()) {
+ return I->second >> 1; // Remove the CanClobber bit.
+ }
+ return 0;
+ }
+
+ /// addAvailable - Mark that the specified stack slot / remat is available
+ /// in the specified physreg. If CanClobber is true, the physreg can be
+ /// modified at any time without changing the semantics of the program.
+ void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
+ // If this stack slot is thought to be available in some other physreg,
+ // remove its record.
+ ModifyStackSlotOrReMat(SlotOrReMat);
+
+ PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
+ SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
+ (unsigned)CanClobber;
+
+ if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+ DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
+ else
+ DOUT << "Remembering SS#" << SlotOrReMat;
+ DOUT << " in physreg " << TRI->getName(Reg) << "\n";
+ }
+
+ /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
+ /// the value of the specified stackslot register if it desires. The
+ /// specified stack slot must be available in a physreg for this query to
+ /// make sense.
+ bool canClobberPhysRegForSS(int SlotOrReMat) const {
+ assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
+ "Value not available!");
+ return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
+ }
+
+ /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
+ /// physical register where values for some stack slot(s) might be
+ /// available.
+ bool canClobberPhysReg(unsigned PhysReg) const {
+ std::multimap<unsigned, int>::const_iterator I =
+ PhysRegsAvailable.lower_bound(PhysReg);
+ while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+ int SlotOrReMat = I->second;
+ I++;
+ if (!canClobberPhysRegForSS(SlotOrReMat))
+ return false;
+ }
+ return true;
+ }
+
+ /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+ /// stackslot register. The register is still available but is no longer
+ /// allowed to be modifed.
+ void disallowClobberPhysReg(unsigned PhysReg);
+
+ /// ClobberPhysReg - This is called when the specified physreg changes
+ /// value. We use this to invalidate any info about stuff that lives in
+ /// it and any of its aliases.
+ void ClobberPhysReg(unsigned PhysReg);
+
+ /// ModifyStackSlotOrReMat - This method is called when the value in a stack
+ /// slot changes. This removes information about which register the
+ /// previous value for this slot lives in (as the previous value is dead
+ /// now).
+ void ModifyStackSlotOrReMat(int SlotOrReMat);
+
+ /// AddAvailableRegsToLiveIn - Availability information is being kept coming
+ /// into the specified MBB. Add available physical registers as potential
+ /// live-in's. If they are reused in the MBB, they will be added to the
+ /// live-in set to make register scavenger and post-allocation scheduler.
+ void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+};
+
+// ************************************************************************ //
+
+// ReusedOp - For each reused operand, we keep track of a bit of information,
+// in case we need to rollback upon processing a new operand. See comments
+// below.
+struct ReusedOp {
+ // The MachineInstr operand that reused an available value.
+ unsigned Operand;
+
+ // StackSlotOrReMat - The spill slot or remat id of the value being reused.
+ unsigned StackSlotOrReMat;
+
+ // PhysRegReused - The physical register the value was available in.
+ unsigned PhysRegReused;
+
+ // AssignedPhysReg - The physreg that was assigned for use by the reload.
+ unsigned AssignedPhysReg;
+
+ // VirtReg - The virtual register itself.
+ unsigned VirtReg;
+
+ ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
+ unsigned vreg)
+ : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
+ AssignedPhysReg(apr), VirtReg(vreg) {}
+};
+
+/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
+/// is reused instead of reloaded.
+class VISIBILITY_HIDDEN ReuseInfo {
+ MachineInstr &MI;
+ std::vector<ReusedOp> Reuses;
+ BitVector PhysRegsClobbered;
+public:
+ ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
+ PhysRegsClobbered.resize(tri->getNumRegs());
+ }
+
+ bool hasReuses() const {
+ return !Reuses.empty();
+ }
+
+ /// addReuse - If we choose to reuse a virtual register that is already
+ /// available instead of reloading it, remember that we did so.
+ void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
+ unsigned PhysRegReused, unsigned AssignedPhysReg,
+ unsigned VirtReg) {
+ // If the reload is to the assigned register anyway, no undo will be
+ // required.
+ if (PhysRegReused == AssignedPhysReg) return;
+
+ // Otherwise, remember this.
+ Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
+ AssignedPhysReg, VirtReg));
+ }
+
+ void markClobbered(unsigned PhysReg) {
+ PhysRegsClobbered.set(PhysReg);
+ }
+
+ bool isClobbered(unsigned PhysReg) const {
+ return PhysRegsClobbered.test(PhysReg);
+ }
+
+ /// GetRegForReload - We are about to emit a reload into PhysReg. If there
+ /// is some other operand that is using the specified register, either pick
+ /// a new register to use, or evict the previous reload and use this reg.
+ unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+ AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ SmallSet<unsigned, 8> &Rejected,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM);
+
+ /// GetRegForReload - Helper for the above GetRegForReload(). Add a
+ /// 'Rejected' set to remember which registers have been considered and
+ /// rejected for the reload. This avoids infinite looping in case like
+ /// this:
+ /// t1 := op t2, t3
+ /// t2 <- assigned r0 for use by the reload but ended up reuse r1
+ /// t3 <- assigned r1 for use by the reload but ended up reuse r0
+ /// t1 <- desires r1
+ /// sees r1 is taken by t2, tries t2's reload register r0
+ /// sees r0 is taken by t3, tries t3's reload register r1
+ /// sees r1 is taken by t2, tries t2's reload register r0 ...
+ unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+ AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM) {
+ SmallSet<unsigned, 8> Rejected;
+ return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
+ RegKills, KillOps, VRM);
+ }
+};
+
+
+// ****************** //
+// Utility Functions //
+// ****************** //
+
+/// InvalidateKill - A MI that defines the specified register is being deleted,
+/// invalidate the register kill information.
+static void InvalidateKill(unsigned Reg, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ if (RegKills[Reg]) {
+ KillOps[Reg]->setIsKill(false);
+ KillOps[Reg] = NULL;
+ RegKills.reset(Reg);
+ }
+}
+
+/// findSinglePredSuccessor - Return via reference a vector of machine basic
+/// blocks each of which is a successor of the specified BB and has no other
+/// predecessor.
+static void findSinglePredSuccessor(MachineBasicBlock *MBB,
+ SmallVectorImpl<MachineBasicBlock *> &Succs) {
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI) {
+ MachineBasicBlock *SuccMBB = *SI;
+ if (SuccMBB->pred_size() == 1)
+ Succs.push_back(SuccMBB);
+ }
+}
+
+/// InvalidateKills - MI is going to be deleted. If any of its operands are
+/// marked kill, then invalidate the information.
+static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ SmallVector<unsigned, 2> *KillRegs = NULL) {
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || !MO.isKill())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ if (KillRegs)
+ KillRegs->push_back(Reg);
+ assert(Reg < KillOps.size());
+ if (KillOps[Reg] == &MO) {
+ RegKills.reset(Reg);
+ KillOps[Reg] = NULL;
+ }
+ }
+}
+
+/// InvalidateRegDef - If the def operand of the specified def MI is now dead
+/// (since it's spill instruction is removed), mark it isDead. Also checks if
+/// the def MI has other definition operands that are not dead. Returns it by
+/// reference.
+static bool InvalidateRegDef(MachineBasicBlock::iterator I,
+ MachineInstr &NewDef, unsigned Reg,
+ bool &HasLiveDef) {
+ // Due to remat, it's possible this reg isn't being reused. That is,
+ // the def of this reg (by prev MI) is now dead.
+ MachineInstr *DefMI = I;
+ MachineOperand *DefOp = NULL;
+ for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = DefMI->getOperand(i);
+ if (MO.isReg() && MO.isDef()) {
+ if (MO.getReg() == Reg)
+ DefOp = &MO;
+ else if (!MO.isDead())
+ HasLiveDef = true;
+ }
+ }
+ if (!DefOp)
+ return false;
+
+ bool FoundUse = false, Done = false;
+ MachineBasicBlock::iterator E = &NewDef;
+ ++I; ++E;
+ for (; !Done && I != E; ++I) {
+ MachineInstr *NMI = I;
+ for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
+ MachineOperand &MO = NMI->getOperand(j);
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (MO.isUse())
+ FoundUse = true;
+ Done = true; // Stop after scanning all the operands of this MI.
+ }
+ }
+ if (!FoundUse) {
+ // Def is dead!
+ DefOp->setIsDead();
+ return true;
+ }
+ return false;
+}
+
+/// UpdateKills - Track and update kill info. If a MI reads a register that is
+/// marked kill, then it must be due to register reuse. Transfer the kill info
+/// over.
+static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ const TargetRegisterInfo* TRI) {
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
+ // That can't be right. Register is killed but not re-defined and it's
+ // being reused. Let's fix that.
+ KillOps[Reg]->setIsKill(false);
+ KillOps[Reg] = NULL;
+ RegKills.reset(Reg);
+ if (!MI.isRegTiedToDefOperand(i))
+ // Unless it's a two-address operand, this is the new kill.
+ MO.setIsKill();
+ }
+ if (MO.isKill()) {
+ RegKills.set(Reg);
+ KillOps[Reg] = &MO;
+ }
+ }
+
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ RegKills.reset(Reg);
+ KillOps[Reg] = NULL;
+ // It also defines (or partially define) aliases.
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
+ RegKills.reset(*AS);
+ KillOps[*AS] = NULL;
+ }
+ }
+}
+
+/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
+///
+static void ReMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MII,
+ unsigned DestReg, unsigned Reg,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI,
+ VirtRegMap &VRM) {
+ TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
+ MachineInstr *NewMI = prior(MII);
+ for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = NewMI->getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned VirtReg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
+ continue;
+ assert(MO.isUse());
+ unsigned SubIdx = MO.getSubReg();
+ unsigned Phys = VRM.getPhys(VirtReg);
+ assert(Phys);
+ unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
+ MO.setReg(RReg);
+ MO.setSubReg(0);
+ }
+ ++NumReMats;
+}
+
+/// findSuperReg - Find the SubReg's super-register of given register class
+/// where its SubIdx sub-register is SubReg.
+static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
+ unsigned SubIdx, const TargetRegisterInfo *TRI) {
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+ I != E; ++I) {
+ unsigned Reg = *I;
+ if (TRI->getSubReg(Reg, SubIdx) == SubReg)
+ return Reg;
+ }
+ return 0;
+}
+
+// ******************************** //
+// Available Spills Implementation //
+// ******************************** //
+
+/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
+/// stackslot register. The register is still available but is no longer
+/// allowed to be modifed.
+void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
+ std::multimap<unsigned, int>::iterator I =
+ PhysRegsAvailable.lower_bound(PhysReg);
+ while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+ int SlotOrReMat = I->second;
+ I++;
+ assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+ "Bidirectional map mismatch!");
+ SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
+ DOUT << "PhysReg " << TRI->getName(PhysReg)
+ << " copied, it is available for use but can no longer be modified\n";
+ }
+}
+
+/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+/// stackslot register and its aliases. The register and its aliases may
+/// still available but is no longer allowed to be modifed.
+void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
+ for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+ disallowClobberPhysRegOnly(*AS);
+ disallowClobberPhysRegOnly(PhysReg);
+}
+
+/// ClobberPhysRegOnly - This is called when the specified physreg changes
+/// value. We use this to invalidate any info about stuff we thing lives in it.
+void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
+ std::multimap<unsigned, int>::iterator I =
+ PhysRegsAvailable.lower_bound(PhysReg);
+ while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+ int SlotOrReMat = I->second;
+ PhysRegsAvailable.erase(I++);
+ assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+ "Bidirectional map mismatch!");
+ SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
+ DOUT << "PhysReg " << TRI->getName(PhysReg)
+ << " clobbered, invalidating ";
+ if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+ DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
+ else
+ DOUT << "SS#" << SlotOrReMat << "\n";
+ }
+}
+
+/// ClobberPhysReg - This is called when the specified physreg changes
+/// value. We use this to invalidate any info about stuff we thing lives in
+/// it and any of its aliases.
+void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
+ for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+ ClobberPhysRegOnly(*AS);
+ ClobberPhysRegOnly(PhysReg);
+}
+
+/// AddAvailableRegsToLiveIn - Availability information is being kept coming
+/// into the specified MBB. Add available physical registers as potential
+/// live-in's. If they are reused in the MBB, they will be added to the
+/// live-in set to make register scavenger and post-allocation scheduler.
+void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ std::set<unsigned> NotAvailable;
+ for (std::multimap<unsigned, int>::iterator
+ I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
+ I != E; ++I) {
+ unsigned Reg = I->first;
+ const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
+ // FIXME: A temporary workaround. We can't reuse available value if it's
+ // not safe to move the def of the virtual register's class. e.g.
+ // X86::RFP* register classes. Do not add it as a live-in.
+ if (!TII->isSafeToMoveRegClassDefs(RC))
+ // This is no longer available.
+ NotAvailable.insert(Reg);
+ else {
+ MBB.addLiveIn(Reg);
+ InvalidateKill(Reg, RegKills, KillOps);
+ }
+
+ // Skip over the same register.
+ std::multimap<unsigned, int>::iterator NI = next(I);
+ while (NI != E && NI->first == Reg) {
+ ++I;
+ ++NI;
+ }
+ }
+
+ for (std::set<unsigned>::iterator I = NotAvailable.begin(),
+ E = NotAvailable.end(); I != E; ++I) {
+ ClobberPhysReg(*I);
+ for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
+ *SubRegs; ++SubRegs)
+ ClobberPhysReg(*SubRegs);
+ }
+}
+
+/// ModifyStackSlotOrReMat - This method is called when the value in a stack
+/// slot changes. This removes information about which register the previous
+/// value for this slot lives in (as the previous value is dead now).
+void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
+ std::map<int, unsigned>::iterator It =
+ SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
+ if (It == SpillSlotsOrReMatsAvailable.end()) return;
+ unsigned Reg = It->second >> 1;
+ SpillSlotsOrReMatsAvailable.erase(It);
+
+ // This register may hold the value of multiple stack slots, only remove this
+ // stack slot from the set of values the register contains.
+ std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
+ for (; ; ++I) {
+ assert(I != PhysRegsAvailable.end() && I->first == Reg &&
+ "Map inverse broken!");
+ if (I->second == SlotOrReMat) break;
+ }
+ PhysRegsAvailable.erase(I);
+}
+
+// ************************** //
+// Reuse Info Implementation //
+// ************************** //
+
+/// GetRegForReload - We are about to emit a reload into PhysReg. If there
+/// is some other operand that is using the specified register, either pick
+/// a new register to use, or evict the previous reload and use this reg.
+unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+ AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ SmallSet<unsigned, 8> &Rejected,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM) {
+ const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
+ .getInstrInfo();
+
+ if (Reuses.empty()) return PhysReg; // This is most often empty.
+
+ for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
+ ReusedOp &Op = Reuses[ro];
+ // If we find some other reuse that was supposed to use this register
+ // exactly for its reload, we can change this reload to use ITS reload
+ // register. That is, unless its reload register has already been
+ // considered and subsequently rejected because it has also been reused
+ // by another operand.
+ if (Op.PhysRegReused == PhysReg &&
+ Rejected.count(Op.AssignedPhysReg) == 0) {
+ // Yup, use the reload register that we didn't use before.
+ unsigned NewReg = Op.AssignedPhysReg;
+ Rejected.insert(PhysReg);
+ return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
+ RegKills, KillOps, VRM);
+ } else {
+ // Otherwise, we might also have a problem if a previously reused
+ // value aliases the new register. If so, codegen the previous reload
+ // and use this one.
+ unsigned PRRU = Op.PhysRegReused;
+ const TargetRegisterInfo *TRI = Spills.getRegInfo();
+ if (TRI->areAliases(PRRU, PhysReg)) {
+ // Okay, we found out that an alias of a reused register
+ // was used. This isn't good because it means we have
+ // to undo a previous reuse.
+ MachineBasicBlock *MBB = MI->getParent();
+ const TargetRegisterClass *AliasRC =
+ MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
+
+ // Copy Op out of the vector and remove it, we're going to insert an
+ // explicit load for it.
+ ReusedOp NewOp = Op;
+ Reuses.erase(Reuses.begin()+ro);
+
+ // Ok, we're going to try to reload the assigned physreg into the
+ // slot that we were supposed to in the first place. However, that
+ // register could hold a reuse. Check to see if it conflicts or
+ // would prefer us to use a different register.
+ unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
+ MI, Spills, MaybeDeadStores,
+ Rejected, RegKills, KillOps, VRM);
+
+ MachineBasicBlock::iterator MII = MI;
+ if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
+ ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
+ } else {
+ TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
+ NewOp.StackSlotOrReMat, AliasRC);
+ MachineInstr *LoadMI = prior(MII);
+ VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
+ // Any stores to this stack slot are not dead anymore.
+ MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
+ ++NumLoads;
+ }
+ Spills.ClobberPhysReg(NewPhysReg);
+ Spills.ClobberPhysReg(NewOp.PhysRegReused);
+
+ unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
+ unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
+ MI->getOperand(NewOp.Operand).setReg(RReg);
+ MI->getOperand(NewOp.Operand).setSubReg(0);
+
+ Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
+ --MII;
+ UpdateKills(*MII, RegKills, KillOps, TRI);
+ DOUT << '\t' << *MII;
+
+ DOUT << "Reuse undone!\n";
+ --NumReused;
+
+ // Finally, PhysReg is now available, go ahead and use it.
+ return PhysReg;
+ }
+ }
+ }
+ return PhysReg;
+}
+
+// ************************************************************************ //
+
+/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
+/// stack slot mod/ref. It also checks if it's possible to unfold the
+/// instruction by having it define a specified physical register instead.
+static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI,
+ VirtRegMap &VRM) {
+ if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
+ return false;
+
+ bool Found = false;
+ VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+ for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
+ unsigned VirtReg = I->second.first;
+ VirtRegMap::ModRef MR = I->second.second;
+ if (MR & VirtRegMap::isModRef)
+ if (VRM.getStackSlot(VirtReg) == SS) {
+ Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
+ break;
+ }
+ }
+ if (!Found)
+ return false;
+
+ // Does the instruction uses a register that overlaps the scratch register?
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (!VRM.hasPhys(Reg))
+ continue;
+ Reg = VRM.getPhys(Reg);
+ }
+ if (TRI->regsOverlap(PhysReg, Reg))
+ return false;
+ }
+ return true;
+}
+
+/// FindFreeRegister - Find a free register of a given register class by looking
+/// at (at most) the last two machine instructions.
+static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
+ MachineBasicBlock &MBB,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ BitVector &AllocatableRegs) {
+ BitVector Defs(TRI->getNumRegs());
+ BitVector Uses(TRI->getNumRegs());
+ SmallVector<unsigned, 4> LocalUses;
+ SmallVector<unsigned, 4> Kills;
+
+ // Take a look at 2 instructions at most.
+ for (unsigned Count = 0; Count < 2; ++Count) {
+ if (MII == MBB.begin())
+ break;
+ MachineInstr *PrevMI = prior(MII);
+ for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = PrevMI->getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned Reg = MO.getReg();
+ if (MO.isDef()) {
+ Defs.set(Reg);
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+ Defs.set(*AS);
+ } else {
+ LocalUses.push_back(Reg);
+ if (MO.isKill() && AllocatableRegs[Reg])
+ Kills.push_back(Reg);
+ }
+ }
+
+ for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+ unsigned Kill = Kills[i];
+ if (!Defs[Kill] && !Uses[Kill] &&
+ TRI->getPhysicalRegisterRegClass(Kill) == RC)
+ return Kill;
+ }
+ for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
+ unsigned Reg = LocalUses[i];
+ Uses.set(Reg);
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+ Uses.set(*AS);
+ }
+
+ MII = PrevMI;
+ }
+
+ return 0;
+}
+
+static
+void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == VirtReg)
+ MO.setReg(PhysReg);
+ }
+}
+
+
+// ***************************** //
+// Local Spiller Implementation //
+// ***************************** //
+
+class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
+ MachineRegisterInfo *RegInfo;
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ BitVector AllocatableRegs;
+ DenseMap<MachineInstr*, unsigned> DistanceMap;
+public:
+
+ bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+ LiveIntervals* LIs) {
+ RegInfo = &MF.getRegInfo();
+ TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getTarget().getInstrInfo();
+ AllocatableRegs = TRI->getAllocatableSet(MF);
+ DOUT << "\n**** Local spiller rewriting function '"
+ << MF.getFunction()->getName() << "':\n";
+ DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
+ " ****\n";
+ DEBUG(MF.dump());
+
+ // Spills - Keep track of which spilled values are available in physregs
+ // so that we can choose to reuse the physregs instead of emitting
+ // reloads. This is usually refreshed per basic block.
+ AvailableSpills Spills(TRI, TII);
+
+ // Keep track of kill information.
+ BitVector RegKills(TRI->getNumRegs());
+ std::vector<MachineOperand*> KillOps;
+ KillOps.resize(TRI->getNumRegs(), NULL);
+
+ // SingleEntrySuccs - Successor blocks which have a single predecessor.
+ SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
+ SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
+
+ // Traverse the basic blocks depth first.
+ MachineBasicBlock *Entry = MF.begin();
+ SmallPtrSet<MachineBasicBlock*,16> Visited;
+ for (df_ext_iterator<MachineBasicBlock*,
+ SmallPtrSet<MachineBasicBlock*,16> >
+ DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+ DFI != E; ++DFI) {
+ MachineBasicBlock *MBB = *DFI;
+ if (!EarlyVisited.count(MBB))
+ RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
+
+ // If this MBB is the only predecessor of a successor. Keep the
+ // availability information and visit it next.
+ do {
+ // Keep visiting single predecessor successor as long as possible.
+ SinglePredSuccs.clear();
+ findSinglePredSuccessor(MBB, SinglePredSuccs);
+ if (SinglePredSuccs.empty())
+ MBB = 0;
+ else {
+ // FIXME: More than one successors, each of which has MBB has
+ // the only predecessor.
+ MBB = SinglePredSuccs[0];
+ if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
+ Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
+ RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
+ }
+ }
+ } while (MBB);
+
+ // Clear the availability info.
+ Spills.clear();
+ }
+
+ DOUT << "**** Post Machine Instrs ****\n";
+ DEBUG(MF.dump());
+
+ // Mark unused spill slots.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int SS = VRM.getLowSpillSlot();
+ if (SS != VirtRegMap::NO_STACK_SLOT)
+ for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
+ if (!VRM.isSpillSlotUsed(SS)) {
+ MFI->RemoveStackObject(SS);
+ ++NumDSS;
+ }
+
+ return true;
+ }
+
+private:
+
+ /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
+ /// a scratch register is available.
+ /// xorq %r12<kill>, %r13
+ /// addq %rax, -184(%rbp)
+ /// addq %r13, -184(%rbp)
+ /// ==>
+ /// xorq %r12<kill>, %r13
+ /// movq -184(%rbp), %r12
+ /// addq %rax, %r12
+ /// addq %r13, %r12
+ /// movq %r12, -184(%rbp)
+ bool OptimizeByUnfold2(unsigned VirtReg, int SS,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MII,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM) {
+
+ MachineBasicBlock::iterator NextMII = next(MII);
+ if (NextMII == MBB.end())
+ return false;
+
+ if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
+ return false;
+
+ // Now let's see if the last couple of instructions happens to have freed up
+ // a register.
+ const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+ unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
+ if (!PhysReg)
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ TRI = MF.getTarget().getRegisterInfo();
+ MachineInstr &MI = *MII;
+ if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
+ return false;
+
+ // If the next instruction also folds the same SS modref and can be unfoled,
+ // then it's worthwhile to issue a load from SS into the free register and
+ // then unfold these instructions.
+ if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
+ return false;
+
+ // Load from SS to the spare physical register.
+ TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
+ // This invalidates Phys.
+ Spills.ClobberPhysReg(PhysReg);
+ // Remember it's available.
+ Spills.addAvailable(SS, PhysReg);
+ MaybeDeadStores[SS] = NULL;
+
+ // Unfold current MI.
+ SmallVector<MachineInstr*, 4> NewMIs;
+ if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
+ assert(0 && "Unable unfold the load / store folding instruction!");
+ assert(NewMIs.size() == 1);
+ AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
+ VRM.transferRestorePts(&MI, NewMIs[0]);
+ MII = MBB.insert(MII, NewMIs[0]);
+ InvalidateKills(MI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ ++NumModRefUnfold;
+
+ // Unfold next instructions that fold the same SS.
+ do {
+ MachineInstr &NextMI = *NextMII;
+ NextMII = next(NextMII);
+ NewMIs.clear();
+ if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
+ assert(0 && "Unable unfold the load / store folding instruction!");
+ assert(NewMIs.size() == 1);
+ AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
+ VRM.transferRestorePts(&NextMI, NewMIs[0]);
+ MBB.insert(NextMII, NewMIs[0]);
+ InvalidateKills(NextMI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&NextMI);
+ MBB.erase(&NextMI);
+ ++NumModRefUnfold;
+ } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
+
+ // Store the value back into SS.
+ TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
+ MachineInstr *StoreMI = prior(NextMII);
+ VRM.addSpillSlotUse(SS, StoreMI);
+ VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+
+ return true;
+ }
+
+ /// OptimizeByUnfold - Turn a store folding instruction into a load folding
+ /// instruction. e.g.
+ /// xorl %edi, %eax
+ /// movl %eax, -32(%ebp)
+ /// movl -36(%ebp), %eax
+ /// orl %eax, -32(%ebp)
+ /// ==>
+ /// xorl %edi, %eax
+ /// orl -36(%ebp), %eax
+ /// mov %eax, -32(%ebp)
+ /// This enables unfolding optimization for a subsequent instruction which will
+ /// also eliminate the newly introduced store instruction.
+ bool OptimizeByUnfold(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MII,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM) {
+ MachineFunction &MF = *MBB.getParent();
+ MachineInstr &MI = *MII;
+ unsigned UnfoldedOpc = 0;
+ unsigned UnfoldPR = 0;
+ unsigned UnfoldVR = 0;
+ int FoldedSS = VirtRegMap::NO_STACK_SLOT;
+ VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+ for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+ // Only transform a MI that folds a single register.
+ if (UnfoldedOpc)
+ return false;
+ UnfoldVR = I->second.first;
+ VirtRegMap::ModRef MR = I->second.second;
+ // MI2VirtMap be can updated which invalidate the iterator.
+ // Increment the iterator first.
+ ++I;
+ if (VRM.isAssignedReg(UnfoldVR))
+ continue;
+ // If this reference is not a use, any previous store is now dead.
+ // Otherwise, the store to this stack slot is not dead anymore.
+ FoldedSS = VRM.getStackSlot(UnfoldVR);
+ MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
+ if (DeadStore && (MR & VirtRegMap::isModRef)) {
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
+ if (!PhysReg || !DeadStore->readsRegister(PhysReg))
+ continue;
+ UnfoldPR = PhysReg;
+ UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
+ false, true);
+ }
+ }
+
+ if (!UnfoldedOpc) {
+ if (!UnfoldVR)
+ return false;
+
+ // Look for other unfolding opportunities.
+ return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
+ MaybeDeadStores, Spills, RegKills, KillOps, VRM);
+ }
+
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
+ continue;
+ unsigned VirtReg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
+ continue;
+ if (VRM.isAssignedReg(VirtReg)) {
+ unsigned PhysReg = VRM.getPhys(VirtReg);
+ if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
+ return false;
+ } else if (VRM.isReMaterialized(VirtReg))
+ continue;
+ int SS = VRM.getStackSlot(VirtReg);
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+ if (PhysReg) {
+ if (TRI->regsOverlap(PhysReg, UnfoldPR))
+ return false;
+ continue;
+ }
+ if (VRM.hasPhys(VirtReg)) {
+ PhysReg = VRM.getPhys(VirtReg);
+ if (!TRI->regsOverlap(PhysReg, UnfoldPR))
+ continue;
+ }
+
+ // Ok, we'll need to reload the value into a register which makes
+ // it impossible to perform the store unfolding optimization later.
+ // Let's see if it is possible to fold the load if the store is
+ // unfolded. This allows us to perform the store unfolding
+ // optimization.
+ SmallVector<MachineInstr*, 4> NewMIs;
+ if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
+ assert(NewMIs.size() == 1);
+ MachineInstr *NewMI = NewMIs.back();
+ NewMIs.clear();
+ int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
+ assert(Idx != -1);
+ SmallVector<unsigned, 1> Ops;
+ Ops.push_back(Idx);
+ MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
+ if (FoldedMI) {
+ VRM.addSpillSlotUse(SS, FoldedMI);
+ if (!VRM.hasPhys(UnfoldVR))
+ VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
+ VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+ MII = MBB.insert(MII, FoldedMI);
+ InvalidateKills(MI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ MF.DeleteMachineInstr(NewMI);
+ return true;
+ }
+ MF.DeleteMachineInstr(NewMI);
+ }
+ }
+
+ return false;
+ }
+
+ /// CommuteToFoldReload -
+ /// Look for
+ /// r1 = load fi#1
+ /// r1 = op r1, r2<kill>
+ /// store r1, fi#1
+ ///
+ /// If op is commutable and r2 is killed, then we can xform these to
+ /// r2 = op r2, fi#1
+ /// store r2, fi#1
+ bool CommuteToFoldReload(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MII,
+ unsigned VirtReg, unsigned SrcReg, int SS,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ const TargetRegisterInfo *TRI,
+ VirtRegMap &VRM) {
+ if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
+ return false;
+
+ MachineFunction &MF = *MBB.getParent();
+ MachineInstr &MI = *MII;
+ MachineBasicBlock::iterator DefMII = prior(MII);
+ MachineInstr *DefMI = DefMII;
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ unsigned NewDstIdx;
+ if (DefMII != MBB.begin() &&
+ TID.isCommutable() &&
+ TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
+ MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+ unsigned NewReg = NewDstMO.getReg();
+ if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
+ return false;
+ MachineInstr *ReloadMI = prior(DefMII);
+ int FrameIdx;
+ unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
+ if (DestReg != SrcReg || FrameIdx != SS)
+ return false;
+ int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
+ if (UseIdx == -1)
+ return false;
+ unsigned DefIdx;
+ if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
+ return false;
+ assert(DefMI->getOperand(DefIdx).isReg() &&
+ DefMI->getOperand(DefIdx).getReg() == SrcReg);
+
+ // Now commute def instruction.
+ MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
+ if (!CommutedMI)
+ return false;
+ SmallVector<unsigned, 1> Ops;
+ Ops.push_back(NewDstIdx);
+ MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
+ // Not needed since foldMemoryOperand returns new MI.
+ MF.DeleteMachineInstr(CommutedMI);
+ if (!FoldedMI)
+ return false;
+
+ VRM.addSpillSlotUse(SS, FoldedMI);
+ VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+ // Insert new def MI and spill MI.
+ const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+ TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
+ MII = prior(MII);
+ MachineInstr *StoreMI = MII;
+ VRM.addSpillSlotUse(SS, StoreMI);
+ VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+ MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
+
+ // Delete all 3 old instructions.
+ InvalidateKills(*ReloadMI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(ReloadMI);
+ MBB.erase(ReloadMI);
+ InvalidateKills(*DefMI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(DefMI);
+ MBB.erase(DefMI);
+ InvalidateKills(MI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+
+ // If NewReg was previously holding value of some SS, it's now clobbered.
+ // This has to be done now because it's a physical register. When this
+ // instruction is re-visited, it's ignored.
+ Spills.ClobberPhysReg(NewReg);
+
+ ++NumCommutes;
+ return true;
+ }
+
+ return false;
+ }
+
+ /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
+ /// the last store to the same slot is now dead. If so, remove the last store.
+ void SpillRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MII,
+ int Idx, unsigned PhysReg, int StackSlot,
+ const TargetRegisterClass *RC,
+ bool isAvailable, MachineInstr *&LastStore,
+ AvailableSpills &Spills,
+ SmallSet<MachineInstr*, 4> &ReMatDefs,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM) {
+
+ TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
+ MachineInstr *StoreMI = next(MII);
+ VRM.addSpillSlotUse(StackSlot, StoreMI);
+ DOUT << "Store:\t" << *StoreMI;
+
+ // If there is a dead store to this stack slot, nuke it now.
+ if (LastStore) {
+ DOUT << "Removed dead store:\t" << *LastStore;
+ ++NumDSE;
+ SmallVector<unsigned, 2> KillRegs;
+ InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
+ MachineBasicBlock::iterator PrevMII = LastStore;
+ bool CheckDef = PrevMII != MBB.begin();
+ if (CheckDef)
+ --PrevMII;
+ VRM.RemoveMachineInstrFromMaps(LastStore);
+ MBB.erase(LastStore);
+ if (CheckDef) {
+ // Look at defs of killed registers on the store. Mark the defs
+ // as dead since the store has been deleted and they aren't
+ // being reused.
+ for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
+ bool HasOtherDef = false;
+ if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
+ MachineInstr *DeadDef = PrevMII;
+ if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
+ // FIXME: This assumes a remat def does not have side
+ // effects.
+ VRM.RemoveMachineInstrFromMaps(DeadDef);
+ MBB.erase(DeadDef);
+ ++NumDRM;
+ }
+ }
+ }
+ }
+ }
+
+ LastStore = next(MII);
+
+ // If the stack slot value was previously available in some other
+ // register, change it now. Otherwise, make the register available,
+ // in PhysReg.
+ Spills.ModifyStackSlotOrReMat(StackSlot);
+ Spills.ClobberPhysReg(PhysReg);
+ Spills.addAvailable(StackSlot, PhysReg, isAvailable);
+ ++NumStores;
+ }
+
+ /// TransferDeadness - A identity copy definition is dead and it's being
+ /// removed. Find the last def or use and mark it as dead / kill.
+ void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
+ unsigned Reg, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ int LastUDDist = -1;
+ MachineInstr *LastUDMI = NULL;
+ for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
+ RE = RegInfo->reg_end(); RI != RE; ++RI) {
+ MachineInstr *UDMI = &*RI;
+ if (UDMI->getParent() != MBB)
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
+ if (DI == DistanceMap.end() || DI->second > CurDist)
+ continue;
+ if ((int)DI->second < LastUDDist)
+ continue;
+ LastUDDist = DI->second;
+ LastUDMI = UDMI;
+ }
+
+ if (LastUDMI) {
+ MachineOperand *LastUD = NULL;
+ for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = LastUDMI->getOperand(i);
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (!LastUD || (LastUD->isUse() && MO.isDef()))
+ LastUD = &MO;
+ if (LastUDMI->isRegTiedToDefOperand(i))
+ return;
+ }
+ if (LastUD->isDef())
+ LastUD->setIsDead();
+ else {
+ LastUD->setIsKill();
+ RegKills.set(Reg);
+ KillOps[Reg] = LastUD;
+ }
+ }
+ }
+
+ /// rewriteMBB - Keep track of which spills are available even after the
+ /// register allocator is done with them. If possible, avid reloading vregs.
+ void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
+ LiveIntervals *LIs,
+ AvailableSpills &Spills, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+
+ DOUT << "\n**** Local spiller rewriting MBB '"
+ << MBB.getBasicBlock()->getName() << "':\n";
+
+ MachineFunction &MF = *MBB.getParent();
+
+ // MaybeDeadStores - When we need to write a value back into a stack slot,
+ // keep track of the inserted store. If the stack slot value is never read
+ // (because the value was used from some available register, for example), and
+ // subsequently stored to, the original store is dead. This map keeps track
+ // of inserted stores that are not used. If we see a subsequent store to the
+ // same stack slot, the original store is deleted.
+ std::vector<MachineInstr*> MaybeDeadStores;
+ MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
+
+ // ReMatDefs - These are rematerializable def MIs which are not deleted.
+ SmallSet<MachineInstr*, 4> ReMatDefs;
+
+ // Clear kill info.
+ SmallSet<unsigned, 2> KilledMIRegs;
+ RegKills.reset();
+ KillOps.clear();
+ KillOps.resize(TRI->getNumRegs(), NULL);
+
+ unsigned Dist = 0;
+ DistanceMap.clear();
+ for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+ MII != E; ) {
+ MachineBasicBlock::iterator NextMII = next(MII);
+
+ VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+ bool Erased = false;
+ bool BackTracked = false;
+ if (OptimizeByUnfold(MBB, MII,
+ MaybeDeadStores, Spills, RegKills, KillOps, VRM))
+ NextMII = next(MII);
+
+ MachineInstr &MI = *MII;
+
+ if (VRM.hasEmergencySpills(&MI)) {
+ // Spill physical register(s) in the rare case the allocator has run out
+ // of registers to allocate.
+ SmallSet<int, 4> UsedSS;
+ std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
+ for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
+ unsigned PhysReg = EmSpills[i];
+ const TargetRegisterClass *RC =
+ TRI->getPhysicalRegisterRegClass(PhysReg);
+ assert(RC && "Unable to determine register class!");
+ int SS = VRM.getEmergencySpillSlot(RC);
+ if (UsedSS.count(SS))
+ assert(0 && "Need to spill more than one physical registers!");
+ UsedSS.insert(SS);
+ TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
+ MachineInstr *StoreMI = prior(MII);
+ VRM.addSpillSlotUse(SS, StoreMI);
+ TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
+ MachineInstr *LoadMI = next(MII);
+ VRM.addSpillSlotUse(SS, LoadMI);
+ ++NumPSpills;
+ }
+ NextMII = next(MII);
+ }
+
+ // Insert restores here if asked to.
+ if (VRM.isRestorePt(&MI)) {
+ std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
+ for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
+ unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
+ if (!VRM.getPreSplitReg(VirtReg))
+ continue; // Split interval spilled again.
+ unsigned Phys = VRM.getPhys(VirtReg);
+ RegInfo->setPhysRegUsed(Phys);
+
+ // Check if the value being restored if available. If so, it must be
+ // from a predecessor BB that fallthrough into this BB. We do not
+ // expect:
+ // BB1:
+ // r1 = load fi#1
+ // ...
+ // = r1<kill>
+ // ... # r1 not clobbered
+ // ...
+ // = load fi#1
+ bool DoReMat = VRM.isReMaterialized(VirtReg);
+ int SSorRMId = DoReMat
+ ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+ const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+ unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+ if (InReg == Phys) {
+ // If the value is already available in the expected register, save
+ // a reload / remat.
+ if (SSorRMId)
+ DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+ else
+ DOUT << "Reusing SS#" << SSorRMId;
+ DOUT << " from physreg "
+ << TRI->getName(InReg) << " for vreg"
+ << VirtReg <<" instead of reloading into physreg "
+ << TRI->getName(Phys) << "\n";
+ ++NumOmitted;
+ continue;
+ } else if (InReg && InReg != Phys) {
+ if (SSorRMId)
+ DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+ else
+ DOUT << "Reusing SS#" << SSorRMId;
+ DOUT << " from physreg "
+ << TRI->getName(InReg) << " for vreg"
+ << VirtReg <<" by copying it into physreg "
+ << TRI->getName(Phys) << "\n";
+
+ // If the reloaded / remat value is available in another register,
+ // copy it to the desired register.
+ TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
+
+ // This invalidates Phys.
+ Spills.ClobberPhysReg(Phys);
+ // Remember it's available.
+ Spills.addAvailable(SSorRMId, Phys);
+
+ // Mark is killed.
+ MachineInstr *CopyMI = prior(MII);
+ MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
+ KillOpnd->setIsKill();
+ UpdateKills(*CopyMI, RegKills, KillOps, TRI);
+
+ DOUT << '\t' << *CopyMI;
+ ++NumCopified;
+ continue;
+ }
+
+ if (VRM.isReMaterialized(VirtReg)) {
+ ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
+ } else {
+ const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+ TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
+ MachineInstr *LoadMI = prior(MII);
+ VRM.addSpillSlotUse(SSorRMId, LoadMI);
+ ++NumLoads;
+ }
+
+ // This invalidates Phys.
+ Spills.ClobberPhysReg(Phys);
+ // Remember it's available.
+ Spills.addAvailable(SSorRMId, Phys);
+
+ UpdateKills(*prior(MII), RegKills, KillOps, TRI);
+ DOUT << '\t' << *prior(MII);
+ }
+ }
+
+ // Insert spills here if asked to.
+ if (VRM.isSpillPt(&MI)) {
+ std::vector<std::pair<unsigned,bool> > &SpillRegs =
+ VRM.getSpillPtSpills(&MI);
+ for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
+ unsigned VirtReg = SpillRegs[i].first;
+ bool isKill = SpillRegs[i].second;
+ if (!VRM.getPreSplitReg(VirtReg))
+ continue; // Split interval spilled again.
+ const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+ unsigned Phys = VRM.getPhys(VirtReg);
+ int StackSlot = VRM.getStackSlot(VirtReg);
+ TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
+ MachineInstr *StoreMI = next(MII);
+ VRM.addSpillSlotUse(StackSlot, StoreMI);
+ DOUT << "Store:\t" << *StoreMI;
+ VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+ }
+ NextMII = next(MII);
+ }
+
+ /// ReusedOperands - Keep track of operand reuse in case we need to undo
+ /// reuse.
+ ReuseInfo ReusedOperands(MI, TRI);
+ SmallVector<unsigned, 4> VirtUseOps;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue; // Ignore non-register operands.
+
+ unsigned VirtReg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
+ // Ignore physregs for spilling, but remember that it is used by this
+ // function.
+ RegInfo->setPhysRegUsed(VirtReg);
+ continue;
+ }
+
+ // We want to process implicit virtual register uses first.
+ if (MO.isImplicit())
+ // If the virtual register is implicitly defined, emit a implicit_def
+ // before so scavenger knows it's "defined".
+ VirtUseOps.insert(VirtUseOps.begin(), i);
+ else
+ VirtUseOps.push_back(i);
+ }
+
+ // Process all of the spilled uses and all non spilled reg references.
+ SmallVector<int, 2> PotentialDeadStoreSlots;
+ KilledMIRegs.clear();
+ for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
+ unsigned i = VirtUseOps[j];
+ MachineOperand &MO = MI.getOperand(i);
+ unsigned VirtReg = MO.getReg();
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "Not a virtual register?");
+
+ unsigned SubIdx = MO.getSubReg();
+ if (VRM.isAssignedReg(VirtReg)) {
+ // This virtual register was assigned a physreg!
+ unsigned Phys = VRM.getPhys(VirtReg);
+ RegInfo->setPhysRegUsed(Phys);
+ if (MO.isDef())
+ ReusedOperands.markClobbered(Phys);
+ unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ if (VRM.isImplicitlyDefined(VirtReg))
+ BuildMI(MBB, &MI, MI.getDebugLoc(),
+ TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
+ continue;
+ }
+
+ // This virtual register is now known to be a spilled value.
+ if (!MO.isUse())
+ continue; // Handle defs in the loop below (handle use&def here though)
+
+ bool AvoidReload = false;
+ if (LIs->hasInterval(VirtReg)) {
+ LiveInterval &LI = LIs->getInterval(VirtReg);
+ if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber())))
+ // Must be defined by an implicit def. It should not be spilled. Note,
+ // this is for correctness reason. e.g.
+ // 8 %reg1024<def> = IMPLICIT_DEF
+ // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+ // The live range [12, 14) are not part of the r1024 live interval since
+ // it's defined by an implicit def. It will not conflicts with live
+ // interval of r1025. Now suppose both registers are spilled, you can
+ // easily see a situation where both registers are reloaded before
+ // the INSERT_SUBREG and both target registers that would overlap.
+ AvoidReload = true;
+ }
+
+ bool DoReMat = VRM.isReMaterialized(VirtReg);
+ int SSorRMId = DoReMat
+ ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+ int ReuseSlot = SSorRMId;
+
+ // Check to see if this stack slot is available.
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+
+ // If this is a sub-register use, make sure the reuse register is in the
+ // right register class. For example, for x86 not all of the 32-bit
+ // registers have accessible sub-registers.
+ // Similarly so for EXTRACT_SUBREG. Consider this:
+ // EDI = op
+ // MOV32_mr fi#1, EDI
+ // ...
+ // = EXTRACT_SUBREG fi#1
+ // fi#1 is available in EDI, but it cannot be reused because it's not in
+ // the right register file.
+ if (PhysReg && !AvoidReload &&
+ (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
+ const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+ if (!RC->contains(PhysReg))
+ PhysReg = 0;
+ }
+
+ if (PhysReg && !AvoidReload) {
+ // This spilled operand might be part of a two-address operand. If this
+ // is the case, then changing it will necessarily require changing the
+ // def part of the instruction as well. However, in some cases, we
+ // aren't allowed to modify the reused register. If none of these cases
+ // apply, reuse it.
+ bool CanReuse = true;
+ bool isTied = MI.isRegTiedToDefOperand(i);
+ if (isTied) {
+ // Okay, we have a two address operand. We can reuse this physreg as
+ // long as we are allowed to clobber the value and there isn't an
+ // earlier def that has already clobbered the physreg.
+ CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
+ Spills.canClobberPhysReg(PhysReg);
+ }
+
+ if (CanReuse) {
+ // If this stack slot value is already available, reuse it!
+ if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+ DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+ else
+ DOUT << "Reusing SS#" << ReuseSlot;
+ DOUT << " from physreg "
+ << TRI->getName(PhysReg) << " for vreg"
+ << VirtReg <<" instead of reloading into physreg "
+ << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+
+ // The only technical detail we have is that we don't know that
+ // PhysReg won't be clobbered by a reloaded stack slot that occurs
+ // later in the instruction. In particular, consider 'op V1, V2'.
+ // If V1 is available in physreg R0, we would choose to reuse it
+ // here, instead of reloading it into the register the allocator
+ // indicated (say R1). However, V2 might have to be reloaded
+ // later, and it might indicate that it needs to live in R0. When
+ // this occurs, we need to have information available that
+ // indicates it is safe to use R1 for the reload instead of R0.
+ //
+ // To further complicate matters, we might conflict with an alias,
+ // or R0 and R1 might not be compatible with each other. In this
+ // case, we actually insert a reload for V1 in R1, ensuring that
+ // we can get at R0 or its alias.
+ ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
+ VRM.getPhys(VirtReg), VirtReg);
+ if (isTied)
+ // Only mark it clobbered if this is a use&def operand.
+ ReusedOperands.markClobbered(PhysReg);
+ ++NumReused;
+
+ if (MI.getOperand(i).isKill() &&
+ ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
+
+ // The store of this spilled value is potentially dead, but we
+ // won't know for certain until we've confirmed that the re-use
+ // above is valid, which means waiting until the other operands
+ // are processed. For now we just track the spill slot, we'll
+ // remove it after the other operands are processed if valid.
+
+ PotentialDeadStoreSlots.push_back(ReuseSlot);
+ }
+
+ // Mark is isKill if it's there no other uses of the same virtual
+ // register and it's not a two-address operand. IsKill will be
+ // unset if reg is reused.
+ if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
+ MI.getOperand(i).setIsKill();
+ KilledMIRegs.insert(VirtReg);
+ }
+
+ continue;
+ } // CanReuse
+
+ // Otherwise we have a situation where we have a two-address instruction
+ // whose mod/ref operand needs to be reloaded. This reload is already
+ // available in some register "PhysReg", but if we used PhysReg as the
+ // operand to our 2-addr instruction, the instruction would modify
+ // PhysReg. This isn't cool if something later uses PhysReg and expects
+ // to get its initial value.
+ //
+ // To avoid this problem, and to avoid doing a load right after a store,
+ // we emit a copy from PhysReg into the designated register for this
+ // operand.
+ unsigned DesignatedReg = VRM.getPhys(VirtReg);
+ assert(DesignatedReg && "Must map virtreg to physreg!");
+
+ // Note that, if we reused a register for a previous operand, the
+ // register we want to reload into might not actually be
+ // available. If this occurs, use the register indicated by the
+ // reuser.
+ if (ReusedOperands.hasReuses())
+ DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+
+ // If the mapped designated register is actually the physreg we have
+ // incoming, we don't need to inserted a dead copy.
+ if (DesignatedReg == PhysReg) {
+ // If this stack slot value is already available, reuse it!
+ if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+ DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+ else
+ DOUT << "Reusing SS#" << ReuseSlot;
+ DOUT << " from physreg " << TRI->getName(PhysReg)
+ << " for vreg" << VirtReg
+ << " instead of reloading into same physreg.\n";
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ ReusedOperands.markClobbered(RReg);
+ ++NumReused;
+ continue;
+ }
+
+ const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+ RegInfo->setPhysRegUsed(DesignatedReg);
+ ReusedOperands.markClobbered(DesignatedReg);
+ TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
+
+ MachineInstr *CopyMI = prior(MII);
+ UpdateKills(*CopyMI, RegKills, KillOps, TRI);
+
+ // This invalidates DesignatedReg.
+ Spills.ClobberPhysReg(DesignatedReg);
+
+ Spills.addAvailable(ReuseSlot, DesignatedReg);
+ unsigned RReg =
+ SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ DOUT << '\t' << *prior(MII);
+ ++NumReused;
+ continue;
+ } // if (PhysReg)
+
+ // Otherwise, reload it and remember that we have it.
+ PhysReg = VRM.getPhys(VirtReg);
+ assert(PhysReg && "Must map virtreg to physreg!");
+
+ // Note that, if we reused a register for a previous operand, the
+ // register we want to reload into might not actually be
+ // available. If this occurs, use the register indicated by the
+ // reuser.
+ if (ReusedOperands.hasReuses())
+ PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+
+ RegInfo->setPhysRegUsed(PhysReg);
+ ReusedOperands.markClobbered(PhysReg);
+ if (AvoidReload)
+ ++NumAvoided;
+ else {
+ if (DoReMat) {
+ ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
+ } else {
+ const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+ TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
+ MachineInstr *LoadMI = prior(MII);
+ VRM.addSpillSlotUse(SSorRMId, LoadMI);
+ ++NumLoads;
+ }
+ // This invalidates PhysReg.
+ Spills.ClobberPhysReg(PhysReg);
+
+ // Any stores to this stack slot are not dead anymore.
+ if (!DoReMat)
+ MaybeDeadStores[SSorRMId] = NULL;
+ Spills.addAvailable(SSorRMId, PhysReg);
+ // Assumes this is the last use. IsKill will be unset if reg is reused
+ // unless it's a two-address operand.
+ if (!MI.isRegTiedToDefOperand(i) &&
+ KilledMIRegs.count(VirtReg) == 0) {
+ MI.getOperand(i).setIsKill();
+ KilledMIRegs.insert(VirtReg);
+ }
+
+ UpdateKills(*prior(MII), RegKills, KillOps, TRI);
+ DOUT << '\t' << *prior(MII);
+ }
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ }
+
+ // Ok - now we can remove stores that have been confirmed dead.
+ for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
+ // This was the last use and the spilled value is still available
+ // for reuse. That means the spill was unnecessary!
+ int PDSSlot = PotentialDeadStoreSlots[j];
+ MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
+ if (DeadStore) {
+ DOUT << "Removed dead store:\t" << *DeadStore;
+ InvalidateKills(*DeadStore, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(DeadStore);
+ MBB.erase(DeadStore);
+ MaybeDeadStores[PDSSlot] = NULL;
+ ++NumDSE;
+ }
+ }
+
+
+ DOUT << '\t' << MI;
+
+
+ // If we have folded references to memory operands, make sure we clear all
+ // physical registers that may contain the value of the spilled virtual
+ // register
+ SmallSet<int, 2> FoldedSS;
+ for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+ unsigned VirtReg = I->second.first;
+ VirtRegMap::ModRef MR = I->second.second;
+ DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
+
+ // MI2VirtMap be can updated which invalidate the iterator.
+ // Increment the iterator first.
+ ++I;
+ int SS = VRM.getStackSlot(VirtReg);
+ if (SS == VirtRegMap::NO_STACK_SLOT)
+ continue;
+ FoldedSS.insert(SS);
+ DOUT << " - StackSlot: " << SS << "\n";
+
+ // If this folded instruction is just a use, check to see if it's a
+ // straight load from the virt reg slot.
+ if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
+ int FrameIdx;
+ unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
+ if (DestReg && FrameIdx == SS) {
+ // If this spill slot is available, turn it into a copy (or nothing)
+ // instead of leaving it as a load!
+ if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
+ DOUT << "Promoted Load To Copy: " << MI;
+ if (DestReg != InReg) {
+ const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+ TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
+ MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
+ unsigned SubIdx = DefMO->getSubReg();
+ // Revisit the copy so we make sure to notice the effects of the
+ // operation on the destreg (either needing to RA it if it's
+ // virtual or needing to clobber any values if it's physical).
+ NextMII = &MI;
+ --NextMII; // backtrack to the copy.
+ // Propagate the sub-register index over.
+ if (SubIdx) {
+ DefMO = NextMII->findRegisterDefOperand(DestReg);
+ DefMO->setSubReg(SubIdx);
+ }
+
+ // Mark is killed.
+ MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
+ KillOpnd->setIsKill();
+
+ BackTracked = true;
+ } else {
+ DOUT << "Removing now-noop copy: " << MI;
+ // Unset last kill since it's being reused.
+ InvalidateKill(InReg, RegKills, KillOps);
+ Spills.disallowClobberPhysReg(InReg);
+ }
+
+ InvalidateKills(MI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ Erased = true;
+ goto ProcessNextInst;
+ }
+ } else {
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+ SmallVector<MachineInstr*, 4> NewMIs;
+ if (PhysReg &&
+ TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
+ MBB.insert(MII, NewMIs[0]);
+ InvalidateKills(MI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ Erased = true;
+ --NextMII; // backtrack to the unfolded instruction.
+ BackTracked = true;
+ goto ProcessNextInst;
+ }
+ }
+ }
+
+ // If this reference is not a use, any previous store is now dead.
+ // Otherwise, the store to this stack slot is not dead anymore.
+ MachineInstr* DeadStore = MaybeDeadStores[SS];
+ if (DeadStore) {
+ bool isDead = !(MR & VirtRegMap::isRef);
+ MachineInstr *NewStore = NULL;
+ if (MR & VirtRegMap::isModRef) {
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+ SmallVector<MachineInstr*, 4> NewMIs;
+ // We can reuse this physreg as long as we are allowed to clobber
+ // the value and there isn't an earlier def that has already clobbered
+ // the physreg.
+ if (PhysReg &&
+ !ReusedOperands.isClobbered(PhysReg) &&
+ Spills.canClobberPhysReg(PhysReg) &&
+ !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
+ MachineOperand *KillOpnd =
+ DeadStore->findRegisterUseOperand(PhysReg, true);
+ // Note, if the store is storing a sub-register, it's possible the
+ // super-register is needed below.
+ if (KillOpnd && !KillOpnd->getSubReg() &&
+ TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
+ MBB.insert(MII, NewMIs[0]);
+ NewStore = NewMIs[1];
+ MBB.insert(MII, NewStore);
+ VRM.addSpillSlotUse(SS, NewStore);
+ InvalidateKills(MI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ Erased = true;
+ --NextMII;
+ --NextMII; // backtrack to the unfolded instruction.
+ BackTracked = true;
+ isDead = true;
+ ++NumSUnfold;
+ }
+ }
+ }
+
+ if (isDead) { // Previous store is dead.
+ // If we get here, the store is dead, nuke it now.
+ DOUT << "Removed dead store:\t" << *DeadStore;
+ InvalidateKills(*DeadStore, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(DeadStore);
+ MBB.erase(DeadStore);
+ if (!NewStore)
+ ++NumDSE;
+ }
+
+ MaybeDeadStores[SS] = NULL;
+ if (NewStore) {
+ // Treat this store as a spill merged into a copy. That makes the
+ // stack slot value available.
+ VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
+ goto ProcessNextInst;
+ }
+ }
+
+ // If the spill slot value is available, and this is a new definition of
+ // the value, the value is not available anymore.
+ if (MR & VirtRegMap::isMod) {
+ // Notice that the value in this stack slot has been modified.
+ Spills.ModifyStackSlotOrReMat(SS);
+
+ // If this is *just* a mod of the value, check to see if this is just a
+ // store to the spill slot (i.e. the spill got merged into the copy). If
+ // so, realize that the vreg is available now, and add the store to the
+ // MaybeDeadStore info.
+ int StackSlot;
+ if (!(MR & VirtRegMap::isRef)) {
+ if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
+ assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ "Src hasn't been allocated yet?");
+
+ if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
+ Spills, RegKills, KillOps, TRI, VRM)) {
+ NextMII = next(MII);
+ BackTracked = true;
+ goto ProcessNextInst;
+ }
+
+ // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
+ // this as a potentially dead store in case there is a subsequent
+ // store into the stack slot without a read from it.
+ MaybeDeadStores[StackSlot] = &MI;
+
+ // If the stack slot value was previously available in some other
+ // register, change it now. Otherwise, make the register
+ // available in PhysReg.
+ Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
+ }
+ }
+ }
+ }
+
+ // Process all of the spilled defs.
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!(MO.isReg() && MO.getReg() && MO.isDef()))
+ continue;
+
+ unsigned VirtReg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
+ // Check to see if this is a noop copy. If so, eliminate the
+ // instruction before considering the dest reg to be changed.
+ unsigned Src, Dst, SrcSR, DstSR;
+ if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
+ ++NumDCE;
+ DOUT << "Removing now-noop copy: " << MI;
+ SmallVector<unsigned, 2> KillRegs;
+ InvalidateKills(MI, RegKills, KillOps, &KillRegs);
+ if (MO.isDead() && !KillRegs.empty()) {
+ // Source register or an implicit super/sub-register use is killed.
+ assert(KillRegs[0] == Dst ||
+ TRI->isSubRegister(KillRegs[0], Dst) ||
+ TRI->isSuperRegister(KillRegs[0], Dst));
+ // Last def is now dead.
+ TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
+ }
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ Erased = true;
+ Spills.disallowClobberPhysReg(VirtReg);
+ goto ProcessNextInst;
+ }
+
+ // If it's not a no-op copy, it clobbers the value in the destreg.
+ Spills.ClobberPhysReg(VirtReg);
+ ReusedOperands.markClobbered(VirtReg);
+
+ // Check to see if this instruction is a load from a stack slot into
+ // a register. If so, this provides the stack slot value in the reg.
+ int FrameIdx;
+ if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
+ assert(DestReg == VirtReg && "Unknown load situation!");
+
+ // If it is a folded reference, then it's not safe to clobber.
+ bool Folded = FoldedSS.count(FrameIdx);
+ // Otherwise, if it wasn't available, remember that it is now!
+ Spills.addAvailable(FrameIdx, DestReg, !Folded);
+ goto ProcessNextInst;
+ }
+
+ continue;
+ }
+
+ unsigned SubIdx = MO.getSubReg();
+ bool DoReMat = VRM.isReMaterialized(VirtReg);
+ if (DoReMat)
+ ReMatDefs.insert(&MI);
+
+ // The only vregs left are stack slot definitions.
+ int StackSlot = VRM.getStackSlot(VirtReg);
+ const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+
+ // If this def is part of a two-address operand, make sure to execute
+ // the store from the correct physical register.
+ unsigned PhysReg;
+ unsigned TiedOp;
+ if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
+ PhysReg = MI.getOperand(TiedOp).getReg();
+ if (SubIdx) {
+ unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
+ assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
+ "Can't find corresponding super-register!");
+ PhysReg = SuperReg;
+ }
+ } else {
+ PhysReg = VRM.getPhys(VirtReg);
+ if (ReusedOperands.isClobbered(PhysReg)) {
+ // Another def has taken the assigned physreg. It must have been a
+ // use&def which got it due to reuse. Undo the reuse!
+ PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+ }
+ }
+
+ assert(PhysReg && "VR not assigned a physical register?");
+ RegInfo->setPhysRegUsed(PhysReg);
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ ReusedOperands.markClobbered(RReg);
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+
+ if (!MO.isDead()) {
+ MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
+ SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
+ LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
+ NextMII = next(MII);
+
+ // Check to see if this is a noop copy. If so, eliminate the
+ // instruction before considering the dest reg to be changed.
+ {
+ unsigned Src, Dst, SrcSR, DstSR;
+ if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
+ ++NumDCE;
+ DOUT << "Removing now-noop copy: " << MI;
+ InvalidateKills(MI, RegKills, KillOps);
+ VRM.RemoveMachineInstrFromMaps(&MI);
+ MBB.erase(&MI);
+ Erased = true;
+ UpdateKills(*LastStore, RegKills, KillOps, TRI);
+ goto ProcessNextInst;
+ }
+ }
+ }
+ }
+ ProcessNextInst:
+ DistanceMap.insert(std::make_pair(&MI, Dist++));
+ if (!Erased && !BackTracked) {
+ for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
+ UpdateKills(*II, RegKills, KillOps, TRI);
+ }
+ MII = NextMII;
+ }
+
+ }
+
+};
+
+llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
+ switch (RewriterOpt) {
+ default: assert(0 && "Unreachable!");
+ case local:
+ return new LocalRewriter();
+ case simple:
+ return new SimpleRewriter();
+ }
+}