diff options
Diffstat (limited to 'lib/CodeGen/VirtRegRewriter.cpp')
-rw-r--r-- | lib/CodeGen/VirtRegRewriter.cpp | 2141 |
1 files changed, 2141 insertions, 0 deletions
diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp new file mode 100644 index 0000000000..025ce1bd30 --- /dev/null +++ b/lib/CodeGen/VirtRegRewriter.cpp @@ -0,0 +1,2141 @@ +//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "virtregrewriter" +#include "VirtRegRewriter.h" +#include "llvm/Support/Compiler.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumDSE , "Number of dead stores elided"); +STATISTIC(NumDSS , "Number of dead spill slots removed"); +STATISTIC(NumCommutes, "Number of instructions commuted"); +STATISTIC(NumDRM , "Number of re-materializable defs elided"); +STATISTIC(NumStores , "Number of stores added"); +STATISTIC(NumPSpills , "Number of physical register spills"); +STATISTIC(NumOmitted , "Number of reloads omited"); +STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); +STATISTIC(NumCopified, "Number of available reloads turned into copies"); +STATISTIC(NumReMats , "Number of re-materialization"); +STATISTIC(NumLoads , "Number of loads added"); +STATISTIC(NumReused , "Number of values reused"); +STATISTIC(NumDCE , "Number of copies elided"); +STATISTIC(NumSUnfold , "Number of stores unfolded"); +STATISTIC(NumModRefUnfold, "Number of modref unfolded"); + +namespace { + enum RewriterName { simple, local }; +} + +static cl::opt<RewriterName> +RewriterOpt("rewriter", + cl::desc("Rewriter to use: (default: local)"), + cl::Prefix, + cl::values(clEnumVal(simple, "simple rewriter"), + clEnumVal(local, "local rewriter"), + clEnumValEnd), + cl::init(local)); + +VirtRegRewriter::~VirtRegRewriter() {} + + +// ****************************** // +// Simple Spiller Implementation // +// ****************************** // + +struct VISIBILITY_HIDDEN SimpleRewriter : public VirtRegRewriter { + + bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, + LiveIntervals* LIs) { + DOUT << "********** REWRITE MACHINE CODE **********\n"; + DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; + const TargetMachine &TM = MF.getTarget(); + const TargetInstrInfo &TII = *TM.getInstrInfo(); + const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); + + + // LoadedRegs - Keep track of which vregs are loaded, so that we only load + // each vreg once (in the case where a spilled vreg is used by multiple + // operands). This is always smaller than the number of operands to the + // current machine instr, so it should be small. + std::vector<unsigned> LoadedRegs; + + for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); + MBBI != E; ++MBBI) { + DOUT << MBBI->getBasicBlock()->getName() << ":\n"; + MachineBasicBlock &MBB = *MBBI; + for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); + MII != E; ++MII) { + MachineInstr &MI = *MII; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (MO.isReg() && MO.getReg()) { + if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { + unsigned VirtReg = MO.getReg(); + unsigned SubIdx = MO.getSubReg(); + unsigned PhysReg = VRM.getPhys(VirtReg); + unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg; + if (!VRM.isAssignedReg(VirtReg)) { + int StackSlot = VRM.getStackSlot(VirtReg); + const TargetRegisterClass* RC = + MF.getRegInfo().getRegClass(VirtReg); + + if (MO.isUse() && + std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg) + == LoadedRegs.end()) { + TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(StackSlot, LoadMI); + LoadedRegs.push_back(VirtReg); + ++NumLoads; + DOUT << '\t' << *LoadMI; + } + + if (MO.isDef()) { + TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true, + StackSlot, RC); + MachineInstr *StoreMI = next(MII); + VRM.addSpillSlotUse(StackSlot, StoreMI); + ++NumStores; + } + } + MF.getRegInfo().setPhysRegUsed(RReg); + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + } else { + MF.getRegInfo().setPhysRegUsed(MO.getReg()); + } + } + } + + DOUT << '\t' << MI; + LoadedRegs.clear(); + } + } + return true; + } + +}; + +// ************************************************************************ // + +/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB +/// from top down, keep track of which spill slots or remat are available in +/// each register. +/// +/// Note that not all physregs are created equal here. In particular, some +/// physregs are reloads that we are allowed to clobber or ignore at any time. +/// Other physregs are values that the register allocated program is using +/// that we cannot CHANGE, but we can read if we like. We keep track of this +/// on a per-stack-slot / remat id basis as the low bit in the value of the +/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks +/// this bit and addAvailable sets it if. +class VISIBILITY_HIDDEN AvailableSpills { + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + + // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled + // or remat'ed virtual register values that are still available, due to + // being loaded or stored to, but not invalidated yet. + std::map<int, unsigned> SpillSlotsOrReMatsAvailable; + + // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, + // indicating which stack slot values are currently held by a physreg. This + // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a + // physreg is modified. + std::multimap<unsigned, int> PhysRegsAvailable; + + void disallowClobberPhysRegOnly(unsigned PhysReg); + + void ClobberPhysRegOnly(unsigned PhysReg); +public: + AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) + : TRI(tri), TII(tii) { + } + + /// clear - Reset the state. + void clear() { + SpillSlotsOrReMatsAvailable.clear(); + PhysRegsAvailable.clear(); + } + + const TargetRegisterInfo *getRegInfo() const { return TRI; } + + /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is + /// available in a physical register, return that PhysReg, otherwise + /// return 0. + unsigned getSpillSlotOrReMatPhysReg(int Slot) const { + std::map<int, unsigned>::const_iterator I = + SpillSlotsOrReMatsAvailable.find(Slot); + if (I != SpillSlotsOrReMatsAvailable.end()) { + return I->second >> 1; // Remove the CanClobber bit. + } + return 0; + } + + /// addAvailable - Mark that the specified stack slot / remat is available + /// in the specified physreg. If CanClobber is true, the physreg can be + /// modified at any time without changing the semantics of the program. + void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { + // If this stack slot is thought to be available in some other physreg, + // remove its record. + ModifyStackSlotOrReMat(SlotOrReMat); + + PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); + SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | + (unsigned)CanClobber; + + if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) + DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Remembering SS#" << SlotOrReMat; + DOUT << " in physreg " << TRI->getName(Reg) << "\n"; + } + + /// canClobberPhysRegForSS - Return true if the spiller is allowed to change + /// the value of the specified stackslot register if it desires. The + /// specified stack slot must be available in a physreg for this query to + /// make sense. + bool canClobberPhysRegForSS(int SlotOrReMat) const { + assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && + "Value not available!"); + return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; + } + + /// canClobberPhysReg - Return true if the spiller is allowed to clobber the + /// physical register where values for some stack slot(s) might be + /// available. + bool canClobberPhysReg(unsigned PhysReg) const { + std::multimap<unsigned, int>::const_iterator I = + PhysRegsAvailable.lower_bound(PhysReg); + while (I != PhysRegsAvailable.end() && I->first == PhysReg) { + int SlotOrReMat = I->second; + I++; + if (!canClobberPhysRegForSS(SlotOrReMat)) + return false; + } + return true; + } + + /// disallowClobberPhysReg - Unset the CanClobber bit of the specified + /// stackslot register. The register is still available but is no longer + /// allowed to be modifed. + void disallowClobberPhysReg(unsigned PhysReg); + + /// ClobberPhysReg - This is called when the specified physreg changes + /// value. We use this to invalidate any info about stuff that lives in + /// it and any of its aliases. + void ClobberPhysReg(unsigned PhysReg); + + /// ModifyStackSlotOrReMat - This method is called when the value in a stack + /// slot changes. This removes information about which register the + /// previous value for this slot lives in (as the previous value is dead + /// now). + void ModifyStackSlotOrReMat(int SlotOrReMat); + + /// AddAvailableRegsToLiveIn - Availability information is being kept coming + /// into the specified MBB. Add available physical registers as potential + /// live-in's. If they are reused in the MBB, they will be added to the + /// live-in set to make register scavenger and post-allocation scheduler. + void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps); +}; + +// ************************************************************************ // + +// ReusedOp - For each reused operand, we keep track of a bit of information, +// in case we need to rollback upon processing a new operand. See comments +// below. +struct ReusedOp { + // The MachineInstr operand that reused an available value. + unsigned Operand; + + // StackSlotOrReMat - The spill slot or remat id of the value being reused. + unsigned StackSlotOrReMat; + + // PhysRegReused - The physical register the value was available in. + unsigned PhysRegReused; + + // AssignedPhysReg - The physreg that was assigned for use by the reload. + unsigned AssignedPhysReg; + + // VirtReg - The virtual register itself. + unsigned VirtReg; + + ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, + unsigned vreg) + : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), + AssignedPhysReg(apr), VirtReg(vreg) {} +}; + +/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that +/// is reused instead of reloaded. +class VISIBILITY_HIDDEN ReuseInfo { + MachineInstr &MI; + std::vector<ReusedOp> Reuses; + BitVector PhysRegsClobbered; +public: + ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { + PhysRegsClobbered.resize(tri->getNumRegs()); + } + + bool hasReuses() const { + return !Reuses.empty(); + } + + /// addReuse - If we choose to reuse a virtual register that is already + /// available instead of reloading it, remember that we did so. + void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, + unsigned PhysRegReused, unsigned AssignedPhysReg, + unsigned VirtReg) { + // If the reload is to the assigned register anyway, no undo will be + // required. + if (PhysRegReused == AssignedPhysReg) return; + + // Otherwise, remember this. + Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, + AssignedPhysReg, VirtReg)); + } + + void markClobbered(unsigned PhysReg) { + PhysRegsClobbered.set(PhysReg); + } + + bool isClobbered(unsigned PhysReg) const { + return PhysRegsClobbered.test(PhysReg); + } + + /// GetRegForReload - We are about to emit a reload into PhysReg. If there + /// is some other operand that is using the specified register, either pick + /// a new register to use, or evict the previous reload and use this reg. + unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, + AvailableSpills &Spills, + std::vector<MachineInstr*> &MaybeDeadStores, + SmallSet<unsigned, 8> &Rejected, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM); + + /// GetRegForReload - Helper for the above GetRegForReload(). Add a + /// 'Rejected' set to remember which registers have been considered and + /// rejected for the reload. This avoids infinite looping in case like + /// this: + /// t1 := op t2, t3 + /// t2 <- assigned r0 for use by the reload but ended up reuse r1 + /// t3 <- assigned r1 for use by the reload but ended up reuse r0 + /// t1 <- desires r1 + /// sees r1 is taken by t2, tries t2's reload register r0 + /// sees r0 is taken by t3, tries t3's reload register r1 + /// sees r1 is taken by t2, tries t2's reload register r0 ... + unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI, + AvailableSpills &Spills, + std::vector<MachineInstr*> &MaybeDeadStores, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + SmallSet<unsigned, 8> Rejected; + return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected, + RegKills, KillOps, VRM); + } +}; + + +// ****************** // +// Utility Functions // +// ****************** // + +/// InvalidateKill - A MI that defines the specified register is being deleted, +/// invalidate the register kill information. +static void InvalidateKill(unsigned Reg, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + if (RegKills[Reg]) { + KillOps[Reg]->setIsKill(false); + KillOps[Reg] = NULL; + RegKills.reset(Reg); + } +} + +/// findSinglePredSuccessor - Return via reference a vector of machine basic +/// blocks each of which is a successor of the specified BB and has no other +/// predecessor. +static void findSinglePredSuccessor(MachineBasicBlock *MBB, + SmallVectorImpl<MachineBasicBlock *> &Succs) { + for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), + SE = MBB->succ_end(); SI != SE; ++SI) { + MachineBasicBlock *SuccMBB = *SI; + if (SuccMBB->pred_size() == 1) + Succs.push_back(SuccMBB); + } +} + +/// InvalidateKills - MI is going to be deleted. If any of its operands are +/// marked kill, then invalidate the information. +static void InvalidateKills(MachineInstr &MI, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + SmallVector<unsigned, 2> *KillRegs = NULL) { + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isUse() || !MO.isKill()) + continue; + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + if (KillRegs) + KillRegs->push_back(Reg); + assert(Reg < KillOps.size()); + if (KillOps[Reg] == &MO) { + RegKills.reset(Reg); + KillOps[Reg] = NULL; + } + } +} + +/// InvalidateRegDef - If the def operand of the specified def MI is now dead +/// (since it's spill instruction is removed), mark it isDead. Also checks if +/// the def MI has other definition operands that are not dead. Returns it by +/// reference. +static bool InvalidateRegDef(MachineBasicBlock::iterator I, + MachineInstr &NewDef, unsigned Reg, + bool &HasLiveDef) { + // Due to remat, it's possible this reg isn't being reused. That is, + // the def of this reg (by prev MI) is now dead. + MachineInstr *DefMI = I; + MachineOperand *DefOp = NULL; + for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = DefMI->getOperand(i); + if (MO.isReg() && MO.isDef()) { + if (MO.getReg() == Reg) + DefOp = &MO; + else if (!MO.isDead()) + HasLiveDef = true; + } + } + if (!DefOp) + return false; + + bool FoundUse = false, Done = false; + MachineBasicBlock::iterator E = &NewDef; + ++I; ++E; + for (; !Done && I != E; ++I) { + MachineInstr *NMI = I; + for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { + MachineOperand &MO = NMI->getOperand(j); + if (!MO.isReg() || MO.getReg() != Reg) + continue; + if (MO.isUse()) + FoundUse = true; + Done = true; // Stop after scanning all the operands of this MI. + } + } + if (!FoundUse) { + // Def is dead! + DefOp->setIsDead(); + return true; + } + return false; +} + +/// UpdateKills - Track and update kill info. If a MI reads a register that is +/// marked kill, then it must be due to register reuse. Transfer the kill info +/// over. +static void UpdateKills(MachineInstr &MI, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + const TargetRegisterInfo* TRI) { + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isUse()) + continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) + continue; + + if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { + // That can't be right. Register is killed but not re-defined and it's + // being reused. Let's fix that. + KillOps[Reg]->setIsKill(false); + KillOps[Reg] = NULL; + RegKills.reset(Reg); + if (!MI.isRegTiedToDefOperand(i)) + // Unless it's a two-address operand, this is the new kill. + MO.setIsKill(); + } + if (MO.isKill()) { + RegKills.set(Reg); + KillOps[Reg] = &MO; + } + } + + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned Reg = MO.getReg(); + RegKills.reset(Reg); + KillOps[Reg] = NULL; + // It also defines (or partially define) aliases. + for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { + RegKills.reset(*AS); + KillOps[*AS] = NULL; + } + } +} + +/// ReMaterialize - Re-materialize definition for Reg targetting DestReg. +/// +static void ReMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + unsigned DestReg, unsigned Reg, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI, + VirtRegMap &VRM) { + TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg)); + MachineInstr *NewMI = prior(MII); + for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = NewMI->getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; + unsigned VirtReg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) + continue; + assert(MO.isUse()); + unsigned SubIdx = MO.getSubReg(); + unsigned Phys = VRM.getPhys(VirtReg); + assert(Phys); + unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; + MO.setReg(RReg); + MO.setSubReg(0); + } + ++NumReMats; +} + +/// findSuperReg - Find the SubReg's super-register of given register class +/// where its SubIdx sub-register is SubReg. +static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, + unsigned SubIdx, const TargetRegisterInfo *TRI) { + for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); + I != E; ++I) { + unsigned Reg = *I; + if (TRI->getSubReg(Reg, SubIdx) == SubReg) + return Reg; + } + return 0; +} + +// ******************************** // +// Available Spills Implementation // +// ******************************** // + +/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified +/// stackslot register. The register is still available but is no longer +/// allowed to be modifed. +void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { + std::multimap<unsigned, int>::iterator I = + PhysRegsAvailable.lower_bound(PhysReg); + while (I != PhysRegsAvailable.end() && I->first == PhysReg) { + int SlotOrReMat = I->second; + I++; + assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && + "Bidirectional map mismatch!"); + SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; + DOUT << "PhysReg " << TRI->getName(PhysReg) + << " copied, it is available for use but can no longer be modified\n"; + } +} + +/// disallowClobberPhysReg - Unset the CanClobber bit of the specified +/// stackslot register and its aliases. The register and its aliases may +/// still available but is no longer allowed to be modifed. +void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { + for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) + disallowClobberPhysRegOnly(*AS); + disallowClobberPhysRegOnly(PhysReg); +} + +/// ClobberPhysRegOnly - This is called when the specified physreg changes +/// value. We use this to invalidate any info about stuff we thing lives in it. +void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { + std::multimap<unsigned, int>::iterator I = + PhysRegsAvailable.lower_bound(PhysReg); + while (I != PhysRegsAvailable.end() && I->first == PhysReg) { + int SlotOrReMat = I->second; + PhysRegsAvailable.erase(I++); + assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && + "Bidirectional map mismatch!"); + SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); + DOUT << "PhysReg " << TRI->getName(PhysReg) + << " clobbered, invalidating "; + if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) + DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n"; + else + DOUT << "SS#" << SlotOrReMat << "\n"; + } +} + +/// ClobberPhysReg - This is called when the specified physreg changes +/// value. We use this to invalidate any info about stuff we thing lives in +/// it and any of its aliases. +void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { + for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) + ClobberPhysRegOnly(*AS); + ClobberPhysRegOnly(PhysReg); +} + +/// AddAvailableRegsToLiveIn - Availability information is being kept coming +/// into the specified MBB. Add available physical registers as potential +/// live-in's. If they are reused in the MBB, they will be added to the +/// live-in set to make register scavenger and post-allocation scheduler. +void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + std::set<unsigned> NotAvailable; + for (std::multimap<unsigned, int>::iterator + I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); + I != E; ++I) { + unsigned Reg = I->first; + const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg); + // FIXME: A temporary workaround. We can't reuse available value if it's + // not safe to move the def of the virtual register's class. e.g. + // X86::RFP* register classes. Do not add it as a live-in. + if (!TII->isSafeToMoveRegClassDefs(RC)) + // This is no longer available. + NotAvailable.insert(Reg); + else { + MBB.addLiveIn(Reg); + InvalidateKill(Reg, RegKills, KillOps); + } + + // Skip over the same register. + std::multimap<unsigned, int>::iterator NI = next(I); + while (NI != E && NI->first == Reg) { + ++I; + ++NI; + } + } + + for (std::set<unsigned>::iterator I = NotAvailable.begin(), + E = NotAvailable.end(); I != E; ++I) { + ClobberPhysReg(*I); + for (const unsigned *SubRegs = TRI->getSubRegisters(*I); + *SubRegs; ++SubRegs) + ClobberPhysReg(*SubRegs); + } +} + +/// ModifyStackSlotOrReMat - This method is called when the value in a stack +/// slot changes. This removes information about which register the previous +/// value for this slot lives in (as the previous value is dead now). +void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { + std::map<int, unsigned>::iterator It = + SpillSlotsOrReMatsAvailable.find(SlotOrReMat); + if (It == SpillSlotsOrReMatsAvailable.end()) return; + unsigned Reg = It->second >> 1; + SpillSlotsOrReMatsAvailable.erase(It); + + // This register may hold the value of multiple stack slots, only remove this + // stack slot from the set of values the register contains. + std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg); + for (; ; ++I) { + assert(I != PhysRegsAvailable.end() && I->first == Reg && + "Map inverse broken!"); + if (I->second == SlotOrReMat) break; + } + PhysRegsAvailable.erase(I); +} + +// ************************** // +// Reuse Info Implementation // +// ************************** // + +/// GetRegForReload - We are about to emit a reload into PhysReg. If there +/// is some other operand that is using the specified register, either pick +/// a new register to use, or evict the previous reload and use this reg. +unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI, + AvailableSpills &Spills, + std::vector<MachineInstr*> &MaybeDeadStores, + SmallSet<unsigned, 8> &Rejected, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget() + .getInstrInfo(); + + if (Reuses.empty()) return PhysReg; // This is most often empty. + + for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { + ReusedOp &Op = Reuses[ro]; + // If we find some other reuse that was supposed to use this register + // exactly for its reload, we can change this reload to use ITS reload + // register. That is, unless its reload register has already been + // considered and subsequently rejected because it has also been reused + // by another operand. + if (Op.PhysRegReused == PhysReg && + Rejected.count(Op.AssignedPhysReg) == 0) { + // Yup, use the reload register that we didn't use before. + unsigned NewReg = Op.AssignedPhysReg; + Rejected.insert(PhysReg); + return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected, + RegKills, KillOps, VRM); + } else { + // Otherwise, we might also have a problem if a previously reused + // value aliases the new register. If so, codegen the previous reload + // and use this one. + unsigned PRRU = Op.PhysRegReused; + const TargetRegisterInfo *TRI = Spills.getRegInfo(); + if (TRI->areAliases(PRRU, PhysReg)) { + // Okay, we found out that an alias of a reused register + // was used. This isn't good because it means we have + // to undo a previous reuse. + MachineBasicBlock *MBB = MI->getParent(); + const TargetRegisterClass *AliasRC = + MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); + + // Copy Op out of the vector and remove it, we're going to insert an + // explicit load for it. + ReusedOp NewOp = Op; + Reuses.erase(Reuses.begin()+ro); + + // Ok, we're going to try to reload the assigned physreg into the + // slot that we were supposed to in the first place. However, that + // register could hold a reuse. Check to see if it conflicts or + // would prefer us to use a different register. + unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg, + MI, Spills, MaybeDeadStores, + Rejected, RegKills, KillOps, VRM); + + MachineBasicBlock::iterator MII = MI; + if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) { + ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM); + } else { + TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg, + NewOp.StackSlotOrReMat, AliasRC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); + // Any stores to this stack slot are not dead anymore. + MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; + ++NumLoads; + } + Spills.ClobberPhysReg(NewPhysReg); + Spills.ClobberPhysReg(NewOp.PhysRegReused); + + unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg(); + unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg; + MI->getOperand(NewOp.Operand).setReg(RReg); + MI->getOperand(NewOp.Operand).setSubReg(0); + + Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); + --MII; + UpdateKills(*MII, RegKills, KillOps, TRI); + DOUT << '\t' << *MII; + + DOUT << "Reuse undone!\n"; + --NumReused; + + // Finally, PhysReg is now available, go ahead and use it. + return PhysReg; + } + } + } + return PhysReg; +} + +// ************************************************************************ // + +/// FoldsStackSlotModRef - Return true if the specified MI folds the specified +/// stack slot mod/ref. It also checks if it's possible to unfold the +/// instruction by having it define a specified physical register instead. +static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI, + VirtRegMap &VRM) { + if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) + return false; + + bool Found = false; + VirtRegMap::MI2VirtMapTy::const_iterator I, End; + for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { + unsigned VirtReg = I->second.first; + VirtRegMap::ModRef MR = I->second.second; + if (MR & VirtRegMap::isModRef) + if (VRM.getStackSlot(VirtReg) == SS) { + Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; + break; + } + } + if (!Found) + return false; + + // Does the instruction uses a register that overlaps the scratch register? + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + if (!VRM.hasPhys(Reg)) + continue; + Reg = VRM.getPhys(Reg); + } + if (TRI->regsOverlap(PhysReg, Reg)) + return false; + } + return true; +} + +/// FindFreeRegister - Find a free register of a given register class by looking +/// at (at most) the last two machine instructions. +static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, + MachineBasicBlock &MBB, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI, + BitVector &AllocatableRegs) { + BitVector Defs(TRI->getNumRegs()); + BitVector Uses(TRI->getNumRegs()); + SmallVector<unsigned, 4> LocalUses; + SmallVector<unsigned, 4> Kills; + + // Take a look at 2 instructions at most. + for (unsigned Count = 0; Count < 2; ++Count) { + if (MII == MBB.begin()) + break; + MachineInstr *PrevMI = prior(MII); + for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = PrevMI->getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; + unsigned Reg = MO.getReg(); + if (MO.isDef()) { + Defs.set(Reg); + for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) + Defs.set(*AS); + } else { + LocalUses.push_back(Reg); + if (MO.isKill() && AllocatableRegs[Reg]) + Kills.push_back(Reg); + } + } + + for (unsigned i = 0, e = Kills.size(); i != e; ++i) { + unsigned Kill = Kills[i]; + if (!Defs[Kill] && !Uses[Kill] && + TRI->getPhysicalRegisterRegClass(Kill) == RC) + return Kill; + } + for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { + unsigned Reg = LocalUses[i]; + Uses.set(Reg); + for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) + Uses.set(*AS); + } + + MII = PrevMI; + } + + return 0; +} + +static +void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.getReg() == VirtReg) + MO.setReg(PhysReg); + } +} + + +// ***************************** // +// Local Spiller Implementation // +// ***************************** // + +class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter { + MachineRegisterInfo *RegInfo; + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + BitVector AllocatableRegs; + DenseMap<MachineInstr*, unsigned> DistanceMap; +public: + + bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, + LiveIntervals* LIs) { + RegInfo = &MF.getRegInfo(); + TRI = MF.getTarget().getRegisterInfo(); + TII = MF.getTarget().getInstrInfo(); + AllocatableRegs = TRI->getAllocatableSet(MF); + DOUT << "\n**** Local spiller rewriting function '" + << MF.getFunction()->getName() << "':\n"; + DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)" + " ****\n"; + DEBUG(MF.dump()); + + // Spills - Keep track of which spilled values are available in physregs + // so that we can choose to reuse the physregs instead of emitting + // reloads. This is usually refreshed per basic block. + AvailableSpills Spills(TRI, TII); + + // Keep track of kill information. + BitVector RegKills(TRI->getNumRegs()); + std::vector<MachineOperand*> KillOps; + KillOps.resize(TRI->getNumRegs(), NULL); + + // SingleEntrySuccs - Successor blocks which have a single predecessor. + SmallVector<MachineBasicBlock*, 4> SinglePredSuccs; + SmallPtrSet<MachineBasicBlock*,16> EarlyVisited; + + // Traverse the basic blocks depth first. + MachineBasicBlock *Entry = MF.begin(); + SmallPtrSet<MachineBasicBlock*,16> Visited; + for (df_ext_iterator<MachineBasicBlock*, + SmallPtrSet<MachineBasicBlock*,16> > + DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); + DFI != E; ++DFI) { + MachineBasicBlock *MBB = *DFI; + if (!EarlyVisited.count(MBB)) + RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); + + // If this MBB is the only predecessor of a successor. Keep the + // availability information and visit it next. + do { + // Keep visiting single predecessor successor as long as possible. + SinglePredSuccs.clear(); + findSinglePredSuccessor(MBB, SinglePredSuccs); + if (SinglePredSuccs.empty()) + MBB = 0; + else { + // FIXME: More than one successors, each of which has MBB has + // the only predecessor. + MBB = SinglePredSuccs[0]; + if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { + Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); + RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps); + } + } + } while (MBB); + + // Clear the availability info. + Spills.clear(); + } + + DOUT << "**** Post Machine Instrs ****\n"; + DEBUG(MF.dump()); + + // Mark unused spill slots. + MachineFrameInfo *MFI = MF.getFrameInfo(); + int SS = VRM.getLowSpillSlot(); + if (SS != VirtRegMap::NO_STACK_SLOT) + for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS) + if (!VRM.isSpillSlotUsed(SS)) { + MFI->RemoveStackObject(SS); + ++NumDSS; + } + + return true; + } + +private: + + /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if + /// a scratch register is available. + /// xorq %r12<kill>, %r13 + /// addq %rax, -184(%rbp) + /// addq %r13, -184(%rbp) + /// ==> + /// xorq %r12<kill>, %r13 + /// movq -184(%rbp), %r12 + /// addq %rax, %r12 + /// addq %r13, %r12 + /// movq %r12, -184(%rbp) + bool OptimizeByUnfold2(unsigned VirtReg, int SS, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + std::vector<MachineInstr*> &MaybeDeadStores, + AvailableSpills &Spills, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + + MachineBasicBlock::iterator NextMII = next(MII); + if (NextMII == MBB.end()) + return false; + + if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) + return false; + + // Now let's see if the last couple of instructions happens to have freed up + // a register. + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs); + if (!PhysReg) + return false; + + MachineFunction &MF = *MBB.getParent(); + TRI = MF.getTarget().getRegisterInfo(); + MachineInstr &MI = *MII; + if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM)) + return false; + + // If the next instruction also folds the same SS modref and can be unfoled, + // then it's worthwhile to issue a load from SS into the free register and + // then unfold these instructions. + if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)) + return false; + + // Load from SS to the spare physical register. + TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC); + // This invalidates Phys. + Spills.ClobberPhysReg(PhysReg); + // Remember it's available. + Spills.addAvailable(SS, PhysReg); + MaybeDeadStores[SS] = NULL; + + // Unfold current MI. + SmallVector<MachineInstr*, 4> NewMIs; + if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) + assert(0 && "Unable unfold the load / store folding instruction!"); + assert(NewMIs.size() == 1); + AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); + VRM.transferRestorePts(&MI, NewMIs[0]); + MII = MBB.insert(MII, NewMIs[0]); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + ++NumModRefUnfold; + + // Unfold next instructions that fold the same SS. + do { + MachineInstr &NextMI = *NextMII; + NextMII = next(NextMII); + NewMIs.clear(); + if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) + assert(0 && "Unable unfold the load / store folding instruction!"); + assert(NewMIs.size() == 1); + AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg); + VRM.transferRestorePts(&NextMI, NewMIs[0]); + MBB.insert(NextMII, NewMIs[0]); + InvalidateKills(NextMI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&NextMI); + MBB.erase(&NextMI); + ++NumModRefUnfold; + } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM)); + + // Store the value back into SS. + TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC); + MachineInstr *StoreMI = prior(NextMII); + VRM.addSpillSlotUse(SS, StoreMI); + VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); + + return true; + } + + /// OptimizeByUnfold - Turn a store folding instruction into a load folding + /// instruction. e.g. + /// xorl %edi, %eax + /// movl %eax, -32(%ebp) + /// movl -36(%ebp), %eax + /// orl %eax, -32(%ebp) + /// ==> + /// xorl %edi, %eax + /// orl -36(%ebp), %eax + /// mov %eax, -32(%ebp) + /// This enables unfolding optimization for a subsequent instruction which will + /// also eliminate the newly introduced store instruction. + bool OptimizeByUnfold(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + std::vector<MachineInstr*> &MaybeDeadStores, + AvailableSpills &Spills, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + MachineFunction &MF = *MBB.getParent(); + MachineInstr &MI = *MII; + unsigned UnfoldedOpc = 0; + unsigned UnfoldPR = 0; + unsigned UnfoldVR = 0; + int FoldedSS = VirtRegMap::NO_STACK_SLOT; + VirtRegMap::MI2VirtMapTy::const_iterator I, End; + for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { + // Only transform a MI that folds a single register. + if (UnfoldedOpc) + return false; + UnfoldVR = I->second.first; + VirtRegMap::ModRef MR = I->second.second; + // MI2VirtMap be can updated which invalidate the iterator. + // Increment the iterator first. + ++I; + if (VRM.isAssignedReg(UnfoldVR)) + continue; + // If this reference is not a use, any previous store is now dead. + // Otherwise, the store to this stack slot is not dead anymore. + FoldedSS = VRM.getStackSlot(UnfoldVR); + MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; + if (DeadStore && (MR & VirtRegMap::isModRef)) { + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); + if (!PhysReg || !DeadStore->readsRegister(PhysReg)) + continue; + UnfoldPR = PhysReg; + UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), + false, true); + } + } + + if (!UnfoldedOpc) { + if (!UnfoldVR) + return false; + + // Look for other unfolding opportunities. + return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII, + MaybeDeadStores, Spills, RegKills, KillOps, VRM); + } + + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) + continue; + unsigned VirtReg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) + continue; + if (VRM.isAssignedReg(VirtReg)) { + unsigned PhysReg = VRM.getPhys(VirtReg); + if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) + return false; + } else if (VRM.isReMaterialized(VirtReg)) + continue; + int SS = VRM.getStackSlot(VirtReg); + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); + if (PhysReg) { + if (TRI->regsOverlap(PhysReg, UnfoldPR)) + return false; + continue; + } + if (VRM.hasPhys(VirtReg)) { + PhysReg = VRM.getPhys(VirtReg); + if (!TRI->regsOverlap(PhysReg, UnfoldPR)) + continue; + } + + // Ok, we'll need to reload the value into a register which makes + // it impossible to perform the store unfolding optimization later. + // Let's see if it is possible to fold the load if the store is + // unfolded. This allows us to perform the store unfolding + // optimization. + SmallVector<MachineInstr*, 4> NewMIs; + if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { + assert(NewMIs.size() == 1); + MachineInstr *NewMI = NewMIs.back(); + NewMIs.clear(); + int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); + assert(Idx != -1); + SmallVector<unsigned, 1> Ops; + Ops.push_back(Idx); + MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS); + if (FoldedMI) { + VRM.addSpillSlotUse(SS, FoldedMI); + if (!VRM.hasPhys(UnfoldVR)) + VRM.assignVirt2Phys(UnfoldVR, UnfoldPR); + VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); + MII = MBB.insert(MII, FoldedMI); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + MF.DeleteMachineInstr(NewMI); + return true; + } + MF.DeleteMachineInstr(NewMI); + } + } + + return false; + } + + /// CommuteToFoldReload - + /// Look for + /// r1 = load fi#1 + /// r1 = op r1, r2<kill> + /// store r1, fi#1 + /// + /// If op is commutable and r2 is killed, then we can xform these to + /// r2 = op r2, fi#1 + /// store r2, fi#1 + bool CommuteToFoldReload(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + unsigned VirtReg, unsigned SrcReg, int SS, + AvailableSpills &Spills, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + const TargetRegisterInfo *TRI, + VirtRegMap &VRM) { + if (MII == MBB.begin() || !MII->killsRegister(SrcReg)) + return false; + + MachineFunction &MF = *MBB.getParent(); + MachineInstr &MI = *MII; + MachineBasicBlock::iterator DefMII = prior(MII); + MachineInstr *DefMI = DefMII; + const TargetInstrDesc &TID = DefMI->getDesc(); + unsigned NewDstIdx; + if (DefMII != MBB.begin() && + TID.isCommutable() && + TII->CommuteChangesDestination(DefMI, NewDstIdx)) { + MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); + unsigned NewReg = NewDstMO.getReg(); + if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) + return false; + MachineInstr *ReloadMI = prior(DefMII); + int FrameIdx; + unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); + if (DestReg != SrcReg || FrameIdx != SS) + return false; + int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); + if (UseIdx == -1) + return false; + unsigned DefIdx; + if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) + return false; + assert(DefMI->getOperand(DefIdx).isReg() && + DefMI->getOperand(DefIdx).getReg() == SrcReg); + + // Now commute def instruction. + MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); + if (!CommutedMI) + return false; + SmallVector<unsigned, 1> Ops; + Ops.push_back(NewDstIdx); + MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS); + // Not needed since foldMemoryOperand returns new MI. + MF.DeleteMachineInstr(CommutedMI); + if (!FoldedMI) + return false; + + VRM.addSpillSlotUse(SS, FoldedMI); + VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); + // Insert new def MI and spill MI. + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC); + MII = prior(MII); + MachineInstr *StoreMI = MII; + VRM.addSpillSlotUse(SS, StoreMI); + VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); + MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack. + + // Delete all 3 old instructions. + InvalidateKills(*ReloadMI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(ReloadMI); + MBB.erase(ReloadMI); + InvalidateKills(*DefMI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(DefMI); + MBB.erase(DefMI); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + + // If NewReg was previously holding value of some SS, it's now clobbered. + // This has to be done now because it's a physical register. When this + // instruction is re-visited, it's ignored. + Spills.ClobberPhysReg(NewReg); + + ++NumCommutes; + return true; + } + + return false; + } + + /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if + /// the last store to the same slot is now dead. If so, remove the last store. + void SpillRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MII, + int Idx, unsigned PhysReg, int StackSlot, + const TargetRegisterClass *RC, + bool isAvailable, MachineInstr *&LastStore, + AvailableSpills &Spills, + SmallSet<MachineInstr*, 4> &ReMatDefs, + BitVector &RegKills, + std::vector<MachineOperand*> &KillOps, + VirtRegMap &VRM) { + + TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC); + MachineInstr *StoreMI = next(MII); + VRM.addSpillSlotUse(StackSlot, StoreMI); + DOUT << "Store:\t" << *StoreMI; + + // If there is a dead store to this stack slot, nuke it now. + if (LastStore) { + DOUT << "Removed dead store:\t" << *LastStore; + ++NumDSE; + SmallVector<unsigned, 2> KillRegs; + InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs); + MachineBasicBlock::iterator PrevMII = LastStore; + bool CheckDef = PrevMII != MBB.begin(); + if (CheckDef) + --PrevMII; + VRM.RemoveMachineInstrFromMaps(LastStore); + MBB.erase(LastStore); + if (CheckDef) { + // Look at defs of killed registers on the store. Mark the defs + // as dead since the store has been deleted and they aren't + // being reused. + for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { + bool HasOtherDef = false; + if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) { + MachineInstr *DeadDef = PrevMII; + if (ReMatDefs.count(DeadDef) && !HasOtherDef) { + // FIXME: This assumes a remat def does not have side + // effects. + VRM.RemoveMachineInstrFromMaps(DeadDef); + MBB.erase(DeadDef); + ++NumDRM; + } + } + } + } + } + + LastStore = next(MII); + + // If the stack slot value was previously available in some other + // register, change it now. Otherwise, make the register available, + // in PhysReg. + Spills.ModifyStackSlotOrReMat(StackSlot); + Spills.ClobberPhysReg(PhysReg); + Spills.addAvailable(StackSlot, PhysReg, isAvailable); + ++NumStores; + } + + /// TransferDeadness - A identity copy definition is dead and it's being + /// removed. Find the last def or use and mark it as dead / kill. + void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist, + unsigned Reg, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + int LastUDDist = -1; + MachineInstr *LastUDMI = NULL; + for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg), + RE = RegInfo->reg_end(); RI != RE; ++RI) { + MachineInstr *UDMI = &*RI; + if (UDMI->getParent() != MBB) + continue; + DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); + if (DI == DistanceMap.end() || DI->second > CurDist) + continue; + if ((int)DI->second < LastUDDist) + continue; + LastUDDist = DI->second; + LastUDMI = UDMI; + } + + if (LastUDMI) { + MachineOperand *LastUD = NULL; + for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = LastUDMI->getOperand(i); + if (!MO.isReg() || MO.getReg() != Reg) + continue; + if (!LastUD || (LastUD->isUse() && MO.isDef())) + LastUD = &MO; + if (LastUDMI->isRegTiedToDefOperand(i)) + return; + } + if (LastUD->isDef()) + LastUD->setIsDead(); + else { + LastUD->setIsKill(); + RegKills.set(Reg); + KillOps[Reg] = LastUD; + } + } + } + + /// rewriteMBB - Keep track of which spills are available even after the + /// register allocator is done with them. If possible, avid reloading vregs. + void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM, + LiveIntervals *LIs, + AvailableSpills &Spills, BitVector &RegKills, + std::vector<MachineOperand*> &KillOps) { + + DOUT << "\n**** Local spiller rewriting MBB '" + << MBB.getBasicBlock()->getName() << "':\n"; + + MachineFunction &MF = *MBB.getParent(); + + // MaybeDeadStores - When we need to write a value back into a stack slot, + // keep track of the inserted store. If the stack slot value is never read + // (because the value was used from some available register, for example), and + // subsequently stored to, the original store is dead. This map keeps track + // of inserted stores that are not used. If we see a subsequent store to the + // same stack slot, the original store is deleted. + std::vector<MachineInstr*> MaybeDeadStores; + MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); + + // ReMatDefs - These are rematerializable def MIs which are not deleted. + SmallSet<MachineInstr*, 4> ReMatDefs; + + // Clear kill info. + SmallSet<unsigned, 2> KilledMIRegs; + RegKills.reset(); + KillOps.clear(); + KillOps.resize(TRI->getNumRegs(), NULL); + + unsigned Dist = 0; + DistanceMap.clear(); + for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); + MII != E; ) { + MachineBasicBlock::iterator NextMII = next(MII); + + VirtRegMap::MI2VirtMapTy::const_iterator I, End; + bool Erased = false; + bool BackTracked = false; + if (OptimizeByUnfold(MBB, MII, + MaybeDeadStores, Spills, RegKills, KillOps, VRM)) + NextMII = next(MII); + + MachineInstr &MI = *MII; + + if (VRM.hasEmergencySpills(&MI)) { + // Spill physical register(s) in the rare case the allocator has run out + // of registers to allocate. + SmallSet<int, 4> UsedSS; + std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI); + for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { + unsigned PhysReg = EmSpills[i]; + const TargetRegisterClass *RC = + TRI->getPhysicalRegisterRegClass(PhysReg); + assert(RC && "Unable to determine register class!"); + int SS = VRM.getEmergencySpillSlot(RC); + if (UsedSS.count(SS)) + assert(0 && "Need to spill more than one physical registers!"); + UsedSS.insert(SS); + TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC); + MachineInstr *StoreMI = prior(MII); + VRM.addSpillSlotUse(SS, StoreMI); + TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC); + MachineInstr *LoadMI = next(MII); + VRM.addSpillSlotUse(SS, LoadMI); + ++NumPSpills; + } + NextMII = next(MII); + } + + // Insert restores here if asked to. + if (VRM.isRestorePt(&MI)) { + std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI); + for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { + unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order. + if (!VRM.getPreSplitReg(VirtReg)) + continue; // Split interval spilled again. + unsigned Phys = VRM.getPhys(VirtReg); + RegInfo->setPhysRegUsed(Phys); + + // Check if the value being restored if available. If so, it must be + // from a predecessor BB that fallthrough into this BB. We do not + // expect: + // BB1: + // r1 = load fi#1 + // ... + // = r1<kill> + // ... # r1 not clobbered + // ... + // = load fi#1 + bool DoReMat = VRM.isReMaterialized(VirtReg); + int SSorRMId = DoReMat + ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); + if (InReg == Phys) { + // If the value is already available in the expected register, save + // a reload / remat. + if (SSorRMId) + DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << SSorRMId; + DOUT << " from physreg " + << TRI->getName(InReg) << " for vreg" + << VirtReg <<" instead of reloading into physreg " + << TRI->getName(Phys) << "\n"; + ++NumOmitted; + continue; + } else if (InReg && InReg != Phys) { + if (SSorRMId) + DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << SSorRMId; + DOUT << " from physreg " + << TRI->getName(InReg) << " for vreg" + << VirtReg <<" by copying it into physreg " + << TRI->getName(Phys) << "\n"; + + // If the reloaded / remat value is available in another register, + // copy it to the desired register. + TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC); + + // This invalidates Phys. + Spills.ClobberPhysReg(Phys); + // Remember it's available. + Spills.addAvailable(SSorRMId, Phys); + + // Mark is killed. + MachineInstr *CopyMI = prior(MII); + MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg); + KillOpnd->setIsKill(); + UpdateKills(*CopyMI, RegKills, KillOps, TRI); + + DOUT << '\t' << *CopyMI; + ++NumCopified; + continue; + } + + if (VRM.isReMaterialized(VirtReg)) { + ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM); + } else { + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(SSorRMId, LoadMI); + ++NumLoads; + } + + // This invalidates Phys. + Spills.ClobberPhysReg(Phys); + // Remember it's available. + Spills.addAvailable(SSorRMId, Phys); + + UpdateKills(*prior(MII), RegKills, KillOps, TRI); + DOUT << '\t' << *prior(MII); + } + } + + // Insert spills here if asked to. + if (VRM.isSpillPt(&MI)) { + std::vector<std::pair<unsigned,bool> > &SpillRegs = + VRM.getSpillPtSpills(&MI); + for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { + unsigned VirtReg = SpillRegs[i].first; + bool isKill = SpillRegs[i].second; + if (!VRM.getPreSplitReg(VirtReg)) + continue; // Split interval spilled again. + const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); + unsigned Phys = VRM.getPhys(VirtReg); + int StackSlot = VRM.getStackSlot(VirtReg); + TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC); + MachineInstr *StoreMI = next(MII); + VRM.addSpillSlotUse(StackSlot, StoreMI); + DOUT << "Store:\t" << *StoreMI; + VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); + } + NextMII = next(MII); + } + + /// ReusedOperands - Keep track of operand reuse in case we need to undo + /// reuse. + ReuseInfo ReusedOperands(MI, TRI); + SmallVector<unsigned, 4> VirtUseOps; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; // Ignore non-register operands. + + unsigned VirtReg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { + // Ignore physregs for spilling, but remember that it is used by this + // function. + RegInfo->setPhysRegUsed(VirtReg); + continue; + } + + // We want to process implicit virtual register uses first. + if (MO.isImplicit()) + // If the virtual register is implicitly defined, emit a implicit_def + // before so scavenger knows it's "defined". + VirtUseOps.insert(VirtUseOps.begin(), i); + else + VirtUseOps.push_back(i); + } + + // Process all of the spilled uses and all non spilled reg references. + SmallVector<int, 2> PotentialDeadStoreSlots; + KilledMIRegs.clear(); + for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { + unsigned i = VirtUseOps[j]; + MachineOperand &MO = MI.getOperand(i); + unsigned VirtReg = MO.getReg(); + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "Not a virtual register?"); + + unsigned SubIdx = MO.getSubReg(); + if (VRM.isAssignedReg(VirtReg)) { + // This virtual register was assigned a physreg! + unsigned Phys = VRM.getPhys(VirtReg); + RegInfo->setPhysRegUsed(Phys); + if (MO.isDef()) + ReusedOperands.markClobbered(Phys); + unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + if (VRM.isImplicitlyDefined(VirtReg)) + BuildMI(MBB, &MI, MI.getDebugLoc(), + TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg); + continue; + } + + // This virtual register is now known to be a spilled value. + if (!MO.isUse()) + continue; // Handle defs in the loop below (handle use&def here though) + + bool AvoidReload = false; + if (LIs->hasInterval(VirtReg)) { + LiveInterval &LI = LIs->getInterval(VirtReg); + if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber()))) + // Must be defined by an implicit def. It should not be spilled. Note, + // this is for correctness reason. e.g. + // 8 %reg1024<def> = IMPLICIT_DEF + // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2 + // The live range [12, 14) are not part of the r1024 live interval since + // it's defined by an implicit def. It will not conflicts with live + // interval of r1025. Now suppose both registers are spilled, you can + // easily see a situation where both registers are reloaded before + // the INSERT_SUBREG and both target registers that would overlap. + AvoidReload = true; + } + + bool DoReMat = VRM.isReMaterialized(VirtReg); + int SSorRMId = DoReMat + ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg); + int ReuseSlot = SSorRMId; + + // Check to see if this stack slot is available. + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); + + // If this is a sub-register use, make sure the reuse register is in the + // right register class. For example, for x86 not all of the 32-bit + // registers have accessible sub-registers. + // Similarly so for EXTRACT_SUBREG. Consider this: + // EDI = op + // MOV32_mr fi#1, EDI + // ... + // = EXTRACT_SUBREG fi#1 + // fi#1 is available in EDI, but it cannot be reused because it's not in + // the right register file. + if (PhysReg && !AvoidReload && + (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) { + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + if (!RC->contains(PhysReg)) + PhysReg = 0; + } + + if (PhysReg && !AvoidReload) { + // This spilled operand might be part of a two-address operand. If this + // is the case, then changing it will necessarily require changing the + // def part of the instruction as well. However, in some cases, we + // aren't allowed to modify the reused register. If none of these cases + // apply, reuse it. + bool CanReuse = true; + bool isTied = MI.isRegTiedToDefOperand(i); + if (isTied) { + // Okay, we have a two address operand. We can reuse this physreg as + // long as we are allowed to clobber the value and there isn't an + // earlier def that has already clobbered the physreg. + CanReuse = !ReusedOperands.isClobbered(PhysReg) && + Spills.canClobberPhysReg(PhysReg); + } + + if (CanReuse) { + // If this stack slot value is already available, reuse it! + if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) + DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << ReuseSlot; + DOUT << " from physreg " + << TRI->getName(PhysReg) << " for vreg" + << VirtReg <<" instead of reloading into physreg " + << TRI->getName(VRM.getPhys(VirtReg)) << "\n"; + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + + // The only technical detail we have is that we don't know that + // PhysReg won't be clobbered by a reloaded stack slot that occurs + // later in the instruction. In particular, consider 'op V1, V2'. + // If V1 is available in physreg R0, we would choose to reuse it + // here, instead of reloading it into the register the allocator + // indicated (say R1). However, V2 might have to be reloaded + // later, and it might indicate that it needs to live in R0. When + // this occurs, we need to have information available that + // indicates it is safe to use R1 for the reload instead of R0. + // + // To further complicate matters, we might conflict with an alias, + // or R0 and R1 might not be compatible with each other. In this + // case, we actually insert a reload for V1 in R1, ensuring that + // we can get at R0 or its alias. + ReusedOperands.addReuse(i, ReuseSlot, PhysReg, + VRM.getPhys(VirtReg), VirtReg); + if (isTied) + // Only mark it clobbered if this is a use&def operand. + ReusedOperands.markClobbered(PhysReg); + ++NumReused; + + if (MI.getOperand(i).isKill() && + ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { + + // The store of this spilled value is potentially dead, but we + // won't know for certain until we've confirmed that the re-use + // above is valid, which means waiting until the other operands + // are processed. For now we just track the spill slot, we'll + // remove it after the other operands are processed if valid. + + PotentialDeadStoreSlots.push_back(ReuseSlot); + } + + // Mark is isKill if it's there no other uses of the same virtual + // register and it's not a two-address operand. IsKill will be + // unset if reg is reused. + if (!isTied && KilledMIRegs.count(VirtReg) == 0) { + MI.getOperand(i).setIsKill(); + KilledMIRegs.insert(VirtReg); + } + + continue; + } // CanReuse + + // Otherwise we have a situation where we have a two-address instruction + // whose mod/ref operand needs to be reloaded. This reload is already + // available in some register "PhysReg", but if we used PhysReg as the + // operand to our 2-addr instruction, the instruction would modify + // PhysReg. This isn't cool if something later uses PhysReg and expects + // to get its initial value. + // + // To avoid this problem, and to avoid doing a load right after a store, + // we emit a copy from PhysReg into the designated register for this + // operand. + unsigned DesignatedReg = VRM.getPhys(VirtReg); + assert(DesignatedReg && "Must map virtreg to physreg!"); + + // Note that, if we reused a register for a previous operand, the + // register we want to reload into might not actually be + // available. If this occurs, use the register indicated by the + // reuser. + if (ReusedOperands.hasReuses()) + DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, + Spills, MaybeDeadStores, RegKills, KillOps, VRM); + + // If the mapped designated register is actually the physreg we have + // incoming, we don't need to inserted a dead copy. + if (DesignatedReg == PhysReg) { + // If this stack slot value is already available, reuse it! + if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) + DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1; + else + DOUT << "Reusing SS#" << ReuseSlot; + DOUT << " from physreg " << TRI->getName(PhysReg) + << " for vreg" << VirtReg + << " instead of reloading into same physreg.\n"; + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + ReusedOperands.markClobbered(RReg); + ++NumReused; + continue; + } + + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + RegInfo->setPhysRegUsed(DesignatedReg); + ReusedOperands.markClobbered(DesignatedReg); + TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC); + + MachineInstr *CopyMI = prior(MII); + UpdateKills(*CopyMI, RegKills, KillOps, TRI); + + // This invalidates DesignatedReg. + Spills.ClobberPhysReg(DesignatedReg); + + Spills.addAvailable(ReuseSlot, DesignatedReg); + unsigned RReg = + SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + DOUT << '\t' << *prior(MII); + ++NumReused; + continue; + } // if (PhysReg) + + // Otherwise, reload it and remember that we have it. + PhysReg = VRM.getPhys(VirtReg); + assert(PhysReg && "Must map virtreg to physreg!"); + + // Note that, if we reused a register for a previous operand, the + // register we want to reload into might not actually be + // available. If this occurs, use the register indicated by the + // reuser. + if (ReusedOperands.hasReuses()) + PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, + Spills, MaybeDeadStores, RegKills, KillOps, VRM); + + RegInfo->setPhysRegUsed(PhysReg); + ReusedOperands.markClobbered(PhysReg); + if (AvoidReload) + ++NumAvoided; + else { + if (DoReMat) { + ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM); + } else { + const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg); + TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC); + MachineInstr *LoadMI = prior(MII); + VRM.addSpillSlotUse(SSorRMId, LoadMI); + ++NumLoads; + } + // This invalidates PhysReg. + Spills.ClobberPhysReg(PhysReg); + + // Any stores to this stack slot are not dead anymore. + if (!DoReMat) + MaybeDeadStores[SSorRMId] = NULL; + Spills.addAvailable(SSorRMId, PhysReg); + // Assumes this is the last use. IsKill will be unset if reg is reused + // unless it's a two-address operand. + if (!MI.isRegTiedToDefOperand(i) && + KilledMIRegs.count(VirtReg) == 0) { + MI.getOperand(i).setIsKill(); + KilledMIRegs.insert(VirtReg); + } + + UpdateKills(*prior(MII), RegKills, KillOps, TRI); + DOUT << '\t' << *prior(MII); + } + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + } + + // Ok - now we can remove stores that have been confirmed dead. + for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { + // This was the last use and the spilled value is still available + // for reuse. That means the spill was unnecessary! + int PDSSlot = PotentialDeadStoreSlots[j]; + MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; + if (DeadStore) { + DOUT << "Removed dead store:\t" << *DeadStore; + InvalidateKills(*DeadStore, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(DeadStore); + MBB.erase(DeadStore); + MaybeDeadStores[PDSSlot] = NULL; + ++NumDSE; + } + } + + + DOUT << '\t' << MI; + + + // If we have folded references to memory operands, make sure we clear all + // physical registers that may contain the value of the spilled virtual + // register + SmallSet<int, 2> FoldedSS; + for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) { + unsigned VirtReg = I->second.first; + VirtRegMap::ModRef MR = I->second.second; + DOUT << "Folded vreg: " << VirtReg << " MR: " << MR; + + // MI2VirtMap be can updated which invalidate the iterator. + // Increment the iterator first. + ++I; + int SS = VRM.getStackSlot(VirtReg); + if (SS == VirtRegMap::NO_STACK_SLOT) + continue; + FoldedSS.insert(SS); + DOUT << " - StackSlot: " << SS << "\n"; + + // If this folded instruction is just a use, check to see if it's a + // straight load from the virt reg slot. + if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { + int FrameIdx; + unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); + if (DestReg && FrameIdx == SS) { + // If this spill slot is available, turn it into a copy (or nothing) + // instead of leaving it as a load! + if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { + DOUT << "Promoted Load To Copy: " << MI; + if (DestReg != InReg) { + const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); + TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC); + MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); + unsigned SubIdx = DefMO->getSubReg(); + // Revisit the copy so we make sure to notice the effects of the + // operation on the destreg (either needing to RA it if it's + // virtual or needing to clobber any values if it's physical). + NextMII = &MI; + --NextMII; // backtrack to the copy. + // Propagate the sub-register index over. + if (SubIdx) { + DefMO = NextMII->findRegisterDefOperand(DestReg); + DefMO->setSubReg(SubIdx); + } + + // Mark is killed. + MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg); + KillOpnd->setIsKill(); + + BackTracked = true; + } else { + DOUT << "Removing now-noop copy: " << MI; + // Unset last kill since it's being reused. + InvalidateKill(InReg, RegKills, KillOps); + Spills.disallowClobberPhysReg(InReg); + } + + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + goto ProcessNextInst; + } + } else { + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); + SmallVector<MachineInstr*, 4> NewMIs; + if (PhysReg && + TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) { + MBB.insert(MII, NewMIs[0]); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + --NextMII; // backtrack to the unfolded instruction. + BackTracked = true; + goto ProcessNextInst; + } + } + } + + // If this reference is not a use, any previous store is now dead. + // Otherwise, the store to this stack slot is not dead anymore. + MachineInstr* DeadStore = MaybeDeadStores[SS]; + if (DeadStore) { + bool isDead = !(MR & VirtRegMap::isRef); + MachineInstr *NewStore = NULL; + if (MR & VirtRegMap::isModRef) { + unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); + SmallVector<MachineInstr*, 4> NewMIs; + // We can reuse this physreg as long as we are allowed to clobber + // the value and there isn't an earlier def that has already clobbered + // the physreg. + if (PhysReg && + !ReusedOperands.isClobbered(PhysReg) && + Spills.canClobberPhysReg(PhysReg) && + !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! + MachineOperand *KillOpnd = + DeadStore->findRegisterUseOperand(PhysReg, true); + // Note, if the store is storing a sub-register, it's possible the + // super-register is needed below. + if (KillOpnd && !KillOpnd->getSubReg() && + TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ + MBB.insert(MII, NewMIs[0]); + NewStore = NewMIs[1]; + MBB.insert(MII, NewStore); + VRM.addSpillSlotUse(SS, NewStore); + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + --NextMII; + --NextMII; // backtrack to the unfolded instruction. + BackTracked = true; + isDead = true; + ++NumSUnfold; + } + } + } + + if (isDead) { // Previous store is dead. + // If we get here, the store is dead, nuke it now. + DOUT << "Removed dead store:\t" << *DeadStore; + InvalidateKills(*DeadStore, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(DeadStore); + MBB.erase(DeadStore); + if (!NewStore) + ++NumDSE; + } + + MaybeDeadStores[SS] = NULL; + if (NewStore) { + // Treat this store as a spill merged into a copy. That makes the + // stack slot value available. + VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod); + goto ProcessNextInst; + } + } + + // If the spill slot value is available, and this is a new definition of + // the value, the value is not available anymore. + if (MR & VirtRegMap::isMod) { + // Notice that the value in this stack slot has been modified. + Spills.ModifyStackSlotOrReMat(SS); + + // If this is *just* a mod of the value, check to see if this is just a + // store to the spill slot (i.e. the spill got merged into the copy). If + // so, realize that the vreg is available now, and add the store to the + // MaybeDeadStore info. + int StackSlot; + if (!(MR & VirtRegMap::isRef)) { + if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { + assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && + "Src hasn't been allocated yet?"); + + if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot, + Spills, RegKills, KillOps, TRI, VRM)) { + NextMII = next(MII); + BackTracked = true; + goto ProcessNextInst; + } + + // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark + // this as a potentially dead store in case there is a subsequent + // store into the stack slot without a read from it. + MaybeDeadStores[StackSlot] = &MI; + + // If the stack slot value was previously available in some other + // register, change it now. Otherwise, make the register + // available in PhysReg. + Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); + } + } + } + } + + // Process all of the spilled defs. + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!(MO.isReg() && MO.getReg() && MO.isDef())) + continue; + + unsigned VirtReg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { + // Check to see if this is a noop copy. If so, eliminate the + // instruction before considering the dest reg to be changed. + unsigned Src, Dst, SrcSR, DstSR; + if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { + ++NumDCE; + DOUT << "Removing now-noop copy: " << MI; + SmallVector<unsigned, 2> KillRegs; + InvalidateKills(MI, RegKills, KillOps, &KillRegs); + if (MO.isDead() && !KillRegs.empty()) { + // Source register or an implicit super/sub-register use is killed. + assert(KillRegs[0] == Dst || + TRI->isSubRegister(KillRegs[0], Dst) || + TRI->isSuperRegister(KillRegs[0], Dst)); + // Last def is now dead. + TransferDeadness(&MBB, Dist, Src, RegKills, KillOps); + } + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + Spills.disallowClobberPhysReg(VirtReg); + goto ProcessNextInst; + } + + // If it's not a no-op copy, it clobbers the value in the destreg. + Spills.ClobberPhysReg(VirtReg); + ReusedOperands.markClobbered(VirtReg); + + // Check to see if this instruction is a load from a stack slot into + // a register. If so, this provides the stack slot value in the reg. + int FrameIdx; + if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { + assert(DestReg == VirtReg && "Unknown load situation!"); + + // If it is a folded reference, then it's not safe to clobber. + bool Folded = FoldedSS.count(FrameIdx); + // Otherwise, if it wasn't available, remember that it is now! + Spills.addAvailable(FrameIdx, DestReg, !Folded); + goto ProcessNextInst; + } + + continue; + } + + unsigned SubIdx = MO.getSubReg(); + bool DoReMat = VRM.isReMaterialized(VirtReg); + if (DoReMat) + ReMatDefs.insert(&MI); + + // The only vregs left are stack slot definitions. + int StackSlot = VRM.getStackSlot(VirtReg); + const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg); + + // If this def is part of a two-address operand, make sure to execute + // the store from the correct physical register. + unsigned PhysReg; + unsigned TiedOp; + if (MI.isRegTiedToUseOperand(i, &TiedOp)) { + PhysReg = MI.getOperand(TiedOp).getReg(); + if (SubIdx) { + unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); + assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && + "Can't find corresponding super-register!"); + PhysReg = SuperReg; + } + } else { + PhysReg = VRM.getPhys(VirtReg); + if (ReusedOperands.isClobbered(PhysReg)) { + // Another def has taken the assigned physreg. It must have been a + // use&def which got it due to reuse. Undo the reuse! + PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, + Spills, MaybeDeadStores, RegKills, KillOps, VRM); + } + } + + assert(PhysReg && "VR not assigned a physical register?"); + RegInfo->setPhysRegUsed(PhysReg); + unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; + ReusedOperands.markClobbered(RReg); + MI.getOperand(i).setReg(RReg); + MI.getOperand(i).setSubReg(0); + + if (!MO.isDead()) { + MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; + SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true, + LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM); + NextMII = next(MII); + + // Check to see if this is a noop copy. If so, eliminate the + // instruction before considering the dest reg to be changed. + { + unsigned Src, Dst, SrcSR, DstSR; + if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) { + ++NumDCE; + DOUT << "Removing now-noop copy: " << MI; + InvalidateKills(MI, RegKills, KillOps); + VRM.RemoveMachineInstrFromMaps(&MI); + MBB.erase(&MI); + Erased = true; + UpdateKills(*LastStore, RegKills, KillOps, TRI); + goto ProcessNextInst; + } + } + } + } + ProcessNextInst: + DistanceMap.insert(std::make_pair(&MI, Dist++)); + if (!Erased && !BackTracked) { + for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) + UpdateKills(*II, RegKills, KillOps, TRI); + } + MII = NextMII; + } + + } + +}; + +llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { + switch (RewriterOpt) { + default: assert(0 && "Unreachable!"); + case local: + return new LocalRewriter(); + case simple: + return new SimpleRewriter(); + } +} |