diff options
Diffstat (limited to 'lib/CodeGen/RegAllocLocal.cpp')
-rw-r--r-- | lib/CodeGen/RegAllocLocal.cpp | 490 |
1 files changed, 490 insertions, 0 deletions
diff --git a/lib/CodeGen/RegAllocLocal.cpp b/lib/CodeGen/RegAllocLocal.cpp new file mode 100644 index 0000000000..a372390d5c --- /dev/null +++ b/lib/CodeGen/RegAllocLocal.cpp @@ -0,0 +1,490 @@ +//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// +// +// This register allocator allocates registers to a basic block at a time, +// attempting to keep values in registers and reusing registers as appropriate. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/Target/MachineInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "Support/Statistic.h" +#include <iostream> + +/// PhysRegClassMap - Construct a mapping of physical register numbers to their +/// register classes. +/// +/// NOTE: This class will eventually be pulled out to somewhere shared. +/// +class PhysRegClassMap { + std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap; +public: + PhysRegClassMap(const MRegisterInfo *RI) { + for (MRegisterInfo::const_iterator I = RI->regclass_begin(), + E = RI->regclass_end(); I != E; ++I) + for (unsigned i=0; i < (*I)->getNumRegs(); ++i) + PhysReg2RegClassMap[(*I)->getRegister(i)] = *I; + } + + const TargetRegisterClass *operator[](unsigned Reg) { + assert(PhysReg2RegClassMap[Reg] && "Register is not a known physreg!"); + return PhysReg2RegClassMap[Reg]; + } + + const TargetRegisterClass *get(unsigned Reg) { return operator[](Reg); } +}; + +namespace { + Statistic<> NumSpilled ("ra-local", "Number of registers spilled"); + Statistic<> NumReloaded("ra-local", "Number of registers reloaded"); + + class RA : public FunctionPass { + TargetMachine &TM; + MachineFunction *MF; + const MRegisterInfo *RegInfo; + unsigned NumBytesAllocated; + PhysRegClassMap PhysRegClasses; + + // Maps SSA Regs => offsets on the stack where these values are stored + std::map<unsigned, unsigned> VirtReg2OffsetMap; + + // Virt2PhysRegMap - This map contains entries for each virtual register + // that is currently available in a physical register. + // + std::map<unsigned, unsigned> Virt2PhysRegMap; + + // PhysRegsUsed - This map contains entries for each physical register that + // currently has a value (ie, it is in Virt2PhysRegMap). The value mapped + // to is the virtual register corresponding to the physical register (the + // inverse of the Virt2PhysRegMap), or 0. The value is set to 0 if this + // register is pinned because it is used by a future instruction. + // + std::map<unsigned, unsigned> PhysRegsUsed; + + // PhysRegsUseOrder - This contains a list of the physical registers that + // currently have a virtual register value in them. This list provides an + // ordering of registers, imposing a reallocation order. This list is only + // used if all registers are allocated and we have to spill one, in which + // case we spill the least recently used register. Entries at the front of + // the list are the least recently used registers, entries at the back are + // the most recently used. + // + std::vector<unsigned> PhysRegsUseOrder; + + void MarkPhysRegRecentlyUsed(unsigned Reg) { + assert(std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg) != + PhysRegsUseOrder.end() && "Register isn't used yet!"); + if (PhysRegsUseOrder.back() != Reg) { + for (unsigned i = PhysRegsUseOrder.size(); ; --i) + if (PhysRegsUseOrder[i-1] == Reg) { // remove from middle + PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); + PhysRegsUseOrder.push_back(Reg); // Add it to the end of the list + return; + } + } + } + + public: + + RA(TargetMachine &tm) + : TM(tm), RegInfo(tm.getRegisterInfo()), PhysRegClasses(RegInfo) { + cleanupAfterFunction(); + } + + bool runOnFunction(Function &Fn) { + return runOnMachineFunction(MachineFunction::get(&Fn)); + } + + virtual const char *getPassName() const { + return "Local Register Allocator"; + } + + private: + /// runOnMachineFunction - Register allocate the whole function + bool runOnMachineFunction(MachineFunction &Fn); + + /// AllocateBasicBlock - Register allocate the specified basic block. + void AllocateBasicBlock(MachineBasicBlock &MBB); + + /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions + /// in predecessor basic blocks. + void EliminatePHINodes(MachineBasicBlock &MBB); + + + /// getStackSpaceFor - This returns the offset of the specified virtual + /// register on the stack, allocating space if neccesary. + unsigned getStackSpaceFor(unsigned VirtReg, + const TargetRegisterClass *regClass); + + void cleanupAfterFunction() { + VirtReg2OffsetMap.clear(); + NumBytesAllocated = 4; // FIXME: This is X86 specific + } + + + /// spillVirtReg - This method spills the value specified by PhysReg into + /// the virtual register slot specified by VirtReg. It then updates the RA + /// data structures to indicate the fact that PhysReg is now available. + /// + void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, + unsigned VirtReg, unsigned PhysReg); + + void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); + + + /// getFreeReg - Find a physical register to hold the specified virtual + /// register. If all compatible physical registers are used, this method + /// spills the last used virtual register to the stack, and uses that + /// register. + /// + unsigned getFreeReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &I, + unsigned virtualReg); + + /// reloadVirtReg - This method loads the specified virtual register into a + /// physical register, returning the physical register chosen. This updates + /// the regalloc data structures to reflect the fact that the virtual reg is + /// now alive in a physical register, and the previous one isn't. + /// + unsigned reloadVirtReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &I, unsigned VirtReg); + }; + +} + +/// getStackSpaceFor - This allocates space for the specified virtual +/// register to be held on the stack. +unsigned RA::getStackSpaceFor(unsigned VirtReg, + const TargetRegisterClass *RegClass) { + // Find the location VirtReg would belong... + std::map<unsigned, unsigned>::iterator I = + VirtReg2OffsetMap.lower_bound(VirtReg); + + if (I != VirtReg2OffsetMap.end() && I->first == VirtReg) + return I->second; // Already has space allocated? + + unsigned RegSize = RegClass->getDataSize(); + + // Align NumBytesAllocated. We should be using TargetData alignment stuff + // to determine this, but we don't know the LLVM type associated with the + // virtual register. Instead, just align to a multiple of the size for now. + NumBytesAllocated += RegSize-1; + NumBytesAllocated = NumBytesAllocated/RegSize*RegSize; + + // Assign the slot... + VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated)); + + // Reserve the space! + NumBytesAllocated += RegSize; + return NumBytesAllocated-RegSize; +} + +/// spillVirtReg - This method spills the value specified by PhysReg into the +/// virtual register slot specified by VirtReg. It then updates the RA data +/// structures to indicate the fact that PhysReg is now available. +/// +void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, + unsigned VirtReg, unsigned PhysReg) { + // If this is just a marker register, we don't need to spill it. + if (VirtReg != 0) { + const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg); + unsigned stackOffset = getStackSpaceFor(VirtReg, RegClass); + + // Add move instruction(s) + I = RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(), + -stackOffset, RegClass->getDataSize()); + ++NumSpilled; // Update statistics + Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available + } + PhysRegsUsed.erase(PhysReg); // PhyReg no longer used + + std::vector<unsigned>::iterator It = + std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); + assert(It != PhysRegsUseOrder.end() && + "Spilled a physical register, but it was not in use list!"); + PhysRegsUseOrder.erase(It); +} + +/// getFreeReg - Find a physical register to hold the specified virtual +/// register. If all compatible physical registers are used, this method spills +/// the last used virtual register to the stack, and uses that register. +/// +unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, + unsigned VirtReg) { + const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg); + unsigned PhysReg = 0; + + for (TargetRegisterClass::iterator It = RegClass->begin(),E = RegClass->end(); + It != E; ++It) { + unsigned R = *It; + if (PhysRegsUsed.find(R) == PhysRegsUsed.end()) // Is reg unused? + /// FIXME: Hack + if (R != RegInfo->getFramePointer() && R != RegInfo->getStackPointer() && + R != 13 && R != 14) { + // Found an unused register! + PhysReg = R; + break; + } + } + + // If we didn't find an unused register, scavange one now! + if (PhysReg == 0) { + unsigned i = 0; + while (PhysRegClasses[PhysRegsUseOrder[i]] != RegClass) { + ++i; + assert(i != PhysRegsUseOrder.size() && + "Couldn't find a register of the appropriate class!"); + } + + // At this point PhysRegsUseOrder[i] is the least recently used register of + // compatible register class. Spill it to memory and reap its remains. + PhysReg = PhysRegsUseOrder[i]; + spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); + } + + // Now that we know which register we need to assign this to, do it now! + AssignVirtToPhysReg(VirtReg, PhysReg); + return PhysReg; +} + +void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { + assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() && + "Phys reg already assigned!"); + // Update information to note the fact that this register was just used, and + // it holds VirtReg. + PhysRegsUsed[PhysReg] = VirtReg; + Virt2PhysRegMap[VirtReg] = PhysReg; + PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg +} + + +/// reloadVirtReg - This method loads the specified virtual register into a +/// physical register, returning the physical register chosen. This updates the +/// regalloc data structures to reflect the fact that the virtual reg is now +/// alive in a physical register, and the previous one isn't. +/// +unsigned RA::reloadVirtReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &I, + unsigned VirtReg) { + std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg); + if (It != Virt2PhysRegMap.end()) { + MarkPhysRegRecentlyUsed(It->second); + return It->second; // Already have this value available! + } + + unsigned PhysReg = getFreeReg(MBB, I, VirtReg); + + const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg); + unsigned StackOffset = getStackSpaceFor(VirtReg, RegClass); + + // Add move instruction(s) + I = RegInfo->loadRegOffset2Reg(MBB, I, PhysReg, RegInfo->getFramePointer(), + -StackOffset, RegClass->getDataSize()); + ++NumReloaded; // Update statistics + return PhysReg; +} + +/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in +/// predecessor basic blocks. +/// +void RA::EliminatePHINodes(MachineBasicBlock &MBB) { + const MachineInstrInfo &MII = TM.getInstrInfo(); + + while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) { + MachineInstr *MI = MBB.front(); + // Unlink the PHI node from the basic block... but don't delete the PHI yet + MBB.erase(MBB.begin()); + + DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n"); + assert(MI->getOperand(0).isVirtualRegister() && + "PHI node doesn't write virt reg?"); + + unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum(); + + for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) { + MachineOperand &opVal = MI->getOperand(i-1); + + // Get the MachineBasicBlock equivalent of the BasicBlock that is the + // source path the phi + MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock(); + + // Check to make sure we haven't already emitted the copy for this block. + // This can happen because PHI nodes may have multiple entries for the + // same basic block. It doesn't matter which entry we use though, because + // all incoming values are guaranteed to be the same for a particular bb. + // + // Note that this is N^2 in the number of phi node entries, but since the + // # of entries is tiny, this is not a problem. + // + bool HaveNotEmitted = true; + for (int op = MI->getNumOperands() - 1; op != i; op -= 2) + if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) { + HaveNotEmitted = false; + break; + } + + if (HaveNotEmitted) { + MachineBasicBlock::iterator opI = opBlock.end(); + MachineInstr *opMI = *--opI; + + // must backtrack over ALL the branches in the previous block + while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin()) + opMI = *--opI; + + // move back to the first branch instruction so new instructions + // are inserted right in front of it and not in front of a non-branch + if (!MII.isBranch(opMI->getOpcode())) + ++opI; + + unsigned dataSize = MF->getRegClass(virtualReg)->getDataSize(); + + // Retrieve the constant value from this op, move it to target + // register of the phi + if (opVal.isImmediate()) { + opI = RegInfo->moveImm2Reg(opBlock, opI, virtualReg, + (unsigned) opVal.getImmedValue(), + dataSize); + } else { + opI = RegInfo->moveReg2Reg(opBlock, opI, virtualReg, + opVal.getAllocatedRegNum(), dataSize); + } + } + } + + // really delete the PHI instruction now! + delete MI; + } +} + +void RA::AllocateBasicBlock(MachineBasicBlock &MBB) { + // loop over each instruction + MachineBasicBlock::iterator I = MBB.begin(); + for (; I != MBB.end(); ++I) { + MachineInstr *MI = *I; + + // Loop over all of the operands of the instruction, spilling registers that + // are defined, and marking explicit destinations in the PhysRegsUsed map. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) + if (MI->getOperand(i).opIsDef() && + MI->getOperand(i).isPhysicalRegister()) { + unsigned Reg = MI->getOperand(i).getAllocatedRegNum(); + unsigned VMap = PhysRegsUsed[Reg]; + if (VMap) { // Spill the value in this register... + spillVirtReg(MBB, I, VMap, Reg); + PhysRegsUsed[Reg] = 0; // It's free now, and it's reserved + } + PhysRegsUseOrder.push_back(Reg); + } + + // FIXME: Loop over the implicit defs, spilling them, as above. + + + // FIXME: Loop over the implicit uses, making sure that they are at the head + // of the use order list, so they don't get reallocated. + + // Loop over all of the operands again, getting the used operands into + // registers. This has the potiential to spill incoming values because we + // are out of registers. + // + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) + if (MI->getOperand(i).opIsUse() && + MI->getOperand(i).isVirtualRegister()) { + unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum(); + unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg); + MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register + } + + // Okay, we have allocated all of the source operands and spilled any values + // that would be destroyed by defs of this instruction. Loop over the + // implicit defs and assign them to a register, spilling the incoming value + // if we need to scavange a register. + + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) + if (MI->getOperand(i).opIsDef() && + !MI->getOperand(i).isPhysicalRegister()) { + unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum(); + unsigned DestPhysReg; + + if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) { + // must be same register number as the first operand + // This maps a = b + c into b += c, and saves b into a's spot + assert(MI->getOperand(1).isRegister() && + MI->getOperand(1).getAllocatedRegNum() && + MI->getOperand(1).opIsUse() && + "Two address instruction invalid!"); + DestPhysReg = MI->getOperand(1).getAllocatedRegNum(); + + // Spill the incoming value, because we are about to change the + // register contents. + spillVirtReg(MBB, I, PhysRegsUsed[DestPhysReg], DestPhysReg); + AssignVirtToPhysReg(DestVirtReg, DestPhysReg); + } else { + DestPhysReg = getFreeReg(MBB, I, DestVirtReg); + } + MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register + } + } + + // Rewind the iterator to point to the first flow control instruction... + const MachineInstrInfo &MII = TM.getInstrInfo(); + I = MBB.end(); + do { + --I; + } while ((MII.isReturn((*I)->getOpcode()) || + MII.isBranch((*I)->getOpcode())) && I != MBB.begin()); + + if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode())) + ++I; + + // Spill all physical registers holding virtual registers now. + while (!PhysRegsUsed.empty()) + spillVirtReg(MBB, I, PhysRegsUsed.begin()->second, + PhysRegsUsed.begin()->first); + + assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?"); + assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?"); +} + +/// runOnMachineFunction - Register allocate the whole function +/// +bool RA::runOnMachineFunction(MachineFunction &Fn) { + DEBUG(std::cerr << "Machine Function " << "\n"); + MF = &Fn; + + // First pass: eliminate PHI instructions by inserting copies into predecessor + // blocks. + // FIXME: In this pass, count how many uses of each VReg exist! + for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); + MBB != MBBe; ++MBB) + EliminatePHINodes(*MBB); + + // Loop over all of the basic blocks, eliminating virtual register references + for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); + MBB != MBBe; ++MBB) + AllocateBasicBlock(*MBB); + + // Round stack allocation up to a nice alignment to keep the stack aligned + // FIXME: This is X86 specific! Move to frame manager + NumBytesAllocated = (NumBytesAllocated + 3) & ~3; + + // Add prologue to the function... + RegInfo->emitPrologue(Fn, NumBytesAllocated); + + const MachineInstrInfo &MII = TM.getInstrInfo(); + + // Add epilogue to restore the callee-save registers in each exiting block + for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); + MBB != MBBe; ++MBB) { + // If last instruction is a return instruction, add an epilogue + if (MII.isReturn(MBB->back()->getOpcode())) + RegInfo->emitEpilogue(*MBB, NumBytesAllocated); + } + + cleanupAfterFunction(); + return true; +} + +Pass *createLocalRegisterAllocator(TargetMachine &TM) { + return new RA(TM); +} |