aboutsummaryrefslogtreecommitdiff
path: root/lib/AsmParser/Lexer.l.cvs
diff options
context:
space:
mode:
Diffstat (limited to 'lib/AsmParser/Lexer.l.cvs')
-rw-r--r--lib/AsmParser/Lexer.l.cvs355
1 files changed, 355 insertions, 0 deletions
diff --git a/lib/AsmParser/Lexer.l.cvs b/lib/AsmParser/Lexer.l.cvs
new file mode 100644
index 0000000000..71482e00dd
--- /dev/null
+++ b/lib/AsmParser/Lexer.l.cvs
@@ -0,0 +1,355 @@
+/*===-- Lexer.l - Scanner for llvm assembly files --------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the flex scanner for LLVM assembly languages files.
+//
+//===----------------------------------------------------------------------===*/
+
+%option prefix="llvmAsm"
+%option yylineno
+%option nostdinit
+%option never-interactive
+%option batch
+%option noyywrap
+%option nodefault
+%option 8bit
+%option outfile="Lexer.cpp"
+%option ecs
+%option noreject
+%option noyymore
+
+%{
+#include "ParserInternals.h"
+#include "llvm/Module.h"
+#include <list>
+#include "llvmAsmParser.h"
+#include <cctype>
+#include <cstdlib>
+
+void set_scan_file(FILE * F){
+ yy_switch_to_buffer(yy_create_buffer( F, YY_BUF_SIZE ) );
+}
+void set_scan_string (const char * str) {
+ yy_scan_string (str);
+}
+
+#define RET_TOK(type, Enum, sym) \
+ llvmAsmlval.type = Instruction::Enum; return sym
+
+namespace llvm {
+
+// TODO: All of the static identifiers are figured out by the lexer,
+// these should be hashed to reduce the lexer size
+
+
+// atoull - Convert an ascii string of decimal digits into the unsigned long
+// long representation... this does not have to do input error checking,
+// because we know that the input will be matched by a suitable regex...
+//
+static uint64_t atoull(const char *Buffer) {
+ uint64_t Result = 0;
+ for (; *Buffer; Buffer++) {
+ uint64_t OldRes = Result;
+ Result *= 10;
+ Result += *Buffer-'0';
+ if (Result < OldRes) // Uh, oh, overflow detected!!!
+ ThrowException("constant bigger than 64 bits detected!");
+ }
+ return Result;
+}
+
+static uint64_t HexIntToVal(const char *Buffer) {
+ uint64_t Result = 0;
+ for (; *Buffer; ++Buffer) {
+ uint64_t OldRes = Result;
+ Result *= 16;
+ char C = *Buffer;
+ if (C >= '0' && C <= '9')
+ Result += C-'0';
+ else if (C >= 'A' && C <= 'F')
+ Result += C-'A'+10;
+ else if (C >= 'a' && C <= 'f')
+ Result += C-'a'+10;
+
+ if (Result < OldRes) // Uh, oh, overflow detected!!!
+ ThrowException("constant bigger than 64 bits detected!");
+ }
+ return Result;
+}
+
+
+// HexToFP - Convert the ascii string in hexidecimal format to the floating
+// point representation of it.
+//
+static double HexToFP(const char *Buffer) {
+ // Behave nicely in the face of C TBAA rules... see:
+ // http://www.nullstone.com/htmls/category/aliastyp.htm
+ union {
+ uint64_t UI;
+ double FP;
+ } UIntToFP;
+ UIntToFP.UI = HexIntToVal(Buffer);
+
+ assert(sizeof(double) == sizeof(uint64_t) &&
+ "Data sizes incompatible on this target!");
+ return UIntToFP.FP; // Cast Hex constant to double
+}
+
+
+// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
+// appropriate character. If AllowNull is set to false, a \00 value will cause
+// an exception to be thrown.
+//
+// If AllowNull is set to true, the return value of the function points to the
+// last character of the string in memory.
+//
+char *UnEscapeLexed(char *Buffer, bool AllowNull) {
+ char *BOut = Buffer;
+ for (char *BIn = Buffer; *BIn; ) {
+ if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
+ char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
+ *BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
+ if (!AllowNull && !*BOut)
+ ThrowException("String literal cannot accept \\00 escape!");
+
+ BIn[3] = Tmp; // Restore character
+ BIn += 3; // Skip over handled chars
+ ++BOut;
+ } else {
+ *BOut++ = *BIn++;
+ }
+ }
+
+ return BOut;
+}
+
+} // End llvm namespace
+
+using namespace llvm;
+
+#define YY_NEVER_INTERACTIVE 1
+%}
+
+
+
+/* Comments start with a ; and go till end of line */
+Comment ;.*
+
+/* Variable(Value) identifiers start with a % sign */
+VarID %[-a-zA-Z$._][-a-zA-Z$._0-9]*
+
+/* Label identifiers end with a colon */
+Label [-a-zA-Z$._0-9]+:
+QuoteLabel \"[^\"]+\":
+
+/* Quoted names can contain any character except " and \ */
+StringConstant \"[^\"]*\"
+
+
+/* [PN]Integer: match positive and negative literal integer values that
+ * are preceeded by a '%' character. These represent unnamed variable slots.
+ */
+EPInteger %[0-9]+
+ENInteger %-[0-9]+
+
+
+/* E[PN]Integer: match positive and negative literal integer values */
+PInteger [0-9]+
+NInteger -[0-9]+
+
+/* FPConstant - A Floating point constant.
+ */
+FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
+
+/* HexFPConstant - Floating point constant represented in IEEE format as a
+ * hexadecimal number for when exponential notation is not precise enough.
+ */
+HexFPConstant 0x[0-9A-Fa-f]+
+
+/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
+ * it to deal with 64 bit numbers.
+ */
+HexIntConstant [us]0x[0-9A-Fa-f]+
+%%
+
+{Comment} { /* Ignore comments for now */ }
+
+begin { return BEGINTOK; }
+end { return ENDTOK; }
+true { return TRUETOK; }
+false { return FALSETOK; }
+declare { return DECLARE; }
+global { return GLOBAL; }
+constant { return CONSTANT; }
+internal { return INTERNAL; }
+linkonce { return LINKONCE; }
+weak { return WEAK; }
+appending { return APPENDING; }
+uninitialized { return EXTERNAL; } /* Deprecated, turn into external */
+external { return EXTERNAL; }
+implementation { return IMPLEMENTATION; }
+zeroinitializer { return ZEROINITIALIZER; }
+\.\.\. { return DOTDOTDOT; }
+undef { return UNDEF; }
+null { return NULL_TOK; }
+to { return TO; }
+except { RET_TOK(TermOpVal, Unwind, UNWIND); }
+not { return NOT; } /* Deprecated, turned into XOR */
+tail { return TAIL; }
+target { return TARGET; }
+triple { return TRIPLE; }
+deplibs { return DEPLIBS; }
+endian { return ENDIAN; }
+pointersize { return POINTERSIZE; }
+little { return LITTLE; }
+big { return BIG; }
+volatile { return VOLATILE; }
+align { return ALIGN; }
+section { return SECTION; }
+module { return MODULE; }
+asm { return ASM_TOK; }
+sideeffect { return SIDEEFFECT; }
+
+cc { return CC_TOK; }
+ccc { return CCC_TOK; }
+fastcc { return FASTCC_TOK; }
+coldcc { return COLDCC_TOK; }
+
+void { llvmAsmlval.PrimType = Type::VoidTy ; return VOID; }
+bool { llvmAsmlval.PrimType = Type::BoolTy ; return BOOL; }
+sbyte { llvmAsmlval.PrimType = Type::SByteTy ; return SBYTE; }
+ubyte { llvmAsmlval.PrimType = Type::UByteTy ; return UBYTE; }
+short { llvmAsmlval.PrimType = Type::ShortTy ; return SHORT; }
+ushort { llvmAsmlval.PrimType = Type::UShortTy; return USHORT; }
+int { llvmAsmlval.PrimType = Type::IntTy ; return INT; }
+uint { llvmAsmlval.PrimType = Type::UIntTy ; return UINT; }
+long { llvmAsmlval.PrimType = Type::LongTy ; return LONG; }
+ulong { llvmAsmlval.PrimType = Type::ULongTy ; return ULONG; }
+float { llvmAsmlval.PrimType = Type::FloatTy ; return FLOAT; }
+double { llvmAsmlval.PrimType = Type::DoubleTy; return DOUBLE; }
+label { llvmAsmlval.PrimType = Type::LabelTy ; return LABEL; }
+type { return TYPE; }
+opaque { return OPAQUE; }
+
+add { RET_TOK(BinaryOpVal, Add, ADD); }
+sub { RET_TOK(BinaryOpVal, Sub, SUB); }
+mul { RET_TOK(BinaryOpVal, Mul, MUL); }
+div { RET_TOK(BinaryOpVal, Div, DIV); }
+rem { RET_TOK(BinaryOpVal, Rem, REM); }
+and { RET_TOK(BinaryOpVal, And, AND); }
+or { RET_TOK(BinaryOpVal, Or , OR ); }
+xor { RET_TOK(BinaryOpVal, Xor, XOR); }
+setne { RET_TOK(BinaryOpVal, SetNE, SETNE); }
+seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
+setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); }
+setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); }
+setle { RET_TOK(BinaryOpVal, SetLE, SETLE); }
+setge { RET_TOK(BinaryOpVal, SetGE, SETGE); }
+
+phi { RET_TOK(OtherOpVal, PHI, PHI_TOK); }
+call { RET_TOK(OtherOpVal, Call, CALL); }
+cast { RET_TOK(OtherOpVal, Cast, CAST); }
+select { RET_TOK(OtherOpVal, Select, SELECT); }
+shl { RET_TOK(OtherOpVal, Shl, SHL); }
+shr { RET_TOK(OtherOpVal, Shr, SHR); }
+vanext { return VANEXT_old; }
+vaarg { return VAARG_old; }
+va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
+ret { RET_TOK(TermOpVal, Ret, RET); }
+br { RET_TOK(TermOpVal, Br, BR); }
+switch { RET_TOK(TermOpVal, Switch, SWITCH); }
+invoke { RET_TOK(TermOpVal, Invoke, INVOKE); }
+unwind { RET_TOK(TermOpVal, Unwind, UNWIND); }
+unreachable { RET_TOK(TermOpVal, Unreachable, UNREACHABLE); }
+
+malloc { RET_TOK(MemOpVal, Malloc, MALLOC); }
+alloca { RET_TOK(MemOpVal, Alloca, ALLOCA); }
+free { RET_TOK(MemOpVal, Free, FREE); }
+load { RET_TOK(MemOpVal, Load, LOAD); }
+store { RET_TOK(MemOpVal, Store, STORE); }
+getelementptr { RET_TOK(MemOpVal, GetElementPtr, GETELEMENTPTR); }
+
+extractelement { RET_TOK(OtherOpVal, ExtractElement, EXTRACTELEMENT); }
+insertelement { RET_TOK(OtherOpVal, InsertElement, INSERTELEMENT); }
+
+
+{VarID} {
+ UnEscapeLexed(yytext+1);
+ llvmAsmlval.StrVal = strdup(yytext+1); // Skip %
+ return VAR_ID;
+ }
+{Label} {
+ yytext[strlen(yytext)-1] = 0; // nuke colon
+ UnEscapeLexed(yytext);
+ llvmAsmlval.StrVal = strdup(yytext);
+ return LABELSTR;
+ }
+{QuoteLabel} {
+ yytext[strlen(yytext)-2] = 0; // nuke colon, end quote
+ UnEscapeLexed(yytext+1);
+ llvmAsmlval.StrVal = strdup(yytext+1);
+ return LABELSTR;
+ }
+
+{StringConstant} { // Note that we cannot unescape a string constant here! The
+ // string constant might contain a \00 which would not be
+ // understood by the string stuff. It is valid to make a
+ // [sbyte] c"Hello World\00" constant, for example.
+ //
+ yytext[strlen(yytext)-1] = 0; // nuke end quote
+ llvmAsmlval.StrVal = strdup(yytext+1); // Nuke start quote
+ return STRINGCONSTANT;
+ }
+
+
+{PInteger} { llvmAsmlval.UInt64Val = atoull(yytext); return EUINT64VAL; }
+{NInteger} {
+ uint64_t Val = atoull(yytext+1);
+ // +1: we have bigger negative range
+ if (Val > (uint64_t)INT64_MAX+1)
+ ThrowException("Constant too large for signed 64 bits!");
+ llvmAsmlval.SInt64Val = -Val;
+ return ESINT64VAL;
+ }
+{HexIntConstant} {
+ llvmAsmlval.UInt64Val = HexIntToVal(yytext+3);
+ return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
+ }
+
+{EPInteger} {
+ uint64_t Val = atoull(yytext+1);
+ if ((unsigned)Val != Val)
+ ThrowException("Invalid value number (too large)!");
+ llvmAsmlval.UIntVal = unsigned(Val);
+ return UINTVAL;
+ }
+{ENInteger} {
+ uint64_t Val = atoull(yytext+2);
+ // +1: we have bigger negative range
+ if (Val > (uint64_t)INT32_MAX+1)
+ ThrowException("Constant too large for signed 32 bits!");
+ llvmAsmlval.SIntVal = (int)-Val;
+ return SINTVAL;
+ }
+
+{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
+{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
+
+<<EOF>> {
+ /* Make sure to free the internal buffers for flex when we are
+ * done reading our input!
+ */
+ yy_delete_buffer(YY_CURRENT_BUFFER);
+ return EOF;
+ }
+
+[ \r\t\n] { /* Ignore whitespace */ }
+. { return yytext[0]; }
+
+%%